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AT,. TOPOLOGICAL VECTOR SPACES

ABSTRAST. We review some basic facts concerning topological vector spaces, A spe-
cial emphasis is placed upon complexifications of topological vector spaces and upon
continuous inverse algebras.

Locally convex spaces

Definition A1.1. L topological uector space over K e {R, C} is a vector space X
over K equipped with a Hausdorff topology such that both the vector addition

X x X - + X ,  ( r , y ) + r + y ,

and the scalar multiplication

K x X -+ X, (.\, r) r+ ,\r,

are continuous mappings. !

Example 41.2.
(a) The usual topology makes Kn into a topological vector space whenevet n ) |

and K e {R.,C}.
(b) Every Banach space over K e {& C} is in particular a topological vector

space. n

Definition Af .3. A topological vector space X is said to be locally conaer if each
point of X has a basis of convex neighborhoods.

Note that, to check that X is locally convex, it actually suffices to find a basis
V of convex neighborhoods of 0 e X. In fact, for arbitrary t e X, it then easily
follows that {r + V I V € V} is a basis of convex neighborhoods of r. !

Example A1.4. Every Banach space is locally convex, since the open balls cen-
tered at some point r € X constitute a basis of convex neighborhoods of r. n

The following characterization of locally convex spaces shows that Example A1.4
plays a central role among Iocally convex spaces. For this statement, we recall that
a se'm'inorm on a vector space X over K € {R, C} is a function p: X -+ [0, oo) such
that for aIl r,y € X and o € K we have p(r+y) 3 p@)+p(g) and'p(ar) = l"lp(r).

Theorern A1.5. Let X be a topological uector space ouer K e {R,C,}. Then X is
locaily conuen if and only if there erists a fami,ly of seminorms {pt}rcr defi,ni.ng the
t o p o l o g y  o f  X  i n t h e  s e n s e t h a t ,  i f  f o r n ) l , i r , . . . , i n e I  a n d e ) 0  w e  d e n o t e

Vt, . . . , i* ; ,  1:  {r  € X |  ,?f f ,  lPr*(*) l  < e},

then
V  : =  { V r , . . . , i ^ ; ,  l n  )  r , f i , . . . , d n e  1 , e  >  o }

is a basis of neighborhoods ol 0 € X.

Proof. See e.g., $1 in Chapter II in [Sf66] for the connection between convex sets
and seminorms in a topological vector space. !

Typeset by ,$t71s-'tp[
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Example A1.6. Let X: C*[0,1] and for each n' ) 0 define

pn:X -+ [0,e),  P*( f ) := suP. lYi")1t) l '
t€[0,1]

Then {p,},>e is a sequence of seminorms on X, hence Theorem A1.5 shows that

X has a topology of locally convex space such that, if we define

Nn,e i :  { f  e x l  .1rr?,rsun, l / (*)( t ) l  
< u} ( n , € N , e > 0 ) ,

then {l{,",, ln, € N,s > 0} is a basis of (convex!) neighborhoods of 0 e X' !

Example L1.7. Let D be an open subset of IRm (rn ) 1) and X = C*(D)'

For each compact subset K of. D and a = (ar,...,a^) € NIrn we denote lal =

0r * " '*a* and def ine

Px,o:X -l [0,m), Px,,(f)'=::P lffiOl,

(where we denote t = (tr,. . . ,t*) € IRm as usually). Then each pK,a is a seminorm

on X, and it follows by Theorem A1.5 that the sets

NK,n,, '= {-f € x | 
".#lt, .nnx,"(f) < e}

constitute a basis of convex neighborhoods of 0 € X in some topology making X

into a locally convex space. tr

Definition A1.8. Let X be a topological vector space. We say that a sequence

{r,},ex in x is conuergentto r € x if forevery neighborhood v of.r thereexists

ny € N such that for all n 2 nv we have nn e v. with the same notation, we

say that {",,},,ero is a Cauchy sequenceif for every neighborhoodW of 0 e X there

exists rny € N such that rn - r* € 17 whenever n,m ) mv.
Finally, we say that the topological vector space X is sequentially complete if.

every Cauchy sequence in X is convergent. n

Exercise A1.9. Let X be a topological vector space.
(a) Prove that a sequence {r,,},ex is convergent to r € X if and only if for

every neighborhood W of 0 € X there exists nry € N such that rn - r € W
whenever  n2nw.

(b) Prove that every convergent sequence in X is a Cauchy sequence.
(c) If X is locally convex and its topology is defined by a family of seminorms

{po)nr, as in Theorem A1.5, then a sequence {r,'}",ex in X is a Cauchy
sequence if and only if for all i. € I we nru" 

_,*T* 
pt(r* - rn) : 0. n

We note that every Banach space is in particular a sequentially complete locally
convex space. The next definition singles out a more general class of topological
vector spaces of the Iatter tyPe.

Definition ,4'1.10. We say that a locally convex space X over K e {R,C} is a
Frdchet space if it is sequentially complete and its topology can be defined by a
countable family of seminorms (see Theorem A1.5). f}

( K c o m p a c t  9 D , n e  N , e > 0 )
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Example A1.11. Every Banach space is in particular a FY6chet space' since it is

(sequentiauy) complete and its topology is defined by a single (semi)norm. D

Exercise 41.12. Prove that the space X = C€[0, 1] in Example A1.6 is a F!6chet

space. D

Exercise A1.13. Prove that the space X = C*(D) in Example A1.7 is a F}6chet

space. !

Theorem Af .14 (Hahn-Banach), f X is a locally conael space ouer K e {R,C},
then for all r,y e X, with r * A, there erists a continuous linear functional
I: X -+ K szcft that I(r) * t(a).

Proof, See e.g., Theorem 9.2 in Chapter II in [Sf66]. D

Proposition A1.15. Let X be a sequenti,ally complete locally conuer space and

1: tO, f] -+ X a continuous function. Then there etists the Riemann integral

Proof. The conclusion means that there exists r e X (to be denoted I; f(t)dt)
such that for every neighborhoodv of 0 € v there exists d ) 0 such that

(1) (h -  t i l f6) + " '  *  ( tn -  t"-r) f  (€") € r  *V

whenever 0 = to ( {r ( h 1 €z 1 t2 1 "' I tn-t< {" < tn = land 
rsuP,, 

( d'

since X is sequentially complete, it suffices fiust as in the case x = IR) to show

that for every sequence of subdivisions of [0, 1] with the mesh tending to 0, and for

arbitrary ci oices of ('s, the sequence of the corresponding Riemann sums (as in the

left-hand side of (1)) is a Cauchy sequence.
Since X is a locally convex ,pu.", ih" Iutt.t property follows by Exercise A1.8(c)

along with the fact that /: [0, 1] -l X is uniformly continuous in the following sense:

for eiery neighborhood V of O€ X there exists e ) 0 such that, for all s,t € [0'1]
wirh ls - tl < e, we have /(") - l(t) e I/. The proof of this latter fact is just an

easy exercise (/ is continuous on the compact [0, 1]!)' !

Complexiffcations

Definition 41.16. Let X be a real topological vector space. The complerification

of X is the complex topological vector space X6 :: X x X equipped with the

product topology, with the componentwise vector addition

Xs x Xs 4 Xc, (rr , rz) *  (W,yz) = (u + A1,12 + Y2),

and with the scalar multiplication defined by

C x X6 -) Xc, (a + ib) ' (q,rz) - (or, - brz,ar2 * bt1)'

We usually perform the identifications

X = X x {0} -r Xq and iX - {0} x X'+ Xs,

and thus
xc = x +iX,

thinking of X as a real vector subspace of Xq. In particular we write t1 * ir2

instead of (r1 , 12 ) whenever 11 , 12 e X . n

l '  r{Do" t
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Exercise Ll.l7.
(a) If X is a real Banach space with the norm ll . llx, then the complexification

Xc(= X x X) is a complex Banach space with the norm ll ' llx" defined by

(Yq,rz e X) l l (q,n2)l ly" := sup .  l l (cos t)r ,  + (sin t)rz l lx '
t€lO,2r]

(b) If r/ is a real Hilbert space with the scalar product (.,')11, then the complex-
ification Hc(: H x 11) is a complex Hilbert space with the scalar product
(', ')no defined bY

( ( r t , r r ) , (y r ,yz ) )uo :=  ( r t ,a )n  *  ( r r ,yz )n  1 - i ( ( r2 ,a )u  -  @t ,az)n)

whenever frrrrzrUt,Uz e H. !

Exercise A1.18. Let X and Y be real Banach spaces and denote by 6e(x, Y) the
real Banach space of all bounded lR-linear operators from X into I/. Also denote
by Bc(Xc,Y6) the complex Banach space of all bounded c-linear operators from
Xs into Y6. Then Bc(Xc,Y6) is the complexification of Be(X,Y), the natural
embedding

Bw(X,Y) "+ Bs(Xs,Ys)

being the one which associates to each T eBp(X,Y) the operator

Xc. = X x X -+ Yc =Y xY, (q,rz) r+ (Tr1,Tr2).  !

Continuous inverse algebras

Definition A1.19. A topological algebra A is a topological vector space equipped
with a continuous bilinear mapping

A x  A  -+  A ,  (a ,b )  ,+  a 'b ,

called the multiplication of A. If the topological vector space underlying .4 is locally
convex, F}6chet, Banach or Hilbert, then we say that Ais a locally cont)er, FTdchet,
Banach or Hilbert algebra, respectively.

We say that the topological algebra A is associati,ae if. for all a,b,c € I we have
(". b) . c = a. (b' c), and that A is unitalif there exists an element | €. A (called
the unit element of ,4) such that a.L = 1'e, = a for all a € A. If A is both
unital and associative, then an element r € A is said to be inuertible if there exists
r g  e  A  s u c h  t h a t  r , f r s = t r o . t r  =  1 .  I n t h i s  c a s e ,  i t i s e a s y t o c h e c k t h a t  z 6  i s
uniquely determined by r and we denote r0 =: r-7. The invertible elements of I
are sometimes called the units of A. We denote

Ax :-  {r  e Al r is invert ible}.

Note that 1 e A" and A' is a group with respect to the multiplication inherited
from A.

If,4 is a topological algebra then a subalgebra of A is a vector subspace As of. A
such that a.b e As whenever a,b € Ao. If moreover A is unital and the unit of .4
belongs to As, then we say that,4s is a unital subalgebraof A.

If A is a real topological algebra, then the complerif,cati,on As of the topological
vector space underlying A has a natural structure of complex topological algebra
with the multiplication defined by

( a t  + i a z ) . ( b r  +  i b 2 ) :  ( o r . b t  -  a z . b z )  *  i ( o 1  . b z  +  a z . b t )

whenever aL,a2,bt,bz € A. I f  A is associat ive or uni tal ,  then so is,46. !
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Definition A1.20. Let ,4 be a unital associative topological algebra. We say that
.4 is a continuous inuerse olgebra if .4x is an open subset of ,4 and the inversion
mapping

1 1 : A ' - + A x ,  r r + n - r ,

is continuous. tr

Lemma A1..2l. Let A be a unital associatiue topological algebra. If there erists
an open subset W of A such that I e W e Ax and the inuersion mapping

n l w : W  - +  A x

i,s conti,nuous, then .4 is a continuous inuerse algebra.

Proof. Fix a e A*. Since o is invertible, it is easy to see that the mapping

Lo: A -+ A, b r+ ab,

is a homeomorphism and Lo(Ax) - A' , hence Lo(w) = aW is an open subset of

AX containing L"(1) = a. Since a € Ax is arbitrary, it follows that Ax is open

in A. Moreover, for all c € aW we have

rt@) :  g-L :  (a(a-t"))-  = (a-rc)-La-r -  r1a-rc)a-L.

Since a-lc €W andrilw is continuous, it then follows lhatq is continuous on the

open neighborhood aW of a. Since a e Ax is arbitrary, it follows that the inversion

mapping 11: A" -+,4x is continuous throughout on AX. !

proposition y'-1.22. If A is a real continuous inuerse algebra, then the compleri'

fi,cation As is a compler continuous inuerse algebra.

Proof. Denote as usually by r:, A" -+,4x the inversion mapping, and define

{ : A x  x  A - +  A ,  , l t @ , b ) = l + @ - L b ) 2 .

Then{.t(a,b) = I + (n@) 'b)2, herrce'ry' is acontinuous mapping. Since AX is open

in -4 and ,b0,0) = I e .4x, it then follows that we can find an open neighborhood

tJ of I e Ax and an open neighborhood I/ of 0 e A such that ,lr(U 
"V) 

g A*'

Hence
(Ya e U) (Vb e V) t + (a-Lb)2 e A" .

For arbitrary a e [/ and b € I/, we have

a *  ib  :o (1  *  iq ) )  =  o (1  +  ic ) .
: : c

on  the  o the r  hand ,  we  have  (1  + i c ) ( l  - i c )  -  L+c2  €  A* ,  whence  1 * i c  i s

invertible, in fact (1 + ic)-l : (1 - ic)(l + c2)-1. Since a is also invertible, it then

follows from the above equation that o f ib is also invertible and

( a + i b ) - 1  = ( 1  + i c ) - t o - t

:  (1 -  ic) ( l  +  c2)- ra- l

:  (1  -  ia- tb)(1 + (a-rb] )z1- to-r

=  ( 1  -  i n @ )  . b ) . ? ( 1  +  ( n @ )  . b ) ' )  . n @ ) .

Hence tJ + iV e @d x and, moreover' the inversion mapping

U + lV -+ Ac., z t-+ z-t ,

is continuous since q is a continuous mapping. Since I/ :: U * i7 is an open

neighborhood of I e As, the desired conclusion then follows by Lemma LL.2l. n



ELEMENTS

Exercise A1.23.
algebra. n

Exercise L1.24,
of B such that Ax

OF LIE THEORY IN FINITE AND INFINITE DIMENSIONS

Every unital associative Banach algebra is a continuous inverse

If B is a continuous inverse algebra and ,4 is a unital subalgebra
= AflBx, then A is in turn a continuous inverse algebra' D

NotBs

The first part of the above review of topological vecior spaces follows the lines

of the corresponding section in the paper of J. Milnor [Mi84]' For further reading

we refer to the books [Tt67] and [Sf66].
See Lemma 1.1 in [BS71b] for more details on the result contained in our Propo-

sition A1.15. F\-rrther information on the complexifications of topological vector

spaces can be found in section 2 of the paper [BS71a]. The results concerning con-

tinuous inverse algebras are taken from the paper [Gl02b]. The algebras of that

type play an important role in K-theory, see e'g.' [Swa77].
It is important to note that, from the point of view of operator theory the Hilbert

spaces constitute by far the most important class of topological vector spaces. See

the celebrated book by P.R' Halmos [Ha82].
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A2. DIFFERENTIAL CALCULUS

ABSTRAqT. In this appendix we collect some basic elements of differential calculus

in topological vector spaces, and particularly in locally convex spaces. we discuss

real and complex analytic mappings on open subsets of locally convex spaces. As

an important example, we prove that the inversion mapping of a continuous inverse

algebra is analytic.

Differentiability

Definition A2.1. Let X be a topological vector space over K e {R,C}, and-D

an open subset of K We say that a continuous mapping f : D -+ X is of class CL if

the Iimit
! .  f ( t )  -  f ( to )
f(ts):= lr^ 

ff

exists in x for all t6 e D, and the mapping i:D -+ x is continuous. Denote

fi := j: D -+ X and suppose that we have already defined fn: D -+ X for some

n ) l. If the mapping ,f",+r ..: in: D -+ X is defined and continuous, then we say

th;t f is of ctasi C'. Finally, we say that / is smooth if it is of class C" for alI

n )  l .  n

Definition A2.2. Let X be a real locally convex space' ,I an interval in R and

a,b e I. We say that a continuous function f :I -+ X is weakly integrable trom a to

b if there exists 16 € X such tha.t for every continuous linear functional l: X -+ R

we have

In this case we denote ,o bV I! f (t)dt and call it the weak integral of f from a to

b . !

Exercise y'r2,3. In the setting of Definition A2.2, prove that the vector 16 is

unique whenever it exists. n

Exercise L2.4. In the setting of Definition A2.2, if X is moreover sequentially

complete, prove that / is always weakly integrable from a to b' tr

Theorem y't2.5. Let X be a locally conuer space, I an open interual in R, and

a,b e L If J:I -+ X is of class i', thrn the continuous function i:I -+ X is

weakty intesrable from a to b and Il ift)at: f(b) - f(").

Proof. See Theorem 1.5 in [Gl02a]. n

t ( rs):  l "ur"/)(r)d,

Typeset by A1143-TPS.
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Definition L2.6. Let X and Y be real topological vector spaces' U an open subset

of x, and f :u -+ Y acontinuous mapping. we say that / is of class cl if the limit

f,-(h\ := r'^ f 
(r + th) - f (x)

J E \ - - t  
t l o  t

exists in Y for all r e U and h e r, and the mapping

d, f  :U  x  X  -+Y,  d ' f  ( r ,h ) , :  f l (h )

is continuous.
N o w s u p p o s e t h a t n ) 1 a n d

d n f : ( J  * 4 3 - ! *  y ,  ( r ; h r , . . . , h n ) ' +  f [ " ) ( n r , " ' , h n )

was already defined and is continuous. If, for all r e IJ andh1,"' ,hn,hn41 e X,

the limit

d . " o t  f  ( * ; h I , .  .  .  , h n , h n + r )  : -  7 ( n + t 1  ( h t , '  .  .  , h n , h n + t )

. -  r i *  r' =  lS -  t
exists in X and the mapping dn+L f ,(J x X'+t -+ Y is continuous' then we say that

f is of class cn*r. Furthermore, we say that f is smoothor of class c*(u,y) if it

is of class Cn for all n ) 1.
For n: 1,2,. . . ,oo, we denote by cn((J,Y) the set of  al l  mappings u -+Y of.

class C".
Finally, if X1,...,xn are real topological vector spaces' [/ is an open subset

of X1 x ... x X, and g: U -+ Y is a continuous mapping, then for every point

r  =  ( r t , . . .  , n n )  e  t J  a n d  j  e  { 1 , . . '  , n )  w e  d e f i n e  b y

0iS@) := bi)'*t: Xi -+ Y

the j-th partial d,eriuatiue of f,rst order of g at r (whenever it exists), where the

mapping Si : U 1 -+ Y is defined bV Si Q) := g(rr,' . ., n j -L t z' r i+! | . . ., nn) fot aII z

in  the  open subset  U i  :=  {2  e  X i  l - ( r r , .  .  .  , f i  j -L t2 , r i4 r , .  .  .  , rn )  e  U}  o f  X1.  n

Proposition A2.7. Let X andY be real locally conaer spaces, U an open subset

oJ X and J:U -+ \' a mappi'ng of class Cr. Then for all r e U the mapping

f,,: x _+ y

i,,s l,i,n,eo,r a,n,d, continttous. If moreouer f is of class C" with n > 2, then for all t e U

the mappi,ng
f l " ) ' I x " ' x x - + Y

n t imes

is sy'm'metric, cont'inuous and n-linear.

Proof. See Lemma 1.9 and Proposition 1.13 in [Gl02a]' n

Remark A2.8. In the setting of Proposition A2.7, if moreover X = lR, then for all

r  € U and h € X: IR we have f l (h) = h' f (r) ,  where /(r)  c Y is introduced
in Definition A2.1. Similarly, if moreover / is of class C' then for all r C U and

h r , . . .  , h n €  X  =  I R  w e  h a v e  f [ ) ( h 1 , . . .  , h n )  -  h 1 " ' h , ' 1 . @ ) , w h e r e  f n ( r )  e  Y
is introduced in Definition A2.1. D
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Proposition A2.9. Let X ondY be real locally conael spoces, U an open subset

o f  i  an i t  f :U  -+Y amapp ing  o f  c lassCr .  IT fo r  a l l re  (J  wehaue f ' ,=0 , then

f is constant on each connected component of U.

Proof. See Proposition 1.11 in [GI02a]. n

Proposition 42.10 (chain tule). Let X, Y and Z be.real locally conuen spaces, U

an open subset of X, V an open subset ofY and, U 4 V 4 Z mappings of class

C n ,  w h e r e n ) 1 .  T h e n g o f : U  - +  Z  i s  o f  c l a s s C n  a n d , f o r  a l l r € U  w e h a u e t h e

commutatiue diagram
e lG ,  .----t L

lkot)',

that is, (S 
" f)* = 9}py o f L.

Proof. See Propositions 1.15 and l'l2in [Gl02a]' !

Theorem y'.2.lt (Taylor's formula). Let X and Y be real locally conaer spaces,

IJ an open subset of i, and f :U -+ Y a mapping of class C'+r, where n > 0. If

r e U ind, h e X haae the property that r * th e U wheneuer 0 < t < l, then

f  ( r  +  h)  = f  ( r )  +  f ! , (h)  +  j . r i tn ,h)  +  . .  .+  \ , t [d@,. . .  ,h)

,  / t  ( t  -  t ) n  , g+ t11 ,* 
J, 

-it-f;;-t; '(h' ' ' '  'h)dr'

Proof. See Proposition A2.\7 in [Gl02a]. n

corollary L2.12. Let x and. Y be real Banach spaceE, (J an open subset of x,

a n d , f : U  - + Y  a m a p p i n g  o f  c l a s s C n + r , w h e r e n Z 0 '  I f  r e  U  a n d w e d e n o t e

t / , :=  {h€  X |  (V t  e  1O, f i ;  r * the  U} ,  thenV,  i s  an  openne ighborhood,  o t0e  X

and the funct'ion 0:W --> Y defined for all h e V, bA

f ( r  +  h)  =  f  ( r )  +  f ' , (h)  +  j ] io ,h)  +  '+  1 .* ) tn , . . . ,h)  +0(h)

has the property

l l lff i=o
proof. see either corollary 4.4 in chapter I in [La01], or Theorem 6 in chapter 1

in [Nel69]. tr

The converse to corollary A2.I2 holds under the following form.

Theorem A2.L3. Let X and,Y be real Banach s[)aces, (J an open subset of x and

.f : X -+ Y. Suppose that for some pos'itiue integer n there ea'ist, for J = 0' 1' "' 'fr'

the continuous maPPings
aj i (J -+ Br (X,Y)

Y
ft : l
X
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(where Bj(X,Y) stands for the real Banach space of symtnetric mult'ilinear map-

p ings  X i  =  X  * . . . xX  -+Y)  such tha t the fo l l ow ing  asse r t i onho lds :  Fo r  a l l

r € U  t h e r e  e r i s t r ) 0  a n d 0 : B x ( O , r ) - + Y  s u c h t h a t B v ( r , r ) e  U  a n d

( v n e  r ; r 1 o , r ; )  f  ( r + h )  = a o ( r ) + a 1 ( r ) ( h ) + " ' +  \ , a * ( r ) ( h , . . .  , h ) + 0 ( h )

and, l i ry l l l (h) l l l l lh l l  =0.  Then f  is  o f  c lasscn andai  = f0  for  i  =0, ! , . . .  , f r '

Proof. See Theorem 3 in Chapter 1 in [Nel69]. n

Analytic mappings

Definition L2.14. Let E and f. be complex locally convex spaces' W an open

subset of E, and gw -+ F. we say that 9 is complet analytic if it is of class

C1 (when we view both E and F as real vector spaces) and for each r e W the

mapping g',: E -+ F is C-linear. (Recall from Proposition A2.7 that g', is always

R-linear.) the complex analytic mappings are sometimes called holomorphic.

If X and Y are real locally convex spaces and U is an open subset of X, then

a mapping f :U -+ Y is said tobe real analytic if there exist an open subset [! of

the complexification Xc of X and a complex analytic mapping h:Ut ) Y6 such

t h a t U g U t a n d f l l u = f '  D

Proposition .Fi?,,l'. Euery real or compler analytic mapping is smooth.

Proof, See Proposition 2.4 in [Gl02a]. !

Theorem 1^2.16. Let X andY be real (respecti,uely compler) Iocally conuer spz,ces,
(J an open subset of x, and f :(I -+Y a smooth mapping. Then f is real (respec-
tiuely complex) analytic if and only if for euery I € U there erists a neighborhood
V  o f  0 € X  s u c h t h a t r ' t V C U  a n d f o r a l l h e V  w e h a u e

f (r + h) = 
F^*,* 

(h, . . ,h),

where f[o) ,: f (r).

Proof. See Lemma 2.5 and Definition 2.1 in [Gl02a]. !

Proposition A2.L7. Composit'ions of real or compler analytic mappings are real

or cornpler analytic, respect'iuely.

Proof. See Propositions 2.7 and 2.8 in [Gl02a]. D

We now recall the definition of Fr6chet differentiability.

Definition 42.18. Let X and Y be real Banach spaces, [/ an open subset of X

and /: U -+ Y. We say that / is Frdchet differentiable if for ever/ iDs € [/ there

exists T € B(X,Y) such that

, , *  l l / ( r )  -  / ( ro)  -  
" ( r  

-  ro) l l  -  o .
r - tno  lw  -  to l l
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In this case ? is uniquely determined by c6 and we denote

d f  ( rd  : -  f ' ,o :=T.

We sav that / is Frdchet smooth if

d, f  :U -> B(X,B(X,Y))

is Fr6chet differentiable and moreover

d,2 f  := d(dt) :U -+ B(X,B(X,B(X,Y)))

is Fr6chet differentiable . . . and moreover

d n  f  =  d ( d k - L  ! ) : u  - +  B ( x , . .  .  , B ( x , y )  .  .  . )

ffi
is Fr6chet differentiable ... ad infinitum. n

Remark A2.19. It is clear that the notations fl, df etc. introduced in Defini

tion 42.18 agree with the ones in Definition 42.6. Moreover, a mapping is F}6chet
smooth if and only if it is smooth in the sense of Definition A2.6. (For a proof of
this fact, see Theorem I.7 in [Ne01a].) n

Theorem A2.20, Let X and Y be real Banach spaces, u an open subset of x,

and, for all a,b € X denote Do,b : {t e n I a +tb e U}- Then a smooth mapping

.f :u -+ Y is real analytic if and only i'f for all a,b € X the function

Da.6 1Y, t r+ J@ + tb),

is real analytic.

Proof. See Theorem 7.5 in [BS71b]. tr

Theorem A2.21. Let E and F be compler Banach spaces, v an open subset

of E and, for each n ) I, let fn:V -+ F be a holomorphic mopping such that

sup ll/,(r)ll < m. If rnoreooer lim (sup ll/ '(z) - l-(")ll) = 0, then there
r€v 

'  nt ,n-+e \ t6 iz " -  -  '  
/

erists a holomorphic moppins f :V -+ F such that ,,lin.(sup.ll/'(r) 
- 1(r111) = o.

n-+oo \o€y

Proof . This is an easy application of Proposition 6.2 in [BS71b]. !

Proposition L2.22. Let E and F be compler Banach spaces, V an open subset

of E, r ) 0 and g:Bs(O,r) xV -+ F a holomorphic mapping such that

sup{ l le ( t , r ) l l  l ,  €  Bq(0 ,  r ) , r  €  V}  <  m.

Def,ne

f  :Bg(0 , r )  xV -+  F ,

Th,en f is h,olomorphic.

Proof. For all t € .86(0,r) and r € I/ we have l(t,*) = 
m fn(t,r), where

+ f l

f  n t , r ) :  ;  ,D_sQt ln , r ) '
J - r

Then reason as in the proof of Proposition 6.3 in [BS71b], since fn: Bs(o,r)xv -+ F

is holomorphic for all n 2 L. !

The following statement concerns the notion of continuous inverse algebra as

intr<.iduced in Definition A1.20.

f (t,r) = 
fo' i lr,dar.
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Lemma L2.2g. If A is a continuous inaerse algebra, then the inuersion mopping

q: Ax -+ A' ,  r ,  r)  r-L,

is smooth and
dr1: A" x A -+ A,(n,a) ,+ -r-Lan-r.

Proof. For all r,y € /x we have

y-L - r-L : n-L (fr - ily-' = y-L (r - Y)r-' '

since AX is an open subset of A, it follows that for all r € .AX and y e A we

have z *ty € A* whenever ltl is small enough. For such t, we have by the above

equation ,l@ + ty) - rt@) : n-r (-w)(r -t ty)-L . since 4 is continuous, we get

q''(Y) =-Y;,##,=-,';f-',-'o) Y rt@ + tY))

Thus, if we consider the mapping r: Ax Ax A -+ A, (a,b,c) + abc, and the natural
projections pra,i Ax x A -+,4x and pr4 Ax x A -+ A, we get the following formula

for ihe differential of 4:

d , r 1 : A "  x  A - +  A ,  d n =  - ,  o  ( ( t l o p r a x ) x  p r A x ( n o p r l ) ) .

Since all of the mappings rl, prA*, pr,4 and r are continuous, we deduce that

dl1: Ax x A -+ A is continuous, hence 4 is of class Cl. Then using the chain rule

(Proposition A2.10) and the above formulafor dq, we can prove by induction that

4 is of c lass Cft  for A = L,2,.  .  . ,  hence 4 is smooth. I

Proposition A2.24. If A is a compler continuous inuerse algebra, then the inuer'

sion mapping q: A" -+ A' 'is compler analytic.

Proof. We have seen in the proof of Lemma A2.23 that for each r e Ax we have

q', :  A -+ A, q ' , (y) = -r-Lyr- ' ,

hence r7', is clearly C-iinear, and this is just the condition required in Defini-

t ion 42.14. !

Proposition A2.25. If A is a real continuous inuerse algebra, thenthe inaersion
mapping r.,: Ax -+ Ax is real analytic.

Proof. First recall from Lemma A2.23 that 4 is smooth. On the other hand, it
follows by Proposition A1.22 that the complexification 46 of A is a complex con-
tinuous inverse algebra. Hence the inversion mapping of. Ag,

nc:(Ac) '  -+ (Ac)" ,  z r+ z-r ,

is a complex analytic mapping according to Propositi on L2.24.
Since Ax c (Aa)x and 4cl,q - e,it then follows that 4 is real analytic. tr

Another example of analytic mappings is provided by the following exercise.
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Exercise 42.26.
(a) Let X be a real Banach space and

O: C -+ C,@(z) - Donr",
n=O

an entire function with a,, € R. for all n ) 0. . Prove that for every ? e B(X) the
€

series I anTn is convergent in the real Banach space B(E), and the mapping
n=Q

O:B(X) -+ B(X),O(?) := DonT",
n:o

is real analytic,
(b) Formulate and prove a version of assertion (a) where X is replaced by a complex

Banach space and the entire series O has arbitrary coefficients. !

Norns

We refer to the paper by J. Milnor [Mi84] for a quick review of the differential
calculus in locally convex spaces. The detailed proofs of these results can be found

in [GI02a]. See also [Ke74l, [Ht82] and [Ne01a].
The book [La01] contains a good exposition of the basic results in differential

calculus in the framework of Banach spaces. See also [Nel69]'
An introduction to analytic mappings on Banach spaces can be found in Chap-

rer 1 in [up85]. see [BS71a] and [BS71b] for analytic mappings on more general

topological vector spaces. The analyticity of the inversion mapping in a continuous

inverse algebra (Proposition A2.25) was proved in [Gl02b].
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AsSrnecT. The importance of this appendix should not be overlooked. We develop

here the equations and formulas describing the most basic level of Lie theory, namely

the theory of local Lie groups. It turns out that the theory of Banach-Lie groups

heavily leans on the basic theorems concerning ordinary differential equations in

Banach spaces.

Throughout this appendix we denote by Y a real Banach space, and for every

r ) 0 we denote by

Bv(yo,r) = {a eY ll lv - Yoll < r}

the open ball with center at ys and radius r. Also, we denote by GL(Y) the set of

all invertible bounded linear operators on Y'

Theorem 7.Zt.l. Let B be an open subset of Y such that 0 e B, J an open

interual in R, 
"and, g:J x B -+ Y a smooth mapping. For j € {I,2}, cons'id'er

an open interual Ii contained, in J and a smooth function 1i: Ii -+ Y such that

for iach t e Ii ,i horr li(t) = g(t,"\/i?D. If there exists ts € 'Ir fl Iz such that

?r(r0) : .y2(to), then.yLlrfir2 = 1tzlrrnrz.

Proof. See Theorem 1.3 in Chapter IV in [La01]. n

Theorem AZt,2. Let B be an open subset ofY such that1 e B, and g: BxY -+ Y

a s,mooth *ow;,ng. Then there erist r ) 0 and s € (0, l) such that the following
conditions are fulfilled.

(a) We haue By(O,r)  g B.
(b\ There erists a uniqu" smooth mapping 1: (-€, e) x Bv(o,r) -+ B such that, for

al lu e By(0,r) ,  the mapping 7o( ') : : l ( ' ,u),(-e,e) -+ B has the propert ies

and

?,(0) = 0

(Vt  e  ( -e ,e ) )  t , ( t )  =  s \ , ( t ) ,u ) .

Proo f .  De f i ne  E :=Y  xY , (J :=  B  xY ,  J  =  ( -1 ,1 ) ,  and

f  : J  x ( I  -+  E ,  f  ( t , ( a ,u ) )  :=  @(A , r ) ,0 )  f o r  t  €  J , v  e  B ,u  €Y '

Then use Theorem 1.11 in Chapter IV in [La01] to get r ) 0, e € (0,1) and

a:Jg xtLo -+ L l  such that  Js:= ( -e,e)  g J ,0 e [Jo,  [ /o  is  an open subset  of  [ /

and a is the unique smooth mapping satisfying the conditions that for all r e Uo

we have a(O,r) = r and the function cr(') := a(',r):Jo -+ U has the property

ar( t )  :  f  ( t ,a , ( t ) )  for  each t  € .  Jo.

Typeset by "41y16-"1\f
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On the other hand, since Uo is an open subset otU(9Y xY) and 0 e Us,we

can find r ) 0 such that By(0, r) x By(o,r) 9Uo. Also, since U = B x Y and o

takes values in U, it follows that there exist 71: Js x Us -+ B and p: Js x Uo -+ Y

such that a(t , r)  --  ( l t \ ,d,7Q,r))  for al l  f  € Je and r €Uo.
It then follows that for each point r = (Y,u) e Us 9 B x Y we have

(y,r)  = r  = a(O,c) = (71(0, r) ,  B(0, r))

and for aII t e Jo

( t r ( t ,  r ) ,  0  Q,  r ) )  :  k ( t r ( t ,  d ,  PQ, r ) ) ,  0 ) .

The relation p (t , *) = 0 implies that the function t * p (t,r) is constant, hence for

all i e "io we have 7U,r) = P(0,r) = u. Thus for all t e Jo, y,u e Bv(O,r), setting

r = (A,u) in the above relations we get

" t r ( t ,a ,u )  :  g ( l r ( t ,a ,u ) ,u )  and 71(0 ,  U,u)  =  A .

Consequent ly,  the funct ion 7( ' , ' )  ' :7r( ' ,0, ' ) 'J6 x Bv(o,r)  -+ B has the desired
properties. Its uniqueness follows by Theorem A2;.I' !

Propos i t ion  A21,3 .  Le t r l>0  and

![: By(0, 11) -+ B(Y)

smooth. Then there eristr € (0,r1) and, e e (0,1) such that there erists a un'ique
srnooth mapping "f (-€,e) x By(O,r) -+ By(0,r1) with the following property: If
u e Bv(0,r)  and we def 'ne'yu : :  l ( ,u):(-e,e) -+ By(0, 11),  then

?,(0) = 0

and,
l ,U) :  v (1,( t))u wheneuer t  e (-e, e).

Proof. Justuse Theorem A2+.2 for B = By(0,r1) and 9: B xY -+ Y, g(y,u) ::
v(ilu. D

Exercise A2t.4. In the setting of Proposition A2f .3 we have

1 Q s , u )  -  y l t , s u )

whenever t , ts e (-e,e) and ulsu e By(O,r) .  n

Proposit ion A2|, .5.  Letr t  > 0 and

![: By(0, rt) -+ B(Y)

smooth. Then there eilsts 12 € (0,rr) such that there etists a unique smooth map-
ping

y :  By(0 ,12)  -+  By(0 , ry )

with the following properties:
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(i) We haue y(0) = 0 and X6 = V(0).
(ii) For olla € By(O,r) \ {0}, the function

y,: (-r2 lllull,rz lllall) + By (0,rr), t + y(tu),

satisfies
x, Q) = {t (y, (t))u wheneuer t e (- 12 I llull, rz I llrll)'

Proof. Let r € (0, r), € e (0,1) and 'Y:(-e,e) x Bv(O, r) -+ Bv(0,r1) given by
Proposition A2t3, and define 12:= ref2(1r)' Next define

y: By(0,r2) -+ By(0,r1),  y(u) := lG12,(2le)u).

Then 1 is smooth and 1(0) = 0 according to Proposition A2|'3'
Now fix u e Bv(A,rz) and let y,: (=r2f llull,rtl l lyll) -+ Bv(0,rr), Xo(t) = y(tu),

as in the statement. We then have by Exercise L2|.4 that

xu (t) = t @ I 2, (2 / e)ta) = 1 (@ I 2)t, (2 I e)u) = 1 p 1 4, (@ I 2)t)

whenever ltl < r2lllull, whence

x,Q) : tzta,(Gl2)t)
=(el2){t(11ztq,$))(2le)u (by Proposition A2}.3)
= V(1p1,y,(t))u
: v(x,(t))u,

as desired. For f :0 we get Xbu = ![(0)u whenever 0 *u e Bv(0,r2), hence the

Iinear operators xfi, \f (0) e 6(Y) coincide.
To conclude the proof, let us note that the uniqueness of a smooth function

x:Bv(o,rr) + By(o,r) satisfying the conditions (i) and (ii) follows by Theo-

rem L2l.l. tr

Proposition 1^21,6. Let 0 1rz I rr and,

p: By(0,r1) x By(0,r)  -+ Y

a smooth mapping such that

p(y ,0 )  -  y  fo r  a l l  y  e  By(O, r ) ,

t t (By \ , rz )  x  Bv(O, r ) )  e  By(0 , r1 ) ,  and

pfu(A, z),  u) = p@, t  t (2,  u))

'whe'neuery,z,u € By(0,r2).  Furthermore, lete )  0,Uo €Y and a smoothmapping

1: (e,e) -+ Bv(0,r2) such that 1Q) : 0 and

i(t) = }zp(l(t), 0)yo wheneuer t € (-e' e)'
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Then for all t,s e (-e12,e12) we haue

p \ Q ) , ' y ( s ) )  = r ( t + s ) .

Proof. First remark that, for ally,z,u e Bv(0,r2) it follows by hypothesis that

0z p1t(y, z)' u) = 0z p(y' 1't'(z' u))02 p'Q' u)'

Now flx s e (-ef 2,e12) and define

a,  B : (e f2 ,e l2 )  -+  Y ,  a ( t )  :=  pOG) , 'Y( t ) ) ,  P( t )  ;=  7 (s  *  t ) '

Then a(0) = tr( t ! ) , r(0))  = t t ( t ,s),0) = 7(s) :  d(0) '  Also, for al l  t  € (-el2 'el2)

we have
P(t)  = i (s + t)  :  }zp(tG * t) ,  0)s6 :  0zp(0(t) ,O)vo'

and 
a(t)  = ozp(t i ) ,7(r)) i ( t )

= oz p?r G), 1 (t)) oz P0 (t)' o)so
: oztr(p(tG)' r(t))' o)so
= }zp,@(t),0)uo,

where the second equality follows by the beginning remark. Thus Theorem A2f,'L

(with B = Bv(0,r2),  h -  Jz :  ?ul2,el2),  g(t ,v) = }z(O,v)Ao, 7r = a and

lz = 0) shows that q: B on (-el2,ef 2), and this is just the desired equality. D

Coro l la ry  A2+.7 .  Le t }112111 and,

p , : B y ( 0 , r 1 )  x  B y ( 0 , r t )  - Y

a smooth mapping such that

p,(y,0) -  y for al l  y e By(O,r) ,

L r (By(0 ,12)  x  By(0 , r r ) )  9  Bv(0 , r1 )  and

p}"(y,  z),  u) = l t@, t tQ,r))

wheneuer y, z,u e Bv(0,r2). Then there erists rs € (0, 12) such that there egists a

unique smooth mapp'ing 
y: Bv(,,rs) -+ Bv(0,r2)

wi,th the following propertr'es:
(1) We haue y(0) = 0 and X6 :  E(0).

(ri) If u € By(0,rs) and max{lrl, lsl) < rslQllull), then

x( ( t  +  s )u)  =  p (x ( t r ) ,x ( t r ) )  .

Proof. Construct 13 and X by using Proposition 42|.5 for

9: Bv(0,12) '+ B(Y),  ! [ (Y) :  )zt t(A,0),

and then use Proposition A2|.6 to get the desired property (ii). I
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Proposition A2|.8. Let 0 < rz 1rr and

p,t  Bv(0,r1) x By(0, 11) *+ Y

a smooth mapping such that

p(U,0) = p(O,y) = a for al l  y € By(O,ry),

p , (By(0 , r2 )  x  By(O, " r ) )  e  By(0 , r1 )  and

pjt(x , y) , z) : p@, tt(y , ,))

wheneuer r,y,z e By(0,r2). For all r e Bv(0,r1) denote

a(r)  := 0z[r(r ,0) e B(Y).

Then there erists ry € (0,12) such that p(By(0,rs) x Bv(O,"r)) e Bv(0,r2) and

the following conditions are fulfilled:
(i) For al| r € By(0,rs) we haue a(r) e GL(y).
( i i )  For aII  r  e By(O,rs) and h,h €Y we haue

@- \'o &,k) - (o- t )6 ( k, h) : (a- | )', (a(r) h, a(r) k) - (a- t )', (a1r) k, a(r) h) .

Proof. For all r,y € By(0,11) denote

a( r ,A)  : :02pr ( r ,y )  e  B(Y) ,

so that a(r)  :  a(r ,O).
Since i.r(0, y):y for all r € Bv(0,r1), it follows that

o(0,0) = 0zp(0,0) = idy € GL(Y).

since the mapping a(.,.): By (0,r) x By (0,r) -+ B(Y) is continuous and GL(Y) is

open in B(Y), we can find 13 € (0,12) such that a(Av(0,ry) x Bv(0,r3)) I GL(f),

una in particular condition (i) is satisfied. Since p(0,0) :0 € Bv(0,r2) and p'

is also continuous, it follows that, maybe by shrinking rs, we may assume that

t t (Bv(O, rs )  x  By(0 , " r ) )  e  Bv(0 ,12)  as  we l l .' 'Now, tocheckcond i t ion( i i ) ,d i f fe ren t ia te the formulap(p(* ,y ) ,2 )=P( r ,p (A,z ) )

with respect to z to get 02p'(r ,p(y,z))}zp(U,z) = }zp(p(r,y),2), that is,

a(r  ,  p(a ,  z))a(a ,  z) :  a(p(r,  Y) ,  z)

for al i  r ,  y,z € By(0,r3).  For z = 0 we get

a(r, y)a(g) = a(p,(r, y))

whence for r,y e By(0,r3) we have

a (p ( r ,  y ) ) - '  a ( r , i l  :  a (Y ) - '

( 1 )
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and rhus o(lr@,y))-ro(*,y)h = o(il-th for all h eY. Differentiating the latter

equation with respect to y, we get

(o- ' ) ' r* ,n)(o(r,y)k,a(r,y)h) + a-r(p(r,y))(02a(r,v)(k,  h))  = (a-r) 'y(k,h)

whenever h,k e Y. Setting Y = 0 we get

(vh,k e Y) (a-11'*@(r)te ,a(r)h) + (a-r)(r)  (OBp@,0)(&, h))  = (a'r) 'o(k,h).

Similarly,

(Vh,k eY) (a-L) ' , (a(r)h,a(r)k) + (a-1)(c) (A3p@,0)(0, k))  = (a-L) 'o(h,k).

Now, by subtracting the latter two equations and taking into account that the

continuous bilinear mapping

0 3 p @ , 0 ) : Y  x  Y ' + Y

is symmetric, we get the desired formula in condition (ii). !

Theorem A2t,9, Let 0 1rz l rt and,

p,:  By(0,11) x By(0,11) -+ Y

a smooth mapping such that

p@,0) = p(0,y) = A for al l  g e By(0,r1),

p (By(o , r )  x  By(0 , " r ) )  !  By(0 , r1 )  and

pj.r(r, A), z) : p(r, p(y, z))

wheneuer x,y,z e. Bv(0,r2).  For aII  r  e By(0,r1) d,enote

a(r)  := 0zp(r,0) e B(Y),  b(n) := 0t p(O,r)  e B(Y).

Then there er ists 13 € (0,12) such that t l (By(0,rs) x By(0,"r))  e Bv(0,r2) and,
the following cond'itions are fulfilled:

( i )  For al l  r  € By(0,ry) we haue a(r) ,b(r)  € GL(y).
( i i )  For al l  r  e By(0,rs) and h,k €Y we haue

a(r)  ((a- L 
) ' ,  (h,  k) -  (o- t  ) ' ,  (k,  h))  = -  b(r)  ((b- t  ) '*  (h,  k) -  (b- '  )L (k,  h))  .

Proof . As in the first part of the proof of Proposition A2+.8, we can find rg € (0, 12)
such that condition (i) is satisfied. We just have to take into account also the
continuity of ihe mapping

b( r ,A)  :  i l p (s ,U)

at (0,0) e Bv(0,11)x By(0,r1),  along with the remark that b(0,0) :  idy € GL(y)
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To check the equation in condition (ii), define

(Vr e Bv(0, rg))  t (r) :Y x Y -+ Y, l ( t )(h,k) = -a' ' (h,a-r ( t )k),

and similarly

(vr e By(0,r3)) f1r1,v xY -+v,f1r\1n,k) = -bt,(h,b-l(r)k)'

By differentiating the equation a(r)a-r(r)k: fr with respect to 2, we get for all

h , k  e Y
a'*(h,a-t  (c)k) + a(r)(a-r) ' , (h,k) = g

and similarly
a' , (k,a-L (r)h) + a(r)(a-L) ' , (k,h) :  g.

By subtracting the latter two equations we get for all r € Bv(0,rt), h,k eY,

a(r)  ((a- 1 
) ' , (h,  k) -  (o- '  ) ' *(k 'h))  = f  (r)  (h,  f t  )  -  f  (r)  (k '  h) '

and similarly

b( r ) ( (b - t ) ' , (h ,k )  -  (b - ' ) ' , ( k ,h ) )  =  f ( r ) (h ,D - f@)&,h) '

Hence it suffices to Prove that

(2) (Yn e Bv(O,rg)) (Vh, k e Y) t(r)(h, t i  =f@)Q',n) '

To this end, recall from formula (1) in the proof of Proposition A2|.8 that for.all

r ,A € Bv(O,13) and ls e Y wehave a(p'(r , i l )k:  a(r ,y)a(y)k '  By di f ferent iat ing

the latter equation with respect to r, we get for al| h,lc e Y,

a' 11,,6(b(r, Y) h, k) = }ra(r, Y) (h' a(Y) k)'

Since d1o(r,  i l  : \ f i2p(n,u) :}2fup'(r ,g) = }zb(r 'y) '  we further deduce that

a'r6,6(b(t ,  i lh,  k) :  }zb(r,  Y) (h, a(Y) k) '

Setting r = 0 and taking into account that 0zb(0,y) = bL, we get a'r(b(u)h'k) :

b 'o(h, a(u)k),  that is,

(v r  e  Bv(0 , r3 ) )  (vh ,  k  eY)  a ' * (b ( r )h ,k )  =  b ' , (h ,a ( r )k ) '

Since a(r), b(r) e B(Y) ate invertible operators whenever r e Bv(0,r3)' we can

use the sulstitutions hs = b(n)h and k6 : a(r)k to deduce from the above equation

that

e ' , (ho ,a- r  1 r1ko1 =  b ' , (b -L  ( r )ho ,ko)  =  b ' , (k6 ,b- t ( r )hs) '
+ 

\--J

: r ( . 2 ) ( h o , A o )  = i ( r ) ( E o , l i o )

where the Iatter equality follows by the fact that the bilinear mapping

b',  = } t}zP(n,0):Y x Y -+ Y

is symmetric. Consequently f (r)(he, fto) : i(r)(f6, he), and (2) is proved. tr
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Proposition A2|.f0. Let E be a complex Banach space, U an open subset of E,

c a positiue real number, to € Q ond

f : B s ( t s , c ) x U - + E

a holomorphic function. Then for all ro € U there edst b € (0' c) and a unique

holomorphic function 
a: Bq(ts,b) -+ u

such that
(v te  a61 ls ,a ; )  a ( t )=  f ( t ,a ( t ) )

and a(t6) = ts.

Proof. First pick.R € (0,c) and a € (0,1) such that BB(ns,e) 9U and there exist

L ,K  >  l  w i th

sup{ l l / ( f , " ) l l  I  t  e Bs(ts,  R),n e Bs(ry,")}  < K

and
sup{ l ld2 l ( t , r ) l l  l t  €  Bs( ts ,R) , r  €  Bz(ro,a)}  < L '

(The existence of R and a follows since both mappings /: Bs(0, b) x u -+ .E and
02f : Bs(Q,b) xu -+ B(E) are continuous, hence bounded on some neighborhood of
(to,ro).) In particular, the condition on "L implies that

(3) (vt e B6(ts,E)) ("t,  rz e Bn(ro,a)) l l f  ( t ,"r) - f  (t ,n2)l l  < Ll lrt  - r.zl l ,

according to the mean value theorem.
Now pick a real number b such that 0 < b < min{,R,#}, and define

M : {g: Bc(to,b) -+ E I B holomorphic and gup ll7@ - rsll < 2a}
t€Bs(ts,b)

and
(Yh,gz € M) dist(p1, 0z)t= sup l l7t(t) - 7r(t) l l ,

t€Bc(to,b)

thus making M into a complete metric space (see Theorem A2.21).
On the other hand, for each 0 e M, define

t

SB: Bs(ts,b) -+ E, (SP)(t)  = ro r  I  f  G,PG))OL-
l"

Then Proposition A2.22 shows that S0 is a holomorphic function. Moreover, for
all I € Bc(to,b) we have

I

l l (sp)( t )  -  'o l l  < I  l l f  ( ' ,0(s)) l lds < Kl t  -  ts l  1 Kb 12a,
J
ts
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hence 5f € M. Fbrthermore, for all h,pz e M and all t e Ba(to,b) we have

< lt  - tolL. dist(pr ,02) < bL . dist(h,02)

< a'dist(fu, B2)'

Hence, on the complete metric space M, we have a mapping S: M -+ M such that
there exists a € (0,1) with dist(^9fr, S0) < a'dist(dr,dz) whenever 0t,02 Q. M.
It then follows that S has a unique fixed point a € M. The equation 5a = a is
clearly equivalent to the required properties of o. tr

Corollary A2*.11, Let V be an open subset of the real Banach space X, J an
oyten. i,nteruo,l. i.n. R o,n,d,

g : J  x U  - +  X

a real analytic mapping. If 1: J -+ LI is a smooth function such that

l(t) : S(t,l(t)) wheneuer t e J,

then 1 is real analytic.

Proof. It easily follows by Theorem 42.16 that, in order to prove that 7 is real

analytic, it suffices to show that 7 is real analytic on some neighborhood of an

arbitrary point t6 € "I. Denote rs : 1(ts) e U.
It is clear that the complexification of the real Banach space IR x X is C x X6.

Since .g is real analytic, it then follows that there exists an open subset W of. C,x Xs
and aholomorphicmapping f :W -+ Xc such that J xV gW and f l t "u = 9.
since (ts, 16) e w it follows that, by shrinking J andw, we may assume that there
exist c) 0 and an open subset II of Xs such that V CU and'W : Bc(to,c) xU'
Ir follows by Proposition 42|.10 that there exist b € (0,c) and a holomorphic
mapping a'. Bs(ts,b) -+ U such that a(t6) =ue and

a' (t) : f (t, a(t)) whenever t e Bs(ts,b).

Then using Theorem 42|.1 for the functions

al11o-",r6+c): (to - 
",to 

-t c) -+ X6 and T (to - c,ts * c) -+ X '+ Xc,

we get 'Y = al!o-",t0+c) , h€nce 7 is real analytic' tr

Theorem A2+.12. Let 0 1rz 1rr and

p; By(0,11) x By(0,11) -+ Y

a smooth mapp'ing such that

p(y ,0 )  :  p (O,y )  =  y  fo r  a l t  y  €  By(O, r ) ,

p (By(0 , r2 )  x  By(0 , r2 ) )  I  By(0 , r1 )  and

,,

l l ( s3 , ) ( r )  - (sN( t ) l l  S  /  l l / ( s ,6 r (s ) )  - / (s ,B2(s ) ) l lds
I

to

pQt ( r ,  A ) ,  z )  =  p ( r ,  p ( y ,  t ) )
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whenever &,y,2 e By(0,r2). Moreouer assurne that

p,(tr, sr) = (t + s)r

wheneuer0l x e By(O,r), f,s € lR andmax{ltl,ltl} < d*f . Thenthernapping

p, is real analytic on sorne neighborhood o/ (0,0) e Y x Y .

Proof. The proof has several stages.
1o For aIl r,y e By(0,r1) denote as usually

a(r,y) = }zp,(r ,y),  a(r)  = a(r,0)

b( r , i l  =  0 r t t ( r ,a ) ,  b (a)  =  b (0 ,Y) ,

so  tha t  a ( r ) ,a ( r ,y ) ,b ( r ) ,b ( * ,y )  e  B(Y) .
It then follows by Proposition A2|.8 and Theorem L2+s that there exists f3 €

(0,12) such that p(By(o,ts),By(o,"r)) e Bv(0,r2) and the following assertions
hold.

( i )  For al l  r  € By(0,fu) we have a(r) ,b(r)  € GL(y).
(ii) For all z € Bv(0,f3) and h,k e Y we have

s (h, k) =(a-r )'o(h, k) - (a-L)'s(k, h)

= 1a- 
L 
)', (a(r) h, a(r) k) - (a- L 

)', (a (r) k, a(r) h),

and we thus get a skew-symmetric bounded bilinear mapping

S : Y  x Y  - + Y .

(iii) For alI r e Bv(0,r3) and h,le e Y we have

a(r) ((a- | )'* (h, k) - (o- t )', (k, h)) = -b(r) ((b- t )'* (h, k) - (b-' )', (k, h)) .

Moreover, note that the boxed hypothesis implies that

( 4 )  a ( t r ) r = b ( t r ) r  = z  w h e n e v e r 0 l r e  B v ( O , " r ) , l t l  <  3zllrll

2o We prove at this stage that the mappings

o( ' ) ,b ( . ) :  By(0 , is )  -+  B(Y)

are real analytic. Actually, we are going to consider only the case of a('), since the
case of b(.) can be treated similarly.

To prove that a(') is real analytic, we denote

(Yr  eY)  S ,  :=  S( r , . )  e  B(Y)

and we will prove that

@ 1

(5) (vr e By(o,is)) o-'(r) = D ^tr-l 
: O(S,),
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where O:C -+ C is the entire function defined by O(z) = i.. rtr'"-t = (e' - I)l z'

Since rhe mapping Y -+ B(Y), r r+ 5,, is real analytic t6,ji"S linear), while the

mapping B(Y) -+-B(Y),T r+ o(?), is real analytic by Exercise A2.26 (a), it will

fo[tw bV Proposition L2.L7 that their composition is real analytic' But (5) shows

that the corresponding composition is just o-t ('). On the other hand, the inversion

mapping q:GL(Y) -+ GL(Y), T r+ T-r, is real analytic by Exercise A1.23 along

wit-h-Proposition A2.25' Ii"n"u, by Proposition A2'17 again, a(') = 4 o (a-1)(') is

real analytic, as desired'
Now, io prove (5), fix r,g € Bv(0,r3) and an open interval I g R such that

0,1 € / and tr e By'(0,f3) whenever t e I. Then define

p: I -+ B(Y), P(t) = ta-r(tt),

and
l.t: I -+ Y, tlr\) = g(t)A = ta-'(tr)Y.

Then for all t € / we have

, /? )  :  a - | ( t r )v  + t (a - t ) ' tu ( r ,Y) .

on the other hand, by (4) along with assertion (ii) in stage 1o of the present proof,

we have

(o-t)'r,(, , i l - @-l)'r,(y , r) =(a-L)'r,(a(tr)r, a(tr)(a-r (tr)a))

- (o- t )',. (a(tr) (a- | (tr) v), a(t r) r)

: (a-L )'o@, a- L (tr)g) - (o-' )'o@- 
L (tr)y, r)

- l  / ,  \  \=J ( r ,  a  -V r )A )

=5,(a- ' ( t r )a) ,

so that

it(t) = a-t (tr)y + ts*a-L (tr)a : o '(tr)v + t(a-r\i,(v,') + s,p(t)v '

If we write (4) under the form a-r(tr)r = r and then differentiate this equation

with respect to tr, we get (a-1)1,(ty,r) ta-r(tr)y - y for ally e Y, hence

(Va eY) rlr!) : y + S*eft)a,

whence
(Vt € 1) p(t) : idv * S,tP(t) '

Since 9(0) : 0, we get bY Theorem A2r'l

@ r n

(vt e 1) p(t)  =D 
^tf- ' -

n : l

we recall that gQ) = ta-I(tr) and 1 € 1, hence the above equality for t :1 shows

that (5) holds.
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30 At this stage we prove that trr is real analytic on Bv(0,13) x Bv(0,r3), where

13 € (0, f3) is chosen so that p(Bv(O,rs) x Bv(0,rg)) I Bv(O,Fs). Theorem 42'20

shows that it suffices to prove that, for arbitrary LL,'u,'tr, z.e Bv(0,r3), the function

7: D,,u,-," -+ Y, "YQ) = P,(u * tu,w * tz),

is real analytic, where

Du,u,- , ,  : -  { t  e R I  u + ta,w * tu e Bv(O,rs)} .

To this end, we will use Corollary A2+.lL'
We have

lQ) = b(u * tu,w * tz)u + a(u + tu,w t tz)z'

on the other hand, by formula (1) (see the proof of Proposition A2|.8) we have

u|u + t,u,,w * tz) = a(p(u * tu,w * tz))a-I(w + tz). Similarly to (1) we have

b(n,y)b(n) :  b(p(r,y))  whenever r ,y e By(O,is),  whence b(u * tu,w * tz) :

b(1,r(u + tu,w * tz))b-t(u * tu), so that

I (t) : b(p(u + tu, w { t z))b-r (u * tu)u + a(p.(u * tu, w * t z)) a-r (w * tz) z

= b(r(t))b-t (u + tu)u + a(1(t))a-t (w * tz)2.

We have seen at the beginning of stage 2o that all of the mappings a('), a'-r('), b(')

and b-1(.) are real analytic, it follows that the mapping

f , Du,,,-," x By(0,i3) -+ Y, JU,t) = b(r)b-L(u * tu)u + a(x)a-L (w * tz)2,

is real analytic as well. Since

(Vt e Du,o,-,") l(t) = t(t,l(t)),

it then follows by Corollary A2+.n that y Du,,,.," -+ Y is real analytic, and the
proof ends. n

We now turn to some facts that hold in the more general context of locally convex
spaces and are needed in Chapter 2.

Exercise A2t.8. Let X be a real locally convex space, V an open subset of X
and zs, Uo e V.

(a) The linear mapping k'@o,so): X x X -r X has the property

(Yu,u e X) F'1,o,yoy(u,u) :  i lp(ro,ao)u * }zp(uo,yo)u.

(b) The bil'inear mapping H'(,o,nil,(X x X) x (X x X) -+ X has the property

t" ' ( ,  o,u i l  ( fu ,  r) ,  (" ,  u))  = 0? p(n o'  v o) (u,  u) *  24 02 p'(r  s,  v o) (u,  u)

+ 0lP,(rs,Yo)(u,u),

whenever u,u e X.
(c) If moreover 7 is convex, then the mapping R:V x V -+ X defined by the

equation

( V z  e V  x V )  t - r ( z ) :  p ( z o ) +  l l , o ( z -  a 1 +  j u ' i r ( z -  z o , r -  
" o ) + R ( z ) ,

has the properties

R(zs) : 0, R'"o : 0, R')o : 0, }tR(r,yo) : 1zR(ro, g) = 0,

whenever r,y € I/, where zo i: (fro,yo) e V x V. D
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proposition 4:Zlla. Let X be a real locally conaer space, V1 a conuer open

neighborhood of 0? X, pt:'V1 x Vr -+ X a smooth mapping such that

(Vr e V) p(r,O) = p(o,r)  = t ,

and, r1:Vr -+ X a smooth mapping with the property that n@) = 0 and

(Yr e W) p'(x,q(n)) = s.

Moreouer consid'er an open nei,ghborhoodV2 of 0 e X such thatVz 9V, q(Vz) 9Vr
and, p,(V2 xVz) 9V1, and define

r! :V2 xV2 -+ X, ,b@,a) :  P}. t(r ,A),q(r)) '

For u,u €V2, def ine

i l , ,6:V2 -+ X, f i ' ( r )  = }zp(r,0)u, 6(r)  : )zp(r,0)u'

The'n

0fix!(0,0)(u, u) = }fizp(O,0)(u, u) - }fiz4(O,0)(u, u) = (6)'ou - (0'o''

proof. The second of the desired equalities clearly follows by the very definition of

il and 6. Next, we are going to prove that

\ f t (O,u)u = 0102p,(0,0)(u, u) -  0102pt(0,0)(u, z),

which implies the first of the asserted equalities.
To prove the above equality, first differentiate the equations p(n,o) = p(o,r) =

r, to get
0t P(x,0) :  0z P(0, r)  = idx,

whence 0?p(r,o) = 03pQ,u) = 0. It then follows by Exercise 42|'13 that

(Yr ,y  e  V)  p ( r , i l  =  r  *U +  i l } zP(O,0) ( ' , v )  *  R( r ,v ) ,

where  R(0 ,0)  =  0 ,  a la (o ,y ) :0zR(0 ,9) :0 .  I t  then  fo l lows tha t  fo r  a l l y  €v lwe

have

0rp(0, U) :  idx * } f izpt(O,0)( ' ,  y)  and 02pt(y,0) = id76 * fu02pt(0,0)(g, ' ) '

Then differentiate the equation p(r,q(")) = 0 to get fup,(r,rt@D+0zp(r,q(t))qL :

0. For tr = 0,we get id26 + id764[ = 0, whence r'o : -idx'

Now the definition of r/ implies that for u € Vz we have

}dt(0,u) : 0rtt(tt(0, u), a(0))ft tt(0,u) + 0zpt'('t 'r '(o,'), ' i(0))ti6

=;',tl',:,,2), ri : :,' :o], u, r (o,o ) (,, ),
whence the first of the desired equalites clearly follows' !
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NorPs

Several results contained in this appendix are updated versions of some of the

basic facts underlying the paper by B. Maissen [Ma62],.where the basic theory

of Banach-Lie groups is developed following the pattern of finite-dimensional Lie

theory. Our Pioposition A2|.8 is inspired by Satz 4,2, while Theorem A2|.9 is

essentially satz 4.1at page-24L in [Ma62]. Moreover, Theorem A2+.12 is the

essential result contained in SatzT.l in [Ma62]. It says that every local Banach-Lie
group is analytic.

Piopositi on L2l.l4 contains some calculations carried out in section 5 of [Mi84]-
For a good 

"*pdrition 
of the needed elements of the theory of ordinary differential

equations in Banach spaces, we refer to [La01]. See also Chapter 5 in [Up85]for an

exposition of that theory in the context of analytic functions.
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A3. SMOOTH MANIFOLDS AND VECTOR FIELDS

AesrRncr. We introduce the notion of smooth manifold modeled on a locally convex

space, as well as the closely related notions of tangent vector, tangent bundle and

vector field. The main result of this appendix (Theorem A3.18) shows that the set

of all vector fields on a smooth locally convex manifold has a natural structure of Lie

algebra.

Definition A3.1. A topological space X is called regular if it is Hausdorff and

for every r e X and every neighborhoodU of r there exists another neighborhood

V of r such that V g U. In other words, each point of r has a basis of closed

neighborhoods. n

Exercise A3,2, In order for the Hausdorff topological space X to be regular, it

suffices that it is of one of the following types:
(a) X is locally compact;
(b) X is a topological grouP;
(c) X is a locally convex topological vector space' tr

Definition A3.3. A smooth manifold modeled on a locally convex topological

vector space y is a regular topological space M equipped with a family of homeo-

morphisms {potVo + Mo}.,et satisfying the following conditions'
(ii For uu"ry o e A, Vo ir .tt opun subset of V and Mo is an open subset of M.

( i i )  We have M =UMo.
d

(iii) If d, p e A and Mo n Mp * 0, then the corresponding change of coordinate

function

pa t  o  go l r ; t 1u .nup1 i9 ; r (M .n  Mp)  -+  APL(M 'n  Mp)

is smooth. Note that both p;L (MofiMfi and.981(M,nMp) are open subsets

of the locally convex topological vector space V'

In this case, the maps gdiVo -+ Mo will be called local coordinate systems,while

the maps girtVo 4 Mo are called local coordinate charts'

A smooth manifold modeled on a locally convex, or FY6chet, or Banach, or

Hilbert space will be called locally conl)eu, Frdchet, Banach, respectively Hilbert

manifold. n

Definition L3.4. Let M be a locally convex smooth manifold modeled on v

with the family of local coordinate systems {qotVo I Mo}oe'q, and' fu a locally

convex smooth manifold modeled on 7 with the family of local coordinate systems
a, i-) r

lgai va ) tvtalae1. Ihen a continuous function f: M -+ M is smoothif for every

r € M there exist a e A and'0 e ,4such that r € Mo and the map

Q O' " f 
o p ol,p;, (u.n 1 -, 1fu6\)t pir (M. n f 

-r (fu fl) 
-+ ?6

Typeset bv ,AU&TgX.
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is smooth. we will denote the set of all smooth mappings fuom M into fr by

c*(M,fu).
Note that piL(Mo n f 

-L(frOD is always an open (maybe empty) subset of the

model space 7.
The mappine f:M -+fu i, called a diffeomorphismif it is bijective and both /

and /-1 are smooth. !

Exercise A3.5. Prove that, if M, N and P are smooth manifolds, and /: M -+ N

and g:l/ -+ P are smooth mappings, then g o f:M -+ P is in turn a smooth

mapping.
This shows that there exists a category Man whose objects are the smooth

manifolds and whose morphisms are the smooth mappings' !

Remarlc A3.6. F';eaL (or complex) analytic manifolds and real (or complex) analytic

mappings on smooth manifolds can be defined by replacing the word 'smooth' by
'real (or complex) analytic' in Definitions A.3 and A.4. !

Definition Ag.T. Let M be a smooth manifold modeled on I/, with the local

coordinate systems {gotVo -+ Ma}oet.Fix a point ro € M'
A tangent uector at rs is an equivalence class of parameterized paths through

re in the following sense. Let .I1 and 12 be open intervals in R, with ts € 11 n 12,

and p1: 11 -+ M, p2: 12 -+ M smooth mappings (paths) with p1(ts) = p2(ts) = 16'

we say that p1 and p2 arc equiualent at to ifthere exists a € Asuch that ro e Ma

and the two smooth mapPings

R . ) p r - l ( M o )  r  t ' +  p ; r @ i f t D  e  v  ( i = L , 2 )

have the same derivative at ts. If. p:I -+ M is a smooth path and to e I, then the

equivalence class of p at t6 is denoted by p(to) and is called the ueloc'ity uector of. p

at ts.
The set of all such tangent vectors at rs is denoted by TroM and is called the

tangent space at ro. Note that, if rs e Ma as above, then there exists a natural

bijective mapping
Qo:V -+ TroM

such that, for each u € V, the tangent vector iD"(r,) e T,oM is the equivalence
class of the path t+ go(us * lu),  where ug;= pf,r(ro) €Vo.Using the bi ject ion
(Do we can equip TroM with the structure of a topological vector space isomorphic
t,o V. n

Exercise A3.8. In the setting of Definition A3.7, prove the following assertions.
(a) The definition ofthe equivalence relation for paths through rs does not depend

on the choice of the index c with rs e Ma,
(b) The mapping 6o:V -+ T,oM is indeed bijective.
(c) It p € .4 is another index with xs € MB, then O[' o Qo:V -r 7 is an

isomorphism of topological vector spaces.
(d) The structure of topological vector space of T,oM is natural in the sense that

it does not depend on the choice of a € A with ro € Ma. D

Exercise A3.9. Let U be an open subset of a locally convex vector space 7,
viewed as a smooth manifold with the local coordinate system idu U'+ I/. Prove
t h a t T U : U  x V .  !
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Definition A3.9. Let M be a smooth manifold modeled on the locally convex
space V, with the local coordinate systems {po,Vo 4 Mo}oet. The tangent
bundle of M is defined as the disjoint union

TM:=  U ' , * ,
a€.M

and its canonical proiection p:TM -+ M is defined such that u e ToplM for all
u e T M .

For every a e A we also introduce the mapping

{ o : V o x V  - + T M

such that, for u e Vo and u € V, the tangent vector ,lt.(u,a) e To,6'1M is
by definition the equivalence class of the smooth path t + Po(u + tu) through
p*(u) e M. If we denote the image of rlto by TMo, then the tangent bundle
T M has a natural structure of smooth manifold modeled on I/ x V, with the local
coordinate systems klotVo xV -+ TMalaeA. tr

Exercise 43.10. In the setting of Definition A3.9, prove the following assertions.
(a) The tangent bundle T M indeed has a structure of smooth manifold (in par-

ticular a topology) as indicated in Definition A3.9.
(b) For every a € .A and u € Vo we have

(Yu e V) iDo(u) : .bo(u,u),

where Oo is as in Definition A3.9. tr

Definition A3.11. Let M and fu be smooth manifolds modeled over the locally

convex spaces V and 7, with the local coordinate systems {qo,Vo -+ Ms}saa and
a ,  ; - ) .  , '  r  \  r r  .  u r

{QarVa-+ Ma}ae1, respect ively). I t f :M -+ M isasmoothmapping andxe M,
then the tangent of f at z is the mapping

!',:TrM -+ Ty61fu

defined in the following way. If. u e TrM arrd p: I -+ M is a smooth path such that

0 e /, p(0) : r and p(0) = u, then

J,,@)::  d(0) € ?761fr ,

where q :- f o p: t -+ fu. (Note that g is a smooth path and q(0) : /(z).)
Then the tangent of / is the mapping

T l:TM -+ Tfu

defined by
(Yr e M) T f lr"v :: T,f :- f 

',.

Then ?/ is asmooth mapping and for every r e M the restriction of Tf toT,M

is a continuous linear operator TrM -+ TtAlM. tr
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Exercise A3.12. In the setting of Definition A3.11, prove the following assertions,

(a) For each r e M, the mapping T*f :TrM -+ 7161M is correctly defined, and

indeed linear and continuous.
(b) The mapping

T f : T M  - + T M

is indeed smooth. n

Exercise 43.13. If Man stands for the category of smooth manifolds (see Exer-

cise A3.5), prove that the correspondence

?: Man -+ Man

which associates to each locally convex smooth manifold its tangent bundle, and

to each smooth map its tangent mapping, has all of the properties (i)-(vi) in Re-
mark 2.3. fI

Definition 43.1,4. Let M be a locally convex smooth manifold with the tangent

bundle TM. A smooth uector field on M is a smooth map

u : M  - + T M

such that u(r) e TrM for al r € M. Theset of all vector fields on M clearly has

a structure of vector space (with pointpvise defined addition and scalar multiplica-
tion), and we denote that vector space by AW). tr

Definition 43.15. Let M be a locally convex smooth manifold, u e E(M) and
Y a locally convex topological vector space. We define a linear operator

D, :C* (M,Y)  -+  C*(M,Y)

in the following way. Let r:Y xY -+ Y, (h,yz) e yz. Observing that the tangent
bundle of Y is TY : Y x Y with the canonical projection p:TY -+ Y, (u,yz) + At
(which is different from zr!), we define, for all f e C*(M,Y), a smooth function
Dof Q C*(M,Y) by the commutative diagram

T M  
r t  

> T Y

, l  l "
l *

M 
o"f 

,  Y

t,ha,t is,

(Yr e M) (Tf o u)(r) :  (f  (r),(D,f)(*)) € Y  x Y  = T Y .  !

Exercise A3.16. In the setting of Definition A3.15, prove that the mapping

A@) -r  End(C*(M,Y)),  u t+ Da,

ls llnear. Ll
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Lemma A3.17. LetV be a locally conaefr uector space ond,v6 an open subset of v.

Then for all u,w e a(vo) there esists a unigue uector f,eldfu,wl e E(vs) such that'

for eich open subset D of Vo and each locally conuer uector space Y we haue

(Vf e C*(D,Y)) Dp,.1f = D,(D.f)  -  D-(D,f) '

Prool. Note that TVo = Vo x I/ with the canonical projection Vs x V -+ Vo'

(r, t) *r c, so that

E(UI )  =  {u :Vs  -+  Vs  xV |  ( l t  €  C* (Vo,V) )  u ( ' )  =  ( ' ,d ( ' ) ) i '

Then for l t , 'ut  € E(Vo) f lxed,Iet i , f r  e C*(Vs,V) with u( ' )  = ( ' 'd( ' ) ) '  t r ( ' )  =

(., tt(.)), and define lu,w) e A(V6) bY

(1) lu,wl:Vs -+ Vs x V, [r ,  r ] ( ' )  :  ( ' , (Dufr -  D.")()) '

Now, for each locally convex space Y, and all open subset D of. vo and / e

C*(D,Y), we clearlY have

(Vu eU(Vg)) (Vr e Vo) @"f)(r) = fti(r),

(Dp,4f)@) = f',(D"fr - D.fr)(r)
= f:((6)',il(x) - (i)',6(r))
: ||(fr)',i(x) - f ,(i,)',6 (r)

On the other hand,

D,(D * I ) (r) = (D - f )''il(t) = (f '.fr (')),i(*) : f 
'l (fr (r), u(r)) + f 

',(w)'.i'(n)

and similarly
D *(D' f) (r1 = f i (d(r), w (r)) + f ,(t')'.6 (r)'

Thus D1,,.1.f = D,(D.,f) - D'(D,f) by the symmetry propertv of /i (see Propo-

si t ion A2.7).
To prove the uniqueness assertion, apply the property of [u, tu] in the special case

when b =Vo,y = I /  and /  is the inclusion mapping Vo'-+V. Then f l :  idv for

al| n €Vg, and f" = 0, hence by the above computations we get

D,(D. f ) (r) - D. (D, f ) (a) : (6)',i(r) - (i ') ',fr (n) = (D 
"6) 

(r) - (D -d') (r)'

while
(Dp,.1f)@) = f'"wl(r)'

rhus [illto] : Duit - D*il, that is, the vector field [u, w] e a(us) is necessarily

given by (1), and the Proof ends. n
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Theorem A3.18. If M is a locally conuer smooth manifold, thenfi has a unique

structure of Lie atgebra such that, for each locally conuefr uector space Y and each

open subset U of M, the linear maP

A@) -r  End(C*(U,Y)),  u + Du,

is a Lie algebra homomorPhisrn.

Proof. Let {po,Vo + Mo}rlee as in Definition A3.3. Also let u',w €A(M) fixed

for the moment. Then for each a € A there clearly exist uo, Aa e E(Vd) such that

the diagrams

r(M.) r(v*) :94 r(M,)

I^," and '"J I.,,.
M o  V o  

t o l  
M o

are commutative (since both po:Vo --, Mo andT(9):T(V") -+ T(M") are diffeo-

morphisms, and, T(9) maps the fiber T,(V.) into ?r"1'y(Mo) fot each r E V")'

Now define luo,tDol e A(V.) by Lemma A3.17, and then denote

[u ,w]o  : :  T (po)  o luo ,wof  o  (9 . ) -L  e  a ( ,M, ) '

It then easily folows by the uniqueness assertion in Lemma 43.17 that, if M"1MP +
0, then fu,wlolu,ntte = lu,wlplu.nMp. Hence there exists a unique vector field

lu,wl e A(W such that lu,wllm. 
- [u,w)o for all o e A.

Now, for Y and [/ as in the statement, and f e C*(U,Y)' we easily get by

Lemma 43.17 that Dg,,-1f = Du(D*f) - D*(D"l) on (/ (-t Vo for all o, whence
Dp,-1f : D,(D.f) - D.(D"f) on [/' In other words, the mapping

A@) x 8(M) -+ E(M), (u,w) *+ [u,w),

has the property that for every open subset U of M we have

(Yu,w e 8(M)) Dp,-1 = lD,,  D*l  e End(C-(U, f)) .

This easily implies that [.,.] is a Lie algebratructure onE(M), in view of the fact
that, if V stands for the model space of the manifold M , then the linear mapping

T(v")

o"J
vo

T(v " ) ,

n(M) -+ ff End,(C*(Mo,v)),
a € A

u + (D4r)oEa

is injeciive. (In fact, ltu e n(M) and D,1r. = 0, then (D,1..)(p;t) = 0, whence
T(p;t)rlv. : 0. But the linear operator T,(pit) is invertible for all r e. Mo,
hence oly. : 0.)

The uniqueness assertion follows by the uniqueness assertion in Lemma 43.17'
taking U : Mo for arbitrary a e A. n
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Proposition A3.19. Let M ond N be two locally conuer smooth manifolds, and

9, tti . N a smooth mopping. If u1,a2 e A(M) and'. w1,wz e E(N) satisfy

T g o u i  -  w j  o g  f o r  j  = ! , 2 ,  t h e n T 9 o l u 1 , a 2 ) = l w t , w z l o g '

Proo!. It suffices to show that the desired equality holds on some neighborhood of

an arbitrary point p € M. Thus, replacing M by a suitably small neighborhood of

p, and N by an appropriate neighborhood of 9Q) € N, we may assume that there

Lxist the locally convex vector spaces I/ and W' such that M is an open subset

of v and N is an open subset of I,7. Then there exists t1,t2 € c*(M,Ir) and

frt,62 e C*(N, W) such that for i = I,2 we have

u iO  =  ( . , d i ( . ) ) ,  M  -+  M xV  :TM

and

wiO =  ( . , r iO ) tN  -+  N  xW =TN

(see the proof of Lemma A3.17). Now, using the fact that we have

(4) Tp:M xV -+ N xW, (mo,uo) '+ (V(mo),g'*o(uo)),

along with formula (2) in the proof of Lemma A3.I7, we get for every rno € M

(Te o lal,azl)@o) = Ts(mo,6i-'rJ@o))

= (p(mo),r;,1ffi21@d))
= (p(mo), (D g,,,,;v) (mo)).

We further deduce by Lemma 43.17 that

(5) (Tg olu1,a2l)Qnd = (p(mo),(D,,D,"9)(mo) - (Do,Du,d(mo))'

On the other hand, note that the hypothesis Tp o ')i = wi o I implies by means of

(3) and (4) that

(Yr e M) (p("),v',( i i@D) : (v@),(fu o @(r)),

hence by formula (2) in the proof of Lemma 43'17 we get for i = l'2

(6) (vr e M) (D,,d@) = e' , (6i@)) = ( fr i  o p)(r) '

Consequently

D u,(D u,g)(mo) :  D u,( fr2 o d(ms)
= (fr2 o p)'*o(i{mo)) (bv (z) in the proof of Lemma A3'17)

: (6 z)',p (* o) g'* oi r (mo1

= (fr2)',p(^,)6t(P@oD (uY (o))

-- (D-,6r)(g(rno)),

and, similarly,
D," (D u, 9) (mo) = (D -2fr ,1 19 (mo)).

Thus

D u, (D,,9) (mo) - D,, (D,, p) (mo) - (D., fr z - D -,fr ) (p(-o ) ) : fw 1, w 2](9 (ms))'

by formula (1) in the proof of Lemma A3'17' Consequently, by (5) we get

(T s o [u 1, u 2])  (m o) = (p (* o),  l67w zl .y l  @o ) )  )  :  ( l r  t , ,  r l  "  e) Ono),

using again formula (1) in the proof of Lemma A3'17' !
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Exercise A3.2O, Let M be an open subset of the real locally convex space V. For
all u,u e C*(M,V) define lu,ul e C*(M,V) by

(Yt e M) lu,ul(r)  = u' , (u(t))  -  u,(u(r)) .

Then ihe bracket [.,.] turns C*(M,V) into a Lie algebra. !

Norps

We refer to the book [Wa71] for an elementary introduction to the theory of
finite-dimensional manifolds.

A quick introduction to infinite-dimensional manifolds modeled on locally convex
spaces can be found in [MiB4]. For manifolds modeled on Banach spaces, see [La01].
The more special setting of analytic Banach manifolds is developed in [Up85].

In connection with Theorem A3.18, we note that an interesting property of the
Lie algebras of vector fields in the case of finite-dimensional manifolds can be found
in the paper [SP54].
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A4. TOPOLOGICAL GROUPS

AesrRecr. [n the present appendix, we develop the basic facts concerning topo-

log ica lg roups tha tareneeded in themainbodyof these lec turenotes .Themost
irriportJrrt results contained here are the fact that the group topology is uniquely de-

terminedbyitsrestr ict iontoaneighborhoodofl(TheoremA4'11)'andthetheorem
concerning the construction of hoinomorphisms from simply connected topological

groups (Theorem ,{4.19).

Definition L4.1.
making the maP

Let G be a group. A group topology on G is a topology r on G

G x G -+ G, (a,b) '+ ab-r

into a continuous map.
A topological group is a group equipped with a group topology' n

Remark A1.2.- 
irj i, the framework of Definition A4.1, the condition that r is a group topology

isequivalenttotherequirementthatboththemultiplicationmap

m:G x G -+ G, (a,b) r+ ab,

and the inversion maP

r1:G -+ G, 4Ys a-r,

are continuous.
(b) The discrete topology of any group is always a group topology' Thus' every

group admits at lea^Ji orr" group topology' On the other hand' there can exist

several group topologies on a given group. For instance, the additive group

(R, +) has at least tJo group topologies: the discrete topology and the usual

one. !

Lemma A4.3. Assume that E is a set and,lor euery t € E we-haue singled out a

,"tV(r) of subsets of E such that the foilowing conditio.ns are fulfilled'

( V I ) ' I f ' r  e  E ,  V  e i 1 t 1 ,  a n d V  g U  
, P , t h e n U  

e V ( r ) '

iV r j  t t  x ,  €  E  andVr ,V2 €V( r ) ,  thenVtnV2 eV(n) '
(Ve) f /  r  € E andV e V(x),  then x eV'

iunj  i f  r  e E ani lV ei1i1, thenthere euistsW e V(r)  suchthat lor al lv e W

w e h a u e V  e V ( Y ) .
Next denote

, = {D I D e E;(Vr e D)(3v e Y(r)) V I D}'

Then r is the unique topology on E such that, for all r e E' V(r) is the set ol

neighborhoods of r with respect to r'

Proof. See Proposition 2 in $1, no' 2, in Chapitre I in [Bo71]' !

Typeset by "411S-T[tr
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Notation L4,4. If G is a group' a e G, and .4, B I G, then we denote

A B  : =  { a b l a  e  A , b  e  B I ,  x A : -  { n } A ,  A r : =  A { * 1 ,  A - r  : =  { a - r  l a e  A } '

Whenever it is not otherwise stated, we denote by I the unit element of any

group. !

The following statement is a first step towards the method to construct group

topologies on 
" 

giu".r group, starting from local structures around 1. (See Theo-

rem 44.11 . )

Proposition A4.5. Assume thatG ,is a group andv is a set of subsets of G such

that the following conditions ore satisfied.
( G V 0 )  I f  U r , U z e  V  t h e n t h f l U z e V '  I f  V  e V  a n d V  e  U  9 G ,  t h e n U  e V '
(GVl) I f  U eV then there exists V eV withVV eU.
(GV2) For all U e. V we haae (I-L e V .
(GV3) For all U eV we haue L e U.
(CVal For al lu €V and a € G we haae a(Ja-r eV.

Then there erists a unique group topologY r on G such that V is the set of all

neighborhood,s of I e with respect to r. Moreouer, for each a e G, we haue

V ( a ) : :  { a V  l V  e V }  =  { V a l V  e V }

and this is the set of oll neighborhoods of a with respect to r'

Proof. The proofhas several stages.
1" To prove the existence and uniqueness of the topology r' we use Lemma A4.3

for V(r), x e G, as in the statement. So we have to check that conditions (V1)-ffa)

in Lemma A4.3 are satisfied.
To this end, note rhat both (v1) and (v2) follow from hypothesis (GV0), while

(v3) follows from (GV3). To prove (V4), first note that, for arbitrary r e G and

V g G, we have V e V(r) if and only if r-LV e V. This remark shows that

condition (va) in Lemma A4.3 is equivalent to the following: for all r e G and
Vo € V there exists Wo € V such that for all y e rwo we have y-rrVs e V'

To prove this, note that hypothesis (GVl) implies that there exists Ws € V with

WoWo e Ve. Then for each y € rWs we have r-Ly e Ws, hence r-ty €W6,hence
r-LAWo gWoWo e I/0. Thus Ws e y-rrVs, which implies by hypothesis (GV2)

that y-rrVs € V, as desired.
2o we now show that the topology z constructed at stage 1o by means of

Lemma A4.3 is a group topology. To this end, first recall from Lemma A4.3 that
V(r) (= {rV I V € V} in the present situation) is the set of all neighborhoods of
r, for all r e G. Thus, in order to prove that the map

G x G -+ G, (a,b) ,+ ab-L

is continuous, it suffices to check that the following statement holds: for arbitrary
a,b e G and U € V, there exists l,tr/ € V such that

(aw)(bw)-l g lat-t)u.

Note that the above inclusion is equivalent to aWW-rb-l g ab-tU, and further
to  

ww- t  c  b - tub .
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On the other hand, we have by hypothesis (GVa) that b-lyb € V, hence, according

to hypothesis (GVl), there exists Wr € V such that

WtWt g b-tub.

Now, for W :=Wtn (Wl)-t € V (use both hypotheses (GV0) and (GV2))' we get

WW-r e WtWr gb-rub, as desired.

3o To conclude the proof, note that the second of the equalities in

V ( a )  =  { a V  l v  €  Y }  =  { W a l W  e v ) '

follows by hypothesis (GVa) for each a € G' D

conditions (GBV0)-(GBV4) in the following auxiliary result are usually easier

to check than conditions (GV0)-(GV4) in Proposition A4'5'

Lemma A4.6. Assume that G is a group anil B is a set of subsets ol G satisfying

the lollowing conditions:
(GBV0j  For  a l7 ( I t , (Jz€B there  er is ts (Jo€B wi thUoe UrnUz '

iCnVr i  For  eachU e  B there  ex is tsV eB suchtha tvv  cU '

iCgvzi For each U e B there esists V e B with V-L 9U '

(GBV3) For al lU e B we houe !  eU'

iCgV+)  I f  U  eB anda€G,  thenthere  er is tsV e  B w i thaVa- r  gU '

Then
, = {D I D e G; (va e D)(1v e B) av 9 D}

is the unique group topology on G such that B is a basis of neighborhoods of I e G

with resPect to r.

Proot. lt is easY to check that

V  : =  { ( t  l U  9 G ;  ( 3 v  e  B ) v  g U }

satisfies conditions (GV0)-(GV4) in Proposition A4'5' n

Notation A4.7. If G is a group and .4 ! G, then we denote by (A) the subgroup

of G generated by A, i.e., tf,e smallest subgroup of G that contains A' !

Exercise A4.8. If G is a group and A e G, then

( , 4 )  :  { 1 } u  l ] t r ,  " ' a n l a r , " ' & n e  A u A - r } '  t r

N : L

Exercise A4.5.
(a) If G is a connected topological group and, IJ is a neighborhood of 1 € G, then

(U) : G'
(b ) I fG i sa topo log i ca lg roupand the reex i s t saconnec tedne ighbo rhood t /o f
I t e G such that (U) = G' then G is connected' tr
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Deftnition A4.10. Let Tt and T2 be topological spaces. An imbedding (of topo-
logical spaces) of ?r into T2 is a mapping f : T1 -+ Tz that induces a homeomorphism
T1 -+ f (71), provided we view /(4) as a topological subspace of ?2. !

The following theorem provides a useful way to endow a group with a group
topology. The results of this type are particularly useful in Lie theory, inasmuch as
they allow one to extend local structures to global ones.

Theorem L(.ll. Let G be a group with the multiplication nxap

m:G x G -+ G, (r ,y) v+ xy,

a n d K e  G  s u c h t h a t
l e K = K - L  a n d ( K ) = Q .

Assume that the subset K of G is equipped with a Hausdorff topology such that the
inuersion maP 

K -+ K, r ,+ tr-r ,

is continuous and, there erists an open set Vo e K x K satisfyi,ng the foltowing
conditions:

(a) m(V6) e K,
(b) mlyo:Vs -+ K 'is continuous, and'
(c) for al l  r  € K we haue (r ,*- ' ) , (r ,1),  (1,  x) eVs.

Then there ex'ists a unique group topology on G maleing the inclusion map

K , - + G

i,'nto an imbedding of topological spaces such that K is an open subset of G.

Proof. The proof has several stages.
1o To construct the group topology of G, we will make use of Lemma 44.6.

To this end, we check conditions (GBV0)-(GBV4) in Lemma 44.6 for the set of
subsets of G defined by

B t= {W lW g X; W is a neighborhood of I e K}.

Conditions (GBV0) and (GBV3) are obvious.
For (GBV1), note that I/e is a neighborhood of (1,1) € K x K. Since the

mapping mlyo:V6 -+ K is continuous and m(L,l) : 1, it then easily follows that
for each W e B there exists Wt e B wilh W1W1 C W.

To see that (GBV2) holds, we use the fact that the inversion mapping r:-: K -+ K,
tr ,+ tr-L , is continuous. Since rf : idx, it follows that 11 is actually a homeomor-
phism of I( onto itself, and thus for eachW e B we have l,tr/-l(- r1(W))e B as
well.

In order to check condition (GBV3) in Lemma A4.6, we first note that, since
K = K-r and (K) = G, it follows by Exercise A4.8 that
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One then easily shows by induction that it suffices to check (GBV3) only for-a € K.

To do this, let a € K andW e B arbitrary. By hypothesis (c) we have (a, a-r) e Vo.
Since |/6 is open in K x K and, mlvo is continuous, it then follows that for some
neighborhood [/o of a € K we have both

t/ ,  
"  {o-t}  I  t r /s and ULa-r 9W.

On the other hand, also by hypothesis (c) we have (a,1) € I/0. Again by the

continuity of rnlvo, there exists Wt e B such that

{a} x W1e I/o and aWt e Ut.

Then aWp-L C (ha-r 9W, # desired in condition (GBV3) in Lemma A4.6'

Consequently, we can use Lemma 44.6 to make G into a topological group with

the group topology r defined bY

r = {D I D g G; (va e D)(3W e B) aW g D}'

Note that, in particular. we have K e r. In fact, let a € K. We have (4,1) € V6

by hypothesis (c), hence, using as above the continuity of.mluo, we can frnd.W e B

such that ({ai x W e Vo and) aW 9 K.
2o We now prove that the inclusion mapping

t : K . + G

is an imbedding of topological spaces. To this end, we have to prove that it is both

an open mapping (i.e., it maps every open subset of K onto an open subset of G)

and a continuous mapping.
To see that I is an open mapping, it clearly suffices to show that, for every

neighborhood(I of an arbitrary le e K, the set r(u) is a neighborhood of {k)(=
il; G. To this end, we repeat the proof of the fact that K € r: we have (k,l) eVs,

hence the continuity of rnlyo shows that for some w e B we have kw e u =

a(t/). Thus r.(U) is a neighborhood of e(k), according to the above definition of the

topology r.-No*, 
to prove that I is continuous, let D € r arbitrary' We have L-t (D) - K nD ,

hencewehavetoprovetha t  KnD €r .  To th isend, le tk€  KnD arb i t ra ry .  The

fact that k e D shows that for some Wt e B we have

kWr € B'

on the other hand, the fact that & e 1{ implies as above (using that (k, 1) € y0

along with the continuity of the multiplication map mly) that for some Wz e B

we have both {k} xWz g I/s and

kw2 c K.

Then
k. (wt nwz) - kwt I kwz I D n K.

Since I,71, Wz e B, we have W 9.WtOW2 f.or some trZ € B (see condition (GBV0)

in Lemma A4.6), hence kw g D n K, and this is just what is needed in order to

h a v e D f r K € r .
3. The uniqueness assertion is an easy consequence ofthe corresponding assertion

in Lemma 44.6. tr

Our next aim is to describe one of the basic methods to construct homomor-

phisms from simply connected groups to arbitrary groups (see Theorem A4.19 be-

iow). The notion of simply connected space (Definition A4.15 (c)) needs the idea

of covering, in the sense of the following definition.
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Definition /.;4.12. Let ? and .S be topological spaces and /: T -+ S a continuous

mapping. we say that / is a couering mapping if for every s € s there exists an

op* 
"uigttUorhold 

W of s such that, for some family {A't};et of pairwise disjoint

open subsets of ?, the following conditions are satisfiedj

1o We have f-r(W) = U,At.

20 For every i e / the irapping /la;: Ai + w is a homeomorphism provided

At and w are equipped with the topologies inherited from ? and ,5, respec-

tively. !

Exercise A4.13. Let G and, H be topological groups and 9"G -+ H a group

homomorphism.
(a) If there exists an open neighborhood u of.1 € G such lhat ?lu is continuous,

then rp is continuous.
(b) If there exists an open neighborhood v of | € G such that 9(w) is an open

subset of L e H and, plwl.W -+ g(W) is a homeomorphism when 9(14z) is

equipped with the topology inherited from I/, then tp is a covering map. !

Definition A4,14, Let T be topological space. If X is another topological space

and /6, frX a ? are two continuous mappings, we say that /1 and f2 are ho-

motipi,c if. there exists a continuous mapping f/: [0,1] x X -+ T such that for all

r e k we have H(g,x) = fo(r) and,F/(1, r): f1(r). In this case, H is said to be

a homotopy connecting fs and h. !

Definition A4.15. Let ? be topological space.
(a) we say that T is connected if 0 and ? are the only subsets of T which are

simultaneously closed and oPen.
(b) We say that T is locatly connected if every point of ? has a basis of connected

neighborhoods.
(c) We say that T is simpty connected if it is connected and locally connected,

and, whenever h:P -+ S is a covering mapping, f:T -+ S is continuous,

to e T, po_e P, h(po) = f (to),it follows that there exists a unique continuous

mapping f :T -+ P such that the diagram

p + f  r

is commutative and f (til : Po'
(d) We say that T is pathwise connectedif for all ts,t1€ ? there exists a continu-

ous mapping (that is a path) 7: [0, 1] -+ ? such that 7(0) = fo and ?(1) = tr.
(e) we say that T is locally pathwise connected if every point of ? has a pathwise

connected neighborhood.
(f) We say that T is pathwise simply connected if it is pathwise connected and

Iocally pathwise connected, and every continuous path 7: [0' 1] -+ ? with

z(0) = 7(1) is homotopic to a constant map [0,1] -r T. !

Exercise A4.16. Let G be a topological group. If I e G has a basis of connected
neighborhoods (respectively, a pathwise connected neighborhood), then G is locally
connected (respectively, Iocally pathwise connected). D

,J ,1r
s



44. TOPOLOGICAL GROUPS

The following theorem provides the main tool used to check that a certain space
is simply connected.

Theorem 44.17. Euery pathwise simply connected space is simply connected.

Proof. See Theorem 2.1 in Chapter IV in [Ho65]. !

The next theorem describes a very important property of simply connected
spaces, and will play a key role in the proof of Theorem A4.19 below.

Theorem A4.18. Let P and S be topological spaces and h: P -+ S a coueri,ng
rnapping. If

(i) P is connecteil and locally connected, and
(ii) S is simply connected,

then f is ahorneomorphism.

Proof . see Theorem 1.4 in chapter IV in [Ho65]. The idea is to use condition (c) in

Definition 44.15 for T = S and / : ids, in order to construct a continuous inverse
of. h. !

We are now ready to describe the main method to construct group homomor-
phisms defined on simply connected groups.

Theorem A4.].g. Let G be a si,mply connected topological group and H an arbi-

trary group. Suppose that W is a connected open neighborhood of I e G such that

W =W-r and f :W -+ H is a mapp'ing such that

f (ry) = f (*)f (y) wheneuer r,y,ry e W.

Then there erists a unique group homomorphism g:G -+ H such that glvv = 7 '

Proof. Denote
K  : :  { ( s , / ( s ) )  |  s  e W }  e G  x  H

and endow N with the unique topology making the bijection

B:W -+ K, s r+ @, f @))

into a homeomorphism. Then denote by .E the subgroup of G x 11 generated by K.

Using Theorem A4.11, we are going to make E into a connected topological

group such that K is an open neighborhood of L € E. To this end, denote by

m'. G x G -+ G be the multiplication in G. Then I7o :: m-L (W) n (W x W) is an

open subset of W xW such that conditions (a)-(c) in Theorem 44.11 are satisfied

(with K replaced by w and I/s replaced by wo). since p is a homeomorphism,

it then follows that Vs ,: {(Afu),p@)) | (gr,S) E Wo} and K also satisfv

conditions (")-(.) in Theorem A,4.Il, hence the group E = (K) (C G x //) has a

unique structure ofgroup topology such that K is an open neighborhood of.1 e E'

Since W is connected and K is homeomorphic to I4l, it follows that K is connected,

and it then follows by Exercise A4.9 (b) that the topological group .E is connected.

Now consider the mapping

r :  E  -+  G, (g ,h )  v+  g
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which is the restriction to.E of the natural projection pr1:G x H -+ G. Since the

latter projection is a group homomorphism, it follows that zr is a group homomor-

phism as well. Moreover, note that

r l x  =  B - r : K  - + W

Since d is a homeomorphism and K is an open neighborhood of I € E, it then

follows by Exercise A4.13 (b) that zr is a covering map of E onto G. But E is

connected and locally connected by Exercise A4'16, while G is simply connected'

hence Theorem 44.18 shows that zr is a homeomorphism.
In particular, zr is bijective, and then r-L:G -+.8 is a Sroup isomorphism. For

every g € IrIl we have
lr- t  b) = 0k) = Q, f  b)) ,

hence for the group homomorPhism

g t: pt2 o zr-1r G -+ H

we have glw = /. (Here pr2:G x H -+ f/ stands for the natural projection, which

is a group homomorphism.)
The uniqueness of the group homomorphism rp follows since we have by Exer-

cise A4.9 (a) that (W) =G. tr

Norns

Theorem 44.11 appears explicitly as Lemma II.2 in the paper [Ne02]. See also
pages 263-265 in [Hof68]. The basic idea underlying this result is that of local
(topological) group. See e.g., page 209 in [Sw65].

Theorem .A4.19 is sometimes called the "monodromy theorem". It appears e.g.,

as Proposition 5.60 in the notes by K.H. Hoflman [Hof68], or as Theorem 3.1 in

[Ho65]. See Theorem 1.7 in Chapter IV in [Ho65] for a more general result of this
type.

Among the basic references for the topic of topological groups, we mention the
books [8o71] and [Ho65].
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