

INSTITUTUL DE MATEMATICĂ AL ACADEMIEI ROMÂNE

PREPRINT SERIES OF THE INSTITUTE OF MATHEMATICS OF THE ROMANIAN ACADEMY

ISSN 0250 3638

MAPPINGS OF FINITE DISTORTION: ZORIC'S THEOREM, EQUICONTINUITY RESULTS

by

MIHAI CRISTEA

Preprint nr. 17/2004

BUCUREȘTI

MAPPINGS OF FINITE DISTORTION: ZORIC'S THEOREM, EQUICONTINUITY RESULTS

by

MIHAI CRISTEA*

Decembrie, 2004

* University of Bucharest, Faculty of Mathematics, Str. Academiei 14, Ro-010014 Bucharest, Romania. E-mail address: mcristea@fmi.math.unibuc.ro

MAPPINGS OF FINITE DISTORTION: ZORIC'S THEOREM, EQUICONTINUITY RESULTS MIHAI CRISTEA

ABSTRACT: We generalize some known results from the theory of quasiregular mappings, as Zoric's theorem and some equicontinuity results. This generalizations hold for a special class of mappings with finite distortion, satisfying condition (\mathcal{A}) , which extends the known class of quasiregular mappings and for which are valid some recent modular and capacities inequalities established in [7].

AMS 1991 Classification No: 30C65

Keywords: Zoric's theorem, Montel's theorem, mappings of finite distortion.

1. INTRODUCTION.

A mapping $f: D \to \mathbb{R}^n$, where $D \subset \mathbb{R}^n$ is a domain, is said to have finite distortion if the following conditions are satisfied:

1) $f \in W_{\text{loc}}^{1,1}(D, \mathbb{R}^n)$.

2) The Jacobian determinant $J_f(x)$ is locally integrable.

3) There exists a measurable function $K: D \to [0, \infty]$, finite a.e. such that $|f'(x)|^n \leq K(x) \cdot J_f(x)$ a.e.

Notice that when $K \in L^{\infty}(D)$, we obtain the known class of quasiregular mappings, and we refer the reader to [10],[11] for the monographs dedicated to this subject. Quasiregular mappings are either constant, or open, discrete, satisfies condition (N) and a Hölder condition.

If the dilatation map $K \in L^p_{loc}(D)$, p > n-1 and $f \in W^{1,n}_{loc}(D, \mathbb{R}^n)$, then it is shown in [9] that a map with finite distortion is open, discrete.

Recently were considered in [7], [8] mappings $f: D \to \mathbb{R}^n$ of finite distortion for which there exists $\mathcal{A} : [0, \infty) \to [0, \infty)$ smooth, strictly increasing, with $\mathcal{A}(0) = 0$, $\lim_{t \to \infty} \mathcal{A}(t) = \infty$ and satisfying the conditions:

 $(\mathcal{A}_0) \exp\left(\mathcal{A}(K)\right) \in L^1_{\text{loc}}(D).$

$$(\mathcal{A}_1) \int_1^\infty \frac{\mathcal{A}(t)}{t} \mathrm{d}t = \infty.$$

 (\mathcal{A}_2) there exists $t_0 > 0$ such that $\mathcal{A}'(t) \cdot t$ increases to infinity for $t \geq t_0$.

As in [7], we say that a mapping of finite distortion satisfies condition (\mathcal{A}) if f satisfies condition (\mathcal{A}_0) , (\mathcal{A}_1) , (\mathcal{A}_2) . In [4], Theorem 1.3 it is shown that such nonconstant mappings are either constant or open, discrete if $\mathcal{A}(t) = \lambda t$ for some $\lambda > 0$. We shall show in Theorem 1 that mappings $f: D \to \mathbb{R}^n$ with finite distortion, satisfying condition (\mathcal{A}) are such the dilatation map K is in $L^p_{\text{loc}}(D)$ for every p > 0 and $f \in W^{1,p}_{\text{loc}}(D, \mathbb{R}^n)$ for every $1 \leq p < n$. This ensures (see [5], Prop.2.5, [6], Theorem 1.1 or Theorem 2.1 [7]) that such mappings are continuous and either constant, or open, discrete. Our proofs are based on the following basic ingredients, valid for mappings $f: D \to \mathbb{R}^n$ of finite distortion and satisfying condition (\mathcal{A}) :

(i) $M(f(\Gamma)) \leq M_{K^{n-1}}(\Gamma)$ for every path family Γ from D.

(ii) cap $f(E) \leq \operatorname{cap}_{K^{n-1}}(E)$, where E = (G, C) is a capacitor with $G \subset C$.

(iii) $\operatorname{cap}_{K^{n-1}}(B(x,R), \overline{B}(x,r)) \to 0$ when $r \to 0$ and R > 0 is keeped fixed established in [7], Corollary 4.2, Corollary 5.2 and Theorem 5.3. Here K is the dilatation map of f. We also find in Lemma 1 a condition in order to ensure that $\operatorname{cap}_{K^{n-1}}(B(x,R), \overline{B}(x,r)) \to 0$ when r > 0 is keeped fixed and $R \to \infty$. This last condition is necessary in the proof of Zoric's theorem (Theorem 2 and Theorem 3).

We generalize Zoric's theorem for mappings with finite distortion which satisfies condition (\mathcal{A}) :

Theorem 3. (Zoric's theorem). Let $n \geq 3, f : \mathbb{R}^n \to \mathbb{R}^n$ a local homeomorphism and a map of finite distortion, satisfying condition (A) such that there exists r > 0 such that $\int_{CB(0,r)} \exp(\mathcal{A}(K(x))) \cdot \frac{1}{|x|^{2n}} dx < \infty$. Then $f : \mathbb{R}^n \to \mathbb{R}^n$

is a global homeomorphism.

We also give in Theorem 2 a version of Zoric's theorem with some "singular" sets K and B, extending some results from [1] and [2]. We give a Picard type theorem in Theorem 4, in connection with a similar result from [7].

Theorem 4. (Picard's theorem) Let $F \subset \mathbb{R}^n$ be closed, $f: \mathbb{R}^n \setminus F \to \mathbb{R}^n$ a nonconstant map of finite distortion, satifying condition (A), such that $M_{K^{n-1}}(F) = 0$ and there exists r > 0 such that $\int_{CB(0,r)} \exp(\mathcal{A}(K(x))) \cdot \frac{1}{|x|^{2n}} dx < \infty$. Then

$\operatorname{cap} Cf(I\!\!R^n \backslash F) = 0.$

We generalize in Theorem 8 a known equicontinuity result for quasiregular mappings:

Theorem 5. Let $D \subset \mathbb{R}^n$ be a domain, $M \subset \mathbb{R}^n$ with cap M > 0 and let W be a family of mappings $f : D \to \mathbb{R}^n \setminus M$ of finite distortion, satisfying condition (A) and having the same dilatation map K. Then W is equicontinuous and we take the euclidean distance on D and the chordal distance on \mathbb{R}^n .

We immediately obtain a Montel's theorem for mappings of finite distortion satisfying condition (\mathcal{A}) :

Theorem 6. (Montel's theorem). Let $D \subset \mathbb{R}^n$ be a domain, W be a bounded family of mappings $f: D \to \mathbb{R}^n$ of finite distortion, having the same dilatation map K and satisfying condition (\mathcal{A}) . Then W is a normal family.

2. Preliminaries

We call a path $q: [0,1) \to \mathbb{R}^n$ an open path and a point $x \in \overline{\mathbb{R}^n}$ will be called a limit point of q if there exists $t_p \nearrow 1$ such that $q(t_p) \to x$. If Γ is a path family in $\overline{\mathbb{R}^n}$, we define $F(\Gamma) = \{\rho : \overline{\mathbb{R}^n} \to [0,\infty]$ Borel maps $|\int \rho ds \ge 1$ for every $\gamma \in \Gamma$ locally rectifiable}. Let now $D \subset \mathbb{R}^n$ be open and $\omega: D \to [0,\infty]$ be measurable and finite a.e. Then, if $\tilde{\omega}: \mathbb{R}^n \to [0,\infty]$ is defined by $\tilde{\omega}(x) = \omega(x)$ if $x \in D$, $\tilde{\omega}(x) = 0$ if $x \notin D$, we define the ω -modulus of Γ by $M_{\omega}(\Gamma) = \inf_{\rho \in F(\Gamma)} \int_{\mathbb{R}^n} \rho^n(x) \cdot \tilde{\omega}(x) dx$ and for $\omega \equiv 1$ we obtain the usual modulus

 $M(\Gamma)$. If Γ_1 , Γ_2 are path families in $\overline{\mathbb{R}^n}$, we say that $\Gamma_1 > \Gamma_2$ if every path from

 Γ_1 has a subpath in Γ_2 and as in the classical case, we prove that if $\Gamma_1 > \Gamma_2$, then $M_{\omega}(\Gamma_1) \leq M_{\omega}(\Gamma_2)$. Also, we prove that $M_{\omega}\left(\bigcup_{i=1}^{\infty} \Gamma_i\right) \leq \sum_{i=1}^{\infty} M_{\omega}(\Gamma_i)$, and if $\omega_1 \leq \omega_2$, then $M_{\omega_1}(\Gamma) \leq M_{\omega_2}(\Gamma)$. We define for $D \subset \mathbb{R}^n$ open, $E, F \subset \overline{D}$ by $\Delta(E, F, D)$ the family of all paths, open or not, which joins E with F in D.

We say that E = (D, C) is a condenser if C is compact, D is open, $C \subset D \subset \mathbb{R}^n$, and let $\omega : D \to [0, \infty]$ be measurable and finite a.e. We define

the ω -capacity of E by $\operatorname{cap}_{\omega} E = \inf_{\mathbb{R}^n} \int |\nabla u|^n (x) \cdot \omega(x) \, \mathrm{d}x$, where $u \in C_0^{\infty}(D)$ and $u \ge 1$ on C, and if $\omega = 1$ we obtain the usual capacity of E, cap E. We

and $u \geq 1$ on C, and if $\omega = 1$ we obtain the usual capacity of E, cap E. We see that if u is a test function for $\operatorname{cap}_{\omega} E$, the $\rho = |\nabla u| \in F(\Gamma_E)$, and this implies that $M_{\omega}(\Gamma_E) \leq \operatorname{cap}_{\omega}(E)$. Here $\Gamma_E = \{\gamma : [a, b] \to D \text{ path } |\gamma(a) \in C$ and γ has a limit point in $\partial D\}$ and from Prop. 10.2, [11], page 54, we have cap $E = M(\Gamma_E)$. If $C \subset \mathbb{R}^n$ is compact, we say that cap C = 0 if $\operatorname{cap}(A, C) = 0$ for every $C \subset A \subset \mathbb{R}^n$ open and from [11], Lemma 2.2, page 64, the definition is independent on the open set A such that $C \subset A$. If $C \subset \mathbb{R}^n$ is arbitrary, we say that cap C = 0 if cap K = 0 for every $K \subset C$ compact.

Let now $D \subset \mathbb{R}^n$ be open, $\omega : D \to [0, \infty]$ be measurable and finite a.e., $A \subset D$ a set. We say that A is of zero ω -modulus, and we write $M_{\omega}(A) = 0$, if the ω -modulus of all paths having some limit point in A is zero. If $\omega \geq 1$, we see that $M(\Gamma) \leq M_{\omega}(\Gamma)$ hence, if $M_{\omega}(A) = 0$, then cap A = 0.

If $A \subset D$ is countable and $\lim_{r \to 0} M_{\omega} \left(\Delta \left(\overline{B}(x,r), \overline{CB}(x,R), D \right) \right) = 0$ for every $x \in A$ and every 0 < R with $\overline{B}(x,R) \subset D$, we prove as in the classical case that $M_{\omega}(A) = 0$. Using Theorem 5.3 [7], we see that this thing holds for instance if $\omega = K^{n-1}$, where $K : D \to [0,\infty]$ is measurable and finite a.e. and for every $x \in A$ there exists $\rho_x > 0$ such that $\overline{B}(x,\rho_x) \subset D$ and $\int \exp\left(\mathcal{A}(K(y))\right) dy < \infty$, where \mathcal{A} satisfies conditions (\mathcal{A}_1) and (\mathcal{A}_2) .

 $B(x, \rho_x)$

Also, Lemma 1 gives a condition which ensures that $M_{K^{n-1}}(\infty) = 0$.

If $D \subset \mathbb{R}^n$ is open and $b \in \partial D$, we define $C(f, b) = \{w \in \overline{\mathbb{R}^n} \mid \text{there exists} b_p \in D, b_p \to b \text{ such that } f(b_p) \to w\}$ and if $B \subset \partial D$, we let $C(f, B) = \bigcup_{b \in B} C(f, b)$. If E, F are Hausdorff spaces, $f : E \to F$ is a map, $p : [0, 1] \to F$ is a path, $x \in E$ is such that f(x) = p(0), we say that $q : [0, a) \to E$ is a maximal lifting of p from x if $q(0) = x, 0 < a \le 1$, $f \circ q = p | [0, a)$ and q is maximal with this property. If q is defined on [0, 1], we say that q is a lifting of p. If E, F are domains in \mathbb{R}^n and f is continuous, open, discrete, there exists allways a maximal lifting. We let by μ_n the Lebesgue measure in \mathbb{R}^n . We shall denote by q the chordal metric in $\overline{\mathbb{R}^n}$ given by $q(a, b) = |a - b| \cdot (1 + |a|^2)^{-\frac{1}{2}} \cdot (1 + |b|^2)^{-\frac{1}{2}}$

if $a, b \in \mathbb{R}^n$, $q(a, \infty) = (1 + |a|^2)^{-\frac{1}{2}}$ if $a \in \mathbb{R}^n$ and by |a - b| the euclidean distance between a and b in \mathbb{R}^n . We denote by $B_q(x, r)$, respectively B(x, r) the ball of center x and radius r if we consider on \mathbb{R}^n the chordal metric, respectively

the euclidean metric and in the same way we denote for a set $A \subset \mathbb{R}^n$ by q(A), respectively d(A) the diameter of A. We denote by $W_{loc}^{1,p}(D,\mathbb{R}^n)$ the Sobolev space of all functions $f: D \to \mathbb{R}^n$ which are locally in $L^p(D)$, together with their first order weak partial derivatives.

If W is a family of mappings $f: D \to \mathbb{R}^n$, we say that W is bounded if for every $K \subset D$ compact, there exists M(K) > 0 such that $|f(x)| \leq M(K)$ for every $x \in K$ and every $f \in W$. If X, Y are metric spaces and W is a family of mappings $f: X \to Y$ we say that W is equicontinuous at x if for every $\varepsilon > 0$, there exists $\delta_{\varepsilon} > 0$ such that $d(f(x), f(y)) \leq \varepsilon$ if $d(y, x) \leq \delta_{\varepsilon}$ for every $f \in W$, and we say that W is equicontinuous if it is equicontinuous at every point $x \in X$. We say that W is a normal family if every sequence of W has a subsequence which converges uniformly on the compact subsets of X to a map $f: X \to Y.$

Lemma 1. Let $n \geq 2, D \subset \mathbb{R}^n$ be an unbounded domain, $K: D \to [0, \infty]$ measurable and finite a.e., $\mathcal{A}: [0,\infty) \to [0,\infty)$ be smooth, strictly increasing, with $\mathcal{A}(0) = 0$, $\lim_{t \to \infty} \mathcal{A}(t) = \infty$, satisfying condition (\mathcal{A}_1) and (\mathcal{A}_2) such that $\int_{D\cap CB(0,r)} \exp\left(\mathcal{A}\left(K\left(x\right)\right)\right) \cdot \frac{1}{|x|^{2n}} \mathrm{d}x < \infty. \quad Then$ there exists r > 0 such that

 $M_{K^{n-1}}(\Delta(\overline{B}(0,r)\cap D,CB(0,s)\cap D,D)\to 0 \text{ when } s\to\infty \text{ and } r>1 \text{ is keeped}$ fixed.

Proof. Let $g: \overline{\mathbb{R}^n} \to \overline{\mathbb{R}^n}$ be defined by $g(x) = \frac{x}{|x|^2}$ if $x \in \overline{\mathbb{R}^n}$ and let $\Gamma_{rs} =$ $\Delta(\overline{B}(0,r)\cap D, CB(0,s)\cap D, D), \ \Lambda_{rs} = \Delta(g(D)\cap \overline{B}(0,\frac{1}{s}), g(D)\cap CB(0,\frac{1}{r}), g(D))$ for 1 < r < s. We show that $M_{K^{n-1}}(\Gamma_{rs}) = M_{K^{n-1}\circ g}(\Lambda_{rs})$. Let $\rho' \in$ $F(\Gamma_{rs})$ and ρ : $\overline{\mathbb{R}^n} \to [0,\infty]$ be defined by $\rho(x) = \rho'(g(x)) \cdot |g'(x)|$ if $x \in D, \ \rho(x) = 0 \text{ if } x \notin D. \text{ Then } \rho \in \Gamma(\Lambda_{rs}) \text{ and } M_{K^{n-1} \circ g}(\Lambda_{rs}) \leq \int_{\mathbb{R}^n} \rho^n(x) \cdot \mathcal{N}(x)$ $K^{n-1}(g(x))dx = \int_{D} \rho'^{n}(g(x))|g'(x)|^{n} \cdot K^{n-1}(g(x))dx = \int_{D} \rho'^{n}(g(x)) \cdot K^{n-1}(g(x)) \cdot K^{n-1}(g(x))dx$ $J_g(x)\mathrm{d}x = \int\limits_{g(D)} \rho'^n(y) \cdot K^{n-1}(y)\mathrm{d}y \le \int\limits_{\mathbb{R}^n} \rho'^n(y) \cdot K^{n-1}(y)\mathrm{d}y.$ This implies that $M_{K^{n-1}\circ g}\left(g\left(\Gamma_{rs}\right)\right) = M_{K^{n-1}\circ g}\left(\Lambda_{rs}\right) \leq M_{K^{n-1}}\left(\Gamma_{rs}\right)$. By the same argument, we have $M_{K^{n-1}}\left(\Gamma_{rs}\right) = M_{K^{n-1}\circ g\circ g}\left(g\left(\Lambda_{rs}\right)\right) \leq M_{K^{n-1}\circ g}\left(\Lambda_{rs}\right)$ and we have $M_{K^{n-1}}\left(\Gamma_{rs}\right) = M_{K^{n-1}\circ q}\left(\Lambda_{rs}\right).$

(1)

We find $\int \exp(\mathcal{A}(K(g(x)))) dx = \int \exp(\mathcal{A}(K(g(x)))) \cdot J_{g^{-1}}(g(x)) \cdot J_g(x) dx =$ $g(D)\cap B(0,\frac{1}{n})$ $g(D)\cap B(0,\frac{1}{2})$

$$\int_{D\cap CB(0,r)} \exp\left(A\left(K\left(y\right)\right)\right) \cdot J_{g-1}\left(y\right) \mathrm{d}y = \int_{D\cap CB(0,r)} \exp\left(A\left(K\left(y\right)\right)\right) \cdot \frac{1}{\left|y\right|^{2n}} \mathrm{d}y < \infty.$$

Let now $\Gamma'_{rs} = \Delta\left(\overline{B}\left(0, \frac{1}{s}\right), CB\left(0, \frac{1}{r}\right), B\left(0, \frac{1}{r}\right) \setminus \overline{B}\left(0, \frac{1}{s}\right)\right)$ for 1 < r < s and let $Q : \mathbb{R}^n \to [0, \infty]$ be defined by Q(x) = K(g(x)) if $x \in g(D), Q(x) = c$ 1 if $x \notin g(D)$. Since $\int \exp(\mathcal{A}(Q(x))) dx < \infty$, we see from Theorem

5.3, page 24, [7] that $\operatorname{cap}_{Q^{n-1}}\left(B\left(0,\frac{1}{r}\right),\overline{B}\left(0,\frac{1}{s}\right)\right) \to 0$ when $s \to \infty$ and r > 0 is keeped fixed. We have $M_{K^{n-1}\circ g}(\Lambda_{rs}) \leq M_{Q^{n-1}}(\Lambda_{rs}) \leq M_{Q^{n-1}}(\Gamma_{rs}') \leq \operatorname{cap}_{Q^{n-1}}\left(B\left(0,\frac{1}{r}\right),\overline{B}\left(0,\frac{1}{s}\right)\right)$ and this implies that

(2).
$$M_{K^{n-1} \circ q}(\Lambda_{rs}) \to 0$$
 when $s \to \infty$ and $r > 0$ is keeped fixed

Using (1) and (2), the proof is finished.

Theorem 1. Let $D \subset \mathbb{R}^n$ be open, $f: D \to \mathbb{R}^n$ be a map of finite distortion, satisfying condition (\mathcal{A}) and let $K: D \to [0, \infty]$ be the dilatation map of f. Then $K \in L^p_{loc}(D)$ for every p > 0 and $f \in W^{1,p}_{loc}(D, \mathbb{R}^n)$ for every $1 \le p < n$. *Proof.* Suppose first that $p \ge 1$ and let $g: (0, \infty) \to \mathbb{R}_+$ be defined by $g(t) = \exp\left(\mathcal{A}\left(t^{\frac{1}{p}}\right)\right)$ for t > 0. Then g is strictly increasing on $(0, \infty)$ and from Lemma 2.4 [8] there exists b > 1 such that g is convex on (b, ∞) . Let $F: D \to [0, \infty], F(x) = K(x)$ if K(x) > b, F(x) = b if $K(x) \le b$. Then F is measurable and we have, using Jensen's inequality, that $g(\int_B K^p(x) dx) \le g(\int_B F^p(x) dx$

 $g(\int_{B} F^{p}(x) dx/\mu_{n}(B)) \leq \int_{B} g(F^{p}(x)) dx/\mu_{n}(B), \text{ where } B \subset D \text{ is compact and such that } \mu_{n}(B) < 1.$

It results that

$$\int_{B} K^{p}(x) dx \leq \left[\mathcal{A}^{-1} \left(\log \left(\max \left\{ 1, \int_{B} \exp \left(\mathcal{A} \left(F \left(x \right) \right) \right) dx / \mu_{n} \left(B \right) \right\} \right) \right) \right]^{p} < \infty$$
If $0 , then $\int_{B} K^{p}(x) dx \leq \left(\int_{B} K(x) dx \right)^{p} < \infty$. We therefore$

proved that $\int_{B} K^{p}(x) dx < \infty$ if $B \subset D$ is compact with $\mu_{n}(B) < 1$ for every

p > 0, hence $K \in L^p_{\text{loc}}(D)$ for every p > 0.

Let now $1 \le p < n$. Then we have from [7], Corollary 5.5, [5] Prop. 2.5 and [6] Theorem 1.1. that f is continuous and either constant on D, or open and discrete. We can suppose that f is open, discrete on D and let B a ball with $\overline{B} \subset D$. Then $N(f, B) = \sup_{y \in \mathbb{R}^n} \operatorname{Card} f^{-1}(y) \cap B < \infty$ and from Theorem 6.3.2,

page 107 [3], we see that $\int_{B} J_f(x) dx < \infty$. We have, using Hölder's inequality, that

$$\int_{B} \left| f'(x) \right|^{p} \mathrm{d}x \leq \left(\int_{B} K(x)^{\frac{p}{n-p}} \mathrm{d}x \right)^{\frac{n-p}{n}} \cdot \left(\int_{B} J_{f}(x) \mathrm{d}x \right)^{\frac{p}{n}} < \infty.$$

Since f is continuous and $f \in W^{1,1}_{loc}(D, \mathbb{R}^n)$, we see that f is ACL¹ on B, hence f is ACL, and from Prop.1.2, page 6, [11], we see that $f \in W_{loc}^{1,p}(D,\mathbb{R}^n)$ for $1 \leq p < n$.

3. PROOFS OF THE MAIN RESULTS.

Theorem 2. Let $n \ge 3$, $B = \{a_1, \ldots, a_j, \infty\}$, $K \subset \mathbb{R}^n \setminus B$ closed in $\mathbb{R}^n \setminus B$ with int $K = \phi$, $f : \mathbb{R}^n \setminus (K \cup B) \to \mathbb{R}^n$ be a map of finite distortion, of K(x) dilatation, satisfying condition (A) and a local homeomorphism such that int $C(f,K) = \phi$, C(f,K) is closed and $\mathbb{R}^n \setminus C(f,K)$ is connected and let $E = K \cup B \cup f^{-1}(C(f,K))$. Suppose that there exists $\delta_p > 0$ such that $\exp\left(\mathcal{A}\left(K\left(x\right)\right)\right) \mathrm{d}x < \infty, \ p = 1, \dots, j \ and \ that \ there \ exists \ \delta_0 > 0 \ such$

$$B(a_p, \delta_p)$$

that
$$\int_{CB(0,\delta_{0}) \cap (\mathbb{R}^{n})(K \cup B))} \exp\left(\mathcal{A}\left(K(x)\right)\right) \cdot \frac{1}{|x|^{2n}} < \infty.$$
 Then

1) either we can lift any path $p: [0,1] \to \mathbb{R}^n \setminus C(f,K)$ from every point x with f(x) = p(0), or we can eliminate some set $A \subset B$, extending f by continuity to a local homeomorphism on A, such that the extended map (also denoted by f) lifts any path $p: [0,1] \to \mathbb{R}^n \setminus C(f,K)$ from every point x with f(x) = p(0), and if $A \neq \phi$ and $\infty \in A$, some lifted path can go through ∞ .

2) if C(f, K) is compact, then int $E = \phi$ and f is injective on $\mathbb{R}^n \setminus E$ and if f can be continuously extended on K, then $f|(\overline{\mathbb{R}^n}\setminus K)\setminus (B\setminus A):(\overline{\mathbb{R}^n}\setminus K)\setminus (B\setminus A)\to$ $\mathbb{R}^{n} C(f, K)$ is a homeomorphism. Finally if f can be continuously extended to an open map on K, then $f:\overline{\mathbb{R}^n}\to\overline{\mathbb{R}^n}$ is a homeomorphism.

Proof. Let $\Gamma = \{\gamma : [0,1] \to \mathbb{R}^n \setminus (K \cup B) \text{ path} \mid \gamma \text{ has some limit point in } \}$ B}. We see from Lemma 1 and Theorem 5.3, page 24, [7] that $M_{K^{n-1}}(B) = 0$, hence $M_{K^{n-1}}(\Gamma) = 0$. Using (i), we see that $M(f(\Gamma)) \leq M_{K^{n-1}}(\Gamma) = 0$, hence $M(f(\Gamma)) = 0$ and from Theorem 1 [2], 1) is proved.

Suppose now that C(f, K) is compact and let r > 0 be such that $C(f, K) \subset$ B(0,r), let 0 < r < s and let $x \in \mathbb{R}^n \setminus (K \cup (B \setminus A))$ be such that $f(x) \in \mathbb{R}^n \setminus (K \cup (B \setminus A))$ CB(0,s). Let Q be the component of $f^{-1}(CB(0,r))$ which contains x and let U be the component of $f^{-1}(CB(0,s))$ which contains x. Then $\overline{U} \subset Q$ and since CB(0,r) is simply connected and $f|Q: Q \to CB(0,r)$ is a local homeomorphism which lifts the paths, we see that $f|Q: Q \to CB(0,r)$ is a homeomorphism, and hence $f|\overline{U}:\overline{U}\to\overline{CB(0,s)}$ is also a homeomorphism. Since $f|\partial U: \partial U \to S(0,s)$ is a homeomorphism, we use Jordan's theorem to see that $\mathbb{R}^n \setminus \partial U$ has exactly two components, one of them being U, and since \overline{U} is homeomorphic to $\overline{CB(0,s)}$, we see that U is unbounded. If U_0 is any other component of $f^{-1}(CB(0,s))$, we see by the same argument that $f|\overline{U}_0:\overline{U}_o\to\overline{CB(0,s)}$ is a homeomorphism, that ∂U_0 bounds a Jordan domain and U_0 is the unbounded component of $\mathbb{R}^n \setminus \partial U_0$. Let $\alpha > 0$ be such that $\partial U \cup \partial U_0 \subset B(0, \alpha)$, Then $CB(0, \alpha) \subset U \cap U_0$, hence $U = U_0$ and we obtain that $f^{-1}(CB(0,s))$ has a single component U on which f is injective, $K \subset C\overline{U}$ and $U = f^{-1}CB(0, s)$.

Since f is a local homeomorphism on $\mathbb{R}^n \setminus (K \cup B)$ and int $C(f, K) = \phi$, we see that int $E = \phi$. Let $x_1, x_2 \in \mathbb{R}^n \setminus E$ be such that $f(x_1) = f(x_2) = y$ and let $z \in CB(0, s)$ and $p: [0, 1] \to \mathbb{R}^n \setminus C(f, K)$ be a path such that p(0) = y and p(1) = z. We can lift p from x_1 and x_2 and find some path $q_i: [0, 1] \to \mathbb{R}^n$ such that $q_i(0) = x_i$, $f \circ q_i = p$, i = 1, 2. Since $q_i(1) \in f^{-1}(CB(0, s)) =$ $U, f(q_i(1)) = p(1), i = 1, 2$ and we proved that f is injective on U, we obtain that $q_1(1) = q_2(1)$. We use now the property of the uniqueness of path lifting for local homeomorphisms to conclude that $x_1 = x_2$. We therefore proved that f is injective on $\mathbb{R}^n \setminus E$.

Suppose now that f can be continuously extended on K and let $a \in \overline{\mathbb{R}^n} \setminus (B \setminus A)$ be a point such that f is open at a. We show that $\{a\} = f^{-1}(f(a))$. Indeed, if there exists $b \neq a, b \in \overline{\mathbb{R}^n} \setminus (B \setminus A)$ such that f(a) = f(b), let $U_1 \in \mathcal{V}(a)$ and $V \in \mathcal{V}(f(a))$ be such that $f(U_1) = V$. Since f is continuous at b, we can find $U_2 \in \mathcal{V}(b)$ with $\overline{U_1} \cap \overline{U_2} = \phi$ such that $f(U_2) \subset V$ and since int $E = \phi$, we can find $\alpha \in U_2 \setminus E$. Then we can find $\beta \in U_1 \setminus E$ with $f(\alpha) = f(\beta)$, which represents a contradiction, since we proved that f is injective on $\mathbb{R}^n \setminus E$. It results now immediately that $f|(\overline{\mathbb{R}^n} \setminus K) \setminus (B \setminus A) : (\overline{\mathbb{R}^n} \setminus K) \setminus (B \setminus A) \to \mathbb{R}^n \setminus f(K)$ is a homeomorphism, and if we additionally suppose that f is also an open map on K, we find that $f|\overline{\mathbb{R}^n} \setminus (B \setminus A) : \overline{\mathbb{R}^n} (B \setminus A) \to \mathbb{R}^n$ is a homeomorphism. In the last case we see by topological reasons that $B \setminus A = \{a\}$, with $a \in B$ and that $f: \overline{\mathbb{R}^n} \to \overline{\mathbb{R}^n}$ can be extended to a homeomorphism.

Proof of Theorem 3. We take $K = \phi$ and $B = \{\infty\}$ in Theorem 2.

Proof of Theorem 4. Since $M_{K^{n-1}}(F) = 0$, we see that cap F = 0 and hence that $\mathbb{R}^n \setminus F$ is a domain, and since f is nonconstant on $\mathbb{R}^n \setminus F$, we see that f is open, discrete on $\mathbb{R}^n \setminus F$. Suppose that cap $Cf(\mathbb{R}^n \setminus F) > 0$ and let $K \subset \mathbb{R}^n \setminus F$ be compact, connected, with Card K > 1. Then $E = (f(\mathbb{R}^n \setminus F), f(K))$ is a capacitor and q(f(K)) > 0, and from Lemma 2.6, page 65, [11], there exists $\delta > 0$ such that $\delta <$ cap E. Let $\Gamma' = \Delta(f(K), Cf(\mathbb{R}^n \setminus F), \mathbb{R}^n)$ and let Γ be the family of all maximal liftings of some path from Γ' starting from some point of K. Then $\Gamma' < f(\Gamma)$ and if $\gamma \in \Gamma$, then γ has at least a limit point in $F \cup \{\infty\}$. Since $\int_{\Gamma} \exp(\mathcal{A}(K(x))) \cdot \frac{1}{|x|^{2n}} dx < \infty$, we see from Lemma

1 that $M_{K^{n-1}}(\infty) = 0$, hence $M_{K^{n-1}}(F \cup \{\infty\}) = 0$ and this implies that $M_{K^{n-1}}(\Gamma) = 0$. We use now (i) and we obtain that $\delta < \operatorname{cap}(E) = M(\Gamma') \leq M(f(\Gamma)) \leq M_{K^{n-1}}(\Gamma) = 0$, which represents a contradiction. We therefore proved that $\operatorname{cap} Cf(\mathbb{R}^n \setminus F) = 0$.

$$\begin{split} M(f(\Gamma)) &\leq M_{K^{n-1}}(x) = 0, \\ \text{proved that cap } Cf(\mathbb{R}^n \setminus F) &= 0. \\ \text{Remark 1. The condition } \int_{CB(0,r)} \exp(\mathcal{A}(K(x))) \cdot \frac{1}{|x|^{2n}} \mathrm{d}x < \infty, \text{ which ensures to } \mathcal{I}_{\text{orig}'s theorem } \end{split}$$

that $M_{K^{n-1}}(\infty) = 0$, and used in our generalizations given to Zoric's theorem and Picard's theorem can be realized for instance if $K(x) \leq K_p$ for $x \in B(0,p)$, $p \geq p_0$ and $\limsup_{p \to \infty} \frac{K_p}{\ln p} = \alpha < n$ (i.e. it holds for a locally quasiregular map having some logarithmic growth of the constant of quasiregu-

larity near ∞). Indeed, we take $\mathcal{A}(i) = t$ and if $p_1 \ge p_0$ is such that $K_p < \alpha \cdot \ln p$

for $p \ge p_1$, we have

$$\int_{CB(0,p_1)} \exp\left(\mathcal{A}\left(K\left(x\right)\right)\right) \cdot \frac{1}{\left|x\right|^{2n}} \mathrm{d}x = \sum_{p \ge p_1} \int_{B(0,p+1) \setminus B(0,p)} \exp\left(\mathcal{A}\left(K\left(x\right)\right)\right) \cdot \frac{1}{\left|x\right|^{2n}} \mathrm{d}x \le \sum_{p \ge p_1} \int_{B(0,p+1) \setminus B(0,p)} \exp\left(\mathcal{A}\left(K\left(x\right)\right)\right) \cdot \frac{1}{\left|x\right|^{2n}} \mathrm{d}x \le \sum_{p \ge p_1} \int_{B(0,p+1) \setminus B(0,p)} \exp\left(\mathcal{A}\left(K\left(x\right)\right)\right) \cdot \frac{1}{\left|x\right|^{2n}} \mathrm{d}x \le \sum_{p \ge p_1} \int_{B(0,p+1) \setminus B(0,p)} \exp\left(\mathcal{A}\left(K\left(x\right)\right)\right) \cdot \frac{1}{\left|x\right|^{2n}} \mathrm{d}x \le \sum_{p \ge p_1} \int_{B(0,p+1) \setminus B(0,p)} \exp\left(\mathcal{A}\left(K\left(x\right)\right)\right) \cdot \frac{1}{\left|x\right|^{2n}} \mathrm{d}x \le \sum_{p \ge p_1} \int_{B(0,p+1) \setminus B(0,p)} \exp\left(\mathcal{A}\left(K\left(x\right)\right)\right) \cdot \frac{1}{\left|x\right|^{2n}} \mathrm{d}x \le \sum_{p \ge p_1} \int_{B(0,p+1) \setminus B(0,p)} \exp\left(\mathcal{A}\left(K\left(x\right)\right)\right) \cdot \frac{1}{\left|x\right|^{2n}} \mathrm{d}x \le \sum_{p \ge p_1} \int_{B(0,p+1) \setminus B(0,p)} \exp\left(\mathcal{A}\left(K\left(x\right)\right)\right) \cdot \frac{1}{\left|x\right|^{2n}} \mathrm{d}x \le \sum_{p \ge p_1} \int_{B(0,p+1) \setminus B(0,p)} \exp\left(\mathcal{A}\left(K\left(x\right)\right)\right) \cdot \frac{1}{\left|x\right|^{2n}} \mathrm{d}x \le \sum_{p \ge p_1} \int_{B(0,p+1) \setminus B(0,p)} \exp\left(\mathcal{A}\left(K\left(x\right)\right)\right) \cdot \frac{1}{\left|x\right|^{2n}} \mathrm{d}x \le \sum_{p \ge p_1} \int_{B(0,p+1) \setminus B(0,p)} \exp\left(\mathcal{A}\left(K\left(x\right)\right)\right) \cdot \frac{1}{\left|x\right|^{2n}} \mathrm{d}x \le \sum_{p \ge p_1} \int_{B(0,p+1) \setminus B(0,p)} \exp\left(\mathcal{A}\left(K\left(x\right)\right)\right) \cdot \frac{1}{\left|x\right|^{2n}} \mathrm{d}x \le \sum_{p \ge p_1} \int_{B(0,p+1) \setminus B(0,p)} \exp\left(\mathcal{A}\left(K\left(x\right)\right)\right) \cdot \frac{1}{\left|x\right|^{2n}} \mathrm{d}x \le \sum_{p \ge p_1} \int_{B(0,p+1) \setminus B(0,p)} \exp\left(\mathcal{A}\left(K\left(x\right)\right)\right) \cdot \frac{1}{\left|x\right|^{2n}} \mathrm{d}x \le \sum_{p \ge p_1} \int_{B(0,p+1) \setminus B(0,p)} \exp\left(\mathcal{A}\left(K\left(x\right)\right)\right) \cdot \frac{1}{\left|x\right|^{2n}} \mathrm{d}x \le \sum_{p \ge p_1} \int_{B(0,p+1) \setminus B(0,p)} \exp\left(\mathcal{A}\left(K\left(x\right)\right)\right) \cdot \frac{1}{\left|x\right|^{2n}} \mathrm{d}x \le \sum_{p \ge p_1} \int_{B(0,p+1) \setminus B(0,p)} \exp\left(\mathcal{A}\left(K\left(x\right)\right)\right) \cdot \frac{1}{\left|x\right|^{2n}} \mathrm{d}x \le \sum_{p \ge p_1} \int_{B(0,p+1) \setminus B(0,p)} \exp\left(\mathcal{A}\left(K\left(x\right)\right)\right) \cdot \frac{1}{\left|x\right|^{2n}} \mathrm{d}x \le \sum_{p \ge p_1} \int_{B(0,p+1) \setminus B(0,p)} \exp\left(\mathcal{A}\left(K\left(x\right)\right)\right) \cdot \frac{1}{\left|x\right|^{2n}} \mathrm{d}x \le \sum_{p \ge p_1} \int_{B(0,p+1) \setminus B(0,p)} \exp\left(\mathcal{A}\left(K\left(x\right)\right)\right) \cdot \frac{1}{\left|x\right|^{2n}} \mathrm{d}x \le \sum_{p \ge p_1} \int_{B(0,p+1) \setminus B(0,p)} \exp\left(\mathcal{A}\left(K\left(x\right)\right)\right) \cdot \frac{1}{\left|x\right|^{2n}} \mathrm{d}x \le \sum_{p \ge p_1} \int_{B(0,p+1) \setminus B(0,p)} \exp\left(\mathcal{A}\left(K\left(x\right)\right)\right) \cdot \frac{1}{\left|x\right|^{2n}} \mathrm{d}x \le \sum_{p \ge p_1} \int_{B(0,p+1) \setminus B(0,p)} \exp\left(\mathcal{A}\left(K\left(x\right)\right)\right) \cdot \frac{1}{\left|x\right|^{2n}} \mathrm{d}x \le \sum_{p \ge p_1} \int_{B(0,p+1) \setminus B(0,p)} \exp\left(\mathcal{A}\left(K\left(x\right)\right)\right) \cdot \frac{1}{\left|x\right|^{2n}} \mathrm{d}x \le \sum_{p \ge p_1} \int_{B(0,p+1) \setminus B(0,p)} \exp\left(\mathcal{$$

$$\sum_{p \ge p_1} \int_{B(0,p+1) \setminus B(0,p)} \exp(K_{p+1}) \cdot \frac{1}{|x|^{2n}} dx \le C_0 \cdot \sum_{p \ge p_1} \frac{(p+1)^{\alpha} \left((p+1)^n - p^n\right)}{p^{2n}} \le C_1 \cdot \sum_{p \ge p_1} \frac{1}{p^{n-\alpha+1}} < \infty.$$

Here C_0 and C_1 are some constants.

We can generalize in this way Theorem 8 and Theorem 9 from [2], obtaining a generalization of Zoric's theorem for locally quasiregular mappings having a logarithmic growith of the constant of quasiregularity near ∞ .

In the same manner, the condition $\int_{B(b,\rho)} \exp(\mathcal{A}(K(x))) dx < \infty$, which

ensures that $M_{K^{n-1}}(b) = 0$ is realized for instance if $K(x) \leq K_p$ on $CB(b, \frac{1}{p})$ for $p \geq p_0$ and $\limsup_{p \to \infty} \frac{K_p}{\ln p} = \alpha < n$. This condition holds for locally quasiregular mappings having some logarithmic growth of the constant of quasiregularity near the critical point $b \in \partial D$ and it can be used in Theorem 2 and Theorem 4.

Remark 2. The condition $\int_{CB(0,r)} \exp(\mathcal{A}(K(x))) \cdot \frac{1}{|x|^{2n}} dx < \infty$ used in Theorem 4.

4 is necessary, since we can find bounded homeomorphisms $f : \mathbb{R}^n \to B(0, 1)$ of finite distortion and satisfying condition (\mathcal{A}) (see [7], page 28, or [6]).

Proof of Theorem 5. Let $x \in D$ be fixed, and $\varepsilon > 0$ with $\overline{B}(x,\varepsilon) \subset D$. We fix $\varepsilon > 0$ and suppose that there exists $\rho > 0, r_p \to 0$ and $f_p \in W$ such that $q\left(f_p\left(\overline{B}(x,r_p)\right)\right) \ge \rho$ for every $p \in \mathbb{N}$. Then f_p are open, discrete maps for every $p \in \mathbb{N}$ and we can find $\delta > 0$ such that $\delta \le \operatorname{cap}\left(CM, f_p\left(\overline{B}(x,r_p)\right)\right)$ for every $p \in \mathbb{N}$ (see Lemma 2.6, page 65, [11]). We have, using (ii) that $\delta \le$ $\operatorname{cap}(CM, f_p(\overline{B}(x,r_p))) \le \operatorname{cap}(f_p(B(x,\varepsilon)), f_p(\overline{B}(x,r_p))) \le \operatorname{cap}_{K^{n-1}}(B(x,\varepsilon),\overline{B}(x,r_p)) \to$ 0 if $r_p \to 0$ and $\varepsilon > 0$ is keeped fixed, which represents a contradiction. We therefore proved that for every $\varepsilon > 0$ there exists $\delta_{\varepsilon} > 0$ such that $f\left(B\left(x,\delta_{\varepsilon}\right)\right) \subset$ $B_q\left(f\left(x\right),\varepsilon\right)$ for every $f \in W$, i.e. W is equicontinuous at x.

Proof of Theorem 6. Let $x \in D, \delta > 0$ such that $\overline{B}(x, \delta) \subset D$ and M > 0be such that $|f(y)| \leq M$ for every $y \in \overline{B}(x, \delta)$ and every $f \in W$ and let $W_0 = \{f | \overline{B}(x, \delta) | f \in W\}$. Using Theorem 5, we see that W_0 is equicontinuous at x, hence W is equicontinuous at x. We proved that W is equicontinuous, and we take on D the euclidean metric and on $\overline{\mathbb{R}^n}$ the chordal metric. Using Theorem 20.4, page 68 [12], if $(f_p)_{p \in \mathbb{N}}$ is a sequence of mappings from W, we can find a subsequence $(f_{p_k})_{k \in \mathbb{N}}$ and a map $f: D \to \overline{\mathbb{R}^n}$ such that $f_{p_k} \to f$ uniformly on the compact subsets from D. If $x \in D$ is fixed and $M_x > 0$ is such that $|f_{p_k}(x)| \leq M_x$ for every $k \in \mathbb{N}$, we see that $|f(x)| \leq M_x$, hence f takes finite values and it results that W is a normal family.

Theorem 7. Let $D \subset \mathbb{R}^n$ be open, W be a family of mappings $f : D \to \mathbb{R}^n$ of finite distortion, having the same distortion map K, satisfying condition (\mathcal{A}) and let $x \in D$ be such that there exists $r, \delta > 0$ such that $\overline{B}(x, \delta) \subset D$ and $f(B(x, \delta)) \subset B(f(x), r)$ for every $f \in W$. Then W is equicontinuous at x, and we take on D and on \mathbb{R}^n the euclidean distance.

Proof. Let $f \in W$. If f is constant on $B(x,\delta)$, then, $f(B(x,\rho)) = \{f(x)\} \subset B(f(x),\varepsilon)$ for every $0 < \rho < \delta$, $0 < \varepsilon < r$. Suppose that f is open, discrete on $B(x,\delta)$ and let $0 < \varepsilon < r$ and $0 < \rho < \delta$ and $E = (B(x,\delta), \overline{B}(x,\rho))$. Then $f(E) = (f(B(x,\delta), f(\overline{B}(x,\rho)))$ is a capacitor and let ν_n be the function defined in [11], page 60.

We keep $\delta > 0$ fixed and we let $\rho \to 0$ such that $\operatorname{cap}_{K^{n-1}}(E) \leq \nu_n\left(\frac{\varepsilon}{r}\right)$ for $0 < \rho < \delta_{\varepsilon}$. Then $\nu_n\left(\frac{|f(y)-f(x)|}{r}\right) \leq \operatorname{cap} f(E) \leq \operatorname{cap}_{K^{n-1}}(E) \leq \nu_n\left(\frac{\varepsilon}{r}\right)$ for every $y \in B(x,\rho)$, and since ν_n is strictly increasing, we find that $|f(y) - f(x)| \leq \varepsilon$ for every $y \in B(x,\delta_{\varepsilon})$ and every $f \in W$, i.e. W is equicontinuous at x.

Remark 3. The last theorem shows the interesting thing that if W is a family of mappings $f: D \to \mathbb{R}^n$ of finite distortion, having the same distortion map K and satisfying condition (\mathcal{A}) and x is a point from D, then it is sufficient to exist a single r > 0 and a single $\delta > 0$ such that $f(B(x, \delta)) \subset B(f(x), r)$ for every $f \in W$ to obtain the equicontinuity of the family W in the point x. Taking $f: D \to \mathbb{R}^n$ a map of finite distortion and satisfying condition $(\mathcal{A}), f_{\lambda} = f + \lambda, W = (f_{\lambda})_{\lambda \in \mathbb{R}^n}$, we see immediately that W is equicontinuous. Since $\bigsqcup_{g \in W} g(x) = \mathbb{R}^n$ for every $x \in D$, we cannot apply Theorem 5 to deduce

the equicontinuity of the family W, but we can use Theorem 7.

Theorem 8. Let $D \subset \mathbb{R}^n$ be a domain, W be a family of homeomorphisms $f: D \to f(D)$ of finite distortion, having the same dilatation map K, satisfying condition (A) such that there exists r > 0 such that for every $f \in W$, there exists $a_f, b_f \notin \text{Im } f$ with $q(a_f, b_f) \geq r$. Then W is equicontinuous, and we take the euclidean distance on D and the chordal distance on \mathbb{R}^n .

Proof. We follow the proof from Theorem 19.2, page 65. Let λ_n be the function defined in [12], 12.4, page 38 and let $x_0 \in D$ and $0 < \varepsilon < r$. Let $Q_0 = B(x_0, \alpha), Q_1 = B(x_0, \beta)$ be such that $0 < \alpha < \beta$ and $\overline{B}(x_0, \beta) \subset D$ and let $A = R(\overline{Q}_0, CQ_1)$. Then $f(A) = R(f(\overline{Q}_0), Cf(Q_1))$ and $q(Cf(Q_1)) \ge q(a_f, b_f) \ge r, q(f(\overline{Q}_0)) \ge q(f(x), f(x_0))$ for every $x \in \overline{Q}_0$. Let $x \in \overline{Q}_0$ be fixed and $t = \min\{q(f(x_0), f(x)), r\}$. We keep $\beta > 0$ fixed and we choose α small enouh such that $M_{K^{n-1}}(\Gamma_A) \le \lambda_n(\varepsilon)$. Then $\lambda_n(t) \le M(f(\Gamma_A)) \le M_{K^{n-1}}(\Gamma_A) \le \lambda_n(\varepsilon)$ and since λ_n is increasing, we see that $t \le \varepsilon$, and since $\varepsilon < r$, we obtain that $t = q(f(x), f(x_0))$. We therefore proved that $q(f(x), f(x_0)) \le \varepsilon$ for every $x \in U_0$ and every $f \in W$.

Theorem 9. Let $D \subset \mathbb{R}^n$ be a domain, W be a family of homeomorphisms $f: D \to f(D)$ of finite distortion, having the same dilatation map K, satisfying condition (A) and such that one of the following condition is satisfied:

1) there exists $x_1, x_2 \in D$ and r > 0 such that each $f \in W$ omits a point a_f

with $q(a_f, f(x_i)) \ge r$ for i = 1, 2.

2) there exists $x_i \in D$ and r > 0 such that $q(f(x_i), f(x_j)) \ge r$ for $i \ne i, i, j = 1, 2, 3$ and every $f \in W$.

Then W is equicontinuous.

Proof. Suppose that condiction 1) is satisfied and let $D_k = D \setminus \{x_k\}$ for k = 1, 2. Using Theorem 8, we see that the families $W_k = \{f \mid D_k \mid f \in W\}$ are equicontinuous on D_k for k = 1, 2, hence W is equicontinuous. Suppose now that condition 2) is satisfied and let $D_{ij} = D \setminus \{x_i, x_j\}$ and $W_{ij} = \{f \mid D_{ij} \mid f \in W\}$ for i, j = 1, 2, 3. We see from Theorem 8 that the families W_{ij} are equicontinuous on D_{ij} for i, j = 1, 2, 3, hence W is equicontinuous.

Corollary 1. Let $D \subset \mathbb{R}^n$ be a domain, W be a family of homeomorphisms $f: D \to f(D)$ of finite distortion, having the same dilatation map K, satisfying condition (A) such that $f(a_i) = b_i, i = 1, 2, 3$ for every $f \in W$, where a_1, a_2, a_3 are three different points from D and b_1, b_2, b_3 are three different points from \mathbb{R}^n . Then W is equicontinuous.

Theorem 10. Let D, D_j be domains in $\mathbb{R}^n, f_j : D \to D_j$ be homeomorphisms of finite distortion, having the same dilatation map K, satisfying condition (\mathcal{A}) and such that $f_j \to f$. Then, if Card Im $f \geq 3$, it results that $f : D \to D'$ is a homeomorphism onto a domain D' from \mathbb{R}^n , and if $f_j \to f$ uniformly on the compact subsets from D, then f is either constant, or it is a homeomorphism onto a domain from \mathbb{R}^n .

Proof. We follow the proof from Theorem 21.1, page 9, [12]. Let b_1, b_2, b_3 be three different points from Im f, $a_k \in D$ such that $f(a_k) = b_k$ for k = 1, 2, 3, and let r > 0 be such that $q(f(a_i), f(a_j)) \ge r$ for $i \ne j$, i, j = 1, 2, 3. Then there exists $j_0 \in \mathbb{N}$ such that $q(f_j(a_i), f_j(a_k)) \ge \frac{r}{2}$ for $i \ne k$, i, k = 1, 2, 3and $j \ge j_0$, and from Theorem 9, condition 2), it results that the family $W = (f_j)_{j \ge j_0}$ is equicontinuous. Using Theorem 20.3, page 68, [12], we see that $f_j \rightarrow f$ uniformly on the compact subsets from D and hence f is continuous on D. Using Brouwer's theorem, it is enough to prove that f is injective on D.

Suppose that there exists $z_1, z_2 \in D$, $z_1 \neq z_2$ such that $f(z_1) = f(z_2)$ and let r > 0 be such that $z_2 \notin \overline{B}(z_1, r)$. Then $f_j(S(z_1, r))$ separates the points $f_j(z_1)$ and $f_j(z_2)$, hence we can find $x_j \in S(z_1, r)$ such that

$$q\left(f_{j}\left(x_{j}\right), f_{j}\left(z_{1}\right)\right) \leq q\left(f_{j}\left(z_{1}\right), f_{j}(z_{2})\right) \text{ for every } j \in \mathbb{N}.$$
(1)

Taking a subsequence, we can suppose that $x_j \to x \in S(z_1, r)$ and since W is equicontinuous at x, we have $q(f_j(x_j), f(x)) \leq q(f_j(x_j), f_j(x)) + q(f_j(x), f(x)) \to 0$. Letting $j \to \infty$ in (1), we find that $q(f(x), f(z_1)) \leq q(f(z_1), f(z_2)) = 0$, hence $f(z_1) = f(x)$. We proved that f is not injective in any neighbourhood of z_1 .

We prove now that every point $x \in D$ has a neighbourhood U such that f is either injective on U, or it is constant on U. Indeed, suppose that this thing is fakse. Then we can find U a ball centered at x and u_1, u_2, u_3 distinct points in Uwith $f(u_1) \neq f(u_2)$, $f(u_2) = f(u_3)$ and since W is equicontinuous at x, we can take U such that $qC(f_j(U)) \ge 1$ for every $j \in \mathbb{N}$, and we also take U such that $\int_U K^{n-1}(z) dz < \infty$. We join u_1 and u_2 by an arc J_0 from U and we choose J_1 an arc joining u_3 with a point $u_4 \in \partial U$ in U. Then $A = R(\operatorname{Im} J_0, C(U \setminus \operatorname{Im} J_1))$ is a ring and $A_j = f_j(A)$ is a ring $R(C_{oj}, C_{1j})$, where $C_{oj} = f_j(J_0), C_{1j} = Cf_j(U \setminus \operatorname{Im} J_1)$ for $j \in \mathbb{N}$. Let $\lambda_n(r,t)$ be the function defined in [12], 12.6, page 39 and let $r_j = q(f_j(u_1), f_j(u_2)), t_j = q(f_j(u_2), f_j(u_3))$ for $j \in \mathbb{N}$. Then $q(C_{oj}) \geq r_j, q(C_{oj}, C_{1j}) \leq t_j$ for $j \in \mathbb{N}, t_j \to 0$, and taking a subsequence, we can suppose that $r_j \geq r$ for every $j \in \mathbb{N}$. It results that $M(\Gamma_{A_j}) \geq \lambda_n(r_j, t_j) \to \infty$ for $j \to \infty$. Let now $\delta = d(\operatorname{Im} J_0, C(U \setminus \operatorname{Im} J_1)) > 0$ and let $\rho : \overline{\mathbb{R}^n} \to [0, \infty]$ be defined by $\rho(z) = \frac{1}{\delta}$ if $z \in U, \rho(z) = 0$ if $z \notin U$. Then $\rho \in F(\Gamma_A)$, hence $M(\Gamma_A) \leq \int_{\mathbb{R}^n} \rho^n(z) \cdot K^{n-1}(z) dz = \frac{1}{\delta^n} \cdot \int_U K^{n-1}(z) dz < \infty$. Using (i), we obtain

that $\infty > M_{k^{n-1}}(\Gamma_A) \ge M(\Gamma_{A_j}) \to \infty$, which represents a contradiction.

Let now $Q_1 = \{z \in D | \text{ there exists } V \in \mathcal{V}(z) \text{ such that } f \text{ is injective on } V\}$, and let $Q_2 = \{x \in D | \text{ there exists } V \in \mathcal{V}(z) \text{ such that } f \text{ is constant on } V\}$. Then $D = Q_1 \cup Q_2$ and since $z_1 \notin Q_1$ it results that $z_1 \in Q_2$, hence $Q_2 \neq \phi$. Since D is connected, it results that $D = Q_2$, i.e. f is locally constant on D and hence f is constant on D. We obtained a contradiction, because Card Im $f \geq 3$. We therefore proved that $f : D \to D'$ is a homeomorphism onto a domain D'from $\overline{\mathbb{R}^n}$.

Theorem 11. Let D, D' be domains in \mathbb{R}^n with $\operatorname{Card} \partial D' \geq 2, F \subset D$ be compact and let W be a family of homeomorphisms $f: D \to D'$ of finite distortion, having the same dilatation map K and satisfying condition (\mathcal{A}). Then, for every $\varepsilon > 0$ there exists $\delta > 0$ such that if $f \in W$ and $q(f(F), \partial D') < \delta$, it results that $q(f(F)) < \varepsilon$.

Proof. Suppose that the theorem is not true. Then there exists $\varepsilon > 0$ and a sequence $(f_j)_{j \in \mathbb{N}}$ from W such that $q(f_j(F), \partial D') < \frac{1}{j}$ and $q(f_j(F)) \ge \varepsilon$ for every $j \in \mathbb{N}$. Since Card $\partial D' \ge 2$, there exists at least two points $y_k \notin \text{Im } f_j$ for every $j \in \mathbb{N}$ and k = 1, 2 and from Theorem 8 we see that the family $(f_j)_{j \in \mathbb{N}}$ is equicontinuous. Taking a subsequence, we can find a map $f: D \to \overline{\mathbb{R}^n}$ such that $f_k \to f$ uniformly on the compact subsets from D. Using Theorem 10, we see that either f is a constant map on D, or $f: D \to G$ is a homeomorphism onto a domain G from $\overline{\mathbb{R}^n}$. Since $q(f_j(F)) \ge \varepsilon > 0$ for $j \in \mathbb{N}$, it results that fcannot be constant on D, hence $f: D \to G$ is a homeomorphism.

We show that $G \subset D'$. Indeed, let $y \in G$ and $x \in D$ be such that y = f(x)and let $U \in \mathcal{V}(x)$ be such that $\overline{U} \subset D$, $f(x) \notin f(\partial U)$ and let $r = q(f(x), f(\partial U))$. Since $f_j \to f$ uniformly on \overline{U} , there exists $j_0 \in IN$ such that $q(f_j(z), f(z) < \frac{r_j}{3}$ for every $z \in \overline{U}$ and every $j \geq j_0$. Then if $V = B_q(y, \frac{r_j}{3})$, we see that $V \cap f_j(U) \neq \phi, \partial f_j(U) = f_j(\partial U)$ and $f_j(\partial U) \cap V = \phi$ for $j \geq j_0$. We have $V = (V \cap f_j(U)) \cup (V \cap \partial f_j(U)) \cup (V \cap C\overline{f_j(U)}) = (V \cap f_j(U)) \cup (V \cap C\overline{f_j(U)})$ for $j \geq j_0$, and since V is connected, we see that $V = V \cap f_j(U)$ and hence $V \subset f_j(U)$ for $j \geq j_0$. It results that $y \in V \subset f_j(U) \subset D'$. We therefore proved that $G \subset D'$, hence $\delta = q(f(F), \partial D') > 0$. Since $f_j \to f$ uniformly on F and $q(f_j(F), \partial D') \to 0$, we obtained a contradiction. The theorem is now proved.

References

- [1] S.Agard and A.Marden, A removable singularity theorem for local homeomorphisms, Indiana Univ.Math.J., 20,5(1970), 455-461.
- [2] M.Cristea, A generalization of a theorem of Zoric, Bull.Math.Soc.Sci.Roumaine, 34, 3(1990), 207-217.
- [3] T.Iwaniecz and G.Martin, Geometric function theory and non-linear analysis, Oxford Math.Monographs, 2001.
- [4] J.Kauhanen, P.Koskela and J.Malý, Mappings of finite distortion: discretness and openess, Arch.Rational Mech.Anal. (to appear).
- [5] J.Kauhanen, P.Koskela, J.Malý, J.Onninen and X.Zhong, Mappings of finite distortion: Sharp Orlicz conditions, Preprint 239, Univ.of Jyväskylä (2001).
- [6] P.Koskela and J.Malý, Mapping of finite distortion: The zero set of the Jacobian, Preprint 241, Univ. of Jyväskylä (2001).
- [7] P.Koskela and J.Onninen, Mappings of finite distortion: Capacity and modulus inequalities, Preprint 257, Univ. of Jyväskylä (2002).
- [8] P.Koskela and J.Onninen, Mappings of finite distortion: The sharp modulus of continuity, Trans. of AMS, 355, 5(2003), 1007-1020.
- [9] J.Manfredi and E.Villamor, An extension of Reshetnyak's theorem, Indiana Univ.Math.J., 47, 3(1998), 1131-1145.
- [10] Yu.G.Reschetnyak, Space mappings with bounded distortion, Transl.of Math. Monographs, Amer.Math.Soc., 73(1989).
- [11] S.Rickman, Quasiregular mappings. Ergebnisse der Mathematik und ihrer Grenzgebiete, 26, Springer-Verlag, (1993).
- [12] J.Väisälä, Lectures on n-dimensional quasiconformal mappings, Lecture Notes in Math., 229, Springer-Verlag, (1971).

University of Bucharest, Faculty of Mathematics, Str.Academiei 14, Ro - 010014 Bucharest, Romania E - mail : mcristea@fmi.math.unibuc.ro