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MAPPINGS OF FINITE DISTORTION: ZORIC’S THEOREM,
EQUICONTINUITY RESULTS
MinAr CRISTEA

ABSTRACT: We generalize some known results from the theory of quasiregular map-
pings, as Zoric’s theorem and some equicontinuity results. This generalizations hold
for a special class of mappings with finite distortion, satisfying condition (A), which
extends the known class of quasiregular mappings and for which are valid some recent
modular and capacities inequalities established in [7].
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1. INTRODUCTION.

A mapping f : D — IR™, where D C IR" is a domain, is said to have finite
distortion if the following conditions are satisfied:

1) fewr!(D,R").

2) The Jacobian determinant Jy (z) is locally integrable.

3) There exists a measurable function K : D — [0, cc], finite a.e. such that
@I < K (2)- Jf (3) ace.

Notice that when K € L* (D), we obtain the known class of quasiregular
mappings, and we refer the reader to [10],[11] for the monographs dedicated
to this subject. Quasiregular mappings are either constant, or open, discrete,
satisfies condition (N) and a Holder condition.

If the dilatation map K € LY (D), p>n—1and f € I/Vli)’cn (D, R™), then
it is shown in [9] that a map with finite distortion is open, discrete.

Recently were considered in [7], [8] mappings f : D — IR™ of finite distortion
for which there exists A : [0,00) — [0,00) smooth, strictly increasing, with
A(0) =0, tl_lglo A (t) = oo and satisfying the conditions:

(Ao) exp (A (K)) € Li, (D).

(Ar) [7° A4t = oo.

(Ag) there exists ¢y > 0 such that A’ (t) - t increases to infinity for ¢ > to.

As in [7], we say that a mapping of finite distortion satisfies condition (A)
if f satisfies condition (Ag), (A1), (A2). In [4], Theorem 1.3 it is shown that
such nonconstant mappings are either constant or open, discrete if A (t) = At
for some A > 0. We shall show in Theorem 1 that mappings f : D — IR™ with
finite distortion, satisfying condition (A) are such the dilatation map K is in
LY . (D) forevery p > Oand f € Wl})’cp (D, IR™) for every 1 < p < n. This ensures
(see [5], Prop.2.5, [6], Theorem 1.1 or Theorem 2.1 [7]) that such mappings are
continuous and either constant, or open, discrete. Our proofs are based on the
following basic ingredients, valid for mappings f : D — IR™ of finite distortion
and satisfying condition (A) :

(i) M (f (I')) < Mgn-1 (') for every path family I' from D.

(ii) cap f (F) < capgn-1 (F), where E = (G, C) is a capacitor with G CC D.



(iii) capgn-1 (B (z,R), B(z,r)) — 0 whenr — 0 and R > 0 is keeped fixed
established in [7], Corollary 4.2, Corollary 5.2 and Theorem 5.3. Here K is the
dilatation map of f. We also find in Lemma 1 a condition in order to ensure
that capgn-1 (B (z,R), B (x,7)) — 0 when 7 > 0 is keeped fixed and R — oco.
This last condition is necesary in the proof of Zoric’s theorem (Theorem 2 and
Theorem 3).

We generalize Zoric’s theorem for mappings with finite distortion which sat-
isfies condition (A) :

Theorem 3. (Zoric’s theorem). Let n > 3, f : IR® — IR™ a local homeomor-

phism and a map of finite distortion, satisfying condition (A) such that there

exists 1 > 0 such that [ exp(A(K (x))) —mdz < co. Then f: R™ — IR"
CB(0,r)

18 a global homeomorphism.

We also give in Theorem 2 a version of Zoric’s theorem with some "singular"
sets K and B, extending some results from [1] and [2]. We give a Picard type
theorem in Theorem 4, in connection with a similar result from [7].

Theorem 4. (Picard’s theorem) Let F' C IR™ be closed, f : IR™\F — IR™ a non-

constant map of finite distortion, satifying condition (A), such that Myn— (F) =

0 and there exists v > 0 such that [ exp(A(K (z))) - ﬁmdm < 00. Then
CB(0,r)

capCf (IR"\F) =0

We generalize in Theorem 8 a known equicontinuity result for quasiregular

mappings:
Theorem 5. Let D C IR™ be a domain, M C IR™ with cap M > 0 and let W be
a family of mappings f: D — IR™\M of finite distortion, satisfying condition
(A) and having the same dilatation map K. Then W is equicontinuous and we
take the euclidean distance on D and the chordal distance on IR™.

We immediately obtain a Montel’s theorem for mappings of finite distortion
satisfying condition (A) :

Theorem 6. (Montel’s theorem). Let D C IR™ be a domain, W be a bounded
family of mappings f : D — IR™ of finite distortion, having the same dilatation
map K and satisfying condition (A). Then W is a normal family.

2. PRELIMINARIES

We call a path ¢ : [0,1) — IR™ an open path and a point z € R" will
be called a limit point of q if there exists ¢, / 1 such that ¢ (t,) — =. If
I is a path family in R, we define F([') = {p : — [0, 00] Borel maps

| / pds > 1 for every v € T locally rectifiable}. Let now D C IR™ be open and

¥
w : D — [0, 00] be measurable and finite a.e. Then, if @ : IR® — [0, 00] is defined
by w(z) =w(z) if z € D, @(z) =01if x ¢ D, we define the w-modulus of I by

M, () = 61?&) p" (z) - @ (z) dz and for w = 1 we obtain the usual modulus
an
M (T). If I'y, Ty are path families in IR™, we say that I’y > Iy if every path from



I'1 has a subpath in I's and as in the classical case, we prove that if I'; > Iy,
then M, (1) < M,, (I'z). Also, we prove that M, (il_lolfi> < ZM“’ (T;), and
N i=1

if wy < wy, then M, (T') < M, (T'). We define for D C IR"™ open, E, ' C D
by A (E, F, D) the family of all paths, open or not, which joins £ with F in D.

We say that £ = (D, C) is a condenser if C is compact, D is open, C C
D Cc R", and let w : D — [0,00] be measurable and finite a.e. We define

the w-capacity of E by cap,F = inf / [Vu|™ (z) - w (z) dz, where u € C§° (D)
and v > 1on C, and if w =1 we olliztain the usual capacity of E, cap E. We
see that if u is a test function for cap,E, the p = |Vu| € F(I'g), and this
implies that M, (T'g) < cap,, (F). Here 'y = {7 : [a,b] — D path |y(a) € C
and vy has a limit point in 8D} and from Prop. 10.2, [11], page 54, we have
cap E = M (T'g). If C C IR" is compact, we say that cap C' = 0if cap(4,C) =0
for every C C A C IR™ open and from [11], Lemma 2.2, page 64, the definition
is independent on the open set A such that C C A. If C C IR" is arbitrary, we
say that cap C =0 if cap K =0 for every K C C compact.

Let now D C IR™ be open, w : D — [0,00] be measurable and finite a.e.,
A C D aset. We say that A is of zero w-modulus, and we write M, (4) = 0, if
the w-modulus of all paths having some limit point in A is zero. If w > 1, we
see that M (I') < M, (T') hence, if M, (A) =0, then cap A =0.

If A C D is countable and lim M, (A(B(z,r),CB(z,R),D)) = 0 for

every z € A and every 0 < R with B (x, R) C D, we prove as in the classical
case that M,, (A) = 0. Using Theorem 5.3 [7], we see that this thing holds
for instance if w = K™ !, where K : D — [0,00] i$ measurable and finite
a.e. and for every = € A there exists p, > 0 such that B (z,p,) C D and
exp (A(K (y)))dy < oo, where A satisfies conditions (A;) and (Ag).
B(z,p,)
Also, Lemma 1 gives a condition which ensures that M- (00) = 0.
If D C IR™ is open and b € 8D, we define C (f,b) = {w € IR" | there exists
b, € D, b, — b such that f(b,) — w} and if B C 0D, we let C(f,B) =
beuBC(f, b). If E, F' are Hausdorff spaces, f : E — F is a map, p: [0,1] — F'is

a path, z € E is such that f (z) = p(0), we say that ¢ : [0,a) — F is a maximal
lifting of p from z if ¢ (0) = 2,0 < a < 1, foq =p|[0,a) and ¢ is maximal with
this property. If g is defined on [0,1], we say that ¢ is a lifting of p. If E, F
are domains in IR™ and f is continuous, open, discrete, there exists allways a
maximal lifting. We let by p,, the Lebesgue measure in JR”. We shall denote by

q the chordal metric in IR™ given by q(a,b) = |a— b]- <1 + |a|2>‘5 ’ (1 5 ’bl2>~§

2

if a,b € R, q(a,00) = (1 + |ol|2>~ if a € R™ and by |a — b| the euclidean

distance between a and b in IR™. We denote by By (z,7), respectively B (x,r) the
ball of center x and radius 7 if we consider on IR™ the chordal metric, respectively



the euclidean metric and in the same way we denote for a set A C IR"™ by ¢ (4),
respectively d (A) the diameter of A. We denote by W,op (D, R™) the Sobolev
space of all functions f : D — IR™ which are locally in LP (D), together with
their first order weak partial derivatives.

If W is a family of mappings f : D — IR", we say that W is bounded if
for every K C D compact, there exists M (K) > 0 such that |f (z)| < M (K)
for every z € K and every f € W. If X,Y are metric spaces and W is a family
of mappings f : X — Y we say that W is equicontinuous at z if for every
¢ > 0, there exists d, > 0 such that d (f (z), f (v)) < e if d(y,z) < &, for every
f € W, and we say that W is equicontinuous if it is equicontinuous at every
point © € X. We say that W is a normal family if every sequence of W has a
subsequence which converges uniformly on the compact subsets of X to a map
f: X-Y.

Lemma 1. Let n > 2;D C IR™ be an unbounded domain, K : D — [0, 0]
measurable and finite a.e., A : [0,00) — [0,00) be smooth, strictly increasing,
with A(0) = 0, tligloA (t) = oo, satisfying condition (A;) and (Az) such that
there exists r > 0 such that [ exp(A(K () - E {12 dz < oo. Then

DNCB(0,r)

Mycn—i (A(B(0,7) N D,CB(0,s) N D,D) — 0 when s — 0o and 7 > 1 is keeped
fized.

Proof. Let g : IR® — IR"™ be defined by g (z) = # if z € R™ and let Iy =
A(B(0,)ND, CB(0,5)\D, D), Ars = Alg(D)NB(0, 1), 9(D)NCB(0, 1), ¢(D))
for 1 < r < s. We show that Mgn-1 (I'rs) = Mgn-10y (Ars). Let p' €
F(Tys) and p : IR® — [0,00] be defined by p(z) = p'(g9(z)) - |¢' (z)] if
zeD,p(x)=0ifx ¢ D. Then p € I'(Ars) and Mgn-105 (As) < [ p™(z) -

R‘N

K g(w)ds = o™ (g(@))lg' @)I" - K™ Hg(=) dw"fp’"(g ))- K" Hg(x))-
Jylz)dz f p’” ) - K" l(y)dy < 11!”'0/“( K" 1( )dy. This implies that

Mpgn-104 (g(F s)) = Mgn—10g (Ars) < Mygn-1 (I'ys). By the same argument, we
have Mycu-1 (Drs) = Mgn-10g0g (9 (Ars)) < Mgn-104 (Ars) and we have

M Micus (Tra) = Mign-10g (Are)
We find
exp(A(K(g(z)))dz = / exp(A(K (9(2))))-Jg-1 (9 (2))-Jg (x)da =
g(D)m}s(o,;{) 9(D)NB(0,1)
e (AR G))Joos Dy = [ exp (AU () ey < oo
DNACB(0,r) DNCB(0,r) v

Let now I, = A (B(0,1),CB(0,%),B(0,£)\B (0,1)) for 1 <7 < s and
let Q@ : R™ — [0,00] be defined by Q( ) =K(g(z) ifz € g(D),Q(z) =

1if z ¢ g(D). Since / exp (A(Q (z)))dz < oo, we see from Theorem



5.3, page 24, [7] that capgn- (B (O, %) ,B (0, %)) — 0 when s — oo and r >

0 is keeped fixed. We have Mgn-109(Ars) < Mgn-1(Ars) < Mga-1(I'},) <
capgn-1(B(0, %),E(O, 1)) and this implies that

(2). Mgn-10g (Ars) — Owhens — 0o andr > Oiskeepedfized

Using (1) and (2), the proof is finished.
Theorem 1. Let D C IR™ be open, f: D — IR"™ be a map of finite distortion,
satisfying condition (A) and let K : D — [0, 00] be the dilatation map of f.
Then K € L (D) for every p > 0 and f € Wlicp (D, R") for every 1 < p < n.
Proof. Suppose first that p > 1 and let g : (0,00) — IR be defined by g (t) =
exp (A (t%)) for t > 0. Then g is strictly increasing on (0,00) and from
Lemma 2.4 [8] there exists b > 1 such that g is convex on (b,00). Let F': D —
[0,00], F (z) = K (z) if K (z) > b, F (z) = bif K (x) <b. Then F is measurable

and we have, using Jensen’s inequality, that g(/ KP(z)dz) < g(/ FP(z)dz) <
B

g(/F”(;v)dx/,un(B)) < /g(F”(Jz))dm/,un(B), where B C D is compact and

B B
such that p,(B) < 1.

It results that
P

/K” (z)dz < | A | log | max 1,/exp(A(F(x)))dx/un (B) < 90

P

If 0 < p <1, then /K” (z)dz < /K(w)dx < 00. We therefore
B B

proved that /K” (z)dz < 0o if B C D is compact with p,, (B) < 1 for every
B

p >0, hence K € Lf, (D) for every p > 0.

Let now 1 < p < n. Then we have from [7], Corollary 5.5, [5] Prop. 2.5 and
[6] Theorem 1.1. that f is continuous and either constant on D, or open and
discrete. We can suppose that f is open, discrete on D and let B a ball with

B c D. Then N (f,B) = sup Card f~' (y) N B < oo and from Theorem 6.3.2,

yeR"
page 107 (3], we see that / Jy (z)dz < co. We have, using Holder’s inequality,
B
that
/|f’ ()" dz < /K(g;)# dz : /Jf (z)dz | < o0.
B B B



Since f is continuous and f € W'licl (D, R"), we see that f is ACL! on B,
hence f is ACL, and from Prop.1.2, page 6, [11], we see that f € W, (D, IR™)
for 1 <p<n.

3. PROOFS OF THE MAIN RESULTS.

Theorem 2. Let n >3, B ={ay,...,a5,00}, K C R"\B closed in IR"\B
with int K = ¢, f : R™"\(K U B) — IR™ be a map of finite distortion, of
K (x) dilatation, satisfying condition (A) and a local homeomorphism such
that int C (f,K) = ¢, C(f,K) is closed and R™"\C (f,K) is connected and
let E = KUBUf Y (C(f,K)). Suppose that there exists 6, > 0 such that

exp (A (K (z)))dz < 00, p =1,...,J and that there exists 69 > 0 such
B(ap,dp)
1
that / exp (A (K (x))) - ez < 0. Then
x

CB(0,60)n(R™\(KUB))

1) either we can lift any path p : [0,1] — IR™\C (f,K) from every point
z with f(z) = p(0), or we can eliminate some set A C B, extending f by
continuity to a local homeomorphism on A, such that the extended map (also
denoted by f) lifts any path p : [0,1] — R™\C (f, K) from every point x with
f(z) =p(0), and if A+# ¢ and co € A, some lifted path can go through oo.

2) of C(f,K) is compact, then int E = ¢ and f is injective on IR™\E and if

f can be continuously extended on K, then f| (W\K)\(B\A)(—BT”\K)\(B\A)H
R™C(f,K) is a homeomorphism. Finally if f can be continuously extended to
an open map on K, then f :dR"—IR™ is a homeomorphism.
Proof. Let I' = {~ : [0,1] — IR™\(X U B) path| v has some limit point in
B}. We see from Lemma 1 and Theorem 5.3, page 24, [7] that Myn-1 (B) =0,
hence Mgn-1 (') = 0. Using (i), we see that M (f (I')) < Myn-1(T') = 0, hence
M (f(I')) =0 and from Theorem 1 [2], 1) is proved.

Suppose now that C (f, K) is compact and let > 0 be such that C (f, K) C
B(0,r), let 0 < r < s and let € IR™\(K U (B\A)) be such that f(z) €
CB(0,s). Let @ be the component of f~'(CB(0,r)) which contains z and
let U be the component of f~'(CB(0,s)) which contains z. Then U C Q
and since CB (0,7) is simply connected and f|Q : @ — CB(0,r) is a local
homeomorphism which lifts the paths, we see that f|Q : @ — CB(0,r) is a
homeomorphism, and hence f|U : U — CB(0,s) is also a homeomorphism.
Since f|OU : 0U — S(0,s) is a homeomorphism, we use Jordan’s theorem
to see that JR™\OU has exactly two components, one of them being U, and
since U is homeomorphic to CB (0, s), we see that U is unbounded. If U is
any other component of f~'(CB(0,s)), we see by the same argument that
flUo:U, — CB(0,s) is a homeomorphism, that Uy bounds a Jordan domain
and Up is the unbounded component of JR™\OUp. Let a > 0 be such that
oU UdU, C B(0,a), Then CB(0,a) C U N Uy, hence U = Uy and we obtain
that f~1(CB (0, s)) has a single component U on which f is injective, K ¢ CTU
and U = f~1CB(0,s).




Since f is a local homeomorphism on R™\ (K U B) and int C (f, K) = ¢, we
see that int E = ¢. Let x1,z3 € IR™\F be such that f (z1) = f (z2) =y and let
z € CB(0,s) and p : [0,1] —» R™\C(f,K) be a path such that p(0) = y and
p(1) = 2. We can lift p from z; and z2 and find some path ¢; : [0,1] — R™
such that ¢; (0) = z;, fog = p, i = 1,2. Since ¢;(1) € f~(CB(0,s)) =
U, f(g: (1)) =p(1), i =1,2 and we proved that f is injective on U, we obtain
that q; (1) = g2 (1) . We use now the property of the uniqueness of path lifting
for local homeomorphisms to conclude that z; = x9. We therefore proved that
f is injective on IR™\E.

Suppose now that f can be continuously extended on K and let a € IR™\ (B\A4)
be a point such that f is open at a. We show that {a} = f~ (f (a)). Indeed,
if there exists b # a,b € IR™\ (B\A) such that f(a) = f (b), let Uy € V(a) and
V € V(f (a)) be such that f(U;) = V. Since f is continuous at b, we can find
U, € V (b) with U; N Uz = ¢ such that f (Uz) C V and since int £ = ¢, we can
find @ € U2\E. Then we can find 8 € U;\E with f (a) = f(8), which repre-
sents a contradiction, since we proved that f is injective on R™\E. It results
now immediately that f| (R"\K) \ (B\A) : (R"\K) \ (B\A) — R"\f (K) is a
homeomorphism, and if we additionally suppose that f is also an open map on
K, we find that f[IR™\ (B\A) : R™ (B\A) — R™ is a homeomorphism. In the
last case we see by topological reasons that B\A = {a}, with a € B and that
f: IR® — IR" can be extended to a homeomorphism.

Proof of Theorem 3. We take K = ¢ and B = {co} in Theorem 2.

Proof of Theorem 4. Since Myn-1 (F) = 0, we see that cap F' = 0 and hence
that JR™\F is a domain, and since f is nonconstant on JR™\F, we see that f is
open, discrete on IR™\ F. Suppose that cap C'f (IR*\F) > 0 and let K C IR™\F
be compact, connected, with Card K > 1. Then E = (f (R™\F), f (K)) is a
capacitor and q (f (K)) > 0, and from Lemma 2.6, page 65, [11], there exists
§ > 0 such that § < cap E. Let I = A(f(K),Cf(R™\F),R") and let
I be the family of all maximal liftings of some path from I’ starting from some
point of K. Then IV < f(T') and if v € I', then +y has at least a limit point

in F'U {oco}. Since / exp(A(K (z))) - —5zdz < oo, we see from Lemma
CB(0,r) |$|

1 that Mgn-1 (00) = 0, hence Mgn-1 (F U {oo}) = 0 and this implies that

Miycn—1 (T) = 0. We use now (i) and we obtain that § < cap (E) = M (I) <

M (f(T)) < Mgn-1 (T') = 0, which represents a contradiction. We therefore

proved that cap C'f (IR"\F) = 0.

1
Remark 1. The condition / exp(A(K (z))) - ] |2nda: < 00, which ensures
%

CB(0,r)
that Myn-1 (00) = 0, and used in our generalizations given to Zoric’s the-
orem and Picard’s theorem can be realized for instance if K (z) < K, for

z € B(0,p), p > po and li.msup%{-l’— = a < n (le. it holds for a locally
p—+00

Iz
quasiregular map having some logarithmic growth of the constant of quasiregu-
larity near co). Indeed, we take A (¢) = t and if p; > po is such that K, < a-ln p



for p > p1, we have

exp (A (K (2))) —omdz = Y oxp (A (K (2))) e <

2n
||
CB(0,p1) PZP1B(0,p+1)\B(0,p)

Z / exp(Kp+1).|;ll_i.ﬁdx < COZ (p+1) ((;)21—1) Apn)

PZP1(0,p+1)\B(0,p)

IN

pP2P1

1
Ch - Z p_-_—n*a-i-l < 0.

PP

Here Cy and C; are some constants.

We can generalize in this way Theorem 8 and Theorem 9 from (2], obtaining
a generalization of Zoric’s theorem for locally quasiregular mappings having a
logarithmic growith of the constant of quasiregularity near oo.

In the same manner, the condition exp (A (K (z)))dz < oo, which

B(b,p)
ensures that Mgn-1 (b) = 0 is realized for instance if K (z) < K, on CB(b, %)

for p > pp and lim sup{n% = a < n. This condition holds for locally quasiregular
p—00

mappings having some logarithmic growth of the constant of quasiregularity near

the critical point b € D and it can be used in Theorem 2 and Theorem 4.

Remark 2. The condition / exp (A (K (:E)))—%Ed:r < oo used in Theorem
CB(0,r) |f13|

4 is necessary, since we can find bounded homeomorphisms f : R"* — B (0,1)
of finite distortion and satisfying condition (A) (see [7], page 28, or [6]).

Proof of Theorem 5. Let x € D be fixed, and ¢ > 0 with B(z,e) C D. We
fix e > 0 and suppose that there exists p > 0,7, — 0 and f, € W such that
q(fp (B(z,mp))) = p for every p € IN. Then f, are open, discrete maps for
every p € IN and we can find § > 0 such that § < cap (CM, f, (B (z,7)))
for every p € IN (see Lemma 2.6, page 65, [11]). We have, using (ii) that ¢ <
cap(CM, fP(B(x’ TP)))Scap(fAB("E’ E))v fP(B(x’ TP))) S Cappn-1 (B(I’E)’B(:EVTP)) -
0if r, — 0 and ¢ > 0 is keeped fixed, which represents a contradiction. We
therefore proved that for every e > 0 there exists §. > 0 such that f (B (z,0.)) C
B, (f (z),¢) for every f € W,ie. W is equicontinuous at z.

Proof of Theorem 6. Let z € D,8 > 0 such that B (z,6) C D and M > 0
be such that |f (y)| < M for every y € B(z,0) and every f € W and let
Wo = { f [E (2, 5)‘ fe W} Using Theorem 5, we see that Wy is equicontinuous
at z, hence W is equicontinuous at x. We proved that W is equicontinuous,
and we take on D the euclidean metric and on JR™ the chordal metric. Using
Theorem 20.4, page 68 [12], if ( fp)pE v 18 & sequence of mappings from W, we
can find a subsequence (fy, ).,y and a map f: D — IR™ such that f,, — f
uniformly on the compact subsets from D. If z € D is fixed and M, > 0 is such



that |fp, (z)| < M, for every k € IN, we see that |f (z)| < My, hence f takes
finite values and it results that W is a normal family.
Theorem 7. Let D C IR™ be open, W be a family of mappings f: D — IR"
of finite distortion, having the same distortion map K, satisfying condition (A)
and let © € D be such that there exists r,6 > 0 such that B(z,5) C D and
f(B(z,0)) C B(f(z),r) for every f € W. Then W is equicontinuous at ,
and we take on D and on IR™ the euclidean distance.
Proof. Let f € W. If f is constant on B (z,4d), then, f (B (z,p)) = {f(z)} C
B (f(z),¢e) for every 0 < p < §, 0 < & < r. Suppose that f is open, discrete
on B(z,8) andlet 0 <e <rand0<p<dand E = (B(z,d),B(z,p)). Then
f(E) = (f (B(=,6), f(B(x, p)) is a capacitor and let v,, be the function defined
in [11], page 60.

We keep § > 0 fixed and we let p — 0 such that capKu | (E) <wp (&) for0 <
p < .. Then v, (J—ﬁ—)—(—ufy e ) < cap f(E) < capgn-1 (E) < vp (&) for every

y € B(z,p), and since v, is strictly increasing, we find that Ify)—f(z)| <e
for every y € B (z,6.) and every f € W, i.e. W is equicontinuous at z.

Remark 3. The last theorem shows the interesting thing thet if W is a family
of mappings f : D — IR™ of finite distortion, having the same distortion map
K and satisfying condition (A) and z is a point from D, then it is sufficient
to exist a single r > 0 and a single 6 > 0 such that f(B(z,6)) C B(f (z),r)
for every f € W to obtain the equicontinuity of the family W in the point
z. Taking f : D — IR™ a map of finite distortion and satisfying condition
(A), fa=F+X W = (f2)rcrn> We see immediately that W is equicontinuous.
Since gle_JWg (z) = R™ for every € D, we cannot apply Theorem 5 to deduce

the equicontinuity of the family W, but we can use Theorem 7.
Theorem 8. Let D C IR™ be a domain, W be a family of homeomorphisms
f: D — f(D) of finite distortion, having the same dilatation map K, satisfying
condition (A) such that there exists v > 0 such that for every f € W, there
exists ap, by ¢ Im f with q(ay,by) > r. Then W is equicontinuous, and we take
the euclidean distance on D and the chordal distance on IR™.

Proof. We follow the proof from Theorem 19.2, page 65. Let A, be the
function defined in [12], 12.4, page 38 and let o € D and 0 < e < r. Let Qo =

B(zo, @), Q1 = B(zo, B) be such that 0 < & < § and B(xo,) C D and let A =
R(Qy,CQ1). Then f(A) = R(f(Qo), Cf(Q1) and q(CF(Q1)) > ala,bs) >

r,q(f(Qp)) > q(f(x), f(xg)) for every x € Q)y. Let x € @y be fixed and ¢t =
mm{q( f(zo), f(z)),r}. We keep 8 > 0 fixed and we choose « small enouh such
that Mo 1(T4) < An(e). Then An(t) < M(f(T) < Myo-r (T4) < An(e)
and since )\, is increasing, we see that ¢t < g, and since € < r, we obtain that
t = q(f(z), f(z0)). We therefore proved that ¢(f (z), f(zo)) < e for every
z € Up and every f € W.
Theorem 9. Let D C IR™ be a domain, W be a family of homeomorphisms
f: D — f(D) of finite distortion, having the same dilatation map K, satisfying
condition (A) and such that one of the following condition is satisfied:

1) there exists x1,z9 € D and v > 0 such that each f € W omits a point as



with q(ay, f(xi)) > r for i =1,2.

2) there exists ©; € D and v > 0 such that q(f(z:), f(z;)) > r for i #
1,1, =1,2,3 and every f € W.

Then W is equicontinuous.

Proof. Suppose that condiotion 1) is satisfied and let Dy = D\ {xx} for
k = 1,2. Using Theorem 8, we see that the families Wy, = {f|Dx| f € W} are
equicontinuous on Dy for k = 1,2, hence W is equicontinuous. Suppose now that
condition 2) is satisfied and let D;; = D\ {x;,z;} and W;; = {f |Ds;| f € W} for
4,7 =1,2,3. We see from Theorem 8 that the families W;; are equicontinuous
on D;; for 4,5 =1,2,3, hence W is equicontiuous.

Corollary 1. Let D C IR™ be a domain, W be a family of homeomorphisms
f: D — f(D) of finite distortion, having the same dilatation map K, satisfying
condition (A) such that f(a;) = b;,t =1,2,3 for every f € W, where ay,a2,a3
are three different points from D and by, by, by are three different points from
IR™. Then W is equicontinuous.

Theorem 10. Let D, D; be domains in IR", f; : D — D; be homeomorphisms
of finite distortion, having the same dilatation map K, satisfying condition (A)
and such that f; — f. Then, if Card Im f > 3, it results that f: D — D" is a
homeomorphism onto a domain D' from IR™, and if f; — f uniformly on the
compact subsets from D, then f is either constant, or it is a homeomorphism
onto a domain from IR™.

Proof. We follow the proof fromTheorem 21.1, page 9, [12]. Let by, by, b3 be
three different points from Im f, ar € D such that f (ax) = b for k = 1,2,3,
and let r > 0 be such that ¢ (f (a;), f(a;)) > r for ¢ # 7, 4,7 = 1,2,3. Then
there exists jo € IV such that q(f; (a;), fj (ax)) > § for ¢ # k, 4,k = 1,2,3
and j > jo, and from Theorem 9, condition 2), it results that the family
W = ()5, is equicontinuous. Using Theorem 20.3, page 68, [12], we see that
f; — f uniformly on the compact subsets from D and hence f is continuous on
D. Using Brouwer’s theorem, it is enough to prove that f is injective on D.

Suppose that there exists 21,29 € D, z; # 29 such that f(z1) = f(22) and
let 7 > 0 be such that 25 ¢ B(z1,7). Then f; (S (z1,7)) separates the points
[ (21) and f; (22), hence we can find z; € S (21,7) such that

q(f; (z5), 5 (21)) < a(f; (1), fi(22)) foreveryj € IN. (1)

Taking a subsequence, we can suppose that z; — = € S (z1,7) and since W is
equicontinuous at z, we have q (f; (z;), f () <q (f; (z;); f; () +q (f; (z), f ()
— 0. Letting j — oo in (1), we find that ¢ (f (z), f (21)) < ¢ (f (1), f (22)) =0,
hence f (21) = f (z) .We proved that f is not injective in any neighbourhood of
21

We prove now that every point z € D has a neighbourhood U such that f is
either injective on U, or it is constant on U. Indeed, suppose that this thing is
fakse. Then we can find U a ball centered at z and uy, ug, ug distinct points in U
with f (u1) # f (u2), f (u2) = f (u3) and since W is equicontinuous at z, we can
take U such that ¢C (f; (U)) > 1 for every j € IN, and we also take U such that

fKn—l (2)dz < 0o. We join u; and ug by an arc Jy from U and we choose J;
U
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an arc joining u3 with a point u4 € 8U in U. Then A = R (Im Jy, C (U\Im J7))
is a ring and A; = f; (4) is a ring R(Coj, Cy;), where Co; = f; (Jo),C1j =
Cf;j (U\ImJ;) for j € IN. Let A, (r,t) be the function defined in [12], 12.6,
page 39 and let r; = g(fj(w1), fi(u2)),t; = q(f;(u2), f;(us)) for j € IN. Then
q(Coj) > 15, q(Coz,Cr;) < t; for j € IN,t; — 0, and taking a subsequence, we
can suppose that 7; > r for every j € IN. It results that M(T'4;) > A (rj,t5) —
oo for j — 00. Let now § = d(Im Jo, C(U\Im Jy)) > 0 and let p : R™ — [0, 00]
be defined by p(z) = % if 2 € U,p(z) = 0if z ¢ U. Then p € F(T'4), hence
M(T4) < [ p*(2) - K" 1(2)dz = 37 - [K™'(2)dz < co. Using (i), we obtain
Rr U
that 00 > Mjyn-1(I4) > M(T'4,) — oo, which represents a contradiction.

Let now Q1 = {z € D| there exists V € V() such that f is injective on V'},
and let Qo = {z € D| there exists V' € V(z) such that f is constant on V'}.
Then D = Q; U Q2 and since 21 ¢ @y it results that z; € Q2, hence Q2 # ¢.
Since D is connected, it results that D = Qq, i.e. f is locally constant on D and
hence f is constant on D. We obtained a contradiction, because Card Im f > 3.
We therefore proved that f : D — D’ is a homeomorphism onto a domain D’
from IR™.

Theorem 11. Let D, D’ be domains in IR™ with Card 0D" > 2,F C D
be compact and let W be a family of homeomorphisms f : D — D’ of finite
distortion, having the same dilatation map K and satisfying condition (A).
Then, for every € > 0 there exists § > 0 such that if f € W and q(f(F),0D") <
8, it results that g(f(F)) < e.

Proof. Suppose that the theorem is not true. Then there exists € > 0 and
a sequence (f;)jen from W such that q(f;(F),0D’) < % and q(f;(F)) > € for
every j € IN. Since Card D' > 2, there exists at least two points yx ¢ Im f; for
every j € IN and k = 1,2 and from Theorem 8 we see that the family (f;);em
is equicontinuous. Taking a subsequence, we can find a map f : D — IR™ such
that fi — f uniformly on the compact subsets from D. Using Theorem 10, we
see that either f is a constant map on D, or f: D — G is a homeomorphism
onto a domain G from IR™. Since g(f;(F)) > ¢ > 0 for j € IN, it results that f
cannot be constant on D, hence f : D — G is a homeomorphism.

We show that G € D'. Indeed, let y € G and = € D be such that y = f(z)
and let U € V(z) be such that U C D, f(z) ¢ f(OU) and let r = q(f(z), f(OU)).
Since f; — f uniformly on U, there exists jo € IN such that g(f;(2), f(z) <
5 for every » € U and every j > jo. Then if V = Bq(y,g-), we see that
VU # ¢,0f;(U) = f;(0U) and f;(0U) NV = ¢ for j > jo. We have
V=(VnfHO)UVNaL0)UVACHTU)) =VnfhU)uVnCfU)
for 7 > jo, and since V is connected, we see that V' =V N f;(U ) and hence
V C f;(U) for j > jo. It results that y € V C f;(U) C D'. We therefore proved
that G C D', hence § = q(f(F),0D")) > 0. Since f; — f uniformly on F and
q(f;(F),8D")) — 0, we obtained a contradiction. The theorem is now proved.
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