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Stochastic differential equations associated with
smooth mappings and non Fi-adapted solutions

Daniela Ijacu Constantin Varsan

Abstract. Stochastic partial differential equations (s.p.d.e.) of Hamilton-Iacobi and para-
bolic type including non Fi-adapted solutions are studied. They are associated with an
orbit solution in a finite dimensional Lie algebra and a special type (Stratonovich type) of
stochastic integral is introduced. Some applications from control theory are added.

Key words. Stochastic partial differential equations, non F;-adapted solutions and Strato-
novich type stochastic integral.

1 Introduction

The analysis is concentrated both on first order stochastic differential equations and of
parabolic type driven by an anticipating drift which is not adapted to the filtration
{{F}1,t €[0,T]} C F generated by the given Wiener process of the stochastic pertur-
bation. The usual martingale approch is not an appropriate one and we are obliged to
decompose the non F;-adapted solutions into a continuous and F;-adapted process valued
in the space of smooth mappings which are restricted to some solutions associated with the
given anticipating drift. It is accomplished using a finite composition of local flows which
are determined by a finite dimensional Lie Algebra associated with the smooth vector fields
of the corresponding stochastic perturbation. In addition, the Fisk-Stratonovich integral
suitable for the F;-adapted solutions is replaced by a special type stochastical integral “®"
allowing one to include non F;-adapted solutions with a special structure.

We write first order stochastic differential equations (s.p.d.e.) as follows:

diu = gg (z,u, Ozu)dt + Zgj(x, u, Opu) ® dw;(t), t € [0,T] ()
o

i=1

w(0) =u¥(z), 7 € R*, u e R*, du € R*, (u,dpu) € B(0,p) C R*!

where u¢ € CZ(R") and gy € CZ(R™ x B(0, p)) are only F-mesurable with respect to w € £
being non F,-adapted scalar functions and w(t) = (wi(t), ..., wn(t)) € R™ is a standard



m-dimensional Wiener process on a given filtered probability space {2, F, P; {RHC F}.
For simplicity, we shall omite to write the variable w € 2 and the meaning of a solution
for (s.p.d.e.) given in () is derived using a solution of the associated stochastic system of

characteristics.

diz = Zy(z)dt + ixr(t)Zj(z) ® dw;(t), t € [0,T], z € B(0,p) x R

J=l1

2(0) = 20(A) 2 (uo(A), Bruo(N), A) € B(0, p1) x R* £ Dy, p1 € (0, p)

(1)

where z = (u,0u,2) 2 (u,p,z), and the smooth vector fields Z;(z) € R2"+1  for
i € {0,1,...,m}, are defined in the standard way.

202 (37), %2 -aawun e,

: A gz(xauvp) - <pa 8pgl(xauap)> n+1

()

In the case of deterministic functions uy € CZ(R*), g0 € CZ(D), D = B(0,p) x R?,
we are allowed to work with Fisk-Stratonovich integral “o” and the Fi-adapted solutions
associated with («) and (a;) are obtained. In our case, the use of a special type integral
(Stratonovich type) is based on the Langevin’s smooth approximations we(t) replacing the

original Wiener process w(t), t € (0,7).

A solution of the stochastic system of characteristics () is defined provided the Lie algebra
L(Zi,..., Zy) determined by {Z,,..., Z,} C C®(D,R?**!) is finite dimensional. Similar
considerations apply to stochastic differential equations of parabolic type described by the
following equations:

dyu = [Agu+ (¢, z,u, Opu)]dt + Z 9; (@, u, Oyu) @ dw;(t)

J=1

n
u(0) = u¥(z), t € (0,T), s €R", ue€ R, Agu= _ &u

j=1

where the initial condition u¢ € CZ(R"), and the continuous scalar function f* € C([0,T7;
C?(D)), may depend on the parameter w €  in a non F;-adapted manner being only
F-mesurable.

From now on we shall not mention the dependence on w € Q and write uo(z), f(t,z,u, D).

A local solution for (8) is derived from a continous and non F;-adapted solution (¢, A) =

(a(t, A),p(t,A)) € B(0,p) C R**! fulfilling the following system of parabolic stochastic



differential equations.

G (8, 3) = [Bsd(t, 1) + Yolt, 502, ), 36 V), Bx(t, M)l
+ 57 % OYi(E( V), 5, X)) ® dui(t), t € (0,0] (8)

ZJ(O, )‘) = yO()‘) = (’U,O()\>,3,\’U,0()\)) € B(OMDO)a po € (O’p)
with a fixed stopping time 7(w) : Q@ — [0,T], and £(¢,A) = A + Y2y biw;(¢ A 7) assuming
b; = —0,9:(z,u, p) £ X,(z),4 € {1,...,m}, are constant vectors in R"

Here, the smooth vector fields Y;(z) € R**', 4 € {1,...,m}, are the corresponding compo-
nents of Z;(z) € R***!, defined in (az) and Y; is obtained from the original f as

o ( Fltmult,2),p(2)
st 2 & (ot ) e

In both cases, the corresponding stochastic system of characteristics (o) (or (B1)) al-

low one to get a continuous and non F-adapted process y(t,z) = 2 (u(t,z),p(t, 7)) =
(t,z), su(t,z)), t € [0,a], valued in the space of smooth mappings y € CLH(R™; B(0, p)),
y(t, Z(t, )), where

(u
(or y E C%(R™; B(0,p))) for each t € (0,a], such that g(t,A) =
5(,0) 2 (5(4,2), 5(5, X)), 9t A) = (@(t, X), Bt V))-

A local solution for the stochastical differential equation () has to be a continuous process
u = u(t,z), t € [0,a], valued in the space of smooth mappings u € CZ(R™) fulfilling the
corresponding integral equation

i

/ [dsu(s, x)]x:fc(s‘/\) = / 90(53(37 /\)7 ;[/(5; /\))dS -+ Z/ XT(S)gj(f(Sv )‘)7 Q(S, /\)) ® dwj(s)
0 0 o Jo

where the stochastic differential [dyu(s, 7)]z=2(s\) along to z = Z(s, A) is computed obeying

to ;

/Ot[dsu(S,x)]x =&(s,\) / dst(s, A) — /0 (B(s, A), dsE (s, \))

As far as the parabolic stochastic equation (f) is concerned a special issue appears when
the Laplacian operator A, u(t,z) is computed along to z = #(t,\) using the continuous

process y = §(t, \) = (a(t, A), p(¢, A)).-

The simplest form we can get is relying on X;(2) £ _ bgi(z,u,p) =b; e R* i€ {1,... ,m},
are constants.

Assuming that f(¢,z,u,0;u) and u(z) are some deterministic functions then the local
solution associated with the parabolic equation (c) is constructed using the usual Fisk-
Stratonovich integral as in [1].



The general procedure used here has its roots in [2] and [3] containing stochastic partial
differential equations with diffusion part depending on some unknown vector functions. The
work is divided into three parts following this introduction. In the first section we state the
basic facts related to finite dimensional Lie algebras, gradient systems and orbit solution
as in [4] and their implication in the definition of a Stratonovich type stochastic integral.
In the second section we give some auxiliary and main results with proofs regarding both
stochastic differential equations (a) and (8). In the last section we collect two applications
from the control problems associated with stochastic differential equations and their non

Fi-adapted solutions.

§2. Preliminaries

Everywhere in this paper we assume that the smooth scalar deterministic function g;(z, u, p),are
given such that g; € C°(R™ x B(0, p)),j € {1,.,m},where the ball B(0, p) C R*"is fixed.
Denote z = (u,p,z) € R+ D = B(0,p) x Rand define the smooth vector fields Z; €
Coo(D; R 1), j € {1,..,m},as in (az),

1) ZJ(Z) é‘ ( XJ(Z) > ,Xj(Z) é -apgj(:t,u,p) e R

)/](Z) é < g](x’uap) - <p7 8Pg]($’u>p)> ) = Rn—{—l
A solution for s.p.d.e (@)(or (B)) is derived usingthe corresponding stochastic system of
characteristics defined in (c;)(or(f;)).In both cases we have to start with a local solution
associated with the reduced stochastic differential system

2) diz = Y Z;(z) o duy(t),t € [0,T), 2 € D = B(0, p) x R"
i=1
Z(O) =2p € DO = B(Oap0> X Rn’o < po < p,

7

where the Fisk-Stratonovich integral “o” is used and

w(t) = (wy(t), .., wm(t)) € R™ is a standard m-dimensional Wiener process on a gi\}en
filtred probability space {2, F, P, {F} 1C F}.

A local solution of (2) is found as a continuous and F; -adapted process valued in the space
of smooth mappings z € C°(Dp; R***!) and it is done assuming

H,) The Lie algebra L(Z,, .., Z) C C°(D; R2*!) determined by the vector fields {Zy,., Zn}
is finite dimensional.

The assumption (H;) allows us to fixe a system of generators

{21,y Zmy Zmsrs o Zm} © L(Z4, .., Zyn) and to define the corresponding orbit of smooth

mappings .



fiid A

3) S(p, 20) 2 Si(t1) © .. 0 Sar(tar)(20),p = (t1, - tar) € Dy = [1[—aj,a5] for 2z € Dy 2
j=1

B(0, po) x R™,where

S;(t, z0),t € [—aj,aj],zo € Dy,is the local flow generated by the vector field Z;,5 €
{1,.,M}.

Using the nonsingular algebraic representation of the associated gradient system given in

[4] we are able to recover the original vector fields {Z1, .., Zy }along to the orbit solution
[3] and some analitic vector fields g¢; € A (Dp; RM), 5 € {1, .., M }are defined such that

oS .
a’) 8—p(p7 ZO)Q](p) = Z](S(pu ZO))) J € {la "7M}a p € DM; ) = DO

b) the(M x M)matrix Q(p) = (g1(p), ., am(P)),p € Dy
is a nonsingular one

1)

A local solution for the stochastic differential system (2) is constructed using the mapping
S(p, z) in (3) provided an F; -adapted continuous process p = p(t) € D, t € [0,7,is
defined as a solution for the following stochastic system

5) dip = éa(p)% (p) o dw;(t),p(0) = 0,p € R

Here the smooth scalar function oo € C®°(RM; [0, 1]) is taken adequately and fulfilling.
a(p) = 0 for p € R*\B(0,2p),a(p) = 1 for p € B(0,p), where p > 0 is fixed such that
B(0,2p) C Du. .

Let 7 (w) :  — [0,T] be a stopping time by 7 (w) 2 inf {t € [0,T);| p(t) |> p} where the
solution

p=p(t),t € [0,7T] is defined in (5).

[t is easily seen that p(t) £ p(tAN) € B(0, p),t € [0, T],is obeying to the following stochastic

differential system :

6) dip = > x-(t)g;(p) odw;(t),p(0) = 0,t € [0,T] where x, (t) =1 for 7 >t and x,(t) =0
J=1
for 7 < ¢,¢t €[0,T]

The F, -adapted and continuous process

7) Z(tazO) é S(ﬁ(t),Zo),t € [OuT]sz € DO = B(07p0) x R*

will be a local solution for the stochastic system in [2] fulfilling the following system of
integral equations.

O — =~

8) 2(t, 20) = 20 + i o (5) 25 (253 20) o dhwy (5) =



?‘Ms

tAT
{ 2(s; 20) 0 dw;(s),t € [0,T], 2 € De.

It shows that the smooth orbit S(p;z) € D in (3) allows one to define a local solution of
(2) using a stopping time 7 which doesn’t depend on the initial condition zy taken in an

unbounded set Dy.

Now.a local solution for s.p.d.e.in (a) (or (8)) can be constructed provided a continously
differentiable process zy = 2o(t, ) € Do, t € (0,a],0 < a < T\is defined such that:

9) 2(t, \) = S( (t); z0(t,\)) € D,t € (0,a], A € R"
is a local solution of an extended system of stochastic differential equations defined in

() (or in (51))

Remark 1.

It is worth to mention that dealing with F, -adapted drift and initial condition we are
allowed to look for z(t, ), € [0,a], A € R as an F; -adapted continuous process and the
standard rule of stochastic differentiation applyed to the mapping in (9) will lead us to a
differential equation without stochastic perturbation fulfilled by z(¢, ), t € [0, a].

In our case ,the use of non F, -adapted drift and initial condition is not obeiyng to the
usual Fisk-Stratonovich integral and the corresponding stochastic rule of differentiation.

A stochastic rule of differentiation for the non F; -adapted solutions in (9) is derived
provided the Fisk-Stratonovich integral is replaced by a special type stochastic integral
® "(Stratonovich type) and using a Langevin’s smooth approximation;

10) wé(t) = [y°(s)ds = w(t) — n(t,e),t € [0,T],0 <e <1,

O&'n

where y©(t) = lz exp —(£2)]dw(s), n(t,€) = [lexp —(2)dw(s)

"“s

we get the following integral equation

11% 2pe, X} ~ tjlg— (s, ) %2 (s, \)ds
+Z er (2(s, \) ® dw;(s)

J=1 U

fulfilled for any ¢ € [¢/,t"] C (0,a].where 2(¢,\) is defined in (9)and z(¢, A),¢ € [t'.t"],is
continuously differentiable.



Here the Stratonovich type integral “® ” is computed passing to the limit € N\ 0 in an
ordinary rule of derivation applied to the smooth mapping.

12) 26(t, A) 2 S((t); 20(t, A)),t € [¢',¢"] € (0,a],0 <a < T,
where p = p°(t),t € [0,T),is fulfilling the following system of ordinary differential

equations

dt = Y x-(t)a(p )q](p)%(t),t € [0,7],p(0) = 0 which coincides with the smooth
=
Langevin's approximation associated with the stochasticdifferential equation in[6].

As a consequence we may and do write the following definition;

) [re(012,e10 ) ©duy(0) 2 [[ra (510055 20) o (o)

Zo:zo(tl,)\)

) %Q(Sa/\)dsaj € {17"7m}

30220(37)‘)

+f ([ja-‘z—o(xr(d)Zj(S(ﬁ(U); w)) o diy (o)}

where the Fisk-Stratonovich stochastic integral “o” is used associated with a continuous
F, -adapted processes valued in the space of smooth mappings.

Based on the above given formula we may and do define a Stratonovich type integral
associated with a continuous bounded scalar function.

Definition 1

Let ¢ € C}(D,R) and 2(t, A) . S(p(t); 20(t,\)) € D,t € [0,a], A € R*,be defined as in
[9]. Then

’:/‘xr(t)w(é(te ) ® duw;(t) {tf)ﬁ 1 20)) © dwj(ﬂ} +

[/
’ 20=¢20 (t/,/\)

+] ([]”azo pagk )tp(S(;ﬁ(S);zO)))odwj(S)J >%l(t,)\)dt
z0=20(t,\)

7

where the Fisk-Stratonovich integral “o” is used.

Remark 2.

Let z(t, A) € Do, t € [0,a], A € R* be a continuous and F; -adapted process being con-
tinuously differentiable for any te [t/,#"] C (0, a].Define the continuous and F; -adapted
process z(t, \) = S(p(t ) 20(t.\)),t € [0,a], A € R*,as in [9].Then the stochastic integral of
Stratonovich type* ® ” along to z = z(¢, A) coincide with the Fisk-Stratonovich integral

.n’o".



Indeed,a direct computation which involves a change in the order of integration lead us

tothe following

er B(s), 20(s, A))) o dw; (s fXT B(s), (t', A))) o dw;(s)

[ (8)[Z; (S(B(5), 20(5, ) = ZiS(B(5), 20(t', )] 0 dwy(s) =Ty + T

f/

Using the continuous derivate 22(s, A), s € [t',t"] we write T as

T, - fx [f 3(5); 20(0, 1)) (0, A)da} o oy}

and changing the order of integration in the last integral we get

T,- | [ja-‘z;(xf(wzxsw@x 20(0, 1)) o dwj<s>] (5, \)do

tr

In conclusion
5T+ T = fx, (5,A)) ® dw;(s er (5,A)) o dwj(s)

where the stochastic integral “ ® ” is defined as in (14) (see definition 1) and the Fisk-
Stratonovich integralo ”is linked with Ito’s integral by the following;

6) 6122061 ) oy (5) 2 4 6) G0 1) 2o, s

+tf/XT(S)Zj(2(S’ A))dw;(s)

Remark 3
According to the non F, -adapted solutions z = (¢, A),t € [0,a], A € R*, defined in (9) we
may do and write the following rule of stochastic differentiation .

Let f € C°([0,T] x D;R) be given and the solution

Bt A] = S( (t); zo(t, A)),t € [0,al, is fulfilling the integral equations defined in [11].Then
it holds

FU A, ) = £, 0) 2 HmlF(E, 252, 0) = £ 2, 0)]

= lim [57(2, 27 (8, 0) + (52(6, (8, 1), G (8, A))] dt =

E

(20,20 0) + (200,200 0), 25 (600 205, ) 525, 0) ) diet

t



= T} + limT5 ,where
eN\0

€

dws
i (t)dt

75 2 iif 1)) (GL(t, 25 (1, N)), Z5(25 (8, V)

and z = 2°(t, \) = S(p®(t); 20(t, \)) is the Langevin’s smooth approximation defined in (12)

Denote ¢;(t,p, 2) 2 a(p) g—f(t, z), Zi(z))and by a direct computation including a change
of the order we express

m LI

£ 5 [xe ()5 (8,07 (2), 22 (1, A) Sk (t)dt =

J=1tr

m tn

= 5 [ ()0 (b, 5 (1), S (8); 20 (81, ) - (8t +

Jj=lu

m tn tn

+]21{dt {XT (9(/)] S, p ( ) S(pf(s);zo(t )\))
25 (02 (5); 20 (1, A)) L2 (t, \)) S (5)ds

Letting € N\, 0 in the last equation we get
FQ 2t N) = f(E,2(H,A) =

= ff [80f (8, 3(t, N) + (0. £ (£, 2(t, ), Bz S (B(2); 20(t, \) G2 (8, A))] i+

t!

t”

fxT ) (0:f(t, S(p(t); 2 )))Odwj(t)} +

20=20 (t’ ,)\)

m

+Z

+i’f[fm 2(0.4(5,2). 7 <s>><S<ﬁ<s>,20>>§%<ﬁ<s>;zo>odw](s)]%;(m)dt

=L
where 29 = 2o(t, A)

§ 3.Main results and proofs of some auxiliary lemmas

The auxiliary lemmas we need to prove are connected with the verification of the integral -
equation defined in (§2.11) provided the smooth approximation w*(¢ ),t € [0, T7,0f the given
standard Wiener process is used.



Lemmal. Let the smooth scalar functions g; € C°(R* x B(0, p)),

j € {1,..,m} be given such that nthe corresponding vector fields Z; € C°(D,R"™1), 5 €
{1,..,m} defined in (§2.1) fulfils the hypothesis (H1).Define a smooth mapping z = S(p, 29) €
D,p € Du,z € Dy,as in (§2.3).Let p = p(t),t € [0,T] be the unique solution as-
sociated with stochastic differential equations in (§2.6) and consider a continuous pro-
cess 2 = zo(t, A),t € [0,a],0 < a < T.Denote 2(t,A) = S(p(t); z0(t, A)),t € [0,a].Then
2= 3(t,\),t €[t t"] C(0,alfulfills the following integral equation:

t

(1,0) = 3(1,0) = [ 2 (5(5); 20(5, ) %2(5, A)ds

tl
m t

+5° [x-(8)Z;(2(s, A)) ® dw;(s)

=1
provided z(t, \),t € [t',¢"],is continuously differentiable and the stochastic integral 7 ®”is
defined as in (§2.14).

Proof

For e € (0,1] fixed,let p = p*(t),t € [0,T],be the smooth solution associated with the
ordinary differential equation defined in (§2.13) and denote

1) 2°(t, A) = S(p°(1), 20(t, ), t € [0, a].

By hypothesis the continuous process 2°(t,A),t € [0, a],is continuously differentiable for
t € [t',#"] C [0,a] and using the standard rule of derivation we get

dZE aS e
25 = 3, P2t G + 550" 0 2008 V)G ), ¢ € 2
Using the system (1) and the algebraic equations
05

—a—j—)(p; 20)q;(p) = Z;(S(p,%)),5 € {1,.., M} (see §2,4) we rewrite (2) in integral form as

follows

3) 25(t, \)— 25(t', \) = fg—fa(pg(s);zo(s,/\)%(s,/\)ds

£ 35 [ (0)ap™() 235, 1) 2

Jj=1¢

(s)ds

By definition ,the smooth approximation p®(t),t € [0, is an F; -adapted process fulfilling
the conditions of approximation theorem in[4] and as a consequence we obtain

4) li\r‘%pf(t) = p(t),in Ly (2, P) ,uniformly in te [0, a.

&

10



5) ii\ryrézf(t, Ay = &, A) = S( (t); 20(t, A)) in Ly (2, P) uniformly in ¢ € [0, a]

On the other hand,the left hand side in (3) is rewritten as
6)2°(t, \)— 2°(t', A) = S(°(t); 20(t, A)) — S(P°(2); 20(t', V)
+S(pf(t); 20(t', A)) = S(p°(t); 20(t, A)) =

Oz
t/
m. |k ik A
+5° | [x (8)a®@ () Z;(S®° (s); 20)) g (s)ds| = Thi+To
J=1L¢ 20=20(t',\)

Using (6) in (3) we get by a direct computation

m t”

1) L [ (a2 (s X)) (s)ds = Ty + T
fazo ); z0(5, \)) 22 (s, \)ds = gm +TY)
where

8)T17:f([a%jxr(o)a(pg(a))%(S(pg(a);zo)dff(a)} ( )%?(S,A)ds
s 20=20(.:\)

= [Frotoratr 0 zs(s67 (o) ) G a| e tnm)

20=20(t/,\)
As far as a(p(t) = 1,t € [0, 7] (see §2.6) the following
t

9) T/ = limT{ = [ ([azofxT Zi(S(p(o); Zo)odwj((f)} ) W (5, A)ds
N0 z0=20(5,\)

t
1) = lim 74 = | P 2,(500(5); ) s 5)
zo=20(t/,\)
are obtained using the approximation theorem given in appendix of (4) for the correspond-
ing Fisk-Stratonovich integral.

According to (7) and (9) we may and do define the “®” type stochastic integral (Stratonovich
type ) as folows

11



fx, 2(s,A) ®@ dw;(s) = Iim (T9 +T) =T/ +T4,5 € {1,..,m} ,and it allows one
to erte the limit point in Lo (€2, P) of the left hand side in (7) as

hmexr P5(5)) 25 (2 (5, 1)) sk (5)ds :’;g 9+ 1)

=1y
where 77 and TJare given in(9) using the Fisk-Stratonovich integral “ o ”.Finally,using
(4),(5) and (10) in (3) we rewrite the corresponding integral equation as

t
12) 5(8, 1)~ 2(¢, \) = [ 85 (5(s); 25, X) §2(5, A)ds

uMs

j (5,1)) ® dwj(s),t € [t',t"],

and the proof is complete.

A stochastical rule of derivation associated with the integral equation given in Lemma 1 is
expressed in (§2,Remark3). Here we shall rewrite the mentioned rule using the stochastic

7

integral “®
Lemma 2 . Let f € C3(D;R) be given and the non F; -adapted solution 2(¢,A) =
S(p(t); z(t, A)), t € [0, a] is fulfilling the integral equation in Lemmal.Then

t”

P A) = £ 3, 0) = [ (BG02), 00); 20( )48, 1)) de

tl

+121{XT ) (LL(2(t, ), Z;(2(t, M) ® dw;(t)

1" 1"

where _[XT(t)h(z?(t, A) ® w,(s) = li\r‘réf,xf(t)h(i(t, NG (1)

obeys to the definition (§2.1) for any h € CZ(D;R).

The verification of Lemma 2 is based on a direct computation already used in the proof
of Lemma 1.

Now we are in position to state the main results regarding the stochastic partial differential

equations (s.p.d.e) given in (@) and (B) of the introduction.

In both cases ,the meaning of a stochastic differential along to a fixed family of trajectories
x = 4(t, ) has to be introduced relying on the smooth approximations used in the above
given lemmas.Recalling the smooth mapping S(p; 20),p € D, 20 € Dy,defined in (§2.3)
and using the properties stated in (§2.4,5) we rewrite
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M1
12) S(p; z0) = 20 + Y t; [ Z;(0p; S(0p; 20)df,p € B(0,p) C Du where the smooth vector
Jj=1 0
fields Z;(p; z) are obtained as follows
13) Z;(p;2) = Z;(2)Q™* (0) 2 € D £ B(0,p) x R* C "', p € B(0, ), € {1,.., M}

Denote
14) Z;(p; S(p; z0)) 2 ( )};]((2197’2)) > ,j € {1,.., M} and the equations in (12) are written
g bl
accordingly
ML
G(p, Zo, yO) Z: fY (Hpa ZO)d9 Yo = B(O ,00) Rn-{—l
15) w1
J(p, yo; o) = Z 5/ X;(6p; 20)d0, z0 € R
j=1"0

for p € B(0, p) € Dy and 29 € Dy £ B(0, py) x R* C R**! where

g(“ (p, Lo;yo) and g—J(p Yo; Zo) are nonsingular matrices for any (p,yo;zo) € B(0,p) X
Yo To
B(0, po) x R

provided p > 0 is sufficently small.

In addition, we are looking for a continuous process.
20 = %0(t, \) 2 (Go(t, A), #o(t, A)) € B(0, po) x R such that

16) z2(t, A) = S( (t); 30(t, A)), t € [0,a], A € R™ is alocal solution of the associated stochas-
ticsvstem of characteristics given in (§1.cq) relying on the integral equations defined in

Lemma 1.

It implies to look for zp = 2(t, A),t € [0,a],0 < a < T, as the unique solution of the
following system of ordinary differential equations '

. -1
1, 0) = [B2(5(t); 20(t, )] Zo (S((E); (8, 1))
50(0,\) = 20 (\) 2 (10(A), A) € B(0, p1) x R*,0 < py < po
where the smooth vector field Zy € C}(D; R?") is defined in (§1.2).

17)

As a consequence.the continuous process
b

Z(t, A) 2 ((t, \), Z(t, \)) ,t € [0,a], A € R™ is a loca Isolution of the corresponding system
of characteristics (see §1.;) and using (15) we write the equations fulfilled by = = (¢, A)

as follows

18) #(t, A) 2 J(B(2), Go(t, A); Bo(t, A)) = &o(t, A)+

13



fX olt, A))d6, B(t) = (ta(2), - taa ()

J
Here,the continuously differentiable process

70 = Zo(t, \) ,y0 = Do(t, A) and 2o = Z(t, ), € [0,a], A € R",are obtained from (17)
with the following integral form

t ~
19) .’i’o(t, /\) =+ on(ﬁ(S), 20(8, )\)ds,t € [O, a], AER
0
t ~
20) go(t, A) = yo + fYo(ﬁ(s), %(s,\)ds, t € [0,a], A € R* where
0

21) ( ‘}%((5,’,:;)) ) = [%Sg(?; Zo)ylzo (S(p, 20))

are smooth and bounded vector fields for p € B(0, ) C Dy, and
2 € Dy 2 B(0, py) x R* C R*"+1.
Using 19) in18) we see easily that the following algebraic equation

29) &(t, ) =

has a unique solution A = ¥(t, z),t € [0,a],z € R, verifying

23)2(t, (t,z)) =z, (2@ AN) =At€ [0,a], z, A € R,
Denote

24) y(t, %) = §(t, (¢, 2)) = (u(t, 2), p(t, 2)

and by definition (see (¢, (¢, A)) = A)

25) u(t, £(t; ) = a(t, A), p(t, 2(t, ) = p(t, A)

A local solution for s.p.d.e (a) is asimilated with the continiuous process in(24) provided
we are able to show

[1>

ou
26) —(t,z) = p(t,z),t € [0,a], z € R* and

ox
27)tf [deu(t, )], —pen tfdtu t, ) — (p(t, ), diZ(t, M)

tl
- for any [¢,t"] C [0, q]
Here the left side in (27) is defined as

t" ¢
28) [ ldwu(t, z)],_ _a(t) = hilgf =" (£, (t, %)) p=ae (1) A2
t t

14



where @°(¢, ) = we (¢, 9°(t, 2)) with z°(¢, ¢¢(t, z)) = z,9°(t, 2°(t, A)) = A

The smooth aproximation 2°(t, A) 2 (ye(t, A),z°(t, N)) 2 S(p°(t); 20(t, )t € [0,a], A € R"

is constructed as inLemmal (see (1) or §2.13) according to the differential equations
(L2t = ( “(t); 20(t, A) G2 (8, A)+

+ Exr(t)a(ae(t)) (25 (5, 0) 52 (2)

29) m "
(1) = S (alo (1) (o (D) Gt € 0,

[ 2(0,2) = 20(3) £ (uo(Y), Bruo(A), A), 0(0) = 0
Relying on the proof of Lemma 1 we get

30) lima*(1, ) = £(t, ) 2 (i(t, 2), &(t, N)) in Ly(Q, P) for each (¢, A) € [0,a] x R,

where z = (t, ) is a local solution of the integral equations given in Lemmal

Lemma 3. Under the same condition as in Lemma 1 define 2(¢, A) = S((t); 20(t, A))
where 2(t, \)) ,t € [0,a], A € R", is the unique solution of the differential equation in(17).

Then z = 2(t, A),t € [0,a], A € R",is a local solution of the associated stochastic system of

characteristics (o) i.e.

t

) 2(t, ) = 2(A) + [Zo(2(s, ) ds + }%j)@ (s) Z; (2(s,\)) ® dw;(s) associated with
0 =10
s.p.de(a). ’
In addition let u(t, z) = a(t, (t,3)),p (t,z) = p(t, ¥ (t,z)) where

y (t,\) 2 (a(t,\),p(t,A)) and A = 9 (t,z), is the unique solution of the algebraic equa-
tions(22). Then (26) and (27) hold true,li.e.
c

a d“(t z) = p(t,z),t € [0,a],z € R",
t/l L/I t//
) [ dyu(t, )] msg fdtut A) +f \), Gpgo(2(t, A))) di+
tl
m t”
+Zer (t) (p(t, \), Opg;(2(t, \))) ® dw;(t) for any [¢',t"] C [0, a],where
J=1e

the left hand side in (***) is defined in (28).
Proof
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By hypothesis the continuous process Z(t, A) 2 S(p(t); 20(t,A)), ¢ € [0,a] is fulfilling the
integral equations given in Lemma 1 and taking zo = %(t,A),t € [0,a] as the unique
solution of the differential equations in (17) we get easily the conclusion (*) fulfilled.As
far as the smooth approximation z = 2¢ (¢, A) given in (29) is used we may and do define
20 = 30(t, A) ,t € [0, al,as the unique solution of the following ordinary differential equations

é0(1,3) = [820%(1); 2008, )] Zo (S(o*(E)s (6, V) € [0,
20(0,A) 2 20 (A) £ (ug (\), Bruo (A), A)
Using (31)in (29) we get easily

42(1,0) = Zo(a(t, V) + (D0 (0) Z5(* (6 ) T O

31)

dt which can be assimilated

32)
#(0,0) = 20(A), t € [0,a], 22 (8, 1) = (4" (,N),2° (£, A))

with the characteristic system associated with the scalar equation
8, (t, ) = golz, W (¢, ), Oz U (t, z))+

33) +g‘lgj (z, @ (¢, ), 0,0 (¢, ), X (a0 () G2 (1)
uf(0,z) = wo(z),z € R

A direct computation used in the deterministic case and applied here allow one to see that

34) 4°(t, x) = wf (¢, 9e (¢, z)) with 2°(¢,¥°(¢,2)) = z,9°(¢,2°(¢, A)) = A is obtaining to

35) 0, (¢, ©) = p(t,z) = p°(t,¥°(t,2)),t € [0,z €R™.
Rewrite (35) along to x = 2°(t, A) for u® defined in (34) and obtain

36) %;gwg ((t,z5(¢,A)) = p°(t, \), t € [0,a], A € R*.where %%(t,x@(t, A) =[5 (¢, /\)}_1

It shows that

37) 2 (t, \) = pe(t, A2 (t, M), (t,A) € [0,a] x R?

and usingli{%zg(t, A) = 2(t,A) 2 (9 (t,\),Z (¢, ) in Ly(Q2, P) uniformly with respect to
t € [0, al,we get

<o 02° [ 9y e el % :
38) il\ir(l) 02 (1, A) = il\% (22, 0), 22 (8, 0)) = (§2(t,A), ZE (¢, A))in Lo(8, P),for each (2, ) €
[0,a] x R™.
By letting ¢ — 0 in37) and using (38) one sees easily that it holds

39) (¢, A) = p(t, A)EE (¢, M), (t, A) € [0,a] x R* which shows the identity between Opu(t, z)
and p(t, z) = p(t, v (t,z))along to = £(t, A) ,ie.
40) Qpu(t, 2(t, N)) = p(t, A), (¢, A) € [0,a] x R
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Take )\ = 9(t,z) in 40) and we get the conclusion (**) whereu(t,z) = 4 (¢,v (¢,z)) and
p(t,z) = p(t, (t,)).

The last conclusion (***) is obtained by the following direct computation

t“ t” t”

A1) [ [0 (t, )] ey py At = [L (8, N)dt — [ (pF(t,)), (8, ) dt =

t’ t/ t’

t”

= () = () ] (06 ), By (1, V)
35 s () (0°(0) 00,0, By (1 ) “52 )t

Letting & — 0 in(41) we get (***) and the proof is complete.

The following theorem is a direct consequence of the results stated in Lemma 3.

Theorem 1

Let g; (z,u,p),i € {1,..,m}) be given such that the hypothesis (H;) is fulfilled.Let 2 (¢, A) =
(5 (t,\),z(t,\),(t,A) € [0,a] x R™ be the local solution associated with the system
of characteristics defined in Lemma 3. Let u(t, z) 2 a(t, ¥(t, z)),p(t, x) — p(t, ¢ (t,x))
where y(t, ) = 2 (a(t, A),p(¢, A)) and A = 9(t, z) is the solution in(22) .Then O u(t,z) =
p(t.z),(t,z) € [0,a] x R* and v = u(t,z) is a local solution of the s.p.d.e.(o) along
to z = 2(t,A), ie. u(0,z) = w(z),z € R and [deu(t, )],z = 90 (2(F,A)) dt +

m

ZXT( ) g;(2(t, \)) @ dw;(t) for ¢t € [0,a] where

[ [dus(t, 2) ]y ry = (7, 2) — 8 7‘ ), Bpg0((t, A))) de+

tl
m t/l
+2° [x (8) (B, A), Opg; (2(2, A))) © duw;(t) for any [¢',2"] C [0, ]
J=L
As far as the s.p.d.e.(f3) is concerned, relying on the local solution associated with the
parabolic stochastic differential equation defined in (f;) ,we may and do define a local
m
solution fulfilling (B) along to x = Z£(t, \) 22+ > byw;(t A 7) assuming in adition that
=1
b; 2 —0pg; (2, u, D) & X (z),1 € {1,..,m} are some constant vectors in R* .The given
smooth functions g; € C° (R™ x B(0,p)),7 € {1,..,m} are obeying to some hypothesis
used in Theorem 1 and the general results proved in Lemma 1 and Lemma 2 are still
valid where the continuous and non F; -adapted process z = Z(t, ) £ (yo(t,N), A),t €
[0,a], A € R™ has to be defined according to the parabolic stochastic differential equation
given in(f;) . In this case ,a substitute for the conclusion given in Lemma 3 is the following
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Lemma 4. Let f € C([0,T]; CZ (R* x B(0,p))) and

g; €CP(R* x B(0,p)),5 €{1,., m} be given such that the hypothesis(H;) is fulfilled.
Assume ug € C3 (R™) with (ug (z) , 0suo (7)) € B (0, po) C R*** for any z € R™.

Then there exist continuous process

Jo(t, ) : [0,a] xR™ = B (0, p1) C R*,0 < pp < p1 < pand p(t) : [0,a] = B(0,p) € Dy
such that

) o € Cp7 ([, "] x R™; B (0, pr)) for any [¢,¢"] C [0, a

solution of s.p.d.e.(3;) where Zy(t, \) = (Go(t, N), A)

Proof

By hypotheses, the conclusion in Lemma 1 are fulfilled for the smooth mapping Z(t, ) £
S(p(t): 20(t, A)) where zo(t, A), t € [¢,¢"] C (0, a] is continuously differentiable. On the other
hand using (12) and (15) we express Z(t, A) = S(f(t); 20(t, A) = (9(t, \), &(t, \)),where
42) (¢, \) = G(H(t), A vo(t, A), ¢ € [0,a], A € R*,and the smooth mapping =
G(p, A\ yo),p € B(0,p) € Dy, A € R, y0 € B(0, 1) C R**1is defined such that

43) %(p, A, %o) is a nonsingular matrix.

According to the integral equation in Lemma 1 and using the continuously differentiable
process '
Z(t ) = (Go(t, M), ) € B(0,p) x R, t € (0,a],we get the following stochastic differential

equations.

dyfi(t, A) = 2E(B(t), A, Go(t, A)) B2 (¢, A)dt + ixT (t) Y;(2(t, N)) ® dw;(t),

44) o ;
9(0, ) = o (A) 2 (ug (A), Onug (N)) € B(0, po) € R™,0 < po < p1

where the smooth vector fields Z;(z) = ( X(z) ) ,j €{1,..,m} are defined in (§ 2.1)
J

We are looking for the unknown y = §o(t, A),¢ € [0,a], A € R* such that the s.p.d.e.(5)
in § 1 coincides with the stochastic differential equation (44) and it implies

45) gﬁ(ﬁ(t)’ )‘a QO(t7 /\))%(tv /\) = A)\@:/(t, /\>

. X X ot N ] 7t 5
FYo(t, B8, 0), 52 A), 033 1) [ 252 |t e 0,0, AR

where the vector field Yy (¢, z,y, 0,y) is defined in (§1.5;) and
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" -1
46) §(t, A) = y(t, 3(t, N)), Bzy(t, £(t, A)) = 0x4(t, A) [%a%\l&] are used. Here the continuous
process '
2(t,A) = J(B(t), Jolt, \); A), ¢ € [0,a], A € R".is expressed using the smooth mapping
J(p, Yo, To) defined in (15) and obeying to

A7) 25(1,0) = | 25 (5(1), Go(t, )i V) + 5 (B(2), Golt, A)i ) Oaolt V)

dzg
is a nonsingular matrix for any ¢ € [0,a], A € R™.
It allows one to find a unique smooth solution A = (¢, z) fulfilling the following algebraic
equations.
48) 2(t,(t, x)) = z,9(t, £ (¢, X)) = A, z,t € [0,a], A € R™,

By definition #(t, A) is second order continuously differentiable with respect to A € R”
provided yo € C}° ([t',¢"] x R*; B (0, p1))for any [t',#] C [0,a] and using(48) we obtain
a second order continuously differentiable mapping A = ¥(t, z) with respect to z € R*
provided ¢ € [t', "], define a smooth mapping of z € R™.

49) y(t, x) 2 9(t, ¥(t,z)),t € [t',t"] C [0,a] obeying to(46). Using (42)and (47) we rewrite
(45) as a parabolic equation for the unknown Go(t, A)
3%?0(15, )‘) = AA?)OU’: /\) o }A/O(ta /\; Qo(tv /\)7 8/\?20(t> )‘))’ te [0: a]
90(0,2) = 50 (A) £ (uo (1), Do (1)) € B (0, p0) C R**!
where the Lipschitz continuous vector field Yo(t, A, yo, OrJo)with respect to Jo, 9;9o € B (0,p1),0 <
po < p1, 1s computed such that

50)

51) Axdio(t, ) + Yo(t, A, Go(t, A), Oato(t, A)) = _
2 (5(2), A, o(t, V)] (Amu \) + Yolt, 3(t, A), 30t 1), Oxi (6, V) [ 2562 )

dyo
Using (42) and a direct computation we get %(t, z, o, OxiJo) as a continuous and bounded
function of (£, A) € [0,a] x R™, 4o, 890 € B(0,p) C R*+! 4 € {1,..,n} being Lipschitz
continuous with respect to fo, 8;90 € B(0, p1),i € {1, ., R
The parabolic equation in(50) obeyes to the usual condition for writting its solution in

integral form
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[ Go(t, \) = Iilyo(a:)P(t,)\,x)das+

. ) .
J + fdszo(s,:r;,g}o(s,x),azgjo(s,x)P(t -5, )\,.’E)d.’E
0 Rn
52) Orio(t, A) = f@zyo(x)P(t,)\,x)dx+
Rn

t ~
+ [ds [ Yo(s, z,90(s, ), 090(s, 7)) OrP(t — s, \,z)dz
\ 0 Rn

for t € [0,a],A € R",where 0 < a < T is found independently of w € £,A € R*,and
P(r,\,z),7 >0, A,z € R* is the fundamental solution solving the parabolic equation

53) 8, P(r, \,z) = AyP(T, A, ) obeing to [ P(1, A, z)dz =1
Rﬂ.

for any 7 > 0, A € R".

It has the form

54) P(7, A, x) = (47r7)_% exp—'z;ﬂz,r > 0,z,A € R"and induces a unique solution
Go(t, A), OnJo(t, A) solving the integral equation 52) as continuous process of ¢ € [0, a] and
satisfying

55) 1o € CI2([t', "] x R*; B (0, 1)), 80 (0, A) = 9o (1), 9o (t, A)obeyes to (50) for any ¢ €
[¢',¢"] C [0, a]

As a consequence, §(t, \) = G(p(t), N 90(t, N)), t € [0,a], A € R* is a solution of s.p.d.e (B1)
and the proof is complete .

Remark

The conclusion in the above given Lemma 4 are obtained using the main hypothesis (H)
fulfilled by the smooth function g;,j € {1,..,m}.A solution for s.p.d.e (8) is found using

the continuous process §(t,A),t € [0,a],A € R™ and the smooth mapping A 2 ¥ (t, z)
satistying the algebraic equation (48) .

The computation of the Laplacian [Agy (t,7)],-5() along to the continuous processz =
#(t, ) is not a simple one for y(t, z) 2 g(t,¥(t,x).)

The simpliest form of the laplacian is available provided ,we assume,in adition that 0pg;(z,u,p)
b, € R" i € {1,..,m} are some constant vectors and we get [Agy (t,2)],—p0) = AaF (£, A)
by a direct computation.

A solution for s.p.d.e.(8) is constructed as in the following

‘Theorem 2

Let f € C([0,T];C? (R* x B(0,0)))uo € C*(R*,R) be given such that yo(\) = (uo(A), Oruo(A)) €

B(0, po) € R**'and diye(A) € B(0, pg) SR i€ {1,..,n},A € R* Let g;,j € {1,..,m}be
given fufilling the hypothesis(H,) and 8,g,(z,u,p) = b; € R*,j € {1,..,m}.Define £(¢,\) =
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A Sy (tAN), (1 2) = Sty (00) and y(t,2) £ 56, (4, 2) 2 (0 (6,9) p (63 1 €
[0, é] z € R* ,where §(t,\) = (]u (t,z),p(t,z)) is the solution of the equation (B;) given in

Lemma 4.

Then u = u(t, z),¢ € [0,a], 7 € R" is a local solution of s.p.d.e (8) along to z = z(t, A)jie.
[Ozu(t, 7)) z00) = P2, A) (D (t,3)]mppy = AaG (8 A) , u(0, r) = up(z) and
#) [deult, )]sy = [AAE (& A) + f(2, 2(8, A)] dt

+§x7 (1) g;(2(t, A)) @dwy (2), t € [0,a] where 2(1,A) = (§(t, ), (t, )

and
t”
**) f[dtu(ta x)]z:a‘c(t,)\) = ﬂ(t”a /\) - ﬂ’<t/> )‘)+
t/
tl/

+foT p(t, A), bj) ® dw;(t)

j=1
Proof
By hypotheses the conclusion in Lemma 4 hold true and let 9o(t,A) @ [0,a] x R* —
B(0, ;1) € R* . p(t) : [0,a] = B(0,p) C Dy = ﬁ [—a;, a;] be the continuous process ful-

1=l
filling (C,)and(Cy) , of Lemma 4 with 5(t, A) = (§(t, A), #(t, \)) = S(B(2); 20(t, ), Zo(t, ) 2
(Go(t, A), A). Usmg the stochastic differential equation (8;) fulfilled by y = 9(¢, A) along to
% =§tA) = - Z bjw;(t A \)we rewrite the corresponding s.p.d.e for the scalar compo-
J=1

nent u = 4(t, A) of §(t, z) 2 (@ (t,A),p(t, A))as follows

4t V) + 3o (8) (Bt A), by) ® duy(t) =
56) = i
[AW(ta /\) + f(t> ZA(tﬂ A))] dt + ZXT (t) g; (2(t? /\)) ® dwj(t)

j=1
for any t € [0,a],u(0,A) = ug(A), A € R™.
s [ Yi(2) .
Here we have used the smooth vector fields Z;(z) = )t € {1,..,m},as defined
in (o) and the corresponding vector field Yo(t,z,y,0:y) along to z = z(t, A) £ N —

S bjw;(t A A) relying on the hypothesis 0,9i(z,u,p) = by e R*, 1 € {1,., m}.According to
Jj=1
the conclusion (C;) in Lemma 4 we write the s.p.d.e fulfilled by f(t, A),t € [0, al, A € R*as

follows
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dip(t, A) = {ANB(E, A) + Ox [ £ (8, £(2, A), 4(t, A), B(t, A))]} di+
57) +ZXT()6A (g5 (£(2, ), 4(t, A), (¢, N))] ® dw;(),t € [0,
50, /\) po(A), A € R®

where y(t,z) = y(t, 9 (t, 7)) = (At ¥(t, %), 5(t, ¥ (4, 7)) and

W(t,z) =z + S bjwi(t A)N),t € [0,a],z € R* is fulfilling the following algebraic equations
7=1

58) 2(t, ¥(t, ) = z,9%(t, (¢, A) = A, Z(t,A) = % (t,z) = I, for any t € [0,a], z, A € R".
The conclusion in Theorem 2 is proved provided the continuous process u(t, x) = a(t, ¥ (¢, x))
and p(t, z) 2 p(t,¥(t, z)), t € [0,a], z € R*. are obeying to the following equations

59) [Ozu(t, )] —s00) = B2, A),te[0,a], » e R

60) [Agu(t, 2)],sp = OAri(t,2),t €[0,a], A € R?

As far as(59) is concerned using (58) ,we rewrite it as follows

61) Oza(t,z) = p(t, A), ¢t € [0,a], A € R?

where §(t, \) = ( (t,\),p (t,\))is a solution of s.p.d.e.(56)and (57).

Taking the smooth approximation

(L, A) 2 S (0% (1) 20 (£, N) = (¥ (¢, A) , 2° (¢, A)) ,where

62) i () a (0 ()3 (0°(£) “Z2(2), t € [0, ]
o (0) 0
(Y5

and 25(t,A) =
BE (8, 0) = Ayt (t, A) + Yo(t,2°(8, A), 47 (£, A), Oay* (8, M)+

63) f: o (1) 0 (5 () Y (2 (1, ), 9 (8, A), By (8, 1) 2o (8),
€ [0,a], 4%(0, A) = 30(A) = (uo(A), Byio(M)

and

64)
{ z (O,/\) A

The solution of (63) is represented in integral form as follows

| l

(t,\),\),t € [0,a] we get the following system of parabolic equation

AL dwe (¢
=X (Dalo ) 20, te0,q

65) y°(t, A) = [yo(z)P(¢, A, z)dz+
Rr _
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+jd3fF(57$€(S, z),y°(s, ), 0y°(s,2)) P(t — s, A, 7)dz

0 Re
where
F(s,z5(s,2),y°(s,2), 0zy°(s,2)) = Yo (s, 25(s, T), 3708, T); Opiitls, £)) +
66) + L (5) @ (pF ()Y (5,25, ), 7(5,2), 0a9°(5,2) i,
]:

P(r,\ z) = (477)7% exp ——Jx—gﬁ,v' >0,\zeR

67)0hE (8, A) 2 [ (Bavo(2)) P(t, A, 2)dz+

Rn

t
+[ds [ F(s,z°(s,2),¥°(s, T), 0.y%(s,1))O\P(t — s, A, z)dx
0 Re

The integral equation (65) and (67) have a unique continuous solution

(v(s, ), 02y°(s,2)),¢ € [0,a], A € R* and making the transformation z — A\ = 4tz for
the first integral in(65), z — A = \/4(t — s)z for the second integral in (65) we get ye(t, )
expressed as follows

68) y°(t, A) = {I{Lyo(/\ + VA4tz)exp — | z [*)dz+

+£dst Fo(s, A+ /4(t — 8)z) exp — | z |*)dz} (r)"2

where Fy(s, x) 2 F(s,2%(s,z),y°(s,z), 0:y° (s, 7))

Using the special form of the vector fields Yo, ¥} and

Yo () = (uo(2), Opuo(x)) we get y*(, A) 2 (uf(t, ), p°(t, A)) in (68) with the property

69) pe(t, A) = hus(t, \),t € [0,a], A € R* for each € > 0

On the oder hand,letting ¢ — 0 , we get

70) §(t,A) £ (@(t,A),p(t,N) = lim (u*(£, ), Byu (£, X)) in Lo (2, P) uniformly with re-
spect to t € [0,a] and A is bounded set of R”,

It shows that 0\a(t, A),t € [0,a], A € R™ exists as a continuous process and

71) Oya(t, A) = p(t, A),t € [0,a], A € R*where a(t, M) and p(t, ) are fulfilling the s.p.d.e
.(56) and correspondingly (57)

Recalling the definition u(t, x) 2 a(t, 9 (t, z)) where A = 9(t, z) obeyes to (58) we see easily
that the equations (60) also hold true and the conclusion (*) of Theorem 1 coincides with
s.p.d.e(56) provided the equations (**) are proved.
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In this respect, we use again the smooth version u = wt(t, ) = uf(t,¢*°(¢,z)) and the
definition (see (28))

tr tn

72) f[dtu(t7x)]x::%(t,/\) = 21{‘% ‘tf{at’ae(ta x)]m::i(t,)\) at
/4

t
As far as @€(t, z°(t, \)) = u* (¢, ) and using (69) we rewrite

73) [atﬂ’g(t? x)]x:xs(t,)\) = 8tu6 (t7 /\> - <p6 (tv /\) ) %—Uti (ta /\)> =
m dw®

= du (t,7) + Y xe (B) @ (0°(6)) (pF (1, A), by) - (8), ¢ € [0,]

Jj=1
where o = 0% (t) ,t € [0, al,is defined as in (62) .

According to 73) and limy®(¢, ) = (¢, ) in Ly (Q, P) we rewrite (72) as follows

74) [ [drut, sy = UELN) — Gt ) + iifx (£) (3(t, 1), by) ® duw; (t)

tl
for any [t', t"] C (0,a] and the proof is complete.
§4.Aplications. Control problems associated with non Fij-adapted solutions

Here are included two applications regarding Pontryagin’s principle associated with stochas-
tic differential equations and non Fi-adapted solutions subjected to some vector valued cost

functions.

§4.1 Usualy a stochastic optimal control problem is described by a stochastic differential
system with a control function. '

o | = sz ]é Yo (£) 95(t, 7) ® duw; (1) ~
2(0) = zo, (t,z,u) € [0,T] x X x U o

where X C R U C R™are some fixed closed sets and w(t) = (wi(t), .., wa(t)),

t € [0,T), is a standard Wiener process over a complete filtered probability space {Q,F,P{FR} 1 F}

Here 7 (w) : © — [0,t/] is a stopping time used for getting a bounded solution z(t,w) €
B(z,p) C X .The control function u(-) € Lo ([0,T] x ;U) is taken in a class A of
piecewise continuous trajectories u(t,w),t € [0,T] for each w € .

For each u(-) € A we define the coresponding solution z = z(t, w;u), (t,w) € [0,T] x Q, of
(*) and associate the following pathwise functional.

iy
) J9(z;u) = F(2(T,w;uw)) + [ fo(t, z(t,w;u), u(t,w)dtfor each w €
0

Assume that (2(¢,w); a(t,w)) € X x U, {(t,w) € [0,T] x £, is minimizing the functional (**)
for each w € Q and as far as the nacessary conditions are concerned it is meaningfull to solve
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an associated Hamilton -Iacobi system of stochastic differential equations (see(C;) — (Cs))
provided the given f,g; € R* and F, f, € R are continuously differentiable with respect to

z € B($07p)

Noticing that the control function u(-) € A is not an F,-adapted one (see u(t,-) is non
F,-mesurable),we are forced to use some special type of stochastic integral “®” appearing
in (*) and the associated Hamilton-Iacobi system as well. The stochastic integral “®”
coincides with the standard Fisk-Stratonovich integral provided the both control function
u(-) and the solution of(*) are Fi-adapted processes.The meaning of a stochastic integral
“® " associated with a nonF;-adapted solution is clarified working with Langevin’s ap-
proximarion w(¢),t € [0, T] of the original Wiener process w (t) € R? and representing a

solution of (*) as
z(t,w;u) = G(p(t,w); y(t, w;u)), ¢t € [0,T],w € Q for each u(-) € A

Here the smooth mapping G(p, ) : Dy X B(%g, p0) = X C R" is generated as an orbit

solution associated with a finite dimensional Lie algebra determined by the smooth (C*)
M

difusion vector fields {gi(t,-), .., ga(t,-)} for each ¢ € [0,T] where Dy = [] [—ai, a;] and
i=1

B(zg, po) C X is a fixed ball .

In adition p(t,w) : [0, T]x  — Dy, is a continuous and F-adapted process,while y(t, w;u),
is a picewise continuously differentiable and non Fi-adapted process of ¢ € [0, 7] for each
u(-) € A.The above given clues allow us to convert the stochastic control problem into a
detrministic one with respect to the new state variable y € B(zg, po) € X fulfilling the
following control system. :

0) { @ = [%(p(t,w); )] f(t,Gp(t,w);y),u) £ f(t,y, )

dt
y(0) =z0 € X

Let y = y“(t,u),t € [0,T], be the picewise continuously differentible solution associated

with u(-) € A for each w € Q and define the corresponding functional

00) 1°(y;u) = F@*(T;u)) + z'fé”(t,y“(t; u), u(t,w))dt

where F¥(y) = F(G(p(t;,w);y)) and f§(t,y,u) = folt,G (p(t,w);y),uw)

Denote §*(t) = y*(t,%),t € [0,T],w € §, and we get that (§*(t), @(t,w)) is an optimal pair
for the optimal control problem determined by the dynamic given in ((J) and the functional
I“(y;u) defined as in (OJO) .Write the corresponding necessary optimaly conditions and
we get the associated Hamilton-Iacobi system

(1) = Ho- (6, 5°(), 4t w), ¥ (1)), 7(0) = 2o

dt

C){ () = =% (6, 3(8), At w), ¥ (1)), 0 (T) = 3, F(§°(T))

dt

Oy
minH(t,(2), u, 0 (1)), 9*(8)) = H (6, 3 (1), 0(t, ), ¥°(2)), 9 (1))
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for t € [0, T], where the augmented Lagrangean
He(t,y,u, ) = ¥ fe(t,y,u) + f§'(t,y,u)is used and ¥ € R™ is a row vector.

The explicit form of the Hamilton-Iacobi equation (C) lead us to the corresponding stochas-
tic differential equation associated with the original control problem (*) and(**) via an
associated stochastic differential form

H(t,y, u,; dt, dw(t))) = [0f (t3,u) + folt, z,u)] di + ixf(t)ng (t, z) ® dw;(?)

j=1

Recall that Z(t,w) = G(p(t,w); §*(t)) and define
Blt,w) = v (1) [ p(tw); ()] Tt €0, T w e
Then the following stochastic Hamilton-Iacobi system stands for the corresponding Pon-
tryagin principle
dii = (¢, a(t,w), v (t); dt, dw(t)) = f(t, &, A(t, w)di+

d
C1) + Y x-(8)g;(t, Z) @ dw;(t)

dp = — 2L (8, 5 (t,w), At w), B); db, dw(t)) =
=— [wg—f(t,l"(t,w Ja(t,w)) + a—xo(t,:i t,w), 4(t,w)] di-
C2) S WPt E(tw)) ® duws(2)

min Hg(t,a?(t,w),u,zﬁ(t,w)) = Ho(t,i"(t,w),ﬂ(t,w),d;(t,w))
Cy)§ a.et e [0,T],for each w € 2, where
Ho(t,z,u,v) = ¢ f(t,z,u) + folt,z,u)

The conclusion ((C}) — (C3))are a direct consequence of the deterministic Pontryagin’s
principle (C) provided we notice that the (n x n) matrices M (t,w) = 3% (p(t,w); 7*(t)) and

~ -1
N(t,w) = [M(t, w)J are fulfilling the following linear stochastic differential equations

- d -
d M = 3L(t,3(t,w), At w)) Mdt + 3" x- (6) S (¢, #(t, w)) M @ duwy (1)
| =~

AN = ~N2(t,7(t,w), a(t, w))dt wa N%i(t,&(t,w)) ® dw;(t)
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Applying a stochastic rule of derivation associated with the stochastic differential equations
(C)),(Cy) and (C) we get the conclusions (C3) and (Cs) fulfilled .

In adition,the equation appearing in (Cy) are obtained from the original system (x) by a
straight derivation with respect to the initial value zo € X.

§4.2 Dynamical game theory associated with Nash-equilibrum and stochastic
perturbation

A differential game with stochastic perturbation is determined by a dynamic of the state
variable z € X C R™ defined by a system of stochastic differential equations

d
1 dix = f(t,z,uL,..,un) dt + Y g;(t, ) ® dw;(t)
7=l
z(0) = zg, (£, z,u1, .., un) € [0,tf]] x X x Uy x .. x Uy
where U; C R™ is a fixed set and is a standard d-dimensional Wiener process over a filtered
complete probanility space{Q2, F, P, {F:} T F}.

The control function w () = (uy (+), .., un () is taken in the class A of admissible controls
which are defined by bounded and measurable functions

N
u(-) 1 @ — U = []U; with piecewise continuous trajectories u(t,w),t € [0,%;], over the

i=1
product measurable space {[0,¢7] x 2, BQ F,dt ® P}

For each admissible control u(-) € A we define z = z(t,w;u), (t,w) € [0,tf] x Q as
the corresponding solution fulfilling the stochastic differential equation given in (1) and

associate the following functionals
2) Ji(w,u) = F* (z (tr,w;u)+ [ fi (6 z (twiu),u(t,w))dti € {1,2, .., N} for each w € Q.

Denote A; the corresponding class of admisible controls w; (-),7 € {1,..,N} and write
N

A=T[A
1=1

The following object

3y (w) = {[0,t], X =R", Us, A;, f, w0, Ji (W, ) }iop 9, v ow € € s called a stochastic
differential game with N -players and open loop strategies

To be sure that a solution z(t,w;u), (t,w) € [0, 7] x Q2 satisfying (1) exists and the function-
als J; (w,-),7 € {1,.., N} are well defined we need and do assume the following hypothesis
i) 9;(t, ) 2 A;(t)z + bj(t),where the (n x n) matrix A;(t) and b;(¢) € R",j € {1, o d}
are continuous function;

0) f(t,z,u) € R*, Fi(z) € R, fi(t,z,u) € R4 € {1,.., N}are continuous function on
[0,¢;] x R* x U and | f(t,z,u) |< kr(1+ | 2 |), for any z € R",t € [0,tf] and u €
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N
B(0,R) C J[JR™ = R™ where kg > 0 is a constant.

1=1 )
i) | 62" u) — f(t,2',u) |< Ly | 2" — ' |for any t € [0,¢;],u € B(0,R) € R™,
2! 1" € B(zxy,p) C R",where L > 0 is a constant.
An admissible solution z(t,w;u) for (1) is represented as follows
4) z(t,w;u) = Gt,w)(y(t,w;u)) +n(t,w), t € [0,f],w € Q where the nonsingular (n X n)
matrix G
and n € R are defined as continuous and F,-adapted process fulfilling the following
stochastic differential equation

5) dtG = iA](t)GO dwj(t),G(O,w) = In,t € [O,tf],

j=1
d t
= [bi(s), dw;(s),t € [0,¢],
=
where “o” means Fisk-Stratonovich integral and stands for the standard Ito’s integral.
The vector value function y(t,w;u) € R is defined as a differentiable and non F;-adapted

process fulfilling the following system of differentiable equation

B _ (G(t,w)]) " f (1 G w) (9) + 1 ((w),u(tw)) 2

dt
6) éf(w,t,y,u(t,w)),te [0, t4]
y(O) = Xp € R"

Remark 1

The (n x n) matrix G(t,w) is invertible and its inverse K (¢, w) = [G(t,w)]”" obeyes to the
following linear equations '

7) diK = ~ilKAj(t) o dw;(t), K(0) = I, t € [0, tf].

=
Definition 1 (%;(-) € A; is the best replay)
Let Dy(w),w € €, be a N-players differential game defined as in (3).Denote u(_i(-) =
(g (-) oy i1 (), wig1 (4) - un (7)) € ‘H'A]- for each. i € {1,.., N} We say that 4;(-) € A;
is the best replay against u(_g(-) if 7
Ji(w; (w(—iy, G)) < Jiw; (u(—i), wi)) for any u; € A, w € S;

Denote R; (u(—)) as the set consisting of all best replays against

) () € [TA; -

J#
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Definition 2 (Nash-equilibrum).

Let Dy(w),w € Q, be a N-players differential game defined as in (3). We say that u (-) =
N

(u1 (), ..,un (-)) € []As is a Nash eqilibrum if u; (-) € R; (u(—s) for each s € {1,.., N} and
i=l1

w € €

Remark 2

A Nash equilibrum solution (z*(t,w),u*(t,w)), (t,w) € [0,ts] x © of the differential game
[y(w),w € Q. defined in (3) leed us to a Nash equilibrum solution (y*(¢,w), u*(¢,w))
associated with anN-players differential game defined as follows

yv(w) = {[O,tf],Y:Rn,Ui,Ai,f(w,.)xO,Ji(w,-)}_ ; N},w € ,where f(w,t,y,u
€114y

) £

2) ji(w; ) = Fi(w,y(tf,w; u)) + jfé(w,t,y(t,w; u), u(t,w))dt with
0

Fi(w,y) £ F'(w, G(t;,w)(y) + n(ts,w)) and

Filw, t,y;u) 2 fi(t, G(t,w) (y) + n(t,w),u),i € {1,.., N}

The corresponding deterministic dynamic system is described the evolution of the new
state variable y € Y = R" as follows

i){ ‘;—’t = flw,t,y,u),t €[0,t5],w €
y(0) = z¢

As is known, the corresponding necessary conditions with the deterministic differential
game ['y(w) has the following content .

Theorem 1

Let (y* (-),u* (-)) be a Nesh equilibrum solution associated with the deterministic differ-
ential game 'y (w) for each w € §2 .

Assume that the given functions f(t,z,u) € R", F*(z), fi(t,-,u) € R,i € {1,..,N} are
fulfilling the hypothesis (i;)and (i) and in addition f(¢,,u) € CY(R",R) for each (t,u) €
[0,¢;] x U,i € {1,.., N} .Then with

Hi(w,t,y,u, %) 2 T f(w,t,y,u) + fi(w,t,y,u) the following equations hold

C1) Wty w) = U (w, 6,y (¢, w), u*(t,w), ilt,w)), t € [0,2]

éQ) %(t7w) - _aa—lz,i(w’t’y*(t7w)aU*(tvw%@zi(tvw))vt = [O’tf]
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G) Bl w) = Ty F 0,y (t7,0)),0 € Q.
Cl)ﬁ”(w,t,y*(t,w),u*(t,w),tﬂi(t,w)) =

= min Hi(w, t, y*(t,w), (uz‘_i)(t,w), u;), ¥i(t, w))

for each continuity point ¢ € [0,%] of u}(-,w) and any w € 2,4 € {1,..,N}

The proof of this theorem is a rewritting of the Pontrjagine principle associated with
the corresponding optimal control problem for each ¢ € {1,.,N},w € Q relying on
the property that u!(-) is an optimal conrol with respect to the functional J; (w,u;) =

I (w; (uz‘_i),uz)) and u; (1) € A; for each i € {1,.,N} and w € Q .As expected,the
corresponding necessary condition associated with the original Nash-equilibrum solution
(z* (), u* (-)) are a direct consequence of the above given conclusions (C’l) - (C’g) :

Theorem 2

Let (z*(-),u*(-)) be a Nash-equilibrum solution associated with the stochastic differ-
ential game ['y(w) defined in (3).Assume that the given function gy (8 ), J ity m) €
R, Fi(z), fi(t,z,u) € R,j € {1,..,d},i € {1, .., N} are fulfilling the hypothesis (10), (1), (42).In
adition,suppose f(t,-,u) € CY(R*,R) and F(-), fi(t,-,u) € C*(R*,R) for any ({,u) €
[0,¢7] x U and i € {1,.., N}.Then with a stochastic differential form

Hi(t, z, u, ;: dt, dw) = [T f(t,2,u) + f3(t, 2, )] di+
+ >l g;(t, ©) ® dwj(t) the
following equation hold

Ch) dy z*(t,w) = %%(t,a:*(t,w),u*(t,w),l/)i(t,w);dt,dw)
Cy) dythi(t,w) = —%(t,x*(t,w), w(t,w), Yi(t, w); ; dt, dw)
Cs) Yi(ty,w) = Vo (2" (tf,w))

by .
Cy) le(t,x*(t,w),u*(t,w),w‘(t,w);dt, dw) <
0

Ly )
< JH(t 2 (t,w), (uf_y(t,w), ui (¢, w) , ¥i(t, w); dt, dw)
0

for any u; (1) € A;,w € Q1€ {1,..,N}

Remark 3

We notice that the conclusion (Cy) is equivalent to

Cy) Hi(t,z*(t,w),u*(t,w), ¥i(t,w) = 1H;lei[rjlllﬂﬂg(zf,x*(t,w),(7,42‘_1.)(15,w),ui),d)i(t,w)) for each
continuity point ¢ € [0,¢] of u} (-,w) and any w € Q,% € {1,.., N}, where H{(t,z,u, ;) =
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W7 f(t,z,u) + fi(t, z,u) is the drift part of the stochastic differential form H i

In addition, the stochastic Hamilton-Iacobi equations appearing in (C;) and (C3) can be
converted into a deterministic form using the same drift part H{(t, z,u, ;) provided we

represent

v (t,w) = Gt w) (y* (¢, w)) +n(t,w)
VIt w) = 9Tt w)K(tw),t € [0,¢], i € {1,.., N} ,where the (n x n) matrices G and
K are the continuous and solutions associated with linear stochastic differential equa-
tions(5)and (7) correspondingly.
Here (y* (-),u*(-)) is the induced Nash equilibrum solution associated with the determin-
istic differential game ['w(w) whose necessary ncondition are described in Theoreml. The
corresponding Hamilton -Iacobi equations (see(C1), (C2) and (C3)) can be rewritten using
Hi(t,z,u, ;) as follows :

1

5 W (1 w) = K (tw) Gt (t, 7" (Hw), %i(t,w), t € [0, 1]
y* (0,w) = o

Go) U (1 w) = 2L (1, 2% (1, w), u*(t,w), Yi(t, ) G (t,w), t € [0,2/]

éB) U%T(t? w) = (VIFi(x*(tfa w)))TG (tfv LU)

Proof of Theorem 2

The arguments of the proof are contained in the above given remark provided we represent
the equilibrum soution as

2 (t,w) = G(t,w)(y*(t,w)) + n(t,w) where G and 7 are given in (5),and (y*(-),u* (-)) is a
\awh equilibrum solution associated with the deterministic differential game Iy(w),we N

.defined as in theorem 1.The conclusions (C’l) <C4) of theorem1 are true and rewrite
them as in the remark 3 using the drift part Hj of the stochastic differential form H* Define
I (t,w) 2 9T(t,w)K (t,w),t € 0,t7],i € {1,.., N}, and using a stochastic rule of differen-
tiation associated with (5),(7),and (C1) we get the conclusions (C1), (Cy) and (Cs) in the
theorem.The conclusion (Cy) is a direct consequece of the pointwise form given in (Cy

and the proof is complete.
Final conclusion (again about the conclusions (Cy) — (C4) in the Theorem 2 )

The admissible class u; (-) € Ai,i € {1,..,N} accepted for the control variable is too
restricted (see u; (+) is a bounded function )when dealing with linear problems. (differential
games) and cuadratique cost functionals.
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If it is the case,the control set U; = R™ is an unbounded one and from the conclusion (@)

in Remark3 we get %—Zé(t,x*(t,w),u*(t,w),wi(t,c&)) = 0 for any w € Q,t € [0,¢],which
allows to express u! (-) as a function of ; (-) in the following form

Cy) ut (t,w) = (Ri (t) + R (¢)) " BY (£) i (t,w) i € {1,.., N}

N
provided f(t,z,u) £ fo(t,z) + 3. B; (t) u; and the functional J; (w, ) is defined by

i=1

Ji (w,u) = F* (z (tg,w;u)) + {f [hd (z(t,w;u)) + (Ri (t) u(t, w), ui(t, w))]

where R; (t) is a continuous and nonsingular (m; X m;) matrix.
A

Here ; (t,w) = KT (t,w) P (t,w), (t,w) € [0,t7] x Q and by the definition of K (t,w) =
G~ (¢,w) fulfilling the linar stochastic differential equations given in (7) we notice that is
not a bounded on

It is useful,when is necessary,to work with a bounded covector function ; (t,w) and it
will be accomplished using a stopping time 7 (w) : € — [0, ;] with respect to the matrix
solution G (¢, w) and the continuous process 7 (¢, w) defined in (5) .In this respect we fixe
a ball B(I,, R) C M, in the linear space of (n x n) matrices and let B(0,R) C R" be a
ball with the radius R and centered at the origin in R* .Define

7(w) = inf {t € [0,tf] : (G(t,w),n (t,w)) € B(I,, R) x B(0, R)} and we get that the cor-

. L : 1 > .
responding characteristic function x, (t) = 0 :zi is an F;-adapted measurable

process.

Write G(t,w) =Nej (tANw),n(tw) 2 n(t A \,w),and they are bounded local solutions
associated with the stochastic differential equations in (5),i.e.

4Gt w) = S xr (t) A; () G(t,w) o dw;(t), G(0,w) = I,

din) (ta w) = Xt (t) bj (t) dwj(t)7 7 (0’ w) =0,te [0’ tf]

M LM

==l

Associate the corresponding stochastic differential form

n - A . d R
B (13, sty dw) = [075 (62,0 + F bz, w)| di + Do () 9795 (1,7) @ du(t) i €

]:
{1,..,N} and the stochastic dunamical system

ib) { dix = f(t,z,u)dt + éXT (t) g (¢, z) ® dw;(t),t € [0,ty]
@ {0) = ®p '
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With the same functionals J; (w,u),7 € {1,.., N} defined in (2) we may and do write the
corresponding necessary condition for a Nash equilibrum solution (£* (-), u* (-)) associated
with the corresponding stochastic differential game I'y (w) defined bythe dynamic (1) and
the functionals

. _ b
Ji (wyu) = F* (% (tg,wiu)+ [ fo (8 (tr,w;u), u(t,w)) dt,i € {1,.., N} where & (t,w;u),t €
0

[0, %] stands for a solution of the stochastic differential system in (1) corresponding to the
admisible control u(-) € A .Under the same hypotheses as in theorem 2 we gewt the

following necessary conditions

Cy) i (t,w) = 230(t, 5 (t,w), w* (t, ) , it w); d, dw),

CQ) dtlﬁi(taw) = aa—gi(t’i'*(t?w)aU*(uw)a@/;i(taw);;dta d?l))
Cs) Yi(ty,w) = Vo F* (&*(tf,w))

Cu) Hi(t, 2*(t, w), u*(t,w), '(t,w)) =
= min ﬁé(t, *(t,w), (uz_i)(t, W), Us), @ZA)i(t, w))

for each continuity point ¢ € [0,t] of w}(-,w) and any w € {) where

Hi(t,z,u, b;) = T f (t,z,u) + fi (¢, z,u) is the drift part of the stochastic differential form
H.
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