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Interpolation in Grothendieck Institutions

Rtrzvan Diaconescu (r azv an. di ac one s cuG imar . ro)
Institute of Mathcmatics "simion Stoilow", PO Box I-764, Bucharest 0147U), Romania

Abstract. Grothendieck institutions have recently emerged as an important mathematical structure underlying heterogen-

uous multi-logic specification. On the other hand, interpolation properties of logics underlying specification formalisms

play an important role in the study of structured specifications.
In this paper we solve the interpolation problem for Grothendieck institutions. Our main result can be used in the

applications in several different ways. It can be used to establish interpolation properties for multi-logic Grothendieck

institutions, but also to lift interpolation properties from unsorted logics to their many sorted variants. The importance

of the latter resides in the fact that, un-like other structural properties oflogics, many sorted interpolation is a non-trivial

generalization of unsorted interpolation.
The concepts, results, and the applications discussed in this paper are illustrated with several examples from conven-

tional logic and algebraic specification theory.

1. Introduction

The theory of institutions (Goguen and Burstall, 1992) is a categorical abstract model theory which

formalisei the intuitive notion of logical system, including syntax, semantics, and the satisfaction

between them. Institutions become a common tool in the study of algebraic specification theory

and can be considered its most fundamental mathematical structure. It is already an algebraic

specification tradition to have an institution underlying each language or system, in which all lan-

guage/system constructs and features can be rigorously explained as mathematical entities. This has

b""n firct spelt out as a programme with a sample definition of specification language constructs in

(Sannella and Tarlecki, 1988). Most modern algebraic specification languages follow this tradition,

including CASL (Asresiano eta1.,2002). Maude (Meseguer, 1993), or CafeOBJ (Diaconescu and

Futatsugi, 2002).There is an increasing multitude of logics in use as institutions in algebraic specifi-

cation and computing science. Some of them, such as first order predicate (in many variants), second

order, higher oid"r, Horn, type theoretic, equational, modal (in many variants), infinitary logics, etc',

are well known or at least familiar to the ordinary logicians, while others such as behavioural or

rewriting logics are known and used mostly in computing science'

Grothendieck institutions have been introduced by (Diaconescu,2002) and were originally used

for providing a simple homogeneous semantics for heterogeneous multi-logic specification with

CatlOg.J (Diaconescu and Futatsu gi, 2002) by replacing the theory of the so-called 'extra the-

ory morphisms' (Diaconescu, 1998). Later they have been adopted (in a dual form) for providing

semantics for heterogenuous specification with CASL extensions (Mossakowski, 2003).

The Craig Interpolation Property (abbreviatted CI) is one of the basic properties of conventional

first-order logic (Craig, L957; C.C.Chang and H.J.Keisler, 1990) but also an important desirable

property for any logic. Interpolation properties have received much attention in specification theory

".p""iuity 
due to its importance for module algebra based on first order logic (Bergstra et al., 1990)

or-instituiion-independent (Diaconescu et al., 1993; Dimitrakos and Maibaum, 2000), for structured

specification (Cengarle, 1994;Borzys,kowski, 2002), or for heterogeneous specification (Tarlecki,

ZbOO). An institution-independent proof of Craig Interpolation Theorem having a multitude of in-

stances for actual logics has been developed in (Diaconescu,2004) based on a very general concept

of axiomatizability of the actual logic formalized as institution'

In this paper we solve the interpolation problem for Grothendieck institutions. We also present

several ways in which our main result can be used in the applications. We show how it can be

used to establish interpolation properties for multi-logic Grothendieck institutions, but also how to

lift interpolation properties from unsorted logics to their many sorted variants. Vihile the former is

important for tfre study of structured specifications in multi-logic institutions, the importance of the

ft 
t 2oo3 Rdzvan Diaconescu.



2

latter resides in the fact that, unlike other structural properties of logics, many sorted interpolation
is a non-trivial generalization of unsorted interpolation (see (Borzyszkowski, 2001)).

CATEGoRICAL PRELIMINARIES

This work assumes some familiarity with category theory and generally uses the same notations and
terminology as Mac Lane (Maclane, 1998), except that composition is denoted by ";" and written in
the diagrammatic order. The application of functions (functors) to arguments may be written either
normally using parentheses, or else in diagrammatic order without parentheses, or, more rarely, by
using sub-scripts or super-scripts. We use + rather than -+ in denoting natural transformations. The
category of sets is denoted as Se/, and the category of categories I as Cnt . The opposite of a category
C is denoted by CPn. The class of objects of a category C is denoted by lAl; also the set of arrows
in C having the object a as source and the object b as target is denoted asC(a,b).

We say that a class of arrows .9 in a category C is stable under pushouts if and if for each pushout
square in C

u' e S whenever u € S. By reversing the arrows in the definition above we can can define that .9 is
stable under pullbacks.

Let us now recall the concept of indexed category (Par6 and Schumacher, 1978). A good refer-
ence for indexed categories also discussing applications to algebraic specification theory is (Tarlecki
et al., 1991). An indexed category (Tarlecki et al., 1991) is a functor B: Iop -+ Ant; sometimes we
denoreB(l)as Bi@rBi)foranindexi e l l land B(u)asB'for anindexmorphism ue I.Thefol low-
ing 'flattening' construction providing the canonical fibration associated to an indexed category is
known under the name of the Grothendieck construction, and plays an important role in mathemat-
ics. Given an indexed category B: IoP -+ A-at,let Bfl be the Grothendieck category2 having (i,Z),
wi th i  e  l / l  andle lB;1,  asobjects  and(u,q) :  ( i ,X)  -+ ( i ' ,X/ ) ,  wi th  u€l ( i , i / )  and q:2-+ZtBu,
as arrows. The composition of alrows in Bl is defined by (u, <p); (u' , Q') - (u;u' , qt(q'B')).

2. Institutions

Institutions (Goguen and Burstall , IggZ) represent a mathematical meta-theory on logics, techni-

cally based on category theory, which abstracts the Tarskian concept of truth, and which builds on

the idea of the invariance of truth with respect to translation of notation. This invarinace of truth

can also be interpreted that the meaning of a sentence does not depend on the context in which it is

interpreted, which is surely a very basic intuition for classical logic.

DEFINITION 1. An institution I : (S4gn1, Sen1, MoDI, 11) consists of

I. a category Slgn/, whose objects are called signatures,

2. afunctor Senl: Slgn/ -+ Se/, giving for each signature a set whose elements are called sentences

over that signature,

3. a functor Mool: (Srgr?I)op -+ C,at giving for each signature X a category whose objects are

called Z-models, and whose anows are called Z-(model) homomorphisms, and
-l-W" 

,,"". 
"lear 

of any foundational problem related to the "category of all categories"; several solutions can be fbund

in the literature, see, for example (Maclane, 1998).
2 Notice that the terminology 'Grothendieck categories' is used in a rather different way in the context of abelian

categories (Maclane, 1998;.

u+

---------->

u'



4. a relation p!g lMoot(:)l * Sen/(>) for each X e lSignll, called \-satisfaction,

such that for each morphism g: X -+ !/ in Slgn/, the satisfaction condition

M' =r sen/(<p)(e) iff Moo/(tp)(u') tsL"

holds for each Mt€ lMoDl(>/)l and e € Senl(t). We may denote the reduct functor MoDl(g) by

-f,p and the sentence translation Sen/(<p) simply bV q(-).When M : Mt fe we will say that Mt is an

expansion of M along rP. Z

EXAIVIPLE L LetFOL be the institution of rnany sorted first order logic with equality. Its signa-

tures (S, F, P) consist of a set of sort symbols ,S, a set F of function symbols, and a set P of relation

symbols. Each function or relation symbol comes with a string of argument sorts, called arity, and

for functions symbols, a result sort. lal-+, denotes the set of operation symbols with arity vz and sort

s, and P, the set of relation symbols with arity w.
Signature morphisms map the three components in a compatible way. Models M are first order

structures interpreting each sort symbol s as a set Mr, each function symbol o as a function Mo from

the product of the interpretations of the argument sorts to the interpretation of the result sort, and

each relation symbol fi as a subset Mn of the product of the interpretations of the argument sorts.

Sentences are the usual first order sentences built from equational and relational atoms by iterative

application of logical connectives and quantifiers. Sentence translations rename the sorts, function,

and relation symbols. For each signature morphism rp, the reduct Mtl,p of a model M' is defined

by (M' f,p)": Mtr6tor each x sort, function, or relation symbol from the domain signature of rp.

The satisfaction of sentences by models is the usual Tarskian satisfaction defined inductively on the

structure of the sentences.
The more conventional unsorted version of FOL, denoted UFOL, restricts many sorted first

order logic to {x}-sorted signatures for some fixed sort symbol *'

The institution FOEQL of first order equational logic is obtained from the institution FOL

of first order logic by discarding the relation symbols and their interpretations. The signatures of

FOEQL are called algebraic signatures and the FOEQL models are called algebras.

The institution EQL of equational logic can be obtained by restricting the sentences of FOEQL

to universally quantified equations (either in conditional or unconditional form).

The institution REL of relational logic is obtained by eliminating from the institution FOL of

first order logic the operation symbols and their interpretations. The signatures of REL are called

rel ational signature s.
The very simple institution MS of many sorted sets can be regarded as a sub-institution of FOL

determined by the signatures which have only sort symbols and no operation or relation symbols'

Notice that this institution has no sentences. D

EXAMPLE 2. In the institution RWL of rewriting logic the signatures are just ordinary algebraic

signatures. The models of rewriting logic are preorder models which are interpretations of the

signatures into the category of preorders Pre rather than the category of sets Ser. This means that

each sort gets interpreted as a preorder, and each operation as a preorder functor. A preorder model

homomorphlsrn is just a preorder furrstor which is an algebra homomorphism.
The sentences are either universal ordinary equations or transitions, both in their conditional and

unconditional form. An unconditional transition / :) l/ is satisfied by a preorder model M when

the interpretations of the terms are in the preorder relation of the carrier, i.e. M1 I M,,.

For reasons of simplicity of presentation our definition of rewriting logic restricts the full defini-

tion of rewriting logic (Meseguer, 1992) to the unlabelled case. This unlabelled version of rewriting

logic has been also adopted by CafeOBJ (Diaconescu and Futatsugi, 2002).

The institution RWL can also be extended to first order rewriting loglc FORWL i;y allowing

any first order logic sentences formed by equational and transitional atoms. !



DEFIMTION 2. In any institution, (I,E) is a presentation when I is a signature and E is a set
of !-sentences. A presentation morphism Q: (X,E) -+ (2',8') is a signature morphism such that
E/ F 0(E).3 !

The relationships between various institutions are captured mathematically by 'institution mor-
phisms'. However, there are several concepts of such structure preserving mappings between insti-
tutions. The original one, introduced by (Goguen and Burstall, 1992), is adequate for encoding a
'forgetful' operation from a 'richer' institution to a 'poorer' one.

DEFIMTION 3. An institution morphism (.D, cr, F) : (Sigr', Sen', MoD', F') -+ (Slgn, Sen, Moo, pl

) consists of

1. a functor @: Slgn/ -+ Slgn,

2. anatural transformation cr: O;Sen + Sen', and

3. a natural transformation B: Moo' 4 @oP;MoD

such that the followin g satisfaction condition holds

M' ?i azk) itf Fy(M') ?vo, :

for each signature X/ e lSign/1, for each X/-model Mt, andeach I'O-sentence e. :

Under obvious composition the institution morphisms for a category denoted IIns. !

Institution comorphisms (Goguen andRogu, z}}z),previously know as 'plain map' in (Meseguer,l

1989) or 'representation' in (Tarlecki, 1996; Tarlecki, 2000), capture the idea of embedding of a
'poorer' institution into a 'richer' one.

DEFINITION 4. An institution comorphism (O, cr, 0) : (Srgn, Sen, MoD, p) -r (Sigt?' , Sen' ,Moo', p/l

) consists of

l. a functor O : Sign -+ Srgn'.

2. anafixal transformation cI': Sen =+ @;Sen/, and

3. a natural transformation p: OoP; MoD/ =+ MoD

such that the followin g satisfaction condition holds

M' ?loo,2@) itr lz(M')?2"

for each signature ) e lslgnl, for each )@-model M" and each x-sentence a.
Under obvious composition the institution comorphisms form a category denoted conns. o

The following duality relationship between institution morphisms and comorphisms was first :
observedin(Wolter, i995)andestablishedin(AnaisandFiadeiro,I996).

TIIEOREM l. An adjunction (O,O,(,() Uetween the categories of signaturesa of institutions

(Slgn,Sen,MoD,!) and (Slgn',Sen',MoD',1/) determines a canonical bijection between insti-

tution morphisms (O, a, p) : (Slgn',Sen' ,MOD', F') -+ (SrSr, Sen, MOD, l) and institution comor-

phisms (O,d, B) : (Sdgn, Sen, MoD, f ) -+ (S;gn!,Sent ,MoD/, l/) given by the following equalities:

- 6 : (Sen;Oo and F : 6oop;(Moo, and
- cr : @d; (Sen' and p : (Moo; @onB.

(@, o, 0) and (tD, A, B) are called ad.joint institution morphism, respectively comorphism. I

' Er.h model Mt satislying E' also sarisfies0(E).
a O: Srgn' -+ Sign is the right adjoint, @ is the left adjoint, ( is the unit, and ( is the counit of the adjunction.
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EXAMPLE 3. The 'forgetful' institution morphism FOL -r FOEQL forgets the relation symbols,
i.e. maps any FOl-signature (S,{P) to the algebraic signature (S,F), maps any (S,F,P)-model
to its underlying (S,F)-algebra, and regards each (S,F)-sentence as as an (S,flP)-sentence. It is
an adjoint institution morphism, the left adjoint to the 'forgeftul' functor Sigrrol -+ SignroEQl'
mapping any algebraic signature (S, F) to the first order logic signature (S, 4 0).

The 'forgetful' institution morphism FOEQL -+ EQL is an identity on signatures and models,
and regards each equation as a first order sentence.

The 'forgetful' institution morphism FOL -+ REL forgets the operation symbols, i.e. maps any
Fol-signature (S,F,P) to the relational signature (S,P), the model mapping forgets the interpre-
tation of the operation symbols F, and the sentence translation regards each (S,P)-sentence as as
an (S, F, P)-sentence. Notice that this is an adjoint institution morphism too, the left adjoint functor
Signnn -+ SignFoL maps any relational signature (.S,P) to the first order logic signature (S,0,P).

Notice that the comorphism UFOL -+ FOL embedding unsorted first order logic into many
sorted first order logic is not an adjoint comorphism. tr

DEFIMTION5. A signature morphism Q: X -+ 2t is conservative when each X-model has an
expansion along Q. D

EXAMPLE 4. It is rather easy to check that in first order logic FOL, a signature morphism
g: (S,F,P) -+ (St,Ft,P) is conservative when g is injective on tlre sort, function, and relation
symbols and does not add new operations of sorts in S that are 'empty' (i.e., without Fterms). Conse-
quently, if (S,4 P) has only 'non-empty' sorts, then each injective signature morphism <p : (S, F., P) +l
(St ,Ft ,F) is conservative. D

DEFIMTION 6. An institution is compacr if for each set of sentences E and each sentence e, if
E ? e then there exists a finite subset E' g E such that Et I e. z

DEFIMTION 7. An institution has conjunctions when for each family of sentences {ei I i e t}
(for the same signature), there exists a sentence e' such that the models satisfying e' are exactly the
models satisfying {e; I i e I}. .

When we consider only finite families of sentences we say that the institution has finite conjunc-
tions.

Similarly we can define that an institution has implications, negations, etc. J

Exactness properties for institutions formalise the possibility of amalgamating models of differ-
ent signatures when they are consistent on some kind of intersection' of the signatures (formalised
as a pushout square):

DEFINITIONS. An institution (Sign,Sen,MoD,f) is exact if and only if the model functor
Mon: SignoP -+ Ant preserves finite limits. The institution is semi-exact if and only if Moo
preserves pullbacks. n

Semi-exactness is everywhere. Virtually all institutions formalizing conventional or non*conventionall
logics are at least semi-exact. In general the institutions of many-sorted logics are exact, while those
of unsorted (or one-sorted) logics are only semi-exact (Diaconescu et al., 1993). However, in ap-
plications the important amalgamation property is the semi-exactness rather than the full exactness.
Moreover, in practice often the weaks version of exactness suffices (Diaconescu, 1998; Tarlecki,
2000).

The following amalgamation property is a direct consequence of semi-exactness:

DEFIMTION 9. The commuting square of signature morphisms

t---!-----.*tr

Orl
L^ ----------> r/

ez

l',
) In the sense of'weak' universal properties (Maclane, 1998) not requiring uniqueness.
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isanamalgamationsquare if  andonlyif foreachll-model M1 andal2-modelM2suchthat
Mtlq, : Mzl+r, there exists an unique X/-model M' such that MtlQ,r: M, and Mtlq5: M2. A

COROLLARY l. In a semi-exact institution each pushout square of signature morphisms is an
amalgamation square. D

3. Institution-independent Craig Interpolation

In the algebraic specification literature there are many institution independent formulations of CI, for
example (Tarlecki, 1986a) being one of the first and most representative ones. All these formulations
generalize the conventional intersection-union (of signatures) framework to squares of signature
morphisms which almost always are required to be a pushout (see for example (Tarlecki, 1986b;
Borzyszkowski, 2002; Borzyszkowski, 2001; Dimitrakos and Maibaum, 2000)) and when this is
not the case the signature morphisms are required to be (abstract) inclusions (Diaconescu et al.,
re93).

It has been noticed in (Diaconescu, 2004) that the mere formulation of CI does not require any
extra technical assumptions besides a commuting square of signature morphisms, the role of such
assumptions having to do with the proof of CI rather than with its formulation.

DEFINITION 10. A commuting square of signature morphisms

t ---!-----* 2,

0, I l',
Z, __ri_ Z,

is a Craig Interpolation square if and only if for each set E1 of :l -sentences and set E2 of 22-
sentences such that Qi (fr ) ? Q5@) there exists a set E of l-sentences such that fi I Q1 (E) and
Qz(n) ts E2. The set E is called the interpolant of E1 and 82. o

We agree with (Rodenburg, 1991) and (Diaconescu et al., 1993) that this is more natural; in
particular note that (cf. (Rodenburg, 1991)) equational logic satisfies Definition 10 but not the single :
sentence versions (given in (Tarlecki, 1986a) for example). -

EACT 1. In a compact institution, if E2 of Definition 10 is finite, then the interpolant E can be
chosen to be finite too. D

The immediate consequence of this fact is that in compact institutions which has finite conjunctions,
the sets of sentence formulation of CI implies the single sentences formulation.

In principle, in the actual examples, CI is expected for pushout squares of signature morphisms,
however in many situations only some pushout squares satisfy it. This intuition has been formulated
first time in (Borzyszkowski, 2002). The interpolation concept below is slightly simpler and more
general than the so-called (D,t)-interpolation of (Borzyszkowski, 2002).

DEFINITION 11. Foranyclassesof signaturemorphisms L,Kgs4grzinanyinstitution (Szg,?,Sen,Moo,f
), we say that the institution has the Craig (L,q)-merpotation when each pushout square of
signature morphisms of the form

t l
K t l
t v

L+

is a Craig interpolation square. !
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EXAMPLE5. The institution FOL of first order logic has Craig (J,J)-interpolation where J
is the class of all sort injective signature morphisms (Borzyszkowski, 2001). This^g_eneralizes its

unsorted version which states that unsorted firsiorder logic LJFOL has Craig (Slgnwol, S ilnwo')-

interpolation (Dimitrakos and Maibaum, 2000)'
T-he institution EQL of equational logic has Craig (SrgrznOl, C)-interpolation where C is the

class of the conservative algebraic signature morphisms (Diaconescu,2004). The paper (Diaconescu,l

2004) gives a very general proof of CI based on the abstract Birkhoff-style axiomatizability prop-

erties of the actual institutio; and gives aluge list of sub-institutions 1 of FOL having (S;gn1, C)-

interpolation. D

The following 'horizontal and 'vertical' composability properties of CI squares are used crucially

in the study of CI in Grothendieck institutions:

PROPOSITION 1. In any institution, consider the commuting squares of signature morphisms

> 
Q'=X1 -J l - *2 '

-l
I. --+ !/ ------>. S/t

t P

t Q z l ! '

o ' l  l o
Y V

Z\ -- -L,,
" o l

[>,>i,22,2"] is a CI square when [r,11 ,Lz,Z'] and [)1 ,2\,2',>") are CI squares, and

[),Xr,22,2! is a CI square when [),)! ,22,2"] is CI square and Q1 is conservative'

12,>1,2!2,X"] is a CI square when [I,11 ,22,2'l and [I2,)/,I!r,2"] ate CI squares'

[I,I1,12,I/] is a CI square when [I,21,2!2,2't] is a CI square and Q2 is conservative.

i'r l''

Then

la .

lb.

2a.

2b.

D

Proof.

LEMMA 1. For any signature morphism tp: X -i X/, for any sets of sentences Er,Ez C Sen(Z)' if

h ? Ez then e(E'1) ? q(Ui l .a

"La./LetEi c Sen(I!) and E2 e Sen(22) such that 01(fi) F @z;il@z)
Because [!,,ti ,>'',i"|is a CI square there exists E1 C Sen()1) such that E't p Q1(81) and

qi ( r r )?rPz@z).''i-* 
f/rlbr) ? q,z@z) and because 12,21,22,2t] is a CI square, there exists E C Sen(I) such

that E1F <p' (s) and qy(E) | E2.
Wethe re fo rehave rha tE lFQr (E r )F0 r (A r (E ) )  (bvLemmal ) : (q r ;0 r ) (E )  andq2(E) lE2

holds directly from the argument above. This shows that [I,I/t,I2,2")is a CI square.

Lb.l LetEl c Sen(I1) and E2 C Sen(22) such that 9!(rr ) F q!z@z)

Then Q! (O' G' )) : q(qi (rr )) F qlqi (rz)) Now we can applv the fact that [X, 11,12,2') is a CI

square ror'0r (r'r 1 anaqi21i21uni d"du"" that there exists E e Sen(r) such that 0r (Er ) F 0r (<pr (r))

aia <pz@) ? Ez. ForuJsu*ing the proof that E is the interpolant we are looking for, we still have

to prove is that Er F <Pr (E).
For showingthat \ F rpr(g), consider a model Mr for Ir such that M1f Er. Because Q1 is

conservative, consider M', an expansion of Ml along Q1. Then by the satisfaction condition of the

instirution M,, ts 4.r(gr ) F 0r (Ar (E)). Again by the satisfaction condition but applied in the cpposite

direction, we have that M1F Ar(6)



2a+2b.lBy similar reasoning to la and lb.

4. Grothendiecklnstitutions

Grothendieck institutions (Diaconescu, 2002) generalize the Grothendieck construction from in-

dexed categories to indexed institutions. The idea behind the Grothendieck construction for insti-

tutions is to put together a system of institutions into a single institution such that their individual

identities and the relationships between them are fully retained. This can be interpreted as regarding

a heterogenuous (multi-logic) environment in as homogenuous was without any loss of information.

DEFIMTION 12. Given a category 1of indices, an indexed institution J is a functor t : loq -+ nns.

For each index i e l1l let us denote the institution ti by (S,gri, MoDi, Sen', l') and for each index

morphism u € I \etus denote the institution morphism J" by (Qu,a',P").

The Grothendieck institution 1l of an indexed institution I : Iop -+ nns is defined as follows:

l. its category of signatures Slgnfl is the Grothendieck category of the indexed category of signa-

tures Slgn: Iop -+ C.at of the indexed institution J,

2. its model functor Mop[: (Slgnfl;on i At is given by

vtooil((;, ))) : Moo'(x) for each index i e l1l and signature ) e lSlgn'1, and
vtoofl((u, tp)) : B3,;Monr(q) for each (u, q), (i, X) -r (il ,Z'),

3. its sentence functor Sen! : Signtr -+ Ser is given by

senl((i, x)) : sen'(x) for each index i e l1l and signature r e lsrgnjl, and

senf ((rz, q)) :  sen'(d;ay foreach (u,q), ( l ,  x) -+ ( i ' ,2'),

+ .  u  l l t ,>)e i f f  Ml ' re foreach index i€ l l l ,s ignature Ie  lS ign i l ,  model  M e lMoo!( ( , ,>) )1,
and sentence e € senl((t,  >)).

!

Both Grothendieck categories and Grothendieck institutions are shown in (Diaconescu, 2002) to be

special cases of the more abstract concept of 'Grothendieck object' in a2-category, defined as a lax

colimit of the indexing (1-)functor.
When the Grothendieck construction is regarded from the viewpoint of fibrations, Grothendieck

institutions are the same with the so-called 'split fibred institution' of (Diaconescu, 2002), which

are institutions with a split fibration projection from their category of signatures. In the fibration

Ianguage, we may call the institution li as the 'fibre of Jt s1i' .
The following example characterizes the use of Grothendieck institutions for multi-logic speci-

fication and historically constitute the origin of the development of Grothendieck institutions.

EXAMPLE 6. The institution underlying the CafeOBJ language and system (Diaconescu and
Futatsugi, 1998; Diaconescu and Futatsugi, 2002) is the Grothendieck institution of the indexed

institution below, called the CafeOBJ cube. (The actual CafeOBJ cube consists of the full ar-

rows, the dotted arrows denote the morphisms from components of the indexed institution to the

Grothendieck institution. )



HOSRWL

H = hidden
A = algebra
0 = order
M=many
S = sorted
RWL = rewriting logic

I.i-'
M S A +

The definition of the institutions and of the institution morphisms of the CafeOBJ cube can be
found in (Diaconescu and Futatsugi,2002). J

The example below has a rather different flavour from the previous one, and shows how 'many

sorted' institutions can be naturally presented as Grothendieck institutions. This example presents

FOL as a Grothendieck institution of the indexed institution determined by it many sorted structure,
however such presentation can be applied to any other actual institution having a many sorted
structure.

EXAMPLE 7. For any set S, let the institution of S-sortedfirst order logicFOLS : (Slgns, Sens, Moos, !l
) be the sub-institution of the first order logic institution FOL determined by fixing the set of sort
symbols to S. The category of signatures Signs consists of all pairs (F,P) where F is an S-sorted
set of operation symbols and P is an ,S-sorted set of relation symbols, morphisms of signatures in
Srgns being just morphisms of signatures (D in first order logic which are identities on the sets
S of sort symnbols. Then the (F,P)-sentences, respectively models, in FOLS are the (S,4P)-
sentences, respectively models, in FOL. The satisfaction relation between models and sentences
is also inherited from FOL.

Any function u: S -+ S/ determines an institution morphism (@u,du,B') : FOLy -+ FOLS such
that for each S/-sorted signature (F' ,P')

- Au (Ft , Pt) : (4 P) with F*--+, : F1,1,1.,1.q and P, : P',(*) for each string of sort symbols w € .

S* and each sort symbol s e ,S. The canonical first order iogic signature motphism (.1, F, P) -+

(S', F', P') thus determined is denoted by Qle,,p,).

- ulr,,p,1: sens(F,P) -+ SenS(F',P') is defined as Sen(<p[.,,e;) und, informally, maps each

(F, P)-sentence to itself but regarded as an (F' ,P' )-sentence, and
- F(e,,p,): MoDs'1F', P') -+ MoDs(\P) is defined as Moo(9io,,",,).

This situation is common to all 'many sorted' logics formalized as institutions and follows from
the fact that the category Srgn of the first order logic signatures is fibred over Se/ by the projection
of each signature to its set of sorts.

This determines a Se/-indexed institu tion f ol: Se/op -+ n ns such that f ol(S) : FOLS. Then the
institution FOL of first order logic can be presented as the Grothendieck institution f ol\. a

The Grothendieck construction for institutions can be also done with comorphisms rather than
morphisms. Comorphism-based Grothendieck institutions have been introduced in (Mossakowski,
2003) by dualization of the morphism-based Grothendieck construction, and they seem to be-
have more friendly with respect to model amalgamation properties than their morphism-based
counterpan.

DEFINITION 13. Given a category 1of indices, an indexed coinstitution / is a functor J'. IoP -s

cof.ns.Its Grothendieck institution 1n is defined as follows: :
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l. its category of signatures is ((Sign;(-)on)il;on where Srgn:/oP -+Cnt isthe indexed category

of signatures of the indexed coinstitution J, (-)op: C.at -+ C,at is the 'opposite' functor, and
(Src"; (-)"p)[ is its Grothendieck category; this means that

signatures are pairs (1, X) for I e l1l index and I e lSlgn'1, and
signaturerorpi irrnrare'pairs (u, 'g), ( i ,x)-r ( i l ,z ')*h"r" uel( i t , i)and<pe slgn"(Io">').1

2. its model functor Mool: (Slgn; (-)"0)[ -+ Aat is given by

MoDfl((t, I)) : Mooi(X) for each index i e l1l and signature ) e lSlgn'1, and

Moof ((1,1, q)) :  Mooi '(<p);XB'for each (u,g): ( i ' ,  ) /) -+ ( i ,  X),

3. its sentence functor Sen[: ((Sign;(-)on)[;on -+ Ser is given by

senl((i, x)) : sen'(x) for each index I e l1l and signanre I e lsrgntl, and

Senil((u,q)) :  Xcr' ;Sen"(<p) foreach (u,r1l U',>') -+ ( i , I),

+. M ?l i ,>leitr M f,retor each index ie l l l ,signature X e lSignil ,  modelM e ltUoo!((t,  >))1,

and sentence e € Senl((t, >)).

w h e r e l i : ( S i g n i , M o D l , S e n ' , f ' )  f o r e a c h i n d e x i € l 1 l  a n d l u : ( Q u , a " , p u ) f o r z € l i n d e x

morphism. D

DEFIMTION 14. An adjoint-indexed institution is an indexed institution J: Iop -+ IIns for which

all institution morphisms lu are adjoint morphisms for all index morphisms a € 1. Adjoint-indexed

coinstitutions are defined similarly. tr

REMARK L For each adjoinfindexed institution !: IoP -+ IIns there exists an adjoint-indexed

coinstitution 7: Qovlov -+ con'ns such that

- 7' : lifor each index i € 1, and

- 7u it the comorphism dual to the morphism J" for each index morphism z.

D

EXAMpLE 8. By following the details of (Diaconescu and Futatsugi, 2002) we can notice that the

CafeOBJ cube is an adjoint-indexed institution. n

EXAMpLE 9. The Ser-indexed institution fot determined Uy t!" fibred institution FOL of first

order logic is adjoint-indexed. For each function u: S -+ 9, let O': Srgns -+ Signv map each S-

sorted rigoutur" (fl P) to the S/-sorted signature (Fu,P") defined bY Flt.r, : Uu@s)=v/", Fl'1" and

pfi, : l),1*1:6 P* for each string of sort symbols w'€ S* and sort symbol s € ,5.6 Notice that @' is a

left adjoint to the 'forgeful' functor @': Signs -+ Slgns. n

In the case of adjoint institution morphisms/comorphisms, the Grothendieck construction on

institution is independent on the choice between using morphisms or comorphisms'

pROpOSITION 2. (Mossakowski, 2003) For each dual pair of an adjoint-indexed institution J and

an adjoint-indexed coinstitution 7 theft Grothendieck institutions Jl andiu ate isomorphic. !

EXAMPLE 10. The institution FOL of first order logic can be also obtained as a comorphism-

based Grothendieck institution by using the indexed coinstitution determined by the sorting struc-

ture. D

6 The unions defining F' and P' should be disjoint.



5. Interpolation in Grothendieck Institutions 
1

In this section we show that inteequivalent rprope.v ",':n:T.';:T:';#f#jfi"]":i#,,J":;:?::1,.':l? 
o'the crorhe:ft:T-,r**tions is

mappings corresponding ro the ,::1.fT*i;il;:each 

index institution' 
llu* P.in,".poru,ion

;:ff*?d:rertv in o-."in""o,".ilex morphismffii:,':,1?li:l'tr:t"'il1,'"#:?T:"::lT
GrorhendieciJ::9::1i,"fi; ffiXd,ifiil'Jil,.9#ill'l1 zooz, vr",."kowsti, 2003) As no-
interpolation< 

tnstttutions' and thirwework,i,r"",".pr,;:itlf ;#,1,'J#:ffi1'il:'|;n:"#j,nTffiI$
DEFINITIOA
square tt.,,lrt,rl"" tr?:#^i:#:'otation square of institution comorphisms is any commudng

(srbo, sen, MoD, p; (or,ar,0r). 
(srgn r, sen1, Moo1, S1 )

(az,qa,&z)l I

I  l@j,ai,Bi)
(Srgrz, Sen2,MoD2, Fr) =-_-_ ,-. {z,tsz) 

6O*; (S,br,, sen',MoD,,5,1
such that for eacl
y rv!t:,eiujri"":$l:ibii:;:'i;:.:::li.j:::i"H3 and ror each set E2 or ze2-sentences,and (u2)2(E) Fz Ez. n 

--- "rere exists a set E of x-sentences ,u"r, ,r,ur"g, Fr (u1,r1py

EXAM'LE l1' The square of embedding institution comolphisms

T'".. ---. . "?"
t t

o*,,.--_ . ri,
::j::':],r 

a 
llsQuare because for each s

"TH;#if;" 
",;: ,::* 

set ̂e rhere are no (r,,)-sentences in EeL and no (s,0)-
trivialiy;.;;;;: 

ud c&se of multi-logic Grothendieck insriturions rhis properry seem ro be quire

ffiHHri';",Jil,,ll1mple or the sorting fibres in the institution FoL of firsr order rogic is
PROPOSITION 3. For each pushour of sets

i- j'
*l  

l , r
r! ----o-.-ri,
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its corresponding square of institution comorphisms

^ toil'q4Pill
F o L s '  

' ' ' j p o l s r

___ l(*",o",9")I i ___
I(o"',0",P,' 

)

FOLS2 
*_eAFOLs'

is a CI square when either uI or u2 are injective. !
Proof. For each function urecall that @u denotes the left adjoint to the 'forgetful' fuqglg Q'. Fix

a signature ([lL 
"f 

S-sorted operation and'relation symbols. LetQut(n,f1: (Fl,Pt), @u2(F,P):

(Fz,Pz),sn6qui;v i(F,P):  (F' ,P/) ,ConsiderEl asetof (F1,P1)-sentencesand E2asetof (F2,P2)-

sentences such thar a(tF,4(E!Lu'&,p)@2).

If ul is injective, ttren ffi is bijection, hence let us define E: (a(h\)-'(g,). Obviously

h=a, t (E) .  Weshow tha t  a 'z (E) l  E2 too .Le tMzbean(F2,P2) -mode l  such tha t  M2Fa 'z (E)

By the satisfaction condition this means thatP'2(M2) ? E.
Because al is injective it is easy to notice that we can find an (R,P1)-model Mt such that

@(Ut):@@r). By the-semi-exactness of FOL we can notice that there exists an unique

(F',P')-model M' such that p'l (M') : M1 and g'z(Mt) - Mz.By the satisfaction condition M/ p

a,ifr@) which means that MtF o'(E'r) which by hypothesis implies u' I a'26;, which by the
satisfaction condition means MzF Ez.

The other case, when u2 is injective, gets a similar proof.

This result is essentially based on the fact thatu(p,r1is surjective, which follows by the injectivity

of z, hence similarly one can show the same type of result for other many sorted logics presented as
institutions, including the example rewriting logic RWL, etc. !

DEFINITION 16. For a fixed class -l e Sign of signature morphisms, we say that an institution
comorphism (@, s,0) : (Sign, Sen, MoD, l) -+ (Sig/t',Sen' ,Mon/, f'),

- has the Craig S-left Interpolation property when for each g: )-+ 11 signature morphism
in -9, for each set E1 of 11-sentences and each set E2 of )@-sentences such that c2, (Et ) F'
(qO)(82), there exists a set of l-sentences I such that Er F q(E' ) and o2(E) lt E2, and

- has the Craig S-right lnterpolation property when for each g: 2 -+ 22 signature morphism
in -9, for each set E1 of l@-sentences and each set 82 of t2-sentences such that (rp@)(81 ) l/
at2(Ez), there exists a set of X-sentences E such that fu F s:(f ) and 9(E) ?' Ez.

!

EXAMPLE 13. It is rather easy to notice that the comorphism REL -+ FOL embedding the insti-
tution of relational logic into the institution of first order logic has both the Craig S4gnml-left and
right interpolation properties.

Indeed,foranyrelat ionalsignaturemorphism<p: (S,P) -+(,Sr,&), i f  h Fir?i ,ol  q '@z)(,vhere

e' , (S, A, P) -+ (S1 , 0, P1 ) is the trivial expansion of rp to a FOL signature morphism), then because
any (,S,0,P)-sentence in FOL is a (S,P)-sentence in REL, we can take the interpolant to be just
E2. The interpolant property of E2 can be checked very easily. This shows the left interpolation
property, the right one can be shown similarly. A similar example is given by the comorphism
FOEQL -+ FOL embedding first order equational logic into first order logic.

In principle, in the actual examples, the interpolation property for an institution comorphism
holds easily when the sentences of the source and of the target institution have the same expressive
power. ! 

:

*
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EXAMPLE 14. A rather subtle example is provided by the comorphism EQL -+ RWL embedding
equational logic into rewriting logic. We may recall from (Diaconescu, 2002; Diaconescu, 1998)
that this embedding comorphism is problematic for multi-logic systems because it destroys the
semi-exactness property for Grothendieck institutions.

Let .9 be the class of algebraic signature morphisms g: (S, F' ) -+ (T, f') which are injective on
thesor tsymbolsandsuchthat foreachoeF! , . r i fseS/ \q(S)  thenw€(S' \q(S)) - ,andletJ"be
the class of signature morphisms of .9 which are in addition conservative.

PROPOSITION4.

- the comorphism EQL -r RWL embedding the institution of equational logic into the insti-
tution of rewriting logic has Craig J.-right interpolation, and

- the comorphism FOEQL -+ FORWL embedding the institution of first order equational
logic into the institution of first order rewriting logic has both Craig J-left and right interpola-
tion.

tr
Proof.In order to establish these properties some non-trivial work is needed.
Recall that an universal Horn sentence for a first order signature (S,4 P) is a sentence of the

form (VX)H -+ C, where Il is a finite conjunction of (relational or equational) atoms and C is a
(relational of equational) atom, and H -+ C is the implication of C by H. The sub-institution HCL
of FOL has the same signatures and models as FOL but only universal Horn sentences as sentences
Each algebraic signature (,S, F) can be mapped to the HCL presentation ( (S, 4 , ar 1,.r) , prets,r) )
such that for each sort symbol s e ,S the arity of (, is ss, and pre6,ry contains the preorder axioms
for each (" and all axioms stating the preorder functoriality of the operations of F. Moreover, each
(S, F)-sentence e in RWL can be canonically mapped to an universal Horn ((S,4 {S"}res)-sentence
Z. In the case of FORWL a similar mapping can be done to FOL rather than HCL.

Now let q: (,t, F) -+ (52,F) be any algebraic signature morphism in Sr, El be a set of (S,F)-
sentences in RWL, and Ezbe a set of (S2, F2)-equations such that g'(Et ) F** Ez,whereg': (S, F, {<,1
)res) -+ (Sz,Fz,{Sr}"e,p(s)) is the canonical extension of rp to a HCl-signature morphism.

We first remark that <pt(fi)Urp'(pre6,r)) FHCL E2.For this, it is crucial to observe that each
(S,4 { <"}".5)-model M satisfying 1p'(pre1s,r), since tp € J, can be trivially regarded as an (S2, F2)-
model in RWL by defining M<n as the diagonal relation for each s' € ,S2 \ q(S).

By Craig interpolation in HCL (see (Diaconescu, 2004)), the pushout square below

(S, 4 0) --------------) (S, 4 { <' }"es)'J i'
(52, F2,0) -  (Sz, Fz,{  <'}"e.p(s) )

is a CI square in HCL (notice that the conservativeness of g is essentially used at this step).

Therefore there exists a set E of (S, F)-equations such thatfiU pre(s,r; lucl E and <p(E) lt"t Er.

The first relation tells us that EI FRWL E and the second one that q(E) tsEaL nz.
A similar proof can be invoked for establishing that the embedding comorphism FOEQL -+

FORWL has the Craig J-interpolation property. For this we have to map FORWL into FOL rather
than HCL and to involve CI in many sorted first order logic (Borzyszkowski, 200L). Notice that in

this case, because of the difference of CI in HCL and FOL, we can relax the requirement on I to
belong to J rather than .t;.

Finally, for the Craig J-left inteqpolation property of the comorphism FOEQL -+ FORWL, we
let g: (.S, F) -+ (Sr, F'l) be any algebraic signature morphism in ,9, Er be a set of (S1, Fr )-sentences
in FOEQL, and E2 be a set of (S,F)-sentences in FORWL such that E1 pFonwr q(Ez).

Similarly to the above, we remark that EltLqt(pre6,n1; pror q'(4) where Q" (S,4 {<"},es) -+l

(Sr, Fl, {('},e,p(s)) is the canonical extension of <p to a FOl-signature morphism.
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Then, similarly to the above, we notice that the pushout square below

(S,40) e - (sr,Fr,o)

l l
{ t

(S, 4 {<,},.r) --t-- (Sr, Fr, {<,},e,p1s;)

is a CI square. Because FOL has finite conjunctions and implications it is also a Craig-Robinson
interpolation square (Dimitrakos and Maibaum, 2000). Therefore there exists a set E of (S,F',0)-
sentences such that Et Fto" g(E) and EU pre6,r1+FoLVi.

The first relation implies Er pFoEql g(E), while the second one implies E |ro** Er.
Let us also notice that this proof for the left interpolation cannot be applied to the comorphism

EQL *+ RWL because HCL lack Craig-Robinson inteqpolation.

D

EXAMPLE 15. Let now turn our look to the sorting fibres of the institution FOL of first order
logic.

PROPOSITION 5. Foreach injective function u: S -+,S/, the institution comorphism @r,&,Fr): FOLS -+
FOLS' has both the Srgns-left and right interpolation properties. !

Proof Let us consider a signature morphism g: @,P) -+ (fi,P) i! Srgnt.Letrp,: (Fu,po) -+

@(,Pf) be its canonical 'expansion' to a signature morphism in Signv. Let \ be a set of (R,pl)-
sentences and E2 be a set of (F,,p")-sentences such that 8o,^@r) I q,(E).

Because z is injective ,'airf)is surjective, hence we can find a set E of (F, P)-sentences such that :
Ez : a(r,r1 (E). Since the other part of the interpolant property of E is trivial, we have to prove only
that fi F q(r).

Consideramodel M1 ofEl.Becausezisinject ivewecanf indan (Fo,Pu)-modelMt suchthat

W(M') 
: M t l,p. By the semi-exacrness of FOL, we can find a model Mt, of (Fi , pf) such that

FU,yW') : Mr and M\I,p, : 714'. By the satisfaction condition we have that M\ |fi,r,1@i,
hence by the hypothesis we have M'r ? q'(Ez). By the satisfaction condition we have thatPfl.,)(Mi fa) Fl
E which means that M1 f,p F g. By the satisfaction condition we finally deduce that M1F q(f )

We have thus proved the left interpolation property, the right interpolation property gets a similar
proof.

This result is essentially based on the fact that ulp,r) is surjective, which follows by the injectivity
of u, hence similarly one can show the same type of result for other many sorted logics presented as
institutions, including got example rewriting logic RWL, etc. !

Now we are ready to formulate and prove the main result of this paper.

TFIEOREM 2. Let J : Iop -+ con ns be an indexed coinstitution such that

- there are fixed classes of index morphisms L,K g 1 containing all identities, :
- for each index I there are fixed classes of signature morphisms Lt,K' e Sign'containing all :
identities.

such that

- L and { are stable under pullbacks,
- @'(K') Q \t for each index morphism u: j -+ i in L,
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- A'(Li) g Li for each index morphism u: j -+i in (,

Let Lil, and {.[, be the classes of signature morphisms (u: j -+ l, g) of the Grothendieck institution
such that u e L,respectively u e K,and g e Z/, respectively q e Ki.

Then the Grothendieck institution lt has the Craig (tt,4t)-interpolation property if and only if

- for each index i the institution Ji has the (Li,\i)-interpolation property,
- each pullback square of index morphisms

+ +r l  I
determines a craig interpolation square or inriln comorphisms

- for each u: j -+ i in L the corresponding institution comorphism has the Craig 4'-rigtrt
interpolation property,

- for each u: j -+ i in \ the corresponding institution comorphism has the Craig L'-left
interpolation property,

n
Proof. For the 'sufficient' part, we consider an arbitrary pushout of signatures in the Grothendieckl

institution

(io, xo) 
(zl 'er) 

> ( ir,  xr)

t l
( ,z,qzl  |  |  (ut ,er)

, 1 , , 1 ,
(iz,Zz) - 

Oru)- 
(i,>)

such that uI e L, <pt e Li,, and u2 e K, qz € Ki,.
By following the construction of colimits in Grothendieck categories (Tarlecki et al., 1991) for

the special case ofpushouts notice that :

L<-

' u l
I o + I l

t t
u 2 l  l , lr l

i z *  , z  
- i

is a pullback in the index category 1. By the stability hypothesis we have that vl € 4 and v2 e L.
By the same result we can also notice that the pushout square of signatures in the Grothendieck

institution can be expressed as the following composition of four pushout squares:

( io,  xo) 
(al ' l roo'r)o 

(11, )6{ ' rr)  ( i r ,  rr)

\u2,t4otz) l  l  
(ul ,  r46rr6ur )  l  (vr,  12,6,r  )

+ ' l {
(i 2, 2sQ'2) ;-;----------->, ( i, )6@''@''' ) ;:---:;- (i, I 1 <D' I )

, , , , ,r, , i  

' \v2't4au2av2)' - 

j , , , ,r,*, l t"Qro' ') 
J,,, ,*,

(iz,zz) - pr,tb;- 9,22Q'2) (r,,0r------' (t, >)
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The up-left pushout square is a CI square by applying the fact that the corresponding square of
instinrtion comorphisms is a CI square and by considering the signature X6.

The down-right pushout square is a CI square because it is a CI square in the institution /i as a
pushout square of a signature morphism in Z' with a signature morphism in 4t. Here we have
to notice that tp1@ul € /' because gr € Lit and vI € K,and that ezQ'2 € (i because <pz € Ki'
andvZ e L.

The up-right pushout square is a CI squiue because gr e Li'and vl € 4 and by the assumption
that (@'l , o'1, 0'l ) has the Craig qir -interpolation property.

The down-left pushout square is a CI square by an argument symmetrical to the argument of
the item above.

Therefore all four components of the big pushout square in the Grothendieck institution are CI
squares. By Proposition I we can now conclude that the original pushout square of signature mor-
phisms in the Grothendieck institution is a CI square. This resumes the proof of the 'sufficient' part

of the theorem.
For the 'necessary' part, we have only to notice the following:

For each index i, by considering 1; as index morphism, a Craig (Li,(')-interpolation square
in /r is just a Craig 1fil,ql)-interpolation square in the Grothendieck institution.

For (vl,v2) a pullback of (rl, uZ) in the index category 1, by the colimit construction in

Grothendieck categories, the following squares

( io,  r)  
( ,1 '  l ro 'r  ) '  

( i1,  >or l  )
I I

( u2 , t 2quz )  |  |  ( v l , l 26 , r pu r )

J I
(i2, >Q'2) (r6frlt, Xo'iour)

are pushouts in the category of signatures ((Sign;1-;on;fl;on of the Grothendieck institution for
each signature I in lS;gnbl. Therefore they are CI squares if and only if the square of index

morphisms determines a CI square of institution comoqphisms.

For each u: j -+ i in L and each signature morphism <p: )1 -+ 22 in \i , the square below

( r r ,q )  |
Y

( i ,22)

is a pushout in the category of signatures of the Grothendieck institution. Moreover, these

squares are CI squares if and only if (O', au ,Pu) has the Craig \'-right interpolation property.

By replacing Lby K, K' by t', and 'right' by 'left' in the argument above, we can deduce the
symmetrical conclusion.

Besides establishing CI properties for multi-logic Grothendieck institutions, Theorem 2 can be

used as an uniform method to lift CI properties from unsorted logics to their many sorted exten-

sions. We illustrate this with the example of FOL, however other many sorted logics can be treated
similarly.

COROLLARY 2. (Borzyszkowski, 2001) In the institution FOL of first order logic each pushout

square of signature morphisms which are injective on the sort symbols is a CI square. D

( i ,2&u)

Ir',,,*r
------.--.-..-- (i.Iro)

\u ,  tL2aJ
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Proof' we start frollh:- fact that any pushout of unsorted first order logic signatures is a CIsquare (Dimirakos and Maibaum, 2000), and then we notice easily that in tnJ man! sorted contextthis generalizes trivially to any fixed set of sorts..The next step regards the institution nOl of (many
sorted) first order logic as the Grothendieck institution determinJa-uy the sorting and take L and. \as the class of all injective functions, and for each set,s, we take ts indtj". tf;J* s,srt"i"i'S-sorted signature morphisms' Finally, Propositions 3 and 5 show that all hypotheses of rheorem 2hold.

6. Conclusions

-re suu" a necessary and sufficient condition for Craig inteqpolation in Grothendieck institutions
based on 'local' interpolation, interpolation at the level of thelndexed institution, and an interpola-
tion property for the institution mappings (i.e. comorphisms) involved.

we have provided an analysis of the latter two conditions by illustrating them with several signif-
icant examples. we have seen that in many cases they can be easily establ[hed, but the interpolation
property of institution comorphisms can be rather subtle in some cases.

we also showed how our main result also provides an uniform method for lifting interpolation
from the unsorted situations to many sorted situations, many sorted interpolation being a non-trivial
generalization of unsorted interpolation.

Future research might emphasize further investigations of applications for our main result Theo-
rem2.
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