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MAPPINGS WITH FINITE DISTORTION AND ARBITRARY
JACOBIAN SIGN

MIHAT CRISTEA

Abstract.  We consider some classes of mappings f : D — R™ which are
ACLr and|| f (z)||™ < K| J; (z)| a.e. Suchmappings generalizequasiregular
mappings, but are not necessary open, and the Jacobian has not necessary a
constant sign and satisfy the Ko (f) inequality. We also consider non open
and nonsingular mappings f : D — IR" with bounded dilatation K, and we
show that such mappings satisfy a strong ACL condition, extending in this
way some results from[9].

1991 AMS Subject Classigeation: 30C65, 26B10

Key words: Generalizations of quasiregular mappings, modular inequalities,
strong ACL conditions.

1. INTRODUCTION.

In 1966, Yu.G.Reshetnyak introduced in [20] the class of continuous mappings
fe VV&D: (D, R") for which ||f'(z)|™ < K - Js(z) ae. for some 1 < K <
oo (where D C RR™ is a domain, f'(z) is the distributional derivative of f at
z,Jg (x) = det f'(x) and Wl P (D, IR"™) denotes the Sobolev space of all functions
f: D — IR™ which are locally in LP, together with it’s distributional derivatives).
Reshetnyak called them mappings of bounded distortion, and proved that such
mappings are a.e. diceerentiable, satisfy condition (V) and are either constant
on D, or are open, discrete on D. They are also called quasiregular mappings,
and if f is an embedding, they are called quasiconformal mappings. A lot of
properties of analytic functions remain true for this larger class of mappings (see
the monographs[19] and [21]).

Recently, were considered some larger class of mappings f : D — IR™, called
mappings with gnite dilatation (distortion). They are mappings in

W™ (D, R"™) (VVI1 (D, ]R”)) such that there exists a measurable map K (-, f) :

loc
D — [0,00], gnite a.e. and such that || f'(z)|" < K (z, f) - Jf (z) a.e. Mappings
with gnite dilatation are a.e. diceerentiable and satisfy condition (), and if f is
not constant and K (-, f) is in L for some p > n — 1, then f is also open, discrete
(see [5, 6, 10, 11, 12, 14, 15]), and of course, J; (z) > 0 a.e.

An important tool in studying quamregular mappings is the modulus of a path
family T, i.e. M (T) = 1nf f p" (z) dz, where F (') =—p : R" — [0, 00} | Borel

maps such that [pds 2 1 for every v € I'". If f: D — IR™ is K-quasiregular,

5

A € B(D) is such that N (f, A) < oo, then it is valid the so called Ko (f) in-

equality, i.e. M (I') < K- N (f,A)- M (f (T)) for every path family I' from A.
1
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Here N(y, f,A) = Card f~!(y) N A and N (f,A) = sup N(y, f, A). This mod-
yER™
ular inequality is essential in studying for instance the boundary behaviour of
quasiregular mappings, see [25].
_IfDCR"isopen,0<ac<l, fe€ C (D, R™) is discrete and r > 0 is such that
B(z,r) C D, we can consider L (z, f,7) = sup If () = f @), 2, f,r) =
yeS(x,

nt 1) = £ @ Ha (2.) = limsup5Ebe) Hi(ef) = Hef) is the

usual dilatation of f at x.

It is known (see [16] Th.4.5 and Th.4.13) that if f € C (D, IR™) is open, discrete
and N (f, D) < oo, then f is quasiregular if and only if there exists H > 1 such
that H (z, f) < H for every x € D.

If D C R™isopen, f : D — IR"is a map, we say that f is light if dim f~!(y) <0
for every y € IR™, and we say that f is nonsingular if Int f(Q) # @ for every
Q C D open, @ # @. If f is continuous and light, then f is nonsingular, see
[7], page 92. For nonsingular mappings, 0 < o < 1 and z € D, we can degne

B T
Koz, f) = limsupSlZGenys.

Here p,, is the Lebesgue measure from R"™. In [1] it is proved that if f €
C (D, IR™) is open, discrete and N (f, D) < oo, then f is quasiregular if and only
if Ko (z, f) < K for every z € D, for some 0 < « <1 and K > 0.

Another direction for relaxing the conditions characteristic to quasiregular map-
pings is considered recently in [8] and [9] for open, discrete mappings f : D — IR™
for which the linear dilatation H (z, f) depends on the points x € D. In [9] it
is proved that if D C IR™ is open, f € C (D, IR™) is open, discrete, E C D,s >
o H(z,f) <ocoon D\E, H (-f) € L}, (D) and E has o-gnite n—1 dimensional
Hausdoroe measure, then f is ACL, a.e. diceerentiable and f € Wl1 (D, IR™), with
. We denoted here by m,, the p Hausdorce measure in IR™ and we say

i
that F' C B" is of o-gnite p Hausdorce measure if F' = iglFi, with m,, (F;) < oo
for every i € IN.

The common point of all this research directions is that all the maps considered
are open, discrete, with constant positive Jacobian sign, and generalizes quasireg-
ular mappings. Let us consider the following example.

Example 1. Let f: € — €, f(2) =z if Imz >0, f(2) = Zif Imz < 0. Then
feC(C,), fisaC®mapon €\ d, whered={z€ C |Imz= o}, IIf (2)|I° =
|Jf (2)| for every z € @\ d,Jf(2) = 1if Imz > 0,Jf(2) = -1 if Imz <
0,H (z,f)=1for every z € €, Ky (2, f) < —2+—17— for every z € @, f is a discrete
map with N (f,€) <2 and f is not open. Here V., denotes the volume of the unit
ball from IR™.

This example enable us to consider some classes of mappings which also gen-
eralizes quasiregular mappings, but are not necessary open, and the Jacobian has
not necessary a constant sign.

We consider grst the class of mappings f : D — IR™, D C IR™ open, such that
fecC(D,R")NWL™(D,R") and ||f' (z)|" < K -|Js (z)| ae. for some K > 1,

loc

and we prove in Theorem 1 that the Ko (f) inequality holds for such mappings.
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Theorem 1. Let D C IR™ be open, f € C(D,R™) N Wlicn (D, R"™) be such
that there exists K > 1 such that ||f’ (z)||" < K - |Jf (z)| a.e. and there exists
A € B(D) and B C R"™ with p, (B) = 0 such that ¢ = N (f, A,B) < co. Then
M) < K-q-M(f(I)) for every path family I" from A.

Here N (f,A,B) = sup Card f~1(y) N A.

yeER"\B

We consider maps f € C(D,R™) N VVl})’C1 (D,R™),D C IR™ open, for which
there exists a measurable function K (-, f) : D — [0,00] gnite a.e. and such
that ||f' (z)|" < K (z,f) - |J¢ (z)| ae., and we call them mappings with gnite
distortion and arbitrary Jacobian sign. Of course, this class of mappings contains
the mappings with gnite distortion mentioned before. If K (z, f) < K a.e., we say
that f is a map with bounded distortion and arbitrary Jacobian sign.

We say that a closed set E C D with p, (E) = 0 is removable for the K-
quasiregular map f,if f € C (D, R"™), fis K-quasiregular on D\ E, and f extends
to a K-quasiregular map on D. A classical eliminability result of J.Visl [23] says
that if m,_1 (E) = 0 and f is K-quasiconformal on D\E, then E is removable for
f- M.Vuorinen [25] generalized J.Visl’s result, showing that if m,_; (E) =0, f
is K-quasiregular on D\F and N (f, D\E) < oo, then E is removable for f. We
give some eliminability results for the maps with gnite distortion and arbitrary
Jacobian sign, generalizing M.Vuorinen’s result from [25] and an earlier result
of M.Cristea [2]. Of course, the grst question is what it means removability for
mappings with gnite distortion and arbitrary Jacobian sign. We say that a closed
set E C D with p, (E) = 0 is removable for f if f € C (D, R"™), f is a map with
gnite distortion and arbitrary Jacobian sign on D\ E, and f extends to a map with
gnite distortion and arbitrary Jacobian sign on D. We prove:

Theorem 2. Let D C IR™ be-open, n > 2,8 > E{—l,F C Dclosedin D, f €
C(D,R™) N Wli’cl (D\F, IR"™) such that there exists a measurable map K (-, f) :
D — [0, 0] gnite a.e. and in L{ _ (D) such that ||’ (z)||" < K (z, f) - |J5 (z)] a.e.
and there exists B C IR™ with p,, (B) = 0 such that for every x € D, there exists
U, € V(z) with N (f,U, B) < co. Suppose that either F' is of o-gnite n — 1
dimensional Hausdorce measure, or that u, (F) = 0 and my (f (F)) = 0,and let
p= 5. Then f € W'licp (D, R™), hence E is removable for f and f is ACLP on
D.

Another way to extend the class of quasiregular mappings is the method used
in [8] and [9], i.e. to consider mappings f : D — IR" with H (z, f) or K, (=, f) de-
pending on = and gnite a.e. The minimal assumption for the existence of K, (z, f)
is that u,, (f (B (z,7))) > 0 for small r, which is satisged if f is nonsingular, and
the minimal assumption for the existence of H, (z, f) is that f is a discrete map.
If D c R*isopen, ¢ € D,0 < a < 1,f € C(D,IR™) is open, discrete, then
B(f(z),£(z, f,r)) C f(B(z,r)) for small r, and we have

n

(*) Ka(xvf)SV'Ha(xaf) .

As we can see from Example 1, if f is not open, it is possible that B(f(z), p) ¢
fB (z,r) for every p > 0, hence (*) may not hold. We can overcome this di(Eculty
for non open, but nonsingular maps. Indeed, if D C JR™ is open, f € C (D, IR™)
is nonsingular, € D, B(z,r) C D, we put L(z, f,r) = inf{p > 0|f (B (z,7))
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is included in some ball of radius p}, £(z, f,r) = sup{p > O|f (B (z,r)) contains
L(:c fyor)

7 f),and

some ball of radius p}, and for 0 < a < 1, we set H, (z, f) = limsup
r—0

we easily see that

n

2 T n
() Ka(@,) < 3 Halz ).

n

We show in Theorem 3 that mappings with locally gnite multiplicity and with
Ko (z, f) < 00 a.e., or with Hy (z, f) < 0o a.e. are a.e. dioceerentiable.

Theorem 3. Let D C IR™ be open, 0 < o < 1, f € C (D, R™) be nonsingular
such that there exists B C IR™ with u, (B) = 0 and such that for every z € D,
there exists U, € V (z) with N (f,U,, B) < oco. Suppose that one of the following
conditions are satisged: '

a) Ky (z, f) <00 ae.

b) f is open, discrete and H, (z, f) < oo a.e.

¢) Hy (z, f) < o0 ae.

Then f is a.e. diceerentiable on D.

We shall prove that mappings with locally gnite multiplicity and with integrable
dilatation K, (-, f) or Hy (-, f), satisfy a strong ACL condition, generalizing in this
way some results from [9], established for open, discrete mappins in JR".

IfQ = P [az,bi] C R™ and f € C(Q,IR"), we say that f is m-ACH (m-
absolute contlnuous) if for every € > 0, there exists 6. > 0 such that if Aq,...,Ag

are closed, disjoint intervals in @ with me (A;) < 6, then me (f (Ay) <e.

If m =1, it is obviously that a 1 — AC Iriap is absolutely contmuous
Letn>2,ke{l,...,n—1}and I,y = {a = (a1,-..,0n-k) oz € {1,...,n},
a; # a5 for i#£ g, i,5€{l,...,n—k}}. If I € In_g,I = (a1,...,0m—) and
T = (z1,...,2n) € R", we denote by z; = (Zay,...,%a,_,) and we put II; :
IR™ — IR™ the projection given by II; (z) = (z,0) for z € IR™ and we let ¢ (I) =
{a1,...an—r} and r (I) = {1,.:.,n}\q¢ (). If D C R" is open, f € C(D,IR")
and Q = ifll [a;, b;] is such that Q C D, we let for I € I,_; and z € IR™ such that

H=T1;"(II; (z)) N Q # @, the map &, : H — R" given by fi'; = f|H.
If DN IR™ is open, f € C (D,R"™),k € {1,...,n— 1}, we say that f is k-ACH

n
(absolute continuous on k hyperplanes) if for every interval @ = _I"I1 [ai, b;] with
1=

Q C D with the sydes parallel to coordinate axes and every I e In k, it results
that mp_x (Er) = 0, where E; =—z € II; (Q)| the map fm_, ] ( ynQ —
R™is not k—AC” for I € I,_j. Of course, a 1— ACH map is ACL, ie. is

3 o
continuous and for every interval Q = 'H1 [ai, b;] with Q C D, it results that the
=

maps fg ; are absolutely continuous on H,“1 (x) N Q for every I € I,_; and for
a.e. z € II; (Q). ACL mappings have a.e. classical partial derivatives, and if this
classical partial derivatives are locally in LP, with p > 1, we say that f is ACLP
on D. In [21], Prop.1.2, page 6, it is proved that f is ACLP on D if and only
fewWhP (D, R*)nC (D, R"). We proved:

loc
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Theorem 4. Let D C IR™ be open, n >2,m e {1,...,n—1},f € C(D,R")
be nonsingular such that there exits B C IR™ with m,, (B) = 0 and such that for
every ¢ € D, there exists U, € V (z) with N (f,U,,B) < oo and let 0 < o <1
and E C D of o-gnite n — m dimensional Hausdorce measure. Suppose that one of
the following condition is satisged:

a) Ku (2, f) <ocoon D\E and K, € L{ (D),

b) fls open, discrete, H, (z, f) < coon D\E and H,, € Lloc( ) with s > 1%,

¢) Hy (z,f) < oo on D\E and H, € L}, . (D), with s > ™%

Then f is m-ACH.

We also prove:

Theorem 5. Let D C IR™ be open, n > 2, f € C (D, IR") be nonsingular such
that there exists B C IR™ with u,, (B) = 0 and such that for every z € D there
exists U, € V (z) with N (f,U,,B) < o0, and let 0 < o < 1,8 >0 and E C D
with p,, (E) = 0. Suppose that one of the following condition is satisged:

a) Ko (z, f) < oo on D\E and K, (-, f) € Lj . (D).

b) f is open, discrete, Hq (z, f) < 0o on D\E and H, (-, f) € Lj, (D).

¢) Hy (z, f) < o0 on D\E and H, (., f)e Ly (D).

Then f is a.e. diceerentiable on D, and if 55, then ' € L} (D).

If s < oo, then f' € L{, (D), where p = 2% in case a), p = 5 in case b)
and p = ;2% in case c). If E is of o-gnite n — 1 dimensional Hausdorce measure
and m1 (B) =0, then f is ACL" if s = 0o, and f is ACLP on Dif s < 0o, where
p= 335 if m=5 < s < oo and condition a) is satls(aed p=pfagif By <s<o0
and condmon b) is satisged, and p = if -2+ < s < oo and condltlon c) is
satisged.

We prove the similar result wh1ch holds for open, discrete mappings with gnite
multiplicity in JR™, i.e. the fact that mappings with locally gnite multiplicity in
IR™ and with bounded K, (-, f) dilatation, or with bounded H, (-, f) dilatation,
are mappings with bounded distortion and arbitrary Jacobian sign.

Theorem 6. Let D C IR" be open, n > 2, f € C'(D, IR"™) be nonsingular such
that there exists B C IR™ with m (B) = 0 and such that for every € D, there
exists U, € V (x) such that N (f,U,,B) < 0o, and let 0 < o < 1, K > 0 and
E C D of o-gnite n — 1 dimensional Hausdorce measure. Suppose that one of the
following condition is satisged:

a) Ky (z,f) < K on D\E.

b) f is open, discrete and Hy (z, f) < K on D\E.

¢) Hy (z,f) < K on D\E.

Then f is a.e. diceerentiable and ACL" and is a map with bounded distortion
and arbitrary Jacobian sign and || f’ (z)||" < V" K . |Jf ()| a.e. if condition a)
is satisged, ||f’ (z)||" < (%)n_1 | ()] ae. 1f condition b) is satisged, and
1 @)™ < (3£ )n |J¢ (x)| a.e. if condition c) is satisped. If A € B(D) is
such that ¢ = N (f,4,B) < ccoand T is a path familty from A, then M (T') <
eVu K Af(f(T)) if condition a) is satisged, M (T') < g (£ LU M(F (D)) if
condition b) is satisged, and M (T') < ¢ - ()" . M (f(I") if condition c) is
satisged.

n+s



6 MIHAI CRISTEA

2. CHANGE OF VARIABLE FORMULAE AND ¢-SUBADDITIVE
FUNCTIONS

We let for D C IR"™ open B(D) = {AC D|Ais a Borel set} and £ (D) =
{A C D|A is Lebesgue measurable} . The following change of variable formula for
Sobolev mappings is presented in [13], Th.6.32, page 104 for g = 1 and the proof
for arbitrary g is standard.

Lemma 1. Let D C IR™ be open, f € Wli’cl (D,R*)nC (D,R"),A € L(D)
and let g : IR™ — [0, 00] be a Borel map. Then there exists E C D with p,, (E) =0
and [, g (f (2))-|J; (z)]dz = [, 9(y)-N(y, f, A\E)dy, and if f satisges condition
(N), we can take E = 0.

n ; n : i o (F(B(z,7)))
If D C IR™is open, f € C (D,IR™),x € D and there exists }1_% By Ve

denote it by 4 (), and from [18], page 325-334, we see that if f is diceerentiable
in z, then there exists u; () and pf (z) = |Jy (2)].

If D C IR™ is open, ¢ > 1 and ¢ : B(D) — [0,00], we say that ¢ is a g-
subadditive function if ¢ (A) < ¢ (B) for A,B € B(D),A C B,p(A) < oo if

k
A is compact, A C D, and > ¢ (A;) < q- ¢ (A) for every Ay,..., A disjoint

i=1
Borel sets from A with 4; C A, i = 1,--- k. We degne for x € D ¢ (z) =
ey 0@ o _ 1 »(Q)
Jmid @@ @ = lmeup L0
and all open balls such that z € Q C D. As in [18], page 204-209 (see also [16]
Lemma 2.3), if ¢ is a g-subadditive function, then @' (z) < ¢- ¢’ (z) < o0 a.e., @'
and ¢’ are Borel functions and [;; ¢’ (z) dz < g- ¢ (U) for every U C D open. We
have
Lemma 2. Let D C IR™ be open, f € C (D,R"™) be a.e. diceerentiable such
that there exists B C IR™ with p,, (B) = 0 and ¢ = N (f,D,B) < oo. Then, if
G CC D is open, it results that [ |J; (z)|dz < oo.
e

Proof. We degne ¢ : B(D) — [0,00] by ¢ (K) = p, (f(K)) for K € B(D).
Since f is continuous, it maps Borel sets into measurable sets (see [3], Th.22.13,
page 69), hence ¢ is well degned and takes gnite values on the compact sets from
D and we can easily see that ¢ is a g-subadditive function on B (D). We have
JolJr @) dz = [ou) () de < [ @' (z)dz < g [o @' (2)dz < ¢* 9 (G) =
=q? u, (f (@) < oo for every G CC D open.

where @ runs through all open cubes

3. MAPPINGS WITH FINITE DISTORTION AND ARBITRARY
JACOBIAN SIGN.

The important Ko (f) inequality for ACL" mappings with bounded distortion
and arbitrary Jacobian sign will be proved in Theorem 1, and the proof follows
the line of the classical one for quasiregular mappings (see [24], Th.5.3, page 12
and [21], Th.2.4, page 31).

If o : [a,b] — IR™ is a rectigable path, we denote by s, it’s lenght function,
and by o : [0,£(a)] — RR™ it’s normal representation (see [24], page 4-5). If
D Cc R is open, ¢ € D,f : D — IR" is a map, an n x n matrix L is called
the approximate diceerential of f at z if the maps fy, : B(0,1) — IR", degned by
frly) = M'h—%ml for y € B(0,1) and h > 0, converges to L in measure on
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B(0,1). Then L is unique and we denote L = (app)df,. An n x n matrix is called
a quasidiceerential of f at z if there exists r; — 0 such that for every € > 0, there
exists ic € IN such that sup |f(z)—f(z)—L(z—2)| <e-r;fori>i.. We
lz—zl|=r:
say that f is weakly diceerentiable at x, and that L is the weak diceerential of f at
z, if L = (app)df, and L is a quasidiceerential of f at x.
Proof of Theorem 1: We see from [21], Prop.1.2, page 6, that the distribu-

tional partial derivatives and the classical partial derivatives coincides a.e., and
from [4], Th.5.21 page 129, we see that f is a.e. weakly diceerentiable. We denote

by [g—% (x)] the distributional partial derivative of f at x, by g% (z) the classi-
cal partial derivative of f at z, by f'(z) = [—afi (:U)] . and by Df (z) =

ad:j -
Hy=1y N

(% (m)) . We see from [4], Th.5.21 page 129 that the weak derivative

82]‘ i:jzlv“'vn

of f at = acts as the distributional derivative of f at z, i.e. < f'(z)(y),es >=

> [ng—i_ (x)} -y; for y € IR™. The classical partial derivatives —g}&% are Borel maps
]:1 | 7

on their existence domain, hence the map x — Df (z) is a Borel map on it’s
existence domain.

We see that there exists F' € B (D) with u,, (F) = 0 and the map z — || Df (z)]|
is a Borel map degned on D\F, and there exists M € L (D) such that F C
M, p, (M) =0, fis weakly diceerentiable on D\M and f’ (z) = Df () on D\M.

Let now I' be a path family in A, Ty = {y € T'|y is rectigable and f is not
absolutely continuous on some subpath of v}, I'1 = {y € I'|y is rectigable and
mi({t € [0,£(7)] |° (t) € M} > 0},T'y = {7y € ['|y is locally rectigable and is not
rectigable”. Using Fuglede’s theorem (see [24], Th.28.2, page 95), we see that
M (T'y) = 0, from [24], Th.33.1, page 111 we see that M (T';) = 0, and from [24],
Th.6.9, page 19, we see that M (I'3) = 0. Let [ =T\ (ToUl; UDy) and we take
Df(z) =00on FUCD.

Let o' € F(f(I)) be a Borel map on IR". We degne a Borel map p : R —
[0,00] by p(z) = p' (f (z)) - |Df ()| if x € A,p(x) =0if z € CA.

Let a : [a,b] — A,a € I. Then « is rectigable and let p = £(a). We have
foa = foalos,, and since f oaP is absolutely continuous, we see that f o«
is rectigable, and let ¢ = £(foa) = £(foa®),s : [0,p] — [0,q] the length
function of foa® andlet 8= (fo aO)O. Then s is absolutely continuous, 3 =
(foa)’,Bos=(fo ao)o os = foaand since f o a® is absolutely continuous,
we see that s’ (u) = \(f oa?)’ (u)“ a.e. in [0,p]. We have

[ s = 3 (B(E)dt = 70 (Bs (w)- o' (w)du = fF o' (F (° ()))
foa
|(£ 0 0% ()] du.

Let now u € [0,p] be such that there exists (f o a®)’ (u), (a®) (u) and a® (u) ¢
M, and let € > 0. Since o is a normal representation, we gnd s; — 0 such that
a® (u + s;) # o (u) and since o (u) ¢ M, f is weakly diceerentiable in o (u). We
therefore can gnd §; — 0 and j. € IN such that

(1) £ ) = £ (@° (W) = f" (@® () (y = a® )| <&+ [ly = o° (u)
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if |ly — o® (w)|| = 65,5 > je-
We set ap = a® (u+ s;) —a® (u) for k € IN and we see that ar, — 0 and aj # 0
for k € IN. Since §; — 0, we can gnd p. > j. and (ak.) a subsequence of

i/ jeEIN
(ak) ey such that H|aij - 5_7" < ‘HaijH — ||akj||| for j > p.. Using the conti-
nuity of the map t — [|a® (u +¢) — a® ()|, we can gnd ¢. > pe and a sequence
(rj);en such that la® (u+7;) — a® (u)|| = 6; and |sp; — 5] < |sk;,, — k| for

J > ge. Then r; — 0 and from (1) we see that
) 1f (@ ) = £ (@ @) < (IF (@ @) +¢) - | (u+75) - (W)
for j > qc.

(0]
It results that || (f oao)’ (u) ‘ 2 T e [P )~ Fla )| [l ets)-o (u)”

lla® (utr; )—a”(u)ﬂ Tj
(using (2)) (| £’ (e® (w))]| + 5)-”(&0)/ (u)H <(||f" (@ (w))||+€) and letting e tends
to zero,we see that
(3) H foad?) H <||f" (&° (u))]| for a.e.u € [0,p].

Using (3) and the fact that f’ (a° (u)) = Df (a° (u)) for a.e. u € [0, p], we see that

f p’ds<fp( (08 @)1 (o0 ) = ! (7 (6 00) [P (o ) s

f—oaf,o ) - IDf (z)| dz. We proved that
(4) /pds</ (f(x))-|Df (x )||dsforeverya€f.

foa a
Using (4), we see that 1 < [ p'ds < [ o' (f (z)) - ||Df (z)||ds = [ pds,

fox « a

ie. pEF( ) hence M ()= (f) =/ p"(:c)da::/{p’"(f(x))-]]Df(x)Hndx:
fp’” I (@) de < K- /{P’"(f (z)) - |Js (z)|dz = (using Lemma 1)
K. Jrw) N(y,f,A\E)dy=K-RJ;BP’”(y)-N(y,f,A\E)dy

< K q- f o' ™(y)dy. Here E C D is the set from Lemma 1 such that u, (E) = 0.

We (/)nally proved that M (T) < K -q- M (f ().

Remark 1.The proof of Theorem 1 is much more simpliged if we additionally
suppose that f is a.e. diceerentiable on D.

As in [24], page 104, we can prove:

Lemma 3. Let m € {1,...,n—1},E C R" of o-gnite n — m dimensional
Hausdoree measure, I € I,_,, and let II; : R® — R™II;(z) = ), xie;. Then
i€q(I)

ENTI;* (y) is at most countable for a.e. y € Iy (R™) = R™™™ x {0} .

We prove now in Theorem 2 a removability result for mappings with gnite
distortion and arbitrary Jacobian sign, and the proof also follows the basic ideas
from the similar proof for quasiregular mappings.

n

Proof of Theorem 2: Let 79 € D and Q = 'H1 [a;,b;] be a parallepiped with

i=

the sides parallel to coordinate axes such that o € Int Q@ C Q C Uy, and let
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Iel, 1. Ifzell(Q), weset Fpr = {t €[as,bs),i€r(I)|x+te;e F}. Let
for1 ¢ [ai, b)) — IR™ be degned by f.1 (t) = f (z +te;) for t € [ag,b5),i € r(I). If
F is of o-gnite n—1 dimensional Hausdorce measure, we see from Lemma 3 that F}
is at most countable for a.e. z € II7 (Q), and this implies that mq (fz,7 (Fz,1)) =0
for a.e. z € II; (Q). If my (f (F)) = 0, then automatically mq (fz,1 (Fz,1)) =0
for every = € II; (Q). Since p, (F) = 0, we apply Fubini’s theorem to see that
also my (Fyz) = 0 for a.e. z € II; (Q). Since f € Wb} (D\F)n C (D, R"), we
see from [21], Prop.1.2, page 6 that f; s is absolutely continuous on every closed
interval from [a;, b;| \Fy 1,4 € 7 (), and we obtain that

(1) my (fz,1 (A)) =0if A C [a;,bi] i € r (1)
and mq (A) =0, for a.e. z € I (Q) .
Let E C D be such that u,, (E)=0 be as in Lemma 1. Then fQHETL dexdt &

Jo IIf' (z,t)||” dzdt < (using Hlder’s inequality) (fQ (2, )" dz) =
(fQ\FIJf( )Idz) (fQ z) T (e N L\ (BUF) dy)* <

TP

(JoK (2.6)°dz) ™ - IN(£,Uso B) - o (f ()] < o0, hence f' € L, (D).

Since p > 1, we have fQ H%—S)
that

b;
(2) / ”f;:,] (t)||dt<oo, ier(I) forae z eIl (Q).

dz < 0o, and using Fubini’s theorem, we obtain

We use now (1) and (2) and Barry’s theorem (see [22], page 285) to see that
the map f,,; is absolutely continuous on [a;,b;],7 € r (1), for a.e. x € II; (Q). We
therefore proved that fis ACL, and since we showed that f’ is locally in LP, it
results that f is ACLP on D, and from , [21], page 6, we see that f € W . LP (D, R™).

4. MAPPINGS WITH K, (z, f) < co A.E.

We show grst in Theorem 3 that mappings with locally gnite multiplicity and
with K, (2, f) < oo a.e., or with H, (z,f) < oo ae., are a.e. diceerentiable,
extending in this way Lemma 2.2 from [9], which is proved for open, discrete
mappings in R".

Proof of Theorem 3: Let ¢ : B(D) — [0, 00] be degned by ¢ (K) = p,, (f (K))
for K € B(D). As in Lemma 2 we show that @’ (z) < oo a.e., and let z € D be
such that K, (z, f) < oo and @’ (z) < co. Then, if A > 1 and r > 0 is such that
. L fn)" o Vad(f(Ba)"  #a(f(B(2.5)))

B (z,7) C D we have ==~ < (%)"-un(f(B( ) (B

Letting grst r tends to zero and then X tends to 1, we obtain lim sup
y—a

Ko (2, f)-@ (z) < co. We apply now the theorem of Rademacher and Stepanov
to see that f is a.e. diceerentiable on D. If condition b) or condition c) is satisged
, we use (x) or (*x) to see that K, (z,f) < co a.e. and we use the preceeding
argument.

By usual covering arguments, we obtain the following n-dimensional version of
Lemma 31.1, page 106 from [24]:

If ) =f@I
[ly—=ll =
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Lemma 4. Let K C IR™ be compact and 0 < a < 1. Then there exists a
constant C (c, n) depending only on « and n such that for every € > 0, there exists
§. > 0 such that for every 0 < r < §,, there exists a gnite set I depending on r and
€ such that K C ing (zs,ar),x; € K,i € I, every point from ing (z;,7) belongs

to at most C (a,n) balls B (z;,7) and Y u, (B (z,7)) < C(o,n) - (uy, (K) +€).
i€l

We prove now Theorem 4, and the strong ACL property from Theorem 4 (the
m-ACH property) seems to be new even for quasiregular mappings.

n
Proof of Theorem 4: Suppose that condition a) is satisged. Let Q = .1211 [as, b;]

be a cube with the sydes parallel to coordinate axes with Q@ C D and suppose
that ¢ = N (f,Q,B) < 0. Let I € In_m,I = (01,...,0m-m), With a; €
{1,...,n—1}for j=1,...,n—m, II; : R™ — IR™ given by II; (z) = (zr,0) for
z € R™, and weset for A € B(I; (Q)), Ea = II;* (A)NQ and let ¢ : B(II; (Q)) —
IR, be given by ¢ (A) = p,, (f (Ea)) for A € B(II; (Q)) . Then ¢ is a g-subadditive
function, hence @’ (z) exists a.e. and @' (z) < oo for a.e. = € II; (Q). Let us gx
such a point z € II; (Q), and let H = H;l () N Q, and using Lemma 3 and
Fubini’s theorem, we can also suppose that the map t — K, ((z,t), f)* € L (H)
and that H N E is at most countable.

Let F C H\E be compact. We take ax / 0o and F = {z € Flay < Ko (2, f) <
ap+1}, Fuj = {2z € FkIM <ageyfor0<r < %}for k,j € IN,and we see

tn (F(B(2,7)))
that Fy; / Fy for k € IN. We ¢x k,j € IN and let K C Fy; be compact, €,t > 0

and 6 = min {d (K,CD), %} Using the uniform continuity of f on B (K, %) Cc D,

we can gnd 0 < p < & such that |f(y) - f(2)ll < tif y,z € B(K,§) and
ly — 2| < p. Using Lemma 4, we can gnd a jgood) covering of K, i.e. we gnd

0 < 6 < & and a constant C (a,n) depending only on n and a such that for
every 0 < r < &, we can ¢nd a gnite set J depending on r and ¢ such that
K C iEUJB (zi,ar),z; € K for i € J, every point from iIE_IJB (z;,7) belongs to at
most C (a,n) balls B (z;,7) and 3, ; iy (Bm (%4,7)) < C (e, n) - (i, (K)) +€).
Here B,, (x;,r) denotes the balls of center z; and radius 7 from H forie J.

We gx such 0 < r < §, and the corresponding set J and points z; € K,i € J,
and let £ = Card J. Then f(K) C ,IE_IJf (B (zi,ar)) and d (f (B (zs,ar))) <t for

every i € J. We have mi, (f (K)) < Yy d (f (B (s, ar))™ = Sy r v
A | (f (B (z4,ar)))™ < (using Hlder’s inequality)< (£ 'I‘m)";m .

m—mn

(Sies U (B (ziyan)™ -+~ ™) ¥ V™ (i i (B (w0,7)) ™
(a1 Yigs tn (F (B (@0,7)) - r~ ") ™ < (a4n) ™ - V™ -

e nem (Vo Clan) g (£ (Bop_ @)\ ™
C (a’ n) "o (:um (K) + 5) "o u"_,,,(Bn—nE(x,T)) .

Here we denoted by Bp_m (z,7) the ball of center z and radius r from Il (Q).

Letting C = Vi ™ - Vn%im -C(ayn)-qgn - @ (z)* and letting grst r — 0, then
€ — 0 and gnally t — 0 we obtain

M (f (K)) < (0r41) % - C iy (K) 7
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Since K was arbitrary compact in Fi;, we see that mm, (f (Fk;)) < C- (ak“)ﬂ

P, (Frs) = for every k,j € IN. Since Fi; / F, we let j tends to ingnite and
we obtain that

m

(1) M (f (F)) < C - (ag41)™ - p (Fk) " for ke IN.

Since f (F) = OI_CI) f(Fk) we have
mm (£ (F) <Zk 1 (F(FR) <C- 300 1(ak+1) o (F) 5 =

—s(n— m.) (n ™m)

LT | (aps1) ™ cap, "t cay "t gy (Fk) < (usmg Hlder’s inequality) <
n—m —s(n—m) n
C- (R 0% b (FR)) ™ (21?;1 Q41O " )

n—m
n

<C-S (Zzozl [ Ko ((z,t), f)° dt) =(since F}, are disjoint and F' = kE]TFk) =

T —s(n—m)
S ([ Ka ),f)°dt)" ™ where § =330, art1-a; ™ is convergent if

m

we take aj = 2’c for k€ IN, and S = (s) "

2k+1

oo k
Indeed, if ay = 2" for k € IN, then S = > =D =2Y <j:—> is
k=12 g

——. We proved that

ip s(n—m)
convergent if =——= —

n—m

(2) mn(f(F)<C-S- (/Ka((:r,t),f)s dt) for F ¢ H\E compact
ia

Let now F C H be compact. Since f(ENH) is countable, we see that
f(F)\f(ENH) is a Borel set. Suppose grst that my, (f (F)) < oo and let
e > 0. Using [17], page 114, Th.8.13, we can ¢gnd M C f(F)\f(ENH) com-
pact such that m, (f (F)\M) < e. Let K = f~' (M) N F. Then K is compact,
K C H\E, f (K) = M, and using (2) we have
mm(f(F))<€+mm(f(K))<6+C S([x Ka((@t)f)°dt) ™ <e+C-

S([-K ), f)° dt) = and letting € tends to zero, we obtain that m.,, <
CS(IF Oc 7)7f) dt) "o

If my, (f(F)) = o0, since mm (f (EN H)) = 0, we use again [17], page 114,
Th.8.13 to gnd M, C f(F )\f(EﬂH) compact sets such that p < my, (Mp) < 00

for every p € IN, and let K, = f~'(M,) N F. Then K, C H\E are compact
sets such that f(Kp) = My for p e IN, and usmg (2) we have p < my, (Mp) =

o (7 (K)) < - (Ji, Ko (@8), £ 1) SO ([ Ka((a,8), 1) d0)°F
and letting p tends to m(z)mte we gnd that co = mp, (f (F)) g

C-S(fpKa((zt),f) dt) " We proved in both cases that

(3) mm(f(F)<C-S (/F Ko ((z,t), f)° dt> " for every F' C H compact.
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Let now & > 0. Since the map A — [, Ka((,1), f)?dt is an absolutely
continuous measure on B (H) with respect to the Lebesgue measure p,, from H,

we can gnd 6. > 0 such that ([, Ko ((z,1), f)gdt)"_:"lE < & if mn(4) <

k
§.. Let Aq,...,Ar be closed, disjoint intervals in H such that S mm (Ag) <

i=1 -

J.. Then i mm (f (D)) < ¢ M (f (,IEIIA,)) < (using 3) < ¢-C-§-
i=1 i=

n—m

(f,c Ko ((,t), f)°d >" <e.

We proved that f is m-ACH if condition a) is satisped. Suppose that condition
b) is satisped. Using (x), we see that if Ho € Lf, (D), with s > 2%, then

n—
K, (m,f)% < C - Hy(z,f)° on D\E for some constant C' and 2 > 7. Frorn
what we have proved before, it results that f is m-ACH. We apply the same
argument if we suppose that condition c) is satisged.

Remark 2. The m-ACH property from Theorem 4 is also valid for intervals @
in D with the sydes parallel to an arbitrary orthonormal system.

Proof of Theorem 5: Suppose that condition a) is satisged. We see from The-
orem 3 that f is a.e. diceerentiable and we also see that u (z) exists a.e. and
p (z) = |J #(z)] a.e. Let z € D be such that f is diceerentiable in and let
£ > 0. Then there exists 6. > 0 such that ||f (z) — f(z) — f' (z) (z —2)|| < &~
|z — z|| for ||z — z|| < d.. We can take §.>0 such that we also have u,, (f B (z,m)<
(1) (242 )t (B (2, 7)) and d (f (B (@, ar)" < Kas (@, )t (F (B (7)) for 0 <
r<d.Lletl <A< 2and0<r < % and let z € S(z,ar) be such that
I (z) (z = 2)[ = If' @Il - |z — z||. We have
ar-(If @)l =€) = (If' @] —¢)- ||z —zll = | (@) (z @)l — & - |2 =]
<|If (2) = fF @I+ (2) = f (@) = f' (@) (z = 2)[| e[z =z < |f (2) = f (@) <
d(f (B (z,ar))). We obtain

d(f(B(z, ar)™ ny, L(F(B(z,\
(1 @)l ) < WBEdal)” < Nl g, (s, 1) - LaldiBed)

Koz, £)- (1) () +¢) = X5 Ka (2, ) (1) (3)] +2).
Letting ¢ — 0 and A — 1, we ¢nd that

A"V
an

IN

1) I @I < 22 Ka(o,0) - U @)] ae.
Let now G CC D be open. Suppose that s < co and let p = Z2%. Then
0<p<nandfG||f ||pdx<C’ (fG, J—_'dac)'—_L(fGIfoMx)L:
C- ([ Ka d:c) (o Vs (2 |dx) " < oo,where C is a constant.

We used here Lemma 2. If s = co, we prove in the same way that f’ € L{;. (D).
If E is of o-gnite n — 1 dimensional Hausdorce measure and m; (B) = 0, we apply
Theorem 4 to see that f is ACLP on D, where p = n if s = co and p = By I
L <s< oo

If condition b) is satisged, then K, (, f)% < C-Hy(z,f) < oo on D\E, and
from Theorem 3 we see that f is a.e. diceerentiable on D. Let x € D\E be such



MAPPINGS WITH FIN'TE DISTORIION AND ARBITRARY JACOBANSIGN 13

that f is diceerentiable at z and let £(A) = mf HA (h)|| if A € L(R",R") and

e > 0. Then there exists ¢ > 0 such that ||f( ) f@)=f(x)(z-—2)| <e-
Iz = z|| if ||z — 2| < d and we have (|| f' (z)|| — €)-r < L(z, f,r) < (I ()| +&)-
rl(z, f,r) < (L(f (@) +€) rif0 <1 < b If Jp(z) = 0, then EEBLoD) >

Z(w?flr) -
QHZJ%T”))EM and since H,, (z, f) < oo, this implies, letting € tend to zero, that

Ilf' (z)| = 0, ie. f'(z) =0. If Js(z) # 0, we also have (£(f'(z)) —¢) - r <
{(z, f,r) for 0 < r < §., where € > 0 is choosed such that ¢ < £(f’(z)), hence
(lr@l-e)e o L@son o (I7'G) ||+6)a

() Fe ot = AP for 0 < r < d,and letting r tends to
zero, and then e tends to zero, we ¢nd that H, (z, f) = a - Ll(ff @] . We therefore
obtain that

n-—1
z, f .
@) 17 @i < 2= 15, @) e .

Using (2) instead of (1), we gnd as before that f' € Lf_ (D) if s = oo and that
f' e LY, (D), where p = - if s < co. Suppose now that E is of o-gnite n — 1
dlmensmnal Hausdorce measure and my (B) = 0 and that -5 < s < co. Then
p = 7727 2> 1 and from Theorem 4 we see that f is ACLp on D. If s = oo, we
see from Theorem 4 that f is ACL® on D.

Suppose that condition c) is satisged. Then K, (z, f)* <C-Hy(z, f)° < o0
on D\E, hence from Theorem 3 we see that f is a.e. diceerentiable, and if ¢ = 7,
we see that K, (-, f) € Li (D). If s = oo, then ¢t = oo, hence f' € L, (D)
If s < oo, let p = t’_fl = 2. Then we apply the preceeding arguments to see
that f' € L} (D). If E is of o- ¢nite n — 1 dimensional Hausdorce measure and
m1 (B) =0, then p = 2% > 1if ;25 < s < 00, and from Theorem 4 we see that
fis ACLP on D. If s = oo we also see from Theorem 4 that f is ACL® on D.

Proof of Theorem 6: Suppose that condition a) is satisged. We see from Theo-
rem 5 that f is a.e. diceerentiable and ACL® on D and relation (1) from Theorem
5 implies that ||f’ (z)|" < Y& . |J; ()| ae., hence f is a map with bounded
distortion and arbitrary Jacobian sign on D. If ' is a path family from A, we see
from Theorem 1 that M (I') < 5%5 M (f ().

If condition b) holds, then f is a.e. diceerentiable and relation (2) from Theorem

5 implies that ||f/ (z)||" < (%)n_1 -|J¢ (z)| a.e., and from Theorem 5 we see that
fis ACL" on D. _

If condition c) holds, then K, (z, f) < %-Ha (z, f)" on D\E, hence || f' (z)||" <
(%)n -|J¢ (z)| a.e. and Theorem 4 implies that f is ACL™ on D.
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