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Abstract

Given a profinite group I acting continuously on a quasi-cyclic discrete group .4,

certain classes ofclosed subgroups off (radical, hereditarily radical, Kneser, almost

Kneser, and hereditarily Kneser) having natural field theoretic interpretations are

defined and investigated. One ploves that the hereditarily Kneser subgroups of I

form a closed subspace of the irreducible spectral space of all closed subgroups of l,

and a hereditarily Kneser criterion for hereditarily radical subgroups is provided.
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Introduction

To any algebraic field extension EIF one can associate a torsion Abelian group' called

the Cogaloi,s group of the field extension E I F and denoted Cog(E lF), namely the tor-

sionsubgroupof the multiplicative factor gloup E* lF*.TfutsCog(ElF) : T(ElF)1F.,

where 
,f @/F) : {r € E* l*" € Ffor some?z E X2r}

The lattices n"(E lF) and.n-(Cos(E lF)) : n-(T(E lF) | F-) of all intermediate subfields

of the field extension E f F, resp. of all subgroups of T(E lF) lying over F*) are related

through the natural maps.L r+ L)f @lF),G a F(G). Roughly speaking, the aim of

the Cogalois Theory consists in the study of the properties of these maps relating the

Iattices above. The roots of the Cogalois theory lie in some classical works of Siegel [L7],
Kneser [12], and Schinzel [14] devoted to particular classes of finite field extensions with
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Cogalois correspondence. A more general approach for arbitrary algebraic field exten-
sions was developed in the 80'th by Greither-Harrison [L0], Barrera Mora-Rzedowski
Calderon-Villa Salvador [8], and still more recently by Albu and Nicolae [1, 6-8]. For
the actual state of art of the Cogalois Theory see Albu's monograph [2].

Now, assuming that E lF is a Galois (not necessarily finite) extension, and | :

Gal(E lF) its Galois group with Krull's topology, the canonical morphism

V :T(ElF1 ----+ ZI(t,Fn),r r+ [o r+ (or)r-r l

where pB denotes the multiplicative group of the roots of unity in ,8, induces by
Hilbert's Theorem 90 an isomorphis m C og(E I F) = Zr (t , pte) .

Thus it seems natural to consider a pure group theoretic approach starting from
an arbitrary profinite group f and a quasi-cyclic discrete group ,4, identified with a
subgroup of QlZ, on which f acts continuously. For any such pair (f, A), the objects to
studyarethelatticesn (f)andI.,(21(1,,a)) of allclosedsubgroupsof theprofinitegroup
f, resp. of all subgroups of the Abelian torsion discrete group ZL(I,A) of continuous
f-cocycles from f to the discrete f-module A, which are related through the canonical
reversing maps

A e n ( f )  ' *  Ar  :  Zr (T lL .  A) : :  {s  e  Zr( f  ,z . ) ls6:0}  e  n  @LQ,A))

and
G e ZL(T,A)  -  GL : : {o  e  f  lg ( " )  :0  V9 e  G}  e  n  ( f ) ,

defining a Galoi,s connect'ion, i.e. A E 6u and G ( G[ for all A e n (f),G e
n-Qr F, A)).

The lattices n (f) andn (Zr(1,,4)) are equipped with natural topologies defined by
the bases of quasi-compact open sets

U6:: n-(A) :  {A e [ ,( l )  lA < A]

for A ranging over all open subgroups of f, resp.

Ltp  : :  {G e  n  Qt  ( f ,  A) )  | r  <  G}

for F ranging over all finite subgroups of Zr(l,A).
Note that {AJ : n (f lA) : {A', € n ( l) lA < A',} for al l  A e n (t),  and {G} :

IL(G) for all G e L(ZL(1,,4)), so, w.r.t. the topologies above, n (f) and n (Zr(l,A)) are
irreducible spectral spaces with the generic point {1"}, resp Zr(T,,4), and the unique
closed point f, resp. { 0 }.

Moreover the both lattice operations on n (l) andn-(ZL(1,,4)) are continuous maps.
However, in general, only the join A1VA2 :: 11 UIE in n (f), resp. the meet G1 AG2 ::
Gl.lG2inn (Zr(1,,4)), is a coherent map; a map.f : X -- Y between spectral spaces
is coherentit f-r(q is a quasi-compact open subset of X for all quasi-compact open
subsets U of Y. Note also that the canonical actions of the profinite group I on the
topological lattices IL(f) and n Q\Q,A))

(o,  A) + ol \o-r ,
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resp.
(o ,G)  r -+  oG : :  { og lg  e  G} ,

where

("g)(") :  og(o-r 'o)for o,r € l ,  I  e zr(t,  A),

are coherent maps, in particular, continuous maps.

Some remarkable closed subspaces of the spectral space n (Zr(f ,,4)) consisting of

the so called Kneser and Cogalo'is groups of cocycles are introduced and investigated

in [4, 5]. In the present work the accent will be moved on the spectral space JL(f),

more precisely on some of its subspaces consisting of closed subgroups of the profi-

nite group f with interesting algebraic and topological properties. Thus, the following

classes of closed subgroups of f having natural field theoretic interpretations are defined

and investigated : rad,ical, hereditarily radi,cal, Kneser, almost Kneser, and heredi,tari,ly

Kneser. The main results of the paper are Corollary 2.75, stating that the hereditarily

Kneser subgroups of f form a closed subspace of the spectral space IL(f), and Theorem

3.2, providing a hereditarily Kneser criterion for hereditarily radical subgroups of f. A

forthcoming paper will be devoted to a particularly interesting subclass of hereditar-

ily Kneser subgroups*the Cogaloi,s subgroups-, and to some applications of the group

theoretic approach from [4, 5] and the present paper to the field theoretic Cogalois

theory.

Notation and Preliminaries

Let f be a profinite group acting continuously on a discrete quasi-cyclic group A identi-

fied with a subgroup of QlZ. The lattices n (f) andn (Zr(1, A)) of all closed subgroups

of f, resp. of all subgroups of Zr(t,A), are equipped with natural spectral topologies

as defined in Introduction. For A e n (f), G €n QLF,,4)), we denote by n (f lA), the

sublattice of n-(f I A) consisting of all open subgroups of f lying over A, and by n'(C) t
the sublattice of n,(G) consisting of the finite subgroups of G.

Recall that a topological space X is called spectral (or coherenf) if the family of quasi-

compact open subsets of X is closed under finite intersections (in particular, X itself is

quasi-compact) and forms a base for the topology on X, and every irreducible closed

subset of X is the closure of a unique point of X. A spectral space X becomes a profini'te

(or boolean or Stone) space, i.e. a compact totally disconnected space, by taking the

boolean lattice generated by the distributive lattice of all quasi-compact open subsets

of X as a base of clopen sets for a finer topology on X. For more details concerning the

spectral and profinite spaces, which are duals by the Stone's Representation Theorem to

(bounded) distributive lattices and boolean lattices (algebras), respectively, the reader

may consult [11], [13], and/or [9].
Thenaturalreversingmaps (-)r  :n ( f)  ----n '(Zr(1,1,))  and (-) t  'n-(Zr( l ,A)) '

[-(f) as defined in Introduction have the following properties ([4], Propositions 0.1 and

0.3)
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(i) The map A,- Ar is a semi-lattice morphism (lL(f), v) * $'QL(1,,4)), n), i.e.

(A1 u A2)r : A* n ArL for At € L(l),'i: L,2. It is also a f-equivarian-t coherent map,

in particular, a continuous map.
(ii) The map G ,-. Gr is a semi-lattice morphism Q-Qr(f,,4)),v) .----+ (II-(f)'n)'

i . e .  (Gr  yG)L :  G{aG{  fo r  G ienQr ( f ,A ) ) , ' i : L ,2 .  I t  i s  a l so  a f -equ iva r ian t

continuous map.
However, in general, the map G + GL from (ii) is not coherent, as we can see from

the following simple example. Let f : 2, A: I $lfiV,lz, where 2/ consists of all
p€P'

odd prime numbers p for which the order fol(p - 1) of the element 2modp e F|^is

even. Consider the continuous action L* I - A,(o,a) r'+ 2oa. Setting A:22,
it follows that Zr(T,(llflV,lZ)L : fod ( A for a\l p e Pt. Thus the subgroups
Zr(1,(tlflV,lZ) = ZlpZ of. Zr(1, A), for p ranging over the infinite setP', are the min-

imal elements of the poset ((-)r))-t(n (A)), and hence the open set ((-)r))-t(n (A))

is not quasi-compact.
For G € n QL(1,-4)), set G ::Hom (G,A):Hom (G,Q|Z). d, the Pontrvagin

dual of the discrete Abelian torsion group G, is an Abelian profinite group. Moreover
G is a topological l-module w.r.t. the action defined bV @:; )b) : oX@) for o € l,X e
d,g e G. The canonical continuous maP rlc:f -> G,o r- (g * g(o)), is a l-cocycle,
inducing an injective continuous map f/Gl , d, in particular, (f :Gr) < lGl for
a l l G e n Q r F , A ) ) j .

Definition 1-.1". ([4], Definition I.2) G € n (Zr(l,A)) ts called a Kneser subgroup
o7 Zt(l,A) ,f the cont'inuous cocycle rlc : | ------+ G 'is onto, 'i.e. (f : Ga) : lGl as
supernatural numbers (cf. [15], Ch. I, 1.4). tr

Remark 1.2. One checks easily that the following statements are equivalent for G €
zr(r, A).

(i) G is a Kneser subgroup of ZL(t,A).
(ii) as(G) is a subgroup of G.
(iii) a6(G) is a f-subspace of the f-space G.
(iv) qs(G) is a f-submodule of G. !

Denote by K(Zr (l ,,4)) the subset of n (Zr (1,-4)) consisting of all Kneser subgroups
of Zr(l,A). According to [4], Corollary 1.8, KVr(l,A)) is a closed subspace of the
spectral spacen (21(f,A)). To obtain a criterion for a subgroup G of. Zr(l,A) to be
Kneser it suffices to describe the minimal members w.r.t. inclusion of the open subset
LQL(f , A))\K(ZT(f, ,4)). To do that, we introduced in [4] some basic notation which
will be also used in the sequel.

IF denotes the set of prime natural numbers

P : { p € F l p + 2 } u { 4 }

PG:  {p  e  P  lp l lC l }  f o r  G  e  LQtQ,A) )

F e Q/Z denotes the class of r € Q
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P ( r , A ) : { p e P l { E e A \ a r }

For n e N2r such that lfi e A, en €.Bt(f, A) denotes the coboundary associ ated, rc{fi'

gL  : :  G r  fo r  g  e  ZL1 t ,A ) ,G :  \ g )

If {D e ,4 \ Ar, define e'n e Z1(l,A) bv

, ,  \  t  lF  i f  o lp :  - rF
e ' n ( o l  :  I  ^+ \  /  

[  o  i f  o l l 4 : L l 4

The abstract version of the field theoretic Kneser criterion [12] reads as follows.

Note that the place of the primitive roots of unity (o, p odd prime, from the Kneser

criterion is taken in its abstract version by the coboundary eo, while the cocycle e!

co r responds to l - (a .

Theorem 1.g. ([4], Theorem 7.20) The follouing assertions are equiualent for a sub-

group G of Zr (t, A).
(1)  G € K(r , ,4) .
(2 )  eo / .G  wheneuer4 f  pe .P ( l ,A )  and t '+ /G  wheneuer4e  P ( t ,A ) '  I

Fyom a logical point of view, the statement above can be interpreted as a quantifier

elimination result: the property of a subgroup G < Zr(t,A) to be Kneser, described

by a sentence (in a suitable language) involving quantifiers, turns out to be equivalent

with a (possible infinite) conjunction of very simple quantifier-free sentences.

A particularly interesting subclass of Kneser groups of cocycles, introduced and

studied in [5], is defined below.

Definition 1.4. ([5], Definition 2.1) A subgroup G of ZL-(|, A) i's said to be a Cogalois

;;;;""p of ZI(i',Al ,t t't i,s a Knesercibs'oup of zr(l,A) and' the maps (-)r '

n (G) ---* [-(f lGr) and, G n (-)r : n (f lGt) ----- n (G) are lattice antr,-'isomorphi'sms,
'inuerse to one another.

Denote by c(zr(t,,4)) the subset of. K(21(r,A)) consisting of all cogalois sub-

groups of zr(l,A). According to [5], corollary 2.7, C(Z\(|,A)) is a closed subspace

of tfr" spectral space K(Zt (f , A)). One of the various equivalent characterizations for

the Cogalois groups of cocycles proved in [5] is mentioned below.

Theorem 1-.5. ([5], Theorem 2'5)
group G of Zr(1, A).

( 1 )  G  e  c ( Z L F , A ) ) .

The fotlowing stutements are equiualent for a sub-

n
Q) GL { ef for aII p e Ps nP(t, A).
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2 Radical, Kneser and hereditarily Kneser subgroups

In this section we study subgroups of a profinite group f acting continuously on a

discrete subgroup A of QlZ, which are both closed in the topology of I and closed

under the closure operator A *t Arr. The abstract versions of the field theoretic no-

tions of radical, G-Kneser, and Kneser field extensions (cf. [2], ch. 11) are introduced,

and their main properties are investigated. On the other hand, natural topological ar-

guments are used to put in evidence new classes of subgroups of f (hereditarily radical,

almost Kneser and hereditarily Kneser) with suitable field theoretic interpretations.

The concept defined below is the abstract version of the concept of radical field

extension.

Definition 2.L. A subgroup L of I i,s said to be G-radical i,f G e n Qr(t,A)) and

A : Gr . A radical subgroup of I i,s a subgroup which is G-radi'cal for some G {

z1(1,  A) .  n

Since ZL(| ,A) is a torsion group and ( l :9r)  < ord(g) for al l  g € ZL(| ,A),  i t

follows that for all G e L(Zr(l,A)), Gt:|eecar is closed in f as intersection of

open subgroups, so any radical subgroup of f is necessarily closed.

The next obvious lemma provides equivalent descriptions for radical subgroups.

Lemma 2.2. The followi'ng statements are equ'iualent for a subgroup A o/ l.

(1) A is radical.

( 2 )  A :  A " .

(3) A i,s LL-radr,cal n

We shall denote by R(f) the poset of all radical subgroups of f. Since for any

family (A;);.r of radical subgroupsof f, [-l Ar: (IA*)t, it follows that R(l)
i€I i€I

is a meet-subsemilattice of IL(f). Observe that f is the Iast element of R(f), while

the closed normal subgroup {1}tt : Zr(l,A)r of f is the least element of R(f).

AIso notice that the kernel A of the action of f on ,4 belongs to R(f) since A :

BL (T ,  A)L  .

Remark 2.3. If A e R(f) and A € n (flA), then A is not necessarily a radical

subgroup of f, in other words, in general, 7?(f) is not an upper subset of JI (f), and

hence, in general, R(l) is not a closed subset of the spectral space IL(f), i.e., 7?(f) E
RG) : n-Qlzr(r,-4)r).

To see that, consider the following simple example: let A : (112")V'lZ, n ) 4,
and f : (V,l2"Z)* = Z/2V, x Zf 2n-zV, with the (faithful) canonical action given by
multiplication. If we consider the elements o : -7mod2" and r : 5mod2n of.
f, then we obtain the following presentation f : (o,rlo2 : T2n-' : [a,r] : 1;.
The morphism ZL(I,A) - A x A, g * (g(o),g(r) + 2g(")), maps isomorphically
ZL(t,,4) onto ((1,12"-\2,/Z) 

" 
((Ll2)Z,lv,), sending .B1(f,,4.) onto (Il2*-\Z,lV^ It

fol lows that A': {1} : Bl(f,  A)t :  Z'(r,.4)r e 7l( l).  But Ar t:  (o,r 'n) ?
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v, / )V.v  V.19n-2- iV,2<i<n-2,  is  not  aradica l  subgroupof  l ;  indeed,  s ince A; t :

(o) = V,l2V,, where a is the morphism of order 2 defined by c(a) : 0, a(z) : Il2, we
have Alr : e.L : (o,r') = V,l2V,xZf2n-32, and hence ltlt + A; as n-3 > n-2-i'

nby assumption.

The following notion is justified by Remark 2.3.

Definition 2.4. A closed subgroup A of t r,s said to be hereditarily radical (abbre-
ui,ated h-radical/ i,f lt i,s rad,i,cal for any A e n (flA). n

Note that A e n (f) is h-radical iff the canonical map IL(AI) ------ [,(f lA) ,G ,- GL,
is onto. In the sequel we shall denote by 11R(l) the poset of all h-radical subgroups of
f . Thus 71R(T) is an upper subset of n (f ), t e 71R(l), and, in general, llR(T) S R(l)

by Remark 2.3. Moreover, it follows easily that A e 11R(l) iff A is radical for any open

subgroup of f lying over A, and hence TIR(T) is a closed f-subspace of the spectral
space n-(f). The maximal elements w.r.t. inclusion of the open set IL(l) \ ftR(f) are
exactly the (open) subgroups A for which A I Att and the canonical map n (Ar) -----+

[,(f lA) \ {A}, G -, Gr, is onto. In particular, the (possibly empty) set of the maximal
proper open subgroups A satisfying Ar : {0} is a subset of the set above. Note that

in the situation described in Remark 2'3, n (f) \ ?lR(l) :n (k,r4)).

Definition 2.5. A subgroup L of I is said to be G-Kneser i/ L' i's G-radical and

G is a Kneser subgroup of zr(t,A). L is sai,d to be a Kneser subgroup of I if a, i,s

G-Kneser for some G < Zr$,A). !

Clearly, any Kneser subgroup A of f is the intersection of all open Kneser sub-

groups (and hence of all Kneser subgroups of type gr) of f lying over A. In the

sequel we shall denote by rc(f) the poset of the Kneser subgroups of f . Observe that

f € r c ( f )  q R ( f ) .

Remarks 2.6. (1,) If A e n (f) is simultaneously G-Kneser and //-Kneser, then G

and 11 are not necessarily isomorphic. For instance, let 'F : (o,r) = Zl2Z \Z/22
atd. A- (114)V,lZ, with the action given by oIf4: -114 and rI l4= l l4- The

morphism ZL(I,A) - Ax A, g * b@),g(r)) maps isomorphical ly Zr(l ,A) onto

(1,14)V,lV,x (tlZ)Z,lV,. The trivial subgroup {1} .{ is simultaneously G-Kneser and

f1-Kneser, where C: (a) =V,|AV', with a(o) : I l4, a(r): l f2, and H : (ea, B) =

V'l2Z x V'lzV', with P(o) :0, 0(r) : tl2.

(2) Note that, in general, rc(f) is not an upper subset of IL(f), and hence not

necessarily a closed subset of the spectral space [,(f). Indeed let f and A be as

def ined in Remark 2.3. Then A: {1} is B1(f ,A)-Kneser,  whi le (o) /R(l)  as we

have already seen, and hence (o) / rcQ). However (o)" : (o,r2) € rc(f). !

Though, in general, rc(f) is not a closed subspace of the spectral space JL(f), it is

closed w.r.t. the profinite topology of JI (f) as image of the profinite space K(Zr(f ' A))

through the continuous map \,(Zr(l,A)) - [,(f), G *' GI. As a consequence) we

obtain the following characterisation of the Kneser subgroups of f.
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Lemma 2.7. A necess&ry and suffici,ent condi,ti,on for a closed subgroup lt of I to be

Kneser is that n (f lA)" n K(f ) i,s cofinal i,n the poset n'(tllt)" of all open subgroups of

L( f  l^ ) .

Proof. The ,,only if" part is obvious since, assuming A : GI for some G € rcQL(t, A)),

{Fr lF € [,(G)/ ] q rc(f) n n (f lA)" is cofinal in n (llA),. Conversely, assuming

A / rc(f), since K(f) is closed in the profinite space n (f), it follows that there exists

an open normal subgroup A of f such that {A' e n (f) lA/A : AA} nrc(f) : 0, so

AA € n (llA)" and A' q rcQ) for all A' e n (AAIA)', since A'A : AA. n

Definition 2.8. A closed subgroup lt of t i,s said to be almost Kneser, abbreuiated,

a-Kneser, if lt belongs to K(f), the closure of K(T) in the spectral space n (l). tr

The next lemma provides a characterisation of the a-Kneser subgroups of l.

Lemma 2.9. The followi.ng statements are equ'iualent for a closed subgroup A o/f.

(1) A is a-Kneser.

(2) r.(^) n rcF) + A.

Proof. (1) + (2): Assuming that A is a-Kneser, it follows that n (A) n rcQ) I A br
all A e n (flA),. As for any such A, n (A) is clopen and K(f) is closed in the profinite

space IL(l), it follows that the non-empty set Xa ': L(A) n rc(l) is closed too. Since
the family (Xa)a.r(rlA)" has finite intersection property, it follows by compactness

that n (l) n rc(f) : n Xt 10, as required.
A€[,(rlA)"

The implication (2) + (1) is obvious.

Corollary 2.LO. Tlte posets K(l) and K(l) haue the same m'ini,mal members. !

Similarly with the notion of h-radical, we define a subclass of Kneser subgroups of
I as follows:

Definition 2,LL. A closed subgroup A, of I r,s sai,d to behereditarily Kneser, abbreui,-
atedh-Kneser, i,f any closed subgroup lt lyi,ng ouer A,,'inpart'icular, L''itself, is Kneser.

Remark 2.6, (2) provides examples of Kneser subgroups which are not h-Kneser,
On the other hand, basic examples of h-Kneser subgroups are provided by the next
result.

Lernrna 2.L2. (L) Let I : (If p"r)Zlz, where p i.s an odd pri,me number, n ) t,
and2  l  r l ( p  -  7 ) .  Le t l  :  Z lpkZ  x ,Z f rZ  :  (o , r l o '  :  rPn  -  o ro -L r -u  :  1 ) ,
where 0 < k { n and u e (Zfp"rZ)* sati,sfi,es .' u mod p" e (Zlp"Z)* has order
r, and u : 1- mod I for I e P,, llr. Consider the acti,on of t on A gi,uen by
oa:,u,a1Ta: a for a € A. Then, A,: {1} i ,s a h-Kneser subgroup of l .

tr
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( 2 )  L e t A : ( 1 2 ' ) Z l -  n 2 3 , =  \ " , M : r 2 r - '  :  ( o r ) 2  -  1 )  = D 2 r , 1  < k <

n-2,off2n-1 : -I/2"-r,rLf2" : tl2n. Then, L',: {1} is ah-Kneser subgroup

of t.

Proof. (1) BV assumption it follows that B1(f, A)L: ef, - 1'7 ( Bt(1, (Llr)Z'lZ)L,

f  !  6pr  x t le [ ,  and !  u i  =}modlr " r .  The morphism Z1( l ,A)  -  Ax A,

i :o
g,- (g (o), g (")), -up, iro-orphically Zr (t :A) onto A x pn- k r A = V' f p" rZ x Z f pk Z *

Zlo"Z A'Z/pkiZ, and hence the maximal Kneser subgroups of. Zr(l,A) are the direct

summands of the cyclic subgroup B1(1, (tle\ZlV.) : (a) = Zlp"Z, where a(o) :

!fi , aQ) : 0. Settin e g@) -- TD, g(i : frfi , it follows that there are exactlv pk
maximal Kneser r,rbgrl.rpr'ot 7''1f ,4),'namely the conjugates (riB),1 e V'fpkZ, of.

the cyclic group (p)-= zlpkrz through the canonical action of f on z1(l,A). Let

A e n, ( l ) .  I f  A < , [ , i . " - . ,  L :  \ r f ) ,0  < i  (  k ,  then l t ' :  (pr - iTOL € rc( f )  as

required. If  A < ef, thur, A = (Aneor) x (A/(Anrl-)), so A: (rPi,rto") for some

0 < j 1 k,0 < t < pk,slr,s * r' Note that rtoi - Tio"T-i, where i e ZlpkZ

is uniquely determined by'the condition i(L - u") : t,modpk, since u" # tmodp.
s - r

Ar I up = }mods since u : lmodt for t € P,lls, by assumption, it follows that

u:0

Iy: (pk-i (r ls)ri B)L € rc(f) as desired.

(2) We distinguish the following two cases:

$) olfr : -f,frt The map Zt(l,A) .- A x A,g '-' (g(o);g(')), maps iso-
-orpti"ui iy zt(f, ,4) onto (L12")V,lZ,@ (Ll2k-\Z,p, D.{ne a e Zr(l ,A) bv a(o):

0,a(r) : {-1Zn---t. Let A € n-(f). If A < (r), then L : (rT),0 < i < k - L, and hence

i :  n;, where Ht : (e+,2ia) = Z,l2Z, @v,l2k-i-r7 € K(ZL(I,A)). I f  A { .(r),  then

r jo  eA for  some 0 < '  L< 
2 i - t  -  L ,a] {hence A e n ( f lBr) ,  where B e ZL( f ,A)  is

defined bv g@): -it$l,g?):IF:' Ar 0r : \rio) * (") : et, it-follows
by Theorem 1.5 that- (p) = v,lzr"-rv is a cogalois subgroup of zr(l,A), and hence

i: (2oOL for some 0 S ? < k -L, so A is a Kneser subgroup of I as required. Note

that the result remains also true in the case b= " 
- L'

Qt) o{P: -(1 *r.-r1T1fi :  -T1Z; +l l2: We are reduced to the_case (1) since

2t1y, 'A) : ZL(1,1't12"-t121'Z) as 0 : g(o2) - z"-1s@) and 0 : g(r2k-11 :2k-1g(')

for al l  g € ZL(|,A). Lr

In the sequel we shall denote by HrcQ) the poset of all h-Kneser subgroups of f '

Thus }/K(f) is un uppel subset ot}-t1ic(l), I e HrcQ), and, in general, 11K(t) g rc(f)

by Remari< s 2.6, (2). One may ask whether for arbitrary pairs (f , A), 11K(l) is a closed

5rrbrpu"u of the spectral space HR(l), or, in other words, does any A e n'(f) belong

to rcir) whenever A e rc(f) for all open subgroups of f lying over A ? The affirmative

answer to the question above will be an immediate consequence of the following result'

Theorem 2.L8. The canonical nlap e)L : K(Zr(l,A)) ------+ L(f),G * GL, is coher'

ent.
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Proof. By [ ], Corollary 1.8, K(Zr(l,A)) is a spectral space as a closed subspace of
the spectral space n QLF,A)). For any open subgroup A of l, let W6 :: {G e
K(21(l,AD]GL < A) denote the inverse image of the basic quasi-compact open set
I,t6 of. the spectral space n,(f). We may assume that Wa is non-empty since otherwise
we have nothing to prove. LetW6 denote the (non-empty) subset of Wt consisting of
its minimal members w.r.t. inclusion. We have to show that the set l4la is finite and
all its members are finite Kneser subgroups of. Zr(1,.4), since then, by Zorn's lemma,

it follows that W6: U l,lp, so Wa is quasi-compact open as a finite union of basic
FeW6

quasi-compact open subsets of the spectral spane K(Zr(f, /)).
Assuming that some G e Wt is infinite, we deduce by minimality that Fr ( A for

all finite subgroups F of G, which are Kneser too as subgroups of G e rcQrF,A)).
Since the family of non-empty closed subsets Fr \ A of f for F ranging over all finite
subgroups of G has finite intersection property, it follows by compactness of I that
Gr\A:1 ' l { r t \A)  I  A, i .e .  Gr  g A,  which is  a  contradic t ion.  Thus i t  remains

I

only to show that the set W6 is finite.
Let T6 denote the set of all Kneser subgroups of. Zr(l,A) which are contained in

Ar. The set 7a is finite and all its members are finite groups. Indeed, for any H e 76,
we obtain A E 4rl < FIr, and hence lHl : (f : 11r)l(f : A) < oo, so 11 is asubgroup
of the f inite group At["] :  Zr(t l \ . ,AI"D, where 2: ( l :A).

Thus it suffices to show that for any H €Tn, the set Wn,n t: {G rWdGlAr:
/1) is finite. Moreover we claim that it suffices to show that for any pair (f ,,4,) and
any open subgroup A of f, the set lrZa,s is finite. Indeed, assuming that H e Tt
a n d G  € W \ a , ,  l e t G :  r e s l { r ( G )  A s A  (  H r ,  w e o b t a i n H  <  G n H r a  <
G n Ar : /1, and hence G = clu is a Kneser group of ZI(HL,A) bv [4], Corollary
1,12, and dt : GL n HL : Gr < A < /1r. On the other hand, it follows that
dazL1nl la,,4) -  resl*(cnaa) :  resl,(H): {0} and G e rc(zLQrr,.4;;  is
minimal with the property that G ( A since for any proper subgroup d of d its
inverse image G' through the canonical projection G -----+ G is a proper subgroup of

G lying over fI, so G/* - G'L n HL : QrL is not contained in A by the minimality
property of G. As Gr : GL for all G e W6,s, the fibers of the canonicai map
I/n1gr;,a - WN<nr;,0, G,-- d : reslTr(G), are finite sets, and hence the proof of
the finiteness of l7a1gp;,a is reduced to the proof of the finiteness of the set Wa,1ga';,0,
as claimed.

Thus it remains to show that for any pair (f,,4) and any open subgroup A of l,
the set WLp os defined above is finite. We shall proceed by induction on the index
n : :  ( f  :A ) .  The  casen :1 ,  i . e . ,  A :  l ,  i s  t r i v i a l  asWr :  { {0 } } :  G iven  f , / , 4 ,
assume n)  l ,  i .e . ,  A f  f ,  andlet  G e Wt,o.  Set t ingG: resf , (G) , i t  fo l lows
by [a], Corol lary 7.I2 that G = C11C nAr) = G / K(Z|(L,, )) since cr < A
and (Al n G)r : {0}r : | * A. Consequently, by Theorem 1.3, there exists p €
P(L,A) cP(|,,4) such that el6 € G, where

i f  p + 4
i f  p : 4, :  

{ ' : ,
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As G ! d, it follo*s that there exists a unique element g € G such that glt :ela, in
pa r t i cu la r  o rd (9 ) :  o rd ( t l a )  =p  s ince  peP(L ,A ) .  Thus  Gr  <  Ang ' :  Ao t - :
Ane[ I A. C\early, G e Wao,H, where Ap: Anef and H: GnAl-. Thus I'trl6,6 is
covered by the union of the sets W6o,g as above, so it remains to show that any such
set W6o,11 is finite and the set of possible pairs (p,/1) is finite too. As for any p,H

belongs to the finite set T6r, we have only to show that the p' s range over a finite
subset ofP(L,,A).

First let us show that the set W6o,s above is finite. By the reduction step above

and the induction hypothesis we have to show that (flr , Ao) < 2 : (f : A)' As

// < ApI, we obtain Ao ( Af t ( Hr, and hence A, ( Ht tl A. On the other hand,

s ince  g  €  H ,we  ob ta in  HLnA (  g roA :  t o tna :  Ap ,  so  / / r  oA :  Ap ,  i . e . ,  t he

set HLf A,o is identified with a subset of the finite set f/\ and hence \Ht , Ao) <

(f : A). Sitt"" g € .fy' and sla,: ela, it follows that resl('fJ) / KQ|(L,A)). As

,F/nAr < GnAr: {0}, i t  fol lows by [ ] ,  Proposit ion 1.1L that HLL f f ,  and hence
(Ht t Ao) < (f :A) as required.

Finally observe that the subgroup D generated by the element g - e belonging to

Ath] is Kneser since otherwise e € D by Theorem 1.3, and hence (t) : (g) < G

as ord (d : p, contrary to the assumption that G e rc(ZLQ,A))' Consequently,
o rd (g -s )  :  ( f  :  D ) l ( I 1  :A ) .  As  o rd (g - r ) : p i f  p+  4 ,  i t  f o l l ows  tha t  t hese t  o f
possible p's is finite as desired. n

Corollary 2,t4. A closed subgroup A o/ f is Kneser uheneuer any open subgroup of

t lying ouer L. 'is Kneser. In parti,cular, the followi,ng statements are equiualent for a

closed subgroup L, ofl.

(1) A is h-Kneser.

(2) Any open subgroup of T lying ouer A' i,s Kneser.

Proof. Let A € n-(f) be such that any open subgroup A € II (flA) is Kneser. Since

{71} : n (lla) is a closed subset of the spectral space IL(f), its inverse image X ::

{G-e K(21(f,,4)) lA < Gr} through the continuous map (-)t ,  K(ZL(|,A)) .-----

n (f), G * GL, is a closed subset of the spectral space K(Zt (f,,4)), and hence also

closed w.r.t. the profinite topology of K(21(t,A)). As the map (-)r it coherent by

Theorem 2.13, the image (-)r(X) q n (flA) is closed w.r.t. the profinite topology of

n (f). consequently, a e (-)I(x), i.e., A e K(r), since by assumption n (fla), q

(-)r(X) and [.(f lA) is obviously the closure of n,(f lA), w.r.t. the profinite topology

of n (r). tr

corollary 2.L5. Hrc(f) zs a closedl-subspace of the spectrall-spacellR(l). n

Remark 2.L6. Let E lF bea Galois extension with f :: Gal(E I F) acting continuously

on the discrete multiplicative quasi-cyclic group A:: l.rE of all roots of unity in E. For

L e [,(E / F), set A :: Gal(E I L). W" obtain
(i) A e R(f) itr LIF is radical (cf. [2], ch. 2).
(ii) A e 17R(T) ifr KIF is radical for all (finite) subextensions of LlF.
(iii) A e rc(r) itr LIF is Kneser (cf. [2], ch. 11).

1 1
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(iv) A is a-Kneser iff there exists a Kneser subextension K of E f F srchthat L e K.

(v) A e 11K(t) iff every subextension K of. L I F is Kneser iff every finite subexten-

sion K of LIF is Kneser.

3 A criterion for hereditarily Kneser subgroups

To obtain an analogue of Theorem 1.3 (Abstract Kneser Criterion) providing a charac-
terisation of the h-Kneser groups inside 11R(l), we have to describe the set (?{R(f) \
HrcQD^., of the maximal elements w.r.t. inclusion of the open subset ?[R(T)\flrc(f)
of the spectral space'l|?v(f). Note that the set above consists of all open radical sub-
groups A < f which are not Kneser but any A e n (flA)\ {A} is Kneser.

With this aim, we introduce the following four types of open subgroups A of f :

( A )  A :  r [ ,  w h e r e  p € P ( l , A )  \ { 4 } , ( f  : A )  : l * l ( p - I ) , 1 i s  a p r i m e n u m b e r ,

m  )  L , A ^ Q ) :  G l t ^ - \ Z l T ( i n  p a r t i c u l a r ,  { D  E  A i f  t : 2 , r n :  1 ) ,  a n d

{0, e Ar i f  t  :2,m } 3.

(B) The normalizer lir(A) of A in f is err, where p e P(1.,.4) \ {4},eil\ =

ZlpkZ,k > !,1F rA for some n ) k+ 1 > 2, (Ll(r--Ll)V,lZ< .4%4, where

" :  
( l : e o r )  l ( p - r ) , l t e  a ' f o r  I  e  P , l l r ,  A / : :  L , n e ] , "  { f ,  a n d

lf Lt"' (ef"lL') x Qlerl-).

(c)  A 41,4 € P(r ,A),A Sj t ,  , t l !  = v ' f2kv' ,k )-  l ,@ e ,4 '*  for  some
n2 k  +2  >  3 ,o1 . f2n  :  - I12"  +  112 fo r  o  €  |  \  e f , ,  and

f / A  =  ( o , r l o a  : 7 , o 2  :  T 2 r - ' , o r o - 7  :  r - t ) .

(D) 4 rjT,A),lh(A) : €t,r[ I L = v'f2kV',k ] !,(F r,4 for some n ] k + 2 >
3 , ! f 2 n - r  e  A t , L '  : :  A , ) e L *  {  f ,  a n d  l f  L ' =  ( t t l \ ' ) x ( l l e [ )  h a s  t h e
presentation

l l L t  =  ( o , r , 6 l o '  :  r 2 r  : 5 2  : 1 , 6 r  :  r 6 , o r o - L  :  T - 1  , o 6 o - r  : 6 r 2 u - t ) ,

with the action of llL' on (112")ZfZ givenby of@: -{8,"tri':trfr,
^ ^

6 1 / 2  : 7 / 2 n  +  L / 2 .

Lemma 3.L. The necessary and sffici,ent condi,ti,on for an open subgroup A ( f to
belong to (11R(T) \ ftrc(f))-u*'is that L, i,s of one of the types (A)-(D) aboue.
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Proof. Let A e (11R(t) \ ftrc(f))-u,.. Since A is an open radical subgroup of f, there
exists a f inite subgroup G en Qr(|,-4)) \rcQr(T,A)) such that A : GL. Choose
such a subgroup G < ZL(|,,A) of minimal order lGl. Assuming that G has proper
direct summands, say G - Gr@Gz, with 0 * Gt { G,' i :7,2, i t  fol lows that
Ga e K(Zr(f, ,4)),, i :  ! ,2. Indeed, assuming GL / K(Zt (f, ,4)), i .e. (f  :  Gf) < lG1l,
it follows by the minimality of lcl that Gf € n-(r lA) \ { A }, tg CI e rc(r) by
assumption, i.e. there exists G' e K(Zr(f , A)) such that Gl : G'r. Consequently,
A :  G r  :  G t n G + :  G , L r , G t :  ( G , + G z ) L ,  a n d  l G l * C z l  < l c ' l l G 2 l  :  ( f  :
G'L)lCzl: (f : C{)lCrl < lGr llGzl: lGl, contrary to the minimality of lcl.

In particular, G is a pgroup for some prime number p, since otherwise it follows by

the fact above and [4], Corollary f .i6 (the local-global principle for Kneser groups of

cocycles) that G e K(Z!1,,4)), and hence L,: GL € rc(f), which is a contradiction.

Set exp(G) - pn, so tlp" e A.

We distinguish the following two cases:

Case 1-  :  p+2.

As G / rcQr(f ,A)), it follows by Theorem 1.3, that eo € G, and hence A : Gr (
e * .  S e t  2 1 r  : :  ( l  :  e * ) l  ( p  -  1 ) .

P  
-  \  f  / ' \ 4

We claim rhat G is cyclic of order pn,n ) L. If A : stf, then G : (er) =

ZlpZ, by the minimality of lcl. Thus we may assume L* eor and hence G f (up).

Let G ': ,"ril.(c) < Z'(r[,(tle\Zlz). As a pgroup, d ir u Kneser subgroup of

z,(tt,(le\Zlz) by Theorem 1.3, and hence Cogalois by [5], Corollary 2.9, since

p + 2. In particular, the canonical map ]I-(G) ----- n (+lA),U * [/r, is a lattice

anti-isomorphism.
First let us show that the p-group G is cyclic' Assuming G : G1 O Q2, with

0l Go < G,t:  r ,2, we obtain C* ,  L(+lA) \  {4, t f ,y, t  = r,2, ana df nG{ :  t .
On the other hand, d{ and. GI at" Kneser subgroups of f as proper overgroups of A.

Let Gi e K(Zr (1, A)),t  :  1.,2,,besuch that e{ : G{, i  :  L, 2' Since lGrl :-( l  :  G{) :

1r : d)(ef , G[) : rl1r,l, and (r, G,l) : 1, it follows that lcldl : lGrl, ' i : \,2.
As r  :J r  '  #) l ( r  :  (eor  nG;(p)L)) ,  lcu l :  ( r  :  G; (p) r )1( r  '  ( ' /  n  G{p)L)) ,

and (r, Gnl) :1, we obtain rlG,ll (r , (# n G;(p)r)) | (r : c|) : rlcr,l, and hence
Gf : G;(p)L ne[, i . :  I ,2. As a proper overgroup of A,ef e rc(f), so there ex-

ists -Ff e K(Z\(1,,4)) such that ef - HL, in particular, lHl : 7. Consequently,

G{ : (G;(p)@ 1/)r, 'i : 1,2, and A, : GL : (Gt(p) + Gz(p) + H)t. By the,minimalitv
of lGl, we obtain lG{p)lLGz(dllHI>l/t@) + Gz(p) + Hl> lcl > (r : Gr) :

1r ,  ef )(eor ,e\ -  Wllel :  lHl lct l lczl :  l / / l  lcr(p) l  lcz(p)1, which is a contradic-
tion. Thus d is cyclic, as required. -

Choose some 9 € G such that G : bl, ;),so Gr : dL : gL aef : (g,eo)L,

and hence G : (g,€o) by the minimality of lGl. Assuming (g) n (tp) : 0, i.e. G -

(g) e (ro), it follows that (eo) e K(zr(r,A)) as a proper direct summand of G, which

is a contradiction. Consequently, the cocycle eo of prime order p belongs to (9), so

C : (Sl = Zf p"Z, as claimed.
We may assume that pn-r g: 6p. Note also that ord (9(o)) : pn for all o € f \ +'

13
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since for any such o, p"-Lg(o) : ep(o) *0.

We distinguish the following subcases:

S u b c a s e  L . l :  n : 1 ,  i . e .  A , : e i  / r c F ) ,  b u t A € r c ( l )  f o r A e  n ( f l A )  \ i A ) '

First let us show that r: (f  :  L): t* l(p-t) for some prime number I and

some ?7?. ) 1. Assuming the contrary, let r : 
il,rf' , k ) 2,1; pairwise distinct prime
i : L

numbers, andmi )  1.  Let t t ; , i , :1, . . ,k,  denotetheuniquesubgroupof f  of  index

tf,c \yingover A, so l/A * 
Ila/nn 

e ZlrZ. As A; * L, l\ € rc(f), so A;: G{ tot
1' : r  

k  k

some G; € K(Zr(l,A)), i.e. lGrl :(f : A;) - lfo. Thus A : f ' ' lrr, : l- lC* 
- GL,

; - 1  " ' - l

k

where C: (OG;)r. As ( l1, l , lci l)  :  f  f .or i  l  i ,  i t  fol lows by [4], Corol lary 1.16,
i : 1

ihat G e rc(21(t,,4)) and hence A e K(f), which is a contradiction.
To conclude that A is of type (A), it remains to show that ,4^(l) : (lll*-\Z,lV'

and{p € Ar  i f  I  :2 ,m t  3 .
Let A denote the unique subgroup of f lying over A such that (f : A) - l*-L ' By as-

sumption, A e K(l),  so A: HL for some -FI € rc(Zr(f , ,4)), i .e. lHl: (f  :  A) - l 'n-r.
As f/A = V,llrn-rV, is cyclic, it follows by [5], Theorem 2.I9, that .[/ is a Coga-
lois subgrory of. Zr(l,A), and hence H : (hl = V11rn-tV for some_h € Zr(t,A).

Consequentry, fJm-t € A1\ < ,4^ as ha : A < f. Assuming iF e /a too,
it follows by Lemma 2.L2, (L), that A is h-Kneser, which is a contradiction. Thus
AL(D : (Lll'"-r)ZfV,, as desired, On the other hand, assuming I : 2,rn ) 3 and

lB 8,4.r, it follows that 4 € P(|, A) nPs, and hence lr : HL * r* bv Theorem L.5,
since,Il: gL= V,l2*-rV, is a Cogalois subgroup of. Z|(T,A). However we have seen

above that 1,14 € (1/2'"-\ZlZ < AA, so A ( ri-, which is a contradiction.

s u b c a s e  L . 2 :  n ) 2 , i . e .  a , : G L  E € * , n , ( f l a ) \ r c ( f ) :  { a } ,  G :  ( s ) = z l p n z ,
and p"-rg - eo.

Let  d : :  resL (G),7 ' :  g l r t ,  andpk,L <k <n-1,  be i ts  order ,  ro  (# ,  L)  -  pk,

as A: GL and. d i, u Cogalois subgroup of Zr(e[,,4). Recall that ord (g(r)): p'

for al l  o e |\ef. AspG: (pg) * G, i t  fol lows bythe minimality of lGl that
(pG)L is a proper overgroup of A, so (pG)L € rc(f). Note that (pG)L ( d since

€p: pn-2(pg) e pG. As d = ZlpkZ is Cogalois, it follows that ((pG)r t t[) : pk-|,
so (f : (pG)L) : pk-Lrr-Let H e K@I(|,A)) be such that (pc)r : HL and hence

lHl: pk-rr. Since pG and H :: res+(H) are Cogalois subgroups of. Zr(e[,A),

and,frr :  @d)t - Hr, i t  fol lows by [5], Corol lary 2.!2,that fr:pd=Zlpk-rZ.
Consequen t l y , lH  n+ t l  : r l ( p -1 ) ,  so  H : (H  n r f t )eH(p ) .As f I  e  r c (Z r (T ,A ) ) ,
its subgroup Ht :: H nef,L is also Kneser, and hence H'L : d since eor < /1'a and
( f  :  f l l r )  : lH ' l : r :  ( l :  e f ) .  Moreover .H/  is  a  Cogalo is  subgroup of .  ZL( | ,A)bV
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[5], Theorem 2.19, since l lH'L:f let *ZfrZ is cycl ic, so H'ryZfrZ, in part icular

lF ee't, f f i  H'L:ui of, andhence Jt eg' for I  e P,l lr .  By [5], Corol l .ary2.L2,
f// is the unique Cogalois subgroup of ZL(|,A) satisfying H'L : rt.

Choose agenerator  hot  H(p)= f i :pe=V, lp te- tTsuch that  i , :h l " t  -  p i ,so

h-pg €ttt  and hence + < (h -pdL.Moreover (h-pg)L - e[.Indeed, assuming

r  € ( h - p g ) L ,  w e o b t a i n  p k g ( " ) : p n - r h ( r ) : 0 ,  i . e .  r  € ( p k G ) L :  ( G n  r * t ) t : € t ,
a s € p e G .

On the other hand, since ord (h) - pk-r < pn-r : ord ((pg)("))., o € f \ ef, it

follows that ord ((h-pg)(")):p"-r for all o € f \d. Cotttequently, ilFL e A't,

i.e. eor*-.: ri, since (h -pdL : ri o l. As ord(lJ : pk < Pn-r, it follows that

i : sl,; € Hom (€i,,Qlpk)zlz), so L.: sL: Ker (n < d and e[lL = zlpkz.
Thus A/:: An efi  < eor. Moreover A'< f since g(o5o-1): g(o) - 5g(o):0 for al l
o  € l , d  e  A / .

It remains to consider the following three situations:

1  . ' 1 . - L -  ^ L ^L . z c L  .  
" p n  

-  . 0 ,  i . e .  I f  p "  e  A € ;  .

It follows that A : A/ < f, so we may assume without loss that A : {1}, lll: pkr,

e[ =ZlpkV,, and A : A' i  :  (I lp"r)ZlZ. Ttus f !  spa xl le[ =ZlpkzxZf rZ, and.
hence A : {1} is h-Kneser by Lemma 2.I2, (1.), which is a contradiction. Consequently,
the situation 1.2.t cannot occur.

1 .2 .2 :  A<+  + roL - - r : r i .
Thus A { l, so we may assume A : {1}, A : (7lp"r)ZlZ,rt = ZfpkZ, and

f lrh = efle[" xllef = ZlpZxZlrZe ZfprZ. Let o e f be such that l leoL.:

loeoL"), and let 1t : ,u,o e (Zlp"rZ)* defining the action of a. It follows that o" e

rl- \ +, so (o") : ,t = Zlpkz. on the other hand, g(op') : ffis@) : 0 since

ord(g) :  pn,LtrP'  :1 modp'but u I  Imod,p. At gr :  A :  {1},  i t  fo l lows that

oP' :1, so k: 1 and l: (a) =ZlprZ. As we have seen above, there exists a unique

Cogalois subgroup H' = ZlrZ of. Z1(T,-4) such that eor - H'L, so the monomorphism

Zr( l ,A)  -  1 :  ( I f  p " r )Z lz ,a ; .  a (o) ,  i s  on to ,  and Z1( l ,A)  :  G @ Ht  =  Z f  p " rZ-

In particular, 1{/ is the maximal Kneser subgroup of. Zr(1,,4), and hence 5r: (o") is

the minimal Kneser subgroup of f. Consequently, the proper subgroup (oe) = ZlrZ

of I is not Kneser, which is a contradiction. Moreover note that the subgroup above

is not radical  s ince (or)r :0,  so (oo)t t : l  + (or).  Thus the si tuat ionL.2.2 cannot

occur.

L . 2 . 3 :  L * r h .

To conclude that A is of type (B) we have only to check that l'rr(a) : ef and

lf L' = (eoL"lL') x gleol") As A < eor and A/ < | it remains to show that o6o-r /

A,: gL whenever o' € I.\ef and d e A\A': A\ti. For o and d as above, we obtain

9(o6o-r) : g(o) - 5 g(") * 0, ffi required, since ord (g(o)) - p". On the other hand,

choose o € f such that rlrh : @err") 
e v,fprz, and let LL i: lro e (zlp"z). defining

the action of o on (1,1p\ZlZ.It follows that g(onr) : # g(o) :0 since ord(u) : pr,
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in particular, u # 1 modp, and g(o) e (Llp\ZlZ. Tfuis oP' e A' n efi : A/, and

hence tf L'= (eLr"lL') x (f lef.) as desired.

C a s e  2  :  P : 2 .
As G ( K(Zr(l,A)), it follows by Theorem 1".3, that e'n e G, and hence A : Gr (

u'[ : ,[. Note that (r'a) * G, since otherwise A, : et € rc(f), which is a contradiction.

In particular, lGl > 8.
We claim that G is cyclic of order 2n, n 2 3. Let d :: res 

+ 
(G) { Zt(rt,A). As

P(rt, A) )PG : A, d is Cogalois by Theorem 1.5.

First let us show that the 2-group d is cyclic. Assumin g d : G| @ G'r, with

0 + Gi  < d, t :1 ,2,  we obta in G'ot  e  u(r*  lA) \  {4 ,  , t } , i ' :  r ,2 ,  and Glr  nG. ' rL  :  6 .

As proper overgroups of A, Glr and, G'rr are Kneser subgroups of l, so C'ur : C!

f o r  s o m e  G 6  e  K ( Z r ( f , A ) ) , ' i : 1 , 2 .  A s  ( G r  +  G z ) L :  C { n C ] , :  G \ L ) G t L : 6 ,
we obtain lcl S lGr + Gzl by the minimality of lGl' Thus lG;l : (f : Gf,) : (f :

,DG[ , G'oL) : 2lG'tl,,i : L,2,, and hence the Gi's are 2-groups. Consequently,

da :--resr1(G) e K(ZL(€[ ' A))"i' : L'2' so (Gin€t\L : ef by [4]' Corollary L'12, in

particular, Gin €tL is a non-trivial 2-group , i : 1,2. Note lhat ea €-Gi) €tt,i : 1,2

smce ef r [2 ]  :  ( r i ) .  Thus ea €Gt)G2,  and hence 2 lc \ l lc i l :2 le l :  ( f  :  e [11e[  t

G \ :  ( r :  G r )  <  l c l  <  lG r  lGz lSPVA:2 l c \ l l c i l ,wh ich  i s  acon t rad i c t i on .

Consequentty, d is cyclic, as re,quired.
Let g € G be such that G : bl" i ,  so Gr : GL : gL )e[ :  (g,ea)r, and

hence G : (g,tn) by the minimality of lGl. As e! € G and 2e'n : €4) we obtain
C : (g) P V,f2"V.,n) 3, as claimed.

Thus A : gr I ef, and we may assume that 2"-2g - €'4. Setting i : olr;,
it follows that ord (A : @* t gt) : 2k for some k satisfying L < k I n - 2, so
(f 'gr) :2k+r. Note also that ord (g(")):2n for al l  o € f \ul- since for any such

o,2"-rg(o) :  e+(o) : lD + O.
As 2G : (2g) + G,, it follows by the minimality of lcl that (2G)r is a proper

overgroup of A, so (zqL € rc(f). Note also that (2G)t < ,'4L : ef since e'n:

2n-3(2g) € 2G. As d = ZlzkZ is Cogalois, i t  fol lows that ((2qL : e[) :2k-r, so
(f , (2q\ - 2k._Let H € K(Zr(l,A) be such that (2G)t - Ht, in particular

l11l :2b. since fr t :res!(f l)  and.2G ur" Cogalois subgroups of Zr(e[,L), and

frt : Qe)L 
- HL, it follows by [5], Corollary 2.L2, that fr :2G = Zlzk-rZ, and

hence Hne[L: ker(resl;:  n -, H): (€4) * V,lzV,. Let h e .H be such that

i : :  h l , t  -  2 i ,  so ord (h)  e  {2k-1,2k} .  Thus h-2g e r t t ,  and hence t f  <  (h -2dr .

Since oid(h) < 2k q 2n-r:ord(29) and (f :  err) :2, i t  fol lows that h f 29, so
|  +  ( h - 2 g ) ' -  e f .

On the other hand, s ince for al l  o € f  \ef  ,  ord ((h-2g)(")) :T:and o2 
,€ut,

it follows thx onF:t : -{fi1 for any such o, and hence ilF= € A€t, i.e.
t[--, : ef. es ord (]) : 2k < 2"-r, it follows that i : 9lg € Hom 1e[,1t12k12121,
so A : 9a : ker (A < ,[ ana ef I A, = Zl2kZ. Note also that A/ :: A fl e{* < | since
9(o6o-r)  :  g(o) -  5g(")  :  0 for al l  o € f ,d € A' .
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We distinguish the following three situations :

2.L : e-*: €t, i.e. iP €. A't '
It follows that A : A/ ( l, so we may assume without loss that A : {1},lf | :

2k+1,e[ e Z,f2hZ, and A : A,t : Gl2")V,lZ. Thus et : BL(f,A)r is the kernel of
the action of f on A, and hence there are only two possibilities:

Z. t .L  :  oa :  -e , for  o  € f  \ t * ,  a  € A.

In this case | = r[ n Fltil = @'l2kV) x (V'l2Z) 3 D2*+rr and hence A: {1}
is h-Kneser by Lemma 2.L2, (2), contrary to our assumption. Thus the situation2.I.L
cannot occur.

2.L.2 :  oo :  - ( I  +  2"=L)afor  o  € f  \  t l - ,  a  € A.

As ord(g(" ) )  -  2n,  we obta in g(o2) :2"-1g(o) : {0 ,  and hence g(oa)  :0 ,  so

ord (o) : 4 since L.: gr: {1}. Choosing a generator r of ef = Zf2kZ, we obtain the

presentation | ry \o,r loa : I,o2 : t'o-',oro-L : r-r),concluding that A is of type
(c)-

2 . 2 :  L . < r k + e r ! . ; : e f .
Thus A ( f, so we may assume that A : {1}, A: (L|2")ZlZ,e[ = Zf2kZ, and

t l t t  *  G t luk )x$ le [ )=Z ,pv ' xZ l2Z .  Le to  €  f  \ e f  uesuch tha t  oo ' :  -a

f o ra  e  A ,and , l e t  r  €  t 4 i - \ t t ,  so rgenera tese f  and ra :  (1  +2n - r )a fo t  ae  A .

As ord (g(o)) : 2n and ord (9(r)) - 2k,_it follows that g(o2) : 0 and g(oro-r1 :

(L - r)s(o) i os(r) : 2"-L s(o) - s(r) : {D - g(r) : s(r2k.-L 
-t1. Consequent\.y, 

"k 
} 2,

i . " .  L  *  rk ,so n )  k+2 > 4,  and|  = (4,  r lo2 :  r2r  :  L , ,  oro-r  -  rzk- r - t !  -

e f  x  ( l le [ )  lD2*+t .  The monomorphism Zr( l ,A)  -  Ax A,a e (a(o) ,a( r )  -

z;-ka'(o)), maps isomorphically Z'(t,A) onto ((I12")Z,lV')x((llzk-I)Z/Z), and hence

(ol I @)LL 
- (o,,r2"-'), i.e. (o) /R(l), which is a contradiction. Consequently, the

situation 2.2 cannot occur.

2 . 3 :  A , * r t - .
We may assume A' : {1}, 4: (112')ZfZ, so A : (d) = V'f 2z,rk : () = Z'l2kZ,

and ef -- ,t^-, : Lek : (6,.r) = v'l2v'xZlzkz. we obtain 6o: lL+T-\",,ra: o,1
f o r o €  A .  

- C h o o s e " e  
f  \ e f  s a t i s f y i n g o a : - . & f o r a €  A , s o o 2  e g L n e f i : 1 1 1 ,

i.e. ord.(o) : 2. Thus f = t[ n (tJ:b As. g.(oro-') : -g(r) : sG-'), and

g(olo-L): (1 - 6)g(o):2"-rg(o):{D,: g1r2k-'6i,  we obtain the presentation

|  !  (o ,  6 , r lo2 :  r "  :  5z :  (or )2:  [d , r ]  :  (od)2r2o- t  -  t ) ,

so A is of type (D), as required.

Conversely, we have to show that A e (11R(l) \ftrc(f))-"" whenever A is an open

subgroup of f of one of the types (A) - (D).

(A) : Assume A : rf , ,p uZ]{.,A) \ {4},(f :  A) - I*, la prime number, rn )

\ A^Q) : (Ilt*-\Zf Z, and Ll4 e Ar for I : 2,m 2 3' First we have to show

that A / rcF). Assuming the contrary, let G e K(Zr(l,A)) be such that A : Gr,

17
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so lcl : (f : A) : l^. If G is not cyclic, Iet 0 I Gn {. G,'i : 1,2 be such that

G : GrCIG2. As T lL = V,f t^2,, and I is a prime number, [,(f I A) is totally ordered, so

we may assume Gf < GI, and'hence A : (Gr *Gz)L : CIoG* : G{.Consequently,

(f :  Gf) :  (f  :  A): lcl  > lGtl,  which is a contradict ion. Thus G : \g) =V'f l*Z,

so ord (g(")) : l* for some o € f \ a, in particular (llY)zlv, < A. since A < f, it

fol lows that for any such o, rg(o): g(ro): g(o(o-rro)): g(o) tot al l  r € L: gL,

"o 
lfu € AA, contrary to the assumption that A^(l) : (1lI*-L)V'lV'.
It remains to check that A € rc(f) whenever A is a proper overgroup of A. For

any such A, we obtain A < f and f/A = V'flkz,O < k .-\m-t. We may assume
k >  L f o r  I 1 2 ,  r e s p .  k >  2  f o r  l : 2 ,  s i n c e  o t h e r w i s e  e i t h e r  A :  I  o r  ( l :  L ) : Z

und, lp ,  €  / r  < ,4^.  Leto € f  besuchthatoA isageneratorof  f /A oZ, l t^Z.

Six A ( ril-, < efr , f/A acts oL (Lllk)ZlZ. Let u' i: LLo e (ZltkV). be such that

olfu : 
"l\Obviously, 

u : lmodl if I + 2, and u : 1 mod4 if" I : 2, as, by

assumption, Ll4 e ,4r for I :2,m ) 3. Consequently, A : ga e K(f), where the

cocycle g € Z1(l lA,/^) is defined by g(o):Ll lk.

(B) Let A be an open subgroup of type (B). We may assume without loss that
A/  : :  A )eor^ :  {1}  and A:  ( I l ( { r )Z lV ' .  Thus A:  (d)  o  Z lpZ,rh:  e f f , :  ( r )  =

Zlpkz,and ef : rh-r, : L€b - ZlpZ x ZlpkZ. Let o € f be such that oPr : L

and , t l eoL" : (oeoL . ) .No te tha tsuchaoex is t ss ince f=e rL "x1 f1 r [ " )byassumpt ion .
As o" a r"t i  erL*, i t  fol lows that ef: (dlr),:  \o',r) and (o") < l .  As A / f  and

ord (d) : p, we may assume that 6 - o'TP"-' . Let u::'tto € -4* be such that oa: ua
for a € A. By assumption, it follows that ord (z mod p") : pr, ord(u modl) : r for
I <  j  S n - l , a n d u :  l m o d t f o r t e P , l l r .  S e t t i n g  o r o - r : r t ' ' ,  w i t h  u  € ( Z l p k T ) * ,
it follows that ord(r.'modpk) lr :ord(amodp) since o'r : ro' and the conjugates

oi6o-i,0 < i < r, of the element S - 6raPk-t are pairwise distinct, as l/p(A) : eoa

by assumption. Thus we may assume without loss that u : umodpe, obtaining the
presentation

|  3  (o,  r loPr  :7Po :  oro-r r - "  :  l )

The monomorphism Z'(l,A) - 4 * A,a +. (a(o),a(r)), maps isomorphically
Zr(r,A) onto ((11@"r))V,lZ) 

" 
(Glek)V,lZ). It follows that A : (d) - er for a

convenient g €. Zr(l,A) with ord(g(o)) - pn and ord(g(r)) : pk, so A is a radical
subgroup of f . However A / K(l) since all the maximal Kneser subgroups of. Zr(t, A)
are isomorphic to (V,lrZ) x (Z,lpkz) o Zf pkrZ, so the normal subgroup (o') = ZlpZ is
the minimal Kneser subgroup of f, in particular the unique Kneser subgroup of order
p o f f .

It remains to show that all proper overgroups of A are Kneser. Let A :: (6,or):
(ror-"o,) = zlpz x zlpz. Note that A < f and n (eor lA) \ {a} q n (f lA) since
ef I L - Zlpkz. Moreover n (f I A)\{A} : n-(f I A). Indeed, for any 7 € l\+, $t-r e
rf \ I since lft,(A): ri, and hence L # (6,i ntt, as required. Applying Lemma
2.12, (7), to the induced action of f /A = (t; lD x (t le*,) e (v]pk-|T) x,(zlrz) on

$lp"-rr)ZfZ, we conclude that A e 17K(l), so n (f I A) \ {A} c rc(f), as desired.

(C) Let A be an open subgroup of f of type (C). As A < f, we may assume that
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A :  { 1 }  a n d , 4 :  A ' t  :  G l 2 ' ) V , l Z , . s o  e f  -  r k :  f t ) = Z l 2 k Z , l 1 k Z - n - 2 , 1  =

(o,rloa : I,o2 : T2*-',oro-7 : r-L),in particular, | : (") = Zl4Z and, T = 02
i f  k :  L ,  a n d  o a :  - ( L + 2 " - r ) a t r a :  a f . o r  a  e  A .  N o t e  t h a t  [ ; :  ( o 2 )  <  l ,
A is the center of f if k ) 2, and f/A d (Z,l2k-rz) x (V,IZZ) 3 D2ry and hence
lt e HrcQ) by Lemma 2.12, (2). On the other hand, the monomorphism Z'(1, A) -
Ax A,a,. (a(o),"(r) -2'-ka(o)) maps isomorphical ly Zr(l ,A) onto ((t12")ZlZ) x

( I l2k-\Zlv,).  Sett ing g(o):{fr ,s(r):  tr*,  we obtain s e ZL(r,-A) and A:
{1} : 9r, so A is a radical subgroup of f. However A / rc(f) since the maximal
Kneser subgroups K of Zt(|,, A) are all isomorphic to (V'l2Z) x (ZlZk-LZ), and hence
KL: L: (o2) =Zl2V, is the minimal Kneser subgroup of l. It remains to observe
that n (f) \ {1} : n (l lA) : rc(l) as desired.

(D) Let A be an open subgroup of f of type (D). Since A/ : A t-l 6f < f,
we may assume that A/ . {1} and A : (112")V'lV'. By assumption, l. = ef x

Qlr i l  =  (o, r ,6 lo2 :  r2o :62 :  I ,6r  :  16,oro- l  :  T-L,o io- r  -  572*- '7 ,  and
oa:  -a ; ra:  a , ia :  (L  ,n-L)a for  o  € A.  In  par t icu lar ,  l / r (A)  -  t t  :  e{ . - r ,

and the center Z(l):  (("6) '- r"-t) = V' l2V'. The monomorphism Zr(l ,A) -
Ax Ax A,a ' -  (a(o) ,a(d) ,a( r )  -2n-ka(o)) ,  maps isomorphica l ly  ZL(1, ,4)  onto
((112")V,lV,) x ((tlZ)Z,lZ) x ((Ll2k-rWV.). It follows that A : (d) : eL, where

g € Zr(1,,4) is defined by g(o) : Ll2",g(r) :  I l2k,g\6) :0, so A € 7j(f).  On
the other hand, the maximal Kneser subgroups K of ZL(I,A) are all isomorphic to
(Z,l2Z) x (V,IZZ) x (ZlZk-rZ), and hence KL : Z(T) * Zl2Z is the (unique) minimal

Kneser subgroup of f . Consequently, the normal subgroup A :: (d, ,"-') = V,l2Z x
Zl2Z is the (unique) minimal Kneser subgroup of f lying over A, and f/A ! D2r, so
It e T7rcQ) by Lemma 2.12, (2). It remains to observe that n (l lA) \ {A} : n (f lA)
as required.

As a consequence of Lemma 3.1, we obtain the following h-Kneser criterion for

h-radical subgroups.

Theorem 3.2. The followi,ng asserti,ons are equ'iualent for ltellR(l).

(1)  ̂  € 'HrcQ).

( 2 )  A { A , w h e n e u e r L ' i s a n o p e n s u b g r o u p o f f  o f  o n e o f  t h e t y p e s  ( A )  - ( D ) '  n
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