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MAPPINGS OF FINITE DISTORTION: ZORIC'S THEOREM,
EQUICONTINUITY RESULTS

Mnrer CRrsrne.

AgSrReCr: We generalize some known results from the theory of quasiregular map-
pings, as Zoric's theorem and some equicontinuity results. This generalizations hold
for a special class of mappings with finite distortion, satisfying condition ("4) , which
extends the known class of quasiregular mappings and for which are valid some recent
modular and capacities inequalities established in [7].
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1. IxrRooucrroN.

Amapping f : D -'+ fi', where D C W is adomain, is saidtohavefinite
distortion if the following conditions are satisfied:

L) f ew,!! 1n,n"1.
2) The Jacobian determinant J1 @) is locally integrable.
3) There exists a measurable function K : D -- [0,oo], finite a.e. such that

l f '  (")1" < K (") .  Jy @) a.e.
Notice that when K e L* (D), we obtain the known class of quasiregular

mappings, and we refer the reader to [10],[11] for the monographs dedicated
to this subject. Quasiregular mappings are either constant, or open, discrete,
satisfies condition (N) and a Holder condition.

I f  thed i la ta t ionmap K e  L lo . (D) ,  p )n- I  and/e  WrL: !@,R ' ) ,  then
it is shown in [9] that a map with finite distortion is open, discrete.

Recently were considered in [7], [8] mappings f : D --, fi' of finite distortion
for which there exists "4 : [0, oo) * [0, oo) smooth, strictly increasing, with

"4 (0) : 0' ,lj]g/ 
(c) : * and satisfving the conditions:

("4o)""p (A(K)) € Ll".(D) .

@) f f  "4 'Jt)46: oo'
(,42) there exists fe ) 0 such that A'(t) .t increases to infinity for C > fe.
As in l7], we say that a mapping of finite distortion satisfies condition ("4)

if / satisfies condition ,r";, ("ar) , (Az). In [4], Theorem 1.3 it is shown that
such nonconstant mappings axe either constant or open, discrete if A(t) : ^t
for some ,\ > 0. We shall show in Theorem 1 that mappings / : D -- lR' with
finite distortion, satisfying condition ("4) are such the dilatation map K is in
LL.@) foreveryp > 0and f e Wii! (D,R") forevery 1 (p ( n. Thisensures
(see [5], Prop.2.5, [6], Theorem 1.1 or Theorem 2.1 [7]) that such mappings are
continuous and either constant, or open, discrete. Our proofs are based on the
following basic ingredients, valid for mappings f : D - IRn of finite distortion
and satisfying condition ("4) :

(r) M (f (f)) < My*-, (f) for every path family I from D.
(ii) cap f (E) S cap6a-; (,8), where E : (G,C) is a capacitor with G cc D.



( i i i )  cap6,- '  (A1r,n),  B(r,r))  - '  0whenr -* 0a.nd,? > 0iskeepedf ixed
established in [7], Corollary 4.2, Corollary 5.2 and Theorem 5.3. Here K is the
dilatation map of "f. We also find in Lemma 1 a condition in order to ensure
that cap6*-, (a@,R), B(r,")) * O when r > 0 is keeped sxed and,R --+ oo.
This last condition is necesa,ry in the proof of Zoric's theorem (Theorem 2 and
Theorem 3).

We generalize Zoric's theorem for mappings with finite distortion which sat-
isfies condition (r4) :
Theorem 3. (Zoric's theorem). Let n ) 3, f : IRn --. IRn a local homeomor-
phism and a m,ap of fi,nite d,istori'ion, sati,sfyi,ng condit'ion (A) such that there
eristsr)0suchthat t  exp("A(l f  (r))) . f f ia"1cr. .  Then f  , lR" ' -  IRn

C B(O,r)

i,s a global homeornorph'ism.
We also give in Theorem 2 a version of Zoric's theorem with some I'singular"

sets K and B, extending some results from [1] and [2]. We give a Picard type
theorem in Theorem 4, in connection with a similar result from [7].
Theorem 4. (Pica.rd's theorem) Let F c IR" be closed, / : ,R'\F -- IRn a non-
constant map of fi,nite distort'ion, sati,fyi,ng condition (A), such that M6,,-' (F) :
0 and there erists r ) 0 such that t exp(" (lf (r))) .l#a, 1cr.. Then

CB(O,r)

capCf (n"1r; :6.
We generalize in Theorem B a known equicontinuity result for quasiregular

mappings:
Theorem 6. Let D c IR" beadoma'in, M c IR" wi,thcap M >0 andletW be
a.fami,ly of mappings f : D -+ R."\M o.f fini.te d'istort'ion, satisfying condi,tion
(A) and hau'ing the same di,latation map K. Then W 'is equicontinuous and we
take the euclidean distance on D and the chordal d'istance on IRn.

We immediately obtain a Montel's theorem for mappings of finite distortion
satisfying condition (,4) :
Theorem 6. (Montel's theorem). Let D C IRn be a domain, W be a bounded
family of mappings f : D ---+ IR" of finite distortion, having the same dilatation
map K and satisfying condition ("4). Then I4l is a normal family.

2. PRBr,rurrv.q.Rres

We call a path I : [0,]) - Rn an open path and a point r € .RI will
be called a limit point of q if there exists lo I I such that q (tr) -- r. If
l is a path family in IR:', we define F(f) : {p tW - [0,oo] Borel maps

lJOat ) l for every 7 € f locallyrectifiable). Let now D c IRn beopen and
.Y

u : D --+ [0, oo] be measurable and finite a.e. Then, if 6 : IRn - [0, oo] is defined
lry 6(r): r(*) if r e D, 6(r):0 if. r ( D, we define the r*.,-moduius of I by

f
M. (f) : ilf-. / p" (r) '6 (r) dr and for ar : I we obtain the usual modulus

P€F(r) .l
nzn

M (l). If 11, 12 are path families in IR:,, we say that f 1 ) 12 if every path from



fr has a subpath in fz and as in the classical case, we prove that if fr ) fz,

then M.(fr) S M.(lz).Also, we prove that IA. ( il fn) S tM. (fi), and* \;:t "/ - u_r

if u1 1 w2, then M., (f) < M., (f). We define for D c IRn open, -E, F cD
by A (-8, F, D) the family of all paths, open or not, which joins ,E with F in D.

We say that E : (D,C) is a condenser if C is compact, D is open, C c
D C IRn, and let w : D --r [0, oo] be measurable and finite a.e. We define

the o-capacity of Eby cap.-E : ifi | lYul" (r). w (r)dr,where u e Cf (D)

t"
and u ) 1 on C, a,nd if c.r : l. we obtain the usual capacity of -8, cap E. We
see that if z is a test function for cap.E, the p : lVul e F(fe), and this
implies that M.(lr) < cap.(E). Here fs : h : [a,b] -. D path l7@) e C
and 7 has a limit point in dD) and from Prop. 10.2, [11], page 54, we have
cap E: M (te).If C C -E is compact, we say that cap C - 0 if cap(A,C\: g

for every C c A C fi' open and from [11], Lemma 2-2, page 64, the definition
is independent on the open set A such that C c A. If C c IR is arbitrary, we
say that capC:0 if cap K:0 for every K cC compact.

Let now D c IR" be open, a : D -, [0, m] be measurable and finite a.e.,
A c D a set. We say that ,4 is of zero r..,-modulus, and we write M" (A): 0, if
the ul-modulus of all paths having some limit point in A is zero. If o ) 1, we
see that M (l) < M. (l) hence, it M. (A) : 0, then cap A: 0.

I f  A c D is countable and 
l ! \*-  ( l@(",r) ,CB(*,R),D)) :  0 fot

every r € ,4 and every 0 ( -R with B(r,R) C D, we prove as in the classical
case that M.(A):0. Using Theorem 5.3 [7], we see that this thing holds
for instance if w : Kn-\, where K : D -- [0, oo] iS measurable and finite
a.e. and for every r € A there exists p" ) 0 such that B (*,p*) C D and

J 
exp(A(K (y)))as ( oo, where "4 satisfies conditions (A1) and (A2).

B ( " ' p , )

AIso, Lemma 1" gives a condition which ensures that My"-' (oo) : 0.
If D c.B' is open and b e 0D, we define C (f ,b): {w € IR- | there exists

bo € D, bp * b such that f(b) - tr) and if B C 0D, we let C(f,B) :

oluC(f ,b). If E,.F. are Hausdorffspaces, f : E -. -F is a map,p: i0,1] -- F is

apath,  r  €  Eis such that  f  ( r ) :  p(0) ,  we say that  q:  [0 ,4)  - '  E is  amaximal

I i f t i ngo f  p f romr  i f  q (0 )  :  r , 0  (  a<1 ,  f  oq :p l [O ,a )  andq  i s  max ima l  w i t h

this property. If q is defined on [0,1], we say that g is a lifting of p. If E,F

are domains in IRn and / is continuous, open, discrete, there exists allways a

maximal tifting. We let by p, the Lebesgue measure in IR. We shall denote by

q the chordal metric in E; given by q,(a, b) : lo- q (t * lr l ') 
-* 

(t * lbl ')* '

i f .  a ,b € IR' ,e(a,*)  :  ( t  + l r l ' ) *n i f  o  e f in  and bv lo-b l  the eucl idean

distance between a andbin IRn. We denote by B, (r,r), respectively B (r' r) the

ball of center r and radius r if we consider on IRn the chordal metric, respectively



the euclidean metric and in the same way we denote for a set A c IRn by q(A),

respectively d,(A) the d,iameter of ,4. We denote bv Wrli! (D,m') the Sobolev
space of all functions f : D --+ fr'which are locally in Le(D), together with

their first order weak partial derivatives.
If 17 is a family of mappings f : D '- IRn, we say that tr4l is bounded if

for every K c D compact, thereexists M(K) ) 0 such that l/(r)l ! tut(X)
forevery ne K andevery I e W. If X,Y aremetricspaces and'W isafamily
of mappings f , X --+ Y we say that I4l is equicontinuous at r if for every

e > 0, there exists 6u ) 0 such that d (f (r),f (y)) <e if d(y,r) <6, for everv

f e W, and we say that I4l is equicontinuous if it is equicontinuous at every
point r e X. We say that W is anormal family if every sequence of I'7 has a
subsequence which converges uniformly on the compact subsets of X to a map

f : X " + Y .
Lemma L, Let n) 2;D C W be anunbounded doma'in, K : D - [0,oo]
measurable and finite a.e., A: [0,oo) --+ [0,oo) be smooth, strictly'increasing,
wi'th A(0) : 0, ,4L/ 

(t) : -, sati's.fving condition (A1) and (A2) such that

there erists r > 0 such that I exp(A(f (r))) ' 

"fud" 
< -. Then

DnC B(O,r)

MI--,(A(B(O, r) n D,CB(0,s) n D,D) --. 0 when s -- oo and r ) | is keeped

.fi,red.
Proof.  Let g, lR: ' - .  IRI be def ined by s@): Tft  

i t r  e W and let  f ."  :

A(B(0 ,  r ) )D,  C B(o ,s )nD,  D) ,  L , "  :  L (g ( | )nE(0 ,  * ) ,  e (D)n  C B(0 ,  1 ) ,s@))
for 1 ( r < s. We show that M6.-r (f"") : M6.-'on(l\,")' Let pt e
F(f ,")  and p t  W * [0,oo] be def ined bv p@) :  p '(s(r))  lg '  (z) l  i f
r  e  D,  p ( r )  :  0  i t  r  (D .  Then p  €  f (4 .6 )  and My^- ,o r (A* )  3  I ,p " ( " ) '

K"- L (s (r)) d, : I p'* (g (|)ls' @)1" . K"-t @ (*))dr : ! p'' (g (r)) . K"- t (s (r))'
D D

Jn(r)dr -  I  p '"(y)-K"- ' (a)dy < I  p '"(y).K*- ' (y)dy. This impl ies that
s@) nv

Mx',-'", (s (f"")) : MK'-tos (4"") S Mv"-t (f"")' By the same argument, we
have My,-, (f",) : M6,.-,onon (S(A*)) l MKu-tos (A'") and we have

M 6 . - t  ( f " " )  :  M y , - t o n  ( A r " ) .

exp(A(K(s(*)))).Jn-'  b @)).Jn @)dr :

( 1 )

We find

I 
exp(A(K(s(r)))pr : 

I
e1nlnr(0,1)  s@)nn(0 , * )

I 
exp(.  (K (il))'rs-t (ilda: 

_ | 
exp(,A tx tuD 

ffids 
< co.

DnC B(o,r) DnC B(0,r)

L e t  n o w r l " :  A ( B ( 0 , * )  , C B ( 0 , * ) , 8 ( 0 , * ) \ F ( 0 , * ) )  r " ' 1 < r  <  s  a n d
let Q : IRn -- f0,ml be defined b Q@) : K(g(")) i f  r e s(D),Q@) :

I rf r f g(D). Since 
J 

exp("4(A(r)))dr < oo, we see from Theorem

B(0 ,+ )



5.3,  page 24, [7] that  capq, , - r  (g(0,*) ,E ' (0,* ) )  -  0  when s-- -+ oo and r  )
0 is keeped fixed. We have My,,- 'on(h,") I Mq^-,(A,") < Mqn-,(fi") S
cape,a-l(B(0, +),F(0, j)) and this implies that

(2). M6u-ron (A'") - }whens --+ x andr > \iskeepedfired

Using (1) and (2), the proof is finished.
Theo rem l .  Le t  DCIR"  beopen ,  f  :D - -+ lP ,beamapo f  f i n i t ed i s to r t i on ,
satisfying condition ("4) and let K : D -- [0,-oo] be ihe dilatation map of /.
Then  K  e  LL "@)  fo r  eve ryp )  0  and  f  eWr ! !  (D ,n )  f o r  eve ry  I<p<n .
Proo./. Suppose first thatp ) l and let 9: (0,m) * lR1 be defined by g(t):

/  .  /  - L \ \  ^
exn("4(ttJ) for t > 0. Then g is strictly increasing on (0,m) and from
Lemma2.4 [8] thereexists b) l such that g is convexon (b,oo). Let F: D +

[ 0 , * ] , F ( r )  :  K  ( r ) i f  K ( r ) > b , F ( r ) : b i f  K  ( r )  S  b .  T h e n F i s m e a s u r a b l e

and we have, using Jensen's inequality, that 9( [ Xo 61a4 S s( [ Fe {r)dr) <
t" t,

t '

g( |  fo@)arl  p-(B)) < |  s(Fe(r))dr l  p,(B),where B C D is compact and
J J
B B

such that p-(B) < L.
It results that

t  / /  \ o
I f  0 <  p 1 l ,  t h e n  /  K o ( * ) d r <  |  l N 1 * 1 a r l  < o o .  W e r h e r e f o r et " \ l )

r
proved that I Ko(*)dr < oo if B c D is compactwith p.(B) ( l forevery

J

B
p ) 0, hence K e Ll""(D) for every p ) 0.

Let now | <p < n. Then we have from [7], Corollary 5.5, 15] Prop. 2.5 and

[6] Theorem 1.1. that / is continuous and either constant on D, or open and
discrete. We can suppose that / is open, discrete on D and iet B a ball with
B c D.  Then N ( f  ,B) :  sup Card f - ' (y)  nB < oo and f rom Theorem6.3.2,

s€lR

page 107 l3], we see that 
I 

t, A) dr < oo. We have, using Holder's inequality,
"B

that

!*,o,0'= ir- '  (* (-* {r,!*r(.a(r(r))) 
d,tpn",}))] ' .  ""

I v'r*r'* = (!K (r)nh*)* (!,,(')0,)* . *



Since / is continuous and / eWrl,ll(D,R'), we see that / is ACL1 on B,

hence / is ACL, and from Prop.1.2, page 6, [11], we see that f e Wrl;! (D,n')
f o r l ( p < n .

3. Pnoops oF THE IUAIN RESULTS.

Theorem 2 .  Le t  n )  3 ,  B :  {o t , . . . ,e j , - } ,  K  C m' \B  c losed ' in  m" \B
withintK:6, f  :  IR\(K UB) ---+ W be arnap o.f  f in i te d' istort ' ion, of
K (r) dilatation, sat'is.fying condi.tion (A) and a local homeomorph'ism such
that intC(f ,K) : d, C(f ,K) i,s closed and R"\C(f ,K) i 's connected and
let E : K u BU f-l(C(f ,K))' Suppose that there etists 5, ) 0 such that

/  u * p ( A ( K ( x ) ) ) d z  <  o o ,  P : 1 , ' . . , j  a n d t h a t t h e r e  e t i s t s  5 s ) 0  s u c h
/ ^

B (a , , 6  u )
f 1

t h a t  |  " I I ( A ( K  
( * ) ) ) . - L ,  ̂ < c x , .  T h e n

J  @t - -
cB(0 ,6r ) )n (m"  \ (KuB) )

l) ei.ther we can lift any path p: [0,t] -- lR'\C(f,K) from euery po'int
r with f (") : p(0), or we can el'im'inate some set A c B, ertending f by
cont'inu'ity to a locaL homeomorph'ism on A, such that the ertended map (also
denoted by f) lifts any path p: [0,1] -+ /?'\C(f ,K) .from euery point r with
f (") : p(0), and if A + $ and oo e A, some lifted path co,n go through cn.

2) i.f C (f , K) is com,pact, then int, E : 6 and, f i,s inject'iue on IR\E and i.f

f can be cont'inuously ertended on K, then fl(,B'V()\(4A):(E-"\5)\14a1-
R"V(f ,K) i.s a horneomorphi.sm. Fi,nally i.f f can be continuously extended to
an open nxap on K, then f ffi-M is a homeomorphism.
Proo.f. Let | : {t , 10,1] - fi '\(K U B) pathl 7 has some Iimit point in
B). We see from Lemma 1 and Theorem 5.3, page 24, [7] that My--, (B) : 0,
hence M6,,*, (f) : 0. Using (i), we see that M (f (l)) I My,"-t (f) :0, hence
M (f (f)): 0 and from Theorem 1 [2], 1) is proved.

Suppose now that C (f ,K) is compact and let r ) 0 be such that C (f ,K) c
B(0,r) ,  let  0 < r  < s and let ,  € m'\(KU (B\,4))  be such that / (r)  e
CB(0,s). Let Q be the component of 7^t'(CB(0,r)) which contains r and
ler [/ be the component of f-t (CB (0,s)) which contains r. Then D c Q
and since CB(O,r) is simply connected and flQ: Q - CB(0,r) is a local
homeomorphism which lifts the paths, we_:ss_J!gt flQ , Q -- CB(O,r) is a
homeomorphism, and hence /llr : U - CB(0,s) is also a homeomorphism.
Since /lDIl : 0U - ^9 (0, s) is a homeomorphism, we use Jordan's theorem
to see that m^\AU has exactly two components, one of them being [/, and
since [/ is homeomorphic to CB(0,s), we see that [/ is unbounded. If t/o is
any other component of 7-t (CB(O,s)), we see by the same argument that
f lUs: U. -- CB (0, s) is a homeomorphism, that 0[/6 bounds a Jordan domain
and Us is the unbounded component of fi"\dtl6. Let a ) 0 be such that
AU I AUo c B (0, a), Then CB (0,a) c U fl [/6, hence U : Uo and we obtain
that /-i (CB (0,s)) has a single component U on which / is injective, K c CA
and [ /  :  f -TCB (0 ,s ) .



Since / is a local homeomorphismon .E \ (K U B) and int C (f ,K) - $,we
see that int E =$. Lett1,n2€ W\E be such that /(rr) : f (rz): y and let
z e CB (0,s) andp: [0,1] '- W\C(f,K) be a path such that p(0) : g and
p(I) : z. We can lift p from 11 alrd 12 a\d find some path qi : 10, 1] -* 6"
such tha t  q l (0 )  :  r i ,  f  oQi :  P ,  i :  L ,2 .  S ince  q ; (1 )  e  / - t (Ca(O,s ; ;  :

U, f (qt (1)) : p(l), i:1,2 and we proved that / is injective on f/, we obtain
that q1 (l) : q, (1) . We use now the property of the uniqueness of path lifting
for local homeomorphisms to conclude that 11 : 12. We therefore proved that

/ is injective on ,R'\,O.
Suppose now that / can be continuously extended on K and let o € .R'\ (4,4)

be a point such that / is open at a. We show that {o} : f-t (/ (r)). Indeed,
if there exists b I a,b e n"\(B\,4) such that f ("): /(b), Iet Ut e V (a) and
V e V (/(t)) be:uch that f (Ur): V. Since / is continuous at b, we can find
Uze V (b) withi |1.nG - {such that /  (U) c V and since int  E:6, we can
find a e U2\8. Then we can find P e Ut\E with / (o) : f (p), which repre-
sents a contradiction, since we proved that / is injective on R"\E. It results
now immediately that /l @a\K) \ (B\A) ' (E;\l() \ (B\/) '- fi"\./ (K) is a
homeomorphism, and if we additionally suppose that / is also an open map on
K, we find that /ln"\ (B\,4) : IR^ (B\A) -- IRn is a homeomorphism' In the
last case we see by topological reasons that B\,4: {oi, with a e B and that

f ,W -- W can be extended to a homeomorphism.
Proo.f o.f Theorem 3. We t'ake K: / and A: {-} in Theorem 2.
Proof of Theorem 4. Since Mvu-, (F) : 0, we see that cap F : 0 and hence
that l?'\F is a domain, and since / is nonconstant on l?"\F, we see that / is
open, discrete on fi'\F. Suppose that cap C f (m"\F) ) 0 and let K C m'\F
be compact, connected, with Card K > I. Then.O: (/(m"\r'),/(/f)) is a
capacitor and q(/(lf)) > 0, and from Lemma 2.6, page 65' [11], there exists
6 > 0 such that d (  cap E. Let l / :  A(/(K) 'Cf (m"\,F), f t ' )  and let
I be the family of all maximal liftings of some path from f/ starting from some
point of K. Then l' <^f(f) and if 7 e l, then 7 has at least a limit point

in F U {oo}. Since I exp(A(Ktt))t ' ;*au < oo, we see from Lemma

"ulor, 
Pl

1 that  Mx, , - ,  ( * )  :0 ,  hence M6, , - ' ( f  U {oo})  :0  and th is  impl ies that

M6.-,(f) : 0. We use now (i) and we obtain that d < cap (E) : M (f ') <

M (f (l)) I M6.-t (f) : 0, which represents a contradiction. We therefore
proved that cap Cf (lR"\F):10. 

I
Remark 1. The condition 

J 
exp(A(K(r))) '6;a" ( oo, which ensurcs

C B(O , r )

that Mla--' (*) : 0, and used in our generalizations given to Zoric's the-
orem and Picard's theorem can be realized for instance if K (r) ! K, for

r  € B(0,p),  p )  ps andt i lyp# :  a <n ( i .e.  i t  holds for a local lv

quasiregular map having some logarithmic growth of the constant of quasiregu-
Iarity near oo). Indeed, we take A(L) : t andlf p1 ) po is such that K, < a'ln p



for p ) pl, we have

f . 1

J 
exp("4 (K (r))) '  

Ogar:
C B(0 ,p t )

exp (.4 (x tOll ftrar 
<

P>Pr B1g,r4
I
t) \B(0,p)

P>P, B(O,p+

I
J
t ) \B(0 ,p)

exp (Kp+r) 
fta"

c, D"+
P ) P t  

^

Here C6 and C1 are some constants.

we can generalize in this way Theorem B and Theorem 9 from [2], obtaining

a generalization of zoric's theorem for locally quasiregular mappings having a

Iogarithmic growith of the constant of quasiregularity near oo.

In the same manner, the condition 
I 

u*O@6@Ddz < oo, which

B(a,p)

ensures that My^-t (b) :0 is realized for instance if K (r) I Ko on CB(b,i)

for p ) p6 and lim supff| : e, 1n. This condition holds for locally quasiregular
P ' a

mappings having some logarithmic growth of the constant of quasiregularity near

the critical point b e 0D and it can be used in Theorem 2 and Theorem 4.

Remark2. The condition t exp (,4 (Zf (r))) 'L--a* < oo used in Theorem

ca!a,,) 
lrl '"

4 is necessary, since we can find bounded homeomorphisms f , IR" --+ B (0' 1)
of finite distortion and satisfying condition ("4) (see [7], page 28, or [6]).
Proo.f  o. f  Theorem 5. Let re D bef ixed, ande ) 0with B(r,e) c D' We
fix e ) 0 and suppose that thereexists p>0,rp +0 and f, € W such that
q (fo (B (r,rp))) ) p for evety p € 1/. Then fp are open, discrete maps for

every p e fl/ and we can find 6 > 0 such that d < cap (Ctttt, fo(B(r,rp)))
for every p € n"l (see Lemma 2.6, page 6!r_[11]). We have' using (ii) that 6 <
cap(C M, f ,@ (r,ro ))) <cap(fi B (r, e)), f o (B (*,r) ( cap;r', -, (B (r,e),8 @,r r)) -

0 if ro * 0 and e ) 0 is keeped fixed, which represents a contradiction' We
therefore proved that for ev€ry € ) 0 there exists du > 0 such that / (B (r,5")) c
Bn U @), e) for every / € W , i.e. I,7 is equicontinuous at r.
Pioo.f o.f Theorem 6. Let r e D,5 ) 0 such that B(r,d) c D and, M > 0
be such that l/(y)l S M for every ?) e B@,d) and every / e I/ and let
Ws : {f lF (r,6)l f e Wy, Using Theorem 5, we see that W6 is equicontimrous
at r, hence I4l is equicontinuous at r. We proved that W is equicontinuous,
and we take on D the euclidean metric and on W the chordal metric. Using
Theorem 20.4, page 68 [i2], if (f)re w is a sequence of mappings from W, we

can find a subsequence (./po)*ew and a map f : D n.R' such that fr^. ---+ f
uniformly on the compact srrbsets from D. If r e D is fixed and M, ) 0 is such



that l/on @)l 3 M, for every k e IN, we see that l/ (*)l S U,, hence / takes
finite values and it results that 17 is a normal family.
Theorem 7. Let D Cmn beopen,W beafamily of mappings f :D --+ IR!
of finite distort'ion, hauing the same di,storti,on map K, sati,s.fyi,ng conditi,on (A)
and let r e D be such that there erists r,6 > 0 such thatB (r,6) c D and,
f  (B(*,5))  c B (/(r) , r)  for eaery f  eW. ThenW,is equ' icont inuou,s at r ,
and we take on D and on IRn the euclidean distance.
Proof.  Let f  eW.If  f  is constant on B(r,d),  then, f  (B(r,d): \ f  ("))  c
B (f (*),e) for every 0 < p < d, 0 < € < r. Suppose that / is open, discrete
on B(r,d) and let  0 < e (  r  and 0 < p < d and E :  (B (*,6),8(r ,p)) .  Then

f (E) : ff (A1",6), f (B(r,p)) is a capacitor and let unbe the function defined
in [11], page 60.

Wekeepd > 0f ixedandweletp --+ 0suchthatcap6",,  (E) < r^ ( f) for0 <
/  t  r r

p 1 5u. Then z, (Ili+lrit) . 
"ro 

f (E) < c&p6n-t (E) < r-(f) for every

y € B(r,p), and since un is strictly increasing, we find that l/ (il - f (")l S u
for every y € B(r,dr) and every / €W,i.e. trZ is equicontinuous at r.

Remark 3. The last theorem shows the interesting thing thet if W is a family
of mappings f : D -- IR" of finite distortion, having the same distortion map
K and satisfying condition ("4) and z is a point from D, then it is sufficient
to exist a single r ) 0 and a single 6 > 0 such that /(B(o,6)) c B(f(*),r)
for every f e W to obtain the equicontinuity of the family trZ in the point
n. T!*ing f , D --+ W a map of finite distortion and satisfying condition
(A), f x: /+^, W : (f )xennl w€ s€€ immediately thatW is equicontinuous.
Since LJ g (r) : IRn for every r € D, we cannot apply Theorem 5 to deduce

s€w" '
the equicontinuity of the family W', but we can use Theorem 7.
Theorem 8. Let D C IR" be a doma'in, W be a fami,ly of homeomorph'isms
f : D -- f (D) of fini.te d'istort'ion, hauing the same di,latati.on map K, sati,s.fyi,ng
cond,'ition (A) such that there erists r ) 0 such that for euery f e W, there
eri,sts a1,b1 (Im f tdth q(ay,bt) > ,. Then W 'is equicontinuous, and we take
the eucl'idean di,stance on D and the chordal di,stance on IRn.

Proof. We foilow the proof from Theorem 19.2, page 65. Let ), be the
function defined in [12], 72.4, page 38 and Iet rs € D and 0 < e < r. Let Qs:
B(g),o),Qt:  B(ro,p) be such that 0 < a 1p andB@o,P) C D and let  A:
R(Qo,9Q').  Then /(A) :  R(f  (Qi,Cf @)) and q(Cf (Q'))  > q@r,br) 2
,,q$(Qil) Z. qU@),f@d) for every r e Qo. Let r e Qo b" fixed and f :
miniq(/(r6) , f (*)),ri. We keep p > 0 fixed and we choose a small enouh such
that My".- t( fa) S ) ,(e).  Then , \ , (r)  < mffFi l )  1M1q.-t  ( fa) < )"(e)
and since ), is increasing, we see that I ( e, and since e < rr we obtain that
t :  q(f  (") , / ("0)) .  We therefore proved that q(/(") , / ("0))  (  e for every
r € Us and every f e W.
Theorem 9. Let D C IRn be a doma'in, W be a .fami,ly o.f homeomoryhisms
f : D --+ f (D) o.f f,ni,te d'istort'ion, hau'ing the same di.latation map K, sati,s,fying
cond,it'ion (A) and such that one o.f the .following cond'ition is sat'is,fi,ed:

I) there etists r1,r2 € D and r > 0 such that each f e W om'its a Ttoint a1



with q(ay,/(r , ))  )  r  for i , :L,2.
2) therc. erists r; € D and r ) 0 such that q(f(rt), f@i)) > r for i I

i , i , j  -  l r2rT and, eaery f  eW.
Then W is equ'iuntinuous.
Prvof. Suppose that condiotion 1) is satisfied and let Dn: D\{r7'} for

k : !,2. Using Theorem 8, we see that the families Wn : lf lDnl f e Wl are
equicontinuous on D7, for k : 1,2, hence I4l is equicontinuous. Suppose now that
condition 2) is satisfied and let D;i : D\{r;,ril andW;i : {f lD,il f e W\ for
i, i : 1,2, 3. We see from Theorem 8 that the families Wii are equicontinuous
on D6i for i, j : I,2,3, hence W is equicontiuous.
Corollary L. Let D c lR be a doma'in, W be a fami,ly of homeomorphi,sms
f : D -- f (D) of fr,nite distorti,on, hau'ing the same di.latati,on map K, sati,sfying
cond'it ' ion (A) such that f (o;) : bi,i : I,2,3 for euery f e W, where a1,a2,a3
are three different po'ints from D and b1,b2,b3 are three different points from
IR". Then W 'is equicont'inuous.
Theorem 1O. Let D, Di be doma'ins in IRn, f i : D -- Di be homeomorph'isms
of fini.te distort'ion, haaing the same dilatation map K, satis.fying condi,tion (A)
and such that fi --+ f . Then, if Cafi Im"f > 3, it results that f : D -- Dt is a
homeomorphism onto a domain D' .from IRr, andi.f fi - f uni.formly on the
compact subsets .fro^_2, then f is either constant, or it 'is a homeomorphism
onto a domain from IRn.

Proof. We follow the proof fromTheorem 21.1, page 9, [12]. Let b1, fu,fu be
three different points from Im/, ap € D such that f (a*) : bp for k: 1,2,3,
and let  r  > 0 be such that q(f  (at) , f  @i))  )  r  for i ,+ j ,  i . ,  j  :1,2,3. Then
there  ex is ts  jo  e  IN  such tha t  q ( f i@) , f i@n) )  >  i  fo r  i  *  k , i , k :  I ,2 ,3
and j ) j6, and from Theorem 9, condition 2), it results that the family
W : (f i) >r- is equicontinuous. Using Theorem 20.3, page 68, [12], we see that
f i - f unilirimly on the compact subsets from D and hence / is continuous on
D. Using Brouwer's theorem, it is enough to prove that / is injective on D.

Suppose that there exists 21, z2 € D, zt * zz such that f (rt) : f (22) and
Iet r ) 0 be such that z2 #B ("r,r). Then f i (S (a,r)) separates the points
f i Qt) and /i (22), hence we can frnd ri e S (21,r) such that

q j i@i ) , f iQr ) )  3q( f iQt ) , f iQz) )  fo reuerE j  e  IN .  (1 )

Taking a subsequence) we can suppose that ri ---+ r e S (21,r) and since I4l is
equicontinuous at r, we have q(f i @i), / (r)) lqUi @i); f i (r))+c Ui @) , f (r))
---+ 0. Lett ingJ---+ oo in (1),  wef ind that q(f  (") ,  f  (r t ))  1q(f  (zr) , f  (rz)) :0,
hence / (rt) : / (r) .We proved that ! is not injective in any neighbourhood of
L l  .

We prove now that every point n € D has a neighbourhood [/ such that / is
either injective on [/, or it is constant on (/. Indeed, suppose that this thing is
fakse. Then we can find [/ a ball centered at r andu1.,.ttr2tu3 distinct points in [/
wi th/  ( " r )  *  f  (uz) , f  (uz) :  / (23)  andsince W-isequicont inuousat  t r ,wecarr
take [/ such that qC (fi (U)) > l for every j e IN, and we also take [/ such that

f,O"-'(z)dz 
< oo. We join z1 and,u2 by an arc J6 from IJ andwe choose Jr

10



an arc joining u3 with a point u+ € 0U in U. Then A: R (Im..16, C (U\ Im fi))
is a ring and Ai : fi(A) is a ring R(Coi,C1i), where Qoi : fiQo),CU :

C/i(U\Im,/r) for i e IN. Let ),o(r,t) be the function defined in [12], 12.6,
page 39 and let ri : q(fi(ur), fi("r)),ti : q(fi(uz), fi("i) for j e ,0{. Then

s(C"i) /ri, q(C"i,Cu) <t1 for j € IN,ti --+ 0, and taking a subsequence' we
can suppose that ri ) r for every j e ,ntr. It results that M(t a,) ) \n(ri,ti) --+

oo forT -+ oo. Let now d: d(ImJ6,C(U\ImJr))  > 0 and let  p, lR: t  [0,oo]
be def ined by p(r) :  *  i f  z €(J,p(r) :} i f  z (  U. Thenp e tr . ( fa),  hence
M(le) 3 I  p"Q).x;-r(z)d,z:  # .  [K'-r(z)dz < m. Using ( i ) ,  we obtain

R N U

that oo ) Mp^*r(fa) 2 M(ler) -- oo, which represents a contradiction.
Let now Qr : {z € Dl there exists 7 e V(z) such that / is injective on V},

and let Qz : {r e Dl there exists V e V(z) such that / is constant on V}.
Then D : QtUQ2 and since z1 f & it results that z1 € Q2,hence Qz I d.
Since D is connected, it results that D - Qz, i.e. / is locally constant on D and
hence / is constant on D. We obtained a contradiction, because Card Im / > 3.
We therefore proved that / : D ---+ D' is a homeomorphism onto a domain D'
fromF.

Theorem lL Let D,Dt be d,oma'ir'rc'in IR" with CardAD'> 2,F C D
be compact and let W be a .family o.f homeomorphisms f : D - Dt o.f .fi'ni,te
d,'istortion, hauing the same dilatation map K and sati's.fyi'ng conditi'on (A)-
Then, , fo reuery  e )0 thereer is ts  6 )0suchtha t i ' f  f  eW andq( f (F) ,AD' )  <
5, 'it results that q(f (F)) < e.

Proo./. Suppose that the theorem is not true. Then there exists e ) 0 and
a sequence (fi)i.w fromW such that q(fi@),AD') < j and q(fi@)) > e for

every / € .0/. Since Card 0D' ) 2, there exists at least two points yp $ Im f i for
every j € ,0y' and k: I,2 and from Theorem 8 we see that the family (l)rE7v
is equicontinuous. Taking a subsequence, we can find a map f : D -- ,Rt such
that /* ---+ / uniformly on the compact subsets from D. Using Theorem 10, we
see that either / is aconstantmaponD, or f : D -- Gis ahomeomorphism
onto a domain G from E . Since q(fi@D ) a > 0 for j € lV, it results that /
cannot be constant on D, hence f : D --+ G is a homeomorphism.

W e s h o w t h a t G C D / .  I n d e e d , L e t y  € G a n d  r e  D b e  s u c h t h a t  y : f ( r )
andlet U eV(r) besuch thatT c D,f(r)  # f(AU) andlet r :sf f@),f  @UD.
Since fi - / uniformly on 7, there exists jo e IN such that q(fiQ),f (r) <

i for every z e A and every i > io. Then if V : Bn(y,$), *" see that
V . h(U) * d,}fi(U) : fj@U) and fipt)oV : cf for j ) io' Wg_have

v :  (v a f i (uDu (vn af i(uDu (vn cf i(uD : (v. f i (uDu (vn cfr@))
for j ) j6, and since 7 is connected) we see that V : V a/r'(t/) and hence
V c fi(U)for j > j6. It results t'hat y e V c fi(U) cD'. We therefore proved
that G C D/, hence 6 : q(f(F),AD')) > 0. Since fi - f uniformly on F and
q(f l@),0D')) --.,0, we obtained a contradiction. The theorem is now proved.
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