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Al. TOPOLOGICAL VECTOR SPACES

ABSTRACT. We review some basic facts concerning topological vector spaces. A spe-
cial emphasis is placed upon complexifications of topological vector spaces and upon
continuous inverse algebras.

Locally convex spaces

Definition Al.1. A topological vector space over K € {R,C} is a vector space X
over K equipped with a Hausdorff topology such that both the vector addition

XxX—oX, (z,y) » 2z +y,

and the scalar multiplication

Kx X — X, (A, z) = Az,
are continuous mappings. O
Example A1.2.

(a) The usual topology makes K™ into a topological vector space whenever n > 1
and K € {R,C}.
(b) Every Banach space over K € {R,C} is in particular a topological vector
space. O
Definition A1.3. A topological vector space X is said to be locally convez if each

point of X has a basis of convex neighborhoods.

Note that, to check that X is locally convex, it actually suffices to find a basis
V of convex neighborhoods of 0 € X. In fact, for arbitrary € X, it then easily
follows that {z +V | V € V} is a basis of convex neighborhoods of z. [

Example Al.4. Every Banach space is locally convex, since the open balls cen-
tered at some point z € X constitute a basis of convex neighborhoods of z. [

The following characterization of locally convex spaces shows that Example A1.4
plays a central role among locally convex spaces. For this statement, we recall that
a seminorm on a vector space X over K € {R,C} is a function p: X — [0, c0) such
that for all z,y € X and a € K we have p(z+y) < p(z) +p(y) and p(az) = |a|p(z).
Theorem A1.5. Let X be a topological vector space over K € {R,C}. Then X is
locally convez if and only if there exists a family of seminorms {p;}ic1 defining the
topology of X in the sense that, if forn > 1, i1,... i, € I and € > 0 we denote

Vig oo vinie = {z € X | lrsnkaéc" |pi, (2)] < €},
then
Vi= {‘/1:1,..‘,1:";6 l n Z ]-aila"' ain € I7€ > 0}
is a basis of neighborhoods of 0 € X.

Proof. See e.g., §1 in Chapter II in [Sf66] for the connection between convex sets
and seminorms in a topological vector space. O
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2 ELEMENTS OF LIE THEORY IN FINITE AND INFINITE DIMENSIONS

Example A1.6. Let X = C®[0,1] and for each n > 0 define

pn:X = [0,00),  pa(f):= sup [FM(B)].

Then {pn}n>o is a sequence of seminorms on X, hence Theorem A1.5 shows that
X has a topology of locally convex space such that, if we define

Npe:={f € X | max sup IF® @) < €} (n € Ne > 0),
' 0<k<n ¢eo,1]

then {Nnp.|n € Ne > O} is a basis of (convex!) neighborhoods of 0 € X. O

Example A1.7. Let D be an open subset of R™ (m > 1) and X = C (D).
For each compact subset K of D and o = (ai,...,an) € N™ we denote la| =
a1 + -+ a, and define

aa1+"'+amf
PK,a: X = [0,00), Pr.a(f) = tSéIII() Bt - 01%m t)|
(where we denote t = (t1,... ,tm) € R™ as usually). Then each px,q is a seminorm

on X, and it follows by Theorem A1.5 that the sets

Nkme:={f€X| max pga(f)<e} (K compact C D,n € Ne >0)
a€eN™ |a|<n
constitute a basis of convex neighborhoods of 0 € X in some topology making X
into a locally convex space. [

Definition A1.8. Let X be a topological vector space. We say that a sequence
{Zn}nen in X is convergent to 2 € X if for every neighborhood V' of x there exists
nyv € N such that for all n > ny we have z, € V. With the same notation, we
say that {Z, }nen is a Cauchy sequence if for every neighborhood W of 0 € X there
exists my € N such that z, — z,, € W whenever n,m > my.

Finally, we say that the topological vector space X is sequentially complete if
every Cauchy sequence in X is convergent. [

Exercise A1.9. Let X be a topological vector space.

(a) Prove that a sequence {Z,}nen is convergent to z € X if and only if for
every neighborhood W of 0 € X there exists ny € N such that z, —z € W
whenever n > nw .

(b) Prove that every convergent sequence in X is a Cauchy sequence.

(c) If X is locally convex and its topology is defined by a family of seminorms
{pi}ics as in Theorem A1.5, then a sequence {Zn}nen in X is a Cauchy
sequence if and only if for all ¢ € I we have m11i1r_r*1°opi(xm —xz,)=0. O

We note that every Banach space is in particular a sequentially complete locally
convex space. The next definition singles out a more general class of topological
vector spaces of the latter type.

Definition A1.10. We say that a locally convex space X over K € {R,C} is a
Fréchet space if it is sequentially complete and its topology can be defined by a
countable family of seminorms (see Theorem Al1.5). O
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Example Al.11. Every Banach space is in particular a Fréchet space, since it is
(sequentially) complete and its topology is defined by a single (semi)norm. 0O
Exercise A1.12. Prove that the space X = C*[0, 1] in Example A1.6 is a Fréchet
space. O

Exercise A1.13. Prove that the space X = C*®(D) in Example A1.7 is a Fréchet
space. O

Theorem A1.14 (Hahn-Banach). If X is a locally convez space over K € {R,C},
then for all z,y € X, with x # y, there exists a continuous linear functional

I: X = K such that I(z) # l(y).
Proof. See e.g., Theorem 9.2 in Chapter II in [Sf66]. O

Proposition A1.15. Let X be a sequentially complete locally convez space and
f:[0,1] = X a continuous function. Then there exists the Riemann integral

/ : F()dt € X.
0

Proof. The conclusion means that there exists z € X (to be denoted fol f(t)dt)
such that for every neighborhood V' of 0 € V' there exists § > 0 such that

(1) (ty —to)f(&1) + -+ + (tn —tn-1)f(n) €T +V

wheneverO:togflStl§§2§t2§-~§tn_1gfngtnzland sup < 4.
1<i<n

Since X is sequentially complete, it suffices (just as in the case X = R) to show
that for every sequence of subdivisions of [0, 1] with the mesh tending to 0, and for
arbitrary choices of ¢’s, the sequence of the corresponding Riemann sums (as in the

left-hand side of (1)) is a Cauchy sequence.
Since X is a locally convex space, the latter property follows by Exercise A1.8(c)

along with the fact that f:[0,1] = X is uniformly continuous in the following sense:
for every neighborhood V of 0 € X there exists ¢ > 0 such that, for all s,t € [0,1]
with |s — t| < €, we have f(s) — f(t) € V. The proof of this latter fact is just an

easy exercise (f is continuous on the compact [0, 1h. 4

Complexifications

Definition A1.16. Let X be a real topological vector space. The complexification
of X is the complex topological vector space X¢ := X x X equipped with the
product topology, with the componentwise vector addition

Xc x Xec = Xe,  (z1,22) + (Y1,92) = (T1 + 91,22 + Y2),
and with the scalar multiplication defined by
C x X¢ = Xe, (a+1ib) - (z1,22) = (az1 — bz2, 022 + bx1).
We usually perform the identifications
X ~ X x {0} = Xc and iX ~ {0} x X < X,

and thus

Xe =X +iX,
thinking of X as a real vector subspace of X¢. In particular we write 1 + iz2
instead of (z;,z2) whenever z,,z2 € X. U
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Exercise A1.17.
(a) If X is a real Banach space with the norm || - [|x, then the complexification

Xc(= X x X) is a complex Banach space with the norm || - || x. defined by

(Vz1,72 € X) (21, 22)lIx. := sup [|(cost)zy + (sint)za||x-
te(0,2n)

(b) If H is a real Hilbert space with the scalar product (-,-) s, then the complex-
ification He(= H x H) is a complex Hilbert space with the scalar product
(-, Y H. defined by
((z1,22), (Y1, 92)) b = (T1,91) 1 + (22, 92) 8 + (T2, Y1) 8 — (z1,92)H)

whenever z1,z2,91,¥2 € H. O
Exercise A1.18. Let X and Y be real Banach spaces and denote by Br(X,Y") the
real Banach space of all bounded R-linear operators from X into Y. Also denote
by Be(Xc, Ye) the complex Banach space of all bounded C-linear operators from
Xc into Ye. Then Be(Xe,Ye) is the complexification of Br(X,Y), the natural
embedding
Br(X,Y) <= Be(Xc, Ye)
being the one which associates to each T € Br(X,Y’) the operator

Xe=XxX-Ye=YxY, (z1,22) = (Tz1,Tz2). O

Continuous inverse algebras

Definition A1.19. A topological algebra A is a topological vector space equipped
with a continuous bilinear mapping

AxA— A, (a,b)—a-b,
called the multiplication of A. If the topological vector space underlying A is locally
convex, Fréchet, Banach or Hilbert, then we say that A is a locally convexz, Fréchet,
Banach or Hilbert algebra, respectively.

We say that the topological algebra A is associative if for all a,b,c € A we have
(a-b)-c=a-(b-c), and that A is unital if there exists an element 1 € A (called
the unit element of A) such that a-1 = 1-a = a for all a € A. If A is both
unital and associative, then an element z € A is said to be invertible if there exists
zo € A such that - 29 = o -z = 1. In this case, it is easy to check that zg is
uniquely determined by z and we denote zo =: z~!. The invertible elements of A
are sometimes called the units of A. We denote

A* :={z € A |z is invertible}.
Note that 1 € A* and A is a group with respect to the multiplication inherited

from A.
If A is a topological algebra then a subalgebra of A is a vector subspace Ag of A
such that a - b € Ay whenever a,b € Ag. If moreover A is unital and the unit of A

belongs to Ag, then we say that Ay is a unital subalgebra of A.

If A is a real topological algebra, then the complezification Ac of the topological
vector space underlying A has a natural structure of complex topological algebra
with the multiplication defined by

((11 + iag) . (b1 + 1b2) = (a1 ~by —as - bg) -f—i(al ~by +ay - bl)

whenever ay,as,by,by € A. If A is associative or unital, then so is A¢c. O



Al. TOPOLOGICAL VECTOR SPACES 5

Definition A1.20. Let A be a unital associative topological algebra. We say that
A is a continuous inverse algebra if AX is an open subset of A and the inversion

mapping
n:AX 5 A%, ezl

is continuous. 0O

Lemma A1.21. Let A be a unital associative topological algebra. If there exists
an open subset W of A such that 1 € W C A* and the inversion mapping

nlw: W — A*
is continuous, then A is a continuous inverse algebra.
Proof. Fix a € AX. Since a is invertible, it is easy to see that the mapping
L,:A— A, b ab,

is a homeomorphism and L,(A%) = A%, hence Lo(W) = aW is an open subset of
A* containing Lo(1) = a. Since a € A% is arbitrary, it follows that A* is open
in A. Moreover, for all ¢ € aW we have

ne)=c ' = (a(a™'e)) " = (@9 = n(a”
Since a~lc € W and n|w is continuous, it then follows that 7 is continuous on the

open neighborhood aW of a. Since a € A* is arbitrary, it follows that the inversion
mapping 7: AX — A is continuous throughout on A*. O

1 -1

c)a

Proposition A1.22. If A is a real continuous inverse algebra, then the complexi-
fication Ac is a complez continuous inverse algebra.
Proof. Denote as usually by n: AX — A* the inversion mapping, and define

Wi AX x A= A, P(a,b) =1+ (a7'b)%
Then t(a,b) = 1 + (n(a) - b)2, hence 1) is a continuous mapping. Since A* is open
in 4 and ¥(1,0) =1 € A%, it then follows that we can find an open neighborhood
U of 1 € A and an open neighborhood V of 0 € A such that (U x V) C A*.

Hence
(Vac U)(VbeV) 1+ (a'b)? € AX.

For arbitrary a € U and b € V, we have
a+ib=a(l+ia"'b) =a(l +ic).
——
=:c #

On the other hand, we have (1 +ic)(1 —ic) = 1+ ¢* € A*, whence 1 +ic is
invertible, in fact (1 +ic)~! = (1 —ic)(1 4+ ¢*)~". Since a is also invertible, it then
follows from the above equation that a + ib is also invertible and
(a+ib)™' = (1 +ic) ta™?

=(1—-ic)(1+c*)ta™!

= (1 —ia"'b)(1 + (a™tb)*)ta!

= (1 —in(a) - b) - n(1 + (n(a) - )*) - n(a).
Hence U +1iV C (A¢)* and, moreover, the inversion mapping
U+iV o A¢c, z+ 271,

is continuous since 7 is a continuous mapping. Since W := U + iV is an open
neighborhood of 1 € Ag, the desired conclusion then follows by Lemma Al1.21. O
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Exercise A1.23. Every unital associative Banach algebra is a continuous inverse
algebra. O

Exercise A1.24. If B is a continuous inverse algebra and A is a unital subalgebra
of B such that A = AN BX, then A is in turn a continuous inverse algebra. 0

NOTES

The first part of the above review of topological vector spaces follows the lines
of the corresponding section in the paper of J. Milnor [Mi84]. For further reading

we refer to the books [Tr67] and [Sf66].

See Lemma 1.1 in [BS71b] for more details on the result contained in our Propo-
sition A1.15. Further information on the complexifications of topological vector
spaces can be found in section 2 of the paper [BS71a]. The results concerning con-
tinuous inverse algebras are taken from the paper [G102b]. The algebras of that

type play an important role in K-theory, see e.g., [Swa77].
It is important to note that, from the point of view of operator theory, the Hilbert
spaces constitute by far the most important class of topological vector spaces. See

the celebrated book by P.R. Halmos [Ha82].
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A2. DIFFERENTIAL CALCULUS

ABSTRACT. In this appendix we collect some basic elements of differential calculus
in topological vector spaces, and particularly in locally convex spaces. We discuss
real and complex analytic mappings on open subsets of locally convex spaces. As
an important example, we prove that the inversion mapping of a continuous inverse

algebra is analytic.

Differentiability

Definition A2.1. Let X be a topological vector space over K € {R,C}, and D
an open subset of K. We say that a continuous mapping f: D — X is of class Ct if

the limit
f(to) = lim LW =S (t0)

t—to t— to

exists in X for all to € D, and the mapping f:D — X is continuous. Denote
f1:= f:D — X and suppose that we have already defined fn: D — X for some
n > 1. If the mapping fn4+1 := fn D — X is defined and continuous, then we say
that f is of class C™. Finally, we say that f is smooth if it is of class C™ for all

n>1. 0O

Definition A2.2. Let X be a real locally convex space, I an interval in R and
a,b € I. We say that a continuous function f: I — X is weakly integrable from a to
b if there exists zo € X such that for every continuous linear functional {: X — R

we have

b
lao) = [ o P

In this case we denote zo by fab f(t)dt and call it the weak integral of f from a to
b. O

Exercise A2.3. In the setting of Definition A2.2, prove that the vector zo is
unique whenever it exists. 0

Exercise A2.4. In the setting of Definition A2.2, if X is moreover sequentially
complete, prove that f is always weakly integrable from a to b. O

Theorem A2.5. Let X be a locally convex space, I an open interval in R, and
a,b € I. If f:I — X is of class Cl, then the continuous function f:1 — X 1s

weakly integrable from a to b and fabf(t)dt = f(b) — f(a).
Proof. See Theorem 1.5 in [Gl02a]. O

Typeset by AAS-TEX



2 ELEMENTS OF LIE THEORY IN FINITE AND INFINITE DIMENSIONS

Definition A2.6. Let X and Y be real topological vector spaces, U an open subset
of X, and f:U — Y a continuous mapping. We say that f is of class C! if the limit

 fe+th) - f(z)
/ -
fah) = =
exists in Y for all z € U and h € z, and the mapping

df:Ux X =Y, df(z,h):= fi(h)

is continuous.
Now suppose that n > 1 and

PFUXX % xX =Y,  (@hi,... ha) o f (B, Ba)
n times
was already defined and is continuous. If, for all z € U and hy, ... Jhoy bt € X,
the limit

A" (i hyy . by b)) = PO (R, By B

. P by b)) = f7 (b, he)
= Al

t—0 t
exists in X and the mapping d**! f: U x X™! — Y is continuous, then we say that
£ is of class C™!. Furthermore, we say that f is smooth or of class C*°(U, V)ifit

is of class C™ for all n > 1.

For n = 1,2,...,00, we denote by C*(U,Y) the set of all mappings U — ¥ of
class C™.

Finally, if Xi,...,X, are real topological vector spaces, U is an open subset
of X; x -+ x X, and g:U — Y is a continuous mapping, then for every point
z=(21,...,2n) €U and j € {1,... ,n} we define by

9i9(z) == (9j)o;: X5 2 Y
the j-th partial derivative of first order of g at x (whenever it exists), where the

mapping g7: U; — Y is defined by 97 (2) == g(@1,- ., Tj1, 2, Tj41, - - ,Zn) for all z
in the open subset U; := {Z € Xj | (z1,... ,%j—1,Z,Tjt1,--- ,Tn) € Utof X;. O

Proposition A2.7. Let X and Y be real locally convex spaces, U an open subset
of X and f:U = Y a mapping of class C*. Then for all x € U the mapping

fi: XY

is linear and continuous. If moreover f is of class C™ withn > 2, then for allz € U

the mapping
fi. X x - xX =Y
—_—

n times
is symmetric, continuous and n-linear.
Proof. See Lemma 1.9 and Proposition 1.13 in [Gl02a). O
Remark A2.8. In the setting of Proposition A2.7, if moreover X = R, then for all

¢ €U and h € X = R we have f.(h) = h- f(z), where f(z) € Y is introduced
in Definition A2.1. Similarly, if moreover f is of class C™ then for all z € U and

hi. . by € X =R wehave fS(h1, ...  hn) = h1 -+ ha - fn(z), where fo(z) € Y
is introduced in Definition A2.1. O
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Proposition A2.9. Let X and Y be real locally convex spaces, U an open subset
of X and f:U = Y a mapping of class CL. If for all z € U we have f, =0, then
f is constant on each connected component of U.

Proof. See Proposition 1.11 in [Gl02a]. O

Proposition A2.10 (chain rule). Let X,Y and Z be real locally convez spaces, U
an open subset of X, V an open subset of Y and U —i) V % Z mappings of class
C", wheren > 1. Then go f:U — Z is of class C" and for all x € U we have the

commutative diagram
!
95 (=)

y 22 7
féT 7gof),
b'e

that is, (g © f);; = g}(z) o fal:
Proof. See Propositions 1.15 and 1.12 in [Gl02a]. O

Theorem A2.11 (Taylor’s formula). Let X and Y be real locally convex spaces,
U an open subset of X, and f:U — Y a mapping of class C"*1, where n > 0. If
¢ €U and h € X have the property that z + th € U whenever 0 <¢ <1, then

Flo+B) =F(@) + £oB) + m FA(hR) +oo 4 f by B)

1 1—-t" .
o[ O o,
0 mn.

Proof. See Proposition A2.17 in [Gl02a]. O

Corollary A2.12. Let X and Y be real Banach spaces, U an open subset of X,
and f:U = Y a mapping of class C"**, wheren > 0. Ifz € U and we denote
V, :={he X |(Vt€[0,1]) z+th € U}, then V; is an open neighborhood of 0 € X
and the function 0:V, — Y defined for all h € Vy by

Flo4 ) = F(@) + FoR) 4 o F ) o F By ) + O

has the property

ol _

a50 IR~
Proof. See either Corollary 4.4 in Chapter I in [La01], or Theorem 6 in Chapter 1
in [Nel69]. O
The converse to Corollary A2.12 holds under the following form.

Theorem A2.13. Let X andY be real Banach spaces, U an open subset of X and
f: X = Y. Suppose that for some positive integer 1 there exist, for 7 =0,1,...,n,

the continuous mappings
aj:U — B(X,Y)
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(where B¥(X,Y) stands for the real Banach space of symmetric multilinear map-
pings X7 = X x --- x X = Y) such that the following assertion holds: For all

z € U there exist r > 0 and 0: Bx (0,7) = Y such that Bx(z,r) C U and
1
(Vh € Bx(0,7)) f(z+h)=ao(z) +tai(z)(h) +--+ man(x)(h,... ,h) +0(h)

and }Elf%ﬂl‘)(h)]l/”h[l” = 0. Then f is of class C* and a; = f9) for j=0,1,...,n.
—
Proof. See Theorem 3 in Chapter 1 in [Nel69]. O

Analytic mappings
Definition A2.14. Let E and F be complex locally convex spaces, W an open
subset of E, and g:W — F. We say that g is complez analytic if it is of class
C! (when we view both E and F as real vector spaces) and for each z € W the
mapping g.: E — F is Clinear. (Recall from Proposition A2.7 that 9., is always
R-linear.) The complex analytic mappings are sometimes called holomorphic.

If X and Y are real locally convex spaces and U is an open subset of X, then
a mapping f:U — Y is said to be real analytic if there exist an open subset Ui of
the complexification X¢ of X and a complex analytic mapping f1:U1 — Yc such
that U C U, and fl‘U =f 0O

Proposition A2.15. Every real or complex analytic mapping is smooth.
Proof. See Proposition 2.4 in [Gl02a]. O

Theorem A2.16. Let X andY be real (respectively complez) locally convex spaces,
U an open subset of X, and f:U — Y a smooth mapping. Then f is real (respec-
tively complex) analytic if and only if for every x € U there exists a neighborhood
V of 0 € X such that z +V C U and for all h € V we have

o]

1
fm+m=§;5ﬁWmuww
where féo’ = f(z).
Proof. See Lemma 2.5 and Definition 2.1 in [Gl02a]. O

Proposition A2.17. Compositions of real or complex analytic mappings are real
or complezx analytic, respectively.

Proof. See Propositions 2.7 and 2.8 in [Gl02a]. O
We now recall the definition of Fréchet differentiability.

Definition A2.18. Let X and Y be real Banach spaces, U an open subset of X
and f:U — Y. We say that f is Fréchet differentiable if for every zo € U there
exists T € B(X,Y) such that

L @) = f(o) = T(@=ao)ll _

B llz — ol
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In this case T is uniquely determined by z, and we denote
df (zo) := fp, :==T.
We say that f is Fréchet smooth if
df:U - B(X,B(X,Y))
is Fréchet differentiable and moreover
d?f :=d(df):U = B(X,B(X,B(X,Y)))
is Fréchet differentiable ... and moreover
d*f =d(d*1f):U - B(X,...,B(X,Y)...)
is Fréchet differentiable ... ad infinitum. O

Remark A2.19. Tt is clear that the notations f., df etc. introduced in Defini-
tion A2.18 agree with the ones in Definition A2.6. Moreover, a mapping is Fréchet
smooth if and only if it is smooth in the sense of Definition A2.6. (For a proof of
this fact, see Theorem L.7 in [NeOla].) [

Theorem A2.20. Let X and Y be real Banach spaces, U an open subset of X,
and for all a,b € X denote Doy = {t € R| a+1tb € U}. Then a smooth mapping
f:U =Y is real analytic if and only if for all a,b € X the function

Doy =Y, tw fla+td),
is real analytic.
Proof. See Theorem 7.5 in [BS71b]. O

Theorem A2.21. Let E and F be complexr Banach spaces, V an open subset
of E and, for each n > 1, let fn:V — F be a holomorphic mapping such that

sup || fn(z)|| < oo. If moreover lim (sup [ fa(z) — fm(a:)H) = 0, then there
zeV m,n—0 \geV

exists a holomorphic mapping f:V — F such that lim (sup | fnz) — f(x)”) =0.
n—o0 zeV

Proof. This is an easy application of Proposition 6.2 in [BS71b]. O

Proposition A2.22. Let E and F be complez Banach spaces, V' an open subset
of E, 7 >0 and g: Bc(0,r) x V. — F a holomorphic mapping such that

sup{|lg(t,z)|| | t € Bc(0,7),z € V} < c0.

Define t

f:Bc(0,7) x V = F, f(t,x) :/ g(s,x)ds.
0

Then f is holomorphic.
Proof. For all t € Bc(0,7) and z € V we have f(t,z) = li_)m fn(t,x), where
n—r00

fat#) = = 3" glit/m, ).
j=1

Then reason as in the proof of Proposition 6.3 in [BS71b], since fn: Bc(0,7)xV — F
is holomorphic for alln > 1. O

The following statement concerns the notion of continuous inverse algebra as
introduced in Definition A1.20.
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Lemma A2.23. If A is a continuous inverse algebra, then the inversion mapping

A = A%, ez

15 smooth and
1

dn: AX x A = A, (z,y) = —z tyz
Proof. For all z,y € A* we have
yl-a =M -yy T =y @ -y

Since A* is an open subset of A, it follows that for all z € A* and y € A we
have z + ty € AX whenever |t| is small enough. For such ¢, we have by the above
equation n(z + ty) — n(z) = 271 (~ty)(z + ty)~*. Since 7 is continuous, we get
von oM@ tty) —nE)
m,(y) = lim , = lim (-n(z) -y - (z + 1))
= —n(z) -y -n(z) =~z lyz"".

Thus, if we consider the mapping T: Ax Ax A = A, (a,b, ¢) — abc, and the natural
projections pryx: AX x A — A* and pra: AX x A — A, we get the following formula

for the differential of #:
dn: A% x A= A, dn=—7o((noprax)xpra X (nopra)).

Since all of the mappings 7, prax, pra and 7 are continuous, we deduce that
dn: AX x A — A is continuous, hence 7 is of class C 1. Then using the chain rule
(Proposition A2.10) and the above formula for dn, we can prove by induction that
n is of class C* for k = 1,2,..., hence 7 is smooth. [

Proposition A2.24. If A is a complez continuous inverse algebra, then the inver-
sion mapping n: AX — A* is complex analytic.
Proof. We have seen in the proof of Lemma A2.23 that for each z € A* we have

My A A n(y) =~ lyr T
hence 7 is clearly C-linear, and this is just the condition required in Defini-
tion A2.14. O
Proposition A2.25. If A is a real continuous inverse algebra, then the inversion
mapping n: A — A* is real analytic.

Proof. First recall from Lemma A2.23 that 7 is smooth. On the other hand, it
follows by Proposition A1.22 that the complexification A¢ of A is a complex con-
tinuous inverse algebra. Hence the inversion mapping of Ac,

ne: (Ac)™ = (Ag)”, z+— z Y

is a complex analytic mapping according to Proposition A2.24.
Since AX C (A¢)* and nc|a = n, it then follows that 7 is real analytic. U

Another example of analytic mappings is provided by the following exercise.
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Exercise A2.26.
(a) Let X be a real Banach space and

0:C—C0O(z) = Z an2"™,

n=0

an entire function with a,, € R for alln > 0. . Prove that for every T' € B(X) the

o0
series Y a,T™ is convergent in the real Banach space B(E), and the mapping
n=0

0:B(X) - B(X),0(T) := ianT”,
n=0

is real analytic.
(b) Formulate and prove a version of assertion (a) where X is replaced by a complex

Banach space and the entire series © has arbitrary coefficients. [

NOTES

We refer to the paper by J. Milnor [Mi84] for a quick review of the differential
calculus in locally convex spaces. The detailed proofs of these results can be found
in [G102a]. See also [Ke74], [Ht82] and [NeOla).

The book [La01] contains a good exposition of the basic results in differential
calculus in the framework of Banach spaces. See also [Nel69].

An introduction to analytic mappings on Banach spaces can be found in Chap-
ter 1 in [Up85]. See [BS71a] and [BS71b] for analytic mappings on more general
topological vector spaces. The analyticity of the inversion mapping in a continuous
inverse algebra (Proposition A2.25) was proved in [Gl02b].
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A2Z. BASIC DIFFERENTIAL EQUATIONS' OF LIE THEORY

ABSTRACT. The importance of this appendix should not be overlooked. We develop
here the equations and formulas describing the most basic level of Lie theory, namely
the theory of local Lie groups. It turns out that the theory of Banach-Lie groups
heavily leans on the basic theorems concerning ordinary differential equations in
Banach spaces.

Throughout this appendix we denote by Y a real Banach space, and for every
r > 0 we denote by

By (yo,r) ={y €Y | lly — 9ol <7}

the open ball with center at yo and radius r. Also, we denote by GL(Y) the set of
all invertible bounded linear operators on Y.

Theorem A2L1.1. Let B be an open subset of ¥ such that 0 € B, J an open
interval in R, and g:J x B = Y a smooth mapping. For j € {1, 2} consider
an open interval I; contained in J and a smooth function v;: I; = Y such that
for each t € I; we have 4;(t) = g(t,7v;(t)). If there exists to € I1 N I, such that
T (to) = 72(t0)7 then 'Yllhﬁlz = 72!11012'

Proof. See Theorem 1.3 in Chapter IV in [La01]. O

Theorem A2 .2. Let B be an open subset of Y such that 0 € B, and g: BXY — Y
a smooth mappmg Then there exist 7 > 0 and € € (0,1) such that the following
conditions are fulfilled.
(a) We have By(0,r) C B.
(b) There ezists a unique smooth mapping v: (—€,€)x By (0,r) = B such that, for
all v € By (0,r), the mapping vy (-) := (-, v): (=€,€) — B has the properties

7,(0) =0

and

(Vt € (—'575)) "Yv(t) = g(%}(t),v)-
Proof. Define E:=Y xY,U:=BxY,J=(-1,1),and
f:JxU— E, f(t, (y,v)) = (g(y,v),0) for t € J,y € B,v €Y.

Then use Theorem 1.11 in Chapter IV in [La0l] to get 7 > 0, ¢ € (0,1) and
a:Jo x Up = U such that Jo := (—¢,€) € J, 0 € Uop, Up is an open subset of U
and a is the unique smooth mapping satisfying the conditions that for all z € Ug
we have a(0,z) = z and the function a,(-) := a(-,z):Jo = U has the property
g (t) = f(t, o (t)) for each t € Jo.

Typeset by ApmS-TEX
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On the other hand, since U is an open subset of U(C Y x Y) and 0 € Uy, we
can find r > 0 such that By (0,7) x By (0,7) C Up. Also, since U = B xY and «
takes values in U, it follows that there exist y1: Jo x Uy = B and B: Jo % Uy —Y

such that a(t,z) = (11 (t,z), B(t, z)) for all t € Jo and z € Up.
It then follows that for each point z = (y,v) € Uy C B x Y we have

(y,v) =T = a(O,x) = (’}’1(0,27),B(0,£E))
and for all t € Jy
("Yl(tvxxﬁ.(tam)) = (g(Vl(tvz‘)’ﬂ(Lx))aO)'

The relation B(t,z) = 0 implies that the function ¢ — S(t, ) is constant, hence for
all t € Jo we have (t,z) = 8(0,z) = v. Thus for all ¢ € Jo, y,v € By (0,7), setting
z = (y,v) in the above relations we get

;71 (t,y,’l)) = 9(71 (t,y,’U),’U) a‘nd 71(073/)’”) =Y.

Consequently, the function y(-,-) := v1(-,0,-): Jo x By(0,7) — B has the desired
properties. Its uniqueness follows by Theorem A2%.1. a

Proposition A2%.3. Let ry > 0 and
U: By (0,71) = B(Y)

smooth. Then there exist v € (0,71) and € € (0,1) such that there exists a unique
smooth mapping v: (—€,€) x By (0,7) — By (0,r1) with the following property: If
v € By(0,7) and we define v, := v(-,v): (—¢&,€) = By (0,71), then

7(0) =0

and
Ay (t) = (7, (t))v whenever t € (—¢€,€).

Proof. Just use Theorem A21.2 for B = By(0,m1) and g: B x Y = Y, g(y,v) :=
U(y)v. O

Exercise A2%—.4. In the setting of Proposition A2%.3 we have

v(ts,v) = y(t, sv)
whenever t,ts € (—¢,¢) and v,sv € By (0,r). O
Proposition AZ%.S. Let ry > 0 and

v By((),rl) > B(Y)
smooth. Then there exists ro € (0,71) such that there exists a unique smooth map-
ping
X BY(O, 7“2) —¥ BY(O,’Fl)

with the following properties:
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(i) We have x(0) =0 and xu = ¥(0).
(ii) For all v € By (0,72) \ {0}, the function

xo: (=r2/lwll,r2/Ilvll) = By (0,r1), &+ x(tv),

satisfies
Xo(t) = ¥(xo(t))v whenever t € (=ra/[[vll,r2/|lv]l)-

Proof. Let 7 € (0,r1), € € (0,1) and ~:(—¢,€) x By(0,7) = By(0,71) given by
Proposition A21.3, and define r; := re/2(< r). Next define

X:BY(O)TQ) 4 BY(Oyrl)v X('U) = 7(5/27 (2/6)U)
Then Y is smooth and x(0) =0 according to Proposition A23 3.

Now fix v € By (0,73) and let x,: (—r2/||v||,r2/||v]]) = By (0,71), Xu(t) = x(tv),
as in the statement. We then have by Exercise A23.4 that

Xo(t) = 7(e/2,(2/)tv) = v((e/2)t, (2/€)v) = V(2/e)((€/2)F)
whenever |t| < ra/||v||, whence

Xv(t) = '7(2/6)v((5/2)t)
= (e/2)¥(v(2/¢)v(t))(2/€)v (by Proposition A23.3)
= ‘I’(’Y(2/s)v(t))v
= U (xv (t))'l},
as desired. For ¢t = 0 we get xhv = ¥(0)v whenever 0 # v € By(0,r2), hence the
linear operators x4, ¥(0) € B(Y) coincide.
To conclude the proof, let us note that the uniqueness of a smooth function
y: By (0,73) — By(0,71) satisfying the conditions (i) and (ii) follows by Theo-
rem A21.1. O

Proposition AZ%.G. Let 0 <ry <11 and
w: By (0,71) X By (0,r1) = Y
a smooth mapping such that
u(y,0) =y for ally € By (0,r1),
1(By (0,73) x By(0,73)) € By(0,71), and
p(p(y, 2),v) = py, w(z,))

whenever y, z,v € By (0,73). Furthermore, lete >0, yo € Y and a smooth mapping
v:(—€,€) = By (0,r3) such that v(0) = 0 and

4(t) = Oap(y(t),0)yo whenever t € (—¢,¢€).
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Then for all t,s € (—e/2,€/2) we have
p(y(),7(s)) = (¢t +5)-

Proof. First remark that, for all y,z,v € By (0,73) it follows by hypothesis that
Bopulply, 2).v) = Bopu(y, p(2,v))02(2, v).
Now fix s € (—€/2,¢/2) and define
B:(—€/2,€/2) = Y, a(t) = p(y(s), (), B(t) := v(s +1).

Then a(0) = pu(v(s),7(0)) = u(v(s),0) =~(s) = B(0). Also, for all t € (—¢/2,€/2)
we have

B(t) = 4(s +t) = Bap(v(s + 1), 0)yo = B2p(B (1), 0o,

and

a(t) = Bap(v(s), 1(£))¥(t)

= Do p(y(s),7(t)) 02 (7 (2), 0)yo
= Oop(p((8),7(1)), 0)yo

= Oap(e(t), 0)yo,

where the second equality follows by the beginning remark. Thus Theorem A2:1

(with B = By(0,72), i = Jo = (—€/2,€/2), g(t,y) = 02(0,y)yo, M1 = @ and
5 = B) shows that o = 8 on (—5/2,5/2), and this is just the desired equahty O

Corollary A21.7. Let 0 <ry <71 and
p: By (0,71) x By(0,71) =Y
a smooth mapping such that
p(y,0) =y for ally € By (0,71),
(By (0,73) x By(0,72)) C By (0,71) and
p(p(y, 2),v) = uly, w(z,v))

whenever y, z,v € By (0,72). Then there exists r3 € (0,72) such that there exists a

unique smooth mapping
x: By (0,73) = By (0,72)

with the following properties:
(i) We have x(0) = 0 and xo = ¥(0).
(i) If v € By(0,r3) and max{Jt|,|s|} <r3/(2||v]), then

x((t + s)v) = p(x(tv), x(sv))-

Proof. Construct r3 and x by using Proposition AZ%.S for
\IJ:BY(O)T2) - B(Y)a \Il(y) = 52#(%0)7

and then use Proposition A2%.6 to get the desired property (ii). O
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Proposition AZ%.S. Let 0 < ry <711 and
p: By (0,71) X By(0,7) = Y
a smooth mapping such that
1(y,0) = u(0,y) =y for all y € By (0,71),

p(By (0,72) x By(0,72)) C By(0,71) and

u(p(z,y), 2) = plz, 1y, 2))
whenever ,y,z € By (0,72). For all z € By(0,71) denote

a(z) := dqu(z,0) € B(Y).

Then there exists r3 € (0,73) such that p(By(0,73) X By (0,73)) C By(0,72) and
the following conditions are fulfilled:

(i) For all x € By(0,73) we have a(z) € GL(Y).

(ii) For all z € By (0,73) and h,k € Y we have

(@ )k k) — (@ Do (k, B) = (@™ ")z (a(@)h, a(2)k) = (a7");(a(2)k, a(2)h).

Proof. For all z,y € By (0,r1) denote
CL(.’IJ, y) = 62/1'('731?/) € B(Y);

so that a(z) = a(z,0).
Since u(0,y) =y for all z € By (0,71), it follows that

a(0,0) = B,(0,0) = idy € GL(Y).

Since the mapping a(-, -): By (0,71) x By (0,71) = B(Y") is continuous and GL(Y) is
open in B(Y), we can find 5 € (0,72) such that a(By (0,73) X By (0,73)) C GL(Y),
and in particular condition (i) is satisfied. Since u(0,0) = 0 € By (0,7r2) and p
is also continuous, it follows that, maybe by shrinking r3, we may assume that
p(By (0,73) x By(O,rg)) C By(0,72) as well.

Now, to check condition (ii), differentiate the formula pu(u(,y), 2) = u(z, (Y, 2))
with respect to z to get dopu(z, u(y, 2))p(y, z) = dap(p(z,y), 2), that is,

a(z, w(y, 2))aly, z) = a(u(z,y),2)

for all z,y,z € By (0,73). For z = 0 we get

(1) a(z,y)aly) = a(p(z,y)) |,

whence for z,y € By (0,r3) we have

a(u(z,y)) 'alz,y) = ay)™"
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and thus a(u(z,y)) " a(z,y)h = a(y)~'h for all h € Y. Differentiating the latter
equation with respect to y, we get

(@) oy (@@, 1)K, a2, 9)R) + 0™ (1(2,y)) (B2a(z, y) (K, b)) = (a™")y (K, h)
whenever h,k € Y. Setting y = 0 we get
(VhREEY)  (a7V)i(a(@)k,a(@)h) + (¢~ ") (@) (B3 u(z, 0)(k, h)) = (a™ )o(k; h).
Similarly,
(VhkeY)  (a),(a(@)h, a(@)k) + (a7*)(2) (B3 u(z, 0)(h, k) = (@™ )o(h, k).

Now, by subtracting the latter two equations and taking into account that the
continuous bilinear mapping

O2u(z,0):Y xY =Y
is symmetric, we get the desired formula in condition (ii). O
Theorem A2%.9. Let 0 < ry <11 and
w: By (0,m1) X By(0,71) =Y
a smooth mapping such that
p(y,0) = u(0,y) =y for all y € By (0,m1),
,LL(By(O,Tg) >< By(o,’rg)) g By(o,h) and
w(p(@,y), 2) = p(e, 1wy, 2))
whenever z,y,z € By (0,12). For all x € By(0,7,) denote
a(z) := Ou(z,0) € B(Y), b(z) :=061u(0,z) € B(Y).
Then there exists r3 € (0,12) such that u(By(0,73) x By (0,r3)) C By (0,72) and
the following conditions are fulfilled:
(i) For all x € By (0,r3) we have a(z),b(z) € GL(Y).
(ii) For all x € By (0,73) and h,k € Y we have
a(z)((@™ ")y (h k) — (@ 1)y(k, h)) = =b(2) ((671)5 (R, k) = (07")z (K, h)).
Proof. Asin the first part of the proof of Proposition A2%.8, we can find r3 € (0,72)
such that condition (i) is satisfied. We just have to take into account also the

continuity of the mapping
b(l’, y) = al:u(x) y)

at (0,0) € By (0,71) x By (0,71), along with the remark that 5(0,0) = idy € GL(Y).



AZ%. BASIC DIFFERENTIAL EQUATIONS OF LIE THEORY 7

To check the equation in condition (ii), define
(Vz € By(0,73)) D(z):Y xY =Y, I'(z)(h,k) = —al(h,a” ! (z)k),
and similarly
(Vz € By(0,r3))  [():Y xY =Y, T(z)(h, k) = =ty (h,b7 (z)k).

By differentiating the equation a(z)a~(z)k = k with respect to z, we get for all

hkeY
at(h,a™!(z)k) + a(z)(a™ )5 (h, k) = 0

T

and similarly
al (k,a™*(z)h) + a(z)(@™ 1), (k,h) =0.

By subtracting the latter two equations we get for all z € By(0,r3), h,k €Y,
a(z)((a™ 1), (h, k) = (a™); (k, b)) = D(z)(h, k) = L(@)(k, h),

and similarly
b(a) (7Y (s ) = (67, (k, 1) = T(@)(h, B) = T@) (b, 2)-

Hence it suffices to prove that

(2) (Vz € By (0,73)) (Vh,k €Y)  T(z)(h,k) = L(z)(k, h).

To this end, recall from formula (1) in the proof of Proposition AQ%.S that for all
2,y € By(0,r3) and k € Y we have a(u(z,y))k = a(z,y)a(y)k. By differentiating
the latter equation with respect to z, we get for all hkeY,

@54 (0(29)h, k) = Bra(z, y)(h, a(y)k)-
Since dia(z,y) = 0102u(z,y) = 0201u(2,y) = Oyb(z,y), we further deduce that
Al (z.) (0(2, 9D k) = B2b(z,y) (R, a(y)k)-
Setting z = 0 and taking into account that d2b(0,y) = by, we get ay (b(y)h, k) =
b;(h,a(y)k), that is,
(Vz € By (0,73)) (Vh,k €Y) ay(b(z)h, k) = bl (h, a(z)k).

Since a(z),b(z) € B(Y) are invertible operators whenever z € By (0,73), we can
use the substitutions ho = b(z)h and ko = a(z)k to deduce from the above equation

that

a' (ho,a” Y (z)ko) = bl (b7 ()ho, ko) = b, (ko, b (z)ho)
R —
=I(z)(ho,ko) Zf(z)(ko,ho)

where the latter equality follows by the fact that the bilinear mapping
b, = 010ou(z,0):Y XY =Y

is symmetric. Consequently I'(z)(ho, ko) = ['(z)(ko, ho), and (2) is proved. O
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Proposition A2,i—,.10. Let E be a complez Banach space, U an open subset of E,
¢ a positive real number, to € C and

f:Bc(to,o) xU = E

a holomorphic function. Then for all 7o € U therc exist b € (0,¢) and a unique

holomorphic function
o: Be(to,b) = U

such that
(vt € Belto,)) &lt) = (¢ a(t))

and a(to) = zo-
Proof. First pick R € (0,c) and a € (0, 1) such that Bg(zo,a) C U and there exist
L,K > 1 with

sup{||f(t,z)|| | t € Bc(to, R),z € Be(zo0,a)} < K
and
sup{||02f(t,z)|| | t € Bc(to, R), = € Bg(zp,a)} < L.

(The existence of R and a follows since both mappings f:Be(0,0) x U — E and
dyf: Be(0,b) x U — B(E) are continuous, hence bounded on some neighborhood of
(to, zo).) In particular, the condition on L implies that

(3) (Vt € Bc(to,R)) (1131,:1?2 € BE(.’E(),CZ)) ”f(t,:h) - f(t,.’l)g)” < Lllml - 1'2”,

according to the mean value theorem.
Now pick a real number b such that 0 < b < min{R, ;% }, and define

M = {B: Be(to,b) — E | B holomorphic and ~ sup [|8(¢) — zo|| < 2a}
teBc(to,b)

and
(VB1,B2 € M) dist(B1,B2) := sup [|B1(t) = B0l

t€Bc(to,b)

thus making M into a complete metric space (see Theorem A2.21).
On the other hand, for each 8 € M, define

t
SB: Belto,b) — B, (SB)(E) = 70 + / £(5,8(s))ds.
to

Then Proposition A2.22 shows that S is a holomorphic function. Moreover, for
all t € Be(to, b) we have

t
1(SB)(t) — moll < / 17(s, B(s)llds < K[t — to] < Kb < 2a,



AZ%. BASIC DIFFERENTIAL EQUATIONS OF LIE THEORY 9

hence SB € M. Furthermore, for all 81,82 € M and all t € Be(to,b) we have

t
1(S8)(®) - (SB)D)I| < / 1£(s,B1(3)) — £(5,85(5)) lds
to

< |t — to|L - dist(By, B2) < bL - dist(B1, B2)

S a- diSt(ﬁl, ,32)
Hence, on the complete metric space M, we have a mapping S: M — M such that
there exists a € (0,1) with dist(SB1,SB2) < a - dist(B1,P2) whenever B1,82 € M.

It then follows that S has a unique fixed point @ € M. The equation Sa = «a is
clearly equivalent to the required properties of a. [

Corollary A2%.11. Let V be an open subset of the real Banach space X, J an
open interval in R and

g:JxU—=X

a real analytic mapping. If v:J — U is a smooth function such that
() = g(t,v(t)) whenever t € J,

then v is real analytic.

Proof. 1t easily follows by Theorem A2.16 that, in order to prove that <y is real
analytic, it suffices to show that < is real analytic on some neighborhood of an

arbitrary point to € J. Denote zg = y(to) € U.

It is clear that the complexification of the real Banach space R x X is C x X¢.
Since g is real analytic, it then follows that there exists an open subset W of Cx X¢
and a holomorphic mapping f: W — X¢ such that J x V C W and flixv = g.
Since (o, zo) € W it follows that, by shrinking J and W, we may assume that there
exist ¢ > 0 and an open subset U of X¢ such that V C U and W = Be(to,c) x U.
It follows by Proposition A2%.10 that there exist b € (0,c) and a holomorphic
mapping a: Be/(tg,b) = U such that a(ty) = zo and

o' (t) = f(t,a(t)) whenever t € Be(to,b).

Then using Theorem AQ%.l for the functions
(1 —c.totc): (fo — ¢, to + ¢) = X and ¥: (to — ¢, to + ¢) = X = X,
we get ¥ = a(to—c,to+c), hence 7 is real analytic. 0
Theorem A23.12. Let 0 <7y <71 and
w: By (0,71) X By(0,r1) =Y

a smooth mapping such that

#(y,0) = u(0,y) =y for ally € By (0,1),
u(By (0,r2) x By(0,12)) C By(0,m1) and

w(pu(z,y), 2) = plz, u(y, 2))
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whenever z,y,z € By (0,72). Moreover assume that

u(tz, sz) = (t + s)x

whenever 0 # z € By(0,71), t,s € R and max{]t],|s|} < iﬁﬂ Then the mapping
p is real analytic on some neighborhood of (0,0) € Y x Y.

Proof. The proof has several stages.
1° For all z,y € By(0,r1) denote as usually

a(x, y) = 62/1,(23,'!/), a(w) = a(m,O)

b(.’lf, y) = 81/1(337:‘/), b(y) = b(07y)1

so that a(z),a(z,y),b(z),b(z,y) € B(Y).
It then follows by Proposition A2L.8 and Theorem A23.9 that there exists 73 €

(0,75) such that u(By(0,73), By (0,73)) C By(0,72) and the following assertions

hold.
(i) For all z € By (0,73) we have a(z),b(z) € GL(Y).
(i) For all z € By (0,73) and h,k € Y we have

S(h, k) :=(a"")o(h, k) = (a™*)o(k, )
=(a" )’ (a(z)h,a(z)k) — (a™ '), (a(z)k, a(z)h),
and we thus get a skew-symmetric bounded bilinear mapping

S:Y xY Y.

(iii) For all z € By (0,73) and h,k € Y we have
a(2)((@ ")y (hy k) = (@), (k, 1) = =b() (07 ")y (B B) — (67" )5 (K, ).

Moreover, note that the boxed hypothesis implies that
(4) a(tz)z = b(tz)z = z whenever 0 # z € By (0,r1),]t| < Q_ITII—”
z|| .

2° We prove at this stage that the mappings
a(-),b(:): By (0,73) = B(Y)

are real analytic. Actually, we are going to consider only the case of a(-), since the

case of b(-) can be treated similarly.
To prove that a(-) is real analytic, we denote

(VzeY) S,:=85(z,-)€eBY)

and we will prove that

[ee)

(5) (va € By(0,75)) a~l(x)=Y %sg—l = 0(S,),

n=1
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00
where @:C — C is the entire function defined by ©(z) = Y Z2""! = (e* - 1)/z.

n=l1
Since the mapping ¥ — B(Y), z — Sq, is real analytic (being linear), while the
mapping B(Y) = B(Y), T — ©(T), is real analytic by Exercise A2.26 (a), it will
follow by Proposition A2.17 that their composition is real analytic. But (5) shows
that the corresponding composition is just a~*(-). On the other hand, the inversion
mapping 7: GL(Y) — GL(Y), T — T-1, is real analytic by Exercise A1.23 along
with Proposition A2.25. Hence, by Proposition A2.17 again, a() =no(a t)() is

real analytic, as desired.
Now, to prove (5), fix z,y € By(0,73) and an open interval I C R such that

0,1 € I and tz € By (0,73) whenever ¢t € I. Then define
@: I = B(Y), o(t)=ta" (tz),
and
I =Y, Pt) =)y =ta™ (tz)y.
Then for all t € I we have
B(t) = o~ (tz)y + tla™ e (2, ).

On the other hand, by (4) along with assertion (ii) in stage 1° of the present proof,
we have

(@™o (z,y) = (@ Niw(y,2) =(a7);

. (a(tz)z, a(tz)(a” (tz)y))
=14 (a(tx)(a_l(tx)y),a(tx)x)
1 ) 1

- (a tx
y) — (@ ola™" (tz)y, 7)

=(a"Hy(z,a” (tz
=S(z,a” " (tz)y)
=3 {a~ (2)y);

so that
p(t) = a7 (tz)y + tSpa” (tz)y = a7 (t2)y + taT)ie (¥, 7) + Sap(t)y-
If we write (4) under the form a™'(tz)z = z and then differentiate this equation
with respect to =, we get (a™1), (ty, @) + a” (tz)y =y for all y € Y, hence
(Vy €Y) (1) =y + Sep(t)y,

whence
(vt e I) ¢(t) =idy + Szp(t).

Since ¢(0) = 0, we get by Theorem A23.1
— __qQn—
Vtel) o)=Y, —55 7%
n=1

We recall that o(t) = ta~'(tz) and 1 € I, hence the above equality for t = 1 shows
that (5) holds.
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3° At this stage we prove that p is real analytic on By (0,r3) X By (0,73), where
rs € (0,73) is chosen so that u(By (0,73) x By (0,73)) C By (0,73). Theorem A2.20
shows that it suffices to prove that, for arbitrary u,v,w, z € By (0,73), the function

Y:Dyvwe—Y, () =pu+tv,w+tz),
is real analytic, where
Dyvwyz = {t € R|u+tv,w+tz € By(0,r3)}.

To this end, we will use Corollary A23.11.

We have
A(t) = b(u + tv,w + t2)v + a(u + tv,w + t2)z.

On the other hand, by formula (1) (see the proof of Proposition A23.8) we have
alu + to,w + tz) = a(p(u + tv,w + tz))a” (w + tz). Similarly to (1) we have

b(z,y)b(z) = b(u(z,y)) whenever z,y € By(0,73), whence b(u + tv,w + tz) =
b(p(u + tv,w + tz))b~! (u + tv), so that

A(t) = b(p(u + tv,w + 2))b7 (u + tv)v + a(u(u + tv,w + tz))a" (w + t2)z

= b(y(t))b™ (u + tv)v + a(y(t))a" (w + t2)z.

We have seen at the beginning of stage 2° that all of the mappings a(-), a=(-), b()
and b~!(-) are real analytic, it follows that the mapping

f:Duww,z % By(0,73) = Y, f(t,x) = b(z)b™ (u + tv)v + a(z)a™  (w + t2)z,
is real analytic as well. Since

(V¢ € Dupww,z) V() = f(£,7(2)),

it then follows by Corollary A2%.11 that v: Dy 4w, — Y is real analytic, and the
proof ends. O

We now turn to some facts that hold in the more general context of locally convex
spaces and are needed in Chapter 2.

Exercise A2%.13. Let X be a real locally convex space, V' an open subset of X

and xg,y0 € V.
(a) The linear mapping p(, . : X X X = X has the property

(Vu,v € X) /‘I‘Zzo,yo)(u’v) = 01 (@0, Yo)u + O2u(x0, Yo)v.
(b) The bilinear mapping “?xo,yo): (X x X) x (X x X) = X has the property
Ml(la:g,yo) ((u7 U)7 (u’ U)) :812;1,(.’[}0, yO)(u7 U) + 28182/,&($0, yO)(“: U)
+ 03 (o, o) (u, v),

whenever u,v € X.
(c) If moreover V is convex, then the mapping R:V x V — X defined by the

equation
! ]‘ !
(VZ eV x V) /,L(Z) = IU’(ZO) + lu‘zo(z - ZO) 2 Euzlo(z —20,% — ZO) + R(Z),
has the properties
R(ZO) =0, R’ZO =0, RIZIO =0, 31R($,y0) = azR(.’Eo,y) = 0,
whenever z,y € V, where zg := (zo,%) € V x V. O
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Proposition A2%.14. Let X be a real locally convex space, Vi a convex open
neighborhood of 0 € X, u:Vi x Vi = X a smooth mapping such that

(Vz e V1) u(z,0) = p(0,2) =z,
and n: Vi — X a smooth mapping with the property that n(0) =0 and
vz e Vi) u(z,n(z)) =0.

Moreover consider an open neighborhood Va of 0 € X such that Vo C Vi, n(V2) C W3
and p(Vo x Va) C V1, and define

W: Vo x Vo = X, (z,y) = plp(z,y),1(z)).
For u,v € V5, define
a,0: Vo = X, i(z) = Oau(z,0)u, 0(z) = dz2u(z,0)v.

Then

81821(0,0) (v, u) = 8192(0,0)(u,v) — 8102(0,0) (v, u) = (B)ou — (@)g.

Proof. The second of the desired equalities clearly follows by the very definition of
@ and 9. Next, we are going to prove that

819(0,v)u = 8,8211(0, 0)(u,v) — 8192(0,0) (v, w),

which implies the first of the asserted equalities.
To prove the above equality, first differentiate the equations w(z,0) = p(0,z) =

z, to get
O1u(z,0) = Gop(0, z) = idx,

whence 82pu(z,0) = 03p(0,z) = 0. It then follows by Exercise A2%.13 that
(Vz,y € Vi) w(z,y) =z +y+0:0:0(0,0)(z,y) + B(z,y),

where R(0,0) =0, 8, R(0,y) = 82R(0,y) = 0. It then follows that for all y € V1 we
have

8,11(0,y) = idx + 01024(0,0)(-,y) and Bzpu(y,0) = idx + 018241(0,0)(y,")-

Then differentiate the equation u(z,7(z)) = 0 to get 8y pu(z, 1(z))+02u(z, n(z))n, =
0. For z = 0, we get idx + idxng = 0, whence 5 = —idx.
Now the definition of ¥ implies that for v € V5 we have
01(0,v) = 31 (1(0, v),1(0))1 (0, v) + 2 pa(1a(0,v),n(0))g
= 01 (0,v) — o (v, 0)
= 6182/1‘(07 0)(, U) - 8182M(0’ O) ('Uv ')7

whence the first of the desired equalites clearly follows. [



14 ELEMENTS OF LIE THEORY IN FINITE AND INFINITE DIMENSIONS

- NOTES

Several results contained in this appendix are updated versions of some of the
basic facts underlying the paper by B. Maissen [Ma62], where the basic theory
of Banach-Lie groups is developed following the pattern of finite-dimensional Lie
theory. Our Proposition A2 .8 is inspired by Satz 4.2, while Theorem A2 9 is
essentially Satz 4.1 at page 241 in [Ma62]. Moreover, Theorem A2 12 1s the
essential result contained in Satz 7.1 in [Ma62]. It says that every local Banach Lie
group is analytic.

Proposition A23.14 contains some calculations carried out in section 5 of [Mi84].

For a good exposmon of the needed elements of the theory of ordinary differential
equations in Banach spaces, we refer to [La0l]. See also Chapter 5 in [Up85] for an
exposition of that theory in the context of analytic functions.
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A3. SMOOTH MANIFOLDS AND VECTOR FIELDS

ABSTRACT. We introduce the notion of smooth manifold modeled on a locally convex
space, as well as the closely related notions of tangent vector, tangent bundle and
vector field. The main result of this appendix (Theorem A3.18) shows that the set
of all vector fields on a smooth locally convex manifold has a natural structure of Lie

algebra.

Definition A3.1. A topological space X is called regular if it is Hausdorff and
for every z € X and every neighborhood U of z there exists another neighborhood
V of z such that V C U. In other words, each point of z has a basis of closed
neighborhoods. 0O

Exercise A3.2. In order for the Hausdorff topological space X to be regular, it
suffices that it is of one of the following types:

(a) X is locally compact;

(b) X is a topological group;

(c) X is a locally convex topological vector space. O
Definition A3.3. A smooth manifold modeled on a locally convex topological
vector space V is a regular topological space M equipped with a family of homeo-
morphisms {@pa: Ve = Ma}aca satisfying the following conditions.

(i) For every a € A, V, is an open subset of V' and M, is an open subset of M.

(ii) We have M = |J Ma.

o
(iii) If a,8 € A and My, N Mp # 0, then the corresponding change of coordinate
function

g5 o Qpalwgl(M(,mMﬁ):‘P(;l(Ma N Mpg) = 95" (Mo N Mp)
is smooth. Note that both ¢! (MaNMp) and goﬁ_l (M,NMp) are open subsets

of the locally convex topological vector space V.
In this case, the maps pq: Vo — M, will be called local coordinate systems, while

the maps @ !: Vay — M, are called local coordinate charts.

A smooth manifold modeled on a locally convex, or Fréchet, or Banach, or
Hilbert space will be called locally convez, Fréchet, Banach, respectively Hilbert
manifold. O
Definition A3.4. Let M be a locally convex smooth manifold modeled on V/
with the family of local coordinate systems {@q: Vo — Ma}aca, and M a locally
convex smooth manifold modeled on V with the family of lg\cal coordinate systems
{%a:Va = Mg}z Then a continuous function f: M — M is smooth if for every
x € M there exist @ € A and E € A such that z € M, and the map

@51 °ofe (p"lcp;‘(Mamf"(M\a)):wgl(M“ Nf7(Mp)) =V

Typeset by ApS-TEX
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is smooth. We will denote the set of all smooth mappings from M into M by
co (M, M).

Note that @' (M, N f ~1(M. 5)) is always an open (maybe empty) subset of the
model space V. '

The mapping f: M — M is called a diffeomorphism if it is bijective and both f
and f~! are smooth. O

Exercise A3.5. Prove that, if M, N and P are smooth manifolds, and f: M — N
and ¢: N — P are smooth mappings, then go f:M — P is in turn a smooth
mapping.

This shows that there exists a category Man whose objects are the smooth
manifolds and whose morphisms are the smooth mappings. U

Remark AS.6. Real (or complex) analytic manifolds and real (or complex) analytic
mappings on smooth manifolds can be defined by replacing the word ‘smooth’ by
‘real (or complex) analytic’ in Definitions A.3 and A.4. 0O

Definition A3.7. Let M be a smooth manifold modeled on V, with the local
coordinate systems {@q: Vo = My}aca. Fix a point 2o € M.

A tangent vector at To is an equivalence class of parameterized paths through
To in the following sense. Let I; and I be open intervals in R, with tg € I N I,
and pi:I1 = M, p: I, = M smooth mappings (paths) with py (to) = pa2(to) = To-
We say that p; and ps are equivalent at to if there exists a € A such that zg € M,
and the two smooth mappings

RO p; (Ma) 3t = o (i) €V (i=1,2)

have the same derivative at to. If p: I — M is a smooth path and to € I, then the
equivalence class of p at to is denoted by p(to) and is called the velocity vector of p
at t(].

The set of all such tangent vectors at zo is denoted by Ty, M and is called the
tangent space at zo. Note that, if zo € M, as above, then there exists a natural
bijective mapping

SV o> Ty M
such that, for each v € V, the tangent vector ®4(v) € Ty, M is the equivalence
class of the path t — ¢4 (vo + tv), where vy := 07! (o) € Vo. Using the bijection
&, we can equip Ty, M with the structure of a topological vector space isomorphic
toV. 0O

Exercise A3.8. In the setting of Definition A3.7, prove the following assertions.

(a) The definition of the equivalence relation for paths through z¢ does not depend
on the choice of the index a with zg € M,.

(b) The mapping ®,:V — Ty, M is indeed bijective.

(c) If B € A is another index with zo € Mg, then @El 0®,:V — Vs an
isomorphism of topological vector spaces.

(d) The structure of topological vector space of Ty, M is natural in the sense that
it does not depend on the choice of a € A with zy € M,. O

Exercise A3.9. Let U be an open subset of a locally convex vector space V,
viewed as a smooth manifold with the local coordinate system idy: U < V. Prove
that TU =U x V. O
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Definition A3.9. Let M be a smooth manifold modeled on the locally convex
space V, with the local coordinate systems {ps:Vy — Mg}laca. The tangent
bundle of M is defined as the disjoint union

™ := | TuM,
zeEM

and its canonical projection p:TM — M is defined such that v € Tp(,)M for all

veTM.
For every a € A we also introduce the mapping

Yo:Va x Vo TM

such that, for u € V, and v € V, the tangent vector v, (u,v) € T, ()M is
by definition the equivalence class of the smooth path ¢ — ¢q(u + tv) through
wa(u) € M. If we denote the image of ¢o by TM,, then the tangent bundle
T M has a natural structure of smooth manifold modeled on V' x V', with the local

coordinate systems {¢o: Vo X V = TMy}aca. O
Exercise A3.10. In the setting of Definition A3.9, prove the following assertions.
(a) The tangent bundle TM indeed has a structure of smooth manifold (in par-
ticular a topology) as indicated in Definition A3.9.
(b) For every o € A and u € V, we have

(VweV) Py (v) = wa(u,v),

where @, is as in Definition A3.9. O

Definition A3.11. Let M and M be smooth manifolds modeled over the locally
convex spaces V and V, with the local coordinate systems {¢q: Vo = Ma}aca and
{Pa: Va = M\&}aex’ respectively). If f: M — M is a smooth mapping and z € M,
then the tangent of f at x is the mapping

FLiToM = Ty M

defined in the following way. If v € T, M and p: I — M is a smooth path such that
0 €I, p(0) =z and p(0) = v, then

—

fa(v) :=4(0) € Ty M,

where ¢ := fop: I — M. (Note that ¢ is a smooth path and ¢(0) = f(z).)
Then the tangent of f is the mapping

Tf:TM —TM

defined by
(Vz € M) Tl =Tt v= Ji

Then T'f is a smooth mapping and for every z € M the restriction of T'f to T, M
is a continuous linear operator T, M — Ty)M. U
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Exercise A3.12. In the setting of Definition A3.11, prove the following assertions.
(a) For each z € M, the mapping Ty f: To M — Ty(5)M is correctly defined, and
indeed linear and continuous.
(b) The mapping
Tf:TM - TM

is indeed smooth. O

Exercise A3.13. If Man stands for the category of smooth manifolds (see Exer-
cise A3.5), prove that the correspondence

T:Man — Man

which associates to each locally convex smooth manifold its tangent bundle, and
to each smooth map its tangent mapping, has all of the properties (i)-(vi) in Re-
mark 2.3. O

Definition A3.14. Let M be a locally convex smooth manifold with the tangent
bundle TM. A smooth vector field on M is a smooth map

vM—>TM

such that v(z) € T, M for al z € M. The set of all vector fields on M clearly has
a structure of vector space (with pointwise defined addition and scalar multiplica-
tion), and we denote that vector space by U(M). O

Definition A3.15. Let M be a locally convex smooth manifold, v € U(M) and
Y a locally convex topological vector space. We define a linear operator

Dy:C®(M,Y) = C®(M,Y)

in the following way. Let m:Y x Y — Y, (y1,y2) = y2. Observing that the tangent
bundle of Y is TY = Y x Y with the canonical projection p: TY — Y, (y1,¥2) = 41
(which is different from =!), we define, for all f € C*°(M,Y’), a smooth function
D,f € C®(M,Y) by the commutative diagram

™ -, 1Y

9] |~

M D, f v
that is,
(Vz e M) ’ (Tfov)(z) = (f(z),(Duf)()) eYxY=TY. O

Exercise A3.16. In the setting of Definition A3.15, prove that the mapping
B(M) = End(C®(M,Y)), v~ Dy,

is linear. 0O
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Lemma A3.17. Let V be a locally convez vector space and Vo an open subset of V.
Then for all u,w € B(Vp) there ezists a unique vector field [u,w] € B(Vo) such that,
for each open subset D of Vp and each locally convez vector space Y we have

(VfeC®(D,Y))  Dpuuif = DulDuf) = Du(Duf).

Proof. Note that TVy = Vo x V with the canonical projection Vo x V. — Vo,
(z,t) — z, so that

B(Vo) = {v:Vo = Vo x V| G €C®(Vo,V)) ()= (T()}-

Then for u,w € B(Vp) fixed, let w,w € C*®(Vp,V) with u(-) = (a()), w() =
(-,@(-)), and define [u, w] € B(Vo) by

(1) [u,w]: Vo = Vo x V,  [u,w](-) = (-, (Dyw — D) (+)).

Now, for each locally convex space Y, and all open subset D of Vo and f €
C*(D,Y), we clearly have

(2) (Vv € B(Vo)) (Ve € Vo) (Duf)(2) = f20(2),

whence
(D[u,w]f)(x) = f;(Dum - Dwﬂ)(.’lf)

= fi((@)5u(z) — (@), w(z))
= fi(@)pu(z) — f(@),D(z)
On the other hand,

"

Du(Duf)(@) = (Duf)yii(x) = (fi8());u(z) = £ (@(), U(=)) + fo(@0)z ()

and similarly
Do(Duf)(x) = f7 (@(2), @ (2)) + £, (@), 0(2).

Thus Dyu,uw)f = Du(Dwf) - Dy(D.f) by the symmetry property of f;' (see Propo-
sition A2.7).

To prove the uniqueness assertion, apply the property of [v, w] in the special case
when D = Vo, Y =V and f is the inclusion mapping Vo < V. Then f, =idy for
all z € Vp, and f" = 0, hence by the above computations we get

Du(Duf)(®) = Du(Duf)(x) = (@),(z) - (@) 0(z) = (Du)(2) ~ (Duw)(2),

while o

(D[u,w]f)(x) == [U” w](x)

Thus [m] — D, — Dy, that is, the vector field [u,w] € B(Vo) is necessarily
given by (1), and the proof ends. [
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Theorem A3.18. If M is a locally convez smooth manifold, then 0 has a unique
structure of Lie algebra such that, for each locally convex vector space Y and each

open subset U of M, the linear map

B(M) = End(C®(U,Y)), v+ Dy,

is a Lie algebra homomorphism.

Proof. Let {pa: Ve — My}aca as in Definition A3.3. Also let u,w € B(M) fixed
for the moment. Then for each o € A there clearly exist Gq,Ws € U(Va) such that

the diagrams

T(Va) —%=) T(My) T(V,) 222 T(M,)
aaT TulMQ and HJQT ‘[WIMQ
Ve =22 M, v, == M,

are commutative (since both po: V, = My and T(pa): T(Va) = T(M,) are diffeo-
morphisms, and T'(pq) maps the fiber T, (Va) into Ty, (s)(Ma) for each z € V)
Now define [tiq,Wa] € B(Va) by Lemma A3.17, and then denote

[u7w]a = T(‘Ptx) Q [ﬂawu_)a] o ((Pa)_l € m(Ma)-

It then easily folows by the uniqueness assertion in Lemma A3.17 that, if MoNMp #
0, then [u,w]s|rannm, = [u,w]slM.nm,. Hence there exists a unique vector field
[u, w] € V(M) such that [u, w]|p, = [u,w]s for all @ € A.

Now, for Y and U as in the statement, and f € C®°(U,Y), we easily get by
Lemma A3.17 that Dyyw)f = Du(Dwf) — Du(Duf) on U N Vy for all o, whence
Diww)f = Du(Dwf) = Duy(Dyf) on U. In other words, the mapping

B(M) x B(M) - B(M), (v, w) = [u,w],
has the property that for every open subset U of M we have
(Vo,w € B(M))  Diyu) = [Dy, D] € End(C®(U,Y)).

This easily implies that [-, ] is a Lie algebra tructure on (M), in view of the fact
that, if V stands for the model space of the manifold M, then the linear mapping

V(M) = [] End(C®(Ma,V)), v+ (Dujar, aea
a€A

is injective. (In fact, if v € (M) and D,,, =0, then (Dy,, )(¢5") = 0, whence
T(p;')v|m, = 0. But the linear operator Ty (p;') is invertible for all z € Ma,
hence v|p, =0.)

The uniqueness assertion follows by the uniqueness assertion in Lemma A3.17,

taking U = M, for arbitrary o € A. O
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Proposition A3.19. Let M and N be two locally convex smooth manifolds, and
@:M —= N a smooth mapping. If vi,v2 € B(M) and wi,ws € B(N) satisfy
Tpov; =wjop for j =1,2, then Tpo [v1,v2] = [w1, w2] © .
Proof. It suffices to show that the desired equality holds on some neighborhood of
an arbitrary point p € M. Thus, replacing M by a suitably small neighborhood of
p, and N by an appropriate neighborhood of ¢(p) € N, we may assume that there
exist the locally convex vector spaces V and W such that M is an open subset
of V and N is an open subset of W. Then there exists v1,v2 € C>®(M,V) and
Wy, Wy € C®°(N,W) such that for j = 1,2 we have
Uj(-) = (,5]()) MoaMxV=TM
(3) and
wi() = (w;(-)):N =+ NxW=TN

(see the proof of Lemma A3.17). Now, using the fact that we have
(4) To:M x V = N x W, (mo,v0) = (#(m0), Pin, (v0)),
along with formula (2) in the proof of Lemma A3.17, we get for every mo € M

(T o [v1,v2])(m0) = Tep(mo, [v1, v2](m0))

= (p(m0), P, ([v1,v2](M0)))
= (‘p(mo)’ (D[Ul,vz](p)(mO))'
We further deduce by Lemma A3.17 that
(5) (T o [v1,v3])(mo) = (0(m0), (Duy Dup)(Mo) = (Duy Doy ) (m0))-
On the other hand, note that the hypothesis Tpov; = wj o implies by means of
(3) and (4) that
Vze M)  (p(@),0,@) = (¢), (@ 0 9) (@),
hence by formula (2) in the proof of Lemma A3.17 we get for j =1,2
(6) (VzeM)  (Dyo)(®) = ¢ (¥(2)) = (@) o ¢)(2).
Consequently
Dy, (D, p)(mo) = Do, (2 © ¢)(mo)

= (W3 © )1, (V1(10)) (by (2) in the proof of Lemma A3.17)

= (W2) (o) Prmo V1 (M0)

= (2)}y(mo) @1 (#(m0))  (by (6))

= (D, W2)(p(m0)),

and, similarly,
Doy (D, 0)(mo) = (D, @1) (10(m0))-

Thus
Do, (Duy @) (o) — Duy (Duy ) (10) = (Du W = Duwy @) (10(m0)) = [wi, w2)(0(mo)),
by formula (1) in the proof of Lemma A3.17. Consequently, by (5) we get

(T o [or,wa]) (mo) = (ma), lwr, wa(p(ma)) = ([wr, wa] o ) (o),
using again formula (1) in the proof of Lemma A3.17. O
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Exercise A3.20. Let M be an open subset of the real locally convex space V. For
all u,v € C*(M,V) define [u,v] € C*°(M,V) by

(Vz € M) [u,v)(z) = uy(v(2)) — v, (u(z)).

Then the bracket [+, -] turns C*°(M, V) into a Lie algebra. 0

NOTES

We refer to the book [Wa71] for an elementary introduction to the theory of
finite-dimensional manifolds.

A quick introduction to infinite-dimensional manifolds modeled on locally convex
spaces can be found in [Mi84]. For manifolds modeled on Banach spaces, see [La01].
The more special setting of analytic Banach manifolds is developed in [Up85].

In connection with Theorem A3.18, we note that an interesting property of the
Lie algebras of vector fields in the case of finite-dimensional manifolds can be found

in the paper [SP54].

[La01]

[Mig4]

[SP54]

[Up85)

[WaT71]
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A4. TOPOLOGICAL GROUPS

ABSTRACT. In the present appendix, we develop the basic facts concerning topo-
logical groups that are needed in the main body of these lecture notes. The most
important results contained here are the fact that the group topology is uniquely de-
termined by its restriction to a neighborhood of 1 (Theorem A4.11), and the theorem
concerning the construction of homomorphisms from simply connected topological
groups (Theorem A4.19).

Definition A4.1. Let G be a group. A group topology on G is a topology 7 on G

making the map
GxG—G, (a,b) = ab™!

into a continuous map.
A topological group is a group equipped with a group topology. d

Remark A4.2.

(a) In the framework of Definition A4.1, the condition that 7 is a group topology
is equivalent to the requirement that both the multiplication map

m:GxG =G, (a,b) — ab,

and the inversion map

7:G = G, ara

are continuous.

(b) The discrete topology of any group is always a group topology. Thus, every
group admits at least one group topology. On the other hand, there can exist
several group topologies on a given group. For instance, the additive group
(R, +) has at least two group topologies: the discrete topology and the usual

one. [
Lemma A4.3. Assume that E is a set and for every T € E we have singled out a
set V(z) of subsets of E such that the following conditions are fulfilled.
(V1) Ifz € E, V €V(z), and V C UCE, thenU € V().
( ImeEandVl,VzeV(:v), then Vi NV, € V().

V2)
(V3) Ifz € E and V € V(z), then z € V.
(V4) Ift € E and V € V(z), then there exists W € V(z) such that for ally € W

we have V € V(y).

Next denote »
r={D|DCE;(VzeD)3AVeV(z)VC D}.

Then T is the unique topology on E such that, for all z € E, V(z) is the set of
neighborhoods of = with respect to T.

Proof. See Proposition 2 in §1, no. 2, in Chapitre I in [Bo71]. O

Typeset by ApmS-TEX
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Notation A4.4. If G is a group, z € G, and A, B C G, then we denote
AB:={ab|a€ Abe B}, zA:={z}A, Ax:=A{z} A :={a"'|a€ A}

Whenever it is not otherwise stated, we denote by 1 the unit element of any
group. O

The following statement is a first step towards the method to construct group
topologies on a given group, starting from local structures around 1. (See Theo-
rem A4.11.)

Proposition A4.5. Assume that G is a group and V is a set of subsets of G such
that the following conditions are satisfied.
(GVO0) IfUy,Us €V thenUyNUz € V. IfVEV and V CU C G, thenU € V.
(GV1) IfU €V then there ezists V € V with VV CU.
(GV2) For allU €V we have U™ € V.
(GV3) For allU € V we have 1 € U.
(

GV4) For allU €V and a € G we have aUa™' € V.
Then there exists a unique group topology T on G such that V is the set of all

neighborhoods of 1 € with respect to 7. Moreover, for each a € G, we have
V() :={aV |V eV}={Va|V €V}
and this is the set of all neighborhoods of a with respect to T.

Proof. The proof has several stages.
1° To prove the existence and uniqueness of the topology 7, we use Lemma A4.3

for V(z), z € G, as in the statement. So we have to check that conditions (V1)-(V4)
in Lemma A4.3 are satisfied.

To this end, note that both (V1) and (V2) follow from hypothesis (GVO0), while
(V3) follows from (GV3). To prove (V4), first note that, for arbitrary € G and
V C G, we have V € V(z) if and only if 7'V € V. This remark shows that
condition (V4) in Lemma A4.3 is equivalent to the following: for all z € G and
Vo € V there exists Wo € V such that for all y € Wy we have ylzVp € V.
To prove this, note that hypothesis (GV1) implies that there exists Wy € V with
WoWo C Vp. Then for each y € 2W, we have ™'y € Wy, hence z~ly € Wy, hence
= yWo C WoWo C Vo. Thus Wy C y~'zVp, which implies by hypothesis (GV2)
that y~'zVy € V, as desired.

2° We now show that the topology 7 constructed at stage 1° by means of
Lemma A4.3 is a group topology. To this end, first recall from Lemma A4.3 that
V(z) (= {zV | V € V} in the present situation) is the set of all neighborhoods of
x, for all z € G. Thus, in order to prove that the map

G xG -G, (a,b) — ab™!

is continuous, it suffices to check that the following statement holds: for arbitrary
a,b € G and U €V, there exists W € V such that
(aW) (W)™ C (ab™)U.

Note that the above inclusion is equivalent to aWW ~1b~! C ab~1U, and further

to
ww= C b 'UD.
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On the other hand, we have by hypothesis (GV4) that b—1Ub € V, hence, according
to hypothesis (GV1), there exists W1 € V such that

Wi, C bLUb.

Now, for W := Wy N (W)~ € V (use both hypotheses (GV0) and (GV2)), we get
WW-1 C W, W; C b-'Ub, as desired.
3° To conclude the proof, note that the second of the equalities in

V(a) = {aV |V €V} = {Wa|W €V}

follows by hypothesis (GV4) for each a € G. O

Conditions (GBV0)~(GBV4) in the following auxiliary result are usually easier
to check than conditions (GV0)-(GV4) in Proposition A4.5.

Lemma A4.6. Assume that G is a group and B is a set of subsets of G satisfying

the following conditions:
GBVO0) For all Uy,Us € B there exists Us € B with Uy C U NUs.

(
(GBV1) For each U € B there exists V € B such that VV CU.
(GBV2) For each U € B there egists V € B with V-lcU.
(GBV3) For allU € B we have 1 € U.

(GBV4) IfU € B and a € G, then there ezists V € B withaVa™! CU.

Then
r={D|D CG; (Va € D)3V € B)aV C D}

is the unique group topology on G such that B is a basis of neighborhoods of 1 € G
with respect to T.

Proof. It is easy to check that
Vi={U |V C&; 3V eB)VCU}

satisfies conditions (GV0)-(GV4) in Proposition A4.5. O

Notation A4.7. If G is a group and A C G, then we denote by (A) the subgroup
of G generated by 4, i.e., the smallest subgroup of G that contains A 0O

Exercise A4.8. If G is a group and A C G, then

(4) = {1}U G{alman|a1,...aneAUA'1}. O

n=1

Exercise A4.9.
(a) If G is a connected topological group and U is a neighborhood of 1 € G, then
(U)=4G.
(b) If G is a topological group and there exists a connected neighborhood U of
1 € G such that (U) = G, then G is connected. 0
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Definition A4.10. Let Ti and T, be topological spaces. An imbedding (of topo-
logical spaces) of T} into T is a mapping f: T1 — T that induces a homeomorphism
Ty, — f(T1), provided we view f(T1) as a topological subspace of T,, O

The following theorem provides a useful way to endow a group with a group
topology. The results of this type are particularly useful in Lie theory, inasmuch as
they allow one to extend local structures to global ones.

Theorem A4.11. Let G be a group with the multiplication map
m:GxG— G, (z,y) — zy,

and K C G such that
1c K=K and (K)=G.

Assume that the subset K of G is equipped with a Hausdorff topology such that the

nVersion map
K - K, Tz

is continuous and there exists an open set Vo C K x K satisfying the following
conditions:

(a) m(Vo) C K,

(b) m|v,: Vo = K is continuous, and

(c) for all x € K we have (z,z71),(z,1),(1,2z) € V.
Then there exists a unique group topology on G making the inclusion map

K< G

into an 1mbedding of topological spaces such that K is an open subset of G.

Proof. The proof has several stages.

1° To construct the group topology of G, we will make use of Lemma A4.6.
To this end, we check conditions (GBV0)-(GBV4) in Lemma A4.6 for the set of
subsets of G defined by

B:={W |W C K; W is a neighborhood of 1 € K'}.

Conditions (GBVO0) and (GBV3) are obvious.

For (GBV1), note that V; is a neighborhood of (1,1) € K x K. Since the
mapping m|y,: Vo — K is continuous and m(1,1) = 1, it then easily follows that
for each W € B there exists W, € B with WiyW; C W.

To see that (GBV2) holds, we use the fact that the inversion mapping n: K — K,
z +— 7!, is continuous. Since n? = id, it follows that 1 is actually a homeomor-
phism of K onto itself, and thus for each W € B we have W~!(= n(W))e B as
well.

In order to check condition (GBV3) in Lemma A4.6, we first note that, since
K = K~ ! and (K) = G, it follows by Exercise A4.8 that

G= GK-~-K.

n=l p times
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One then easily shows by induction that it suffices to check (GBV3) only fora € K.
To do this, let a € K and W € B arbitrary. By hypothesis (c) we have (a,a7t) € Vp.
Since Vj is open in K x K and m|y, is continuous, it then follows that for some
neighborhood U of a € K we have both '
Uy x {a™'} C Vy and Ura™ ' C W.
On the other hand, also by hypothesis (c) we have (a,1) € V5. Again by the
continuity of m|y;, there exists W; € B such that
{a} x W1 C Vp and aW; C Us.

Then aWia~! C Uya~! C W, as desired in condition (GBV3) in Lemma A4.6.

Consequently, we can use Lemma A4.6 to make G into a topological group with
the group topology 7 defined by

r={D|DCG; (Ya€ D)3W € B)aW C D}.

Note that, in particular. we have K € 7. In fact, let a € K. We have (a,1) € Vo
by hypothesis (c), hence, using as above the continuity of m|v,, we can find W € B
such that ({a} x W C V; and) aW C K.

2° We now prove that the inclusion mapping

LK <G

is an imbedding of topological spaces. To this end, we have to prove that it is both
an open mapping (i.e., it maps every open subset of K onto an open subset of G)
and a continuous mapping.

To see that ¢ is an open mapping, it clearly suffices to show that, for every
neighborhood U of an arbitrary k € K, the set «(U) is a neighborhood of k) (=
k)€ G. To this end, we repeat the proof of the fact that K € 7: we have (k,1) € Vo,
hence the continuity of m|y, shows that for some W € B we have kW C U =
((U). Thus ¢(U) is a neighborhood of ¢(k), according to the above definition of the
topology .

Now, to prove that ¢ is continuous, let D € T arbitrary. We have D)= KEnD,
hence we have to prove that K N D € 7. To this end, let k € K N D arbitrary. The

fact that k € D shows that for some W; € B we have

kW, € B.
On the other hand, the fact that k € K implies as above (using that (k,1) € Vo
along with the continuity of the multiplication map mly,) that for some Wo € B
we have both {k} x W5 C V4 and

kW, C K.
Then

k-(WlﬂWQ):leﬂsz _C_DﬂK.

Since Wi, Wy, € B, we have W C Wy N W, for some W € B (see condition (GBVO0)
in Lemma A4.6), hence kW C D N K, and this is just what is needed in order to

have DN K € 7.
3° The uniqueness assertion is an easy consequence of the corresponding assertion

in Lemma A4.6. O

Our next aim is to describe one of the basic methods to construct homomor-
phisms from simply connected groups to arbitrary groups (see Theorem A4.19 be-
low). The notion of simply connected space (Definition A4.15 (¢)) needs the idea
of covering, in the sense of the following definition.
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Definition A4.12. Let T and S be topological spaces and f:T — S a continuous
mapping. We say that f is a covering mapping if for every s € S there exists an
open neighborhood W of s such that, for some family {A;}:er of pairwise disjoint
open subsets of T, the following conditions are satisfied:
1° We have f~}(W) = U 4.
el
2° For every i € I the mapping f|a,;:4; = W is a homeomorphism provided
A; and W are equipped with the topologies inherited from T and S, respec-
tively. O
Exercise A4.13. Let G and H be topological groups and ¢:G — H a group
homomorphism.
(a) If there exists an open neighborhood U of 1 € G such that ¢|y is continuous,
then ¢ is continuous.
(b) If there exists an open neighborhood V of 1 € G such that ¢(W) is an open
subset of 1 € H and ¢|w: W — @(W) is a homeomorphism when p(W) is
equipped with the topology inherited from H, then ¢ is a covering map. U

Definition A4.14. Let T be topological space. If X is another topological space
and fo, fi: X — T are two continuous mappings, we say that fi and fo are ho-
motopic if there exists a continuous mapping H:[0,1] x X — T such that for all
£ € X we have H(0,z) = fo(z) and H(1,z) = fi(z). In this case, H is said to be
a homotopy connecting fo and f. O

Definition A4.15. Let T be topological space.
(a) We say that T is connected if ¢ and T are the only subsets of 7' which are

simultaneously closed and open.
(b) We say that T is locally connected if every point of T has a basis of connected

neighborhoods.
(c) We say that T is simply connected if it is connected and locally connected,

and, whenever h: P — S is a covering mapping, f:T — S is continuous,
to€T,po €P, h(po) = f(to), it follows that there exists a unique continuous

mapping f:T — P such that the diagram

O
hl  f
S

is commutative and f(to) = po.

(d) We say that T is pathwise connected if for all to,t; € T there exists a continu-
ous mapping (that is a path) y: [0, 1] = T such that v(0) = to and (1) = ¢1.

(e) We say that T is locally pathwise connected if every point of T' has a pathwise
connected neighborhood.

(f) We say that T is pathwise simply connected if it is pathwise connected and
locally pathwise connected, and every continuous path 7: [0,1] — T with
v(0) = (1) is homotopic to a constant map [0,1] = 7. O

Exercise A4.16. Let G be a topological group. If 1 € G has a basis of connected
neighborhoods (respectively, a pathwise connected neighborhood), then G is locally
connected (respectively, locally pathwise connected). O
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The following theorem provides the main tool used to check that a certain space
is simply connected.

Theorem A4.17. Every pathwise simply connected space is simply connected.
Proof. See Theorem 2.1 in Chapter IV in [Ho65]. O

The next theorem describes a very important property of simply connected
spaces, and will play a key role in the proof of Theorem A4.19 below.

Theorem A4.18. Let P and S be topological spaces and h: P — S a covering
mapping. If

(i) P is connected and locally connected, and

(ii) S is simply connected,
then f is a homeomorphism.

Proof. See Theorem 1.4 in Chapter IV in [Ho65]. The idea is to use condition (c) in
Definition A4.15 for T = S and f = idg, in order to construct a continuous inverse

of h. O

We are now ready to describe the main method to construct group homomor-
phisms defined on simply connected groups.

Theorem A4.19. Let G be a simply connected topological group and H an arbi-
trary group. Suppose that W is a connected open neighborhood of 1 € G such that

W =W-! and f:W — H is a mapping such that
f(zy) = f(2)f(y) whenever z,y,zy € W.

Then there exists a unique group homomorphism ¢: G — H such that o|lw = f.

Proof. Denote
K:={(9,f(9) |ge W} CGxH

and endow N with the unique topology making the bijection
B:W = K, g+ (9,f(9)

into a homeomorphism. Then denote by E the subgroup of G x H generated by K.
Using Theorem A4.11, we are going to make E into a connected topological
group such that K is an open neighborhood of 1 € E. To this end, denote by
m:G x G — G be the multiplication in G. Then Wy :=m™ (W) N (W x W) is an
open subset of W x W such that conditions (a)—(c) in Theorem A4.11 are satisfied
(with K replaced by W and V, replaced by Wp). Since B is a homeomorphism,
it then follows that Vo := {(8(¢1),8(g2)) | (91,92) € Wo} and K also satisfy
conditions (a)—(c) in Theorem A4.11, hence the group E = (K) (C G x H) has a
unique structure of group topology such that K is an open neighborhood of1 € E.
Since W is connected and K is homeomorphic to W, it follows that K is connected,
and it then follows by Exercise A4.9 (b) that the topological group E is connected.
Now consider the mapping

mE — G, (g,h)—g
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which is the restriction to E of the natural projection pry: G x H — G. Since the
latter projection is a group homomorphism, it follows that « is a group homomor-

phism as well. Moreover, note that
gk =B"HK W

Since 8 is a homeomorphism and K is an open neighborhood of 1 € E, it then
follows by Exercise A4.13 (b) that 7 is a covering map of E onto G. But E is
connected and locally connected by Exercise A4.16, while G is simply connected,
hence Theorem A4.18 shows that 7 is a homeomorphism.

In particular, = is bijective, and then 7~!:G — E is a group isomorphism. For

every g € W we have
W_l(g) = B(g) = (g’f(g))a

hence for the group homomorphism
p:=prgon G —H

we have |y = f. (Here pro: G x H — H stands for the natural projection, which
is a group homomorphism.)

The uniqueness of the group homomorphism ¢ follows since we have by Exer-
cise A4.9 (a) that (W) =G. O

NOTES

Theorem A4.11 appears explicitly as Lemma I1.2 in the paper [Ne02]. See also
pages 263-265 in [Hof68]. The basic idea underlying this result is that of local
(topological) group. See e.g., page 209 in [Sw65].

Theorem A4.19 is sometimes called the “monodromy theorem”. It appears e.g.,
as Proposition 5.60 in the notes by K.H. Hoffman [Hof68], or as Theorem 3.1 in
[Ho65]. See Theorem 1.7 in Chapter IV in [Ho65] for a more general result of this

type.
Among the basic references for the topic of topological groups, we mention the

books [Bo71] and [Ho65].
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