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Abstract

In this paper we study the BCK algebras and their particula,r classes: the BCK(P) (residuated)

tutti."s, tfr" ffa:.f.(p) (BL) algebras and the Wajsberg (MV) algebras, we introduce new classes of

BCK(P) lattices, we establish hierarchies and we give many examples' The paper has five parts'

ln tte first part, the most important part, we decompose the divisibility and the pre-linearity

conditions from the definition of a-BL algetra into four new conditions (C*), (Cv), (C,r) and (Cx)'

we study the additional conditions (wNM) (weak nilpotent minimum) and (DN) (double negation) on

a e6f (i) Iattice. We introduce the ordinal sum of two BCK(P) lattices and prove in what conditions

we get bL algebras or other strucf,ures, more general' or more pa.rticula.r than BL algebras'

i1 part III we give sxamples of some finite bounded BCK algebras' We introduce new general-

izations of BL algebras, named a, 0, '1, 6, ag, "', a0"16 algebras, as BCK(P) lattices (residuated

lattices) verifying one, two, three or four of the conditions (C*), (Cv)' (Cn) and (Cx)' By adding the

conditions tWNffAl and (DN) to these classes, we get more classes; among them, we get many gener-

alizations oi Wu;rburg (UV)'algeUras and of Ro (NM) algebras' The subclasses of 1wNu1 Wajsberg

utgefras (t',"ritttV algebra^s) Jnd of lwrnz;Hrijek algebras (twrvazyBl algebras) are introduced' We

"sirUfisf, 
)oorr."tiot r (trierarcnies) between all these new classes and the old classes already pointed

out in Part I.
In part III, we give examples of finite MV and (wrvu;MV algebras, of HSjek(P) (i.e. BL) algebras

uod lwrunzyBlJ algebras andof o7d (i.e. divisible BCK(P) lattices (divisible residuated lattices or

di"isibl;'irri"grut, residuated, commutative l-monoids)) and of divisible 1w,vulBCK(P) latticcs'

In part IV, we stress the importance of aB1 algebras versus oB (i.e. MTL) algebras algebras and

otRo ii.e. NM) algebras rr..116 Wu;rberg (i.e. MV) algebras and of lwwrrzpBl algebtas versus BL

utg"u.u, and of o7 .,rersus o.yd algebras. we give examples of finite IMTL algebras and of (wNM)IMTL

ii.?. NItfl algebras), of aB'y algJras and of ywnd!-!.!loma:I) algebras and finallv of a7 algebras'
' 

In part l, we girre other 
-examples 

of dnite BCK(P) lattices, finding examples for the others

remairring an open problem. We make final remarks and formulate final open problems'

Keyiords MV algebra, Wajsberg algebra, BCK algebra, BCK(P) lattice, residuated lattice, BL

algebri Hd,jek(P) algebra, iiuitiltu ntxlel lattice, d, 0, '1, 6, d0, ' ' ', a0"v6 algebra' MTL algebra'

lNifl, atgebru,'WNfvt algebra, NM algebra, Rs algebra, lwrvnzlMV' (wNu1BL, (wNM) oB'y, Roman

algebra

Introduction

The results of 
'this 

p[per in,three parts concern more related algebras and they were found because

*" ;; ;;r.;J";r, *ih ,l.fti algebras, not with some "left)) algebras and other "right" algebras, and



because we have worked only with the implication (-+) as primitive operation, not with both implication

and the t-norm (o). To be more explicite, we shall develop the two ideas.

1.1 The first idea: to work only with 'lefttt algebras

The first idea is related to the two diferent possible definitions of some algebras, as "left" or as "right"

algebras. For instance, MV algebras (1958) and BCK algebras (1966) were (initially) defined as "right"

allebras, while Wajsberg algebias (1934), residuated lattices (1924) and BL algebras (1994) were (initially)

defined as "left" algebras.
When working simultaneously with different algebras, we claim that is better to choose: "left", or

,,right,,, and then use the appropiate definitions. Otherwise, it is difficult to "see" the connections between

the-algebras and to build examples - of "ordinal sums", for examples (see Part II). In this paper, we shall

work only with "left" algebras.
The notions of "left"-and "right" algebras are connected with the left-continuity of a t-norm and with

the right-continuity of a t-conorm on [0, 1], respectively, and are discussed in detail in [20]. We can also say

that they are connected with the "negative (left)" cone and with the "positive (right)" cone, respectively,

of an l-group (lattice-ordered group).
Recall that at the beginning, t-norms (triangular norms) and t-conorms were defined on the real

interval [0, L], namely:
A binary operation O on the real interval [0, 1] is a t-norm iff it is commutative, associative) non-

d e c r e a s i n g ( i t o i o t t . ) i n t h e f i r s t a r g u m e n t ( i . e .  i f  t l  y , t h e n  r O z l y O z , f o r  e v e r y u ' y , z e l 0 , l l ) ,

and hence in the second argument too, and it has 1 as neutral element (i.e. r O 1 : r (and consequently,

r o 0 : 0), for every r € [0, 1]).
A binary operation O on the real interval [0, 1] is a t-conorm iffit is commutative, associative' non-

decreasing in the first argument and hence in the second argument too, and it has 0 as neutral element.

We have defined in alatural way, in [38], a t-nortnO on a poset (A],L) with greatest elementLifr

the above mentioned axioms are fulfilled and a t-conorm @ on a poset (A, <,0) with smallest element 0

iff the above mentioned corresponding axioms are fulfilled.
Recall also the following definition: a partially ordered,, abelian (i.e. commutatiue), integral monoid

or a pocim for short is an algebra (A,),O,1) such that: (A,),1) is a poset with greatest element 1,

(,4, O, 1) is an abelian monoid (i.e. O is commutative, associative and has 1 as neutral element) and O

is non-decreasing in the first argument (or, O is compatible with >) and hence in the second argument

too; integral-uunr that the greatest element of the poset (,4, )) coincides with the neutral element of the

abelian monoid.
Recal also [38] that the statement: "O is a t-norm on the poset (4,),1) with greatest element 1" is

equivalent with the statement: "the algebra (A,),O,1) is a pocim"'

The passage from the (definition of) "right" algebra to its inverse, the "left" algebra, is made by

replacing everywhere the t-conorm O by the t-norm O, the co-residuum -+n by the residuum 1:--rL

("R" comes from "right", "L" comes from "left"), by replacing 0 by 1 (and 1by 0)' by replacing the

binary relation ( by its inverse relation, 2.
The passage from the "left" algebra to its inverse, the "right" algebra, is made by replacing everywhere

the t-noim O by the t-conorm O, the residuum -+=1L by the co-residuum -+R, by replacing 1by 0 (and

0 by 1), by replacing the binary relation ) by its inverse relation, ('

we shall denote by a bolded name the class of corresponding algebras.

MV algebras were introduced in 1958, by C. C. Chang [10], as "right" algebras, as a model of Ns-valued

Lukasiewicz logic.
L (ri,ght-) MV algebra is an algebra (,4,O,-,0) of type (2,1,0) satisfying the following axioms (see

[11]):  for al l  r ,y,z € A,
(MVl-R) r @ (y @ z) = (r e y) @ z,
( M V 2 - R )  n @ y = Y @ n ,
( M V 3 - R )  r @ 0 = r ,



(MV4-R) (r-)- = *,
( M V 5 - R ) r O 0 - = 0 - ,
( M V 6 - R )  ( r - o e ) *  @ y = ( y -  o r ) - o c .

Definition f .1 A Ieft-MV algebra is an algebra (A,O,-,1), of type (2,1,0), satisfying, for all r,A,z e A

[20], [38]:
(MVl-L) r o (y o z) : (r o y) o z,
( M V 2 - L )  r O y = y O x ,
(MV3-L)  r  Qt :  r ,
(MV4-L) (*-)-  :  * ,
( M V 5 - L )  r O L -  = l - ,
(MV6-L) (r-  sy)- oy :  (a- o r)-  o r .

Let MV denote the class of left-MV algebras.

Remarks 1.2 Recall that in a Ieft-MV algebra A = (A,O, -, 1) we have the following properties:

o )  r o  y o I  @ -  s y - ) ' , o U  r , o - : 1 .
1) (A, A, V,0, 1) is a bounded, distributive lattice, where for all n,y e A:

r A y : r O ( r  O g - ) -  = r O ( r -  e y )  :  y O ( y  O " - ) -  : y O ( y -  @ r ) ,
r  Y y -  f r-  o (r-  o y)- l -  --  r  @ (r-  o y) :  y @ (y- o r)  = ly- o (y- o r)- l - .

2) The binary relation defined by: for aIIr,y € A: r ( y <+ roy- :0 <+ r- @A: 1 is the partially

ordered relation of the lattice.
3) For aII r,y,z e A: r ( gt implies r O z < y o z.
4 )  F o r a l l r € A , r O r - : 0 .
5 )  For  a l l  r , y ,z  €  A ,  rOy I  z  e  y  <  ( r  A  z - ) -  c  r  <  (y  O z - ) - .
6) For all y, z e A, max{x I r O y 1 z} : (a O z-)-.
7) If we define the residuum -+ by:

r  -+  yU 1r  oA- ) -  :  r -  @U,

then (.4,n,v,O,-+,0,1) is a (left-) residuated lattice verifying, for all r,y € A:
r y  y  =  ( ,  - +  y )  - +  A  =  @ O u - ) -  - +  y :  ( ( r  o y - ) -  O A - ) -  =  y  @ ( r  O g - ) ,
r  Ay  =  r  O ( r  Oy- ) -  :  r  O ( r  -+  y )  :  (g -  Vr - ) -  and

@ - + d v ( y - + r ) = l  ( i . e .  ( A , n , v , o , - + , 0 , 1 )  i s a ( l e f t - ) B l , a l g e b r a ) .  M o r e o v e r , : x - + y : ( n -  - + n a - ) -

and r +p y :  (r-  -+ A-)- .

Wajsberg algebras were introduced in 1984, by Font, Rodriguez and Torrens [22], as left-algebras; they

are a model of Ng-valued Lukasiewicz Iogic too, studied by Wajsberg in 1935 [70].

Definition 1.3 A (teft-) Wajsberg algebra is an algebra (A,-+=-+7,-,1) of type (2,1,0) such that' for

a I I  r , y ,z  €  A :
( W 1 )  1 - + n : t r '
(Wz) (y -+ z) -+ f(z -+ r) -+ (y -+ r)l = 1,
(W3) (r -+ y) -+ y : (y -+ r) -+ r,
(Wa) (r- -+ y-) -+ (Y -+ r) = 1.

Let W denote the class (or the category) of Wajsberg algebras.
MV algebras and Wajsberg algebras are categorically equivalent (see [22], Theorems 4 and 5).
Let = mean "is an equivalent definition", ry mean "are categorically equivalent" and: mean "is a

duplicate name" through this paper.
Then, we shall write: 

.W = MV.



Residuated lattices, the algebraic counterpart oflogics without contraction rule, have been investigated

(cf. Kowalski-Ono [52] ) by Krull [53], Dilworth [15], Ward and Dilworth [72], Ward [71], Balbes and

Dwinger [4], Pavelka [dZ] ana Idziak [34]. Residuated lattices have been known under many namesl they

i,a1re ieun called (cf.' tSZ]) BCK laittce.s in [34], fult BCK-algebras in 160), FL"--algebras in [61] and

integral, resid,uatetl, comrnutatiue l-monoids in [33]; some'of those definitions are free of 0. We shall use

the following definition.

Definition r.4 [52] (see [38])
A A"ft-) res'iduated lattice is an algebra A: (A,n, V, O, -+,0, 1) verifying:
(i) (,4,n,V,0,1) is a Iattice with first element 0 and last element 1 (under )),
(ii) (4,9, 1) is an abelian (i.e. commutative) monoid,
( R P )  f o r  a l I r , y , z € A , r 4 g - + z  c  f r O y 1 z .

Let R-L denote the class (or the category) of residuated lattices.

BL atgebras were introduced in 1994 by ,"r, Hdj.;frn,, ,u0,, [31]. The starting point in defining and

studying Basic Logic and BL algebras were the algebras of the form ([0, 1], min, max, O, -+,0, 1), where O
is a a continuous t-norm on [0, 1] and -+ is the associated residuum; these algebras are called standardBL

algebras.
The most important continuous t-norms on [0, 1] are the following three: Lukasiewicz t-norm, Product

t-norm, Godel t-norm. These three t-norms have the following associated residua:
(l) Lukasiewicz:

r Q r , a = m a x ( 0 ,  r * y - r ) ,  t 4 r  u = {  ,  
1 '  

: 1 , . - i ' "  : m i n ( l ,  l - r r y ) ;
" o - 1 L - r * y ,  i f  r > y

(2) Product (Gaines):

r o p a  =  r y l  r  - o  y  =  { , 1 '  . ' l *  s '  ( G o g u e n  i m p l i c a t i o n )
l y l r ,  i f r ) y ,  \

(3) Gddel (Brouwer):

r oc a = min(r, gr), ,L -+G It = { 
t, 

i! " s, (Goder imprication).' - I  y ,  i f  r ) y ,

The three t-norms and their associated residua correspond to the most significant fuzzy logics: Lukasiewicz
Iogic, Product Iogic and Godel logic, respectively. The MV algebras, the Product algebras and the Godel
algebras constitute the algebraic models for these three types of logics.

The class of BL aigebras contains the MV algebras [10], [11], the Product algebras [32], [55], [30] and
the G<jdel algebras [30].

Definition 1.5 A (left-) BL algebra [30] is an algebra A: (A,A,V,O,-+,0,1) such that:
(81) "4 is a residuated lattice,
(82) n Aa : r o (r -+ y) (divisibility),
(83) (* -+ a) v (y -+ r) : | (pre-linearity).

Let BL denote the class (or the category) of BL algebras.
A (left-) BL algebrais aleft-MV algebraiffit satisfies the condition (DN) (double negation): for all r,

( r -  ) -  =  r ,

w h e r c r * - r - + 0 t 3 0 1 .
The standard left-MV algebra is the (left-) BL algebra ([0,1],min,max,O;, 1L,0,1) determined by

the above Lukasiewicz t-norm.



Definition 1.6
A A"ft-) Product algehra [30] is a BL algebra "4 which fulfills the following two conditions: for every

r r Y r z  e  A :

( P 1 )  r A r - : 0 ,

(P2) (z-)- o [(r o z) -+ (u o z)] < r -+ y.

The standard Product algebra is the BL algebra ([0,1],min,max,Op,--]p,0,1) determined by the

above Product t-norm.
A BL algebra which fulfills the condition (P1) is usually called a sBL algebra.
Let us name as ssBL atgebra the BL algebrafulfilling the condition (P2).

Let Product, SBL, SSBL denote the classes of Product algebras, SBL and SSBL algebras, respec-

tively.

Definition 1.7
L A"ft-) Gtidel algebra [30] is a BL algebra "4 which fulfills the condition (G) ( idempotent multiplica-

tion): for each r e A,

( G )  r O : t r : i x '

Let Godel denote the class of Godel algebras'
The standard G<idel algebra is the BL algebra ([0, 1], min, max, 06;, --]c,0, 1) determined by the above

Gcidel t-norm.
Recall now the following definitions of two particular cases of residuated lattices and in the same time

generalizations of BL algebras:
A weak-BL algebra [20] (or a weak-Hajek(P) algebra, more pedantically) is a residuated lattice sat-

isfying the condition (83) (a duplicate name in the literature for weak-Bl algebras is "MTL (Monoidal

t-norm based) algebras" [18]).
Let MTL denote the class of MTL algebras.
A d,i,ui,sibte BCK(P) lattice (see [33]) is a BCK(P) lattice (residuated lattice) satisfying the condition

(82) .
Let us recall (see [18]) that:

(l) a WNM (Weak Nilpotent Minimum) algebra is a MTL algebra satisfying the additional axiom:

(wNM) (,  e y)-  v [(r  n y) -+ (n e Y)]  :  r ;

(2) an IMTL algebra (Inuolutiue Monoidal t-norm based Logic) is a MTL algebra satisfying the condi-

t ion (DN);

(3) a NM (Nitpotent Mini,mum) algebra is an IMTL algebra saiisfying the axiom (WNM) (or a WNM

algebra satisfying the condition (DN) (double negation))'

where, given aweak negatiorr"n" (i.e. r < n(n(r))) on [0, 1] and the t-norm "Or" and the implica-

tion "-+r" defined as follows on [0, 1]:

' s ' v - - [  9 '  i f r l n t u \  (  r '  i f r l v
I  m i n ( r , y ) ,  o t r r e t * i s e ' ,  

r - ) n a :  
I  m a x ( n ( r ) , y ) ,  i f  r ) y ,

thenOnisa le f t -con t inuous t -norm,wi thn( r )  =a ' - )n0 ,and( [0 ,  1 ] ,m in ,max,O, , , - - ] r ,0 ,  1 )  i sas tan-

dard WNM algebra, for each weak negation n,,



while given a strong (involutive) negation "n" (i.e. r: n(n(r))) on [0,1] and the Fodor's t-norm

"Or" and implication'i-|p"t-norm "Op." defined as follows on [0, 1] [21]:

, s r v = [  ? '  
i f r l n t u \ '  (  l '  i f t l v

[ ,rrin(r, y), other*isl" 
r -+p a = 

| max(n(r), g), if r ) y,

then Or is left-continuous also, with rz(r) : n -+ 0, and ([0, 1],min,max,Op,-]r ',0, 1) is a standard

NM algebra, for each strong negation n.

Remark 1.g When working with BCK(P) algebras, residuated lattices, BL algebras etc. we start with

the implication -+ and 0, 1,-or with the implication -|, with the t-norm O and 0, 1, and we define the

negation 
- 

as r- : r -+ 0, which is weak (i.e. r < (t-)-), and we see what happens when the negation

is Itrong (or involutive) or satisfies the double negation condition (DN)) (i.e. , = (*-)-). In [21],

Fodor starts with a strong negation n and with the t-norm Or and defines the implication -+p, which

verifies n(r) = r -+r 0.In [18], Fodor's implication is generalized, by starting with a weak negation.

Remark 1.g We shall stress in this paper, especially in Part II and Part III, the importance of NM

algebras; we shall prove that the class of Wajsberg (MV) algebras and the class of NM algebras are

incomparable (with respect to set inclusion).

Let WNM, IMTL, NM denote the classes of WNM algebras, IMTL algebras, NM algebras, respec-

tively. Then we have:

NM = IMTL + (WNM) = WNM + (DN).

Remark t.t0 We shall generalize,by following up the condition (WNM) in all BCK(P) lattices (resid-

uated lattices). We shall call BCK(P) lattices satisfying the condition (WNM) as a"1wNM)BCK(P)"

Iattices.

Recall also [63] that the IMTL algebras, introduced in 2001by Estevaand Godo [18], are categorically

equivalent with "weak--Rj" algebras, introduced in 1997 by G.J. Wang [73] and that NM algebras are

categorically equivalent with Pa algebras, introduced also in 1997 by G.J. Wang [73]:

Definition 1.11 [63]

( l )  Aweak-Rs a lgebraor ,aWRa fo rshor t i sana lgebra  M: (M,n ,V, -+ , - ,1 )  o f  o rder type (2 ,2 ,2 , I ,0 ) ,

such that:

c (M,A,V,0, 1) is a bounded distributive lattice, ( being the order relation,
. ')-)' is an order reversing involution with respect to (,

o the foliowing conditions hold: for all r, y,z Q. M,
( R 1 )  r - - + y - = a 4 r ,
( R 2 )  1 - + t r = r ,
(R3) y -i z 1(* -+ y) -+ (r -+ z),
(Ra) r -+ (y -+ z) : A -+ (r -+ z),
( R 5 )  r  - +  ( y v  z ) :  ( r  - + y ) v  ( n  - +  z ) .

(2) An Rs-algebra, or,Rn for short is a weak.Rs-algebra verifying the additional condition (R6):
(R6) (r  -+ y)v (("  '+ a) -+ (r-  vY)) :  r .

Let weak Rs and Rs denote the classes of weak Ra algebras and Rs algebras, respectively.

Remark 1.L2
The conditions (R6) and (WNM) are not equivalent in an IMTL algebra "4 which is not an NM algebra,

in the following sense: if there are a,b e A such that (R6) is not verified, it is possible that (WNM) be
verified by those a,b, and vice-versa, as you can see in the examples of IMTL algebras from the Part IV.



L,2 The second idea: to work only with the implication

The second ideea is related to the similarity type of algebras. In many algebras connected with logics

(residuated lattices, BL algebras, MV algebras, Wajsberg algebras, BCK algebras etc. ) we have two

adjoint operations: the implication (residuur") (-+) and the product (t-norm) (O). As it was largely

developed in the survey-paper [38], there are two main ways of studying these algebras:

(1) either to start only with the residuum -+ as primitive operation (i.e. to start with the BCK algebra),

and then its associated (derived) t-norm O is defined, whenever it exists, by the condition:

(P )  r  o  , no t s l i on  rn in {z l  r  Sy  -+  z } , f o r  a l l  r , y ,

or, alternatively, to start with both -+ and O (in this order), verifying then the condition:

(RP)  r  Oy  I  z  e  r  I  y  -+  z , f o r  a I I  n ,U ,z ,

as very seldom is the case (see the definitions of BCK algebras, BCK lattices, Wajsberg algebras

etc. ) ,  or

(2) either to sta.rt only with the t-norm O as primitive operation (i.e. to start with the monoid)' and

then its asociated (derived) residuum -+ is defined, whenever it exists, by the condition:

(R )  y  -+  zno tq l i on  max { r  l r oy  
. - z } , f o r  a r | y , z ,

or, alternatively, to start with both O and -l (in this order), verifying then the condition:

(PR) c 1 y -+ z e r  Oy S z,  for  a l l  r ,Y,z,

as very often is the case (see the definitions of monoids, pocrims, residuated lattices, BL algebras,

MV algebras etc.).

We claim that it is better to start in the first way, namely to start with -+, alone, since *) is more

closed to logic than O and the properties are more accessible. This implies to study "the deductive

systems", not "the filters" of such defined algebras. Look for instance at the two conditions, divisibility

(r ny: rO(n -+ g)) and pre.Iinearity ((r -+ y) V (y -+ r) : 1), which appear in the definit ion of a BL

algebra; if the divisibility can be expressed in a nice way either only by means of O (see [33] Lemma 2.5)

or only by means of -+ (see Theorem 3.1), the pre-linearity cannot.

Thus, there are four (two plus two) different types of similarity for a "left" algebra of logic and usually

one, maximum two, among the four different types are used in the literature, for each algebra.

For example, the five algebras: the reversed left-BCK(P) algebras (r-BCK(P)), the pocrims, the re-

versed left-BCK(P) Iartices (r-BCK(P)-L), the residuated lattices (R-L) and the BL algebras determine

a table (matrix) with 4 columns and 3 rows, where only five cells are filled. In [38] we have introduced

the "missing" algebras, we have put them in the empty cells and it was proved that the alSebras of the

four different types of similarity (i.e. the algebras on the same row in the four colums) are categorically

equivalent; the only problem is the problem of "names" for the four equivalent algebras. The complete

table of all 12 : -1 x 3 algebras is presented in Figure 1, where the initial five algebras are marked by

a bullet. Since the 12 algebras are (direct or indirect) generalizations (ascendents) of Wajsberg (MV)

algebras, we have added a fourth row to the table, the row of Wajsberg and MV algebras, with completion

of two columns - following the usual definitions - and whiihout completion of two other columns.

Note that we shall use the following "signs" between categories of left algebras: the sign ":" will mean

duplicate names, the sign " =" will mean equivalent definitions, while the sign "^'" will mean that the

corresponding categories are equivalent. Thus, between categories of algebras of the same line in the table

from Figure 1 we must use the sign =; for example, bounded, commutative reversed left-BCK Iattices :

Wajsberg algebras, while X-H6jek(RP) algebras : BL algebras'

Recail that the axioms appearing in the table from Figure 1 are the following [38]:
(Al) : (X1) (A, ),1) is a poset with greatest element 1,

inzj 1,1.',., '  1) verif ies: for all r, y,z, (P-L) l -+ r: r, (R2) (y -+ t) -+ l(z -+ n) -+ @ -+ r)] = 1,

(A3) r -+ y = | g s ( Y, for aII r,.u,

64 r  1 Y a z -+ n < z 1 U,  fot  a l '  r ,Y,z,

(A5) (r -+ a) -+ y = (y -+ r) -+ r, for all r,y,



The world of left-algebras

The general world of -+, 1 The general world of O, 1

The world of
* ,  I

(direct ascend. of W)

The world of
-+t O, 1

indirect ascend. of W

The world of
O, -+, 1

(indirect asc. of MV)

The world of
o,  1

(direct asc. of MV)

"-ec;tpl

(,4, ),  -+,1)

(A1),(A2),(A3),(A4),
(P)

r-BCK(RP)

('4, >, -+, O, 1)
(A1), (A2), (A3),

(RP)

x-BCK(RP)

(4,  >,  o,  -+,1)
(A1),  (X2),

(RP)

X-BCK(R)
- pocrim
('4, >, o, 1)

(A1), (X2), (X3),
(R)

r-BCK(P)-L

(A,  n ,  v ,  -+,0,  1)
(B1) , (A2) , (A3) , (44) ,

(P)

r-BCK(RP)-L

(A,  A,  v ,  -+,  o ,0,  1)
(81), (A2), (A3),

(RP)

x-ncinel-r
: R-L

( A ,  A , v ,  o ,  - + , 0 ,  1 )

(81),  (X2),

(RP)

x-BCK(R)-L
= X-R-L

(4,  n ,  v ,  o ,0,  1)
(81), (X2), (X3),

(R)

r-Ha(P)
(4,  n ,  v ,  -+,0,  1)

(81) , (A2) , (A3) , (A4) ,
(P)

(B2) , (83)

r-Ha(RP)
(A,  A,v ,  -+,  o ,0,  1)
(81), (A2), (A3),

(RP),
(B2), (83)

X-Ha(RP)= BL
(4,  A,v ,  o ,  -+,  0 ,  1)

(81), (X2),
(RP),

(82),(83)

X-Ha(R)= X-BL

( .4,  n,  v,  o,0,  1)
(B1), (X2), (X3),

(R),

(82),  (83)

w
( ,4 ,  - r ,  - ,1)

(A2), (A5), (A6)

MV
(1,  o ,  - ,  1)

x2), (DN), (X4), (X6

Figure 1: The tabie with four columns corresponding to the four different similarity types of algebras



(A6) (r- -+ y-) + (y -+ r) = 1. (X2) (4,O,1) is an abelian (i.e. commutative) left-monoid,

(X3) r { y + r O z 1 y O z, for eYery r,Y,z,
(Xa) r O 1- = 1-, for all c,
(X5) (c- @ y)- O y = (y- e c)- e r, fot a)l r,v,
(DN) r-)- = r, for all r,

(P) there exists r  oa"*! ' "  min{zl ,  <y -+ z}, fot  aI lx,y,

(R) there exists y -+ znotgl ion max{r l roa 
--z}, for al ly,z,

(RP): (PR) r O y 1 z Q s I y -+ z, for all n,A,z,
(B1) ( ,4,  n,  v,0,1) is a bounded lat t ice,
(82) r AY : r O (r -+ Y), for aII r,Y,
(83) (r -+ Y) V (Y -+ ,) = 1, for all r,Y.' 

Consequently, in this paper we shall start with -), i.e. we shall work with reversed left-BCK alge-

bras, reveised lefrBCK(P) algebras, reversed left-BCK(P) lattices, reversed left-H6jek(P) algebras and

Wajsberg algebras (see the algebras from the first column of the table from Figure 1). Note that we

shall sometimes use the more usued names,ttMV algebras" and "BL algebras", rather than "Wajsberg

algebras" and " reversed left-Hri,jek(P) algebras" respectively.
Following these comments, weak Rn-algebras and Rs-algebras "go with" Hil,jek(P) algebras and with

Wajsberg algebras in column 1 of the table from Figure 1, while IMTL algebras and NM algebras "go

with,' Bi algebras, in the 3"d column of that table. Consequently, we should normally refer to "weak

,Rs-algebras, .R6-algebras, axiom (R6), H6,jek(P) algebras and Wajsberg algebras", but sometimes we shall

,"i.r Io "IMTL algebras, NM algebras, axiom (WNM), BL algebras and even MV algebras (from the 4th

column)" too.

{c * ,t(

The motivation of this paper was the following: trying to answer to the open problem 3.12 (3.35) from

[38]: 
',find an example of reversed Ieft-BCK(P) lattice with condition (DN) which is not with condition

(C)", i.". which is not a Wajsberg (MV) algebra, we found more examples; thus, a new problem arised:

which is the difference between them? Thus, we arrived to decompose the divisibility and pre-linearity

conditions in other conditions and so on.

The paper has five parts and twenty sections.
part I is the main part of the whole paper and has 4 Sections . In Section 2, we recall the properties

of reversed left-H6jek (BL) algebras by showing where they come from: most of the properties are coming

from the basic BCK algebra and from the condition (P), some are coming from the lattice condition and

very few from the rwo conditions, divisibility ( (82)) and pre-linearity ((83)). In Section 3 we decompose

the two conditions (82) and (B3) into four conditions: (C*), (Cu), (C"), (Cy). This is the main result

of this part. In Section 4 we define the ordinal sum of two BCK(P) lattices and prove that it is a BCK(P)

Iattice (Theorem 5.2).
part II has two sections. In Section 5, we give examples of some finite bounded BCK algebras. In

Section 6, we In Section 14, we introduce new generalizations of Hrijek(P) (BL) algebras' named a,0,'Y,

6, ag, ..., 9,016 algebras, as BCK(P) lattices (residuated lattices) verifying one, two, three or four of the

conditions (C -), (Cr), (C n), (C x) found in Part I. We make the connections with MTL algebras [18] and

with divisible integral, residuated, commutative l-monoids [33]. By adding the conditions (WNM) and

(DN) to these classes, we get more classes: of 1wN*r)! algebras, a(?N)^-llg:b.tut' (Yyy!)a-@N; algeb,ras

etc. Thus, we get generalizations of BL and lwrvir.ryBl algebras, and of Wajsberg (MV) algebras and of

NRa algebras. We establish connections (hierarchies) between all these new classes and the old ciasses

already pointed out in Part I and Part II. We make the connections with MTL, WNM, IMTL and NM

algebras [18], [21] and with Ro [73], [63] and N.Rs algebras [54]'
part III has seven sections. In Section 7 we give examples of finite Wajsberg (MV) algebras, useful in

the next sections. In Section 8 we give examples of finite linearly ordered reversed left-Hd,jek algebras (BL

algebras) which are not Wajsberg (MV ) algebras. In Section 9 we give examples of finite non-iinearly

or"dured reversed left-Hr{jek algebras (BL) algebras which are not Wajsberg (MV ) algebras' In Section

l0 we give examples of infinite proper BL algebras, obtained as ordinal sums of two product algebras. In



Section 11 we give examples of finite divisible reversed left-BCK(P) lattices (divisible residuated lattices).

In Section 12 we give an example of infinite proper divisible reversed left-BCK(P) lattice, as an ordinal

sum of two product algebras. In section 13 we present two open problems.
part IV has four s=ections. In Section 14, we give examples of proper IMTL algebras and of NM

algebras. In Section 15, we give examples of proper afi1 andof 6ryNu1a0'y algebras. In Section 16, we

giie examples of proper a7 and of guyvla"y algebras. In Section 77,we formulate some remarks and

open problems.
Part V has three parts. In Section 18, we give other finite examples of generalizations of Wajsberg

(MV) algebras and lwrvyWajsberg (lsriyyyMV) algebras. In Section 19, we give other finite examples

of generJlizations of Hdjek(P) (BL) algebras and 1wry,rz;Hrijek(P) (fwxvFL) algebras. In Section 20, we

give final remarks and open problems.
We assume the reader is familiar with [38], but the paper is self-contained as much as possible'

The old, already known results, are presented without proof.

2 Classes of BCK algebras

In this section we stress the fact that a Hri,jek (BL) algebra is a BCK algebra and we divide the

properties of a BL algebra in three groups: those coming from the fact that it is a BCK algebra, those

coming from the fact that it is a residuated lattices and finally those coming from the two conditions (B2)

and (B3). Most of the results are old. The new most important results are Theorem 2.34, Propositions

2.39,2.40, Theorems 2.41 and 2.42.

2.L BCK algebras, reversed left-BCK(P) algebras (pocrims)

BCK algebras were introduced in 1966 by Kiyoshi Is6ki as "right" algebras, starting from the systems of
positive implicational calculus, weak positive implicational calculus by A. Church and BCI, BCK-systems

by C.A. Meredith (cf. [a9]):
L (right-) BCK algebra [49] is an algebra

A =  ( 4 , ( , * , 0 ) ,

where ( is a binary relation on A, x is a binary operation on L and 0 is an element of .4, verifying the
following axioms: for all r, y,z € A,

(I-R) (r  x y) *  (r  x z) I  z * Y,
( I I - R )  r x ( r * y ) 1 y ,
( I I I -R)  t r  1n ,
( IV-R) 0 (  r ,
( V - R )  r 1 A , A 1 r - n = U ,
( V I - R )  r l y e r x Y - 0 ,
or, equivalently, (see [28]) an algebra (,4,'t,0) of type (2,0) satisfying the following axioms: for all

r , Y , z  e  A ,
(BCK-l-R) [(" * y) * (r * z)) * (z x y) = Q,
( B C K - 2 - R )  r * 0 = r ,
(BCK-3-R) Q*r = 0'
(BCK-4-R) r *y - 0 and y * t = 0 imply r = y'
The left-BCK algebra is obtained by replacing the relation ( with the inverse relation, ), * with t1

and 0 with 1, as follows.
A Ieft BCK algebra is an algebra

where ) is a binary relation on A, c ,, , 0,1;tli;l;i';" A and 1 is an erement of A, verifyins, ror
al| r,y, z e A, the axioms:

10



(I-L) (rny)n(raz) ) zEy,
(II-L) rn(rnU) > y,
(III-L) r ) r,
(IV-L) 1 > r,
( V - L ) r l y , y l r * r - - U ,
( V I - L )  r 2 y e r a y - 1 .
or, equivalently is an algebra (1, D, 1) of type (2,0) verifying the axioms corresponding to (BCK-l-R)

- (BCK-4-R).
The reuersed left-BCK algebra is obtained by reversing the operation tr, i.e. by replacing rDy by

A -+ r = A 1L r, for all r,y. We need to reverse the left-BCK algebra in order to arrive to the
implication -+, which appears in BL algebras.

Deffnition 2.I L reaersed,Ieft-BCK algebra is an algebra

A =  ( A ,  ) ,  - + ,  1 ) ,

where ) is a binary relation on A, -+ is a binary operation on A and 1 is an element of .4, verifying, the
axioms: for all r, ylz €. A1

(I) (z -+ r) -+ (y -+ 0) > a 1 z,
(iI) (s -+ r) -+ r ) a,
(III) r ) r,
(IV) 1 > z,
( V ) t > U , A 2 r 1 n = U t
( V I ) r 2 a e ! - r r : I ,

or, equivalently,

Definition 2.2 L reuersed left-BCK algebra is an algebra

(4, -r ,  1)

of type (2,0) verifying the axioms: for ali x,y,z € A,
(BCK-l) (a -+ ,) -+ [(z -+ r) -+ (y -+ r)] = 1,
( B C K - 2 )  L - - r r = r ,
( B C K - 3 )  r - + I = 1 ,
(BCK-4) y -+ r :  1 and r -- ,  a:  1 imply r  = A.

We shall freely write r ) y or y I r in the sequel.

Proposition 2.3 (see [19] )
The following properties hold in a reuersed left-BCK algebra:

r 1 y + A - + z < t r - + 2 1  ( 1 )

r < U r y < z + i l < z ,  ( 2 )

z -+  (y  -+  r ) :A  -+  Q -+  r ) ,  (3 )

z l y - + r + A < z - + t r 1  $ )

r  4y  - -+  r ,  (5 )

l - + r = t r ,  ( 6 )

r l y * z - + n 1 z - + y .  ( 7 )

Recall that ")" is a partial order relation and that (4,>,I) is a poset (partial ordered set) with
greatest element 1.

1 1



Theorem 2.4 [38]
i )  Let A- (A,) ,-+,L) such that:

(AI) (A,2, 1) fs a poset with greatest element l;

(A2) (A,-+,L) aerifies: for all x,y,z € A,

(Rl)  L -+ r :  &,

(nz) (y -+ z) -+ f(z -+ r) -+ (y -+ r)l: r;

(AS) r -+ y = | 3 s 1 y, for aII r,y € A;

(AD r 1 y ---; z -+ fr < z ) U, for all r,y,z e A.

Then, A is a reuersed left-BCK algebra.
ii) Conuersely, euery reaersed Ieft-BCK algebra satisf,es (41) - (4,4).

By this theorem we've got the following equivalent definition of reversed left-BCK algebras:

Definition 2.5 [38]
A. reuersed left-BCK algebro is an algebra A = (A, ), +, 1) such that the above (A1) - (A ) hold.

Definition 2.6 [38j
A. reuersed left-BCK algebra with cond,ition (P) (i.e. with product) or a reaersed left-BCK(P) algebra

for short, is a reversed left-BCK algebra A= (4, ),-+,1) satisfying the condition (P):

(P) there exists, for all c, y e A, r o y notglion min{z I r < y -+ z}.

Proposition 2.7 (see [38], Theorem 2.13) Let A be a reuersed left-BCK(P) algebra, where

r o y n o t * i o n  m i n { z  l r  < y  - +  z } .

Then, the condition (RP) holds:
(RP) r  Oy I  z 14 s (  U 1 z,  for al l  r ,A,z.

Proposition 2.8 [43J Let us consider the reuersed left-BCK(P) algebra A= (A,),-+,L), where

Then, for al l  r ,y,z € A:

roy 'o tz ! - ion  min{z  l r  <  y  -+  z } .

r O Y { r , Y

r O ( r - + y ) 1 r , y

y 1 r _ + { r g y )

r - + y 1 ( r O z ) - + ( y O z ) ,

( a - + r ) O r 1 y - + ( z O r ) .

( y - + z ) o ( r - r y ) { r - + 2 ,

r + ( y l z ) : ( n O y ) - + 2 ,

z - + r < ( y - + r ) - + ( y - + r ) ,

(r o z) -+ (y s z) I r --+ (z -+ y).

n -+ y < ("O z) -+ (y A z) < z -+ (r -+ y),

r - + ( r A Y ) : r ) U ,

r < a  +  r o z l y o z .

(B)

(e)
(10)

(11 )

(r2)
(13)

(14)

(15)  :
(16)

(r7) .
(18)

(1e)

t2



Proposition 2.9 [38] Let A: (A,),4,1) be a left-BCK(P) algebra, where for all r,y € A:

fr o y not4ionmin{z 
I r < y -+ z}.

Thenthealgebra(A,),O,L) isapart ial lyordered,abel ian( i .e.  commutat iue), integral( lef t-)  rnonoid,or,
equiualently, the operat'ion o is a t-norm on the poset (A,>,1) with greatest element r.

Reversed left-BCK(P) algebras are categorically equivalent with pocrims (partially ordered, commu-
tative, residuated, integral monoids) [38].

Definition 2.7O [49]
If there is an element, 0, of a reversed left-BCK algebra A: (A,),-+,1), satisfying 0 < r (i.e.

0 -+ r:1), for all r € A, then 0 is called the zero of. A.
A reversed left-BCK algebra with zero is called to be bounded and it is denoted by (A, ), -+,0, 1).

Proposition 2.tl [43] Let us consider the bounded reuersed left-BCK(P) algebra A: (A,>,-+,0,1).
Then, for al l  r ,y,z Q. A:

0 O 1 1 : r O 0 ) = 0 . (20)

Let A: (4,),1,0, 1) be a bounded reversed Ieft-BCK algebra. Define, for all r € A, a negation *,

by [a9]: for aIl x e A,

n  :  r - + u . (2r)

Proposition 2.12 In a bounded, reuersed,left-BCK algebra A the following properties hold, for all r,y e A
[t,e]'

1 - = 0 , 0 - = 1 ,

r  1  ( r - ) * ,

r - + a < u -  ) r - ,

r  1 y  + y -  < r -

y ) r  = u l u

( ( t r  I  )  = t r  ,

n < a c u -  { r - ,

r - + a * u -  ) f r - ,

y- -+ r: fr- -) A.

(22)

(23)

(24)

(25)

(26)
(r,7\

Remarks 2.13
(1) The negation - defined by 21 depends on -r and 0.
(2) The negation - is a weak negation, by (23).

Definition 2.L4 [38)
If a bounded reversed lefi-BCK algebra ,4 = (4, ), 1,0, 1) verifies, for every r € A:

( r -  ) -  :  r ,

then we shall say that A is with condition (DN) (double negation).

Remark 2.L5 If.,4 is with condition (DN), then the negation - is a strong one.

Lemma 2.LG Let A be a bounded reuersed,left-BCK algebra with condi,tion (DN). Then, for all r,y e A
(see [le]):

(28)

(2e)

(30)

13



Remark 2.17 The property (29) of -+ is called "the contrapositive symmetry with respect to the strong
negation" in [21].

Theorem 2.18 [38] Let A= (A,),],0,1) be a bounded reuersed left-BCK algebra with condition (DN).
Then A is with condi,tion (P) and, for all r,g e A, we haue:

r o y n o t 4 i o " m i n { z l * < u - + z } = ( r - + a - ) - ,  ( 8 1 )  
;

r t y = ( r o y - ) - .  ( 3 2 )

Theorem 2.19 Let A = (4,),*,0,1) be a bound,ed, reuersed, left-BCK algebra with condition (DN).
Then, for all r,y,z e A, the condition (P2) from Defi,nition 1.6 is satisfied, where:

(rz) Q-)- o [(r o z) -+ (y o z)] < r -+ a.

Proof.
By preceeding Theorem, ,4 is with condition (P) and r O y = (* -+ y-)- .
Then, (P2) becomes:

(r-)- of(r o z) -+ (y s z)l < r -+ y "o"Wto

f ( r  o  z )  +  (y  o  z ) lo  z  1 r  - )  a '8
f(r o z) -+ (y o z)l < z -+ (r -+ y).
But,

(r o z)-+ (yo z) = (x -+ z-)- -+ (y -+ z-)- 
(2:) 

fu -+ r-)-+ (r -+ z-)@)r)

((y-)-  '+ z-)  -+ ((r-)-  -+ z-)(T) p -+ a-) -+ (z -+ r-)Q ,  .  K, -+ y-)  -+ r-1.
Thus, we must prove that

z -+ f(z -+ a-) -+ r-l I z -) (, -+ a). (33)

But,  by (5),  g- 1 z )  9r- .  Hence, by (1),

(" -+ y-) 1 r- <y- -+ r- Qi) r -+ y. (34)

From (34), by (7), we get (33). tr

Proposition 2,20 Let A be a bounded reuersed left-BCK(P) algebra. Then,

r O r - : 0 .

Proof.
r O r -  = 0 < +  r o r -  < 0 ( g )  r 1 r -  - + 0 :  ( r - ) - , w h i c h i s t r u e .  t r

* * *

In a reversed Ieft-BCK algebra "4 we define, for all z,y e A (see [a9]):

rv  yd{  @ -+  y )  -+  y .  (Bb)

Proposition 2.21 Let A be a bounded reuersed left-BCK algebra, Then, for all r e A (see [19]):

j Y r = r ,  ( g O )  ;

(37)r V 0 :  ( r - ) - .

Definition 2.22 If rV y = yY r, for all r,y € ,4, then the reversed left-BCK algebra,4 is called to be
commutatiue (see [a9]) or, better, Y-commutatiue[38].

I4



Lemma 2.23 (see [49]) A reuersed left-BCK algebra is (v -) commutatiue iff it is a semilattice with respect
to Y (under )).

Corollary 2.24 (see [19]) Let A be a bounded, (v-) commutatiue reaersed left-BCK algebra. Then, A is
with cond,ition (DN).

In a bounded, (v-) commutative reversed left-BCK algebra .4, define, for all r, y e A (see [ag]):

*  ny 
o! 

@- v a-)-  .  (88)

Proposition2.2S (see ft91) If a reuersed left-BCK algebra is bounded and (v-) commutat,iue, then it is
a latt'ice with respect to V, A (under >).

The bounded, (v-)commutative reversed left-BCK (left-BCK(P)) algebra is an equivalent definition of
Wajsberg algebra [58j (see [38]).

From now on we shall simply say "BCK algebra (BCK(P) algebra)", instead of "reversed left-BCK
algebra (reversed left-BCK(P) algebra)', .

2.2 BCK(P) lattices (residuated lattices)

Note that we consider the case when the lattices are bounded (i.e. with greatest element 1, but with
smallest element 0 also, under )), in order to be able to define a negation. The more general case, when
there is no 0, is already considered in the literature when speaking about reversed left-BCK(P) latiices
(they are called "BCKlattices with condition (S)" in [3a]; note that it should be (P) instead of (S) in
that paper).

Definition 2.26 (see [38])
(1) Let A : (A, ),4,0, 1) be a bounded BCK algebra. If the poset (,4, >) is a lattice, then we shall

say that A is a reuersed Ieft-BCK lattice.
(2) Let A: (4,  ) ,4,0,1) be a bounded BCK(P) algebra, where for al l  r ,y e. A:

, " r n o ' t o o '  m i n { z  l r  <  y  - +  z } .

If the poset (4,>) is a lattice, then we shall say that Ais a reuersed left-BCK(P) latti,ce.

From now on we shall simply say "BCK(P) Iattice", instead of "reversed left-BCK(P) lattice".
Denote by BCK(P)-L the class of BCK(P) lattices.
A BCK lattice (BCI((P) lattice) will be denoted:

A  =  ( A , A ,  V ,  _ + , 0 ,  1 ) .

BCK(P) Iattices are categorically equivalent with residuated lattices [38].
We write: BCI{(P)-I, = R-L.

Proposition 2.27 Let A be a BCK(P) lattice. Then the following properties hold, for all r,y, z e A [52]:

x f  V  Z  e r i s t s ,  t h e n I O V Z  = V { r  O z l z e  Z } ,  ( 3 9 )

i t '  v Z er ists,  then V Z -+ r :  AIz -+ r l  z e Z),  (40)

i , f  A Z e r i s t s , t h e n r - + A Z = A { r - + z l z e Z ) ,  ( 4 1 )

A i z : m a x { e l n O y < z } .  ( 4 2 )

Proposition 2,28 Let A be a BCK(P) lattice. Then ue haue [38]:

r O ( r - + y ) 1 r A y .

1 5
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Proposition 2.29 In a BCK(P) lattice we haue the properties [38]:

( r v  Y ) -  =  r -  A g  t  U 4 )

r- v y- < (r Ag)-, (45)

r -+ y- = (y o r)- (46)

We say that a BCK(P) lattice A: (A,n, u, -]J i ,, ,*O cond,ition(C) if, for alt r, a e A [J8],

r Y y : ( r - + y ) - + y .

In what follows we shall concentrate on some important subclasses of BCK(P) lattices: those satisfying
the condition (DN), those satisfying the condition (WNM) and those satisfying the condition (G).

We say that a BCK(P) lattice A is with condition (DN) or a BCK(P)1nr,'; lattice, for short, if the
associated bounded reversed lefrBCK(P) aigebra is with condition (DN) [38].

Note that BCK(P) lattices with condition (DN) are categorically equivalent with residuated Iattices
with condition (DN), also named "Girard monoids" [33].

Corollary 2.30 [38] Let A: (A, A,v, -+,0, 1) be a BCK(P) lattice with cond,ition (C). Then A is a with
condition (DN).

Theorem 2.31 [38] The BCK(P) lattice with condition (C) is an equiualent definition of Wajsberg atge-
bra.

Proposition 2.32 Let A be a BCK(P)@N1 lattice. Then we haue [38]:

( * n Y ) - : r - V A  t  ( 4 7 )

r  Ay  :  ( r -  v  a - ) - .  (48)

Theorem 2.33 Let A: (A, ), 4,0, l) be a BCK(P)(DM lattice. Then, for all r,y e A, we haue:

r o y notslio" min{z | * < a -+ z} - (r -+ a-)-,

r ) y : l r O y - ) - .

Proof. By Theorem 2.18.

Theorem 2.34 Let A be a BCK(P)@N1 latti,ce. Then A satisfies the cond,ition

(Pz) (z-)- o [(r o z) -+ (a o z)] < r -+ y.

Proof By Theorem 2.19.

(4e)

(50)

D

(P2):  for  a l l  r ,y ,z  € A,

Proposition 2.35 Let A be a BCK(P)2N1 lattice which satisfies the cond'ition (P1): for all r € A,

( P I )  r A r - : 0 .

Then A is a Boolean algebra.

Proof. If r A r- : 0, it follows that we also hare:
rY r* = (r-)- V n- = (r- Ar)-:0- :1, by Proposition2.32, hence "4 is a Boolean algebra. tr
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Definition 2.36 we say that a BCK(P) lattice A= (A,n,v,-+,0,1) is a 1wNtr,, BCK(p) Iatticeif it
satisfies the condition (wNM) (weak nilpotent minimum): for all fr)y e A,

(wNM) (" o y)- v [(z n y) -+ (r o y)] : r.

Definition 2-37 We shall say that a BCI((P) lattice is a lwNa4BCK(P)@N) tatticeifit verifies borh
conditions (DN) and (WNM).

Definition 2.38 We say that a BCK(P) lattice A= (A,n,v,-+,0,1) is of Gtid,el typeif it satisfies the
condition (G): for all r e A,

( G )  r O x : t r .

Proposition 2,39 Let A be a BCK(P) lattice of G6d,et type. Then, for all r,y € A,

r O Y = r A Y .

Proof.
By Proposition 2.9, O is commutative and associative. By condition (G), it is also idemporent.
We also have the two absorbtions:

o  r V  ( r O y )  =  r ,  s i n c e  r O y  ( c ,  b y  ( 8 ) .
o rO(rv y) = z;  indeed, rO(rv y) l  r ,by (B) and since r 4 rYy i t  fol lows that r  = rOr 1. rO(ryy),
by (19);  thus, r  O (r  V U) = r .

F ina l l y ,  x ,  l yQrOy-  r .  Indeed,
o r 1 A implies by (19) that r = r O r I r OA;then, by (B), it foilows that r Oy = r.
o r -) U: (r O y) -+ y : r -+ (y -+ y) = n -+ 1 : 1, by (14), hence r I U, by (VI).
T h u s , r O y = r A y .  f l
Proposition 2.4O Let A be a BCK(P) lattice of Gdd,el type. Then A uerifies the cond.ition (p1).

Proof. By Proposition 2.39, we have
r O ! = Y \ y

and by Proposition 2.20, we have
r O r -  = 0 .

T h e n ,  r  A r -  =  r O r -  = 0 .  !

Theorem 2.4L Let A be a BCK(P) Iattice of Gdd,el type. Then A uerifies the condition (WNM) (i.e. it
is a s,yTrpsBCK(P) lattice) .

Proof.
By Proposition 2.39, r A y - r Ay, for aII r,y € ,4, hence:

( r a a ) -  v [ ( r n  a )  - +  ( r  e y ) ]  =  ( r o y ) -  v [ ( z o  y )  - +  ( r  o y ) ]  =  ( r e y ) -  V  1 =  1 ,

by ( I I I ) ,  (VI) .  n

Theorem 2.42 Let A be a BCK(P) lattice uerifyi,ng the followi,ng:

fo r  each r ,y  e .  A ,  such tha t  rAy  *0 ,  we haue rOy =  y  \y .
Then, A is a lwNd,rlBCK(P) lattice.

Proof. For all r,y e A, there are two cases:

(1) r o I : 0; lhen the condition (WNM) is satisfied:

( r  aa)-  v [ ( rn a) -+ (ros)]  = 0- v [ ( r^y) -+ 0]  = 1 v [ ( ,  ny)-+ 0]  = 1.
(2) n A y I 0; then, by hypothesis, r O A = r A y; thenthe condition (WNM) is satisfied:

( roy) -  v  [ ( "  na)  -+  ( ro  a ) ]  =  ( roy) -  v  [ ( r  o i l  +  ( ro  y ) ]  =  (nogr ) -  v  r  =  r .
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2.3 Hdjek(P) algebras (BL atgebras) and related structures
Definition 2.43 [38]

A. reuersed,Ieft-Hdjek(P) algebra is an algebra

A :  ( A , n ,  V ,  _ + , 0 ,  1 )

such that:
(B1) "4 is a BCK(P) lattice,
(82) for al l r ,y e A, rAy:rO(x -r3r) (div is ibi l i ty) ;
(83) for all r,y € A, (, -+ y)v (y -+ r) = | (prelinearity).

From now on we shall simply say "HSjek(P) algebra", instead of "reversed left-H6jek(P) algebra".
Let Ha(P) denote the class of reversed left-Hdjek(P) algebras.
The H6jek(P) algebras are categorically equivalent with BL algebras [38].

We write: Ha(P) "r BL.
Consequently, the class of H6jek(P) algebras contain the Wajsberg, the Product and the Godel algebras.

Proposition 2.44 Let A = (A,n, v, -+, 0,r) be a H6,jek(P) algebra. Then, L(A) = (A, A,V,0, 1) fs o
bounded distributiue lattice.

Proposition 2.45 Let A be a Hdjek(P) algebra. Then for all r,y € A:
rY y = ((* -+ y) -+ y) A ((y -+ r) -+ r).

Proposition 2.46 Let A be a Hdiek(P) algebra satisfying the condition (BS). Then, for atl r,y € A,

( r A Y ) -  = r - Y A

Proof. By (a5), we have the inequality r- vy- < (rAA)- .It remains to prove the converse inequalitv:

( r  Ay ) -  I  n -  Y  y - . (5 1)

Indeed, we have: r -+ y 
(3) 

, -+ (r ni l '?'  p ni l- -+r-. Hence, by (Rp), (r -+ i lo (r A y)- < r
Similarly, (y -+ r) O (r A a)- < y- . It follows that:

(rna)- = lo(z^y)- t1-" 
[(r -+ y)v(y -+ r)]o(rnfl - 

(qll 
(rny)-o(r -+ y)lvf(rny)-o(y -] r)l < r-vu-,

i .e .  (51)  holds.  n
Ii follows immediately the well known result:

Corollary 2.47 In a Hdjek(P) algebra (BL algebra) we haue

( r  A a ) -  -  r -  v  u - .

We say that a Hrijek(P) (BL) algebra is with condition (C) if the associated BCI{(P) (residuated)
lattice is wiih condition (C) [38].

We say that a H6,jek(P) (BL) algebra is with cond'ition (DN) (d,ouble negation) or a Hrijek(p)@7,{1

QlOy.l) algebra for short, if the associated BCK(P) (residuated) Iattice is with cond,,it ion 1nw1,t. ' i . iL
BCK(P)(DN; lattice.

We say that a H6jek(P) (BL) algebra is wsth condition (WNM) (weak ni,lpotent m,inimum) or a
g x ntl Hdjek(!)^!Syy yl BL) algebra for short, if the associated BCK(P) Iattice is with condition (WNM),
i.e. is 11,y1,1y)BCK(P) Iattice.

When the H6jek(P) (BL) algebra satisfies both (DN) and (WNM) conditions, then we shall sav thar
is a 1w N yyHLijek(P) 11l1,'y Qw N ulBL 6,r','y ) algebra.

In this gu{"., part III, we shall put in evidence the importa\ce (wNMyHrijek(P) (gxufiL) algebras.
Let Ha(P)1or,'y (Bl,1aruy) denote the subclass of H'ajek(P)ro,.ry (BL,o"y) algebias. We write]
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Ha(P)1nivy =Ha(P) f (DN) = W, Blloiv) =BL * (DN) = MV.

Let 1'lrxtnrl}Ia(P,) (gNnBL).denote the subclass of (r,yNMyHd,jek(P) (69lNuyBL) algebras and
twrnzlH_a(P)1rivy (1wru,yyBL1oruy) denote the subclass of lwNmy[Li,jek(P)1pryy QwNulBLpN)) al-
gebras. We write:

(wnazyHa(P)=Ha(P) + (WNM)' (wwu)BL:Bt + (WNM).

Theorem 2.48 [38] A Hdjek(P) algebra is with condition (C) itr it is with cond,ition (DN).

Recall [30] that a Hrijek(P) algebra (BL algebra) is a Wajsberg algebra (MV algebra) itr it is with
condition (DN). We write:

Ha(P) + (DN) - \V, BL + (DN) = MV.

Proposition 2.49 Euery Wajsberg (MV) algebra satisfies the conditi,on (P2) from the definiti,on of Prod-
uct algebras.

Proof. Every Wajsberg (MV) algebra satisfies the condition (DN) (double negation); then apply
Theorem 2.19. tr

Proposition 2.5O A Wajsberg (MV) algebra A: (4,+,-,1) which satisfies the conditi,on (P1) from
Definition 1.6 is a Boolean algebra.

Proof. By Proposition 2.35. !
In this paper, part III, we shall put in evidence the important subclass of those Wajsberg (MV) algebras

verifying the condition (WNM), named as lwrvuyWajsberg (1sr7,,'ylMV) algebras.
Let 1wNu1W (1wry1zyMV) denote the class of 1wry,rz;Wajsberg (twirwyMV) algebras.
We have:

@Nu1IJ.a(P)1rry: Ha(P) + (WNM) + (DN) : W * (WNM): (wNm1W,

1wr,r*r1BL61N) = BL + (WNM) + (DN) = MV + (WNM)= @N41MY.

Recall the followings:
- Any Boolean algebra is a Wajsberg (MV) algebra, a Product algebra and a Gcjdel algebra.
- The only finite Product algebras are the finite Boolean algebras.
- Any Gddel algebra satisfies the condition (P1), by Proposition 2.40, hence is a SBL algebra.
- Any Godel algebra satisfies the condition (WNM), by Theorem 2.41.

Open problem 2,5L It will be interesting to study the class of those Hd,jek(P) (BL) algebras which
verify the condition (P2) (i.e. ihe SSBL algebras). The exemples in this paper, Part III, will be useful.

By Proposit ion 2.46,we get immediately that:

Corollary 2.52 In a wealc-BL algebra (MTL algebra) ue haue

( r A Y ) - : r - v Y - '
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Let us introduce the following definitions:

Definition 2.53
(1) A divisible BCK(P) lattice is said to be of Giidel type if the BCK(P) lattice is of of Gddel type.

We shall give examples of such algebras in Part III.
(2) A divisible BCK(P) lattice is said to be of Product typeif it satisfies the conditions (P1) and (P2).

It is an open problem if there exist any proper such algebras (i.e. which are not Product algebras).
(3) A divisible BCK(P) lattice is said to be proper if it is not a H6jek (BL) algebra, if it is not of

Product or of Gddel type and if it does not satisfy the conditions (DN) and (WNM).

3 The decomposition of the conditions (E}2) and (BB). Conse-
quences

Let us consider the two conditions (82) (r Ay : r O (r -r y)) and (B3) ((r -+ A)v (A -+ ,) = 1) from
the definition of a Hdjek (BL) algebra.

Theorem 3.1 Let A = (A,n, V, -f ,0,1) be a BCK(P) lattice. Then, the condition (82) is equiualent with
the following cancellatiue condition:

(C") for any n,y, z €. A, if z -+ r = z -+ y and z ) r,y, then r = y.

Proof.
(82) =+ (C") [0S]: Since r 1 z and y S z, then z A tr = r and zA g = y; hence

n =  z  Ar  :  zO (z  -+  r )  =  z  O (z  -+  y )  =  z  Ay  :  y .
(C") + (B2): By (8), r o (* -+ y) ( r. We also have r Ay 1e. We shall prove that

r  - + I r  o  ( r  +  a ) l = r  +  ( r A  y ) ( = r  - + y ) .  ( 5 2 )

By (43), r O (r -+ y) < r A 3r, hence , by (7),

r -+ [r o (r -r a)] < r -+ (r Ay). (53)

On the other hand, by Proposition 2.9,r O 1 = 1 Or : z, hence

r -+ [ro (z -+ a)] = Uo rl -+ [(r -+ a)o "] 

t! ' 
1 -r (r -+ s) I r -+ y. Hence,

r -+ a < r -+[r o (z -+ y)]. (54)

But,  by (18),
r -+ (r Ay) < r -+ A. (55)

By (5Q and (55), we get:
r -+ (r ny) S r -+ [r o (e -r y)]. (b6)

Consequently, by (53) and (56), (52) holds. It follows, by (C"), that r Ay = r O (r -+ g). tr
Note that it is much easier to check on the table of -+ the equivalent condition (C") than ihe condition

(82), in finite examples.
Note also that condition (B3) is easilly checked on the table of -+.

Remarks 3.2
(i) Recall that the divisibility condition (B2) is also equivalent with the foliowing condition (Ca), which

gave the name "divisibility" ([33], Lemma 2.5):
(Ca) f.or aII r,y € A, if A I r, then there exists z €,4 such that y = s. g 2.
(ii) Note that condition (C") is expressed in terms of "-+", while the equivalent condition (Ca) is

expressed in terms of " O".
(iii) Note that "divisible BCI{(P) lattices" are categorically equivalent to divisible residuated lattices

(or "divisible integral, residuated, commutative l-monoids,', in [33], Lemma 2.5).
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Note also that, while the condition (82) is expressed either in terms of "-+" or in terms of ,'O', (besides
")"), the condition (83) is expressed only in terms of "-1" (besides "v" and "1"). This is an important
reason to work with "-+" as primitive operation, and not with "6", when dealing with the involved
algebras.

Open problem 3.3 Find a simple equivalent condition of condition (B3) in terms of O.

Proposition 3.4 Let A: (A,n)v,-+,0,1) De a BCK(P) lattice. Then, the cond,ition (BZ) is equiaalent
with the following two conditions:
( C ^ )  r  A y  = l r o ( r  - +  y ) l v  [ y o ( y  - +  r ) ] ,
( C o )  r o ( r  - +  y )  = y  o ( a  - +  r ) .

Proof. Obvious. !

Proposition 3.5 LetA=(A,n,V,-+,0,I) be a BCK(P) lattice. Then, the cond,it' ion(Cd it equiualent
with the following two cond'itions:
(C-,) (, -+ a) -+ (y -+ x) : y 1 r,
(Cx) r o [(a -+ r) -+ (, -+ y)] = y o f(r -+ y) -+ (y -+ ,)).

Proof.
. (Cd 3 (Cr): By (5), we have n < (r -+ y) -+ r; hence, by (1), we get:

l(* -+ y) -+ rl -+ y <. r -+ y. 6Z\

On the other hand, by (III), (* -+ y) 1 r 1 (r -+ y) -+ r, hence, by (4), we get:

r -+ y 1[(" -+ a) -+ r] -+ r. (58)

By (57),(58) and (2) and by Proposition 2.7, we get

[( ,  -+ y) -+ r ]-+ y S[(r  -+y) -+ r ]-+ r  tH'  ( t (r  -+ i l  -+ r l -+ y)o[(r  - i  y)  -+ r ]  (  r  n

<+ [(r -i y) -+ r]o ([(r -i i l -+ r] -+ s) S ,Q8) y o (y -+ l(, -+ y) -+ rl) S r(U)
' W ' @ o ( s - +  

[ ( r - + y )  - + r ] ) )  - + r : t c o m \ o f  
" ( ( ,  -  l ( "  - + y )  - + r l ) o  y )  - + r : r

tP (, * l(* -+ i l-+ rl) -+ (y -+ *)= 1 (gl y -+ [(r -+ i l -+ r] Sy* r I @ -+ i l + @ -+ r) I y -+

But, we also have, by (5), y -+ r 1(, -+ y) --> @ -+ r). Thus, by (V), (C*)) holds.
. (Co) a (Qy): since (C6) implies (C-), it follows immediately (C;).
. (Cx) and (C-1) implies obviously (Ce). D
Remark that in a BCK(P) lattice, rt Qx) holds, then (Co) <+ (C-) and if (C-) holds, then (Co) <+

(Cx).
By Propositions 3.4 and 3.5 we get the following

Theorem 3.6 Let A = (4,n, V, -+,0,1) be a BCK(P) lattice. Then, the condit'ion (Bg) xs equiualent with
the three cond,itions (Cn), (C-) and' (Cy).

D

Theorem 3.7 Let A: (4,n, V, -+, 0,1) be a BCK(P) lattice. Then, the condition (BS) i,s equ,iualent with
the conditions (C-) and (Cy), where:
(Cv) r v y - l(, -+ y) -+ sl  ̂  [(y -+ r) -+ r].

Proof.
. (83) + (Cv): Denote by "o" the right side of (Cy).

We have r < (r -+ A) -+ y, by (II) and y ( (, -+ y) -+ y,by (5); hence rV y I (r -+ y) -+ y. Similariy,
rV y 1(V -+ ,)  -+ r .  I t  fo l lows that e Y y 1a.
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By Proposition 2.9,
a=aOt@J)  oo [ ( r  -+  y )v  ( y  -+ r )1  (3 )  

[ ao ( r -+  s ) j v  [ ao (y  -+  r ) ] .
But, a O (r -+ y) = ([(r -+ y) -+ yl n [(y -r c) -+ c]) o (r -+ y)
( 1e )  _  ( 4J \
<  [ ( ,  - +  y )  - + a ] o ( r  - +  y )  =  ( r  - + y ) o  [ ( ,  - + y )  - + u ]  <  @  - + y )  A y  1 y .

Similarly, oO(y -+ a) <[(y -+ 
") 

-+ r]O (y -+ r) < (y -+ r) ttr ,-r.
Thus, c - [o O (* -+ y)]V [a O (y -+ x)] 1 yv r. It fotlows thar r V A = o.

. (83) + (C-a): Since (83) implies (Cv), it follows:

! = (, + y) v (y -+ *) = [((r -+ y) -+ (y -+ r)) -+ (y -+ r))n [((y -+ r) -+ (r -+ y)) -+ (n -+ il) S
[((" -+ y) -+ (y -r z)) -+ (y -+ ,)].
Hence, ((, -+ y) -+ (y -+ x)) -+ (y -+ o) - 1, i.e., by (VI), (r -+ a) -+ (y -+ *) 1y -+ r; since we also
have, by (5), that y -+ r < (" -+ y) -+ (y -+ r), it follows that (r -+ y) -+ (y -+ *) = y -+ r, i.e. (C_)
holds.

. (C-) and (Cy) imply (83): (, -+ y) v (y -+ fl 
(c:-)

[((, -+ il -+ @ -r r)) -r (y -+ 
")]n [((y -+ r) -+ (r -+ y)) -+ (r -+ y11QJ)

[(a -+ r) -+ (y -+ r)]n [(r -+ y) -+ (, -+ u)] = 1A 1 = 1. n

Theorem 3,8 Let A= (A,n, v, -+,0,1) be a BCK(P) lattice. If A is a cha'in (i.e it is linearly ord,ered;,
then it satisfies the conditions (C-), (Cr), (Ci.

Proof.
Let r,y e A; then either r ( y or y I r, i.e. either r -+ y : I or y -+r = l, respectively.
o (C-a): We prove that (r -+ y) -+ (y -+ r) = y -+ r. Indeed,

- if. r 1 y, then (* -+ y) a (y -+ n) = L -+ (y -+ r) = y -+ r and
- if y < r, then (, -+ a) -+ (A -+ r) = (r I y) -+ 1 = 1 = A -+ r.

o (cv): we prove that rv y : [(r -+ y) -+ y] n[(y -+ r) -+ r]. Indeed, if r 1y, for instance, then
I@ -+ y) -+ yl Al(y -+ ,) -+ rl = [1 -+ y]n [(y -+ r) -+ r) = y A[(y -+ r) -+ n] = y = ry U,
since, by (II), g < (y -+ r) -+ r.

r (ca): we prove that r Ay : [r o (r -+ y)]v [y o (y -+ r)]. Indeed, if r 1y, for instance, then
[ r o ( r  - +  s ) j  v  [ a o ( y  - +  r ) ]  =  [ r o  1 ]  v [ a O ( a  - +  r ) ]  =  r v  [ y o ( y  - +  r ) ] =  r ,  =  r  A a 1
since, by (43),  A g @ -+ r)  1r Aa = r .  u

By Theorems 3.6 and 3.7 we immediately get the following:

Theorem 3.9 A BCK(P) lattice is a Hdjek(P) (BL) algebra if and only if it sati,sfies the four cond,itions
(c-), (cr), (c), (cx)

By this Theorem, we immediately get the following

Corollary 8.LO Let A be a BCK(P) Iattice. Then we haue:
( 8 2 )  + ( B s )  s ( C - ) + ( C r ) + ( C n ) + ( C ; g )  < = = +  ( B s )  + ( C y )  * ( B S )  + ( C i + e x ) .

Proposition 3.lL Let A be a BCK(P) lattice. Then, we haae the equiuarence:

(82) + (Dtl) <==+ (C).

Proof.
4s By Proposition 2.32 and Theorem 2.18, ry y = (r-)- V (y-)- = (r- A y-)- = [r- O (r- -+

a-)l- 
(':) 

l*- o (y -+ r)l- = (y -+ r) -+ r.
s; By Corollary 2.30, (C) =+ (DN).

2.L8, r A y : (r- v y-)* : [fu- -+ r-) -+ r

It remains to prove that (C) ==+ (82). Indeed, by Theorem
-l- (3t 

[@ -+ y) -+ r-]- - (, + y) o r = r o (r -+ y).
n
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Corollary 3.'l'2 Any d,iuisible BCK(P) lattice satisfying the cond,ition (DN) is a Wajsberg (MV) atgebra.

Proof. Since the BCK(P) lattice satisfying condition (C) is an equivalent definition of Wajsberg
algebra. D

Proposition 3.13 A linearly ord,ered, d,iuisible BCK(P) Iattice is a Hdjek(p) (BL) atgebra (chain).

Proof. By Theorem 3'8, any linearly ordered BCK(P) lattice satisfies the condition (Cy); then apply
Corollary 3.10. tr

Proposition 3.14
Let A: (,4., n, V, -+,0, 1) be a BCK(p) lattice. Then,

(C,) + (DN) a (Cu) + (DN) e (Cn) + (Cv) + ew).

Proof. It is sufficient to prove the following two implications:
. (Cn) + (DN) a (Cy): Indeed,

rvyQ!) (*vy)-)-  (y)  
@- ny-)-  ( t+) [ [ " -  

o(r-  -+ s-) ]v la-  o1y- -+ r-) l l -  ,?,  
[ [ r -  o(a -+

r ) l v l a - o ( q - + q ) i i - 1 [ [ ( v . - + r ) o r - ] v [ ( r - + y ) o e - ] l - ' ! ' K r - + r )  o r - l - ^ [ ( r - + i l o a - ] - ( 3 t )
[(y -+ ,) -+ r] n f(r -+ y) -+ yl.

. (Cu) + (DN) - (Cn) : Indeed,
,ny (9 ) .@-  vy - ) -  t ? ' [ [ ( " -  -+  y - )  +a - ] ^ [@-  -+  r - )  1 r - ] l -  ( 2s )  

I@ -+  r )  -+  y * l n [ ( r  -+y )  -+
,-. l l -  

(!) 
[@ -+ *) -+ y-)- v[(r -+ y) -+ r-]- t l '  

[( ,  -+ r)oa]v[(r -+ i lor]= [ro (, -+ i l ]vfyo(y -+
r) ) .  n

Remarks 3.15
1) Among the four conditions (C-), (Cr), (Cn), (Cx), the first three are very important, since any

linearly ordered BCK(P) lattice satisfies them, by Theorem 3.8.
2) Among the important three conditions (C*), (Cu), (Ca), two are very important, (Cy) and (Ca),

since they are dual, i.e. in a BCK(P) Iattice with condition (DN), (Cv) <+ (Cn), by Proposition 3.14.

We then immediately get the following consequences.

Corollary 3.LG Let A be a residuated lattice (BCK(P) latti,ce). Then,

(BS) + (DN) s (C-) + (Cu) + (C)+ (DN).

Corollary 3.17 Let A be a residuated,lattice (BCK(P) lattice). Then,

(C) e (C-) + (Cr) + (C^)+ (Cx) + (DN) e (82) + (Bs) + (DN).

Proof.
By Proposition 3.11, Theorem 3.6, Proposition 3.14 and Corollary 3.10, we get:

(C) <==+ (82) + (DN) ++ (Cn) + (C-) + (Cx) + (DN)
++ (cn) + (c*) + (cx) + (cu) + (DN) sa (82) + (83) + (DN). n

Corollary 3.18
IMTL:MTL +  (DN) :  R-L  +  (83)  +  (DN)  =  R-L  +  (C. )  + (C, )  + (CN)+ (DN) .

Corollary 3.19
( 1 ) M v  = I M T L  + ( C x ) .
(1 ' )W =weak-Ro +(Cx) .
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Proof.
MV = BL + (DN) = R-L + (82) +(83) + (DN):
= R-L + (C-,) + (Cu) + (Cn) + (Cx) + (DN) = IMTL + (Cx).
Thus, (1) holds.
(1') follows immediately, by (1).

We also have:

NM = IMTL + (WNM) or, equivalently Ra= weak .R6 + (RO).

We shall prove in Part III that the class of MV algebras (Wajsberg algebras) and the class of NM algebras
(/?e algebras) are incomparable (not included one in the other), but have "something" in common, namely

the subclass lwl,ruyMV (1w,.r,r.ryW) :

(w N ul}dY=MV + (WNM) = NM + (Cx).

Indeed, (gNM)MV:MV + (WNM) = [ IMTI + (Cx)] +(WNM)=[ IMTL + (WNM)] +(Cx):
NM + (Cx).

Remarks 3.20
( 1 ) r w r u , 1 z l W = W * ( W N M ) = [ H a ( P ) + ( D N ) ] + ( W N M ) = [ H a ( P ) + ( w N M ) ] + ( D N ) = 1 w r u u y H a ( P )

+  (DN) .
(1') sNulMV = MV + (WNM) ry [BL + (DN)] + (WNM)= IBL + (WNM)] + (DN):1wr,ru1BL

+ (DN).

We shall give examples of 1rypy;Wajsberg algebras (lwn,rzyMV algebras) and of g N nrlHdjek algebras
(gNn4BL algebras) in the third part of this paper.

Very recently, Y.L. Liu and S.Y. Liu, have introduced the notions of normal (weak) Ra-algebra (cf.

[5a]):
Definition 3.2L A normal (weak) Rs-algebra or, (NW,Rg) NWRs for short is an (weak) .Rs-algebra
verifying:

@ - + a ) - + A = ( y - + r ) - + r .

Since tr4z.Ro o IMTL, it follows that condition (Cu) is verified in (weak) fi6-algebras; consequently, in
a normal (weak) .rt6 algebra, we have: n Y y = (, -+ y) 1 y, i.e. condition (C) holds.

We then obtain, by Corollary 3.17 and Theorem 2.31, that:

Theorem 3.22
(1) The normal weak Rg-algebra is an equiualent definition of Wajsberg algebra (MV algebra), i.e.

NWRg = W;
(2) The class of normal Rs-algebras is a subclass of the class of Wajsberg algebras (MV algebras),

namely we haue:
NRo = W + (R6)= W * (WNM): (wNnr1W.

Let (PIM) (positive implicative) be the following condition (see [49]):

(PIM) r -+ (r -+ A) = r -+ Y, for aIl t,Y.

By [54], we have:

NRo + (PIM) <a Boolean or, equivalently,

(ryNM\W + (PIM) 44 Bqelssn.

tr
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Definition 3.23
(1) We shall say that a Hdjek(P) algebra (BL algebra) is properif.it is not a Wajsberg (MV), a Product

or a G<idel algebra and if it does not verify the condition (WNM).
(2) We shall say thal, a 1wN$ Hr{,jek(P) algebra (gNulBL algebra) is properif it is not a lwivryyWajsberg

(fwnulMV), a Product or a G6del algebra.

Resuming, we have for the moment the generalizations and the particular cases of Hri,jek(P) (BL) algebras
from Figure 2.

(83)

weak-Bl:MTL
(82)

divisible BCK(P)-t
("u) 

,n.1"; 1"";
(DN)

w (Mv)

(P1)

Boolean

particular cases of H6jek(P) (BL) algebras

(c) + (cx)

(P1)+(P2)

Product

Figure 2: Generalizations and

When adding the condition (DN), we get the hierarchy from Figure 3.

BCK(P)-r (R-L)
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BCK(P)-I (R-t) + (DN) ry Girard monoids

WRo = weak-Bl + (DN) =IMTL

(wN

R o = N M

w (Mv)

(P1)

Boolean

Figure 3: Generalizations and particular cases of Wajsberg (MV) algebras

4 The ordinal sum of BCK(P) lattices

We generalize here the notion of "ordinal sum" of two BL chains in the following way.

Defini t ion 4.1 Let Mt :  (Mu,)t , ) i ,0 i , l ) ,  U * L* i  € {1,2} be two BCK(P) lat t ices such that
1r  :  0z  and (M1\  { t t } )n (M,  \  {0 r } )  :0 .

The ord,inal sumof. M1 and Mz 6n this order) is the structure:

Mt@ M2 =  (M1U * r ,> ,  -+ ,0 ,  1 ) ,

where:
r l y i f . ( x , U e  M 1  a n d r > t y ) o r ( r , y € M z a n d r > z y )  o r ( r €  M 1  a n d A e  M z ) , i . e .  w e h a v e t h e
lattice reprezented by diagram Hasse from Figure 4;
0 : 0 r ,  l = l z i

(  r ,  i f  r < y
r ) y = 1 r - o y ,  i f  r ) A ,  r , y e  M , ; ,  , i e { 1 , 2 }

I  y ,  i f  r ) U ,  r € M 2 , A € M r \ { 1 t } ,
or, equivalently

(  t ,  i f  r < a
r - ) y = \  r - o A ,  i f  r ) A ,  r , y € M , ; ,  , i € . { I , 2 )

I  s t ,  i f  r ] U ,  r e M 2 \ { 0 r } , a € M t \ { 1 t } ,
s ince  in  Mr , l t  -4  Ut  =  A t .

Hence, -+ has the following table:

NRo - (wNM)
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0 = 0 r

Figure 4: The ordinal sum M1@ M2

Mr@ Mz

r ) y 0 = 0 r  U t 1 .r l
- 0 2

U z  L =  L 2

0  : 0 r

;

1  . . .  I

; ; :
o1 -*1 01 frt -)r At

I I

:
I

l 1 - 0 2 0 Ur 1 1  . . .  I

l = I z

0

:
0

Y I

U1

rz 1z 0z

1 ,  -  0 "

w h e r e  1 1 ,  A t  €  M r  \  { 0 : 0 r , l t } ,  1 2 ' y 2  €  M z \ { 0 2 , 1  : 1 2 } .

Remarks 4.2 Remark ihat the table of -+ in Mt@ M, contains:

1) the initial table of 4 in M2,

2) the initial table of -+ in M1, modified in the sense that 1r is replaced by 1,

3 )  i f  z  €  M1  \ {11 }  and  A  e  Mz , then  r  -+  y  =1 ,  s i nce  r  1A ,

4)  i t  r  e  Mz\{02}  and U € Mt\  {1r} ,  then r  1 y  = A.

Note that if M1 and M2 are BL chains, we get the well-known definition of ordinal sum of two BL

chains (written sometimes in an ambigous way).

Then we have the following

Theorem 4.3 Let  Mt  = (Mt, ) i , ) i , } t ,L) ,  z  e {1,2)  betwo BCK(P) la t t ice.s.  Then My@Mz, i ,s  a

BCK(P) lattice.

Proof. Obviously, Mt@Mz is a lattice with first element 0 = 0r and last element 1 = 1.

We prove now that it is a BCK algebra:
o First we prove that

L - + r = r .  ( 5 9 )

I n d e e d ,  s i n c e  1  e  M z , i t  f o l l o w s t h a t  1 - l  n = l - + 2 t r = l r t i f  r €  M z  a n d  1 - +  x ) = n t i f  t  e  M r \ { 1 r } .

Thus, (59) holds.
r Then we prove that

r S y - + r .
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I n d e e d , i f  y l r , t h e n y  - + n = l ) r ; i f  y , r € M . i ,  i e  i l , 2 ) , t h e n ( 6 0 ) h o l d s ;  i f y € M 2 a n d r € M r \ { 1 r } ,
then y : ran = r ) r. Thus (60) holds.
o Then we need that

r  I  r :  l ,  ( 6 1 )

which is true since r 1r.
o Now we can prove (II), i.e. (y -+ r) -+ r ) y.
Indeed,
- i t a  S r ,  t h e n  U  1 r : 1 ;  h e n c e  ( y  - +  r )  - +  t r :  t  - r ,  ( 3 )  

r > y .
-  i f  y,r  e M;,  i  € {1,2},  then (I I )  holds.

- i f g € M 2 , r e M r \ { 1 r } , t h e n y - + t r = r a n d h e n c e ( a - + r ) - + t r = r - + r ( ! ) t > y . T h u s , ( I I )  h o l d s .
o Now we prove (I), i.e. (z -+ r) -+ (y -+ r) ) Y -+ z:
Denote

,tnotslion e -+ r) -+ (y -+ r), TTnotglion y -+ z.

We must prove that TI>?2. Indeed,

l f  y,z € M1 ,  then:
- if r € M1, then (I) holds, since it holds in M1;
- i f r € M z \ { 0 2 } , t h e n r ) y , z , h e n c e z r a r = t = y - + r a n d t h u s T l : I ; i t f o l l o w s t h a t T 2 < T I .

if. y, z € M2, then:
- if r € M2, tben (I) holds, since it holds in M2;

-  i f  r €  M r  \ { 1 r } ,  t h e n z - + t r = x a n d , y  - + t r = r ,  h e n c e  T l = r - r ( 1 )  I > ? l 2 .

i f  y e M2, z e Mt\  {1t} ,  thenT2 = y -+ z = z;

- if r e M2, then z 1 r and hence z -+ if, =1; then Tl : (z-l r) -l (a -+ r)= 1 -+ (y -+ r) 
(3)

y -+ n e M2; hence Tl > T2 = z;

-  t f  r  €Mr  \  i l r ) ,  then  gr  -+  t r  = r  and then T l  =  (z -+  r )  - r  (A  -+  r )  =  (z  -+  r )  -+  r (9 ) ,  = fZ .

r f  z € M2, A € Mt\  {1t} ,  then y I  z,henceT2 :  A -+ r  = I ;
-  i f  r  €  M2, thenr )  y ,  hencey  -+r=  l  andconsequent ly  T l= (z  -+  r )  -+  (y  -+  r )  = (z  -+ r )  -+
1 = 1 = T 2 , s i n c e z - + r < - l ;
- i f r € M r \ { 1 r } , t h e n z - + r = r a n d s i n c e b y ( 6 0 )  n 1 y - + r , i t f o l l o w s t h a t ? 1  = ( z - + r ) - +
(a -+ r)  = tr  -+ (y -+ r)  = |  =72.

Thus, (i) hoids and consequently Mr@Mzis aBCK latiice.
r Finally, we must prove that the condition (P) is satisfied, i.e. for all r,y e MrU M2, there exists

r  O Y  =  m i n { z  I  r  1 Y  - +  z ) '

Indeed, we get that
(  * r t . " ,  i f  r , y € M ;

r o u = 1 * " ' " '- v Y -  
[  r ,  i f  r € . M 1 \ { 1 t } , U € M z ,

or, equivalently, since for any h € Mr\ {1t}, we have 11 O Ly = vr,

-  ^ . _ l r O r a ,  i f  r , y € M i , i e  { I , 2 1* u e - \  r ,  i f  r € M 1 \ { 1 t } , A e M z \ i 0 r } ,
or, equivalently, since O is commutative,

(  r o t . a ,  i f  r , y  €  M 6 ,  i '  e  { 1 , 2 1
r O y = \  r ,  i f  n e M t \ { 1 t } , y e M 2 \ { 0 y )

I  u ,  i f  r € M 2 \ { 0 r } , a e M r \ { 1 t } ,

i.e. we have the following table:
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r o 0 = 0 r  A t 1 r = 0 2 A z  I = I z
0 = 0 r

;,

0

0

0

4 OrUr

0

;,

0

;,

0

;,

1 t  : 0 2 0 Ut 0z 0z 1 r = 0 2

& z

L :  I z

:
0z

Uz

r2

Mt@ Mz

D

Remark 4.4 The ordinal sum is not commutative, but it is associative, by definition of --+.

Theorem 4.5 If the BCK(P) lattices Mt ond Mz both satisfy the condition (82), then Mt@ M2 also
satisfies (82).

Proof.
Obvious, if we consider instead of (82), the equivalent cancellative condition (C"). D

Theorem 4.6 A the BCK(P) lottices Mt ond Mz both satisfy the condition (BS), then:
(i) if Mr is linearly ord,ered (o choin), then Mr@M, also satisfies (BS);
(ii) if Mr is not linearly ordered, then Mr@M, does not satisfy (BS).

Proof.
Obvious.
(i) is obvious, since in this case, above the principal diagonal of the table of -+ we have always 1 and

thus (83) holds.
(ii) Since Mt is not linearly ordered, there are a,b € M1\ {0 = 01,11 = 02} such that they are

incomparable, but since .A4r satisfies (B3), we have (a -+ b) V (b -+ a) = \ I | = Lz. Thus, (B3) is not
satisfied. n

Corollary 4.7 If the BCK(P) lattices Mr and Mz both satisfy both conditions (82) and, (BS), then:
(i,) if Mt is linearly ordered (a chain), then Mt@M, also satisfies (82) and (83);
(ii,) i,f Mr is not linearly ordered, then Mr@M, sat'isfies (82), but does not sati,sfy (BS), i,.e. does not
satisfy (Cy).

Proof.
Obvious, by the previous two Theorems.

Remarks 4.8
(i) Any MV, G6del or Product algebra is a BL algebra.
(ii) The ordinal sum "liniar BL algebra O BL algebra " is a BL algebra, by Corollary 4.7.
(iii) The ordinal sum "non-liniar BL algebra O BL algebra " is a divisible BCK(P) lattice, by Corollary

4 .7 .
(iv) The ordinal sum "linearly ordered G6del algebra @ G6del algebra " is a G6del algebra, by (ii).
(v) The ordinal sum "non-linearly ordered G6del algebra @ G6del algebra " is a divisible BCK(P)

Iattice of G6del type, bY (iii).
(vi) The ordinal sum of two BCK(P) Iattices with condition (DN) is no more a BCK(P) lattice with

condition (DN), by the definition of the ordinal sum. Consequently, the ordinal sum "MV algebra O MV
algebra " is never an MV algebra (there is 1r :02 such that (1i)- = 0i = 1 I 1r).

(vii) Note that the ordinal sum M1OM, ptuturves (Ca) and if M1 is non-linearly ordered, then it
does not preserves (Cv).
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