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MAPPINGS OF FINITE DISTORTION: BOUNDARY EXTENSION
MiHAl CRISTEA

Abstract: We generalize some results of O.Martio and S.Rickman [10] concerning
the boundary extension and the asymptotic values of quasiregular mappings. This
results are known for bounded analytic functions as Lindel6f’s theorem, Iversen’s the-
orem, Iversen-Tsuji’s theorem, Noshiro’s theorem and Cartwrigtht’s theorem. We
also generalize a result of M.Vuorinen concerning the boundary extension of closed
quasiregular mappings. We also prove some maximum principles, some eliminability
theorems and a theorem concerning the density of the points b € @B™ at which a
map f : B™ — IR" of finite distortion has some asymptotic values. Our extensions
holds for mappings of finite distortion satisfying condition (A), a new class of map-
pings recently studied in [7], [8], which generalizes the known class of quasiregular
mappings.

AMS 1991 Classification No. 30C65

1. INTRODUCTION

A mapping f : D — IR™, where D C IR"™ is a domain, is said to have finite
distortion if the following conditions are satisfied:

1) f € Wi (D, R").

2) There exists a measurable function K : D — [0, 0] finite a.e. such that
If' @)|" < K (z) - Jy () ae

3) The Jacobian determinant is locally integrable.

If K € L* (D) we obtain the known class of quasiregular mappings and
we refer the reader to [12], [13] for the monographs dedicated to this subject.
Quasiregular mappings satisfies an important topological property, they are
either constant, or open, discrete. If the distortion map K € LI (D), with
p>n—1,and f € WL (D, R"), then it is shown in [9] that a map with finite
distortion is open, discrete.

Recently were considered in [7], [8] mappings f : D — IR™ of finite distortion
for which there exists A : [0,00) — [0,00) smooth, strictly increasing, with
A(0) =0, t&rgloA (t) = oo and satisfying the conditions:

(“40> PXP(A<K)> € Llloc (D) :

(Ar) [ 22dt = oo.

(Ag) there exists tg € (0, 00) such that A’ (t)-t increases to infinity for ¢ > o.

As in [7], we shall say that a map of finite distortion satisfies condition (A)
if satisfies conditions (Ap), (A1) and (Asz). In [4], Theorem 1.3 it is shown that
such nonconstant mappings are open, discrete if A () = At for some A > 0.
We shall show in Lemma 1 that mappings f : D — IR™ with finite distortion
satisfying condition (A) are such that the dilatation map K is in L} (D) for
every p > 0 and this ensures (see [5], Prop.2.5, [6] Theorem 1.1 or Theorem
2.1 [7]) that such mappings are continuous and either constant, or open and
discrete. Our proofs are based on the following basic ingredients, valid for
mappings f : D — IR™ of finite distortion and satisfying condition (A)

(i) M (f (') < Mgn-1 (I) for every path family I' from D.



(ii) capgn—1 (B (z,R)), B(z,7)) — 0 when r — 0 and R > 0 is keept fixed
established in [7], Corollary 4.2 and Theorem 5.3.

We shall prove first an eliminability result for mappings of finite distor-
tion satisfying condition (A), generalizing some known facts from the theory of
quasiregular mappings (Theorem 2.8 and Theorem 2.9, page 64, [13]).

Theorem 1. Let n > 2, D C IR"™ be a domain, F C D closed in D, f :
D\F — IR™ a map of finite distortion, of K (x) dilatation, satisfying condition
(A) such that Mygn-1 (F) =0. Let x € F' and suppose that

a) there exists p, > 0 such that B (z, p,) C D and fB(mva) exp (A (K (y))) dy
< 0.

b) cap Cf (B (z,p,) \F) > 0.

Then f extends by continuity in x and if x is an isolated point of F', then
z is eliminable for f. If f satisfies conditions a) and b) in every point from
F and we also denote by f the extended map and int f (F) = ¢, then F is
eliminable.

We generalize now some results which for meromorphic functions in the
plane are known as Iversen’s theorem and Cartwright’s theorem. Our result also
generalizes some extensions of the previous theorems established for quasiregular
mapping in Theorem 2.6, page 170, [13] and Corollary 4.4, [10].

Theorem 3. Let n > 2, D C IR™ be a domain, F' C D closed in
D,f : D\F — IR™ a nonconstant map of finite distortion, of K (z) dilata-
tion, satisfying condition (A) such that Myn—1 (F) = 0 and let € F be an
essential singularity of f such that there exists p, > 0 such that B (x,p,) C D
and [ exp(A(K (y)))dy < oo. Then, if x is an isolated point of F, it re-

B(z,p,)
sults that R™\ f (B (z.r)\F) C A(f,z) for every 0 <r < p, and in the general
case, there exists xy € F,x — x such that R™\f (B (z,7)\F) C A(f,zx) for
every k € IN and every 0 <r < p,.

The following result was proved for meromorphic functions in the plane by
K.Noshiro [11] and for K-quasiregular mappings by 0. Martio and S.Rickman
in [10], Theorem 4.2.

Theorem 4. Let n > 2,D C IR™ be a domain, E C 0D, f: D — IR"
a map of finite distortion, of K (x) dilatation satisfying condition (A) such
that Mgn-1 (E) = 0. Let x € 0D and z € IR" be such that there exists
pe > 0 such that z € (C(f,z)\C(f,z,0D\E)) N Cf(B(z,p,)N D). Then
either z € A(f,x), or there exists xy € E,xx — x such that z € A(f,zx) for
every k € IN.

The following theorem extends a result of O.Martio and S.Rickman [10]
concerning the density of the points b € 9B™ at which a K-quasiregular map
f: B™ — IR™ with cap Cf (B™) > 0 has some asymptotic values (see also [13],
Theorem 2.4, page 170).

Theorem 5. Let n>2,D C IR be a domain, B = {b € 0D| there exists
v:[0,1) — D a path such that %gr}'y (t) = b} and let E = {b € B| there exists

v:10,1) — D a path with %in}fy(t) = b and there exists thn% fFly @)}
Let f: D — IR™ be a map of finite distortion, of K (x) dilatation, satisfying



condition (A) and exp (A(K)) € Li,,(DUB) and suppose that Myn-1(B N
B(b,e)) > 0 and cap Cf (B (b,e) N D) > 0 for every b € B and every &€ > 0.
Then Myn—1 (EN B (b,e)) > 0 for every b € B and every € > 0, hence E is
densely in B.

We shall prove that if the boundary cluster set C(f,b,0G\E) is small
enough, then we have the equality C (f,b0,G) = C(f,b,0G\E) and the result
seems to be new even for quasiregular mappings.

Theorem 6. Let n > 2,D C IR® be a domain, E C 0D,f : D —
IR™ a map of finite distortion, of K (z) dilatation, satisfying condition (A)
such that Mgn—1 (E) = 0. Let G C D be a domain, b € D N (K\E)" such
that 6G = K U C, with C closed, b € K\C, and suppose thal there exists
p >0 such that [  exp(A(K(z)))dz < co and cap Cf (B(b,p)) > 0 and

B(b,0)ND
Mp—1(C(f,b, K\E)) = 0. Then, if we let M = Cf(B(b,p)), it results that either
cap (M\C(f,b, K\E)) =0, or that C(f,b, K\E) = C(f,b,G).

A theorem of Lindelsf says that if f : B2 — C is meromorphic and f admits
two distinct asymptotic values at some point b € OB?, then f assumes infinitely
often in any neighbourhood of b all values of the extended complex plane, with
at most two possible exceptions. We shall use the preceeding theorem to prove
the following generalization of Lindelof’s theorem for plane mappings of finite
distortion, and the result seems to be new even for quasiregular mappings.

Theorem 8 . Let D C IR? be a domain, f : D — IR? be a map of finite
distortion, of K (x) dilatation, satisfying condition (A), and let b € OD be such
that f admits two distinct asymptotic values at b and there exists p > 0 such
that [ exp(A(K (z)))dz < oo. Then there exists M C IR? with cap

B(b,p)ND
M =0 and such that R*\M C f (U N D) for every U € V (b).

We prove the following maximum principle.

Theorem 9. Let n > 2, D C IR™ be a domain, E C 0D, f : D —
IR™ be a map of finite distortion, of K (z) dilatation, satisfying condition (A)
such that Myn—1 (E) = 0. Let G C D be a domain with 0G = K UC,C
closed, b € 8D N (K\C) N (K\E)" and suppose that there exists p > 0 such that

[ exp(A(K(z)))dz < oo and let M = Cf(B(b,p) N D). Suppose that
B(b,p)ND
cap (M NCB (z,a)) >0 and that C (f,b, K\E) C B(,a). Then C(f,b,G) C
B ().

We shall use this maximum principle to generalize a maximum principle
established in Corollary 3.9, [10] for quasiregular mappings.

Theorem 10. Let n > 2, D C IR™ be a bounded domain, E C 0D such
that OD\E is densely in 0D, f : D — IR™ a map of finite distortion of K (z)
dilatation, satisfying condition (A) such that Mygn- (E) = 0. Suppose that
there exists M > 0 such that limsup |f (y)| < M for every x € OD\E, and for

Yy—T
every x € I there exists p, > 0 such that [ exp(A(K(y)))dz < oo and
B(z,p,.)ND
cap(Cf(B(z,p,) N D)NCB (0, M) > 0. Then |f (z)| < M for every x € D.
We shall also use Theorem 9 to prove a theorem which is known for meromor-



phic functions in the plane as Iversen-Tsuji’s theorem. A version for quasimero-
morphic mappings was given by O.Martio and S.Rickman in [10], Theorem 3.3.

Theorem 11. Let n > 2, D C IR™ be a domain, E C 0D, f:D— R"
be a map of finite distortion, of K (z) dilatation, satisfying condition (A)
such that Mygn— (E) = 0.Let b € (OD\E)" be such that there exists p > 0
such that [ exp(A(K(z)))dz < oo, let M = Cf (B (b,p) N D) and sup-

B(b,p)nD

pose that cap(M NCB(0,r)) > 0 for every r > 0. Then limsup |f (z)| =

r—b

lim sup (lim sup |f (x)|> .

z—b T—2
2€OD\E

Our generalizations given in Theorem 4, Theorem 10 and Theorem 11 to
some results from [10] bring something new even if f is supposed to be a
quasiregular map, since the singular set E ¢ 0D is not supposed to be compact
in 0D.

We finally generalize Theorem 4.10 from [16], extendings result of M. Vuorinen
concerning the boundary extension of closed quasiregular mappings.

Theorem 12. Let n > 2, D,D’ be domains in R", f : D — D' a
map of finite distortion, satisfying condition (A), of K (z) dilatation, b €
0D such that D is locally connected at b and there exists p > 0 such that

[ exp(A(K (z)))dz < co. Suppose that C (f,b) C OD" and A(f,z) C OD'
B(b,p)ND
for every x € B(b,p) N 0D and that D' has property P in some point from
C (f,b). Then f can be continuously extended at b.

2. PRELIMINARIES

We call a path ¢ : [0,1) — IR™an open path,and a point z € R" will be
called a limit point of g if there exists ¢, /1 such that ¢ (tp) — x. If ' is a path
family in IR™, we define F'(I') = {p : R™ — [0, co] Borel maps |[pds > 1 for

5
every v € I'locally rectifiable}. If D C IR™ is open, w : D — [0, 0] is measurable
and finite a.e. we define & : IR™ — [0,00] by @ (z) =w (z) if z € D, @ (z) = 0if

z ¢ D and we define the wmodulus of T" by M, (I') = inf [ o™ (z)- @ (z)dz,
pEF(F)IRu,

and for w = 1 we obtain the usual modulus M (T). If I'y, T’y are paths families
in R", we say that I'y > D'y if every path v € I’y has a subpath in 'y, As
in the classical case, we prove that if I'y > I, then M, (I'1) < M, (I'y) and

that M, @0111) <Y M, () Also, if wy < w, then M, () < Mo, (). We
B i=1

define, for D C IR™ open and E, F C D by A(E, F, D) the family of all paths,
open or not, which joins £ with F'in D.

We say that £ = (D, C) is a condenser if C' is compact, D is open, C C
D C IR™, and we define the capacity of E, cap E = inf [ |Vu|" (x) dz, where

Rﬂ

we Cg° (D) and u > 1 on C and we let Iy = {7: [a,b) — D paths |v(a) € C,y
has a limit point in D}. We know from Prop.10.2, [13], page 54 that cap
E=M(g):



If E = (D, () is a condenser, w : D — [0,00] is measurable and finite a.e.,
we define the weapacity of E, cap,E = inf [ |Vu|" (z)dz, where u € C§°(D)
R'I’L

and v > 1 on C and we see that if u is a test function for cap,F, then p =
|Vu| € F(T'g), and this implies that M, (I'g) < cap,, (E).

If C c IR™ is compact, we say that cap C = 0 if cap (4,C) = 0 for some
open set A from IR™ and from Lemma 2.2, [13], page 64, the definition is
independent on the open set A with C ¢ A C IR"™. If C' C IR™ is arbitrary, we
say that expC = 0 if cap K = 0 for every K C C' compact.

If D c R™ is open, w : D — [0, 00] is measurable and finite a.e., A C D is
a set, we say that A is of zero w-modulus (and we write M,, (4) = 0) if the w-
modulus of all paths having some limit point in A is zero. We write M,, (A) >0
if A is not of zero w-modulus. Since M (T') < M,, (I') if w > 1, we see that if
w>1and A C D is such that M, (A) =0, it results that cap A = 0.

If A is countable, A C D and limM, (A (B (z,r),CB(z, R),D) = 0 for

every © € A and every 0 < R with B(z,R) C D, we prove as in the classical
case that M, (A) = 0. Using Lemma 2, we see that this thing holds for instance
if K : D — [0, 00] is measurable and finite a.e. and for every @ € A there exists
p, > 0 such that B(z,p,) C D and [ exp(A(K (y)))dy < oo for some
B(z,p,)

map A satisfying conditions (A;) and (Az)and we take w = K™ 1.

If D Cc IR" is open, b € OD and f : D — IR"™ is a map, we let C(f,b) =
{w € TR" | there exists b, € D, b, # b, b, — b such that f(b,) — w}, if
B c 0D we let C(f,B) = bte_lBC’(f,b) and if K C D is such that b € K’,

we let C(f,b,K) = {w € IR™ | there exists b, € K,b, # b,b, — b such that

f(b,) = w}. If (Un)men is a fundamental system of neighbourhoods of b,

then C(f,0) = () f(UnND),C(f,0,K) = () f(UnNK) and we usually
m=1

m=1
take Up1 C Um for every m € IN. Suppose now that b € K, K C D and take
F:D—-7P(R),F(z)=f(z)ifz €D F(z)=C(f z)if z€dD. We define

in this case C (f,b,K) = () F (U N (K\ {b})). We see that if f is continuous,
m=1

K € D,b € 9D and (Up) e is a fundamental system of neighbourhoods of
b such that Upy1 C U, and Uy, N K s connected for every m € IN, then it
results that C (f,b, K) is a connected set from R™. If K C 0D, then C (f,b,K)
is called the boundary cluster set of f at b and C (f,b) is called the cluster set
of f at b.

If D C IR™ is a domain and b € 8D, we say that D is locally connected at b
if there exists U a fundamental system of neighbourhoods of b such that U N D
is connected for every U € U. We say that D has property Py at b (following
(14], page 54) if for every point by # b,b; € 9D, there exists I C D compact
and § > 0 such that M (A (E, F, D)) > ¢ for every E C D connected such that
E contains b and b;.

If E, F are Hausdorff spaces and f : E — F'is a map, we say that f is open
if f carries open sets into open sets, we say that f is discrete if f ~1(y) is empty




or a discrete set for every y € F' and we say that f is a light map if for every
¢ € Eand V € V (), there exists U € V (z) with U N (f~! (f (x))) = ¢ and
U C V. We denoted here by V (z) = {U C Eopen|z € U}. If p: [0,1] — F isa
path, z € E is such that f (z) = p(0), we say that ¢ : [0,a) — E is a maximal
lifting of p from z if ¢ (0 =2,0<a <1 , foq=p|[0,a) and g is maximal with
this property. If ¢ is defined on [0,1], we say that ¢ is a lifting of p from z. If
E, F are domains from R™and f is continuous, open and discrete, there exists
always a maximal lifting.

Let X be a separable metric space and A = (4;);<; be a collection of sets.
We define the superior limit of the collection (A) to be limsup 4; = {z € X]|
every neighbourhood of z contains points from infinitely many sets A;} and we
define the inferior limit of the collection A to be liminf 4; = {z € X]| every
neighbourhood of z contains points of all but a finite number of the sets A;}.
If for a collection A limsup A; = liminf A;, we say that A is convergent and
we write B = lim A;, where B is the common value of limsup A; and lim inf A;.
We know from [17], Theorem 7.1, page 11, that every infinite sequence of sets
(A;);c; contains a convergent subsequence and from [17], page 15, we see that
if (Ai);c; is a convergent sequence of compact connected sets such that I_I UA; is

compact, then it results that lim A; is compact and connected.

If DC IR™ is open and f : D — IR™ is a map, A C D, we let N (f, A) =
sup Card (f~'(y)NA). Ifb € dD,v:(0,1) — D is a path such that lim-y (1) =
yGRn —
b and w € IR™ is such that w = tlm} f (7)), we say that w is an asymptotic
value of f at b, and we denote by A (f,b) the set of all asymptotic values of f
at b. We let B™ = {z € IR"| || < 1} and we let y1,, the Lebesgue measure from
R". We shall denote by ¢ the chordal metric in JR" given by ¢ (a, b) la —b| -

(1+16”) ™ (L+b2) ¥ ifa # ba,b € R” g(a,00) = (1+]af) oy
and we denote by d the euclidean metric in IR™ and by |a — b| the euclidean
distance between a and b in IR™. We denote by By (z,r), respectively B (z,r) the
ball of center z and radius 7 if we consider on IR"™ the chordal metric, respectively
the euclidean metric and in the same way we denote for a set A C IR™ by q (4),
respectively d (A) the diameter of A. We denote by mp the p-Hausdorff measure
in R", and if A C IR™,p,t > 0, we let mp( ) = inf Z d(4;)", where A C U A;
i=1

12 =
and d (A;) <t for i € IN and my, (A) = %i_r%m; (A).

We denote by W, . Lp (D, IR™) the Sobolev space of all functions f : D —
IR™ which are locally in LP (D) together with their first order weak partial
derivatives. Let D C IR™ be open, F' C D closed in D with g, (F) =0, f :
D\F — IR™ a map of finite distortion, of K (z) dilatation, satisfying condition
(A). We say that the set F' is eliminable for f if f extends to a map of finite
distortion, of K (z) dilatation, satisfying condition (A) on D. A point b € F will
be called an essential singularity of f if the limit hm f (z) does not exist. If ~ :

'L'—'f)

[a,b] — IR™ is a path, we let v~ : [a,b] — IR™ defined by v~ (¢t) = y(a+b—1t)



for ¢t € [a,b] and if y; : [a,b] — R™, v, : [c,d] — IR™ are paths, with vy, (b) =
vy () we let y; V 7yq @ [a,b+d —¢] — R"™ defined by (y; V7o) (t) = v, (t) if
t€la,b], (vy Vyy) (@) =79 (t+c—0b)ift € [bb+d—c].

The following Lemma is essential for the properties of mappings with finite
distortion, of K (z) dilatation and satisfying condition (A).

Lemma 1. Let D C IR™ be open, f: D — IR™ a map of finite distortion,
of K (z) dilatation and satisfying condition (A). Then the dilatation map K is
in LY (D) for every p > 0.

The proof of this lemma is given by the following:

Proposition 1. Let A : [0,00) — [0,00) be smooth, strictly increasing,
with A (0) =0, tli{&A (t) = o0, satisfying condition (Ag), D C IR"™ be open, K :
D — [0, 00] measurable and finite a.e. such that there exists B C D measurable
with p, (B) < 1 and [exp(A(K (z)))dz < co. Then [KP(z)dz < oo for
every p > 0. ¥ g

Proof. Suppose first that p > 1 and let f : (0,00) — IR, be defined by
f(t) = exp (A (t%» for t > 0. Then f is strictly increasing on (0,00) and
from Lemma 2.4, [8], there exists b > 1 such that f is convex on (b,00). Let
Q:D—[0,00],Q(z) =K (z) if K(z) > b,Q(z) =0bif K(z) <b Then Q is

measurable and we have, using Jensen’s inequality, that f f K? (z)dz

(fczp ><f<fQ” 2) du /s, (B )<fop ))da/ 1, (B).

It results that
P

/K” (z)dz < | A" | log | max 1,/exp (A(Q())) [, (B) < 00.

B B

P
IfO<p<1theanp d73<<fK ) < o0.

Another useful Iomma is the following:

Lemma 2. Let D ¢ R™be a domain, b € dD,K : D — [0,00] mea-
surable and finite a.e., A : [0,00) — [0,00) be smooth, strictly increasing,
with A(0) = O,tlim A(t) = oo, satisfying conditions (A;) and (Ag) and sup-
pose that there exists § > 0 such that [ exp(A(K (z)))dz < co. Then

DAB(b,5)
Myn—1 (A(B(b,7) N D,CB(b,p) N D,D) — 0 when § > 0 is keept fixed and
r— 0.

Proof. Let Q : R — [0,00,,Q(z) = K(z) if z € D,Q(z) = 1 if
¢ ¢ D0 <r < 6§andlet Ty = A(B(b,r)ND,CB(b,6)ND,D), Ars =
A (B(r,6),CB(b,6),B(b,0)\B (b,7)) . Since [ exp(A(Q(2)))dz < oo, we

B(b,8)
see from Theorem 5.3, page 24, [7], that capgn-1 (B (b,8), B (b,r)) — 0 when
r — 0 and 0 > 0 is keept fixed. We have

M[{n--l (F7~(‘)’> g M(\.)” -1 (F’I‘()> S M(Jrr 1 (A7b) S CapQ,,,,; ( (b (5) (b 7))



and the theorem is proved.
Lemma 3. letn > 2,G, Dopensetsm]R” with p,, (DNG) < 00,w : D —

[0, 00] measurable and finite a.e., I' a path family in G and ', = {'y ellyis
rectifiable} and suppose that there exists p > 1 such that f wP(z)dz < oo.

GnD
Then M,, (T') = M, (I';).
Proof. We shall use some arguments from Theorem 6.9, page 19, [14]. Since
[, ¢ T, we see that M, (Fr) < M, (T). We show that M, (I') < M, (T'y).
Let ¢ > 1 be such that 1 + = 1 =1 and let py : R* — [0,00) be defined by
po(z) = Ixilnlzl if z EGHCB(O 2),po(z)=1if 2 € GNB(0,2),po(z) =0 if
z ¢ G. Then, using Holder’s inequality, we have

[ B@)-w@da= | & @) w@d=

R» DG

f w(z)dz + S oo (z) - w(z)dz <
DNGNB(0,2) DNGNC B(0,2)

1

ot g s (o)<
DNG CB(0,2) DNG

0 pr—1 71; %
Cy + C ——zd : P(z)d < 00.
L= <£ 4 - (Inr)™ T) <D£Gw (=) z) >
Here C; and C5 are some constants .
Let now v € I'\I';. If 7 is bounded, there exists a > 0 such that py (z) > a

on Im+, hence 1 < 0o = [ py(z)ds. If v € T\I', is unbounded, we choose
7

[ee)

z € Im~y with |z| > 2 and we see that co = < fpods It results that

lnr
||

[ pods = oo for every v € I\I'..
4

Let pe F(I';),e > 0and let p, = (p" + & ) Then, if v € I, we have
1< [pds < [ p.ds, and if y € T\, wehave1<oofa fp0d3<prds and

v ¥
this implies that p, € F (I'). We obtain that M, (I') < f p” : ( Jdo =

[ () w(z)de +e™- [ p§(z) w(z)dw and lettmg e — 0, we see that

HH HT)

M, () < [ p"(z)-w(z)dz for every p € F(I,), hence M, (I') < M, (T',).
R”

We therefore proved that M, (I') = M,, (T';).
Remark 1. The theorem remains true if we rcplace the condition

“ [ wP(z)dz < oo for some p > 17 by “fp ) w(z)dz < 00”.
pnG
Lemma 4. Letr],p,R>0anda:€R”beﬁx@dvvlth0<p+r1<R

and let E C CB (z,p+71) be such that cap E' > 0. Then, for every r > 0,
there exists 6 > 0 such that M(A(F,C, B(z, p)) > ¢ for every continuum C C
B(z, R\B(z,p+r1) with d(C) >r and CNE = ¢.



Proof. Let C C B(z,R)\B(x,p+r1) be a continuum with d(C) > r
and CNE = ¢, let g be the inversion of center = and radius p and let

I = A(E,C,CB(z,p)) and T = A(g(E),q(C),B(z,p). Then M (I') =
M <f) ,capg(E)>0,d(g(C)) >7, g(C)Ug(E) C B(z,p'),with0 < p’ <p
such that 7’ and p’ depends on r,r1,p, R. Let I't = A (¢ (C), S (z, p), B (z,p)),
Iy =A(g(E),S(z,p),B(z,p)). Then M (T'x) = di > 0 for k = 1,2, and let
peF (f‘) If 3p ¢ F(I'1) U F (I'y), there exists v, € [y with [ pds < % for

Yk
k=1,2,andlet '3 =A (Imfyl,Im'yg,B(:v,p) \E(a:,,o')). Then M (T'3) = §5 >
Cn lnf, > 0 and 3p € F(['3). It results that 3p € F (I';) UF (I'2) UF (T'3), hence

MT)=M (f) > § = 2 min {61,062, 83} > 0.

Lemma 5. Let Cy C IR™ be compact, C; C IR™ closed with Cy N Cy =
¢, F C IR"™ such that F'N(CoUCy) = ¢, and let I' = A (Cy, Cy, R™\ F'). Then
M(T) < oo. o

Proof. Let r = d(Co,Cy) > 0 and p : IR* — [0,00] be defined by p (z) = 1
if x € B(Cy,7r),p(z) =01if z ¢ B(Co,r). Then p € F(I'), hence M (I') <
[ o™ (@)ds < pay (B (Coyr) /1 < ov.

IR"L
Lemma 6. Let M, F be closed subsets of IR?, Cy,, C' compact, connected

subsets from IR™ with C' = %EnmCm, CardC > land MNC = ¢, FN(M UC) =
¢. Then, if ' = A(C,M,R"\F),I', = A(Cp, M, R"\F), it results that
lim M (I'm) = M (D).

Clg)roof. We shall use in the proof some arguments from Theorem 37.1, [14].
We see from Lemma 5 that M (I') < oo and using a Mobius transformation,
we can suppose that M U F C IR™. Taking a subsequence, we can presume
that there exists r > 0 such that d(C.,) > r,d(C) > r for every m € IN. Let
§ = min{d (C, F),d(C,M),5}. Let p € F(I') with p € L™ (IR") and let g > 1.
We show that there exists mg € IN such that gp € F (I'y,) for every m > my.
Indeed, otherwise, taking a subsequence, we can find 7,, : [@m, bm] — R™\F a
path with 7,, (am) € Cm, Yy, (bm) € M such that [ gpds < 1 for every m € IN.

Ton
Let 7, = d(V,, (am),C) and z,, € C be such that rn, = d(Zm,7,, (am)) for
m € IN. We show that r,, — 0.

Indeed, otherwise there exists A > 0 and a subsequence (7., ) rev Such that
Tm, > A for every k € IN. Taking some subsequence, we can find y € IR™ such
that 7,,, (@m,) — v and using the definition of the set C, we see that y € C.
On the other side, we have A < rm, = d (Y, (@m,),C) < d (v, (@m,),y) —
0, which represents a contradiction. It results that 7, — 0, and taking a
subsequence, we can suppose that r,, < § for m € IN.

Let A = A(C,Imn,,, (B (2m,8) \B (&m,rm) \F)) for m € IN. Then
B(%m, ) NF = ¢, 5 (2, t) NC # ¢, S (Tm, t) NImy,, # ¢ for every rp, <t <6
and every m € IN, hence M (A,,) > ¢, - In ;ﬁs— for m € IN.

Let now m € IN be fixed and a : [a,0] = R" a € Ay, a(a) € C,a(b) €
Im+,, and let ¢ = inf {¢ € [a,b] |a (¢) € Im~,,} and let ¢y, € [am, by] be such



that v (¢) = Yy, (cm). We take 8 = | [a, ]V ¥y,| [cm, bm] and we see that e T.
Then 1 < fpds < [pds+ [ pds < fpds—i—— hence ;L7 - p € F (Am). W

o TYm
have oo > f p"(m)dx-(%) > M (An) ch-lnm — 00 if m — oo, which

-1
IR™
represents a contradiction. We therefore proved that there exists mo € IV such

that qp € F (['y,) for m > my.
Let now e > 0and g =1+ ¢ and let p, € F(I') be such that M (I') + ¢ >
[ pP(x)dz. Then there exists n. € IN such that (1+¢)p, € F (') for

R”
m > n., hence we have

(1) M@Tn)<(1+e)"- ]I{” o (z)dz < (1+¢€)" - (M (T) +¢) form > ne.

We can also suppose that M(Fm) < 2M (T) for m > n.. Let ¢ > 1 and

pm € F(Trm) be such that [ p (z)dz < M (I'y,) + € for m > n.. We show
R’IL
that there exists g. > n, such that q-p,, € F (') for every m > g.. Indeed, oth-

erwise, taking a subsequence, we can presume that we can find 7,, : [am, bm] —

R™, ,, € T, with v,, (am) € C,7,, (bm) € M and [ q-p,,ds < 1 for every m €
Y

IN, and let z,,, € Cy,be such that 7}, = d(v,, (am) , Cm) = d(Zm, Yem (am)) for
every m € IN. We show that r, — 0.
Indeed, otherwise we can ﬁnd A>0and (r, )kejN with r, > A for k€ IV

and let © € C such that there exists Vg, (amkp> — x. Then B (.r, %) N
ka,, = ¢ for p € IN great enough, which represents a contradiction, since
z € C = limC,,. It results that v/, — 0 and taking a subsequence, we can
suppose that 7/, < & for m € IN, hence § < min{d(zm, F),d(zm, M)} for
m € IN.
Let AL, = A(Cr, Im vy, (B (¥m, 3) \B (¥m, ) \F)) for m € IN. Then
B (mm, %)HF = ¢, 8 (T, t)NCry # ¢, S (T, t)NIm 7y, # ¢ forevery rl,, <t < %
and every m € IN, hence ¢, - In -2—7",— < M (AL, for m € IN.
Let now m € IN be fixed and let o : [a,b] = R™ a € Al ,a(a) € Cp,a(d) €
M and ¢ = inf {t € [a,b]|a(t) € Im~,,} and let ¢, € [am,bm] be such that
a(c) =, (cm). We take B = alla,c] V v,,| [em, m} and we see that g € I',,,,
h(\ncc 1< fpmds < fpmds—i [ pmds < jpmds+ Tth P € F (A%),
Yo

hence | - (ZM () +e¢) P (z)dz > M (AL) > cp-ln s —
g—1 2r!

oo if m — oo, which represents a contradlctlon It results that we can find
me > ne such that (1 +¢) - p,, € F(T') for m > me, hence

2) MI)<QQ+e)" [ ph(z)de<(1+4e)"- (M(ITn)+e) form > me.
e

Using (1) and (2), we see that lim M (T',,) = M (I), q.e.d.

m-—00
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Lemma 7. Let K C R",y € IR",p > 0 such that m, (K) = 0 and let
M (K,y) = {# € IR™| there exists w € K and ¢ > 0 such that z = (1—t)y +tw}.
Then myq1 (M (K,y)) =0.

Proof. We show that myi1 (K X [m,m +1]) = 0 for every m € IN. We fix
m € IN and let 0 < & < 1,0 < t < 1 such that m/, (K) < ¢ and take a covering

oo o0
K C |J A; of K such that d(4;) <t for every < € IN and Y d (A;)* <e. Let

=1 =1

¢, =d(A;) and o; = [%}%—1 fori € IN. Then1 < o;-¢; < 2foreveryi € IN, A; X
[m,m+1] C 'OLLJilAi X [m—i— %,m—l— aL] and there exists a constant C'(n)
= : :

depending only on n such that d ( 4; x [m+ Jgi—l,m+ a%]) < C(n)-d(4;) for
everyi€ INand j =1,...,a; and let r = C (n) - t. We have K x [m,m + 1] C
;UoljglAi X [er %,m+ &L,} andd(AZ- X {erla“]—l,m—l—aLiD <rforie N
and 7 =1,...,a;. This implies

ST _q ) il
m£+1(KX[mvm+1])SZZd<Aix[m+j—a. ,m+%}> <
i=1 j=1 4 v
C(n)pH'Zai'd(Ai)pHSC(”)HI'Zai'&"d(Ai)p§2-C(n)”+1.zd(Ai)P
i=1 — Lo

<2-C(n e

Letting first ¢ — 0, then ¢ — 0, we obtain that my41 (K x [m,m+1]) =
0 for every m € IN and hence that m, 1 (K x [0,00])) = 0.

Let now H : IR™ x [0,00) — IR™ be defined by H (z,t) = (1 —t)y + tz for
z € R* and t > 0. Then H is a C® map and M (K,y) = H (K x [0,00)), and
this implies that mp41 (M (K,y)) = 0.

3. PROOFS OF THE MAIN RESULTS

Proof of Theorem 1. Suppose that f is not continuous at xz. Then there
exists z; — x,y; — x such that f(z;) — b1, f (y;) — b2, with by # be and let
r; = max {2|z;|,2|y;|} for j € IN. Since cap F" = 0, it results that F' is nowhere
disconnecting and let C; be a connected set joining z; with y; in B (z,7;) \F.
Let p > 0 be such that ¢ (f (C;)) > p for every j € IN. Using Lemma 2.6, page
65, [13], there exists § > 0 such that § < cap(f (B (z,0,)\F, f(C;)) for every
JeN.

Let I, = { : [0,1] — R" path |7 (0) € £ (C;),2([0,1])) € £ (B (2,p,) \F),
v(1) € Of(B(z, p,)\F)} and let T'; be the family of all maximal liftings of some
paths from T starting from some point from Cj for j € IN. Let I'j; = {v €
[|y has a limit point in F} and I'y; = {y € [';|y has a limit point outside
B(z,p,)} for j € IN. Then Iy < f(I';),I'; = ['1; UT;, Mgn-1(I';) = 0 and
Ty; < A(B(z,m;)\F, C(B(z, p,)\F), IR"\F) for j € IN. Using (i) and Lemma
2, we see that

5 < cap (f (B (w,p,)\F), f(Cp) = M (I) < M(f (L)) < Myur (T)
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< Mgn-1 (Flj) + Mpn—1 (ng) = Mgn—1 (FQj) < Mgn-1 (A(B(CE,’I"J')\F, C(B(z,
p)\F), R"\F) — 0 if j — co. We obtained a contradiction, hence we proved
that f is continuous at .

Suppose now that for every « € F there exists p, > 0 such that cap
C(f(B,p,)\F)>0and [ exp(A(K (y)))dy < oco. Using the first part of

B(z,p,)

the proof, we see that f e>(<tends continuously on F', and we also denote by f
the extended map on D. Then f is continuous on D, and since the theorem is
immediately if f is constant on D, we can suppose that f is open, discrete on
D\F. Using the openness and the discreetness of f on D\F, we see that i (f,z)
has a constant, nonvanishing sign on D\F, and we easy see that f is a light
map on D. We use now Theorem 1, [2] to see that f is an open, discrete map
on D.

Let now z € F be fixed. We can find 0 < o, < p, such that N (f, B (z, o)) <
oo and let IN = N (f, B (z, o). Since f € Wb! (D\F), we use Theorem 6.3.2,

loc

[3] page 107 to see that [ Jy (z)dz < N - p, (f (B)) for every ball B from D\F.
B

We cover now B (z, ;) \F with some balls B;,7 € IN such that there exists a
number L depending only on n such that every point from B (z, o) \ F' belongs
to at most L balls B;. Then

o0

/Jf<z>dz: / @< S [T ds <N Y (£ (B)

1=l il
B(z,0x) B(z,04)\F B; =l

n—1
n n

/ |f' (y)|dy < /Kﬁ(y)dy - /Jf(y)dy < 00.
) B(

B(z,0p

z,00) B(z,c)

Now f is obviously an ACL map on B (z, ), hence f is ACL! on B (z, o)
and from Proposition 1.2, [13], page 6, we see that f € W2l (B (z, o).

We also obtain

Theorem 2. Let n > 2,D C IR™ be a domain, F C D be closed in D, f :
D\F — IR"™ be a nonconstant map of finite distortion, of K (z) dilatation,
satisfying condition (A) such that My (F') =0 and let x € F be an essential
singularity of f such that there exists p, > 0 such that B (z,p,) C D and

[ exp(A(K (y)))dy < co. Then it results that cap C (f (B (z,r)\F)) =0
B(z,p,)
for every 0 <r < p,.

Proof of Theorem. 3. Let 0 < r < p, and x € R"\f (B (z,7)\F), and we
can suppose that z # oo. Since cap F' = 0, we can also take 0 < r < p,
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such that S (z,7) N F = ¢, and since z ¢ f (B (z,r)\F), it results that a =
d(z, f(S(z,r))) > 0. We see from Theorem 2 that cap Cf (B (z,r) \F) = 0 and
we use the fact that f (B (z,7) \F) is an open, nonempty set to find 0 < ' < o, a
connected set Q C B (z,7) and a cap C of the sphere S (z,7’) such that f(Q) =
C. We denote for y € C and i € IN by v,,the path v,; : [0,1— 1] — B(z,7’)
defined by 7,; (t) = (1 —t)y +tz for t € [0,1—1] and let 4; = {y € C| the
path v,,; cannot be lifted from every point from Q} for i € IN.

Suppose that my,_; (4;) > 0 for some i € IN. Let T} = {7,y € A}
and let T; be the family of all maximal liftings of the paths from I starting
from some point from Q. Then f (I';) < I}, every path from I'; is contained
in B (z,r)\F and has some limit point in F, hence Mgn-1 ([';) = 0. Since
Mn_1 (4;) > 0, we see that M (I';) > 0 and we use now (i) to see that 0 <
M (T%) < M (f (Ty)) < Mgn-1 (I';) = 0, which represents a contradiction. It
results that m,_1 (4;) = 0 for every < € IN.

Let now y € C\ ;L?l A; and 7, : [0,1] — B(z,7') be defined by v, (t) =
(1—t)y +tz for t € [0,1]. It results that if b € @ is such that f(b) = y, we
can lift +,[0,1) from b and let g : [0,1) — R™ be a path such that ¢(0) = b
and fog = 7,|[0,1). Then Imq C B(z,r) and let B; = ¢([1 - 1,1)) for
1 € IN and B the set of all limit points of g. Then B = limsup B;, hence B is a
connected set from B (z,7). Suppose that Card B > 1. Then cap(B\F) > 0 and
f(B\F) C {z}, which contradicts the discreteness of f on D\F. It results that
Card B = 1, hence there exists ¢ = %qu (t) and ¢ € F and hence z € A(f,c).

If 2 is an isolated point of F, then ¢ = x, hence z € A(f,z). If z € I/ we can
find rx — 0,7 < 7 with S (z,7%) N F = ¢, hence z € R™\f (B (z,r)\F) C
R\ f(B(z,7¢)\F) and as before we find 2 € B(x;7) N F such that z €
A(f,z) for every k € IN and the theorem is proved.

Proof of Theorem 4. Let 0 < ri < p, 7 \, 0 such that S (z,74) NV E = ¢ and
let Fy = C (f,B(z,7s) N ((OD\E) \ {z})) for k € IN. Then C (f,z,0D\E) =

() Fj and Fyy1 C Fy for k € IN and since z ¢ C (f, »,0D\E), we can presume
k=1

that z ¢ Fy for every k € IN. Let pj, > 0 be such that B (z,p,) N Fj = ¢ and
let us prove that there exists pj, < pj, such that B (z,pp )N f (D NS (2,7x)) = ¢
Indeed, otherwise we can find a; € D N S (z,rg) with f(a;) — 2. Taking a
subsequence, we can suppose that a; — ag € S(z,r;). Then ag ¢ D, since
in this case we obtain that z = f(ag) € f(D N B(z,p,)), which represents
a contradiction. Also, ag ¢ E, since ag € S(z,7) and S(z,7:) N E = ¢.
If ap € OD\E, then z € C(f,a9) C Fk, which represents a contradiction.
It results that for every k € IN, we can find pj > 0 such that B(z,p}) N
(Fp,Uf(DNS(z,71))) = ¢. Let now k € IN be fixed.

Since z € C (f,z), we can find a point a € DN B (x,ry) such that f (ax) €
B(z,p,). We can presume that f is not constant on D, hence f is open,
discrete on D and this implies that we can find 0 < ) < p, a connected set
Qr C B (z,rr) N D and Cj a cap of the sphere S (2,7}) such that f (Qk) = Ch.
We denote for y € Cy and i € IN by 7, : [0,1— 1] — B(z,r},) the path defined

(3
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by 7, (t) = (1 —t)y +tz for t € [0,1— 1] and let A; = {y € Cy|y,,; can not
be lifted from any point from Qy} for ¢ € IN. Suppose that m,_; (4;) > 0 and
let T = {v,ly € A;} and let T'; be the family of all maximal liftings of the
paths from I'; starting from some point from Q)x. Then every path v € I'; is
contained in B (z,7%) N D and cannot have some limit point in DN S (z,ry) or
in B(x,r;) N (OD\FE), hence y can have only some limit points in E. Since
Mpyn-1 (E) = 0, we see that Mgn-1(T';) = 0 and since my,—1 (4;) > 0, it results
that M (T}) > 0, Since f(I';) < I'; and using (i), we obtain that 0 < M (I'}) <
M (f (1) < Mgn-1 (I;) =0, which represents a contradiction. It results that
Mn—1 (A4;) = 0 for every ¢ € IN.

Let now y € C\ iogl A; and let 7, : [0,1] — B (z,7}) be defined by v, (£) =
(1 —t)y+tzfort € [0,1]. Then we can find ¢ : [0,1) — DNB (z,rk) a path such
that ¢ (0) € Qk, foq =1,[0,1) and we show that there exists s = tlgg q(%).
Indeed, let x; be a limit point of ¢ and suppose that we can find another limit
point yi of ¢ such that yr # zx. Let 0 < tp < tp11 <,...,< 1 witht¢, /1
and |q (tgp) — zk| < ﬁ, lq (taps1) — il < TI-H and let A, = q([top, top41]) for
p € IN. Then A = limsup A, is a connected set from dDN B (z,7%) , Tk, Yk € A,
and since cap E = 0, we can find a point v € A\ (F U {z}). Then we can find
sp /" 1 such that ¢(s,) — u and we see that f(q(s,)) — 2. It results that
z € C(f,u) C Fy, which represents a contradiction. We found that %Erllq (f) =

2 € 0DNB (z,71), hence z € A (f,zy) for k € N. Then either z;, = z for some
k € IN, hence z € A(f,z), or zy # z for k € IN and then z € E,x, — z.
Proof of Theorem 5. Suppose that there exists b € B and ¢ > 0 such
that M. (EN B (b,e)) = 0. Since My (BNB (b,5)) > 0, we can find
y € (B\E)N B(b,5) and let § : [0,1) — DN B(y,5) be a path such that
th_lgﬁ (t) =y and %gr%f (B(t)) does not exists. Then we can find s, / 1 with
i f (8(som)) =u# 0= lim (8 (samr)) andlet By = £ (8 ([32m, 52m11)
for m € IN and let r > 0 be such that q (F,,,) > r for every m € IN. Let r,,, — 0
be such that 8 ([s2m, S2m+1]) C B (y,7m), and we can suppose that ry, < 5 for
every m € IN.
Let I}, = {7v:[0,1] — IR™ path |y (0) € F,,v(1) € Cf (B (b,e) N D)} and
let I';;, be the family of all maximal liftings of some paths from I',, starting from
some point from f| [som, Sam+1) for m € IN. Let I',, = {v: [0,c] — D path|
either v € I'y, and Im~y C B (y, §), or there exists ¢ < d and a: [0,d] — D,a €
I', such that v = «|[0,¢], a(0) € B [s2m, S2m+1] and ¢ = inf{t € [0,d] |a(t) €
S (y,£)}} and let Ty = {7 € Dy is rectifiable}.

Since we can suppose that e > 0 is chosen such that Jexp(A(K (z)))dz <
DNB(bye)
00, we use Lemma 1 to see that [ KP(z)dz < oo for every p > 0 and
DNB(y,%)

from Lemma 3 we see that Myn-1 (I'm1) = Mgn-1 (Dpng) for every m € IN.
We see that f (I'yy1) < Iy, and since cap Cf (B (b,e) N D) >0 and q(Fy,) > r
for every m € IN, we use Lemma 2.6, [13], page 65 to find § > 0 such that
6 <cap (f(DNB(be)), Fn)) for every m € IN. Let I'yp3 = {7y € Do/ Imy N
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S(y,5) = ¢} for m € IN. Then, if v € ['n3,7: [0,1) = DN B (y, §), the rectifi-
abilities of v implies that there exists 3., = }in%fy (t) € dD, and of course, f has

some asymptotic limit at 8., and hence ., € E. Since Mgn-1 (EN B (b,¢)) =0,
it results that Mgn-1 (T';m3) = 0, hence Myn-1 (I'na) = Mgn-1(Lima\l'ims) for
m € IN.

Then I'o\['m3 € A (DN B(y,rm), DNCB (y,£),D) for m € IN. Using
(i) we have

§< cap (f (DﬂB(bvs))’Fm) = M(F:n) S M(f (le)) < MK“"" (Fm1> =

€
VD)
), D)0
if m — oo. We obtained a contradiction, and it results that Myn-1 (ENB (b,€)) >
0 for every b € B and every € > 0.

Proof of Theorem 6. Suppose that cap (M\C(_f, b, K\F)) > 0. Since
JR”\C (f,b, K\E) is open, it is an union of closed balls B;, hence M\C (f,b, K\E) =
uM NB; and this implies that there exists 1 € IV such that cap M N B; > 0.

We can therefore presume that there exists My C M compact in IR™ with cap
M; > 0and M;NC (f,b, K\E) = ¢. We can also easy see that C (f,b, K\E) C
C(f,b,G).

Suppose that there exists a point y; € C (f,b,G)\C (f,b, K\E), and we can
take y; ¢ M,y; # oo. Taking a subsequence, we can find z,, € B (b, =) NG
such that f(z,,) — y1 and we can suppose that B (b, =) N dG C K for every
m € IN. Let G, = B(b,%)ﬂG’, Ky = B(b,;ln—) N K for m € IN and let
zm € (K\E)N B (b, %) for m € IN. Since cap E = 0, we see that m, (E) =0
for every o > 0 and from Lemma 7 we see that my, (M (E, z,,) UM (E, 2m,)) =
0 for every 1 < p < n, and this implies that we can find a point w,, €

Gm\ (M (E, zm) UM (E, rm)) for m € IN. Let g, : [0,1) — B (b, ) be a path
such that gm (0) = T, gm (1) = 2m and Imgpm, = [Zm, Wm] U [Wm, 2m]. Then
Img, NE = ¢ and let t,, = inf {¢ € [0,1]|gm (t) € G} and A, = g [0, 1)
for m € IN. Then A (0) = Zmy Am ([0,tm)) C Gy Am (tm) € 0Gm and we see
that A\, (tm) € K, \F for every m € IN.

Let 7/ = min {q (y1, M1),q(y1,C (f b, K\E)),q (M, C (f,b, K\E))}. Then
7 > 0 and we also suppose that ~ < p form € IN. Let F': D — P (IR”)

Mien-1 (Tm2)=Mgn—1 (Tmz\Tm3) <Mgn—1 (A(B (y,rm)ND, DNCB(y,

be defined by F(z) = f(2) 1szDF() C(f,z) if x € dD. Then
C(f,b,K\E)= OH:F(Km\ (EU{b})), and taking a subsequence, we can pre-
sume that F (Kp,\(EU{b})) C ( (f,b,K\E),* ) for m € IN. Then

C(f,2m (tm) T Am) © By (C(£6,K\B), 5 ), G () = F(wm) = w1,
hence Im A N B, ( (f,b, K\E), - ) £ ¢ and Im A, N B, (yl,%> £ ¢ for

every m € IN. Taking r = Z—’, we can find a subpath «,, of \,, such that if
H,, =Imay,. Qmn = Im f o a;,, to have f (Hm) = Qm, @m C Bq (y1,37"> , Qm N

By (y1,7) # 0,Qm N CBy (y1,2r) # ¢ for m € IN. We sce that q(Qm) >



7,9(Qm, C(f, b, K\E)) > 7,9(Qm, Mi) > r and Qn, are compact, connected
sets for every m € IN.

Using Theorem 7.1, page 11, [17] and taking a subsequence we can suppose
that lim Q,, = @, and we see that @ is compact connected, @ C By(y1,37),
9(Q) > r,Q N (My UB, (C(f,b,K\E),r) = ¢. Let Ry = A(Q, My, R"), Ry =
A(Q,M;,CC(f,b, K\E)). Using Lemma 2.6, [13], page 65, we see that there
exists § > 0 such that M (Rg) > 4. Since C'(f,b, K\E) is closed, (C'UM;) N
(C(f,b,K\E)) = ¢ and m,_1 (C(f,b,K\E)) = 0, we see from [15] that
M (Rp) = M (Ry). _

Let A; = A(Q, M;,CB,(C (f,b,K\E), Jl)) for j € IN. Then A; /" Ry and
using a result of Ziemer [18], we see that M (A;) / M (R;). We can therefore
find 7o < £ such that if U = By (C (f,b, K\E) ,ro) and ' = A (Q, My, CT), o
have that M (I') > £. Let '), = A (Qm, M;,CU) for m € IN. Using Lemma
6, we see that limooM () = M (I'") and taking again a subsequence, we can

presume that M (I',) > 2 and F (K, \ (E U {b})) C U for every m € IN.

Let Ty, be the family of all maximal liftings of the paths from I'}, starting
from some point from Hy, and let 'y, = {7 : [0,d] — D path| either v € T'y,
and Im~y C Gj, or there exists ¢ > d and 8 : [0,¢] — D, € I, such that
v = B|[0,d],8(0) € Hy, and d = inf {t € [0,¢]|B(t) € G1}} for m € IN. Let
Dom = {v € Tynly is rectifiable} for m € IN. Since every path «y from Ty,
is included in G1,G; C B(b,p) and [ exp(A(K (z))dz < oo, we apply

B(b,p)ND
Lemma 1 to see that [ KPag)dz <oo for every p > 0. We use now Lemma
B(b,p)ND
3 to see that Myn—1(Typ) = Mpn—1(Lay,) for every m € IN.

Let I'sm, = {y € T'om|y ends in a point from Ki\E}, T4 = {7 € Tap|y ends
in a point from E}, sy = {7y € T'am|y ends in a point from S(b,1)} for m € INV.
We see that f (T'y,) < I, for m € IN. If v : [¢,d] — G, is a path from I's,,,
with 7y (¢) € Hum, v (d) € K1\ (E U {b}), then there exists tli_{ralif (v(t)) ¢ U and

on the other side, tlirr(lif (v(@®) € C(f,v(d),Imv) c F(K;\(EU{b})) C U,
which represents a contradiction. It results that I's,, = ¢ for m € IN. Since
Mgn-1 (E) = 0, we see that Myn—1 (I'grn) = 0, and we also see that I's,, C
A(B((b,L)nG,CB (b, 1)N Gi,Gy) for m € IN. We see, using (i), that

0
Z S M(F'/m) S M(f (Flm)) S M[{n—l (FIWL) = ManI (FZTTL) S

Micn—1 (Tam) + Mycner (L) + Mpgnr (Tsm) = Mign—1 (Dsm) < Myen-—1 (A(G1N
B(b, T—},), CB(b,1)NGy,Gy) — 0 if m — oo, which represents a contradiction.

We proved in this way that if cap (M\C (f,b, K\E)) > 0, then it results
that C (f,b, K\E) = C (f,b,G) .

Remark 2. If we additionally suppose in the preceeding theorem that
Mn—1(C (f (B (b,p))) > 0, then the condition cap (M\C (f,b, K\E)) > 0 is sat-
isfied and hence in this case we have C' (f,b, K\F) = C (f,b,G). An important
such case holds of course when we suppose f to be bounded near the point b.
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Remark 3. We can take for instance G to be a cone centered in the point b
and of some angle 0 < ¢ < 7 and K to be the border of this cone.We can also
take G = D and in this case K C 8D. We can also meet the situation when
KﬂaDﬂB(b,%) #¢, KNDNB (b, =) # ¢, for every m € IN.

In the case n = 2 we obtain

Theorem 7. Let D C IR? be a domain, f : D — IR? be a map of fi-
nite distortion, of K (z) dilatation, satistying condition (A). Let b € 8D be
such that there exists p > 0 such that [ exp(A(K (z)))dz < oo and

B(b,p)ND
cap C (f(B(b,p)) > 0 and let G C D be a Jordan domain such that G =
Im (v, V 73 V73), where v, : [0,1] — D are some arcs, k = 1,2,3,v,([0,1)) C
D, gi_rg'yk (t) = b, th_I,I{f (v (¥)) = ¢,k =1,2and Im~y; C D. Then llg})f () =c.
z€G

Proof. We take K = Im~y; UIm~,, C = Imy; and we see that C (f,b, K) =
{c}, so that cap C (f,b,K) = 0. Taking M = Cf (B (b,p)), we see that cap
(M\C (f,b,K)) > 0 and we apply now Theorem 6 to see that C(f,b,K) =
C(f,b,G), hence ll_rgf (z) =e.

zeG
Proof of Theorem 8. Since the locus of a path is also the locus of an arc,

we can suppose that there exists v, : [0,1] — D arcs such that -y, ([0,1)) C
D, tli_rgyk (t) = b and %Er%f (v (1)) = bk, k = 1,2, with by # bs. The last
condition allows us to take v, and 7, such that Im~y; N Imvy, = {b}, and let
v3 : [0,1] — D be an arc such that there exists a Jordan domain G C D such
that 0G = Im(vy; Vv V v3). Let My = Cf (B (b,p)). If cap M; > 0, then,
taking K = Im~v; UIm~y, and C' = Im~3, we see that C (f,b, K) = {b1,b2},
hence cap C(f,b, K) =0 and cap(M,\C (f,b, K)) > 0. We apply Theorem 6 to
see that C (f,b,G) = C(f,b,K) = {b1,b2} and since C (f,b,G) is connected,
we obtained a contradiction. It results that cap M; = 0 and taking M, =
Cf (B (b, L)) for m € IN, we prove in the same way that cap M, = 0 for every
m € IN and the theorem is proved.

Remark 4. Asin Theorem 6, we can take the asymptotic limits in Theorem
7 and Theorem 8 over some paths v : [0,1) — D ending in b € 0D and avoiding
some sets F C Im~y with M- (E) = 0.

Proof of Theorem 9. Since C(f,b, K\E) is a compact subset from IR",
there exists a’ < a such that C (f,b, K\F) C B (z,a’). We can find M; C M

a compact set from IR™ with cap M; > 0 and M, NnB (a:, %‘i> = ¢. Suppose

that there exists y; € C (f,b, G) \B (z,a), and we can take y; ¢ M,y # oo.
Let G, = B (b, %) NG K = B (b, 717) N K for m € IN. Taking a subse-

quence, we can find z,, € G, such that f(z,,) — y; and we can suppose that
B(b,£)NdG C K and 1 < p for every m € IN. As in Theorem 6, we can
find some paths A, : [0,1] — B (b, %) such that Ay (0) = Zm, Am ([0,1)) C
Gy Am (1) € Kpp\E for m € IN. Let v’ = min{d (y;, My) ,d (My, B (z,a"))

d (y1,B (z,a))}. Then v’ > 0 and let F : D — P (IR"™) be defined by F (z) =
f(z)if z € D,F(z) = C(f,z) if z € 8D. Then C (f,b, K\E) = () F(Eum\

m=1
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\ (E U {b})) and taking a subsequence, we can presume that F' (K \ (E U {b}))
C B(=z,d') for every m € IN.

Then C (f, A\ (1),Im\,) C B(z,a'), f (A (0)) = f(zm) — w1, hence
Im A\, NB,a) # ¢, Im Ay, N B (yl, %) % ¢ for every m € IN. Taking r = -’41,
we can find a subpath a, of A\, such that if H,, = Im ayy,, Qm = Im f o ay,, we
have f (Hm) = Qman CB (y1,3'f') 7Qm nB (ylvr) 7é d)> Qm N CB(yly QT) 7é (b
for m € IN. Then d(Qm) > 7,d(Qm,M1) > r and Q,, are compact, con-
nected in IR™ for every m € IN. Using Theorem 7.1, page 11, [17] and taking a
subsequence, we can suppose that lim ), = @, with ) compact, connected in
R",Q C B(y1,3r),d(Q) >7,QN M, =¢,QNB(z,a’ +7) = ¢ and let R > 0
be such that B (y1,3r) C B (2, R) and I' = A (Q, My, CB (z,a’)). We see that
Q C B(2,R)\B (x,d’ +r) and M; N B(z,a’ +7) = ¢, cap M; > 0 and from
Lemma 4 we see that there exists § > 0 such that M (I') > 4.

Let TV, = A (Qm,M;1,CB (z,a')) for m € IN. Using Lemma 6, we see
that TJE'HOOM (I7,) = M (I'") and taking a subsequence, we can presume that

M) > % for every m € IN. Let now I',, be the family of all maximal
liftings of some paths from I',, starting from some point of H,, for m € IN.
Let 't = {v : [0,¢] — D paths | either v € 'y, and Im~y C Gy, or there
exists ¢ < d and § : [0,d] — D,B € I'y, with (0) € H,,,3[0,¢] = v and
c = inf{t € [0,d] |B(t) ¢ G1}} and let Ty, = {7y € Ty | 7 is rectifiable}
for m € IN. Since every path v € T'y,, is contained in G;,G; C B (b, p) and

[ exp(A(K(z)))dz < oo, we see from Lemma 1 and Lemma 3 that
B(b,p)ND
Myn—1 (T'1y) = Myen—1 (Dapp) for every m € IN.

Let I'sy, = {v € T'om |7y ends in a point from K1 \E}, gm = {7y € Tam |y ends
in a point from E} and I's;, = {7y € ['asn|y ends in a point from S (b,1)} for
m € IN. Let v : [¢,d] — G be a path from I's,,, with v(c) € H,,v(d) €
K\ (EU{b}). Then there exists tli_r}rclif (v(t)) ¢ B(x,a’) and on the other side,
we have tli_r};f (v() € C(f,v(d),Imvy) C F(K:\(FU{b})) C B(z,a’), which
represents a contradiction. It results that I's,,, = ¢ for every m € IN.

We see that f (I'yy,) < T, that oy, C LUl UDsm, that Mgn—1 (Typm) =
0 and that I's,,, C A (F (b, %) NG1,CB(b,1)N G],Gl) for every m € IN. Using
(i) we have

5
5 S M(T0) < M (f (Cim)) < Mign-s (Cim) = Mica-s (Do) < Mcnos (Tgm)

1
m

+M](n—l (F4m) + MKH-—I (F5m) = M](71~! (FSWL) S MK“" 1 (E(b, ) ﬂ G],

CB(b,l) ﬂGl,Gl) — 0 if m — oo.

We obtained in this way a contradiction. We therefore proved that C (f, b, G)
C B(z,a).

Remark 5. We see that is we additionally suppose in the preceeding
theorem that f is bounded in a neighbourhood of b and C'(f,b, K\E) C B (z,a),
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then it results that C {¢f,b,G) C B (x,a). We can also prove Theorem 7 using
Theorem 9 instead of Theorem 6.

Proof of Theorem 10. We can suppose that f is not constant on-D. We see
that C (f,2) C B (0, M) for every z € 0D\ E and this implies that C (f, b, 0D\E)
C B(0,M) for every b € (OD\E)' and since E C (OD\E)', we use Theorem
9 to see that C(f,b) C B(0,M) for every b € dD. Let L = sup |f (z)| and

zeD

suppose that L > M. Let z; € D be such that |f (z;)| — L. Since D is
compact and taking a subsequence, we can presume that z; — zg € D. If
zg € 0D, then, taking again a subsequence, we can suppose that there exists
w € IR™ such that f (z;) — w, and in this case we obtain that w € C (f, zo) and
|w| = L > M which contradicts the fact proved before that C (f,b) C B (0, M)
for every b € dD. If zg € D, then f(x;) — f(x0), hence |f (z9)| = L and since
f is open at zg, this contradicts the definition of L. It results that L = M,
hence |f (z)| < M for every z € D.

Proof of Theorem 11. Let o = limsup | f ()| and 8 = lim sup(lim sup | f (x)]).

z—b ZEZE)—I;QE' \z—»z

Then 8 < a and we can suppose that 8 < oo and let e > 0 and define
¥ (2) = limsup|f(z)| for = € OD\E. Then there exists ¢ > 0 such that

z—z
0 <9 (2) < B+e for 2z € B (b,5.)N(OD\FE) and hence C (f,z) C B (0, + €) for
every z € B (b,0.) N (OD\E). This implies that C (f,b,0D\E) C B (0,8 + 2¢)
and since cap (M NCB(0,8+2¢)) > 0, we apply Theorem 9 to see that
C(f,b) € B(0,B+ 2€). Letting ¢ — 0, we see that C (f,b) C B(0,), hence
a < f and hence o = S.
Proof of Theorem 12. Suppose that there exists by, by € C (f,b), by # by and
D' has property P, at by. Let 7; — 0,U; € V (b) be such that U1 C U;,U; C
B (b,7;) and U; N D is connected for every j € IN and let F' C D’ be compact.
Since C (f,b) C 0D', we can suppose, taking a subsequence, that there exists
0 < pg < psuch that f(U; ND)NF = ¢ and f~! (F) N B (b,py) = ¢ for every
j € IN, and we can suppose that r; < py and let I'; = A (f (U; N D), F, D') for
j € IN. Since f (U; N D) is connected, by, by € f(U; N D) and D’ has property
P, at by, there exists § > 0 such that § < M (I';) for every j € IN, and let T';
be the family of all maximal liftings of the paths from 1“;» starting from some
point from U; N D for j € IN. Let I'1; = {v : [0,¢] — D path | either v € T
and Im~y C B (b, py), or there exists ¢ < d and 8 :[0,d] — D, € I'; such that
v =p|[0,¢],7(0) € U; N D and ¢ = inf{t € [0,d] |5 (t) € B (b,py)}} for j € IN.
Let I'9; = { € I'1|7y is rectifiable} for j € IN. Using Lemma 1 and Lemma 3,
we see that Myn-1 (['y;) = Mgn-1 (Ig;) for j € IN. Also, if v € T9;,7(0) €
U;,ND, v:[0,1] — D, then we cannot have v (1) € B (b, py) N 0D, since the
hypothesis implies that A (f,v (1)) € 8D and on the other side Im f oy C D'.
This implies that I'y; € A (-E(b, r;)ND,CB (b,py) N D, D) for every j € IN
and using (1) we obtain

§ <M (T%) <M (f(Ty;)) < Myn—r (T15) = Mgn—r (Ta;) <My (A(B(b, 75)

ND,CB (b,py) N D,D) — 0 if j — oo, which represents a contradiction. It
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results that Card C (f,b) =1, hence f can be continuously extended at b.
Remark 6. The important condition [ exp (A (K (z))) dz < oo used
B(b,p)ND
in the preceedings theorems, which ensures that Mgn-1 (AB®,r,)ND, CB (b, p)N
D,D) — 0if r; — 0 and p > 0 is keept fixed, can be realized for instance if
K(z) <K,on DNCB (b, %) for p € IN and limsupl—% = a < n. Indeed, we
p—00

take A (t) =t and if pg € IN is such that K, <Inp® for p > pg, we have

[ exp(A(K (z)))dz = Z [ exp (A (K (z)))dz <
B(b,35)nD p>po+1 (B(b,555)\B(b,4))nD
1 1
exp (Kp)dz < Cy - o | g e e} £
P>pot1 (B(b,ﬁ\fB(b,%))mD s ' p>§+1p <(p‘ - )

Ci- > pn—,la'_rf < o0o. Here Cy and C; are some constants depending only on

p>po+1
n.

This shows that the preceedings theorems holds for instance for locally
quasiregular maps having some logarithmic growth of the constant of quasireg-
ularity near the critical point b € 0D.
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