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Abstract

Given a profinite group I acting continuously on a quasi-cyclic discrete group 4,
certain classes of closed subgroups of I' (radical, hereditarily radical, Kneser, almost
Kneser, and hereditarily Kneser) having natural field theoretic interpretations are
defined and investigated. One proves that the hereditarily Kneser subgroups of I
form a closed subspace of the irreducible spectral space of all closed subgroups of T,
and a hereditarily Kneser criterion for hereditarily radical subgroups is provided.
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Introduction

To any algebraic field extension E/F one can associate a torsion Abelian group, called
the Cogalois group of the field extension E/F and denoted Cog(E/F'), namely the tor-
sion subgroup of the multiplicative factor group E*/F*. Thus Cog(E/F) = T(E/F )/ F*,
where

T(E/F) = {z € E*|z™ € Ffor somen € N>}

The lattices L(E/F) and L(Cog(E/F)) = L(T(E/F)| F*) of all intermediate subfields
of the field extension E/F, resp. of all subgroups of T(E/F) lying over F™, are related
through the natural maps L — LNT(E/F),G — F(G). Roughly speaking, the aim of
the Cogalois Theory consists in the study of the properties of these maps relating the
lattices above. The roots of the Cogalois theory lie in some classical works of Siegel [17],
Kneser [12], and Schinzel [14] devoted to particular classes of finite field extensions with
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Cogalois correspondence. A more general approach for arbitrary algebraic field exten-
sions was developed in the 80’th by Greither-Harrison [10], Barrera Mora-Rzedowski
Calderon-Villa Salvador [8], and still more recently by Albu and Nicolae [1, 6-8]. For
the actual state of art of the Cogalois Theory see Albu’s monograph [2]. '

Now, assuming that F/F is a Galois (not necessarily finite) extension, and I" =
Gal(E/F) its Galois group with Krull’s topology, the canonical morphism

U : T(E/F) — ZYT, ug),  — [0 — (0z)z 7]

where pp denotes the multiplicative group of the roots of unity in F, induces by
Hilbert’s Theorem 90 an isomorphism Cog(E/F) = ZY (T, ug).

Thus it seems natural to consider a pure group theoretic approach starting from
an arbitrary profinite group I' and a quasi-cyclic discrete group A, identified with a
subgroup of Q/Z, on which I" acts continuously. For any such pair (I', A), the objects to
study are the lattices IL(T") and L.(Z*(T', A)) of all closed subgroups of the profinite group
I, resp. of all subgroups of the Abelian torsion discrete group Z(T', A) of continuous
1-cocycles from I' to the discrete I'-module A, which are related through the canonical

reversing maps
A € L(T) » At = ZX(T| A, A) = {g € Z'(T, A) | g|a = 0} € L(Z\(T, 4))

and _
GeZ\T,A)— G :={s€T|g(c) =0V¥ge G} e L(I),
defining a Galois connection, i.e. A < At and G < G for all A € LT),G €
L(ZL(T, A)). '
The lattices (") and L(Z!(T, A)) are equipped with natural topologies defined by
the bases of quasi-compact open sets

Up =L(A)={A e LT |A < A}
for A ranging over all open subgroups of I', resp.
Up = {G e L(ZYT,A))|F < G}

for F' ranging over all finite subgroups of Z1(T', A).

Note that {A} = L(T'|A) = {A € L(T)|A < A’} for all A € L(T), and {G} =
L(G) for all G € L(Z1(T, A)), so, w.r.t. the topologies above, L(T") and L(Z(T', A)) are
irreducible spectral spaces with the generic point {1}, resp Z*(T', A), and the unique
closed point T', resp. {0}.

Moreover the both lattice operations on L(I') and L.(Z!(T', A)) are continuous maps.
However, in general, only the join AjVAg := A; U Ag in L(T'), resp. the meet GiAGy :=
G1N Gy in L(ZY(T, A)), is a coherent map; a map f : X — Y between spectral spaces
is coherent if f~1(U) is a quasi-compact open subset of X for all quasi-compact open
subsets U of Y. Note also that the canonical actions of the profinite group I' on the
topological lattices L(T') and L(Z(T', A))

(o,A) — ocho™ L,
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resp.

(0,G) = oG :={oglge G},

where
(0g)(r) = og(c™ro)foro,7 €T, g € Z'(T, A),

are coherent maps, in particular, continuous maps.

Some remarkable closed subspaces of the spectral space L(Z1(I', A)) consisting of
the so called Kneser and Cogalois groups of cocycles are introduced and investigated
in [4, 5]. In the present work the accent will be moved on the spectral space L(I'),
more precisely on some of its subspaces consisting of closed subgroups of the profi-
nite group I' with interesting algebraic and topological properties. Thus, the following '
classes of closed subgroups of I having natural field theoretic interpretations are defined
and investigated : radical, hereditarily radical, Kneser, almost Kneser, and hereditarily
Kneser. The main results of the paper are Corollary 2.15, stating that the hereditarily
Kneser subgroups of I' form a closed subspace of the spectral space L(I"), and Theorem
3.2, providing a hereditarily Kneser criterion for hereditarily radical subgroups of I". A
forthcoming paper will be devoted to a particularly interesting subclass of hereditar-
ily Kneser subgroups—the Cogalois subgroups—, and to some applications of the group
theoretic approach from [4, 5] and the present paper to the field theoretic Cogalois

theory.

1 Notation and Preliminaries

Let I' be a profinite group acting continuously on a discrete quasi-cyclic group A identi-
fied with a subgroup of Q/Z. The lattices IL(T") and L(Z*(T', 4)) of all closed subgroups
of ', resp. of all subgroups of Z!(I', A), are equipped with natural spectral topologies
as defined in Introduction. For A € L(T"),G € L(ZX(T, A)), we denote by L(I"| A), the
sublattice of IL.(I' | A) consisting of all open subgroups of I lying over A, and by L(G);
the sublattice of L.(G) consisting of the finite subgroups of G.

Recall that a topological space X is called spectral (or coherent) if the family of quasi-
compact open subsets of X is closed under finite intersections (in particular, X itself is
quasi-compact) and forms a base for the topology on X, and every irreducible closed
subset of X is the closure of a unique point of X. A spectral space X becomes a profinite
(or boolean or Stone) space, i.e. a compact totally disconnected space, by taking the
boolean lattice generated by the distributive lattice of all quasi-compact open subsets
of X as a base of clopen sets for a finer topology on X. For more details concerning the
spectral and profinite spaces, which are duals by the Stone’s Representation Theorem to
(bounded) distributive lattices and boolean lattices (algebras), respectively, the reader
may consult [11], [13], and/or [9].

The natural reversing maps (—)+ : L(I') — L(Z'(T, A)) and (—)* : L(Z}(T, 4)) —
L(I") as defined in Introduction have the following properties ([4], Propositions 0.1 and
0.3)
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(i) The map A — A is a semi-lattice morphism (L(T'), V) — (L(ZY(T, A)), A), i.e.
(A;UAp)t = Af N Ay for A; € L(T'),é = 1,2. It is also a I-equivariant coherent map,
in particular, a continuous map.

(ii) The map G — G is a semi-lattice morphism (L(Z'(T, 4)),Vv) — (L(I),A),
ie. (G1+ Gy)t =Gf NGy for G; € L(ZY(T, A)),i = 1,2. Tt is also a I-equivariant
continuous map.

However, in general, the map G — G+ from (ii) is not coherent, as we can see from
the following simple example. Let I' = 7,A= Z (1/p)Z/Z, where P’ consists of all

peP!
odd prime numbers p for which the order f,|(p — 1) of the element 2modp € F is
even. Consider the continuous action I' x A — A, (0,a) — 2%a. Setting A = 22,
it follows that ZN(T, (1/p)Z/Z)* = f,Z < A for all p € P'. Thus the subgroups
ZMT, (1/p)Z/7) = Z/pZ of Z'(T', A), for p ranging over the infinite set P, are the min-
imal elements of the poset ((—)+))~1(L(A)), and hence the open set ((—)*))~(L(A))
is not quasi-compact.

For G € L(ZL(T, A)), set G :=Hom (G, A) =Hom (G,Q/Z). G, the Pontryagin
dual of the discrete Abelian torsion group G, is an Abelian profinite group. Moreover
G is a topological I-module w.r.t. the action defined by (ox)(g) = ox(g) foro €', x €
G, g € G. The canonical continuous map ng : I' — G, o + (g — g(0)), is a 1-cocycle,
inducing an injective continuous map I'/G+ — G, in particular, (I' : G) < |G| for
all G € L(ZY(T, A))s.

Definition 1.1. ([4], Definition 1.2) G € L(ZY(T,A4)) is called a Kneser subgroup
of Z1(I', A) if the continuous cocycle ng : I' — G is onto, i.e. (I': G1) = |G| as
supernatural numbers (cf. [15], Ch. I, 1.4). O

Remark 1.2. One checks easily that the following statements are equivalent for G €
ZYT, A).
(i) G is a Kneser subgroup of Z!(T', A).
(i) na(Q) is a subgroup of G.
(iii) ne(G) is a T-subspace of the I-space G.
(iv) nc(G) is a -submodule of G. O

Denote by K(Z(I", A)) the subset of L(Z*(T', A)) consisting of all Kneser subgroups
of ZY(I', A). According to [4], Corollary 1.8, K(Z!(I', A)) is a closed subspace of the
spectral space L(Z!(T", A)). To obtain a criterion for a subgroup G of Z!(I', A) to be
Kneser it suffices to describe the minimal members w.r.t. inclusion of the open subset
L(ZY(T, A))\ K(Z}(T, A)). To do that, we introduced in [4] some basic notation which
will be also used in the sequel.

[P denotes the set of prime natural numbers
P={peP|p2}U{4}
Pa = {p e P|p||G|} for G € L(Z}T, A))
7 € Q/7Z denotes the class of r € Q
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P(r,4)={peP|i/pe A\ A"}
For n € N>j such that 1//71 € A, e, € BY(T, A) denotes the coboundary associated to 1//7L
gt =Gt for g € ZHT, A),G = (9)

If 1/4 € A\ AT, define ) € Z1(T, A) by

/Z R —_— _ NG
ey(o) = 1,{ Tf Ul//il /1/4
0 if ol/4=1/4
The abstract version of the field theoretic Kneser criterion [12] reads as follows.
Note that the place of the primitive roots of unity (p, p odd prime, from the Kneser
criterion is taken in its abstract version by the coboundary €p, while the cocycle g}

corresponds to 1 — (4.

Theorem 1.3. ([4], Theorem 1.20) The following assertions are equivalent for a sub-
group G of ZXT', A).

(1) G e K(I', A).

(2) &p & G whenever 4 # p € P(I', A) and ey ¢ G whenever 4 € P(I', A). O

From a logical point of view, the statement above can be interpreted as a quantifier
elimination result: the property of a subgroup G < Z I(I", A) to be Kneser, described
by a sentence (in a suitable language) involving quantifiers, turns out to be equivalent
with a (possible infinite) conjunction of very simple quantifier-free sentences.

A particularly interesting subclass of Kneser groups of cocycles, introduced and
studied in [5], is defined below.

Definition 1.4. ([5], Definition 2.1) A subgroup G of Z(T', A) is said to be a Cogalois
subgroup of ZY(T', A) if it is a Kneser subgroup of ZYT, A) and the maps (=1 :
L(G) — L(T'| G1) and GN (=)t LT |Gt) — L(G) are lattice anti-isomorphisms,
inverse to one another. O

Denote by C(Z'(T, A)) the subset of K(Z (', A)) consisting of all Cogalois sub-
groups of Z*(T', A). According to [5], Corollary 2.7, C(Z}(T, A)) is a closed subspace
of the spectral space K(Z!(T', A)). One of the various equivalent characterizations for
the Cogalois groups of cocycles proved in [5] is mentioned below.

Theorem 1.5. ([5], Theorem 2.5) The following statements are equivalent for a sub-
group G of ZXT', A).

(1) G € C(Z! (T, A)).

(2) G+ ¢ SIJ; for all p € Pa NP(T, A). O
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2 Radical, Kneser and hereditarily Kneser subgroups

In this section we study subgroups of a profinite group I' acting continuously on a
discrete subgroup A of Q/Z, which are both closed in the topology of T' and closed
under the closure operator A +— AL, The abstract versions of the field theoretic no-
tions of radical, G-Kneser, and Kneser field extensions (cf. [2], ch. 11) are introduced,
and their main properties are investigated. On the other hand, natural topological ar-
guments are used to put in evidence new classes of subgroups of I' (hereditarily radical,
almost Kneser and hereditarily Kneser) with suitable field theoretic interpretations.

The concept defined below is the abstract version of the concept of radical field

extension.

Definition 2.1. A subgroup A of T is said to be G-radical if G € L(Z\(T, A)) and
A = G+ . A radical subgroup of I' is a subgroup which is G-radical for some G <

ZYT, A). 0

~ Since Z1T', A) is a torsion group and (T': g*) < ord(g) for all g € Z'(I, A), it
follows that for all G € L(Z'(T,A)), G+ = Neec gt is closed in T' as intersection of
‘open subgroups, so any radical subgroup of I' is necessarily closed.

The next obvious lemma provides equivalent descriptions for radical subgroups.

Lemma 2.2. The following statements are equivalent for a subgroup A of I.
(1) A is radical.
(2) A=A
(3) A is At-radical. O

We shall denote by R(I') the poset of all radical subgroups of I'. Since for any

family (A;)ier of radical subgroups of T, (] A; = (ZA;L)l, it follows that R(T')
i€l i€l

is a meet-subsemilattice of IL(T"). Observe that I' is the last element of R(T"), while

the closed normal subgroup {1}*+ = Z1(T, A)* of T is the least element of R(T').

Also notice that the kernel A of the action of I" on A belongs to R(I') since A =

BY(T, A)t.

Remark 2.3. If A € R(I') and A € L(I'|A), then A is not necessarily a radical
subgroup of T, in other words, in general, R(T") is not an upper subset of L(I"), and
hence, in general, R(I") is not a closed subset of the spectral space L(T'), i.e., R(I") &
R(T) = L(T|ZY(T, A)L).

To see that, consider the following simple example: let A = (1/2™)Z/Z, n > 4,
and T' = (Z/2"Z)* = Z/27 x 7/2" 27, with the (faithful) canonical action given by
multiplication. If we consider the elements ¢ = —1 mod 2" and 7 = 5 mod 2" of
I, then we obtain the following presentation I' = (o, 7|02 = T [o,7] = 1).
The morphism Z1(I',A) — A x A, g — (g(0),g(7) + 2g(c)), maps isomorphically
ZU(T, A) onto ((1/2"1)Z/Z) x ((1/2)Z/Z), sending BY(T', A) onto (1/2""1)Z/Z. Tt
follows that A := {1} = BYT,A)t = ZY(, A)* € R(). But A; = (o,7%) =
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7./27 x 7.)2" 27,2 < i < n — 2, is not a radical subgroup of I'; indeed, since By =
(o) =2 7Z,/2Z, where « is the morphism of order 2 defined by a(o) =0, a(7) = 1//\2, we
have At = ot = (0,72) 2 Z/2Zx Z/2"*Z, and hence At # A as n—3>n—2—1i
by assumption. O

The following notion is justified by Remark 2.3.

Definition 2.4. A closed subgroup A of I is said to be hereditarily radical (abbre-
viated h-radical) if A is radical for any A € L(T'|A). O

Note that A € L(T') is h-radical iff the canonical map L(A+) — L(T'|A), G — G+,
is onto. In the sequel we shall denote by HR(I") the poset of all h-radical subgroups of
. Thus HR(T) is an upper subset of L(I"), T € HR(T'), and, in general, HR(T') € R(T)
by Remark 2.3. Moreover, it follows easily that A € HR(T') iff A is radical for any open
subgroup of T' lying over A, and hence HR(T') is a closed I-subspace of the spectral
space L(T"). The maximal elements w.r.t. inclusion of the open set IL(I") \ HR(I") are
exactly the (open) subgroups A for which A # A+L and the canonical map L(At) —

L(T|A)\ {A},G — G+, is onto. In particular, the (possibly empty) set of the maximal
proper open subgroups A satisfying AL = {0} is a subset of the set above. Note that
" in the situation described in Remark 2.3, L(I") \ HR(T') = L({o, 74)).

Definition 2.5. A subgroup A of I' is said to be G-Kneser if A is G-radical and
G is a Kneser subgroup of Z1(I',A). A is said to be a Kneser subgroup of I' if A 1is
G-Kneser for some G < Z1(T, A). O

Clearly, any Kneser subgroup A of I' is the intersection of all open Kneser sub-
groups (and hence of all Kneser subgroups of type gt) of T lying over A. In the
sequel we shall denote by KC(T') the poset of the Kneser subgroups of I'. Observe that

T e K(I) € R(D).

Remarks 2.6. (1) If A € L(I') is simultaneously G-Kneser and H-Kneser, then G
and H are not necessarily isomorphic. For instance, let I = lo; T} & Z/2Z x L]27
and A = (1/4)Z/Z, with the action given by 01/4 = — 1/4 and 71/4 = 1/4 The
morphism ZNT', A) — A x A, g — (g(0), g(7)) maps isomorphically ZY(T, A) onto
(1/4)Z/7 x (1/2)Z/Z. The trivial subgroup {1} of T" is simultaneously G-Kneser and
H-Kneser, where G = (a) 2 Z/4Z, with a(o) = 1/4 a(r) = 1/2 and H = (g4, B) =
7.)27 x 7,22, with B(o) =0, B(1) = 1/2.

(2) Note that, in general, K(I') is not an upper subset of L(I'), and hence not
necessarily a closed subset of the spectral space L(I'). Indeed let I' and A be as
defined in Remark 2.3. Then A = {1} is BY(T, A)-Kneser, while (¢) ¢ R(T") as we
have already seen, and hence (o) & K(I'). However (0)*+ = (o,72) € K(T). O

Though, in general, (') is not a closed subspace of the spectral space L(T), it is
closed w.r.t. the profinite topology of L(I') as image of the profinite space KC(Z*(T', A))
through the continuous map L(Z!(T, 4)) — L(T), G — GL. As a consequence, we
obtain the following characterisation of the Kneser subgroups of I'.
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Lemma 2.7. A necessary and sufficient condition for a closed subgroup A of T to be
Kneser is that (T|A), N K(T) 4s cofinal in the poset L(T'|A), of all open subgroups of
L(T|A).

Proof. The “only if” part is obvious since, assuming A = G- for some G € K(Z LT, A)),
{FL|F € L(G);} € K(T) NL(T|A), is cofinal in L(I'|A),. Conversely, assuming
A ¢ K(I), since K(T') is closed in the profinite space IL(I'), it follows that there exists
an open normal subgroup A of I' such that {A’ € L(I') |[A’A = AA}NK(T) = 0, so
AA € L(T'|A), and A’ ¢ K(T') for all A’ € L(AA|A),, since A’A = AA. O

Definition 2.8. A closed subgroup A of T' is said to be almost Kneser, abbreviated
a-Kneser, if A belongs to KC(T), the closure of IC(T') in the spectral space IL(T'). a

The next lemma provides a characterisation of the a-Kneser subgroups of I'.
Lemma 2.9. The following statements are equivalent for a closed subgroup A of I'.
* (1) A is a-Kneser.

(2) L(A) NK(T) # 0.

Proof. (1) = (2): Assuming that A is a-Kneser, it follows that L(A) N K(T") # @ for
all A € L(T|A),. As for any such A, L(A) is clopen and K(I) is closed in the profinite
space L(I'), it follows that the non-empty set X :=L(A) N K(T') is closed too. Since
the family (XA)aer(rja), has finite intersection property, it follows by compactness

that L(C) N KT) = ﬂ Xa # 0, as required.

AE]L(F|A)0
The implication (2) = (1) is obvious. O
Corollary 2.10. The posets K(I') and K(T') have the same minimal members. O

Similarly with the notion of h-radical, we define a subclass of Kneser subgroups of

I" as follows:

Definition 2.11. A closed subgroup A of T' is said to be hereditarily Kneser, abbrevi-
ated h-Kneser, if any closed subgroup A lying over A, in particular, A itself, is Kneser.
O

Remark 2.6, (2) provides examples of Kneser subgroups which are not h-Kneser.
On the other hand, basic examples of h-Kneser subgroups are provided by the next
result.

Lemma 2.12. (1) Let A = (1/p"r)Z/Z, where p is an odd prime number, n > 1,
and 2 <r|(p—1). Let T = Z/p*Z 1, Z)rZ = (0,7 |0" = " = orolr = 1),
where 0 < k < n and u € (Z/p"rZ)* satisfies : v mod p"™ € (Z/p"Z)* has order
r, and w = 1 mod | for | € P, lr. Consider the action of I' on A given by
oa = ua,7a = a for a € A. Then, A := {1} is a h-Kneser subgroup of .
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(2) Let A = (1/2")Z/Z,n > 3,1’ = (0,T|0? = 727 = (07)2 = 1) 2 Dy, 1 < k <
n—2,01/2n—=1 = —1/2n=1 71/27 = 1/2". Then, A = {1} is a h-Kneser subgroup

of T.
Proof. (1) By assumption it follows that BN, At = s}f = (1) < BYT, (1/7)Z/Z)*,
r—1
| = Eé X F/E;}, and Zu’ = 0mod p”r. The morphism Z*(I', A) — A X A,
i=0

g — (g(o),9(7)), maps isomorphically ZY (T, A) onto Ax p"~FrA = Z/p"rZ x 7/p*7 =
Z/p"Z & Z/p*rZ, and hence the maximal Kneser subgroups of Z1(T', A) are the direct
summands of the cyclic subgroup BX(T, (1/p")Z/Z) = (o) = Z/p"Z, where a(c) =
1/p™,a(r) = 0. Setting B(0) = 1/, B(t) = 1/pF, it follows that there are exactly p*
maximal Kneser subgroups of Z!(T', A), namely the conjugates (r'B),i € Z/p*Z, of
the cyclic group (8) = Z/p*rZ through the canonical action of I' on ZYT, A). Let
A€ L. EA<ek ie, A= ()0 <j <k then A = (pFIrf)- € K(T) as
required. If A £ E;;,L, then A = (AN 5;) x (A/(AN E;‘)), so A = (7P’ 7t0®) for some
0<j<kl0t< p*, s|r,s # r. Note that rtos = 7igST™t where i € Z/p*Z
is uniquely determined by the condition i(1 — u®) = tmod pF, since u® # 1lmodp.

s—1
As Zu“ — Omod s since v = 1mod! for | € P,l|s, by assumption, it follows that

n=0
A= (pFI(r/s)m'B)t € K(I') as desired.

(2) We distinguish the following two cases:

(i) o1/2r = —1/2™ The map ZYI[,A) — Ax A,g — (g9(0),9(7)), maps iso-
morphically Z!(T, A) onto (1/2™)Z/Z & (1/2F"1)Z/Z. Define o € ZYT, A) by a(o) =
0,a(r) = 1/2k-1. Let A € L(T"). If A < (7), then A = (r%),0 < i < k — 1, and hence
A = Hi, where H; = (e4,2°a) 2 Z)2L & L/2* 'L € K(ZY(T, A)). If A £ (7), then
rig € A for some 0 < j < 2571 — 1, and hence A € L(T'|8+), where 8 € ZNT, A) is
defined by B(0) = —51/28-1,8(1) = 1/2F-1. As Bt = (r90) £ (1) = ef, it follows
by Theorem 1.5 that (3) = 7./2%='Z is a Cogalois subgroup of ZY(T, A), and hence
A= (2!B) forsome 0 <i<k—1,s0Aisa Kneser subgroup of I' as required. Note
that the result remains also true in the case k =n — 1.

(ii) 01/2n = —(1+27"H1/2n = —1/27 + 1/2 : We are reduced to the case (1) since
ZNT, A) = ZNT, (1/2°71)Z/Z) 55 0 = g(0%) = 2"""g(0) and 0 = g(r¥7) = 2"1g(7)

for all g € Z}(T, A). : O

In the sequel we shall denote by HA(I") the poset of all h-Kneser subgroups of I'.
Thus HC(T) is un upper subset of HR(T'), T' € HK(T), and, in general, HK(I') ¢ K(I')
by Remarks 2.6, (2). One may ask whether for arbitrary pairs (T, A), HK(T) is a closed
subspace of the spectral space HR(I'), or, in other words, does any A € L(I") belong
to K(I") whenever A € K(T') for all open subgroups of ' lying over A ? The affirmative
answer to the question above will be an immediate consequence of the following result.

Theorem 2.13. The canonical map (=)* : K(Z1(T, A)) — L(T),G G*, is coher-

ent.
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Proof. By [4], Corollary 1.8, K(Z(T, A)) is a spectral space as a closed subspace of
the spectral space L(Z1(T, A)). For any open subgroup A of T, let Wa = {G €
K(ZY(T, A)) |G+ < A} denote the inverse image of the basic quasi-compact open set
U of the spectral space L(I'). We may assume that W is non-empty since otherwise
we have nothing to prove. Let Wa denote the (non-empty) subset of Wa consisting of
its minimal members w.r.t. inclusion. We have to show that the set Wy is finite and
all its members are finite Kneser subgroups of Z1(I', A), since then, by Zorn’s lemma,
it follows that Wa = U Ur, so Wa is quasi-compact open as a finite union of basic
FeWa

quasi-compact open subsets of the spectral space K(Z1(T', A)).

Assuming that some G € W is infinite, we deduce by minimality that F- ¢ A for
all finite subgroups F' of G, which are Kneser too as subgroups of G € K(Z!(T, A)).
Since the family of non-empty closed subsets F- \ A of I for F ranging over all finite
subgroups of G has finite intersection property, it follows by compactness of I' that
G-\ A = ﬂ(FL \A) # 0, ie. GX ¢ A, which is a contradiction. Thus it remains

only to shovlsj that the set Wy is finite.

Let Ta denote the set of all Kneser subgroups of Z!(I', A) which are contained in
AL, The set Th is finite and all its members are finite groups. Indeed, for any H € Ta,
we obtain A < AL+ < HL, and hence |[H| = (I': HY)|(T' : A) < o0, so H is a subgroup
of the finite group At[n] = Z1(T'|A, A[n]), where n = (T : A).

Thus it suffices to show that for any H € Ta, the set Wa g := {G € Wa| GNAL =
H} is finite. Moreover we claim that it suffices to show that for any pair (I', A) and
any open subgroup A of I', the set Wa o is finite. Indeed, assuming that H € Tx
and G € Wa g, let G = res%l(G). As A < HY, we obtain H < Gn HHL
GnaAt = H, and hence G = G/H is a Kneser group of Z'(HL, A) by [4], Corollary
1~.12, and G+ = Gt n HL = G+ < A < HL. On the other hand, it follows that
G N ZYHYA,A) = resh, (GNAL) = resh, (H) = {0} and G € K(Z'(H*, 4)) is
minimal with the property that G < A since for any proper subgroup G of G its
inverse image G’ through the canonical projection G — Gisa proper subgroup of
G lying over H, so Z:# = GLL N H+ = G is not contained in A by the minimality
property of G. As G+ = G for all G € Wa,H, the fibers of the canonical map
Wary,g — Waat),0, G — G = resFHl(G)v, are finite sets, and hence the proof of
the finiteness of W (<), i is reduced to the proof of the finiteness of the set Wa<HL),00
as claimed.

Thus it remains to show that for any pair (I', A) and any open subgroup A of T,
the set Wa o as defined above is finite. We shall proceed by induction on the index
n:= (I': A). The case n =1, i.e,, A =T, is trivial as Wr = {{0}}. Given I', A, A,
assume n > 1, ie., A # T, and let G € Way. Setting G = resh (G), it follows
by [4], Corollary 1.12 that G o G/(GNAY) =2 G ¢ K(ZY(A, A)) since G- < A
and (At NG)t = {0} =T £ A. _Consequently, by Theorem 1.3, there exists p €
P(A,A) CP(T', A) such that £|a € G, where

el e if p#£4
Cley if p=4
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As G 2 G, it follows that there exists a unique element g € G such that g|a = €|a, in
particular ord () = ord (¢]a) = p since p € P(A, A). Thus G* < Angt=Anel =
AﬂE}J; # A. Clearly, G € Wa, i, where A, = Aﬂs; and H = GOAE,L‘ Thus Wa o is
covered by the union of the sets Wa,, g as above, so it remains to show that any such
set Wa, g is finite and the set of possible pairs (p, H) is finite too. As for any p, H
belongs to the finite set Ta,, we have only to show that the p’ s range over a finite
subset of P(A, A).

First let us show that the set Wa, g above is finite. By the reduction step above
and the induction hypothesis we have to show that (H+ : A,) < n = (I' : A). As
H < A;f, we obtain A, < A]-DLL < Ht, and hence Ay, < HL N A. On the other hand,
since g € H, we obtain HXNA < gt NA =g NA =47y 50 H-NA = Ay, ie, the
set H'/A, is identified with a subset of the finite set I'/A, and hence (H ~ Ay =
(T : A). Since g € H and g|a = €|a, it follows that resk (H) ¢ K(Z'(A, 4)). As
HNAL <GnAL = {0}, it follows by [4], Proposition 1.11 that HLA % I, and hence
(Ht : Ap) < (T': A) as required.

Finally observe that the subgroup D generated by the element g — & belonging to
Al[p] is Kneser since otherwise ¢ € D by Theorem 1.3, and hence (e} = (9) < G
as ord (g) = p, contrary to the assumption that G € K(Z 1T, A)). Consequently,
ord(g—¢) = (L : D)|(T': A). Asord(g—¢) = p if p # 4, it follows that the set of
possible p’s is finite as desired. O

Corollary 2.14. A closed subgroup A of T is Kneser whenever any open subgroup of
I lying over A is Kneser. In particular, the following statements are equivalent for a
closed subgroup A of .

(1) A is h-Kneser.
(2) Any open subgroup of I' lying over A is Kneser.

Proof. Let A € LL(T") be such that any open subgroup A € L(I'|A) is Kneser. Since
{A} = L(T|A) is a closed subset of the spectral space L(I'), its inverse image X :=
{G € K(Z'(T,A))|A < G*} through the continuous map (=)* : K(ZY(T, A)) —
L(I'), G — G*, is a closed subset of the spectral space KC(Z1(T, A)), and hence also
closed w.r.t. the profinite topology of X(Z*(T', A)). As the map (=)t is coherent by
Theorem 2.13, the image (—)+(X) € L(T'|A) is closed w.r.t. the profinite topology of
L(I'). Consequently, A € (=)*(X), i.e., A € K(T'), since by assumption L('A), C
(=)1(X) and IL(T'|A) is obviously the closure of L(I'|A), w.r.t. the profinite topology
of L(T). O

Corollary 2.15. HK(I) is a closed I'-subspace of the spectral T'-space HR(T'). O

Remark 2.16. Let E/F be a Galois extension with I' := Gal(E/F) acting continuously
on the discrete multiplicative quasi-cyclic group A := pp of all roots of unity in E. For
L e L(E/F), set A := Gal(E/L). We obtain

(i) A € R(T) iff L/F is radical (cf. [2], ch. 2).

(i) A € HR(T) iff K/F is radical for all (finite) subextensions of L/F'.

(iif) A € K(T) iff L/F is Kneser (cf. [2], ch. 11).
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(iv) A is a-Kneser iff there exists a Kneser subextension K of E/F such that L C K.
(v) A € HK(T) iff every subextension K of L/F is Kneser iff every finite subexten-
sion K of L/F is Kneser. O

3 A criterion for hereditarily Kneser subgroups

To obtain an analogue of Theorem 1.3 (Abstract Kneser Criterion) providing a charac-
terisation of the h-Kneser groups inside HR(T"), we have to describe the set (HR(I') \
HIC(I")) max of the maximal elements w.r.t. inclusion of the open subset HR(I') \ HK(T')
of the spectral space HR(T'). Note that the set above consists of all open radical sub-
groups A < I' which are not Kneser but any A € L(T'|A) \ {A} is Kneser.

With this aim, we introduce the following four types of open subgroups A of I':

(A) A =&}, where p € PI,A\N{4 T 4) =17 |( 1), ! is a prime number,
m > 1, A2(l) = (1/I™1Z/Z (in particular, 1/2 g Aifl = 2,m = 1), and
1/4c AV if I =2,m > 3.

(B) The normalizer Np(A) of A in T is ey, where p € P(T,4) \ {4},5 A =
Z/p*Z,k > 1,@ € A for some n > k+1 > 2, (1/(p"1r)Z/Z < < A% | where
:(Fiz’-:;“)l(p—l),l/lEAF forl e P,l|r, A" :== Aﬂs < T, and

T/A = (eg/A) % (T /e50).

(C) A al4ce P(F A),A < 84,84/A ~ 727, k > 1, 1/2” € At for some
wn>k+223, 01/2":—1/2"+1/2fora€F\54,and

/A (o,7|0* =1,0% = 27 oot = 1.

(D) 4673(F A), NF(A>—€4,€4/A Z/2°7,k > 1 1/2”€Aforsomen>k+2>
3 1/27 o1 e At ,A' == ANegn < T, and T/A" = (ef /A') x (T'/ef) has the
presentation

2k-1

T/A' = (o,7,6|0? = 2 =52=1,6r =16,0r0 =17 560! =67 Yo

with | the action of F/A’ on (1/2™)Z/Z given by 01/2" = ﬁQ\n,TﬁZ\" = W,

§1/2n =1/27 +1/2.

Lemma 3.1. The necessary and sufficient condition for an open subgroup A < T to

belong to (HR(I") \ HK(L'))max s that A is of one of the types (A)-(D) above.
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Proof. Let A € (HR(I") \ HK(I'))max- Since A is an open radical subgroup of I', there
exists a finite subgroup G € L(ZN(T, A)) \ K(Z'(T, A)) such that A = Gt. Choose
such a subgroup G < ZY(T', A) of minimal order |G|. Assuming that G has proper
direct summands, say G = G1 ® Go, with 0 # G; < G,i = 1,2, it follows that
G; € K(ZY(T,A)),i = 1,2. Indeed, assuming Gy ¢ K(Z'(T', 4)), ie. (I': GL) < |G4l,
it follows by the minimality of |G| that G € L(T'|A) \ {A}, so Gi € K(I') by
assumption, i.e. there exists G' € K(Z(T', A)) such that G = G'*. Consequently,
A=GL=GINGy =GLNGy = (G'+ Go)t, and |G + Go| < |G'||Go| = (T :
G'"H)|Gy| = (T : G1)|Ge| < |G1]|G2| = |G|, contrary to the minimality of |G].

In particular, G is a p-group for some prime number p, since otherwise it follows by
the fact above and [4], Corollary 1.16 (the local-global principle for Kneser groups of
cocycles) that G € K(Z'(T, A)), and hence A = G+ € K(T'), which is a contradiction.

Set exp(G) = p™, so ﬁ €A
We distinguish the following two cases:

Case 1: p#2.

As G & K(Z'(T, A)), it follows by Theorem 1.3, that ¢, € G, and hence A = G+ <
szf. Set 2 < r:= (I‘:Ef;)|(p—1).

We claim that G is cyclic of order p*,n > 1. If A = szf, then G = (gp) =
Z./pZ, by the minimality of |G|. Thus we may assume A # si,L and hence G # (gp).
Let G = 1res£1+ (G) < Zl(szf, (1/p™)Z/Z). As a p-group, G is a Kneser subgroup of

A I(E;‘,(l /pP™)Z/Z) by Theorem 1.3, and hence Cogalois by [5], Corollary 2.9, since

p # 2. In particular, the canonical map L(G) — ]L(EZHA),U — U™, is a lattice
anti-isomorphism.

First let us show that the p-group G is cyclic. Assuming G = C~¥1 &) 62, with
0+ G; < G,i=1,2, we obtain G € L(er|A)\ {A,ef },i=1,2, and G{ NGy = A,
On the other hand, éiL and (~}’2l are Kneser subgroups of I' as proper overgroups of A.
Let G; € K(Z\(T, A)),i = 1,2, be such that G+ = G+,i = 1,2. Since |G| = (I': G) =
(T : ef)(el : GF) = r|Gi|, and (r,|Gi]) = 1, it follows that |Gi(p)| = 1Gy],5 = 1,2.

P
Asr = (0 :ef) (0 (g NGiY), 1G] = (T : GO « (5 NGilp)h),
and (r, |Gi|) = 1, we obtain r|Gs) | (T (ez-aL NGi(p)) | (T : G+) = r|Gy|, and hence
GiL = Gi(p)t N sj,i = 1,2. As a proper overgroup of A,ej € K(T'), so there ex-
ists H € K(Z'(T,A)) such that ef = H*, in particular, |H| = r. Consequently,
G = (Gi(p)@ H)',i= 1,2, and A = G+ = (G1(p) + Ga(p) + H)*. By the minimality
of |G, we obtain |Gy (p)] [Ga(p)| |H] 2 [G1(p) + Galp) + H| > |G| > (T: G1) =

(T : E;“)(Ei; . G1) = |H||G| = |H||G1]|Gz2| = |H||G1(p)||G2(p)|, which is a contradic-
tion. Thus G is cyclic, as required.

Choose some g € G such that G = <g|€é), so Gt =Gt = . ﬂej = (g,sp)L,
and hence G = (g,&,) by the minimality of |G|. Assuming (g) N (gp) = 0, i.e. G =
(9) ® (ep), it follows that (¢,) € KC(Z1(T, A)) as a proper direct summand of G, which
is a contradiction. Consequently, the cocycle &, of prime order p belongs to (g), so
G = (9) 2 Z/p"Z, as claimed.

We may assume that p”~'g = ¢,. Note also that ord (g(o)) = p" for all o € I' \ E;‘,
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since for any such o, p"~1g(0) = €,(0) # 0.

We distinguish the following subcases:
Subcase 1.1: n =1, ie. A=¢} ¢ K(T), but A € K(T) for A € L(T|A)\ {A}.

First let us show that r = (I' : A) = I™|(p — 1) for some prime number ! and
k

some m > 1. Assuming the contrary, let r = Hl:’“, k > 2, l; pairwise distinct prime
i=1
numbers, and m; > 1. Let A;,4 = 1,..,k, denote the unique subgroup of I' of index
k

I™ lying over A, so /A = J[T/Ai 2 Z/rZ. As A; # A, A € K(T), so Ai = Gy~ for

i=1
k

some G; € K(ZY (T, A)), ie. |Gi| = (T:A;) =1 Thus A=A =[G =G,
i=1 i=1
k
where G = @Gz As (|Gil,|Gj]) = 1 for i # j, it follows by [4], Corollary 1.16,

=1
that G € IC(Z 1(T', A)) and hence A € K(T), which is a contradiction.

To conclude that A is of type (A), it remains to show that A2(1) = (1/I™"1)Z/Z
and 1/4 € AV if 1 =2,m > 3.

Let A denote the unique subgroup of I lying over A such that (I' : A) = {™~L. By as-
sumption, A € K(I'), so A = H' for some H € K(ZX(T, A)), i.e. |H|= (I :A)=1m"1.
As T'/A = Z/I™'Z is cyclic, it follows by [5], Theorem 2.19, that H is a Coga-
lois subgroup of Z!(I', A), and hence H = (h) = Z/I™'Z for some h € Z(T, A).
Consequently, 1ﬁm\—l € AN < A2 as bt = A < T. Assuming W e A® too,
it follows by Lemma 2.12, (1), that A is h-Kneser, which is a contradiction. Thus
AR(l) = (1/I™1Z/Z, as desired. On the other hand, assuming [ = 2,m > 3 and
1//71 ¢ AL it follows that 4 € P(I', A) NPy, and hence A = H+ ¢ e by Theorem 1.5,
since H = (h) = 7Z,/2™'7Z is a Cogalois subgroup of Z!(T', A). However we have seen
above that I//Z e (1/2m1Z/Z < AM, so A < ef, which is a contradiction.

Subcase 1.2 : n > 2, ie. A=Gt ¢ sIJ;,JL(F]A) \K() ={A},G =(g)=Z/p"Z,
and p"lg = = &p.

Let G := resgé(G),E e g|#, and p*,1 < k <n —1, be its order, so (ezJ; : A=

as A = G+ and G is a Cogalois subgroup of Z'(e;, A). Recall that ord (g(0)) = p™
for all 0 € T'\ slf. As pG = (pg) # G, it follows by the minimality of |G| that
(pG)* is a proper overgroup of A, so (pG)*+ € K(I'). Note that (pG)* EI;L since
ep = P 2(pg) € pG. As G = Z/p*7Z is Cogalois, it follows that ((pG)* szf) = g,
o (T': (pG)*) = pk_lr.w Let H € K(Z(T', A)) be such that (pG)+ = H' and hence
|H| = p*~1r. Since pG and H := res% (H) are Cogalois subgroups of Zl(ef;,A),
and HL = (pG)t = HL, it follows by [5], Corollary 2.12, that H = pG = Z/p* 7.
Consequently, |Hﬂle| =r|(p—1),s0 H = (Hﬂsji) ® H(p). As H € K(Z\(T, A)),
its subgroup H' := H N €‘LJ‘ is also Kneser, and hence H' = ¢l since si,L < H'* and

p
C:HY=|H|=r= (F ey L), Moreover H' is a Cogalois subgroup of Z(I', A) by
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[5] Theorem 2.19, since ['/H = T'/e;} = Z/rZ is cyclic, so H' = Z/rZ, in particular

1/r € A%, as H'L = sp < I, and hence 1/l € Al for [ € P,l|r. By [5], Corollary 2.12,
H' is the unique Cogalois subgroup of Z!(T', A) satisfying H'* = szf.

Choose a generator h of H(p) = H=pG = Z.]p*~'Z such that b= h]% = pg, so
h —pg € z—:# and hence ej < (h — pg)t. Moreover (h — pg)* = E;‘. Indeed, assuming
7 € (b — pg)t, we obtain pFg(r) = p*71h(r) =0, ie. 7€ (pPFG)L = (Gn E}.)LL)L = sj,
as €p € G.

On the other hand, since ord (h) = p*~1 < p*~1 = ord ((pg)(0)), ¢ € T\ 8 , it
follows that ord ((h — pg)(c)) = p"~* for all 0 € I\ sL Consequently, 1/pn— Jpn1 e AE
ie. 5;_1 = s#, since (h — pg)t = E < . As ord @) = p* < p*71) it follows that
g = gley € Hom (g5, (1/P)2/Z), so A = gt = Ker () < & and e /A = Z/p*Z.
Thus A’ := ANek < ey. Moreover A’ < T since g(odo™t) = g(o) — dg(c) = 0 for all
cel,de .

It remains to consider the following three situations:

1.2.1: n—s , 1.e. 1/p € A%

It follows that A = A’ 4 T, so we may assume without loss that A = {1}, |T'| = pFr

L =~ 7/p*Z, and A = A% = (1/p"r)Z/Z. Thus I Z g5 F/E'L >~ 7./p*7 x Z./r7Z, and

hence A = {1} is h-Kneser by Lemma 2.12, (1), which i 1s a contradlctlon Consequently,
the situation 1.2.1 cannot occur.

122 A< e # 6 = &

Thus A < F, so we may assume A = {1},A = (1/p"r)Z/Z, s;DL =~ 7./p*Z, and
F/e;,Ln = 51-}/5;” X I‘/szf > Z/pZ x Z]rZ = Z/prZ. Let o € T' be such that F/ejn =
<a€1§n), and let u = u, € (Z/p"rZ)* defining the action of o. It follows that ¢" €
sz‘,L \ sﬁn, so (o") = E;; =~ 7./p*Z. On the other hand, g(o?") = “u _llg( ) = 0 since
ord (g) = p™,uP" = 1 modp™ but u # Imodp. As gt = A = {1}, it follows that
oPf =1,s0 k=1and ' = (0) = Z/prZ. As we have seen above, there exists a unique
Cogalois subgroup H' = 7, /rZ of Z*(T', A) such that SZJ)‘ = H'", so the monomorphism
ZY (T, A) — A = (1/p"r)Z/Z,c — (o), is onto, and ZHT',A) = G & H' = Z/p"rL.
In particular, H' is the maximal Kneser subgroup of Z(T', A), and hence EZJ; = (o") is
the minimal Kneser subgroup of I'. Consequently, the proper subgroup (o) = Z/rZ
of T' is not Kneser, which is a contradiction. Moreover note that the subgroup above
is not radical since (o?)+ = 0, so (¢P)+ =T # (oP). Thus the situation 1.2.2 cannot

occur.
1.2.3: A g e

To conclude that A is of type (B) we have only to check that Np(A) = 6;‘ and

/A= (E;Ln/A/) X (F/E;hn). As A« sz-,L and A’ < T it remains to show that odo~! ¢

A = gL whenever o € T'\e;- and § € A\ A’ = A\e;}n. For o and ¢ as above, we obtain

g(oéo™t) = g(o) — dg(o) 7é 0, as required since ord (g(¢)) = p™. On the other hand,

~ choose ¢ € I such that F/e = <06 w) &2 Z/pri, and let u := ug € (Z/p"Z)* defining

the action of o on (1/p™)Z/Z. Tt follows that g(c?") = “=L g(5) = 0 since ord (u) = pr,
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in particular, v % 1 modp, and g(o) € (1/p")Z/Z. Thus o®" € AN ejn = A’, and
hence I'/A' = (g5 /A) % (T /&) as desired.

Case 2 : p=2.

As G € K(ZY(T', A)), it follows by Theorem 1.3, that ¢4 € G, and hence A = Gt <
eil = ef. Note that (¢}) # G, since otherwise A = e+ € K(T), which is a contradiction.
In particular, |G| > 8.

We claim that G is cyclic of order 2*, n > 3. Let G := res gi(G) < ZYef, A). As

P(er,A) NPz =10, G is Cogalois by Theorem 1.5.

First let us show that the 2-group G is cyclic. Assuming G = G| @ G5, with
0+ G| < G,i=1,2, we obtain G+ € L(ef | A) \ {A,e1},i=1,2, and G’J-HG'L = A,
As proper overgroups of A, G’J' and G’l are Kneser subgroups of I'; so G’l GJ-
for some G; € K(Z(T', A)),i = 1,2. As (G1 +Go)t = G{ NGy = G'L (;'L A
we obtain |G| < |Gy + Ge| by the minimality of |G|. Thus |G| = (I‘ G%) = [T &

i‘)( . G) = 2|Gl),i = 1,2, and hence the G;’s are 2-groups. Consequently,

G; :=res L(G )€ IC(Z1(€4 LA)),i=1,2, 50 (GiNef)t = ef by [4], Corollary 1.12, in
partlcular G; N E L is a non-trivial 2-group, i = 1,2. Note that ¢4 € G; N &‘i“L,i =1,2
since e [2] = (e4). Thus g4 € G1 N Gy, and hence 2|G7||Gy| = 2 G| = (T : ef) (eF

GhHy=(: G“L) < |G <|G1+ Gy L |G1||G2| = 2|G4||G%|, which is a contradiction.

Consequently, G is cyclic, as required.

Let g € G be such that G = (g|€i>, so GL = G =gt Ner = (g,e4)*, and
hence G = (g,e4) by the minimality of |G|. As €j € G and 2ej = &4, we obtain
G=(g) 2Z/2"Z,n > 3, as claimed.

Thus A = g~ C ef, and we may assume that 2" 2g = ¢j. Setting § = glsi,
it follows that ord (§) = (ef : g*) = 2 for some k satisfying 1 < k < n—2, so
(T : g*) = 21, Note also that ord (g(0)) = 2" for all 0 € " \ ez since for any such
0, 2""1g(0) = e4(0) =1/2 £ 0.

As 2G = (2g) # G, it follows by the minimality of [G’| that (2G)* is a proper
overgroup of A, so (2 G) € K(I'). Note also that (2G)+ 4L = 5;1L since &) =
m=3(29) € 2G. As G = 7Z/2"7 is Cogalois, it follows that ((2 GI* 5 gg) = 2%, g0
(T : (2G)1) = 2%, Let H € K(Z'(', A)) be such that (2G)*+ HL, in partlcular
|H| = 2%. Since H :=res L(H) and 2G are Cogalois subgroups of Z!(ef, A), and

= @ G) = HL, it follows by [5], Corollary 2.12, that H=2Gx Z/217, and
hence H Neft = ker(resgZlL :H — H) = (g4) = Z/ZZ Let h € H be such that
b= hlsi =27, soord (h) € {2871, 2%}, Thus h—2g € 4+, and hence ef < (h—29)*.
Since ord (k) < 28 < 2"! =ord (2¢g) and (T : ef) = 2, it follows that h # 2g, so
D#(h—29)t =&t

On the other hinisince for all o € I'\ g7, ord ((h — 2g)(0)) = 2"! and o2 € ¢,

it follows that ol/2n-1 = — 1ﬁ"\—1 for any such o, and hence Iﬁ”\_l € A, ie
gt = 64 As ord (3) = 2F < 271, it follows that § = g[si € Hom (g7, (1/2%)Z/7),
so A = gt = ker(3) <t ef and ef /A = Z/2*7. Note also that A’ := ANey < T since
g(oéo™t) = g(o) —dg(c) =0 for all 0 € T, 5 € A
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We distinguish the following three situations :

2.1: g3 =7, ie. ﬂ2\” € At

It follows that A = A’ < T, so we may assume without loss that A = {1}, |'| =
9k+1 el o 7,/9%7, and A = At = (1/2")Z/Z. Thus ef = BY(T, A)* is the kernel of
the action of I' on A, and hence there are only two possibilities:

2.1.1: ca=—aforoc €T\ ef,a€ A

In this case ' & ef x (['/ef) = (Z/2%Z) x (Z/2Z) = Dyy+1, and hence A = {1}
is h-Kneser by Lemma 2.12, (2), contrary to our assumption. Thus the situation 2.1.1
cannot occur.

2.1.2: ca=—(1+2"Vaforo €'\ ef,ac€ A

As ord (g(0)) = 2", we obtain g(c?) = 2" 1g(0) = 175, and hence g(o?) = 0, so
ord (0) = 4 since A = g- = {1}. Choosing a generator 7 of ex = 7,/2%7, we obtain the
presentation I' & (o, 7 | 0% = 1,0% = TQk_l,O'TU_l = 771), concluding that A is of type
(©).

2.2: AL €2Ln #* eé-n_l = Ei‘.

Thus A < T, so we may assume that A = {1}, A = (1/2")Z/Z,et = Z/2*Z, and
T/eqn = (ef Jegn) x (D/ex) = Z/2Z x L/2Z. Let o € '\ &f be such that ca = —a
for a € A, and let 7 € &) \ €4, 50 T generates e and Ta = (1 + 2" 1)a for a € A.
As ord (g(0)) = 2" and ord (g(7)) = 2F, it follows that g(0?) = 0 and g(oro™ 1) =
(1=7)g(o)+og(r) =2""1g(c) —g(r) = 1/2—g(r) = g(r?*"'~1). Consequently, k > 2,
ie. A#eg,s0n>k+2>4 and ' = o, 0% = 2" =1, 010! = T2k_1—1> o
ex % (I'/ef) % Dyry1. The monomorphism Z'(I', A) — A x A, — (a(0),a(r) —
2"% (o)), maps isomorphically Z*(T', A) onto ((1/2")Z/Z)x ((1/2F-1)Z/Z), and hence
(o} £ o= {o; 7'2’%1), i.e. (o) & R(T), which is a contradiction. Consequently, the

situation 2.2 cannot occur.

2.3: ALemn.

We may assume A’ = {1}, A = (1/2%)Z/Z, so A = (§) 2 L2, e = (T) = 7./2¢7,
and e = 8'2Ln_1 = Ac, = (6,7) 2 Z/2Z x Z/2*Z. We obtain da = (1 +27 Vg, 10 = a,
for a € A. Choose o € I'\ e} satisfying ca = —a for a € A, so o2 & g Nag, = {1},
ie. ord(c) = 2. Thus T = ¢f x (I'/ef). As g(oro™!) = —g(7) = g(t71), and
g(obo™1) = (1 —d8)g(c) =2""1g(0) = 1//\2 = g(TQk%lé), we obtain the presentation

' (0,6,7|0% = =8 =(or)? =[0,7] = (05)2'r2k_1 = 1l
so A is of type (D), as required.

Conversely, we have to show that A € (HR(I") \ HIC(I"))max Whenever A is an open
subgroup of T' of one of the types (A) - (D).

(A) : Assume A = If,p € P(T,A)\ {4},(T : A) =™, la prime number, m >
1, A2(1) = (/™ YHYZ/Z, and 1//?1 e Al for | = 2,m > 3. First we have to show
that A ¢ K(I'). Assuming the contrary, let G € K(Z'(T', A)) be such that A = G,
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so |G| = (T : A) =™ 1If G is not cyclic, let 0 # G; < G,i = 1,2 be such that
G=G1®Gy. As F/A = Z/lmZ and [ is a prime number, L(I" | A) is totally ordered, so
we may assume G- < Gy, and hence A = (G14Go)* GLOGl = Gi. Consequently,
T:G1)=({:A)= |G| > |G1|, which is a contradiction. Thus G = (g) = Z/I"™Z,
so ord (g(c)) = I™ for some o € I'\ A, in particular (1/I™)Z/Z < A. Since A 4T, 1t
follows that for any such o, T7g(0) = g(TU) = g(o(07170)) = g(0) for all T € A = g,
SO W € A2 contrary to the assumption that A2(l) = (1/I™1)Z/Z.

It remains to check that A € K(I') whenever A is a proper overgroup of A. For
any such A, we obtain A < I and T'/A = Z/I*Z,0 < k < m — 1. We may assume
k> 1forl # 2, resp. k> 2 for | = 2, since otherwise either A =T or (I' : A) = 2
and 1//\2 e A' < AM. Let o € T be such that oA is a generator of I'/A = Z/I™Z.
Since A < €y < &ﬁ ,T/A acts on (1/I¥)Z/Z. Let u := u, € (Z/I*Z)* be such that
alf/l\’C = ul//ﬁc Obviously, v = 1mod!l if [ # 2, and v = 1mod4 if [ = 2, as, by
assumption, 1//2 e A for | = 2,m > 3. Cons/eguently, A = gt € K(I'), where the
cocycle g € ZHI'| A, A®) is defined by g(o) = 1/IF.

(B) Let A be an open subgroup of type (B). We may assume without loss that
A Aﬂsn——{l} and A = (1/(p"r)Z/Z. Thus A = (6) = Z/pZ, en_eJ- = {1 &
Z/p*7., and e = E;)Ln 1, = AELn >~ 7./pZ x Z/p*Z. Let o € T be such that g = ]
and F/s = <O’ sp »). Note that such a o exists since I = e n X (F/e—: ») by assumption.
As 0" € sL\e n, it follows that ep = (0,7 = {o",7) and (6™y <. As A 4T and
ord (8) = p, we may assume that § = o™ P*"". Let u := u, € A* be such that ca = ua
for a € A. By assumption, it follows that ord (v mod p") = pr, ord (u modp’) = r for
1<j<n-—1,and u=1modl for | € P,l|r. Setting oro~! = 7, with v € (Z/p*Z)*,
it follows that ord (vmodp®)|r =ord (vmodp) since 0”7 = 70" and the conjugates
o607 0 < i < r, of the element § = o"rP""" are pairwise distinct, as Nr(A) = Ej;
by assumption. Thus we may assume without loss that v = umod p*, obtaining the
presentation

' (o,7|0" = 7 =oro i = 1)

The monomorphism Z}(T', A) — A x A,a — (a(0),a(r)), maps isomorphically
ZY (T, A) onto ((1/(p"r))Z/Z) x ((1/p*)Z/Z). Tt follows that A = (§) = g* for a
convenient g € Z1(T', A) with ord (g(c)) = p" and ord (g(7)) = p*, so A is a radical
subgroup of I'. However A ¢ K(T') since all the maximal Kneser subgroups of Z!(T, A)
are isomorphic to (Z/rZ) x (Z/p*7) = 7./p*rZ, so the normal subgroup (o™) & Z/pZ is
the minimal Kneser subgroup of I', in particular the unique Kneser subgroup of order
pof I

It remains to show that all proper overgroups of A are Kneser. Let A := (6,0") =
(rP" " o7\ = Z/pZ x Z/pZ. Note that A < T and L(é‘é |A)\ {A} C L(T'|A) since
E;‘/A =~ 7./p"Z. Moreover LT AN\{A} =L(T|A). Indeed, for any v € I‘\z—:ﬁ,’y&y‘l €
ez—} \ A since Np(A) = &, and hence A # (5,7) N € , as required. Applying Lemma
2.12, (1), to the induced action of I'/A & (e L/A) (I‘/E ) 2 (Z/p*'Z) x, (Z/rZ) on
(1/p"1r)Z/Z, we conclude that A € 'HIC(I‘) so L(T'|A) \ {A} C K(I), as desired.

(C) Let A be an open subgroup of I' of type (C). As A < I', we may assume that
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A= {1} and A = A = (1/2")Z/Z, s0 eF = 3 = (1) X LJ2*7, 1 <k <n—2,T =
lo,r[et = L2 = TQk_l,O'TO'_l = 771), in particular, ' = (o) & Z/4Z and T = 02
if k=1, and oa = —(1 4+ 2" 1)a,7a = a for a € A. Note that A := (0?) < T,
A is the center of I if k& > 2, and T'/A = (Z/2¥1Z) x (Z/2Z) = Dy, and hence
A € HK(I') by Lemma 2.12, (2). On the other hand, the monomorphism Z(T', 4) —
Ax A, aw— (a(o),a(t) — 2" *a(0)) maps isomorphically ZY(T, A) onto ((1/2™)Z/Z) x
((1/25"1)Z/Z). Setting g(c) = 1/2, g(r) = 1/2%, we obtain g € Z}(T,A) and A =
{1} = g*, so A is a radical subgroup of I. However A ¢ K(T') since the maximal
Kneser subgroups K of Z(I', A) are all isomorphic to (Z/27Z) x (Z/2*~'Z), and hence
K+ = A = (0%) =2 Z/2Z is the minimal Kneser subgroup of I. It remains to observe
that L(I") \ {1} = L(T'|A) = K(I) as desired.

(D) Let A be an open subgroup of T' of type (D). Since A’ = ANey < T,
we may assume that A’ = {1} and A = (1/2")Z/Z. By assumption, I' = er X
(T/ex) & (o,7,6|0? 2 = 6% = 1,6r = r6,01r07! = 771, 060! = 672"7"), and
oa = —a,7a = a,6a = (1 + 2" Na for a € A. In particular, Np(A) = = 52{1_1,
and the center Z(T') = ((06)? = T2k—1> ~ 7,/27.. The monomorphism Z(T', 4) —
Ax Ax Aa — (ao),a(d),a(r) — 27 *a(s)), maps isomorphically Z(T', A) onto
((1/2MZ)Z) x ((1/2)Z)Z) x ((1/2¢"1)Z/Z). Tt follows that A = (6) = g*, where
g € ZYT, A) is defined by g(o) = W,g(v‘) = 1/2k,g(8) = 0, so A € R(I'). On
the other hand, the maximal Kneser subgroups K of Z(T', A) are all isomorphic to
(Z)2Z) x (Z/2Z) x (Z/2*='7), and hence K+ = Z(I') & Z/2Z is the (unique) minimal
Kneser subgroup of I'. Consequently, the normal subgroup A := (4, 27 > 7/27 %
7,/27. is the (unique) minimal Kneser subgroup of I' lying over A, and T’ JA = Dok, so
A € HK(I') by Lemma 2.12, (2). It remains to observe that L(I'| A) \ {A} = L(T'| A)

as required. ]

As a consequence of Lemma 3.1, we obtain the following h-Kneser criterion for
h-radical subgroups.

Theorem 3.2. The following assertions are equivalent for A € HR(T).
(1) A e HK(D).

(2) A £ A whenever A is an open subgroup of I' of one of the types (A) - (D). O
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