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Qusiregularity in mectric spaces

MIHAI CRISTEA

Abstract: We show that if f : X — Y is a continuous, open and discrete map
of finite multiplicity N(f) between two p-regular metric spaces, then f satisfies the
modular inequality M,(I') < K - N(f) - M,(f(T)) for every path family I" from X if
and only if H(z, f) < H for every z € X.
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1 Introduction.

If X,Y are metric spaces and f : X — Y is continuous, open, discrete, z € X
and r > 0, we let

L(.’E,f,T‘) = Ssup d(f(y),f(.’l))),l(lf 7‘) = inf d(f(y),f(l‘))
yES(z,r) yeS(z,r)

and we put H(z, f) = limsup,._, M, the linear dilatation of f at z.
r—0 I(x, f,r)

We also put for a > 1,hs(z, f) = liminfr.*o SUP,<t<ar 5’(;;:) 2Bl T ) =

hi(z, f) and if A C X, we let N(f A) = = supyey Card f71(y) N A. We let
N(f)=N(f,X).

If f: X — Y is amap, we say that f is open if f carries open sets into open
sets, and we say that f is discrete if f~!(y) is an isolated set for every y € Y.

If D C IR" is open, n > 2, amap f : D — IR™ is quasiregular if f €
Wyor (D, R") 0 C (D, R™) and ||f' (z)||* < K - Js (z) ae. for some K > 1,
and this it is known as the analytic definition of the quasiregularity. If f is
continuous, open, discrete, with NV (f) < oc, then f is quasiregular if and only
if there exists H > 1 such that H (z, f) < H for every « € D (see [MRV] Th.4.5
and Th.4.13). For this reason, at least for mappings of finite multiplicity, we can
say that a continuous, open and discrete map f : .X — Y between two metric
spaces is quasiregular (considering the metric definition) if there exists H > 1
such that H (=, f) < H for every + € X. Homeomorphisms between metric
spaces are called quasiconformal if there exists H > 1 such that H (=, f) < H
for every x € X (the metric definition of the quasiconformality) and such maps
are recently considered in [HK 1,2], [T}, [BK], [H].

If (X, p) is a metric measure space and I is a family of nonconstant paths
in X, we let F(I') = {p: X — [0, oo]Borel maps | [,pds > 1 for every y € T

locally rectifiable }, and if p > 0, we let the p—modulus of I' by M,(T) =

infpepry [ PP (z)dp.



If D, D’ are domains in R®, K > 1 and f : D — D’ is a homeomorphism,
we say that f is K-quasiconformal if & - My (I') < My, (f (T')) < K - My (T) for
every path family I" from D (the geometric definition of the quasiconformality).
We also say that f is K-quasiconformal, considering the analytic definition of
the quasiconformality, if f € Wﬁ): (D,R™) and ||f' (z)||" < K - Jf (z) a.e. It
is known that for D, D’ domains in JR™ and.f : D — D’ a homeomorphism,
this three definitions of the quasiconformality are equivalent (see [Va], Th. 34.1
and Th.34.6). Recently it is shown in [HKST] that this definitions of the quasi-
conformality are also equivalent on arbitrary metric spaces satisfying just a few
conditions of regularity.

If Dc R"isopen, n > 2,f : D — IR™ is continuous, open, discrete with
N (f) < oo, then f is quasiregular with Ko (f) < K if and only if f satisfies the
so called Ko (f) inequality, i.e. if M, (I') < K - N(f,D)- M, (f(I')) for every
path family I from D (see [Ri], Th.6.7, page 44). Here Ko (f) is the smallest
K > 1 such that ||f'(z)||" < K - J¢ (z) a.e. We shall say that a continuous,
open and discrete map f : X — Y between two metric measure spaces with
N (f) < oo is K-quasiregular, (considering the geometric definition) if there
exists p > 0 such that M, (I') < K - N (f) - M, (f (I')) for every path family I'
from D.

In [HH] are considered quasiregular maps f : U — G using the analytic
definition of the quasiregularity, where G is a Carnot group and U C G is open.
Their methods seems to be enough difficult to be transported on arbitrary metric
spaces, where the metric and the geometric definition of the quasiregularity -are
very natural, at least for mappings of finite multiplicity.

However, a theory of quasiregular maps on arbitrary metric spaces is nec-
essary, since there are plenty of such mappings defined on sets which are not
Riemannian manifolds. Indeed, if D, D’ are domains in R™, f : D — D’
is quasiregular and surjective with N (f,D) < oo, . H (z,f) < H for every
z €D, AC D, BC D' are such that 4 = f~!(B), then f|A: A — B is open,
discrete, with N (f|4, A) < o0, H (z, f|A) < H (z, f) < H for every z € A and
the sets A and B can be taken enough complicated. Probably this is the easyest
way to produce quasiregular maps defined on some sets which are not manifolds.

In [BK] are constructed examples of quasiconformal mappings in metric
spaces by taking sets A C B C IR"™, spaces X = B Ug B and mappings
f:X — X, f=1Idx. We can use this technique of gluing spaces and map-
pings to obtain some other examples of quasiregular mappings. First, if X,Y
are metric spaces, A is a closed subset of X and Y, we let X Uy Y the disjoint -
union of X and Y, with points in the two copies of A identified. Then X U4 Y
is a metric space, where d(z,y) is the distance from X if z,y € X, d(z,y) is the
distance fron: Y if z,y € Y and d(z,y) = érelgd(x, a) + d(a,y) if z,y are in two
different. parts of the union X Uy, Y.

Let D, D’ be domains in IR", A closedin D andin D', f : D — IR™,g : D' —
IR™ be quasiregular and nonconstant such that f|A = g|A,f(4) = g(A) is a

closed subset of f (D) and g(D'),A = f~'(f(4)) =g ' (g(A)) and let X =
DUy D' Y = f(D)Uga) g(D') . Then D and D’ are the two parts of X, f (D )




and g (D’) are the two parts of Y and we define F': X — Y by F|D = f, F|D' =
g- (We can take for instance D = D' = R?, A = {(z,y) € R?ly =0}, f () =
g(z) = 22 for = € IR?). We can easy see that F is discrete and we show
that F is open. Let x € D\A. Then, for small r,Bx (z,7) = Bp(z,r),
where Bx (z,r) is the ball of center = and radius r from X and Bp (z,r) is
the ball of center x and radius r from D. Let § > 0 be small enough such
that By (f (.’E),(S) = Bf(D) (f (.’E) ,5) and Bf(D) (f (IC) ,5) cf (BD (:L',’I‘)). Then
F (Bx (z,7)) = f (Bp (z,7)) D Bgpy (f () ,9) = By (f () 6), hence F is open
at z, and in the same way we show that F'isopen at z if z € D’\A.Ifz € A, then
Bx (z,7) = Bp (z,7) Ua Bp (z,7) for r > 0 and if § > 0 is taken small enough
such that By(p) (f (z)6) C f(Bp (2,7)), By (9(z),d) C g(Bp: (x,7)), then
F(Bx (z,r)) = F(Bp (2,7)) Ua Bp: (z,7) = f (Bp (2, 7)) Us(a) 9 (B (2,7))
D Byp) (f (%) ,8) Ugcay Bypr)(9 (2),0) = By (F(z), ) hence F is also open in
z. We proved that F'is an open map on X, and we see that F'is continuous on X,
that N (F) < max {N (f),N(g)} and that H (z, F') < max{H (z, f), H(z,g)}
for every z € X. It results that if N (f) < 0,N(g) < oo, then there exists
H;,Hy > 1 such that H (z,f) < H; for x € D and H(z,g9) < H, for z € D/,
hence H (z,F) < max{Hj,Hy}for every z € X and N (F) < oo, hence F
is quasiregular considering the metric definition. We see that F' is not a local
homeomorphism if f and g are not local homeomorphisms, that X is not a man-
ifold and it is a Loewner space (see [HK2], 6.14, page 42), and this construction
is also valid for our main theorems, Theorem 1 and Theorem 2.

This procedure allows us to construct a lot of quasiregular maps on rather
general metric spaces, using in a canonical way two arbitrary quasiregular maps
defined on some open subsets from R™.

In this way we can also produce a lot of open, discrete mappings with uni-
formly bounded linear dilatation without having finite multiplicity, so our paper
may be a starting point for some further researches of this kind of mappings.

A metric space X endowed with a Borel measure p is called an Ahlfors @ -
regular space if there exists a constant C' > 1 such that C~1-rQ < pu(B,) < C-r?
for every ball B, of radius r from X.

If (X,u) is a metric measure space and F, F,G are subsets from X, we
let A(E,F,G) = {y : [a,b] — G|y is a path and v(a) € E,y(b) € F} and
if G =X, we put A(E,F) = A(E,F,X). We say that (X, u) is a Loewner
space if it is a connected p-regular space with p > 1 and there exists a function
® : (0,00) — (0,00) such that @ (t) < M,(A(E, F)) for every nondegenerate

. . . E,F)
continua F and F' in X with min{d(B), d(F)} = t.

A metric space X is called linearly locally connected of constant ¢ > 1
(c—LLC) if there exists ¢ > 1 such that any two points in B(z,) can be joined
by a path in B(z, cr), and any two points in X \ B(z,r) can be joined by a path
in X \ B(=, L), for every ball B(z,r) in X.

We shall prove in our main results (Theorem 1 and Theorem 2) that the met-
ric and geometric definition of the quasiregularity are equivalent for continuous,
open and discrete maps of finite multiplicity between p-regular spaces.

Theorem 1. Let X,Y be locally compact metric spaces, ¢ > 1, Y a




¢ — LLC space, i a Borel measure on X , v a Borel measure on Y such that
there exist constants Co,C1 and p > 1 such that C5! . rp SuB) <Cy-rP
and C71.rP < o B) < Cy-rP for every ball B, of radius r in X and every
ball B! of radius r in Y. Let f: X - ¥V e continuous, open, discrete such
that N(f) < oo, and there exists H > 1 such that H(z,f) < H for every
Z € X. Then there exists a constant X depending on Co,Ch,c,p, H such that
My(T) < K- N(f)- Mp(f(T)) for every path family T from X.

Theorem 2. Let X be a locally compact p-Loewner space, Y a c— LLC
pregular space such that there exists C] such that #(B(y,r)) < Cy - rP for
every ball B(y, 7) from Y and let f: X —Y be continuous, open and discrete.
Suppose that D ¢ X is open, N(f, D) < 0o and there exists K 2> 1 such that
Mp(T) < K - N(7, D) - My((T)) for every path family I' from D). R

Then there exists a, constant H = H(K, p, N(f,D), ¢y, c) such that & (z, f) <
H for every z € D. :

A known theorem of H. Renggli [R] and P. Caraman [Ca] says that if n, >
2,D,D’ are domains in R*and f: D - p is a homeomorphism, then f
Is quasiconformal if and only if f carries path families ' from D of Infinite
modulus into path families from D’ of infinite modulus and a generalization of
this result for open discrete maps is given by M. Cristea in [Cr 2,3]. We give
the following version of the theorem of Renggli and Caraman for open, discrete
maps on metric spaces:

Theorem 3. Let X be 5 locally compact- p-Loewner space, Y ac— LLC -
regular space, and let f: X >Y be continuous, open and discrete and suppose
that there exists § > () such that M, (f(T)) > § for every path family I from D
with M,(T') = 0o. Then there exists H > 1 such that H(z, f) < H for every

Theorem 4. [Let X be a locally compact p-Loewner space, Y a c— LLC
p-regular space and let f:X =Y be continuous , open and discrete such that
there exists K > 1 such that M,T) < K. My (f(T))) for every path family T
from X. Then there exists H > 1 such that H(z, f) < H for every z € X,

p-regular space such that there exits ¢} > 0 such that w(B(y,r)) < Ci-7rP for
every ball B(y,r) from Y and let f: X — ¥ be continuous, open and discrete
and suppose that there exists K > 1 such that M,I)< K. M, (f(T)) for every
path family I" from X

Then, for every A > 1, there exists at most n = [ﬁ%] points



Z1,..., T from X such that f(zx) = f(z1) and h(zk, f) > 2\ for every k =
1y '

Here Q(p, C1) is the constant from [HK2] Lemma 3.14 and & is the function
from the definition of X as a Loewner space.

2 Notations and preliminaries.

If (X, u) is a metric measure space and I';,I'y are path families such that
I C T2 and p > 1, then Mp(T'1) < M,(I'2) and if T, are path families in X,
then M, (U2, Tn) < 2oy Mp(T). We say that the paths from Ty are longer
than the paths from I'; (and we write I'y > I'y) if for every path v € Iy, there
exists a subpath v* € I'1. If I'; > I'; and p > 1, then M,(I's) < M,(Iy).
We say that the path families I'y,...,I'y, ... from X are separate if there exists
disjoint Borel sets E, ..., By, ... in X such that if g, = X¢g,,n € N, it results
that f«, gnds = 0 for every v € ', and n € N. As in the classical case, we
prove that if I'y, ..., 'y, ... are separate in X,I",, > T for n € N and p > 1, then
My(T) > >°0° , Mp(T). As is underlined in [T], the following result of Ziemer
(Z] holds on metric spaces: "Let I'y C I's C ... C I, C ... be path families in X
and p > 1. Then Mp(Uf;l Ln) = limy, o6 Mp(Ty)."

The following %—covering theorem will be used in our paper:

Theorem A. (Basic covering theorem) Let X be a metric space and F
a family of balls of uniformly bounded diameter. Then F contains a disjoint
subfamily G such that (Jge B C Upeg 5B. If X is locally compact, we can
take G countable. ,

If X is a metric space, v: I = [a,b] — X is a path, B; are sets from X, we
say that (I;, B;)iecs is a parametrized cover of v if J C N, I; C I, Uies i =1
and (I;) C B; for every i € J. If B is a base covering of X, : B — [0, 0]
is a map and 6 > 0, we let § — ¢g(y) = inf ), ®(A4;), where the infimum
is taken over all parametrized coverings (I;, A;);c; of v with elements 4; € B
such that d(4;) < 6 for 7 € I. Then the map § — § — @gz(v) is decreasing
and we put @z(y) = lims_0d — @g(y). This definition was inspired by the
definition given by J. Tyson in [T}, §3.14. We can take the collection B as
an union B = BU,...,UB* of collections and the map ¢ = (¢, ..., ;) with
¢, 2 BY— [0,00],! = 1,...,k. We can also see that ©wg(7y) is invariant to a
increasing reparametrization of y. The following proposition follows closely the
ideas from [T:

Proposition 1. Let X be a locally compact metric space, I' a path family
in X,h: X — R, amap such that inf,cx h(z) > 0 for every K C X compact,
p € F(T') lower semicontinuous and let B = B'U, ...,UB* be a base covering of
X. Let e > 0 and ¢, : B' — [0,00],,(A) = infaeca(p(a) + eh(a)) - d(4) for
AeBLl=1,...k¢=(p1.9r). Then pz(v) > 1 for every y € I.

Proof: Let B' = (By)ier,,l = 1,...,k and let v € ',y : I — X be such
that « is not locally rectifiable and let Iy C I be compact such that |y is
not rectifiable and let X' C X be compact such that y(Ip) C Int K and let
m = infzex h(z) > 0 and o = d(v({o), C Int K) > 0.



Let t > 0and A = (a =40 < t1,...,< t, = b) be a partition of Ip such
that Va(yg) = Zq:O d(y(tg+1),7(tq)) > t. By removing terms if necessary, we
may assume that Y(¢,) # Y(tg+1),¢ = 0,1,...,p — 1. Let §; be the minimum
of the quantities d(7(tq), 7(tg+1)),q = 0,1,...,p — 1. Let 0 < § < min{do,d1}
and (Iii, Bis)ies,, | = 1, ..., k be a parametrized covering of y with d(By;) < ¢ for
e dyd = 1wk Let J] = {i € Ji| B Nv(lp) #0},1 = 1,..._,k.

Then I € Uz, Uiy fis and By C IntK for i € Jj,1 = 1,..,k. Also,
we see that every interval Ij; contains at most one point tg,q = 0,1,...,p. We
have Zf=1 >ies, 21(Bui) 2 Zf:l Zie.f; @ (Bi) 2 € mezl ZieJ; d(Bui) =
e-m(Va(v,) — (p+ 1)d), hence § — @g(7) > &-m(t — (p+1)J). Letting ¢ tends
to zero, we see that pz(y) > emt, and letting ¢ tends to infinite, we see that
0p(7) = 0o > 1. We proved that pz() > 1 if v € I is not locally rectifiable.

Let now v € ' be locally rectifiable. We prove that f pds < pp(v).We
suppose first that p is continuous and we can also presume that vis pa.rametrxzed
by its arc length. Let Iy C I be compact and vy = y|lo : o — X.

Then, if A = (0 =tg < t1 < ... < t, =.1(7)) is a partition of [0,!(7p)]

and ¢; € [t tia1]st = 0,1,...,m — 17 we see that f% pds = fé(7°)p('yo(t))dt =
limyaf—o imo A(v(c:)) - d(y(t:), ¥ (tir1))-

Let U C X be open such that U is compact, Imy, C U,m = inf_ 5 h(z) > 0,
and let o > 0 be such that |p(z) — p(y)| < = if 2,y € U and d(z,y) < a.
We take n > 0 and let A = (0 =1ty < t1 < ... < tn = l(yy)) be a partition of
[0, (vo)] such that [|Al| < § and [, pds—n < Y075 p(v(tq)) - d(¥(tq), ¥(tg+1))-
By removing terms if necessary, we can suppose that (ty) # v(tg+1) for ¢ =
0,1,...,n—1 and let §; > 0 be the infimum of the quantities d(y(tq), Y(tg+1)), ¢ =
0,1,...,n—1.

Let 8o = d(v(Ip), CU) > 0 and let § < min{do, 4,51}

Let (Lji, Bii)icy,,! = 1,..., k be a parametrized cover of v such that d(By;) <
8y1 € Jipd = Ly b, 204 M = sup,¢g p(x)-

Then every interval [j; contains at most one point t,,q = 0,1,...,n — 1.
We take Ji; = {1 € Ji|Ii C (tq,tq+1)} l=1,.,kq=01,.,n—1 Then
dhe Ndiggaiy = Bd = L salig = 0; 1, lu;’(}quch,l—l ,k and

Eims Lies, UBi) 2 dl(ia), 1(igu)) — %6 or g = 0,1,.0m— 1
Ift € [tg,tq41]ii € U _0 > Jig»¥(t) € By and b € By, then d(b,y(t,)) <
d(b,v(t)) + d(v(£),v(tg)) < d(Bu) +d(t,tg) < s+ |All < §+§ = % for
g¢=0,1,..,n—1, and this implies that |p(v(t,) — p(b)| < £5*,¢ =0, 1 ,n—1.
Then we have that p(v(tg)) - d(By) < infeep,, (p(a) + € - h(a)) - d(Bi;) = (Bli)
foreveryl=1,...,k,q=0,1,..,n—1,¢ € U;:()l Jig- We obtain that

k n—1

ZZ% (Bi) = i > @B =YY" @(Bu)=

l=11i€J; l=1 EU"—()I Jig =1 g=0ieJ4



n—1 k
> o(v(tq)) Z > d(By) > Zp(v(t )(d((te), Y(tgr1)) — 26) =

q=0 I=11i€Ji,
n—1 n—1 .
> o((tg)) - d(Y(te)s ¥(tq1)) =26 > p(n(ty)) 2 / pds — 1 — 2Mén.
q=0 q=0 Yo

It results that d—pg(y) 2 [, pds—n—2Mnd. Wefixn > 0and A € D([0, (vo)])
as before and we let § tends to zero. We find that z(7y) > f pds—n and letting
now 7 tends to zero, we find that @z(y) > f pds. Slnce f pds = SUPLc1, 1

compact f pds, we obtain that pg(v) > f pds

We proved that if v is locally rectifiable and p is continuous, then () >
f7 pds. Since p is lower semicontinuous, we can use a theorem of Baire to find
continuous maps p,, : X — Ry such that p, /' p, and we see that f pds =
sup f p'ds, where the supremum is taken over all continuous functions 0 < p’ <
- We therefore proved that if p is lower semicontinuous, then es(y) > f pds if
v € T is locally rectifiable, hence, if p € F(T'), we see that pg(y) > 1 for every
v € T locally rectifiable. We proved that if p € F(I') is lower semicontinuous,
then pg(y) > 1 for every y € I

Lemma 1. Let E be a Hausdorff space, U C E open, () C E connected
such that QU # 0,Q NCU # (. Then Q NOU # 0.

Proof: Suppose that QNAU = (). Then QNCU # B, and since QNU # 0, Q
is connected , Q NU and Q N CT are open in @ and Q = (QNU)U(QNCD),
we obtained a contradiction. It results that Q NoU # . '

Lemma 2. Let E,F be Hausdorff spaces, D C E open such that Dis
compact and let f : E — F be continuous and open. Then 8f(D) C f(8D).

Proof: We see that f(D) = f(D). Let y € 0f(D) C f(D) = f(D). Then
there exists € D such that y = f(z). If z € D, we use the fact that f
is an open map to see that f(D) is open, nonempty and f(z) € f(D), hence
f(z) € Intf(D), which contradicts the fact that y € 9f(D). It results that
x € 8D, hence y = f(z) € f(0D) and since y was arbitrary chosen in df(D), it
results that f(D) C f(dD).

Lemma 3. Let E, F be locally compact metric spaces, ¥ ¢— LLC, f :
E — F be continuous, open, discrete and let x € E. Then there exists r, > 0
such that B(z,r;) C D,B(z,rz) N f(f(z)) = {z} and B(f(:c),—(x—frl) C

F(B(z,r)) C B(f(z),c- L(z, f,r)) for 0 < 7 < 7.

Proof: Let 7 > 0 be such that B(z,r) C D. We show that B(f(z),

ﬂxcﬁl) C f(B(:c r)). Indeed, if this thing is not true, we can find a point

b € B(f(z), =LY\ f(B(z,r)). Since F is ¢ — LLC, we can find Q C
B(f(z),(z, f, )) connected such that f(z) € Q,b € Q. Then f(B(z,r)) is
open, QN f(B(z,r)) #0,Q NCf(B(z,r)) # () and from Lemma 1 we see that
QNAf(B(x,r)) # 0. Using now Lemma 2, we see that QN f(S(z,7)) # 0. Let
y € S(z,r) be such that f(y) € Q C B(f(z),l(z, f,7)). Then d(f(z), f(y)) <




l(z, f,r) and d(z,y) = r, which contradicts the definition of I(z, f, 7). We there-
fore proved that B(f(z), I—(J:Tfr)-) C f(B(=z,r)) if r > 0is such that B(z,r) C.D. -

Let now 75 > 0 be such that B(z,r.) C D, B(x,7:) N f~1(f(z)) = {z} and
Cf(B(z,r)) N CB(f(z),cL(z, f,r)) # 0 for 0 < r < ry. We take 0 < r < 1y
and suppose that f(B(z,r)) ¢ B(f(z),cL(x, f,r)) and let a € B(z,r) be such
that d(f(a), f(z)) > c- L(z, f,r). Let b € Cf(B(x,r)) N CB(f(z),cL(x, f,T)).

Since F'is c—LLC, we can find Q C CB(f(z), L(z, f,r)) connected such that
f(a) € Q,b € Q. Wesee that QNf(B(z,r)) # 0, QNCf(B(z,7)) # 0, f(B(z,r))
is open, and from Lemma 1 we find that Q N & f(B{z,r)) # . Using Lemma
2, we see that QN f(S(x,7)) # 0 and let y € S(z,r) be such that f(y) ¢ Q.
Then d(z,y) = r and d(f(z), f(y)) > L(z, f,r), which contradicts the definition
of L(z, f,r). We therefore proved that f(B(z,r)) C B(f(z),cL(z, f,r)) for
O0<r<r,. '

Lemma 4. Let E, F' be locally compact metric spaces, f : E — F continu-
ous and open aud r > 0 be such that there exists ¢ > 0 such that B(f(z),r) C
f(B(z,c)). Then, if A, = inf{6 > 0|f(B(z,8)) D B(f(x),r)}, it results that
i(z, f, ) <. |

Proof: We show first that B(f(z),r) C f(B(z,\.)). Let y € B(f(z),7)
and A, < ¢; < ¢ ¢ \, Ar. Since B(f(z),r) C f(B(z, ¢c;)) for every j € N, we
can find z; € B(z,c;) such that y = f(z;) for every 5 € N. Since B(z,c) is
compact, we can find z¢ € B(z, ¢) and a subsequence (2, )ken of (z;)jen such
that z;, — zo, and then f(zo) = limk_,o0 f(z;,) = y. Letting k tends to infinite
in the inequality d(z,z;,) < cj,, we obtain that d(z,z0) < A, hence zo €
B(z,\),y = f(zo) € f(B(z, \)). Since y was chosen arbitrary in B(f(z),r),
we proved that B(f(z),7) C f(B(z, \)). I

Let now ¢; < Ar,c; / M. Using the definition of ), it results that
B(f(z),r) ¢ f(B(z,c;)) for every j € N, and let y; € B(f(z),7) \ f(B(z,¢;))
for every j € N. Since B(f(z),r) C f(B(z,)\.)), we can find a;j € B(z,\)
such that f(a;) = y;,7 € N, and we see that ¢j < |z —az] < A for every
J € N. Since B(z,A) is compact, we can find ag € B(z, A,) and (@5 )ken
a subsequence of (a;);en such that aj, — ag, and letting & tends to infi-
nite in the inequality c;, < |z —a;,| < A, we see that ag € S(z, ;). Then
f(ao) = limg—o0 f(aj,) = limg—c0 ¥, and since y;, € B(f(z),r) for k € N, we
see that d(f(z), f(ao)) < r. We obtain that {(z, f, \,) < d(f(z), f(ag)) < r.

3 Proofs of the main results.

Proof of Theorem 1. Let A>1,D =57 - H% . C? - ¢ . \P and A = {z € X|
there exists I, C Ry with 0 € I, such that v(f(B(z,5r)) < D - v(f(B(z,r))
for every 7 € I;}. Let x € CA. Since H(z, f) < H, we can find r, > 0 such
that L(z, f,r) < H - l(=, f,r) and v(f(B(z,5r)) > D - v(f(B(z,r)) for every
0<r<Ze Weput I, = (0,%).

We have

L(z, f,r)? < HP - Uz, f,r)P < HP - Cy - & - w(B(f(z), _—l@’cf 7)) <
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B -Cy - v(f(B,r)) < T2 (f(B(a,5m)) <

P.CL P o o By
H? CR-c® oy U f5r)P
S Ua fi5r)? = S,
hence
5¢AL(z, f,r) < l(z, f,57) if0 < B re,x € CA . ).

We have that B(f(z),5cAL(z, f,r)) C B(f(z), L) ¢ #(B(,5r)) for
0 <5 <71y Let0< 5 <7, and Q. = {5 > 0|B(f(x),5cAL(z, f,r)) C
f(B(z,s))} and A = inf Q.. From Lemma 3, we see that f(B(z,r)) C B(f(z),
cL(z, f,r)), hence r < )., and we also see that A, < 5r. If A = 5, we
take p. = A, and from Lemma 4 we see that I(z, f, pr) < 5cAL(z, f,r) and
B(f(z),5cAL(z, f,r) C f(B(z,p,)). If A- < 57, suppose that there exists po >0
such that 5¢A” - L(z, f,7) < l(z, f,a) for every A < & < A, + po < 5r. Since
the map y — d(f(z), f(y)) is a continuous map defined on the compact set
S(z, Ar), we can find z, € S(z, \.) such that- d(f(z), f(zr)) = (=, f, \). Let
now zx € B(z, \, +p%) \B(z, \;) be such that z; — z,. Then d(f(z), f(zk)) >
Uz, f,d(z,zx)) > 5cA°L(z, f,r) for every k € N and letting k tends to infinite,
we obtain that d(f(z), f(zr)) > 5¢A’L(z, f,r). We find that 5¢2AL(z, f,r) <
d(f(z), f(zr)) = Uz, f, \r) < 5eAL(z, f, r), which represents a contradiction.

It results that if A\, < 5r, we can find ¢, \, A, such that Iz, fyer) <
5cA?L(z, f,r) and B(f(z),5cA\L(z, f,r)) C f(B(z,ct)) for every k-€ N. We
take in this case p, = ¢, for some )\, < ¢; < 5r as before, and we see that
Uz, f,p,) < 5cX’L(z, f,r) and B(f(z),5cAL(z, f,r)) C F(B(z, p,)). |

We also take Dy = 57 - ¢ - H?% . 2 . \*P and we have v(f(B(z,p,))) <
V(_E(f(x)$CL(x) f pr))) & Gy =ef - Lp(.’L’, Iy pr) LG e HP. lp(:l,‘, f)pr) <
5P-c2P~H1’-C’1-)\2”-LP(z, fr) < C’l-)\z”--CQP-HZP-l”(x, f,r) < 5P.c3P.H2P. )\2P.
CE-v(B(f(z), L)) < 50.0%. %\ . O f(B(z, 1)) = Dy-s(f(B(a,r).

We therefore found for every z € CA, r, > 0 such that for every 0 < 5r < r,
there exists r < p,. < 57 such that

i, f,pr) < 8eN’L(z, f,7), B(f(2), 5eAL(z, f,7)) C f(B(z,p,))

and

v(f(B(z,p,))) < D1-v(f(B(z,r))  (2).

We also take p, < . < 6r so that d(f(B(z,x,))) < 2- d(f(B(z,p,))) for
0<br<rg.

Let B! = (B(x,57))cearer,, B2 = (B(z, 14,))zccarer, and B = Bl U B2.
Then B is a base of X and f(B) is a base in f(X). Let T be a path family in
X and let p’ € F(f(I')) be lower semicontinuous and let ¢ > 0 and h : ¥ —
[0,00], h € LP(Y, v) be such that infye g h(y) > 0 for every K C Y compact. We



define ¢ = (@1, 92), @y : F(BY) = [0,00], 9,(A) = infaeca(p'(a) +eh(a)) - d(A) for -
A€ f(B),l =1,2. Using Proposition 1, we sec that

i forz1 for every v ¢ T 3

Let T, = {y € I,y : I — X|v is locally rectifiable and there exists I, C I
compact such that d(vy|I,) > 1 and § — @p foy 2 Ffor0<é< = for
neN. We fix n € N and let 0 < § < . Since A = (B(z,7))zeArel,, 0 <7 <
6/6,d(f(B(z,6r)) < & is a covering of A, we can find I countable such that
A C Usearer.,r<se B@,T) C Uier, B(#:,5r:), with z; € 4,7 € I, 6m; <
8,d(f(B(zs,6r3))) < 8, v(f(B(zi,5r:))) < D - v(f(B(zi,m3)),t € I, B(zi,m3) N
B(:IIJ','I"]') = 0,'1: 75 5,47 € L.

Let B = X\U,¢;, B(zi,i). Then B C CAand Bis closed. Let Q1, ..., Qk, -.-
be compact such that Q C IntQyr1,k € N and X = [Ji; Qk and let o =
d(Qk, CIntQr+1) > 0,k € N and Qo = (). Since B C U,ep,rer, B(z,r) and -
BN (Qr+1 \ IntQy) is compact for £ € N, we can find Sy finite such that
BN (Qk_H\IntQk) G UiESk B(xi,ri),xi € B,r; € I;,t € S with 6r; <
min{6,51,...,Jk},d(f(B(IB.i,GT,;))) < 4,1 € Sk,k_é N. It results that if k£ €
N is fixed and j € S, with ¢ > k + 2, then B(J:j,prj) N Qr = O for every
j € Sy, hence if M; = U;‘;l Sg, the set Ly = {i € M1|Qx N B ﬁ_g(xi,pri) #
0} is included in U’;S S, and is therefore finite for every. & € N. We can
find M; C N such that B C U;ep, B(@i,mi),2i € B,ri € Ip,,i € My and
the sets Ly = {i € M;|Qx N BN B(z;,p,,) # 0} are finite for every k € N.
Then f(B) C Usens, f(B(@i13)) € Usenr, B(f (%), AcL(s, f,73)) is @ covering
of f(B) and substracting a g-covering of f(B), we can find Iy C M such
that f(B) C U;ear, B(f(®:), AeL(i, fi13)) C Uses, B(f(2:i), 5eAL(s, f,7)) C
User, /(B p )

We have that v(f(B(zi,p,,)) < D1 - v(f(B(zi,r;))) for i € I and since
f(B(zi,m:)) C B(f(z:), eAL(ws, f,m3)), f(B(=j,75)) € B(f(z;), cAL(z;, f,75))
for i # j,4,7 € I, it results that f(B(z;,r:)) N f(B(zj,r;)) =0 for i # j,4,5 €
Is. , o
We let B1 = g, B(zi, p,,) and we prove that B is closed. Indeed, let
ai € By,ar — a. If there exists i € I and (ax,)qen & subsequence of (ak)ken
such that ax, € B(z;, pr,) for ¢ € N, we use the fact that B(z;, pr,) is a closed
set to see that a € -B-(a:i,pri) C Bj. If this case it is not possible, we can
find (ax,)qen @ subsequence of (ax)ken such that ag, € _E(xq,prq),q € N.
Let k € N be such that a € IntQy and > 0 be such that B(a,r) C Qk-
Since ax, — a, we-can find go € N such that a, € B(a,r) C Qx for ¢ > qo,
hence Qx N B(z,, pr,) # 0 for ¢ > go, and this contradicts the way we chosed
the balls B(z;,7;),¢ € M;. It results that Bj.is a closed set, and we see that
f(B) C f(B) '

Let A; = U, B(zi,ptr,)- Then Ay is open, By C A; and suppose that
‘B¢ A;. Then B\ A; is a closed and nonempty set , and we cover this set
with balls B(z,r),z € B\ Ay, € I, such that every ball B(z, p,) is disjoint
from B; and 6r < 6,d(f(B(z,6r)) < 6. As before, we can find My C N
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such that B\ 4; C UieM2 Bz, ), 2 e B,r; € Iz;,i € My, and the sets
{i € M2|Qx N (B\ A1) N B(wi, p,.,) # B} are finite for every k € N.

Then f(B\ A1) C Uien, F(B(xi 7i)) C Usens, F(B(f (i), AeL(s, f,m3))) is
a covering of f(B '\ A;) and substracting a {-subcovering from it, we can find
I3 C My such that:

FB\A) ¢ | FBeir)) € | BF(@:), AL(zi, f,m1)) €

€M, €M,

U (B(f (i), 5¢AL(xs, f,73))) C U f(B(zi, p,.,))-

i€l i€l
As before, we see that f(B(xz;,7;) N f(B(zj,r;) =0 for i # j,4,5 € I3 and let
By = Uiey, B(xi, py,)- Then By is closed, B; N By =0, f(B\ 4;) C f(B) and
let Ay = Uie[zul;; B(.’L’i, ,u,.i).

If B C Ay, the process is finished. If not, we continue this process and at the
step k we obtain sets Iy, ..., [x41 from N, disjoint closed sets By, ...,Bk,Bq =
UiE[q+1 B(z;,p,.,), sets Ag = UiéUle n B p.) v € Byry € Lyyi € I, g =
L,..,k and f(Bg) D f(B\ Ag-1),9 =2,...,k,6r; < &, d(f(B(zs,6r)) < 6,
d(f(B(xh:“'r,») < 2d(f(B(xi7pr,~))vf(B(wi’ri» N f(B(mj!rj)) = 0,1 # $hhd €
Ig,q = 2,...,k+ 1. Suppose that £ > N(f). Then f(By) D f(B\ Ag—1) D ... D
f(B\ Ak—1) # 0 for ¢ =1, ..., k, and since By, ..., B, are disjoint and k > N(f),
we obtained a contradiction. It results that the process must stop at a step
k< N(f).

We therefore found k < N(f), sets Iy, ..., I+ 1 from N, balls By; = B(zy;, Pii)s
Ty € B,y € Ly, pp = Pryy Tt < py < py; < Ory; such that d(f(B(zu, ;) <
2d(f (B (@i, pi;)), v(f (B (@1, p13))<D1v(f (B(1i, 712)), 6rs<6, d(f (B(zus, 6r13))) <
(5,f(B(.’I)H,7'li)) N f(B(.”E[j,T[j)) = 0,1 % 3,1,7 € Ii,l = 2,..,k+1,and B C
Uf:; UieI, B(zui, w;)-

We take B;; = B(xli,Srli),rli = xz;,T1; = 14,t € 1,A; = Bli,uli =
or14,t € I1, and we let Ay = B(xy, py;),! = 2,...,k + 1,7 € I;. We see that the
balls B(z;,r1:),% € I, are disjoint for every [ € {1,....k + 1} fixed.

We define a Borel map p: X — [0, 00] by p(z) = lk:ll D el
MXB(@,-,wr,f)- Let y€I'y,v: I — X and I,, C I be compact such that

Tii

d(y|I) > L. Then Imy € X = U Ui, Aii. We denote by (Iig)een,, all the
maximal intervals J such that v(J) N B(zu, py;) # 0,7(J) ¢ B(zy, 10ry;),i €
I,l=1,..,k+1.

We see that /my is not contained in a single ball B(z;;, 10r;) for some i €
Il =1,...,k + 1, since d(B(zy;, 10r;;)) < 20r; < %5 <46 < L and d(y) > 1
Let Al,;q =A;forl=1,..,k+1,7i¢ I;,q € Nj;. Let K; = {Z € Illfm’yﬂAu £
@},l =1,..,k+ 1. Then (Iliq,f(A[iq))l:l,.__Yk.f_l‘ieKlquN“. is a parametrized
cover of f oy such that d(f(Aug)) < ¢ for every  =1,...,k+1,i € K;,q € Ni;.

We have

k41

@1 (f(Au
/pds :/ § : § : l Tl ))XB(xmlofti)ds 2
v gt ’

=1 i€l
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I(y) k1 (Aii)
/ Z <Pz(f & )Xs(z,, 10r,,)(’7 (t))dt >

=11€K;
k+1
Z Z 4 f(Au (Z dry) >
I=1i€K; gEN
k+1 k+1
455 i f(A))CardNi =43 > D eulf(Aiig)) 2
=1 1i€K, _ =1 1€K,; gENy;

4-0—wpmfor) 21,

since v € ['y.
We proved that p € F(T). We have, denoting by C(,p, ) the constant
from [H], Ex 2.10, page 13, that

k41

My (Ta) < /X P (@) < /X ' ‘*”(f (A“ AR oy (@))Plis <

=1 ZCIl

k+1

(k4 1)P~1 Z/ Z Sol(f(Ah X B(wui,10m:) (@) dp <

€l;
k+1

(k +1)P"1C(10,p, Z / Z‘”’(f (Ai)) XB(x“’T“)(x))pdu:

X i€l
k+1

(k4 1)P~1.C(10,p, p ZZ W(frAh (Blag, r)) <

1=1i€l, li
k+1

(k+1)P71-C1-C0,p, ) - Y Y ei(f(4))P =

=1 i€l
k+1

(k+1)P71-Cy - C(10,p, Zzae}r(lﬁ )p a) +eh(a))? - d(f(Au))? <
I=1i€l, -

k+1

(k+1)P71-27-Cy-C0,p,p) - (D) inf (p'(a) +eh(a))? - d(f(Bu)) <

1=1 ie1, 4 (Bii)

k+1)P~1.47.Cy cPC(10, p, | PLP(z1; ;
( ) rc ( D :u‘)(gl: Gf(B(:L‘l,,STl,))(p (a)+8h(a)) L (zlzafa 5T11)+

k+1

2.2 wes i (@) +eh(a))? - Lo(an, £ o)) <

1=2 i€l

(bt WHP-Cr OO RO fof | (laHeh(@) P @ Sriok
4 . 'iEI,a T14,97T14 .
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k+1

DN sl (@) + (@) Pl fopu)) <

1=2 icl; zlnplz))

k+1p—l.4p.Hp..2p,02.01()’f, : inf / } P,
(k+1) - Cp-C(10,p, 1) (Zaef(azgms,_“))(p (a) +el(a))’-

i€l
Uz £ 500,
v(B(f(z1, —(—1—2—’5—‘)-)
k+1
Lk (7(0) + eh@)P (B "2k <
2 2toesithen’ su)y) o

k+1)P"1.47. HP. .0%2.C C(10, p, h p,.
(k+1) OO0 (L () + k(e

v(B(f(z1:,57m1:))+

k+1
inf "'h B is Pli <
;;ae)‘(é?xmm))(p (a) + eh(a))" - v(f(B(zi, p13))) <
=z % i
k+1
k+1)P~1.4P. HP-c?P-C3-C(10, p, p)-max{D, D aHeh@))?-
:+1) (10, p, 4)-max{D, D1} (ggaem(%m»(p(ﬁf @)
v(B(f(zu, 1)) <
k+1
(k+1)P~1.207- H%.¢%.C}-A*-C(10,p, / (p'+eh)P(y)dv <
= 11611 f(B(z1i,m1i))
(171207 H3-c.C-A.C(10, p, 1)- (N (f) / (o +eh)P(y)dv+
Uiejlf(B(zli-rli)) ‘

k+1

> / ey <
User, F(B@ta,ms
2. (k+1)P~1- 207 - H% . . )% . C} - C(10,p, u)N(f) - /Y(p' + eh)?(y)dv
<% QN [ +ehP )y (with @1 =
2. (k+1)P7t. 207 . H* . . C} - C(10,p, 1)) <

271 Qo N PPy -2 | wwaw.

We put K = 2P~1Q; and letting first A tends to 1 and then ¢ tends to zero
we obtain that M,(Ty) < K - N(f) - [y p’P(y)dv for every p € F(f(T)) lower
semicontinuous (4)
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We want to show that Mp(T'n) < K - N(f) - M,(fT)) . (5)-

Of course, (5) is true if M, (f(I)) =o0, hence we can suppose that M,(f(T)) <
o0. We use the Vitali-Carathéodory theorem to see that every Borel map p' €
LP(Y,v) can be approximated in LP(Y,v) by lower semicontinuous functions
g > p' to see that (4) implies (5)-

Let now [g = {y € '}y is locally rectifiable }. Then M,(T) = Mp(To),

I, C Dnyy for every n € N and I'p = U2, T, hence My(Tn) / M,(Fo) =
M,(T). Letting n tends to infinite in (5), we obtain that Mp(I') < K - N(f) -
M (F(T)). |

Remark 1. The condition we really used in the proof of Theorem 1 was
fthere exists H > 1 such that hs(z,f) < H for every x € X", which is a
priori a weaker requirment than the condition "there exists H > 1 such that
H(z, f) < H for every z € X". In fact, if @ > 1 is arbitrary, using the covering
theorem from [BK], Lemma 3.2 instead of the basic § covering theorem, we
see that we can replace in Theorem 1 the condition " there exists H > 1 such
that H(z, f) < H for every = € X" by the condition "there exists & > 1
and H > 1 such that hu(z,f) < H for every z € X", and the conclusion
of Theorem 1 will be the same. However, the constant K from Theorem 1,
depending on Cy, C1,¢,p, H will be modified. We obtain in this way a result
related to Theorem 1.3 from [BK].

We can also see that if the modular inequality Mp(I) < K- N (f) - Mp(f(I))
holds for every path family I' in X, then there exists H > 1 such that H(z, f) <
H for every z € X.

Proof of Theorem 2. Let z € D,a >0 and U € V(z) be such that U
is compact, U C B(z,o) C D and TN f~1(f(z)) = {z}. Then f(z) ¢ f(ou)
and let p' = d(f(z), f(OU)) > 0. Then F(8U) is compact, hence is a closed
set, and since f is continuous , we see that f~1(f(8U)) is a closed set and
p = d(z, f7H(f(0U))) > 0. :

Let 5 = fU\ F-1(F(8U)) : U\ F7H(f(@U)) — f(U)\ f(8U). Then g
is an open, discrete and proper map, and using Theorem 2 from [Cr1] (which
extends some results of S. Stoilow [St], page 109 and E.E. Floyd [F]), we see
that for every path p : [0,1] — f(U)\ f(0U) and every o € U\ f1(f(oU)) with
(@) = p(0), we can find ¢ : [0,1] = U'\ f~1(f(8U)) a path such that ¢(0) = o
and p= fogq.

Let 0 < ph < p1 < % Then f~1(S(f(z),p})) is a closed set and p, =
d(z, F~1(S(f(z), pi)) > 0 for k=1,2. We show that B(f(z),p}) C f(U)-

Indeed, we see from Lemma 2 that 8f(U) C f(9U). Let y € B(f(z),p1)
and Q connected such that f(z) € Q,y € Q and Q C B(f(z),cpy). Since
B(f(z),cp}) N f(OU) = 0, we see that B(f(z).cpy) N Of(U) = 0, hence @ N
8f(U) = 0. Since Q is connected, @ N f(U) is open and nonempty in Q and
Q = (Q N f(U))U(QNCS(U)), we see that Q =Qnf(U), hence Q C f(U)-
It results that y € f(U), and since y was choosed arbitrary in B(f(x), p}), we
proved that B(f(z),p}) C f(U)-

We take 0 < r < £ such that B(z,r) € U and cL(z, f,r) < p5. Since
the map y — d(f(x), f(y)) is continuous and 5 (z,r) is compact, we can take
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ar, by € S(x,r) such that L(z, f,r) = d(f(z), f(ar)). Uz, f,r) = d(f(z), (b))
Since X is a Loewner space, there exists ® : (0,00) — (0,00) such that -
M,(A(M, N)) > ®(t) for every nondegenerate continua M and N in X with’
Tun_{d((_l_\/—l_)]ld)(N_)} < tt € (0,00) . Let A > 1 and suppose that L(z, f,r) >
2¢2M(z, f,r). SinceY is c—LLC, we can find a path p : [0,1] — B(f(z),cl(, f,7)
such that p(0) = f(b,),p(1) = f(z). Then B(f(z),cl(z, f,7)) C Img, hence we
can find a path ¢ : [0,1] — U\ f~*(f(0U)) such that ¢(0) = b, and fogq =
Then £(g1)) = (1) = (), benceo(1) € U (/(s) = e}, benco (1) =
Let E' = Imp, E = I'mg. Then d(E) > d(z,b,) > r. ’
Let now d € B(f(z),0}) \ B(f(z),p0}). Since Y is ¢ — LLC we can find
a path p2 : (0,1] — ¥ \ B(f(a), 2527) such that p(0) = £(ar),pa(1) = d.
Let A = {t € [0,1],p2(t) € S(f(z),p3)}. Using Lemma 2, we see that A # ()
and let ¢; = inf A and p; : [0,¢1] — B(f(x),p)),p1 = p2|[0,t1]. We can find
q1: [0,t1] = U\ f71(f(8U)) a path such that ¢;(0) = a,, f oq; = p;. Since
Impy 0 S(f(z),p3) # 0, we see that Imgy N f~1(S(f(z),0h)) # 0, and using
Lemma 2, we see that Imq; N S(z,p,) # 0. Let F' = Imp,, F = Img;. Then
E,F C B(z,a),d(F) > r,d(E,F) < r, hencem%(é—fd(%} <I=1L1I
results that Mp(A(E, F)) > ®(1) > 0. Let k > 1 and I’ = A(E, F, B(x, ka))
and I'1 = A(E,F)\TI'. If v € I'y, there exists v* a subpath of 4 such that
v* € A(B(w, ), X \ B(z,ke)), hence if T'y = {y*|y € T';}, we use Lemma 3.14
from [HK?2] to see that My (I'1) < M,(T2) < Q(p, C1)-[logk]'~? < 2(12 if we take
k € N great enough. Here Q(p, C’l) is the constanat from Lemma 3.14 [HK2].
We obtain that M,(I) + My(T'1) > Mp(A(E, F)) > (1), hence M,(T) > 21,
Let I' = f(T'). Then I'" C AB(f(z),cl(z, f,),Y \ B(f(x), ﬂﬂﬂ)) and
since 2cl(z, f,r) < M’—l we use Lemma 3.14 from [HK2] to see that
My (AB(F(&), iz, £,7), Y \ B(f(z), H5L1) < Qp, Cr) (log (e Lrks)) .
Then 2 < M,(I) < K - N(f,D)- My(T") < K - N(f, D) - My(A(B(f(z), cl(e,
£, Y \B(f(z), #31) < K - N(£,D) - Q(p, C1) - (log(5HE:LL)) 1 for

2K»N(f,D)-Q(p-Cl) ))%
(1)

every 0 <7 < £ Let Hy = c? - exp(
We proved that if 2Ac?(z, f,r) < L(=, f,r) and 0 < 7 < £, then —ﬁ(i;f—f)l <

A - Hi, hence —l(iz—frl < max{)\Hl,Q)\cg} for every 0 < r < 2. We take
H = max{2c? H;} and keeping 0 < r < £ fixed and letting A tends to 1,

we see that TL(%%)Z < H for every 0 < r 5 2. We therefore proved that

H(z, f) < H for every z € D.
Proof of Theorem 3. Suppose that we cannot find H > 1 such that

H(z, f) < H for every z € X. Then there exists =, € X such that H(z, f) >

C = cexp(Q(p, C’l)v T . Q25T T) (where Q(p,C1) is the constant from [HK2)]
Lemma 3.14) for every m € N. Let ® : (0,00) — (0,00) be such that
My(A(E, F)) > ®(t) for every nondegenerate continua M and N in X with

— d(AA/f[)A;(N)} < t,t € (0,00). As in Theorem 2, we can find 0 < Tm < O
such that B(Zpm, 6,n) N B(x,, & p) = 0,p # m,p,m € N and continua E,,, F},
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in X,E],,F, inY such that d(E,,) > rm,d(Fm) & T W By Fin) S Priy T '€
E., there exists am € S(Tm,Tm),bm € S(Tm,Tm) such that an, € En, by €
Foy Fn N.S(Zm, 211) # 0, By Fry € B(Z, 0m), f(xm) € B}, f(Em) =
E;mf(Fm) = F'r,nv Evln € B(f(xm)ad(]:myﬁ Tm))a FTI,,LE'Y\-E(f(.’Em), éﬁ'&%ﬁjﬁz»’
and My(AEm, Frmy B&m,0m) > 22 and L(zm, f,7m) > Cl(Tm, f,Tm) for
m € N. Let I'yy = A(Em, Fin, B(Zm,0m)) and Iy, = f(T'm),m G N. Then
ﬂzll < M,(T'y,) and Mp(I},) < Q(p, C1)~ (loo(—%%%ﬂ)— I-r < & L forevery
m € N.
Let mg € N be such that Y 5, 5w < d and T = Uy, T, ' =

Um_mo I',. Since the path families 'y, are separate, we have that My(I') =
T My(T) = 00 and My(I') < Yoo Mp(Th) < Ty e < 6,
which contradicts the hypothesis. It results that there exists H > 1 such that
H(z, f) < H for every z € X.

Proof of Theorem 5. Suppose that we can find n 4+ 1 distinct points
T1,...,Tny1 <uch that f(zx) = f(z1) and h(ak, f) > ANk =1,...,n+ 1. Let
> 1. Then we can find p, > 0 such that ZLJ(%{)) > cPapfor 0 <r < pg, k=
1,..,n+1. Let ®: (0,00) — (0, 00) be such that M,(A(M, N)) > ®(t). for every
nondegenerate continua M and N from X with — {‘Z(AA{{'&( Wy ShteE (0, 00),
and let Q(p, C1) be the constant from [HK2], Lemma 3.14. As in Theorem 2 and
Theorem 3, we can find 0 < 7, < 6 < pg such that B(Zm,dm) N B(zp,0p) =
0,m # p,m,p € {1,..,n+ 1} and continua E,.., Finr in X, E/, ., F!  inY such
that d(Emr) > 7,d(Finy) > 7, d(Emry Fonr) <7, By U Fonee © B(a, 61, Forr 1
S(xm,2r) # 0, there exists points am, € S(Tm,7),bmr € S(Tm, ) such that
Umr € Emra br € FrnryTmr € vEmr, f(Emr) = E;nr, f(Fmr) mr’ E;nr
B(f @), l@m, ;1) Fpr CY\B(f (%), 2E2L), M (AErr, Fours B@rm, 0rm) >
%El forO<r<rp,m=1,..,n+1

Since the maps r — L(zp, f,r) are continuous for m =1,...,n + 1, we can
suppose that we can find 0 < p and 0 < p,,, < rp, such that L(zpy, f,p,;) =
L(z1, f,p1) = p for m=1,.,n+1 Let 'y = A(Emp_, Fmp_, B(Tm,0m))
and I',, = f(Cm),m = 1,..,n+ 1. We see that M,(Ty,) > 2@ and I'}, C
A ) - s £, o), ¥\ B ), L)) € AB(f (o), il
Y\ B(f(zm), #c)) form=1,..,n+1. Let ' = U"Jrl L, IV = f(T). Since the
families I'y, ...,Tpq; are separate we see that 24 - &(1) <
Sl My(Don) = M,y(T") and we have that ﬁ"—“l@a) <M,(T)<K-M (r')
K- Q(p, Cl) (log(:& /A#c)) P=K-Q(p, Cl) (log A)*~.

We obtain that n+1 < q,—(zg—(%g,\%)—“ which represents a contradiction. The
theorem is now proved.
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