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MAPPINGS OF FINITE DISTORTION: BOUNDARY EXTENSTON

Mrrlat CRrsrBR

Abstract: We generalize some results of O.Martio and S.Rickman [10] concerning
the boundary extension and the asymptotic values of quasiregular mappings. This

results are known for bounded analytic functions as Lindeldf 's theorem, Iversen's the-

orem, Iversen-Tsuji's theorem, Noshiro's theorem and Cartwrigtht's theorem. We

also generalize a result of M.Vuorinen concerning the boundary extension of closed

quasiregular mappings. We also prove some maximum principles, some eliminability

theorems and a theorem concerning the density of the points b e 08" at which a

map "f 
: Bn --+ ]Rn of. finite distortion has some asymptotic values. Our extensions

holds for mappings of finite distortion satisfying condition (A), u new class of map-

pings recently studied in [7], [8], which generalizes the known class of quasiregular

mappings.

AMS 1991 Ciassification No. 30C65

1. INrRooucrIoN

A mapping f : D -. fi', where D c W isadomain, is saidtohave finite
distortion if the following conditions are satisfied:

r )  f  ewr! !  1o,n-1.
2) There exists a measurable function K : D -- 10, ool finite a.e. such that

lf '  (")1" 3 K ( ') '  Jy @) a.e.
3) The Jacobian determinant is locally integrable.
If K e L* (D) we obtain the known class of quasiregular mappings and

we refer the reader to 112], [13] for the monographs dedicated to this subject.

Quasiregular mappings satisfies an important topological property, they are
either constant, or open, discrete. If the distortion map K e LL"(D), with
p > n - 1, and f e Wrl:! (D, Rn), then it is shown in [9] that a map with finite
distortion is open, discrete.

Recentlywereconsideredin [7], [8] mappings f : D -- IR" of finitedistortion
for which there exists "4 : [0, oo) * 10, oo) smooth, strictly increasing, with

"4 (0) : 0',\%/ (r) : * and satisfving the conditions:

("aa) exp("A(zr)) e Ll".(D).
(  A" \  f :  A, . ( t )  67:  x t .\ - - r l  J 1  t  

- "

("42) there exists ts e (0, oo) such that A' (t)'t increases to infinity for t ) ts.

As in [7], we shall say that a map of finite distortion satisfies condition ("4)

if satisfies conditions (Ao), (At) and ("42). In [4], Theorem 1.3 it is shown that

such nonconstant mappings are open, discrete If A(t) : Xt for some .\ > 0.

We shall show in Lemma 1 that mappings f : D '-' -R' with finite distortion

satisfying condition (.4) are such that the dilatation map K is in ffl." (O) for

every p ) 0 and this ensures (see [5], Prop.2.5, [6] Theorem 1.1 or Theorem

2.I l7l) that such mappings are continuous and either constant, or open and

discrete. Our proofs are based on the following basic ingredients, valid for

mappings f : D - IRn of finite distortion and satisfying condition ("4)
(i) M (f (f)) < M6u,-, (f) for every path family I from D.



(ii) cap6,-' (B(r,R)),8(*,r)) --+ 0 whenr --+0 and l? > 0 is keept fixed
established in [7], Corollary 4.2 and Theorem 5.3.

We shall prove first a^n eliminability result for mappings of finite distor-
tion satisfying condition ("4), generalizing some known facts from the theory of
quasiregular mappings (Theorem 2.8 and Theorem 2.9, page 64' [13]).

Theorem t. Let n ) 2, D C IR" be a doma'in, F c D closed in D,f :
D\F -* IW a map o.f .fini,te d'istortion, o.f K (r) d'ilatat'ion, sati'sfyi,ng cond'ition
(A) such that My^-' (f) :0. Let r € F and suppose that

a) there erists p* ) 0 such thatE (r, p,) c D and IB@,p,)exp ("4. (K (y))) ay
< oo.

b) cap C f (B (*, p,) \r) > 0.
Then f ertends by conti,nui,ty 'in r and i'f r i's an'isolated point of F, then

ris el'im'inable for f . If f satisfi,es cond'it'ions a) and b) i'n euery point from
F and we also denote by f the ertended map and int / (,F) : $, then F 'is

el'iminable.
We generalize now some results which for meromorphic functions in the

plane are known as Iversen's theorem and Cartwright's theorem. Our result also
generalizes some extensions of the previous theorems established for Quasiregular
mapping in Theorem 2.6, page 170, [13] and Corollary 4.4,1701.

T h e o r e r n 3 .  L e t n )  2 ,  D  C  I R  b e a d o m a i n ,  F  c  D  c l o s e d i , n
D,f : D\F -. IRn a nonconstant map of fini,te d,'istort'ion, of K(r) dilata-
tion, satisfying condi,ti.on (A) such that My^-' (.F') : 0 and let r e F be an
essent'iaL si,ngularity of f such that there erists p, > 0 such that B (r, p,) C D
and t exp("A (X (g))) dg < m. Then, i,f uis an i,solated poi,nt of F,'it re-

B( r , p . )

sults that Eutf @ @l) \"F') c ,4 (f ,n) for eyer! 0 1r 1 p, and in the general
case, there erists 14 € F,rp --+ r such that W\f (B (r,r)\F) c A(f,rp) for
euery k € IN and euery 0 1r I pr.

The following result was proved for meromorphic functions in the plane by
K.Noshiro [11] and for K-quasiregular mappings by 0. Martio and S.Rickman
in [10], Theorem 4.2.

Theorem 4 .  Le tn)2 ,D c  IR"  beadoma' in ,  E  C0D,  f  :  D  - -+  l f tn
a rnap of ,fi,ni,te d'istort'ion, of K (r) dilatati,on sati,sfyi,ng coind'ition (A) such
that My--' (E) : 0. Let r e 0D and z € IRn be such that there erists
p ,  )  0  s u c h  t h a t  z  e  ( C  ( / , r ) \ C ( f , r , l D \ E ) ) . C f  ( B ( r , p , ) ) D ) .  T h e n
either z € A(f ,r), or there eaists np e E,rp ---+ n such that z € A(f ,rp) .for
euery k e IN.

The following theorem extends a result of O.Martio and S.Rickman [10]
concerning the density of the points b e 08" at which a /{-quasiregular map
f , Bn --+ IRn with cap Cf (8") ) 0 has some asymptotic values (see also [13],
Theorem 2.4, page I70).

Theorem 5. Let n) 2,D c lR be a domain, B: Ibe }Dl there ertsts
7 : [0,1) --+ D a path such that ltryt(t) : b] and let E : {b € Bl there eri,sts

7 : [0, 1) ---+ D a path wi,th 
]gr(t) 

: b and there exists 
]t+ / (r (t))]

Let f : D --- IRn be a map of finite distortion, of K (r) dilatat'ion, sati,s.fyi,ng



cond,i,tion (A) and exp(, (lf)) e L[".(Du B) and suppose that Mv^-'(B o
B(b,e)) ) 0 and cap Cf (B(b,e)nD) > 0 for euery b e B and euery e ) 0.
Then My^-t(E)B(b,u)) > 0 for euery be B andeuery e )  0,  hence E is
denselg i,n B.

We shall prove that if the boundary cluster set C (/, b, AG\E) is small
enough, then we have the equality C(f ,b,G): C (/,b'AG\E) and the result

seems to be new even for quasiregular mappings-
Theorem 6. Let n ) 2,D c IW be a doma'in, E c \D,f : D''

IRn o map o.f f'ni'te d'istortion, of K (r) d'ilatat'ion, sati's.fyi'ng condi'ti'on (A)

suchthat Mx,"- ,(E) -_ 0. Let G c D be a d,oma' in,  b e 7D)(K\E) '  such

that 0G : K UC, with C closed, b e K\C, and suppose that there erists

p)0  suchtha t  I  exp( "4( l f ( r ) ) )d "  <  n  andcapCf (B(b ,p) ) )0  and
B(b,p)nD

*.-t(C(f ,b,I{\E)) :0. Then, i.f we tet M : C f (B(b, p)), i ' t  results that ei 'ther

cap (M\C(f ,b,K\ .9))  :0 ,  or  that  C( f  ,b '1{ \ t )  :C( f  ,b ,G) '
A theorem of Lindel<if says that if. f : Bz * C is meromorphic and / admits

two distinct asymptotic values at some point b e AB2, then / assumes infinitely

often in any neighbourhood of b all values of the extended complex plane, with

at most two possible exceptions. We shall use the preceeding theorem to prove

the following generalization of Lindelcif's theorem for plane mappings of finite

distortion, and the result seems to be new even for quasiregular mappings.

T h e o r e m  8 .  L e t  D c l R 2  b e a d , o m a i n ,  f  , D - - l R 2  b e a m a p o . f  f ' n i ' t e
d,,istort'ion, o.f K (r) d'ilatation, sati,sfying condition (A), and let b € 0D be such

that f ad,m'its two d,'ist'inct asymptotic uaLues at b and there erists p ) 0 such

that I exp(,A(lf (")))dr ( oo. Then there erists M C IRz with cap
B(b ,p )nD

M :0 and such that IR2\M c f (U n D) .for euery U € y (b) .

We prove the following maximum principle.
T h e o r e m g .  L e t n ) 2 ,  D  c l R !  b e a d o m a i n ,  E  c 0 D ,  f  :  D  - - +

lRn be a map of fini.te d''istort'ion, of K (t) di,latati'on, sati'sfying cond,iti'on (A)

s u c h t h a t  M v . - r ( E )  : 0 '  L e t  G  C  D  b e  a  d o m a ' i n w i ' t h  0 G :  K L J C , C

closed., b e EDn (1{\C) n (1(\t)' and suppose that there euists p > 0 such that

I exp(A(K(r)))d, < oo and let M : Cf (B (b,p)n D)' Suppose that
B(b,p)nD
cap(M f,CB (r ,a))  > 0 and that C (f  ,b, I{ \ ,B) c B (r ,a)-  Then C (f  ,b,G) c

B  ( r , a ) .
We shall use this maximum principle to generalize a maximum

established in Corollary 3.9' [10] for quasiregular mappings'

principle

Theorem 10. Let n )> 2, D c IRn be a bounded doma'in, E c 0D such

that lD\E is d,ensely in \D,f : D -, IRn a map of f'ni'te distort'ion o.f K (t)

d,'ilatat'ion, sati.s.fyi,ng cond'ition (A) such that M6*-' (E) : O. Suppose that

there en'ists M >0 suchthat l im-supl/(y)l < M .for euery :L €AD\E, and for

eDery r€E there er is ts  p*>0 suchthat  t  exp(A(K(y)) )dt  < cn and
B( t 'P . " )aD

cap(Cf  (B( r ,p " ) )D) .CB(0 ,M)  >0 .  Then l / ( " ) l  <  M . fo r  euery  r  e  D '

We shail also use Theorem 9 to prove a theorem wirich is known for meronor-



phic functions in the plane as Iversen-Tsuji's theorem. A version for quasimero-

morphic mappings was given by O.Martio and S'Rickman in [10], Theorem 3'3'

i h u o " u -  L L .  L e t i > 2 ,  D c W  b e a d o m a i n ,  E c 0 D ,  f  : D - - - +  I R "

be a map o.f fini,te d,'istort'ion, o.f K (r) d"ilatat'ion, sati'sfying condition (A)

such thai M*^-' (E) : \'Let b e (AD\E)/ be such that there erists p ) 0

suchthat I  exp("4(1{(r)))d" < o, let  M: Cf (B(b,p))D) and sup-
B(b ,p )nD

pose that 
" i i@)CB(0,"))  

> 0 . for euery r  > 0'  Then l imsupl/( t ) l  :

/ \
l imsup ( I imsup l / ( t ) l  )  .

z + b  \  r + z  /
z € D  D \ D- 

our generalizations given in Theorem 4, Theorem 10 and Theorem 11 to

some res'ults from [10] bring something new even if / is supposed to be a

quasiregular map, since the singular set ,E C dD is not supposed to be compact

in 0D.
We finally generalize Theorem 4.10 from [16], extendings result of M'Vuorinen

concerning the boundary extension of closed quasiregular mappings'

Theorem 12. Let n ) 2, D,Dt be doma'ins in IRn, f t D -' D' a

map of .fi,nite d,i.stortion, sat'is.fying cond'ition (A), o.f K (r) di,Iatat'ion, b e

0D such that D ,is locally connected, at b and there erists p > 0 such that

I exp(A(K(r)))d" < cn. Suppose that C (/,b) c 0D' and A(f ,") c AD'

B(b ,p )nD

1ir'iu""y r € B (b, p) a 0D and, that Dt has property P2 in some point .from

C (f,b). Then f can be contznuously extended at b'

2.  Pnpuntts. tntPs

w e c a l l a p a t h q :  [ 0 , 1 )  -  ] R n a n o p e n p a t h , a n d p p o i n t  t e  I R n  w i l l b e

caliedalimit point of qif there existstp l l suchthat q(fo) -' r.If l is apath

family in IR",we define .F (l) : {p iW -- [0,oo] Borel maps l/pds > 1 for

everyT € llocallyrectifiable). If D c.R'isopen, w: D --+ [0,oo] ismeasurable

and ' f in i te  a .e .  wedef ineO :  IRn -  [0 ,oo ]  by  6 ( r ) :w( r ) l t r  €  D,6( r )  :611

r ( D and. we define the omodulus of f by M- (l): ^-i*1", I 
p" @) '6 (x) dr,

ptr  \L )  n! '

and for c,-r:1rne obtain the usual modulus M(l). If 11 ,12 are paths families

rn IR", we sav that 11 > f2 if every path 7 € fr has a subpath in lz' As

irr the classical case, we prove that if f1 ) f2, then M, (fr) 5 M, (f2) and

SDu" (11) .Also, I f  u1 1u2, then M,, ( l )  < M.,  ( f ) .  we

define, for D c l?' open and .E, F cD by A(E,F,D) the family of all paths,

open or not, which joins E with F in D-

We say that E : (D,C) is a condenser if C is compact, D is open, C c

D c IRn , and we define the capacity of E, cap E : inf I lV"l" (r) dr, where
n7n

ue Cf ,  (D)  and u  )  l  onCandwele t  16  :  {7 : [a ,b )  - '  D  pa ths  l7 (a)  €C,^ l

has a limit, point in dD). We know from Prop.10.2, [13]' page 54 that cap

E :  M  ( r n ) ' .

/ 6  \

Lhat M- ( Ll.f, )



If. E: (D,C) is a condenser,u: D -* [0,oo] is measwable and finite a.e.,
we define the cacapacity of E, cap.E : inf I lVul" (n)dr, where u € Cf(r)

and z ) I on C and we see that if u is a test function for c&puE, then p -

lVul e F (fB), and this implies that M. (fr) S cap. (,O).
If. C c B' is compact, we say that cap C : 0 if cap (4, C) : 0 for some

open set ,4 from IR" and from Lemma 2.2, ll3l, page 64' the definition is
independent on the open set A with C c A C IR". If C c -R" is arbitrary' we

say that expC :0 if cap K :0 for every K c C compact-
If D c JR'is open, w: D -- [0,oo] is measurable and finite a.e., A C D is

a set, we say that ,4 is of zero cu-modulus (and we write M- (A) : 0) if the a.r
modulus of all paths having some limit point in A is zero. We write M. (A) > 0
i f  ,4 isno to f  zeroa-modu lus .  S ince  M( l )<M. ( l )  i f  c , - r  ) l ,weseetha t i f

cu ) 1 and A c D is such that M. (1) : 0, it results that cap A:0'
If ,4 is countable, A c D and' IirryM- (A (B(r, r),CB(r,R),D) : 0 for

evety r e .4 and every 0 < /? with Bg,n1 C D, we prove as in the classical
case that M. (A): 0. Using Lemma 2, we see that ihis thing holds for instance
If K : D -- [0, oo] is measurable and finite a.e. and for every r € A there exists
p* ) 0 such that B(r,p,) C D and I exp("4'(X(a)))dE < oo for some

B( " ' p , )

map.4 satisfying conditions ("41) and ("42)and we take ur : Kn-7.
If D C -R'is open, b e 0D and /: D -. IRn is a map, we let C(f 'b):

{ w  e  I R f  l t h e r e e x i s t s b o  €  D ,  b p l b ,  b ,  - - - +  b s u c h t h a t  f  ( b r )  - u } , t f

B c 0D we let C(f,B) : 
ul"C(/,b) 

and if K c D is such that b € K',

we let  C(f  ,b,K):  {w e R: I  there exists b, € K,b, I  b,b, -+ b such that

f (br) * tu). If (U*)^e^ is a fundamental system of neighbourhoods of b '
@ - @ -

t h e n  C ( f , b ) :  n  f  ( U ^ a D ) , C ( f , b , K ) :  a  f  ( U * n K )  a n d  w e  u s u a l l v

takeU-a1 C(J-for every tn e .E[. Suppose now that b e K',K CD and take

F :D - P @\, F (r) : f (r) if r e D, F (r) : C (f , r) if r e 0D. We define
oo

in this case C (f  ,b,K) :  )
n: I

F (U^ n (1(\ {b})). We see that if / is continuous,

K c D,b e 0D and (U*)n"r^ is a fundamental system of neighbourhoods of

b such tltat [J*+t C (J* and U^ a K is connected for every m € IN, then ii

results that C (f ,b,K) is a connected set from W. tt K c 0D, then C (f ,b,K)
is called the boundary cluster set of / at b and C (f,b) is called the cluster set

o f f a t b .
If D C lR' is a domain and b e 0D, we say that D is locally connected at b

if there exists // a fundamental system of neighbourhoods of b such that U O D

is connected for every tl e t,t. We say that D has property P2 at b (following

[14], page 54) if for every point h * b,b1 e ED, there exists F c D compact

and d > 0 such that M (A(8, F,D)) > d for every E C D connected such that

E contains b and b1.
If E,F are Hausdorff spaces and / : E'- F is a map, we say that / is operr

if / carries open sets into open sets, we say that / is discrete if f 
' (y) is empty



or a discrete set for every y € r' and we say that / is a light map if for every

r  e  E  and y  eV( r ) ,  thereex is ts  u  €v( r )  w i th  AUa( f - r  ( / ( " ) ) )  :  $and
U cV. We denoted here by V(r) :  {U c Eopenln e U}. I f  p:  [0,1] -+' f  is a
path, r € -E is such that f (*): p(0), we say that q: [0,o) --+ E is a maximal

lifting of p from r if q (0: r,0 < a < L , f oq:pl[0,a) and g is maximal with

this property. If q is defined on [0,1], we say that q is a lifting of p from r. If
E,F are domains from fi'and / is continuous, open and discrete, there exists

always a maximal lifting.
Let X be a separable metric space and A : (A;)rcr be a collection of sets.

We define the superior limit of the collection (,4') to be limsup Ai : {n e Xl
every neighbourhood of r contains points from infinitely many sets ,4; ) and we
define the inferior limit of the collection,4 to be liminf ,4.; : {r € Xl every
neighbourhood of r contains points of all but a finite number of the sets A;).
If for a collection "4, limsupA; : liminf Ai, w€ s&/ that' A is convergent and
we write B : lim Ar, where B is the common value of lim sup ,4 and lim inf ,4.
We know from [17], Theorem 7.1, page 11, that every infinite sequence of sets
(A);et contains a convergent subsequence and from [17], page 15, we see that

ff (Aijid is a convergent sequence of compact connected sets such that +'\ is

compact, then it results that limA; is compact and connected.
I f  D C  , R  i s o p e n a n d / :  D - - l R n  i s a m a p ,  A C D , w e l e t I y ' ( f , A ) :

sup..Card (f -' @) n A). If b € 0D,1: [0, 1; - D is a path such that 
]t+r 

(t) :
ae lR

b and'u e IR: is such that ' : 
I:Hf 

(l(t))' we say thatTr'' is an asymptotic

value of f atb, and we denote by A(f ,b) the set of all asymptotic values of /
at b. We Iet Bn : {r € In:l ltl < 1} and we let p, the Lebesgue measure from
IR". We shal l  denote by q the chordal metr ic in f i 'g iven by q(o,b): la-bl '

( t  *  t o l t ) - * . , r *  l b l 2 \ - +  i f  a l b , a , b e  I R n , q ( a , c n ) :  ( t + l o l ' ) - +  i f  a e  I R n
\ ,  

'  t * t  )  
\ -  |  t " t  )  1 a \ - 1  " - t  

\ ^  
,  , * ,  

, /

and we denote by d the euclidean metric in IR" and by la - bl the euclidean

distance between a andbin IR. We denote by Bn (r,r), respectively B (r, r) the

ball of center r and radius r if we consider on lRn the chordal metric, respectively
tlre euciidean metric and in the same way we denote for a set A C IR by q (A),

respectiveiy d (A) the diameter of ,4. We denote by m, the p-Hausdorff measure

in lR' ,andi f  A C Rn,p, f  )  0 ,  we let rnt  (A)  :  in f  iO(Oo) ' ,where,4 a U ao

and d (A;) ( I for i. e N and m$ (A) : hrr;mi @) .

We denote Ay W,,t;!(D,R-) the Sobolev space of all functions f : D -
fi' which are locally in Lp (D) together with their fi.rst order weak partial
derivatives. Let D C IRn be open, F c D closed in D with 1,."(F):0, "f ,
D\F --+ IRn ar'rrap of finite distortion, of K (r) dilatation, satisfying condition
("a). We say that the set F is eliminable for / if / extends to a map of finite
distortion, of K (r) dilatation, satisfying condition ("4) on D. A point b e F will
be called an essential singularity of / if the iimit hryf @) does not exist. If 7 :

la,b] -  IR" is a path, we let  7- :  la,bl--  lR" def ined bv r-  ( t )  :7kL+b-t)



for t e [a,b] and if 71 : [o, b] - IR",lz: lc,dl - nn are paths, with 7t (b) :

y ( c )  we  l e t  71  V  " yz :  [ a ,b+d -c ]  *  IR "  de f i ned  by  ( f t  V "d ( t ) : 7 t ( f )  i f
t  e  [a,b] ,  ( t rv  t )  Q) :  tz  ( t  + c  -  b)  i t  t  e  [b,b + d -  c ] .

The following Lemma is essential for the properties of mappings with finite
distortion, of K (r) dilatation and satisfying condition ("4,).

Lemma 1. Let D c IR" be open, f : D -- IRn a map of finite distortion,
of. K (r) dilatation and satisfying condition ("4). Then the dilatation map K is
in LPro"(D) for every p > 0.

The proof of this Iemma is given by the following:
Proposition L. Let A : [0, oo) -* [0, oo) be smooth, strictly increasing,

with .,4 (0) : 0, 
,!L/ 

(r) : -, satisfying condition (Az), D C W be open, K :

D - [0,oo] measurable and finite a.e. such that there exists B c D measurable
with pr,(B) < l and /exp(A(K(r)))dr ( oo. Then [Kn (r)dr < oo for

every p ) 0.
Proo,f. Suppose first that p > L and let "f , (0, oo) * fi1 be defined by

/  /  l \ \

f  ( t ) :  exn("4(t t))  for,  > 0. Then./  is str ict ly increasing on (0,oo) and

from Lemma2.4, [B], there exists b > 1 such that / is convex on (b,oo). Let

Q :  D ' - - +  f 0 , - 1 ,  Q ( * ) :  K  ( r )  i f  K  ( r )  >  b , Q @ ) :  u i f  K  ( r )  !  b .  T h e n  Q  i s

measurable and we have, using Jensen's inequality, that / ({Ot f"l O" 
) 

=

/ \
( !Q' @ d,l p.(B) ) < I f@' (r))drl p'.(B) .
\ B / B

/ \
f l f q , @ ) d r l l f

\ B /
It results that

, l
|  *o (r)  ar < lA-

I
I J L

, 
(", (-- 

{ 
r, 

f "*v @@ @))) t r,,@)}) 
)] 

o 
. *

/  ^  \ p
I f  0  <p  (  1 ,  then, [_K,  ( * )d '  S  (  IN  @)ar )  (  oo .

B \ B
Another useful lemma is the following:
Le rn rna2 .  Le t  D  C  l ?nbeadoma in ,b  €  7D ,K :  D  *  l 0 ,oo ]  mea-

surable and finite a.e., A: l0,oo) -. '  [0,oo) be smooth, strictly increasing'
with "4.(0) 

:0,]im"4(t) : oo, satisfying conditions ("41) and ("4'2) and sup-

pose that there exists d > 0 such that I exp(" (lf (r)))dr < oo. Then
D^B(b ,6 )

M6.  , (A(B(b , r )nD,CB(b ,p)nD,D)  -  0  when d  >  0  i s  keept  f i xed  and
r - 0 .

P r o o . f .  L e t Q  t  I R ?  -  [ 0 , - ] , Q l r ) :  K ( r ) l t r  €  D , Q @ ) : I i t
r  e  D , 0  <  r  (  d  a n d  l e t  f , 5  :  A ( F ( b , r ) n  D , C B  ( b , d ) n  D , D ) , A r d  :

A  (F( r ,  6 ) ,CB (b ,6 ) ,8  (b ,d ) \B(b , r ) )  .  S ince  t  exp( "4  @(" ) ) )  d r  (  oo ,  we

see from Tireorem b.3, page 24, lll,rrru, .uoolll'9l",u, 5) ,B (b,r)) - 0 *hen
r ---+ 0 and d > 0 is keept fixed. We have

M6, , - ,  ( l ,a )  <  Mg, , - ,  ( f ,a )  <  Me, , - ,  (A ,o)  5sape, ,  '  (B(b ,6) ,8 (b , r ) )



and the theorem is proved.
Lemma 3. let n ) 2,G,D open sets in,R'with Lr^(D ) G) < oo't.' : D --+

[0,oo] measurable and finite a.e., f a path family in G and f' : h € fl7 is
rectifiable) and suppose that there exists p > 1 such that 

.l oue(r)dr 
< oo.

Then M. (f) : M. (f').
Proof. We shall use some arguments from Theorem 6.9, page 19, [14]. Since

I, c f, we see that M.(f") < M,(l). We show that M-(f) < M.(f.).
Let q > 1be suchthat j  +i :  l  andlet ps IR! --  [0,m) be def ined by

p o @ ) :  F f # E T  i f  r  e  G o C B ( 0 , 2 ) , p o @ ) : l i f . r  e  G n B ( 0 , 2 ) , p o ( r )  : 0  i f

r ( G. Then, using Holder's inequality, we have

f  p 3 @ ) . u ( r ) d r :  I  p 3 @ ) . w ( r ) d r :
NY DNG

I  w ( r ) d r - t  I  p \ @ ) ' u ( r ) d r  <
DnGnB(O,2) D^G1C B(0,2)

f  r *  - n - r  \ + l  /  \ i
l n . - r r : ^ l  t  a , l  l . (  [  w e ( r ) d r l  < o o .\  r ,  rno . ( lnr ) "q" '  ,  |  , , rn"  /L  \ ,  \ - - -  /  /  J

Here C1 and C2 are some constants .
Let  nowT € f \ f r .  I f  7 is  bounded,  thereexis ts  a )0such that  p6 @) > o

on Im7, hence 1 ( oo : ! ps(r)ds. If 7 € f\f" is unbounded, we choose

t  e  ImTw i i h  l r l  )  2  andwesee tha t  m :7#  < , [ pod r .  I t  r esu l t s  t ha t
l r l  1

I poat: oo for every 7 e fU,.

Let p e F (1,) , 6 ) 0 and let p, : (pn t e' ' p61* . Then, if 7 € f,, we have
1 { !  pds 3 I  p,ds,and i f7 e fU",  we have I  (  oo :  e.  I  pods< /p6ds and

1 1 ' v ^ l

this implies that p, € F (f). We obtain that M. (f) < f p? (r) . w (r) dr :
]Ril

f  p " ( " ) 'a ( " )d r  I  e " '  I  p tQ: ) 'w  ( r )d r  and le t t ing  €  -+  0 ,  we see tha t
tR,, m,,
M-(l)  !  I  p"@).r(r)dz for every p € F(f") ,  hence M-(f)  < M-(f ,) .

lRI '

We therefore proved that M, (f) : M- (f,).
Remark 1. The theorem remains true if we replace the condition

"  [  , o  ( r )d r  <  oo  fo r  some  p>  I "  by  " f  p3@) . ,  ( r ) d r  <  m" .
DNG D

L e r n r n a 4 ,  L e t r 1 , p , R >  0 a n d z  € l R " b e  f i x e d w i t h 0 <  p + r 1  < A
and let E c CE(r,p+r) be such that cap E > 0. Then, for every r ) 0,
there exists d > 0 such that M(L(E,C,E(r,p)) >- 6 for every continuum C c
B(r, /?)\F(r,  p + r)  with d (C) 2, and C rt  E :  d.

/  \ i  r  
' 1

[ , ( r ) d r +  |  I  p t n ( , ) 0 " ) "  .  (  I , ' ( ' ) a r ) t  <
DnG \cB(0,2) /  \DnG /



Proof, Let C C B(n,r?)\B(r,p+r1) be a continuum with d(C) 2,
and C O E : d, let 9 be tB: inversion of center z and radius p and let
|  :  A (E,C,CE1r,n))  and |  :  A(s(E) ,s(C) ,8(* ,p) ) .  Then M(f )  :

* ( f ) ,  c a p e ( E )  > 0 ,  a @ Q D ) r ' ,  s ( C ) u g ( E ) c  B ( r , p ' ) , w i t h 0  1 p ' 1 p
such that rt and p' depends orr r,r1, p, R. Let fr : A (S Q) , S (*, p) , B (r, p)) ,
l z :  A  ( g ( E ) , 5 ( * , p ) , 8 ( r , p ) ) .  T h e n  M  ( f r )  :  d r  >  0  f o r  & : 1 , 2 '  a n d  l e t

/- \
p €  F  ( i ) .  f  3 p 4  F ( f t ) u F ( f z ) ,  t h e r e e x i s t s . y n e  t r "  w i t h  / p d s  <  {  f o r

\  /  . f*

k :1,2, and let  fg :  A ( I- ,y, ,  rm72, B (*,  d\E @, p')) .  Then M (fs) :  d3 >
c.Inf ,  )  0 and 3p e F(13).  I t  results that 3p e F(11)UF' ( f2)UF(fs),  hence

/-\
M  ( r )  :  M  ( l )  >  d  :  # m i n { d 1 , d 2 , d 3 }  >  0 .

Lemma b.' f,"t Cs C IRn be compact, Cr C IRn closed with Cs o C1 :

d ,F  c  -R 'such tha t  F  n (C0UCr) :d ,  and le t  f  :A(Co,Cr , .R ' \F ) .  Then
M ( f )  <  m .

Proof. Let r : d.(Co,Cr) > 0 and p : W - [0,oo] be defined bv p@) : ]
i f . r e B ( C o , r ) , p ( r ) : 0 i f  r  4  B ( C o , r ) .  T h e n  p €  F ( J ' ) , h e n c e  M ( t )  <
I p" @)dn 1 p,n(B (Co,r)) lr" < oo.

Rn.

Lernma 6. Let M,F be closed subsets of W,C^,C compact, connected
subsetsfrom E with C : J!:tC^,Card C ) 1 and MaC : O, Fa(M U C) :

/ .  Then, i f  |  :  L(C,M,/?"\F) , l* :  L(C*,M,W\F), i t  results that

J*M(r-)  :M(r) .
Proof. We shall use in the proof some arguments from Theorem 37.I, ,141.

We see from Lemma 5 that M (f) < oo and using a Mdbius transformation,
we can suppose that M U F C JR". Taking a subsequence, we can presume

that there exists r ) 0 such that d(C*) >r,d(C) ) r for every rn e lV. Let

d :  min{d (C,  F) ,d(C,  M),1\ .  Let  p € F( f )  wi th p e L ( lR")  and let  q > 1.

We show that there exists rn6 € .0y' such that qp € F' (f,r, ) for every m )> ms.
Indeed, otherwise, taking a subsequence) we can find 7* i la*,b*) *.R'\F a
path with ^r^(a-) € C*,j*(b*) e M such that J qpds 11 for every m e N.

Let  r* :  d . ( ' l * (o*) ,C)  and r*  e C be such that  r* :  d ' ( r , " , ' f  ̂ (o- ) )  for
rn. € IN. We show that r- --+ Q.

Indeed, otherwise there exists I > 0 and a subsequence (r-*)*.^ such that
r,n, ) A for every k e N. Taking some subsequence, we can find g €.Rt such

that 7*r(o*) n gr and using the definition of the set C, we see that g e C.

On the other side, we have 1 a rrnr.. : d(l^* (o*u),C) < d(l*u (o-),y) -

0, which represents a contradiction. It results that r- - 0, and taking a
subsequence, we can suppose that r* ( d for m € N.

Le t  A -  :  A (C , I ^ ' y - , (B ( " ^ ,d ) \B ( r - , " - ) \F ) )  f o r  m  €  IN .  Then
B ( r * , d ) n f  : d , S ( * * , t ) n C  * 4 , 5 ( * * , t ) n I m 7 -  l ( t f o r  e v e r y r m  < t  <  5

and every m e IN,hence M (A-) > c"' lnfi for m€ N.
Let  now m e IN be f ixed and a:  lo ,b]  -  IRn,a e L- ,Q(a)  e C,a(b)  e

Im7* and let  c :  in f  { f  e  la ,b l la( t )  e  Im7-}  and let  c-  e la* ,b- ]  be such



that 7 (") : "y*(c-). We take B : alla,"lVl*ll"*,b*l and we see that 0 el.
T h e n 1 3  { p d , s 3  [ p d s +  [  p d s <  I p d t * ] , h e n c e  f t ' o  e  F ( A - ) .  W e

P d T n a

have oo , !, p' (r) d,r '(*)" > M (L^) ) cn 'lno* -- - if. m -+ oo, which
lRn.

represents a contradiction. We therefore proved that there exists ms € ,0y' such
that qp € .F (f-) for m) m6.

L e t n o w e  > 0 a n d  q : l + e a n d l e t  p u € F ( f )  b e s u c h t h a t  M ( t ) + e >

I p!(r)dr. Then there exists n' e fl{ such that (1 *e)p, € ,F(f-) for
]R,,
rn ) Ire, hence we have

( 1 )  M ( r * )  <  ( 1 +  t ) " .  
A , p ! ( r ) d r  

<  ( 1 +  € ) " . ( M  ( f ) + e )  f o r m )  n , .

We can also suppose that M (f-) < 2M(l) for m) n,. Let q > l and
p*e F (f-) be such that I pk@dr < M (l-) + efor m ) n.. Weshow

that there exists g. ) nu such that q' p* € F (f) for every m ) q.. Indeed, oth-

erwise, taking a subsequence) we calr presume that we can find 'y*: 
[e*,b*) -

IRn,7^ € l, with "y-(a*) € C,^{*(b*) e M and 
^l 

q. p-dt ( 1 for every rn e

.0/, and Iet r* € C^besuch that rk: d(l*@*i' iC^) : d(**,1*(a^)) for

every nL € 1V. We show that r'* - 0.
Indeed, otherwise we can find ) > 0 and (r'*-)n ^ with r'-, ) \ for k e lV

and let r e C such that there exists 1*0,,la^^.,,) * ,. Then B (r,i) n

Q^u, : Q for p € /y' great enough, which represents a contradiction, since

r € C : limC*. It resulis that rl - 0 and taking a subsequence, we can
suppose that rl < f for m e IN, hence f ( min {d(*^,F),d.(r^,M)} tor

m e l N .
Let Ll  :  L(c*,rm'y*,((B (r^,*) \B ("*," ;) \ r))  for m €. i lv.  Then

B (**,  t )np :  Q,S (r*, t ))C^ * O,S (n^,t)nlm1^ + 6forevery rh < t  < t
and every m € IN, hence c, 1"* < M (L;) for m e N.

Let rrow m € N be fixed and let a : la,b] - IRn,c\ € L;,a (a) e C^,a(b) e
M and c :  inf  { te la,b] la(t)  €Im1*} and let  c* € la^,b-]  be such that
a(c) :  1, ,(c*).  We take 0 :  o- l [o,c]  V'y^l lc^,b-]  and we see that p e l* ,
hence 1 S !  p^ds S I  o*ds+ I  p*dt < I  p*dt+].  Then #-p- € F (L;) ,

P d ^ t n a

n . n . "  ( ; ! ) " - e , ( r ) + e )  >  ( * ) " .  f  p h @ ) d r >  M ( L ; )  ) c , . l n  + -\ s - I l  , - \ s - ' /  
f r , , " '

xt if m + @, which represents a contradiction. It results that we can find
?n, ) 7y, such that (1 + €) . p^ e F (f) for m) mr,hence

(2) n/(r)  < ( t  + e) ' (M (t^) * e) f orm ) m,.

Using (1) and (2), we see that 
_lim 

M(f-) : M(l), q.e.d.

I p7"@) dr < (1 + r)'
]R,,

10



Lernma 7. Let K C Rn,y e lff,p ) 0 such that mo(K) :0 and let
M (K,U) : {z € .trR'l there exists tr e K and f ) 0 such that z : (l -t)a +tw).
Then mo11 (M (K,y)) :0.

Proo.f . We show that mp+t (K x [m,m + 1]) : 0 for every rn e IN. We fix
m e IN and let 0 < e < 1,0 <, < 1 such that mto6) <e and take a covering

@ @

K c U A.i of K such that d(An) <t for every i e IN and f d(Ao)o ( e. Let

t+l 
*r for z € 1V. Then L I aa.(i 12 for every i e IN, Aaxh :  d ( A t )  a n d  a ;  :  

1 , , ,

lm,m+l]  c Z.1, *  l*+ *,*+ *.1 and there exists a constant C(n)
t  I  I  ; _ 1  |  a i '  a t l

depending onty on n such that d. (a, " l*+ #, * * *l) = 
" 

@) .d,(A1) tor

e v e r y i  €  / y '  a n d  j : 1 , . . . , a ;  a n d l e t  r :  C ( " ) '  1 .  W e  h a v e  K  x [ m , m + L ] c
m  a '  r  , ,  

* + z l  a n d a ( A , x l m + i l . m + L ] ) a r f o r i e  I N
o ! , , ! r A r x l m + ? '  o , l  \  L  o ,  u , ) / -
a t d  7  :  l , . . . , Q i . . T h i s  i m P l i e s

m  a ,  /  f  ;  1  ; l \ P + l

* i * , (K x lm,m+ 1l )<I f r (o '  .  
L-  + ' ; , , " .  t ) )  t

€ o @

c (n)o* ' . \ard. (At )o* t  < c  (n!n+t .L"0. ! i 'd(A)e <2.c (n)e+l .Lo(a)o
i : 7  i : f  i : \

<  2 '  C  (n ) ' + '  '  , .
Letting first f --+ 0, then s - 0, we obtain that moal(K xfm,m+ 1]) :

0 for every m e IN and hence that mr',1(K x i0, m])) :0.

L e t n o w  H : l R n  x [ 0 , o o )  - ] R n  b e d e f i n e d b y H ( r , r )  : ( 1  - t ) y * t r f o r

re  lRn  and t  )0 .  Then l l i sa  C -  map  and  M(K ,u ) :  H (K  x  [ 0 ,oo ) ) ,  and

th is  impl ies that  m,1t(M (K,E))  :0 .

3.  Pnoops oF THE MAIN RESULTS

Proo.f o.f Theorem 1. Suppose that / is not continuous at e. Then there

exists zi + t,aj -+ r such that / (*i) --bt,f (Ai) --+ b2, v,' i th h lbz and let

r j : max {2lri l  ,2ly1l\ tor j e IN. Since cap -F : 0, it results that F is nowhere

disconnecting and let Cl be a connected set joining z, with yi in B (r,ri)\f..

Let p> 0 besuch that g(f (C)) ) pfor every j e -0/. Using Lemma2.6, page

65, [13], there exists d > 0 such that d < cap("f (B(r,6") \f,/(Ci)) for every
j e t N .

Le t  f f  :  { 7  :  [ 0 ,  I ]  -  IR '  pa th  17 (0 )  e  / (C i ) , r ( [ 0 ,  t ] ) )  c  / (B ( r , p " ) \F ) ,

7(1) € 0 f (B (r,p, )\.F ) ) and let li be the farnily of all maximal liftings of some

paths from f| starting from some point from C1 for j e N. Let 117 : {"y e

f1l7 has a Iimit point in F) and f 'zi: h € fi l f has a l imit point outside

B ( r , p , ) I  f o r  j  €  l V .  T h e n  l j  1 f  ( f i ) , f r :  f r j U l 2 i , M 6 , , - , ( f r i )  : 0 a n d

l2 j  < L(B(r , " j ) \4  C(B(x,p, ) \F) ,m' \F)  for  j  e  1V.  Using ( i )  and Lemma

2. we see that

d  <cap  ( f  (B ( r ,p " ) \F )  , f  (C i ) ) : t ' t ( r ' i )  <M( f  ( r i ) )  <  MK"  '  ( r i )

1 1



1M6*-r( fr i )+ Msn-,( fz i)  :  Myn-,( fz i)  5 My--,(A(B(r '" i ) \4 C(B(r,
p")\F), n"\f') --+ 0 if j n oo.We obtained a contradiction, hence we proved
that / is continuous at r.

Suppose now that for every r e F there exists P" ) 0 such that cap
C (f (8,p") \F) ) 0 and I exp ("4 (X (y))) dy ( oo. Using the first part of

B(*,p")
the proof, we see that / extends continuously on ,F, and we also denote by /
the extended map on D. Then / is continuous on D' and since the theorem is

immediately if / is constant on D, we can suppose that f is open, discrete on

D\.F. Using the openness and the discreetness of / on D\r', we see that i (f , *)

has a constant, nonvanishing sign on D\F, and we easy see that / is a light

map on D. We use now Theorem 1, [2] to see that / is an open, disciete map

on D.
Letnow n e F bef ixed.  Wecanf ind0 < ar- j  Prsuchthat  N( f ,S(r ,o") )  <

oo and let .0y' : N (f , B (r, o,)). Since / e Wrl,il (D\F), we use Theorem 6.3.2,

[3] page 107 to see that I lr @ dz ( N ' p.(f (B)) for every ball B from D\I.

We cover now B(r,ar)\f with some balls Ba, i e IN such that there exists a

number .L depending only on n such that every point from B (r,ar) \.F belongs

to at most .L balls Br. Then

< lutz . L . tt.ff (B (r, a,))) < oo.
Since ! exp ("4 (lf (St))) dgr ( oo, we see from Proposition 1 that

B ( r , a * )

I X;- (r)dz ( oo and using Holder's inequality, we obtain that
B  ( r , a " )

f t 6 n @

I  t , e ) d z -  |  t , e ) d , z < f  l t , ( z ) d z < N . l u - 1 y @ , ) )I  I  : - t  t
J  J  J - I

B( r , a " )  B ( r , o " ) \F  B , i

(1.,,K;;= (a)*) 
* 

(.,!,,,rr (Y) da)*' *I  v '@)tda S
B ( r , a , )

Now / is obviously an ACL map on B (r,a"), hence / is ACLI on B (r,a,)
and from Proposition 1.2, [13], page 6, we see that f e Wriii(B(r,a*11.

We also obtain
Theorem 2. Let n ) 2, D c lR be a doma'in, F C D be closed 'in D, f :

D\F -- IR" be a nonconstant map o.f .fi,nite d'istort'ion, o.f K (r) dilatat'ion,
sati,s.fying condi,t' ion (A) suchthat M6"-t (F.) :0 andlet r € F be an essent'ial
singularity o.f f such that there erists p, ) 0 such that B(*,p") C D and

f exp ("4 (N (a))) ds < -. Then 'it results that cap C (f (B (r, r) \F)) : Q
B( " , p . )

.for euery 0 1r I p*.
Proof o.f Theorem 3. Let 0 < r < p, and. r e W\f lB (r,r) \F'), and we

c a n s u p p o s e  t h a t  z  t '  a .  S i n c e c a p  F : 0 ,  w e c a n a l s o t a i : e  0 . - - r  1 p ,

L2



such that S(x,r)  f iF:  / ,  and since z 4 f  @ (r,r) \F),  i t  results that o:
d(z,f  (S (" ,")))  )  0.  WeseefromTheorem2thatcap Cf (B (r ' r ) \F) :0and

we use the fact that / (B (r,r) \F) is an open, nonempty set to find 0 < r' < a, a
connected set Q c B (r,r) and a cap C of the sphere S (z,r') such that f (A) :

C. We denote for E € C and i e IN by 7r;the parth ts;: [0,t 
- ll '- B (z,r')

defined by lsr.(r) : (1 -t)y +tz for t € 10,1 
- f] and let Ai : {a e Cl the

path 1oi cannot be lifted from every point from Q) for i e IN.

Suppose that mn;(A) > 0 for some i e IN. Let fl : {l}ue$}
and let f; be the family of all maximal liftings of the paths from fl starting
from some point from Q. Then 1(f;) < ll, every path from 11 is contained
in B (r,r) \F and has some limit point in F, hence My^-'(fl) : 0. Since
mnt (At) ) 0, we see that M (l) ) 0 and we use now (i) to see that 0 (

M(ti) S M(f (f;)) S Mx,,-, (fo) :0, which represents a contradiction. It
results that mr-1(At) :0 for every i e IN.

Let now e/ € C\ il Ar arrd 7o :10,11 -- B (z,rt) be defined by lo(t) :

(1 - t )U* tz  fo r  t  €  [0 ,1 j .  I t  resu l ts  tha t  i f  b  e  Q is  such tha t  f  (b ) :v ,we
can lift 7yl[0,1) from b and let q: [0,t) - IRn be a path such that S(0) : b

and . f  o  q  :  7 r l [0 ,1 ) .  Then Imq C B( r , r )  and le t  B t :  q ( [1 -  ] , t ) )  fo r
i e IN and B the set of all limit points of q. Then B : lim sup 86, hence B is a
connected set from B (r,r). Suppose that Card B > 1. Then cap(B\tr.) > 0 and

/ (B\F) c {zl, which contradicts the discreteness of / on r\.F'. It results that
Card B : 1, hence there exists 

" 
: 

I*q(t) 
and c € F and hence z e A(f,c).

I f  r i s a n i s o l a t e d p o i n t o f  F , t h e n c : t r '  h e n c e  z € A ( f , r ) .  I f  r  € F l w e c a n

f indr7"  - - } , rk  (  rw i th  S( r , rp )e tF :  / ,  hence z  €  n ' \ f  (B(n , r ) \ f )  c
W\71A1u,",,)\F') and as before we find rx e B(r;re))F' such that z €
A(f ,rn) for every k e IN and the theorem is proved.

Proof of Theorem 4. Let o 1rp 1 pn,rn \ 0 such that,S (r,rp)aE : $ and
ret  Fp:C( f ,B(r , rp)a((aD\E) \ { ' } ) )  for  k  e 1v.  Then C(f , * ,a t \E)  :
m _

['l Fa and Fn+t C F*for k € fl/ and since z 4 C (f ,n,?D\E), we can presume
k :1

that z ( Fa for every k € 1V. Let pn ) 0 be such that B (r, pr) n Fp : $ and

Iet us prove that there exists p[ ( p6 such that B (r, p')n f (D n S (r,rp)) : 712.

Indeed, otherwise we can find a; e DaS(r,rp) with /(ou) -- z. Taking a

subsequence) we can suppose that aa + o0 € S(r,rp)- Then og f. D, since

in this case we obtain f,hat z : f (a0) e f (D O B(r,p,)), which represents

a contradiction. Also, a6 $ 8, since a6 € ,9 (z,rp) and S (z,rp) n E : d.
If o6 e AD\E, then z e C(f,as) C Fy, which represents a contradiction.

It results that for every k € 1[, we can find p'r" ) 0 such that B(z,p'*) a

(Fno f (D n S (",rn))) : (>. Let now k € 1V be fixed.

Since z eC(f  , r ) ,  we can f ind apoint  ar€ Dt tB(r , rp)  such that  / (o*)  e

B(t,pL). We can presume that f is not constant on D, hence / is open,

discrete on D and this implies that we can find 0 < ,L I p'k, a connected set

Qn C B (r,rp)nD and Cp acap of the sphere S (z,r'p) such that f (Q*): Cn.

We denote for 3r € C* and i e N by'yat : [0, t 
- 

I] - B (z,r') thepath defined

_t.)



by 1s,i.(r) : (1 -t)a + tz for t e lO,t 
- f] and let Aa : {a e Cnlt*ca,n not

be lifted from any point from Qnl tor i e IN. Suppose that mn-t (,4a) > 0 and
let ff : {lrolU e A;} and,let f; be the family of all maximal liftings of the
paths from fl starting from some point from Q6. Then every path T € f,; is
contained in B (n,rn) t'D and cannot have some limit point in D f) S (r,rp) or
in B (r,ry.) n (OD\E), hence 7 can have only some limit points in ,8. Since
My--t (E) : 0, we see that M1a--'(f;) : 0 and since *"-t (At) > 0, it results
that M(fi) > 0, Since /(ft) < fl and using (i), we obtain that 0 < M G) S
m ff G )) I My-_t (f;) : 0, which represents a contradiction. It results that
mn-r (At) : 0 for everY z € -0y'.

Let now y e C*\ .il,4; and let 1o :[0, t] -- E (z,r'*) be defined by h(t) :

(1 - ,) y *tz for, e [0, 1]. Then we can find q : [0, 1) --- DetB (r,rp) a path such
that q(0) e Qr, f  oq:7yl l0,1) and we show that there exists *r : I lg 'q(t) .

Indeed, Iet r,r" be a limit point of q and suppose that we can find another limit
point gs of q such that y6 I r*. Let 0 I t, I to+t (,...,( 1 with to ,/ t
and lq ( tzr)  -  *r l  .  * , lq(tzo+,) 

-  anl  .  # and Iet Ap = Q(l t2o,t2ra1l)  for

p € IN.Then,4 : limsup,4p is a connected set from 0DnE (r,rr) ,rp,lp e A,
and since cap E : 0, we can find a point z e,4\(EU {r}). Then we can find
sp ,/ | such that S(sp) -- u and we see that /(q(to)) -+ z. It results that
z € C (f ,u) c Fp, which represents a contradiction. We found thai 

|Ee 
(t) :

nk e ADaB (r,r*) ,hence z € A(f  , rp) for k e N. Then ei ther nk: t r  for some
k € lN, hence z e A(f ,r), or rp f r for k e IN and then n4 € E,xk --t tr.

Proo.f o.f Theorem 5. Suppose that there exists b € B and e > 0 such
tha t  My, , - , (EaB (b ,e ) )  :0 .  S ince  My, - , (Ann (b , ; ) )  )  0 ,  we can f ind
s  €  ( B \ E )  . B ( b , i )  a n d  I e t  p :  [ 0 , t )  - -  D o B ( s , ! )  b e a  p a t h s u c h  t h a t

]gi0(t) 
- s and yg,f @(l)) does not exists. Then we can find s* / L with

Jy*f (0 Gr^)) : u I u: -ly5/ (0 Gz^+t)) and let F* : f (0 (ltz*, sz*+rl))
for me lV and let r > 0 be such that q(F^) ) r for every m € -0/. Let rna0
be such that p ([sz^,sz*+t]) C A (y,r*), and we can suppose that rn < fi for
every m € IN.

Let f f , . :  {?:  [0, t ]  -- '  IR* path l r(0) e F*,1( l)  e Cf (B (b,e)nD)] and
let f- be the family of all maximai liftings of some paths from ll starting from
some point f rom pl[sz^,sz^+r] for m € lV. Let f - ,  :  { f  ' [0,c]  ---+ D pathl
eitlrer 7 € f,, and Im7 C B (y,il, or there exists c < dand a: [0,d] ---+ D,ae
f , .  such tha t  7 :  a l l0 ,c ] ,a (0)  e  0 l l t z * ,s2m+11and c :  in f { t  e  [0 ,d ]  la ( l )  e
S (y,il)) and let l^2: h e l*l1 is reciifiable).

Since we can suppose that e ) 0 is chosen such that 
,.J;:f 

(r( K (r)))dr <

co, we use Lemma 1 to see that I Np (r) dr < co for every p ) 0 and

from Lemma 3 we see tnut mn,?iA(lr'/ : M6,-,(f-2) for every m e IN.
We see that f (l-r) < fi and since cap Cf (B (b,e)nD) > 0 andq(F^) ) r
for every m € N, we use Lemma 2.6, 113], page 65 to find d > 0 such that
d < cap (f  (DaB(b,e)), f l "))  for evety tn € 1V. Lei lm3: h e l^zl ImrO
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S(A,i l  :  S) for rn e IN. Then, i f  7 € l -3,7: [0,1) --+ DoB (a,3),  the rect i f i -
abilities of .y implies that there exists B., : lTlT 

(t) e 0D, and of course, / has

some asymptotic limit at p, and hence p, e E. Since M6n-, (E a B (6, e)) : 6,
it results that M6,-r (f-s) :0, hence Myn-r(l*z): Myn-'(f-2\f6) for
rn € IN.

Then f -2 \ f -s  C A (nnB(a , r * ) ,DnCB (a ,3 ) ,D)  fo r  m €  f l y ' .  Us ing
(i) we have

6  <  c a p  ( f  @ n B ( b , e ) ) , F ^ ) :  M ( t ' * )  <  M ( f  ( f - r ) )  1 M 6 - - t  ( f - r )  :

Myu- '( l* i l :  Mx,,- '  ( f -2\ f-  s)1Mv^-,  (L(B (a,r*)oD, DnCB(y, l ) ,  r)  'o

if. m --+ m. We obtained a contradiction, and it results that M y--' (EaB (b, 
")) 

>
0 for every b e B and every e ) 0.

Proof of Theorem 6. Suppose that cap (M\CE,b,K\E)) > 0. Since
n'\C (f ,b,K\E) is open, it is an union of closed balls 81, hence IVI\C (f ,b,K,p:
TmnBn a.nd this implies that there exists z € /y' such that cap M aBi > 0.

We can therefore presume that there exists M1 C M compact in lR with cap
Mr ) 0 and MlaC (f ,b, K\E) : /. We can also easy see that C (/, b, K\E) c
c  ( f  ,b ,G) .

Suppose that there exists a point 91 e C (f ,b, G) \C (f ,b, K\E), and we can
take 3r1 4 Mr,At * q. Taking a subsequence, we can find r^ € B (b,*) a G
such that f ("*) --+ 91 and we can suppose that B (4, *) n 0G c K for every
m  e  I N .  L e t  G * :  B ( b , * ) n C ,  K * :  B ( b , * )  1 - . 1 K  f o r  m  e  I N  a n d  l e t
z^ e (K\E)aB (b,*)  f . r  m e IN. Since cap E:0, we see that rno(E) :  O
for every a > 0 and from Lemma 7 we see that mr(Irl (E,r*)u M (E,z*)):
0 for every | < p ( n, and this implies that we can find a point w^ e
G*\(M (E, r^) U M (E,r*))  for m € N. Let q*:  [0,  1]  --+ B (b, *)  be a path
such that q*(0) :  f rm,Qm(L) :  , -  and Imq- :  l r* , .* ]Ulta*,2*).  Then
Imq- f)  E :  cb and let  t^:  inf  { t  € [0, l ] lq^(t)  € AG*] and )-  :  q- l l } , t*)
for m € lV. Then A- (0) : r*, \* ([0, r-)) C G*, \* (t*) € AG^ and we see
tlrat )- (t*) e K*\E for every m e IN.

L e t  r t  :  m i n { q  ( a r , M r ) , q ( a r , C  ( / , b , 1 ( \ E ) )  , Q ( M t , C  ( f  , b , l ( \ E ) ) } .  T h e n
r' > 0 and we also suppose that fr ( p for m € IN. Let F : D '- n @)
b e d e f i n e d b y  f ( r )  :  / ( z )  i f  n  €  D , F ( r ) :  C ( f , r ) r f  r  €  A D .  T h e n

c (f ,b,K\E) : frrq,tr-1iE u14;, and taking a subsequence' we can pre-

sume tha t  r (K- \ ( ru {a} ) )  c  Bq(C( / ,b ,K \E) ,1 )  ro .  m €  N.  Then

c ( f  ,  ̂ * ( r - )  ,  rm l - )  c 
" ,  

("  ( / ,  b,1{\E) , f , )  , t  ( ) -  (0))  :  " f  ( r - )  -  ut ,

h e n c e  I m  ̂^ . 8 ^ ( c t t . t . K \ E ) . + )  +  d  a n d  I m . \ -  ) 8 . ( u r , + \  +  4 ,  r o r
n \  

" ' t /  
' \ " ' 4 / '

every m € ,[\'. Takingr : +, we can find a subpath u- of ),, such that if
H,, : Iman",Q*: Im"f o cu-,  to have /  (H^) :  Q^, Q* C B, (yt ,3r)  ,Qnr)
Bn(At , r )  *  c> ,Q^acBq(y t ,2 r )  I  Q fo r  nL  €  IN.  We sce  tha t  q (Q,* )  >
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r,e(Q*,C(f ,b,K\,E)) ) ,,q(Q^,Mt) 2 r and Q* are compact, connected
sets for every m € .Oy'.

Using TheoremT.l, page 11, [17] and taking a subsequence we can suppose
that limQ- : Q, and we see that Q is compact connected, Q c Bn(y1,}r),
q @ ) > - r , Q n ( M 1 U B q ( C  ( / , b , 1 { \ E )  , r ) :  d . L e t  R 2 :  L ( Q , M u l R n ) , f i l  :
L(Q,Mt,CC(f ,b,/{\-E)). Using Lemma 2.6, [13], page 65, we see that there
existsd )  0such that M(Rz) > 6. Since C(f,b, /{ \E) isclosed, (CUMr)n
(C(f,b,,[(\E)) : S and ̂ n-r(C (/,b,I{\E)) : 0, we see from [15] that
M (Rz) :  M (Rr ) .

Le t  A ,  :  L (Q,Ml ,cBq(c  ( f  ,b ,K \E) , ] ) )  ro r  j  e  IN .Then A i  /  R t  and
using a result of Ziemer [18], we see that M (Li) 7 M (Rt). We can therefore
f ind rs < !  such that i f  (J :  Bs(C (f  ,b, l f \E),16) and l '  :  A (Q,M:,CO),to
have that M Q') > $. tet t'*: A,(Q*,Mr,CA) for m e IN. Using Lemma
6, we see that Iim M (f;) : M (l') and taking again a subsequence, we can

presume that M(f;) > f and ,F' (K^\(EU {b})) C [/ for every m e /y'.
Let l,r, be the family of all maximal liftings of the paths from fl starting

from some point from H* and let f1* : h, [0,d] ---+ D pathl either 7 € l*
and Im7 C Gt, or there exists c ) d and 0 t [0,c] - D,0 e l*such that
1 : 0 1 [ 0 , d ] , P ( 0 )  e  I / -  a n d d : i n f  { t e  l 0 , " l l 0 ( r )  € G 1 } }  f o r m € . 0 / .  L e t
12* : {l e lwfi is rectifiable) for m e .0/. Since every path 7 from f1-
is included in G1,Gt c B (b,p) and I exp("4(f ("Ddr ( oo, we apply

B(b,p)nD

Lemma 1 to see that I 6n@) dr < oo for every p > 0. We use now Lemma

3 to see that M6,-,6:t:Jy*.,,-,(rz-) for every m € IN.
Let f3- : h e lz*W ends in a point from K1\E) ,14* : {7 e f2-17 ends

in a point from ,E|, 15* : {l e tz*ll ends in a point from ̂ 9(b, 1)} for m e IN.
We see that / ( f t -)  < l l for rn e IN.I f  7:  fc,  dl  -Gt is a path from f3-,
with 7 @) e H^,j @) €1(t\ (Eu {b}), then there exists lim,.f 0 @) iA and

o n t h e o t h e r s i d e ,  
l : { , ' f  0 ( t ) )  e C ( f , t @ ) , I m ? )  c  F ( 1 { 1 \ ( E U { b l ) )  c U ,

q'hich represents a contradiction. It results that f3- : $ for m € .Oy'. Since
A[y.-, (E) : 0, we see that M17" , (fa-) : 0, and we also see that fs- c
L @  ( b , * )  n C t ,  C B ( b , 1 ) t G 1 , G 1 )  f o r  m e  I N .  W e  s e e ,  u s i n g  ( i ) ,  t h a t

A

;  < M (r;) < M (f (r '^)) 1 My,-r (f ,-) :  My,,-,(rz-) <

M6, , - ' ( t3* )+M6"- ,  ( f  +* ) tM6, " - ,  ( f s - )  :  M6- , , ( f r - )  <  M6, , , (A(Gln
B(b, *),CB (b,1) n Gl, G) - 0 lf m * oo, which represents a contradiction.

We proved in this way that if cap (M\C(f ,b,K\E)) ) 0, then it results
that C (f  ,b,  K\E) :  C (f  ,b,G) .

Remark 2. If we additionally suppose in the preceeding theorem that
*n-t(C (f (B (b,p))) > 0, then the condition cap (M\C (f ,b, K\E)) > 0 is sat-
isfied and hence in this case we have C (f ,b,I(\E) : C (f ,b,G). An irnportant
such case holds of course when we suppose / to be bounded rrear the poirrt b.
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Remark 3. We can take for insta.nce G to be a cone centered in the point b
and of some angle 0 < g < $ and K to be the border of this cone.We can also
take G : D and in this case K C AD. We ca"n also meet the situation when
K naD n B (b, *)  f  0,  K .  D n B (b, *)  *  0, for every m € IN.

In the case r, : 2 we obtain
Theorem 7. Let D c IR2be adomain, f  t  D --  IR2 beamapof f i -

nite distortion, of K(r) dilatation, satisfying condition (A). Let b e 0D be
such that there exists p > 0 such that t exp("4. (N (t))) dr < oo and

B(b,p)nD

cap C(f(B(b,p)) > 0 and let G c D be a Jordan domain such that EG:
I* (1 V 7; V 73), where 'yt : l0,l -D are some arcs, k : L,2,3,7a ([0, 1)) c
D, l*lr(t) 

: b, 
rtE/ 

(zr (t)) : 
",k: 

r,2 and Im73 c D. Then ligf Q) : ".

Proof. We take K - ImTr UIm72, C: Im?s and we see that 6'if ,U,X):
{c},  so that cap C(f ,b,K) :0.  Taking M :  Cf (B(b,p)),  we see that cap
(M\C(f,b,K)) ) 0 and we apply now Theorem 6 to see that C(f ,b,K) :
C (f ,A,G), hence k1,uf (z) : c.

Proof of Theorem B. Since the locus of a path is also the locus of an arc,
we can suppose that there exists 7p : [0,1] -- D arcs such that 7* ([0,1)) c
D, li+lt"(t) 

: u and 
|rul/ 

('rr(t)) : bn,k : r,2, with b1 t' b2- The last

condition allows us to take 71 and 72 such that ImTr )Im72: {b}, and let

7s : f0, l) --+ D be an arc such that there exists a Jordan domain G c D such
that dG :  Im(7r v ' t ;  v 73).  Let Mr: Cf (B(b,p)).  r f  cap M1> 0, then,
tak ing  K: Im11t - ) Im12 and C:  Im73,  we see tha t  C( f ,b ,K) :  {h ,bz l ,
hence cap C(f ,b,K):0 and cap(ffi\C (f ,b,l()) > 0. We apply Theorem 6 to
see that C (f ,b,G) : C (f ,b,K) : {br, b2} and since C (f ,b,G) is connected,
we obtained a contradiction. It results that cap Mt : 0 and taking M^ -

C f (B (b, *)) for m e lV, we prove in the same way that cap M-: 0 for every
m e IN and the theorem is proved.

Remark 4. As in Theorem 6, we can take the asymptotic limits in Theorem
7 and Theorem B over some paths 7: [0,1) * D ending inb e 0D and avoiding
some sets E clml with My"-' (E) :0.

Proof o.f Theorem 9. Since C(f,b,K\E) is a compact subset from IRn,
there exists a' < a such that C(f ,b,I{\E) C B(r,a')..We can find M1 c M

a compact set from .R' with cap M1) 0 and Mr )B (r,*) : lr. Suppose

that there exists 91 € C (f ,b, G) \B (2, a), and we can take y 4 Mr,at * x.
Le t  G^ :  B  (b , * )  ac ,K* :  B  (b , * )  oK fo r  m e  N.  Tak ing  a  subse-

quence) we can find r* € G- such that / ("^) -, !1 and we can suppose that
B ( b , * ) n \ G c  K a n d  * a p  f o r e v e r y r n e  I N ,  A s i n T h e o r e m 6 , w e c a n
f ind some paths , \ -  :  [0, t ]  --  B (b,*)  such that )-(0) :  nmt)*([0, i ))  c

G* , \ ^ (1 )  e  K- \E  fo r  m €  lV .  Le t  r ' :  m in{d  (y t ,Mt ) ,d (Mr ,B( r ,a ' ) ) ,

d.(ur,B (r,o'))). Then r' > 0 and let F :D -- P (W) be defined bv F (r) =

f  ( r ) i t r e  D , F ( r ) : C ( f , " ) t f  t e  0 D .  T h e n C . ( f , b , K \ E ) :  n _ p ' ( K - \
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\ (E U {b})) and taking a subsequence, we can presume that F' (K-\ (E U {b}))
C B (r,a') for every rn e IN.

Then C( f , ^^ (1) , Imt r - )  c  B( r ,a ' ) , f  ( \ * (0 ) )  :  f ( r * )  -  s1 ,  hence

Im)-  nB@,a)  *  d , Im^*aB ( r r , t )  I  $  fo r  every  rn  e  1 / .  Tbk ingr :  t ,
we can find a subpath a- of )- such that if H* - Im a*, Q* : Im f o a*, we
have /  (H^)  :  Q^ ,Q^ C B (y t ,3 r ) ,Q*o  B (a t , r )  +  6 ,Q-oCB(u t ,2 r )  *  d
for m € IN. Then d(Q*) > r,d(Q*,Mt) 2" r and Q^ are compact, con-
nected in IRn for every rn € /V. Using Theorem 7.1, page 11, [i7j and taking a
subsequence, we can suppose that lim Q-: Q, with Q compact, connected in
Rn,Q C B (a t ,3 r ) ,d , (Q)  )  r ,Q )  M1 :  O,Q nB ( r ,a '  * r )  :  @ and le t ,R  >  0
be such that B (at,3r) c B (n,r?) and f/ : A (Q,Mt,CB (r,a')). We see that

Q c B(z,r t) \B (r ,a '  +r)  and MlaE (r ,a '  l r )  :  6,  cap M1 ) 0 and from
Lemma 4 we see that there exists d ) 0 such that M (f') > d.

Let l l :  L(Q^,ML,CE(",o'))  for m e N. Using Lemma 6, we see
that lim M (f;) : M (l') and taking a subsequence, we can presume that

M(h) 2 $ for every m e IN. Let now l- be the family of all maximal
liftings of some paths from fl starting from some point of H* for m e IN.
Let 11- : {^f , l0,cl -* D paths I either 1 € l*and Im7 C Gr, or there
exists c ( d and 0, l},d) --+ D,0 e l^ with p(0) e H*,0[0,"] - 1 and
c :  in f { t  €  [0 ,d ]  lP@ 4 G1] ]  and le t  f2 - :  h  e  f r -  l l  i s  rec t i f iab le ]
for m € lV. Since every path 1 e lr- is contained in Gr,Gt C B (b,p) and

I exp("4(f (")))dr ( oo, we see from Lemma l and Lemma 3 that
B(b ,p )aD

Mv,,-'(fr-) : M11u-'(f2-) for every rn € ,0y'.
Let f3- : h e f2r,"l7 ends in a point from K1\E] ,14^: {7 e f2-17 ends

in a point from E| and 15- : i7 e lz^ll ends iria point from 5(b,1)) for
m € IN. Let 1:  fc,dl  -  Gr be a path from l3-,  with 7@) e H^,7@) €
1(r\ (E U {6}). Then there exists lim,/ (l @) f E (r, a') and on the other sid.e,

wehave 
!y , f  0 ( t ) )  €C( f , t@) , Im7)  c  r (K ' \ (au  {a } ) )  c  B( r ,a / ) ,  wh ich

represents a contradiction. It results that f3,, : cft for every m € .Dy'.
We see that f (f r-) < ffi, that lz^ C f3-Ula-Ul5^, that M6, , (f+-) :

0 and that fr- C L (B (b, *) n Ct,CB (b,1) n G1, G1) for every rn € lV. Using
(i) we have

A

;s 
u ( f-)  < M(f (rw)) 1M6,-t  ( f t -)  :  M6,,- ,  ( tz*) < MK,,- ,  (rs*)

*My, . - ,  ( f+ - )+  My^- ,  ( fu - )  :  My, - ,  ( f s , , )  (  My, , - ,181b,1)OGt ,

C B (b,1) n Gl, Gr) - 0 if rn --+ oo.
We obtained in this way a contradiction. We therefore proved that C (f ,b, G)

C  B  ( r , a ) .
Remark 5. We see that is we additionallv suppose in the preceeding

theorem that / is bounded in a neighbourhood of b aud C (f ,b,I{\E) c B (r, a),
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then it results that Cf/,b,G) c B(r,a). We can also prove Theorem 7 using
Theorem 9 instead of Theorem 6.

Proof of Theorem 10. We can suppose that / is not constant on D. We see
th? (f ,r) cE (0, M) for every n.e AD\E and this implies that C (f ,b,0D\E)
c B (0, M) for every b € (AD\E)' and since E c (1D\E)', we use Theorem
9 to see that C (/,b) c B(0,M) for every b e 0D. Let L: 

#Bl/(r)l 
and

suppose that L > M. Let ri € D be such that lf (r1)l -- L. Since D is
compact and taking a subsequence, we can presume that ri --+ ro € D. If
ns € AD, then, taking again a subsequence, we can suppose that there exists
w eW such that f (*) -- tu, and in this case we obtain that tu e C (f ,16) and
lwl : L > M which contradicts the fact proved before that C (f ,b) cB (0, M)
f o r e v e r y b € A D . I f  r s e  D , t h e n  f  ( r i ) - - f  ( r o ) , h e n c e l / ( r o ) l  : . L a n d s i n c e

/ is open at 16, this contradicts the definition of tr. It results that L : M,
hence l/ (")l < M for every r e D.

Proof o.f Theorem 11. Let o : limsup l/ (r)l and 0 : limsup(limsup l/ (")l).
z + b  r + z

z € a D \ E '

Then p ( a and we can suppose that B ( oo and let e ) 0 and define
,lt(") : lim-supl/(r)l for z e 0D\8. Then there exists d, > 0 such that

O S $ (z) < 0+e for z € B (b,6,)n(dD\E) and hence C (f ,") cB (0, P f e) for
every  z  €  B(b ,d . )n (dD\E) .  Th is imp l ies  tha tC( f  ,b ,AD\E)  c  B(0 ,0+Ze1
and since cap (MaCB(0,0+ZI1S ) 0, we apply Theorem 9 to see that
C(f  ,b) C B(0, 0+Ze). Lett ing 6 * 0,  we see that C (f  ,b) c B(0,8),  hence
a < 13 andhence a: 0.

Proof of Theorem 12. Suppose that there exists b1, bz € C (f,b),b, f b2 and
D' has property P2 at b1. Let ri --+ O,Ui e V (b) be such that Ui+t C Ui,Ui C
B (b,r1) and Ui tl D is connected for every j e IN and let F c D' be compact.
Since C(f ,b) c ED', we can suppose, taking a subsequence, that there exists
0 < po ( p such that f  (Uj nD)f\  F: $ and f-r  ( f ' )nB (b,pi :  /  for every
j e IN, and we can suppose that ri ( p6 and bt|}_ 3$ (U j a D) , F, D') for
j e N. Since / (Uj a D) is connected, bt,bz e f (Uin D) and D/ has property
P2 at b1, there exists d > 0 such that 6 S M (l') for every j e IN, and let fi
be the family of all maximal liftings of the paths from fi starting from some
point f rom U1)D for j  €.8/.  Let f r i  :  {T: [0,c]  -  D path lei ther I  €l t
and Im7 C B (b,po), or there exists c I d and p : l},d,l - D,0 € f, such that
1 , :  0 l [0 ,c ] ,7  Q)  e  U l  rD and c : in f { t  €  [0 ,d ] lP( t )  e  B(b ,p i ] ]  fo r  7  €  ,0 / .
Letl2i: {7 e f1yl7 is rectifiable} for j e 1V. Using Lemma 1 and Lemma 3,
\\€ see that My-,, (fri) : Mx,,-, (f2i) for J € 1V. Also, if "y €lzj,7(0) €
UioD,7 :  [0 ,1 ]  - -+  D,  then we cannot  have 7(1)  e  B(b ,po)nED,  s ince  the
hypothesis implies that A (/, "f (t)) c ADt and on the other side Im / o 7 c Dt .
This impl ies that f2i  c A@(b,r1)oD,CB(b,po)n D,D) for every 7 € lV
and using (i) we obtain

6 < M (r l )  S u U Qd) 1 My,"- '  ( t4) :  M6^,,  ( lz i )1 Mx,,- ' (L(B(b,rr)

aD,CB(b,po) n D,D) ---+ 0 if j *- oo, which represents a contradiction, It

1 q



results that Card C (f,b): 1, hence / can be continuously extended at b'
Remark 6. The important condition I exp(r4(f (r)))dr < oo used

B(b,p)^D

in the preceedings theorems, which ensures that My^-'(A(B(6, ri)nD,CB (b, p)n
D,D) --.0 if 11 ---+ 0 and p > 0 is keept fixed, can be realized for instance if

K (r) S Ko on DoCB (r.;) ar p € IN and lims;n#| : e ( n. Indeed, we

take "4 (t) : t and if po € IN is such that K, l lnpo for p ) p0' we have

I exp (,4 (K (r)))dr : D I exp ("4 (n (r)))dr <
r(a,;)nr pzio+r (r(a'fr)\r(a,f ))no

D
p)pol

I exp (K,)dn sco I.p" (#,r- - 
i) t

i  ( r  (4, r5 ) ta(o,a))np p>po+r \  \ r  Y

Ct. t *Jr* ( oo. Here C6 and C1 are some constants depending only on
P ) P o + l '

n.
This shows that the preceedings theorems holds for instance for locally

quasiregular maps having some logarithmic growth of the constant of quasireg-

ularity near the critical point b e ED.
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