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Abstract

In this paper we study the BCK algebras and their particular classes: the BCK(P) (residuated)
lattices, the Hajek(P) (BL) algebras and the Wajsberg (MV) algebras, we introduce new classes of
BCK(P) lattices, we establish hierarchies and we give many examples. The paper has five parts.

In the first part, the most important part, we decompose the divisibility and the pre-linearity
conditions from the definition of a BL algebra into four new conditions (C), (Cv), (Ca) and (Cx).
We study the additional conditions (WNM) (weak nilpotent minimum) and (DN) (double negation) on
a BCK(P) lattice. We introduce the ordinal sum of two BCK(P) lattices and prove in what conditions
we get BL algebras or other structures, more general, or more particular than BL algebras.

In part II, we give examples of some finite bounded BCK algebras. We introduce new general-
izations of BL algebras, named o, 8, v, 4, B, ..., a8 algebras, as BCK(P) lattices (residuated
lattices) verifying one, two, three or four of the conditions (C), (Cv), (Ca) and (Cx). By adding the
conditions (WNM) and (DN) to these classes, we get more classes; among them, we get many gener-
alizations of Wajsberg (MV) algebras and of Ro (NM) algebras. The subclasses of (wn ) Wajsberg
algebras ((wn~myMV algebras) and of (wnn)Héjek algebras ((wnar)BL algebras) are introduced. We
establish connections (hierarchies) between all these new classes and the old classes already pointed
out in Part L.

In part III, we give examples of finite MV and (wn )MV algebras, of Hijek(P) (i.e. BL) algebras
and (wnm)BL algebras and of ayd (i.e. divisible BCK(P) lattices (divisible residuated lattices or
divisible integral, residuated, commutative l-monoids)) and of divisible (w na)BCK(P) lattices.

In part IV, we stress the importance of afy algebras versus af (i.e. MTL) algebras algebras and
of Ro (i.e. NM) algebras versus Wajsberg (i.e. MV) algebras and of (wnym)aBy algebras versus BL
algebras and of ary versus ayd algebras. We give examples of finite IMTL algebras and of (wn wm)IMTL
(i.e. NM) algebras), of a3y algebras and of (w By (Roman) algebras and finally of oy algebras.

In part V, we give other examples of finite BCK(P) lattices, finding examples for the others
remaining an open problem. We make final remarks and formulate final open problems.

Keywords MV algebra, Wajsberg algebra, BCK algebra, BCK(P) lattice, residuated lattice, BL
algebra, Héjek(P) algebra, divisible BCK(P) lattice, a, B8, 7, 8, aB, ..., afyé algebra, MTL algebra,
IMTL algebra, WNM algebra, NM algebra, Ro algebra, (wnm)MV, wna)BL, (wnm) afy, Roman
algebra

1 Introduction

The results of "‘this paper in three parts concern more related algebras and they were found because
we have worked only with ”left” algebras, not with some "left” algebras and other "right” algebras, and



because we have worked only with the implication (—) as primitive operation, not with both implication
and the t-norm (®). To be more explicite, we shall develop the two ideas.

1.1 The first idea: to work only with ”left” algebras

The first idea is related to the two diferent possible definitions of some algebras, as ”left” or as "right”
algebras. For instance, MV algebras (1958) and BCK algebras (1966) were (initially) defined as "right”
algebras, while Wajsberg algebras (1984), residuated lattices (1924) and BL algebras (1994) were (initially)
defined as "left” algebras.

When working simultaneously with different algebras, we claim that is better to choose: ”left”, or
"right”, and then use the appropiate definitions. Otherwise, it is difficult to ”see” the connections between
the algebras and to build examples - of ”ordinal sums”, for examples (see Part II). In this paper, we shall
work only with ”left” algebras.

The notions of ”left” and "right” algebras are connected with the left-continuity of a t-norm and with
the right-continuity of a t-conorm on [0, 1], respectively, and are discussed in detail in [20]. We can also say
that they are connected with the "negative (left)” cone and with the ”positive (right)” cone, respectively,

of an l-group (lattice-ordered group).
Recall that at the beginning, t-norms (triangular norms) and t-conorms were defined on the real

interval [0, 1], namely:

A binary operation @ on the real interval [0,1] is a t-norm iff it is commutative, associative, non-
decreasing (isotone) in the first argument (ie. if z <y, then202 <y O 2, for every z,y,2z € [0,1]),
and hence in the second argument too, and it has 1 as neutral element (i.e. z®1 =z (and consequently,
£ © 0 = 0), for every z € [0,1]).

A binary operation @ on the real interval [0,1] is a t-conorm iff it is commutative, associative, non-
decreasing in the first argument and hence in the second argument too, and it has 0 as neutral element.

We have defined in a natural way, in [38], a t-norm © on a poset (4, >, 1) with greatest element 1 iff
the above mentioned axioms are fulfilled and a t-conorm @ on a poset (A, <,0) with smallest element 0
iff the above mentioned corresponding axioms are fulfilled.

Recall also the following definition: a partially ordered, abelian (i.e. commutative), integral monoid
or a pocim for short is an algebra (4,>,®,1) such that: (4,>,1) is a poset with greatest element 1,
(A,®,1) is an abelian monoid (i.e. ® is commutative, associative and has 1 as neutral element) and ®
is non-decreasing in the first argument (or, ® is compatible with >) and hence in the second argument
too; integral means that the greatest element of the poset (4, >) coincides with the neutral element of the
abelian monoid.

Recal also [38] that the statement: ”@ is a t-norm on the poset (4,>,1) with greatest element 17 is
equivalent with the statement: ”the algebra (4, >,®,1) is a pocim”.

The passage from the (definition of) "right” algebra to its inverse, the "left” algebra, is made by
replacing everywhere the t-conorm @ by the t-norm ©, the co-residuum —g by the residuum —=—p,
("R” comes from "right”, ”L” comes from "left”), by replacing 0 by 1 (and 1 by 0), by replacing the
binary relation < by its inverse relation, >.

The passage from the ”left” algebra to its inverse, the "right” algebra, is made by replacing everywhere
the t-norm © by the t-conorm @, the residuum —=—, by the co-residuum — g, by replacing 1 by 0 (and
0 by 1), by replacing the binary relation > by its inverse relation, <.

We shall denote by a bolded name the class of corresponding algebras.

MYV algebras were introduced in 1958, by C. C. Chang [10], as "right” algebras, as a model of Np-valued
Lukasiewicz logic.

A (right-) MV algebra is an algebra (4,®,,0) of type (2,1,0) satisfying the following axioms (see
[11)): for all z,y,2 € A,

(MVI-R) z® (y® 2) = (zDy) ® 2,

(MV2-R)zdy=yoz,

(MV3-R) z® 0 =z,



(MV4-R) (z7)” ==,
(MV5-R) z® 0~ =0-,
(MV6-R) (z-@dy)" ®y=(y ®z)" dz.

Definition 1.1 A left-MV algebra is an algebra (4,®, 7, 1), of type (2,1,0), satisfying, for all z,y,z € A
[20], [38]:

(MVI-L) 20 (y@2) = (z0y) @z

(MV2-L)zQy=yOu,

(MV3-L) 201 =z,

(MV4-L) ()"

(MV5-L) z © 1_ = 1“

(MV6-L) (z~ Qy)" Qy=(y~ Oz)” Ox.

Let MV denote the class of left-MV algebras.

Remarks 1 2 Recall that in a left-MV algebra A = (4,®, 7, 1) we have the following properties:
NzayY @ oy), 01—, 0-=1
1) (4,A,V,0,1) is a bounded, distributive lattice, where for all z,y € A:
sAY=50(z0yY)" =20 By) =yo o) =y0(y” ©),
tVy=[z"0( 0y ] =0 0y =ydy 0z)=[y 0@y 0z)7]".
2) The binary relation defined by: for allz,y € A: t <y & 20y~ =0 3~ Gy = 1 is the partially
ordered relation of the lattice.
3) For all z,y,2 € A: <y implies 1Oz <y O 2.
4) Forallz€e A, z®z~ =0.
5)Forallz,y,2€ A, 20y<z&y<(z0z7) &z (yoz7) .
6) Forall y,z € A, max{z |z Qy<z}=(yOz7)".
7) If we define the residuum — by:

d N _
sy (woy) =z @y,

then (4,A,V,®,—,0,1) is a (left-) residuated lattice verifying, for all z,y € A:
TVy= (x—>1)—>y— (zOy )" =2y=(z0y7) 0y ) =yd(z0y),
tAy =200y ) =20 (@—y) =y~ Ve)~ and
(z > y)V(y = z) =1 (e (4,AV,0,-,0,1)is a (left-)BL algebra). Moreover, z =y = (2~ 2rYy~)~
andz wgpy= (" =y ) .

Wajsberg algebras were introduced in 1984, by Font, Rodriguez and Torrens [22], as left-algebras; they
are a model of Ro-valued Lukasiewicz logic too, studied by Wajsberg in 1935 [70].

Definition 1.3 A (left-) Wajsberg algebra is an algebra (A, —=—1,”,1) of type (2,1,0) such that, for
all z,y,z € A:

(W)l —-z=uz,

(W2) (y = 2) 2> [(z = 2) > (y—=2)] =1,

(W3) (z = y) »y=(y >z) >,

(W4) (z= -y~ ) > (y—z)=1

Let W denote the class (or the category) of Wajsberg algebras.

MV algebras and Wajsberg algebras are categorically equivalent (see [22], Theorems 4 and §).

Let = mean ”is an equivalent definition”, = mean ”are categorically equivalent” and = mean
duplicate name” through this paper.

Then, we shall write: W = MV.

)}
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Residuated lattices, the algebraic counterpart of logics without contraction rule, have been investigated
(cf. Kowalski-Ono [52] ) by Krull [53], Dilworth [15], Ward and Dilworth [72], Ward [71], Balbes and
Dwinger [4], Pavelka [62] and Idziak [34]. Residuated lattices have been known under many names; they
have been called (cf. [52]) BCK lattices in [34], full BCK-algebras in [60], F'Le-algebras in [61] and
integral, residuated, commutative l-monoids in [33]; some-of those definitions are free of 0. We shall use

the following definition.

Definition 1.4 [52] (see [38])
A (left-) residuated lattice is an algebra A = (4,A,V,®,—,0,1) verifying:
(i) (4,A,V,0,1) is a lattice with first element 0 and last element 1 (under >),
(ii) (A4,®,1) is an abelian (i.e. commutative) monoid,
(RP) forall z,y,z€ A,z <y =2z & 20y <z

Let R-L denote the class (or the category) of residuated lattices.

* % ok

BL algebras were introduced in 1994 by Petr Hajek [29], [30], [31]. The starting point in defining and
studying Basic Logic and BL algebras were the algebras of the form ([0, 1], min, max, ©, —=,0, 1), where ®
is a a continuous t-norm on [0, 1] and — is the associated residuum; these algebras are called standard BL

algebras.
The most important continuous t-norms on [0, 1] are the following three: Lukasiewicz t-norm, Product
t-norm, Godel t-norm. These three t-norms have the following associated residua:
(1) Lukasiewicz:
B 1, ifz<y _ . .
rOpy=max(0,z+y—1), z-,y= { | —zty ifz>y =min(l,1 -z +y);

(2) Product (Gaines):

B B 1, ifz<y R
TOpy=1zy, T—pyY= { pjz, Ea=g, (Goguen implication)

(3) Godel (Brouwer):

1, ifz<y

g ifz>y, (Godel implication).

z O¢ y = min(z,y), x—my:{

The three t-norms and their associated residua correspond to the most significant fuzzy logics: Lukasiewicz
logic, Product logic and Gédel logic, respectively. The MV algebras, the Product algebras and the Godel
algebras constitute the algebraic models for these three types of logics.

The class of BL algebras contains the MV algebras [10], [11], the Product algebras [32], [55], [30] and

the Godel algebras [30].

Definition 1.5 A (left-) BL algebra [30] is an algebra A = (4,A,V,®,—,0,1) such that:
(B1) A is a residuated lattice,
(B2) t Ay =20 (z = y) (divisibility),
(B3) (x = y)V(y = 2z)=1 (pre-linearity).

Let BL denote the class (or the category) of BL algebras.
A (left-) BL algebra is a left-MV algebra iff it satisfies the condition (DN) (double negation): for all =,

(z7)” ==,
where 2= =z — 0 [30].

The standard left-MV algebra, is the (left-) BL algebra ([0, 1], min, max, ®,, —,0,1) determined by
the above Lukasiewicz t-norm.



Definition 1.6
A (left-) Product algebra [30] is a BL algebra A which fulfills the following two conditions: for every

z,y,2 € A:
(Pl) zAnz™ =0,

(P2) (27)" O(z02) > (y©2)) <z —y.

The standard Product algebra is the BL algebra ([0, 1], min, max, ®p, —p,0,1) determined by the

above Product t-norm.
A BL algebra which fulfills the condition (P1) is usually called a SBL algebra.

Let us name as SSBL algebra the BL algebra fulfilling the condition (P2).
Let Product, SBL, SSBL denote the classes of Product algebras, SBL and SSBL algebras, respec-

tively.
Definition 1.7

A (left-) Gédel algebra [30] is a BL algebra A which fulfills the condition (G) ( idempotent multiplica-
tion): for each z € A,

G)zoz =1
Let Godel denote the class of Godel algebras.
The standard Gédel algebra is the BL algebra ([0, 1], min, max, ©g, —¢, 0, 1) determined by the above

Godel t-norm.
Recall now the following definitions of two particular cases of residuated lattices and in the same time

generalizations of BL algebras:
A weak-BL algebra [20] (or a weak-Hajek(P) algebra, more pedantically) is a residuated lattice sat-

isfying the condition (B3) (a duplicate name in the literature for weak-BL algebras is "MTL (Monoidal

t-norm based) algebras” [18]).
Let MTL denote the class of MTL algebras.
A divisible BCK(P) lattice (see [33]) is a BCK(P) lattice (residuated lattice) satisfying the condition

(B2).
Let us recall (see [18]) that:

(1) a WNM (Weak Nilpotent Minimum) algebra is a MTL algebra satisfying the additional axiom:

(WNM) (zoy)~ViEAy) - (zoy)] =1

(2) an IMTL algebra (Involutive Monoidal t-norm based Logic) is a MTL algebra satisfying the condi-
tion (DN);

(3) a NM (Nilpotent Minimum) algebra is an IMTL algebra satisfying the axiom (WNM) (or a WNM
algebra satisfying the condition (DN) (double negation)),

where, given a weak negation "n” (i.e. # < n(n(z))) on [0,1] and the t-norm "©,” and the implica-
tion ”—,” defined as follows on [0, 1]:

1, ifz<y

0, ifz<n(y)
max(n(z),y), ifz >y,

TOnY = { min(z,y), otherwise,
then Oy is a left-continuous t-norm, with n(z) = 2 =y 0, and ([0, 1], min, max, ®,, —+,,0, 1) is a stan-
dard WNM algebra, for each weak negation n,

o=



while given a strong (involutive) negation "n” (i.e.  =n(n(z))) on [0,1] and the Fodor’s t-norm
"®p” and implication ” —p”t-norm ”© 7" defined as follows on [0, 1] [21]:

N 0, fz<nly), L . _ 1, fz<y
TOFY =1 min(z,y), otherwise FY=1 max(n(z),y), ifz>y,

then @p is left-continuous also, with n(z) = z — 0, and ([0, 1], min, max, Or, = r,0, 1) is a standard
NM algebra, for each strong negation n.

Remark 1.8 When working with BCK(P) algebras, residuated lattices, BL algebras etc. we start with
the implication — and 0,1, or with the implication —, with the t-norm ® and 0,1, and we define the
negation ~ as £~ = z — 0, which is weak (i.e. x < (z7)7), and we see what happens when the negation
is strong (or involutive, or satisfies the double negation condition (DN)) (i.e. z = (z7)7). In [21],
Fodor starts with a strong negation n and with the t-norm ©p and defines the implication —p, which
verifies n(z) = = = 0. In [18], Fodor’s implication is generalized, by starting with a weak negation.

Remark 1.9 We shall stress in this paper, especially in Part II and Part III, the importance of NM
algebras; we shall prove that the class of Wajsberg (MV) algebras and the class of NM algebras are

incomparable (with respect to set inclusion).

Let WNM, IMTL, NM denote the classes of WNM algebras, IMTL algebras, NM algebras, respec-
tively. Then we have:

NM = IMTL + (WNM) = WNM + (DN).

Remark 1.10 We shall generalize, by following up the condition (WNM) in all BCK(P) lattices (resid-
uated lattices). We shall call BCK(P) lattices satisfying the condition (WNM) as a ”wnumBCK(P)”

lattices.

Recall also [63] that the IMTL algebras, introduced in 2001 by Esteva and Godo [18], are categorically
equivalent with ”weak-Ro” algebras, introduced in 1997 by G.J. Wang [73] and that NM algebras are
categorically equivalent with Ro algebras, introduced also in 1997 by G.J. Wang [73]:

Definition 1.11 [63]

(1) A weak-Ry algebra or, a W Ry for short is an algebra M = (M, A, V,—,,1) of order type (2,2,2,1,0),
such that:

e (M,A,V,0,1) is a bounded distributive lattice, < being the order relation,
e "7 is an order reversing involution with respect to <,
e the following conditions hold: for all z,y,z € M,
(R) 2z~ =y~ =y =z,
(R2) 1 vz ==, :
R3)y = 2< (z 2 y) = (2= 2),
R4)z = (y—2) =y~ (z—2),
R5)z = (yVz)=(z—=y)V(z—2).

(2) An Rq-algebra, or Ry for short is a weak Ro-algebra verifying the additional condition (R6):
(R6) (z =)V ((z = y) = (7 Vy)) = 1.

Let weak Ro and Rg denote the classes of weak Ry algebras and Ry algebras, respectively.

Remark 1.12
The conditions (R6) and (WNM) are not equivalent in an IMTL algebra A which is not an NM algebra,

in the following sense: if there are a,b € A such that (R6) is not verified, it is possible that (WNM) be
verified by those a, b, and vice-versa, as you can see in the examples of IMTL algebras from the Part IV.



1.2 The second idea: to work only with the implication

The second idees, is related to the similarity type of algebras. In many algebras connected with logics
(residuated lattices, BL algebras, MV algebras, Wajsberg algebras, BCK algebras etc. ) we have two
adjoint operations: the implication (residuum) (—) and the product (t-norm) (®). As it was largely
developed in the survey-paper [38], there are two main ways of studying these algebras:

(1) either to start only with the residuum — as primitive operation (i.e. to start with the BCK algebra),
and then its associated (derived) t-norm ® is defined, whenever it exists, by the condition:

notation

P)zoy min{z |z <y — z}, for all z,y,
or, alternatively, to start with both — and ® (in this order), verifying then the condition:
(RP)z 0y <z<=z<y—zforalz,y,z,
as very seldom is the case (see the definitions of BCK algebras, BCK lattices, Wajsberg algebras
etc.), or
(2) either to start only with the t-norm ® as primitive operation (i.e. to start with the monoid), and
then its asociated (derived) residuum — is defined, whenever it exists, by the condition:
R)y — = max{z | z @y < z}, for all y, 2,
or, alternatively, to start with both ® and — (in this order), verifying then the condition:

notation

(PR)z<y—2<=2>z0y<zforalzy,z
as very often is the case (see the definitions of monoids, pocrims, residuated lattices, BL algebras,
MYV algebras etc.).

We claim that it is better to start in the first way, namely to start with —, alone, since — is more
closed to logic than ©® and the properties are more accessible. This implies to study ”the deductive
systems”, not "the filters” of such defined algebras. Look for instance at the two conditions, divisibility
(zAy =20 (z— y)) and pre-linearity ((z = y) V (y = =) = 1), which appear in the definition of a BL
algebra; if the divisibility can be expressed in a nice way either only by means of © (see [33] Lemma 2.5)
or only by means of —+ (see Theorem 3.1), the pre-linearity cannot.

Thus, there are four (two plus two) different types of similarity for a "left” algebra of logic and usually
one, maximum two, among the four different types are used in the literature, for each algebra.

For example, the five algebras: the reversed left-BCK(P) algebras (r-BCK(P)), the pocrims, the re-
versed left-BCK(P) lattices (r-BCK(P)-L), the residuated lattices (R-L) and the BL algebras determine
a table (matrix) with 4 columns and 3 rows, where only five cells are filled. In [38] we have introduced
the “missing” algebras, we have put them in the empty cells and it was proved that the algebras of the
four different types of similarity (i.e. the algebras on the same row in the four colums) are categorically
equivalent; the only problem is the problem of "names” for the four equivalent algebras. The complete
table of all 12 = 4 x 3 algebras is presented in Figure 1, where the initial five algebras are marked by
a bullet. Since the 12 algebras are (direct or indirect) generalizations (ascendents) of Wajsberg (MV)
algebras, we have added a fourth row to the table, the row of Wajsberg and MV algebras, with completion
of two columns - following the usual definitions - and whithout completion of two other columns.

Note that we shall use the following ”signs” between categories of left algebras: the sign ”=" will mean
duplicate names, the sign ” =” will mean equivalent definitions, while the sign ”72” will mean that the
corresponding categories are equivalent. Thus, between categories of algebras of the same line in the table
from Figure 1 we must use the sign =; for example, bounded, commutative reversed left-BCK lattices =
Wajsberg algebras, while X-Héjek(RP) algebras = BL algebras.

Recall that the axioms appearing in the table from Figure 1 are the following [38]:
(A1) = (X1) (A,>,1) is a poset with greatest element 1,

(A2) (A, —,1) verifies: for all z,y,2, (R1) 1 = z ==z, (R2) (y = 2) = [(z = 2) = (y = )] =1,
(A3 z vy=14=z<yforalzy,

(Ad) z <y=>z—z<z-ryforalzy,z,

(A5) (x = y) 2y =(y = z) =z, foralzy,



The world of left-algebras

The general world of —, 1

The general world of ®, 1

The world of
—, 1
(direct ascend. of W)

The world of
=+, 0,1
indirect ascend. of W

The world of
o, 1
(indirect asc. of MV)

The world of
o, 1
(direct asc. of MV)

r-BCK (P) r-BCK(RP) X-BCK(RP) X-BCK(R)
= pocrim
(4,>,,1) (4,>,-,0,1) (4,>,0,-,1) (4,>,0,1)
(A1),(A2),(A3),(A4),| (A1), (A2), (A3), (A1), (X2), (A1), (X2), (X3),
(P) (RP) (RP) (R)
r-BCK(P)-L r-BCK(RP)-L X-BCK(RP)-L X-BCK(R)-L
= R-L = X-R-L
(A A, V,—,0,1) (A,A,V,—=,0,0,1) (A,A,V,0,-,0,1) (A,A,V,0,0,1)
(B1),(A2),(A3),(A4), | (B1), (A2), (A3), (B1), (X2), (B1), (X2), (X3),
(P) (RP) (RP) (R)
r-Ha(P) f-Ha(RP) ‘X-Ha(RP)= BL X-Ha(R)= X-BL
(A,A,V,—,0,1) (A,A,V,—,0,0,1) (4,A,V,0,-,0,1) (A,A\,V,0,0,1)
(B1),(A2),(A3),(A4), | (B1), (A2), (A3), (B1), (X2), (B1), (X2), (X3),
(P) (RP), (RP), (R),
(B2),(B3) (B2), (B3) (B2),(B3) (B2), (B3)
w MV
(4,—=,7,1) (4,0,7,1)

(A2), (Ab), (A6)

X2), (DN), (X4), (X6

Figure 1: The table with four columns corresponding to the four different similarity types of algebras




A6) (z~ 2 y) = (y = z) = 1. (X2) (4,0,1) is an abelian (ie. commutative) left-monoid,
X3)z<y=>z0z<y0Oz, forevery z,y,2,
X4)z© 1™ =17, for all z,

X5) (z” @y)" @y =(y" ©z)” &7, forallz,y,

D

N) 2~} =, for all z;
nota:tion

R) there exists y — z notation max{z | z Oy < z}, for all y, 2,
RP)= (PR)z0y<z<=z <y zforaluzy,z,

B1) (4, A,V,0,1) is a bounded lattice,

B2) zAy =20 (z —y), for all z,y,

B3) (z = y)V(y =) =1, for all z,y.

Consequently, in this paper we shall start with —, i.e. we shall work with reversed left-BCK alge-
bras, reversed left-BCK(P) algebras, reversed left-BCK(P) lattices, reversed left-Hajek(P) algebras and
Wajsberg algebras (see the algebras from the first column of the table from Figure 1). Note that we
shall sometimes use the more usued names, "MV algebras” and "BL algebras”, rather than ”Wajsberg
algebras” and "reversed left-Héjek(P) algebras” respectively.

Following these comments, weak Ro-algebras and Rop-algebras ”go with” H&jek(P) algebras and with
Wajsberg algebras in column 1 of the table from Figure 1, while IMTL algebras and NM algebras ”go
with” BL algebras, in the 374 column of that table. Consequently, we should normally refer to ”weak
Ry-algebras, Ro-algebras, axiom (R6), Hajek(P) algebras and Wajsberg algebras”, but sometimes we shall
refer to ”IMTL algebras, NM algebras, axiom (WNM), BL algebras and even MV algebras (from the 4tk

column)” too.

(
(
(
(
(
(P) there exists z @y min{z |z <y — z}, for all z,y,
(
(
(
(
(

* %k

The motivation of this paper was the following: trying to answer to the open problem 3.12 (3.35) from
[38]: "find an example of reversed left-BCK(P) lattice with condition (DN) which is not with condition
(C)”, i.e. which is not a Wajsberg (MV) algebra, we found more examples; thus, a new problem arised:
which is the difference between them? Thus, we arrived to decompose the divisibility and pre-linearity

conditions in other conditions and so on.

The paper has five parts and twenty sections.
Part I is the main part of the whole paper and has 4 Sections . In Section 2, we recall the properties

of reversed left-Hajek (BL) algebras by showing where they come from: most of the properties are coming
from the basic BCK algebra and from the condition (P), some are coming from the lattice condition and
very few from the two conditions, divisibility ( (B2)) and pre-linearity ((B3)). In Section 3 we decompose
the two conditions (B2) and (B3) into four conditions: (C,), (Cv), (Ca), (Cx). This is the main result
of this part. In Section 4 we define the ordinal sum of two BCK(P) lattices and prove that it is a BCK(P)
Jattice (Theorem 5.2).

Part II has two sections. In Section 5, we give examples of some finite bounded BCK algebras. In
Section 6, we In Section 14, we introduce new generalizations of Hajek(P) (BL) algebras, named o, B, 7,
8, aB, ..., afys algebras, as BCK(P) lattices (residuated lattices) verifying one, two, three or four of the
conditions (C,), (Cv), (Ca), (Cx) found in Part I. We make the connections with MTL algebras (18] and
with divisible integral, residuated, commutative l-monoids (33]. By adding the conditions (WNM) and
(DN) to these classes, we get more classes: of (wnm)« algebras, a(pny algebras, (wnm)Q(DN) algebras
etc. Thus, we get generalizations of BL and (w na)BL algebras, and of Wajsberg (MV) algebras and of
NR, algebras. We establish connections (hierarchies) between all these new classes and the old classes
already pointed out in Part I and Part II. We make the connections with MTL, WNM, IMTL and NM
algebras [18], [21] and with Ro [73], [63] and NRo algebras [54].

Part III has seven sections. In Section 7 we give examples of finite Wajsberg (MV) algebras, useful in
the next sections. In Section 8 we give examples of finite linearly ordered reversed left-Héjek algebras (BL
algebras) which are not Wajsberg (MV ) algebras. In Section 9 we give examples of finite non-linearly
ordered reversed left-Hajek algebras (BL) algebras which are not Wajsberg (MV ) algebras. In Section
10 we give examples of infinite proper BL algebras, obtained as ordinal sums of two product algebras. In



Section 11 we give examples of finite divisible reversed left-BCK (P) lattices (divisible residuated lattices).
In Section 12 we give an example of infinite proper divisible reversed left-BCK (P) lattice, as an ordinal

sum of two product algebras. In Section 13 we present two open problems.
Part IV has four sections. In Section 14, we give examples of proper IMTL algebras and of NM

algebras. In Section 15, we give examples of proper afy and of (wnyaBy algebras. In Section 16, we
give examples of proper ay and of (w a0y algebras. In Section 17, we formulate some remarks and
open problems.

Part V has three parts. In Section 18, we give other finite examples of generalizations of Wajsberg
(MV) algebras and (w ) Wajsberg ((wnMmyMV) algebras. In Section 19, we give other finite examples
of generalizations of Hajek(P) (BL) algebras and (w nar)Hajek(P) ((wnum)BL) algebras. In Section 20, we

give final remarks and open problems.
We assume the reader is familiar with [38], but the paper is self-contained as much as possible.

The old, already known results, are presented without proof.

2 Classes of BCK algebras

In this section we stress the fact that a Hajek (BL) algebra is a BCK algebra and we divide the
properties of a BL algebra in three groups: those coming from the fact that it is a BCK algebra, those
coming from the fact that it is a residuated lattices and finally those coming from the two conditions (B2)
and (B3). Most of the results are old. The new most important results are Theorem 2.34, Propositions

2.39, 2.40, Theorems 2.41 and 2.42.

2.1 BCK algebras, reversed left-BCK(P) algebras (pocrims)

BCK algebras were introduced in 1966 by Kiyoshi Iséki as "right” algebras, starting from the systems of
positive implicational calculus, weak positive implicational calculus by A. Church and BCI, BCK-systems

by C.A. Meredith (cf. [49]):
A (right-) BCK algebra [49] is an algebra

'/4 = (A7 S’*’ 0)7

where < is a binary relation on A, % is a binary operation on A and 0 is an element of A, verifying the

following axioms: for all z,y,z € A,

(IR) (%) * (@ % 2) < 2 %3,

(ILR) zx (z*y) <y,

(IILR) z < z,

(IV-R) 0 < =,

(V-R)z <y, y<z=z =y,

(VIR) z <y <= z*xy =0,

or, equivalently, (see [28]) an algebra (4,*,0) of type (2,0) satisfying the following axioms: for all
z,y,2 € A,

(BCK-1-R) [(z *y) * (z* 2)] * (zxy) =0,

(BCK-2-R) z x0 = z,

(BCK-3-R) 0%z = 0,

(BCK-4-R) zxy =0 and y*xz =0 imply z = y.

The left-BCK algebra is obtained by replacing the relation < with the inverse relation, >, * with O
and 0 with 1, as follows.

A left-BCK algebra is an algebra,
’ A:(Av21|jal)7

where > is a binary relation on A, O is a binary operation on A and 1 is an element of A, verifying, for
all z,y,2z € A, the axioms:

10



(I-L) (20y)0(e0z) > 20y,

(ILL) o0(x0y) > 3,

(III-L) z > =,

(IV-L) 1 > =z,

(V-L)z >y, y>z =z =y,

(VIL) ¢ > y ¢= o0y = 1.

or, equivalently, is an algebra (4,0, 1) of type (2,0) verifying the axioms corresponding to (BCK-1-R)
- (BCK-4-R).

The reversed left-BCK algebra is obtained by reversing the operation O, i.e. by replacing zOy by
y =+ x =y =y z, for all z,y. We need to reverse the left-BCK algebra in order to arrive to the
implication —, which appears in BL algebras.

Definition 2.1 A reversed left-BCK algebra is an algebra
A = (A’ Z) _)) 1)7

where > is a binary relation on A, — is a binary operation on A and 1 is an element of A, verifying, the
axioms: for all z,y,z € A,
M (z>2)=@y>2)>y— 2
) (y »z) 2>z >y,
(II1) z > z,
(IV) 1 >z,
Vyz>y, y>z=z =4y,
(V)z>y<—=y—z=1,

or, equivalently,
Definition 2.2 A reversed left-BCK algebra is an algebra
(4,-,1)

of type (2,0) verifying the axioms: for all z,y,z € A,
(BCK-1) (y = 2) = [(z = z) = (y = 2)] =1,
(BCK-2) 1 —» z ==,

(BCK-3) z —» 1 =1,
(BCK4)y—+x—1anda:—)y 1 imply z = y.
We shall freely write 2 > y or y < z in the sequel.

Proposition 2.3 (see [{9] )
The following properties hold in a reversed left—BCK algebra:

r<y=>y—>z<x -2, (1)
<y, y<z=>z<z (2)
2z y—z)=y—= (2= 2), (3)
z<y—-zrey<z—z, (4)
RS TEF (5)

1o z=u, (6)
z<y=>zoz<z-oy. (7)

Recall that ”>" is a partial order relation and that (A4,>,1) is a poset (partial ordered set) with
greatest element 1.

11



Theorem 2.4 [38]
i) Let A= (A, >,—,1) such that:

(A1) (A, >,1) is a poset with greatest element 1;
(A2) (A, —, 1) verifies: for all x,y,z € A,

(R1)1 sz =gz,

(R2) (y 2 2)—=[(z—2)> y—2))=1;
(A3) z v y=1<=x <y, forall z,y € A;
(Ad) e <y=>z—-oz<z-y, foralzyz€ A

Then, A is o reversed left-BCK algebra.
i) Conversely, every reversed left-BCK algebra satisfies (A1) - (A4).

By this theorem we’ve got the following equivalent definition of reversed left-BCK algebras:

Definition 2.5 [38]
A reversed left-BCK algebra is an algebra A = (A, >, —, 1) such that the above (A1) - (A4) hold.

* Xk ok

Definition 2.6 [38]
A reversed left-BCK algebra with condition (P) (i.e. with product) or a reversed left-BCK(P) algebra

for short, is a reversed left-BCK algebra A = (A, >, —, 1) satisfying the condition (P):
(P) there exists, for allz,y € A, 2Oy notation min{z | z <y — z}.

Proposition 2.7 (see [38], Theorem 2.18) Let A be a reversed left-BCK(P) algebra, where

notation

TQy min{z |z <y — z}.

Then, the condition (RP) holds:
(RP)z0Qy<z<=ax<y—z foraluzy,z.

Proposition 2.8 [43] Let us consider the reversed left-BCK(P) algebra A = (A,>,—,1), where

z @y " min{z |z <y = z}.
Then, for all x,y,z € A:

zOy<zZ,Y (8)
zO(z—y)<a,y (9)
- y<z o (z0y) (10)
z2y<(z0z)— (yo2), (11)
(y—=2z)0z<y—(202). (12)
(y—=2)0@ -y <z 2z (13)
z=y—=2)=(x0y) — 2, (14)
2=z <(y—=2)—(y—az), (15)
(z02) = (yoz)<z— (2 >y). (16)
z=y<(z0z) 2> Yoz <z (z—oy), (17)
x> (zAy) =2 =y, _ (18)
<y = z0z<y0z (19)

12



Proposition 2.9 [38] Let A= (A,>,—,1) be a left--BCK(P) algebra, where for all z,y € A:

notation

zOY min{z |z <y — z}.

Then the algebra (A, >,®,1) is a partially ordered, abelian (i.e. commutative), integral (left-) monoid, or,
equivalently, the operation © is a t-norm on the poset (A, >, 1) with greatest element 1.

Reversed left-BCK(P) algebras are categorically equivalent with pocrims (partially ordered, commu-
tative, residuated, integral monoids) [38].

* % ok

Definition 2.10 [49]
If there is an element, 0, of a reversed left-BCK algebra A = (A4, >, —,1), satisfying 0 < z (i.e.

0—z=1),forall z € A, then 0 is called the zero of A.
A reversed left-BCK algebra with zero is called to be bounded and it is denoted by: (4,>,—,0,1).

Proposition 2.11 [{3] Let us consider the bounded reversed left-BCK(P) algebra A = (A,>,—,0,1).
Then, for all z,y,z € A:

00z(=z60)=0. (20)

Let A = (A,>,—,0,1) be a bounded reversed left-BCK algebra. Define, for all 2 € A, a negation —,

by [49]: for all x € A,
e 0. (21)

Proposition 2.12 In a bounded reversed left-BCK algebra A the following properties hold, for all z,y € A

[49]:
1= =0,0" =1, (22)
z<(z7)7, (23)
zy<y —z, (24)
z<y=y <z, (25)
y—orz =2y, (26)
(z7)7)" =27, (27)

Remarks 2.13
(1) The negation ~ defined by 21 depends on — and 0.

(2) The negation ~ is a weak negation, by (23).

Definition 2.14 [38]
If a bounded reversed left-BCK algebra A = (A4, >, —,0,1) verifies, for every z € A:

(7)) ==,
then we shall say that A is with condition (DN) (double negation).
Remark 2.15 If A is with condition (DN), then the negation ~ is a strong one.
Lemma 2.16 Let A be a bounded reversed left-BCK algebra with condition (DN). Then, for all x,y € A
(see [49]):
(28)

r<y<ey <z,
rToy=y —ax, (29)

yT =1 —y. (30)

13



Remark 2.17 The property (29) of — is called ”the contrapositive symmetry with respect to the strong
negation” in [21].

Theorem 2.18 [38] Let A = (A, >,—,0,1) be a bounded reversed left-BCK algebra with condition (DN).
Then A is with condition (P) and, for all x,y € A, we have:

2Oy " min{z e <y zl=(@-y)", (31)

r=y=(0oy’)". (32)

Theorem 2.19 Let A = (A,>,—,0,1) be a bounded reversed left-BCK algebra with condition (DN).
Then, for all x,y,z € A, the condition (P2) from Definition 1.6 is satisfied, where:

(P2) (z7)" 0[(z02) = (yo2) <z =y

Proof.
By preceeding Theorem, A is with condition (P) and z @y = (z — y~)~.

Then, (P2) becomes:
of®

(7)) 0lz0z) = (yor) <z oy TES
(202) > (y02)] 0z <z -y L
(z02) = (yo2)]<z—= (z—y).

But,

(z02) 3 (yo2)=(—22")" 2 (y—=27)” (29 (y—=27)> (z—27) W
() =)= (@) =22 )R o) 2 =) L s eoy) = 2]
Thus, we must prove that
z=o(z=yT) =27 <z (z—y). (33)

But, by (5), y~ <2z — y~. Hence, by (1),
(z—oy )=z <y =z~ (2:9):1:—>y. (34)

From (34), by (7), we get (33).
Proposition 2.20 Let A be a bounded reversed left-BCK(P) algebra. Then,

zOz” =0.
Proof.
_ _ (RP) _ R A
Oz =020 <0 & z<z” — 0= (z7)", which is true. O
***’

In a reversed left-BCK algebra A we define, for all z,y € A (see [49]):
:L"Vydéf (x=y) —y. (35)
Proposition 2.21 Let A be a bounded reversed left-BCK algebra, Then, for all x € A (see [{9]):
OV ZE=u, (36)
V0= (z7)". (37)

Definition 2.22 If x Vy = y V z, for all z,y € A, then the reversed left-BCK algebra A is called to be
commautative (see [49]) or, better, V-commutative [38].

14



Lemma 2.23 (see [{9]) A reversed left-BCK algebra is (V-) commutative iff it is a semilattice with respect
toV (under >).

Corollary 2.24 (see [{9]) Let A be a bounded, (V-) commutative reversed left-BCK algebra. Then, A is
with condition (DN).

In a bounded, (V-) commutative reversed left-BCK algebra A, define, for all z, y € A (see [49]):
x/\ydéf (= vy ) . (38)

Proposition 2.25 (see [49]) If a reversed left-BCK algebra is bounded and (V-) commutative, then it is
a lattice with respect to V, A (under >).

The bounded, (V-)commutative reversed left-BCK (left-BCK(P)) algebra is an equivalent definition of
Wajsberg algebra [58] (see [38]).

From now on we shall simply say ”BCK algebra (BCK(P) algebra)”, instead of "reversed left-BCK
algebra (reversed left-BCK(P) algebra)” .

2.2 BCK(P) lattices (residuated lattices)

Note that we consider the case when the lattices are bounded (i.e. with greatest element 1, but with
smallest element 0 also, under >), in order to be able to define a negation. The more general case, when
there is no 0, is already considered in the literature when speaking about reversed left-BCK(P) lattices
(they are called "BCK-lattices with condition (S)” in [34]; note that it should be (P) instead of (S) in

that paper).

Definition 2.26 (see [38])
(1) Let A = (A,>,—,0,1) be a bounded BCK algebra. If the poset (A4,>) is a lattice, then we shall

say that A is a reversed left-BCK lattice.
(2) Let A= (A4,>,—,0,1) be a bounded BCK(P) algebra, where for all z,y € A:

notation

TOY min{z |z <y — z}.
If the poset (A, >) is a lattice, then we shall say that A is a reversed left-BCK(P) lattice.

From now on we shall simply say "BCK(P) lattice”, instead of "reversed left-BCK(P) lattice”.
Denote by BCK(P)-L the class of BCK(P) lattices.
A BCK lattice (BCK(P) lattice) will be denoted:

A=(A,AV,—,0,1).

BCK(P) lattices are categorically equivalent with residuated lattices [38].
We write: ~ BCK(P)-L = R-L.

Proposition 2.27 Let A be a BCK(P) lattice. Then the following properties hold, for all z,y,z € A [52)]:

if VZ exists, thenxOVZ =V{z©z|z€ Z}, (39)
if VZ exists, then VZ sz =ANz—-z|z€Z}, (40)
if NZ exists, thenx = ANZ =Nz — 2|z € Z}, (41)
y—z=max{z|z0y < z}. (42)
Proposition 2.28 Let A be a BCK(P) lattice. Then we have [38]:
2O =y <zAy. (43)'
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Proposition 2.29 In a BCK(P) lattice we have the properties [38]:

(zVy) =z~ Ay, (44)
T Vy < (zAy)T, (45)
Ty =Yooz~ (46)

We say that a BCK(P) lattice A = (4,A,V,—,0,1) is with condition (C) if, for all z,y € A [38],
zVy=(x—=y) >y

In what follows we shall concentrate on some important subclasses of BCK (P) lattices: those satisfying
the condition (DN), those satisfying the condition (WNM) and those satisfying the condition (G).
We say that a BCK(P) lattice A is with condition (DN) or a BCK(P)(py) lattice, for short, if the

associated bounded reversed left-BCK(P) algebra is with condition (DN) [38].
Note that BCK(P) lattices with condition (DN) are categorically equivalent with residuated lattices

with condition (DN), also named ”Girard monoids” [33].

Corollary 2.30 [38] Let A= (A,A,V,—,0,1) be a BCK(P) lattice with condition (C). Then A is a with
condition (DN).

Theorem 2.31 [38] The BCK(P) lattice with condition (C) is an equivalent definition of Wagjsberg alge-
bra.

Proposition 2.32 Let A be a BCK(P)pyy lattice. Then we have [38]:
(zAy)” =2~ Vy~, (47)
zAy=(x"Vy ) . (48)
Theorem 2.33 Let A = (A, >,—,0,1) be a BCK(P)pyy lattice. Then, for all z,y € A, we have:

notation

rOy = min{z|z<y-z}=(->2y7), (49)
r=y=(20y ). (50)
Proof. By Theorem 2.18.
Theorem 2.34 Let A be a BCK(P)pny lattice. Then A satisfies the condition (P2): for all z,y,z € A,
(P2) (27)" 0l(z0z) > (y02)]<z—y.
Proof By Theorem 2.19. o
Proposition 2.35 Let A be a BCK(P)pyy lattice which satisfies the condition (P1): for all z € A,
(P1)z Az~ =0.
Then A is a Boolean algebra.

Proof. If z Az~ =0, it follows that we also haxe:
zVa~ =(z7)"Va~ =(z” Az)” =0~ =1, by Proposition 2.32, hence A is a Boolean algebra. a
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Definition 2.36 We say that a BCK(P) lattice A = (4, A, V, —+,0,1) is a wny BCK(P) lattice if it
satisfies the condition (WNM) (weak nilpotent minimum): for all z,y € A,

(WNM) (z0y)~ V[(zAy) = (z0y) =L

Definition 2.37 We shall say that a BCK(P) lattice is a (wNm)BCK(P) pny lattice if it verifies both
conditions (DN) and (WNM).

Definition 2.38 We say that a BCK(P) lattice A = (4, A, V, —,0, 1) is of Godel type if it satisfies the
condition (G): for all z € A,

(G)zoz =1
Proposition 2.39 Let A be a« BCK(P) lattice of Gédel type. Then, for all z,y € A,
TOY=xANy.
Proof.

By Proposition 2.9, © is commutative and associative. By condition (G), it is also idempotent.
We also have the two absorbtions:
ezV(z0Qy) ==z,sincez Oy < z, by (8).
* 2O (zVy) = z; indeed, 2O (zVy) < z, by (8) and since z < zVy it follows that z = 2O z <zO(zVy),
by (19); thus, z ® (z Vy) = =.
Finally, s <y & 2 © y = z. Indeed,
e 2 <y implies by (19) that z =z ©® 2 < O y; then, by (8), it follows that z ® y = 2.
ez y=(x0y)ry=z—(y—>y)=2—1=1,by (14), hence z <y, by (VI).

Thus,zOy =2 Ay. ]
Proposition 2.40 Let A be a BCK(P) lattice of Gddel type. Then A verifies the condition (P1).
Proof. By Proposition 2.39, we have
TOY=xz ANy
and by Proposition 2.20, we have
B =0,
O

Then,zAz” =20z~ =0.
Theorem 2.41 Let A be a BCK(P) lattice of Gidel type. Then A verifies the condition (WNM) (i.e. it
is a (wn ) BCK(P) lattice) .

Proof.
By Proposition 2.39, z ©y =z Ay, for all z,y € A, hence:

oY) VzAy) 2 @oyl=(0y) V[(zoy) = (z0y)]=(@oy) " vi=1,
by (III), (VI). O
Theorem 2.42 Let A be a BCK(P) lattice verifying the following:

for each z,y € A, such that t ©y # 0, we have T Oy =2z A y.
Then, A is a (wna)BCK(P) lattice.

Proof. For all z,y € A, there are two cases:

(1) @y = 0; then the condition (WNM) is satisfied:
(zoy) V{zAy) = (z0y)]=0"V[(zAy) 20 =1V[(zAy) -0 =1
(2) z ©y # 0; then, by hypothesis,  ©®y = A y; then the condition (WNM) is satisfied:
(oY) VizAy) = (z0y)]=(z0y)" V[z0y) = (z0y)]=@Eoy) " Vi=L
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2.3 Haijek(P) algebras (BL algebras) and related structures

Definition 2.43 [38]
A reversed left-Hdjek(P) algebra is an algebra

A= (4,AV,—,0,1)

such that:
(B1) A is a BCK(P) lattice,
(B2) forallz,ye A, zAy=2z0 (z - y) (divisibility);
(B3) forall 2,y € A, (z —y)V (y = z) =1 (prelinearity).

From now on we shall simply say "Héjek(P) algebra”, instead of "reversed left-Héjek(P) algebra”.
Let Ha(P) denote the class of reversed left-Héjek(P) algebras.
The Hajek(P) algebras are categorically equivalent with BL algebras [38].

We write:  Ha(P) = BL

Consequently, the class of Hajek(P) algebras contain the Wajsberg, the Product and the Gédel algebras.
Proposition 2.44 Let A = (A,A,V,—,0,1) be a Hdjek(P) algebra. Then, L(A) = (A,A,V,0,1) is a
bounded distributive lattice.

Proposition 2.45 Let A be a Hdjek(P) algebra. Then for all x,y € A:
zVy=((z—-y) 2y A(ly—2)—a2).

Proposition 2.46 Let A be a Hdjek(P) algebra satisfying the condition (B3). Then, for all x,y € A,
(xAy)” =z~ Vy .
Proof. By (45), we have the inequality = Vy~ < (zAy)~. It remains to prove the converse inequality:
(zAy)” <2 vy~ (51)
( (24)

Indeed, we have: z — y = - (zAy) < (@Ay)” = 2z~ Hence, by (RP), (z 2 y) O (z Ay)~ < z~.
Similarly, (y = z) ® (z Ay)~ < y~. It follows that: "

(zry)” = 10(zny)™ E [(@ = y)V(y = D]o@Ar)~ L (2r)- 0@ = »)V[(Ery) -0y = )] < 2= vy~

i.e. (51) holds. O
It follows immediately the well known result:

Corollary 2.47 In o Hdjek(P) algebra (BL algebra) we have
(zAy)” =2" vy .

We say that a Héjek(P) (BL) algebra is with condition (C) if the associated BCK(P) (residuated)
lattice is with condition (C) [38].

We say that a Héjek(P) (BL) algebra is with condition (DN) (double negation) or a Hdjek(P) py)
(BL(pn)) algebra for short, if the associated BCK(P) (residuated) lattice is with condition (DN), i.e. is
BCK(P)(pny lattice.

We say that a Héjek(P) (BL) algebra is with condition (WNM) (weak nilpotent minimum) or a
(wn ) Hdjek(P) ((wnaryBL) algebra for short, if the associated BCK(P) lattice is with condition (WNM),
i.e. is (wna)BCK(P) lattice.

When the Hajek(P) (BL) algebra satisfies both (DN) and (WNM) conditions, then we shall say that
is a (wn ) Hajek(P)on (wna)BLpn)) algebra.

In this paper, part III, we shall put in evidence the importance (v n ) Héjek(P) ((wnwm)BL) algebras.

Let Ha(P)pn) (BL(DN)) denote the subclass of H’ajek(P)py) (BL(pny) algebras. We write:
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Ha(P)(DN) :Ha(P) + (DN) =W, BL(DN) =BL + (DN) =MV.

Let (wnayHa(P) ((WNM)BL) denote the subclass of wnryHajek(P) ((wnumBL) algebras and
(WNM)Ha(P)(DN) ((WNM)BL(DN)) denote the subclass of (WNM)Hé,jek(P)(DN) ((WNM)BL(DN)) al-
gebras. We write:

winHa(P)=Ha(P) + (WNM),  (wnanBL=BL + (WNM).

Theorem 2.48 [38] A Hdjek(P) algebra is with condition (C) iff it is with condition (DN).
Recall [30] that a Héjek(P) algebra (BL algebra) is a Wajsberg algebra (MV algebra) iff it is with
condition (DN). We write:

Ha(P) + (DN) @ W, BL + (DN) & MV.

Proposition 2.49 Every Wajsberg (MV) algebra satisfies the condition (P2) from the definition of Prod-
uct algebras.

Proof. Every Wajsberg (MV) algebra satisfies the condition (DN) (double negation); then apply
Theorem 2.19. O

Proposition 2.50 A Wajsberg (MV) algebra A = (A, —,~,1) which satisfies the condition (P1) from
Definition 1.6 is a Boolean algebra.

Proof. By Proposition 2.35. a
In this paper, part ITI, we shall put in evidence the important subclass of those Wajsberg (MV) algebras

verifying the condition (WNM), named as (w nar) Wajsberg ((wnaryMV) algebras.
Let (wna) W ((wnaryMV) denote the class of (wnar) Wajsberg ((wnayMV) algebras.

We have:
wnanHa(P)(pwy= Ha(P) + (WNM) + (DN) = W + (WNM)= (W,

Recall the followings:
- Any Boolean algebra is a Wajsberg (MV) algebra, a Product algebra and a Gdédel algebra.

- The only finite Product algebras are the finite Boolean algebras.
- Any Godel algebra satisfies the condition (P1), by Proposition 2.40, hence is a SBL algebra.
- Any Godel algebra satisfies the condition (WNM), by Theorem 2.41.

Open problem 2.51 It will be interesting to study the class of those Hijek(P) (BL) algebras which
verify the condition (P2) (i.e. the SSBL algebras). The exemples in this paper, Part III, will be useful.

* ok %
By Proposition 2.46, we get immediately that:
Corollary 2.52 In o weak-BL algebra (MTL algebra) we have

(zAy) " =2 Vy .
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Let us introduce the following definitions:

Definition 2.53
(1) A divisible BCK(P) lattice is said to be of Gddel type if the BCK(P) lattice is of of Godel type.

We shall give examples of such algebras in Part III.

(2) A divisible BCK(P) lattice is said to be of Product type if it satisfies the conditions (P1) and (P2).
It is an open problem if there exist any proper such algebras (i.e. which are not Product algebras).

(3) A divisible BCK(P) lattice is said to be proper if it is not a Héjek (BL) algebra, if it is not of
Product or of Gédel type and if it does not satisfy the conditions (DN) and (WNM).

3  The decomposition of the conditions (B2) and (B3). Conse-
quences

Let us consider the two conditions (B2) (zAy =z ® (z — y)) and (B3) ((z = )V (y — =) = 1) from
the definition of a Hajek (BL) algebra.

Theorem 3.1 Let A = (A,A,V,—,0,1) be a BCK(P) lattice. Then, the condition (B2) is equivalent with

the following cancellative condition:

(Ce) forany z,y,z € A, ifz s> x=2—yand z > z,y, thenz = y.

Proof.
(B2) = (C,) [68]: Since z < z and y < z, then 2z Az =z and 2z Ay = y; hence

r=zAz=20(z—22)=20(—>y)=2Ay=y.
(Ce) = (B2): By (8), z® (z = y) < 2. We also have z Ay < z. We shall prove that

zazo-oy))l=z- (zAy)(=z—>y). (52)
By (43), z ® (z = y) < z Ay, hence , by (7),
=z -y <z (zAy). (53)
On the other hand, by Proposition 2.9, 2 ©1 =10 z = z, hence
(6)

(11)
z2z0@@-2y)]=[10z]=[(z-2y)0z] > 12 (z—>y) = z—y. Hence,

tay<z—=[20(z—=y) (54)
But, by (18),
z—=(zAy) <z Y. (55)
By (54) and (55), we get:
T (xAy)<z—=[z0(®—y). (56)
Consequently, by (53) and (56), (52) holds. It follows, by (C¢), that z Ay =2 © (z — y). a

Note that it is much easier to check on the table of — the equivalent condition (C.) than the condition

(B2), in finite examples.
Note also that condition (B3) is easilly checked on the table of —.

Remarks 3.2
(i) Recall that the divisibility condition (B2) is also equivalent with the following condition (Cy), which

gave the name ”divisibility” ([33], Lemma 2.5):

(Cy) for all z,y € A, if y < z, then there exists z € A such that y =z © 2.

(i) Note that condition (C¢) is expressed in terms of ”—”, while the equivalent condition (Cy) is
expressed in terms of 7®”.

(iii) Note that "divisible BCK(P) lattices” are categorically equivalent to divisible residuated lattices
(or "divisible integral, residuated, commutative I-monoids”, in [33], Lemma 2.5).
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Note also that, while the condition (B2) is expressed either in terms of ”—” or in terms of 7 ©” (besides
”2>"), the condition (B3) is expressed only in terms of ”—” (besides ”V” and ”1”). This is an important
reason to work with ”—” as primitive operation, and not with ”®”, when dealing with the involved

algebras.
Open problem 3.3 Find a simple equivalent condition of condition (B3) in terms of @.

Proposition 3.4 Let A = (A,A,V,—,0,1) be a BCK(P) lattice. Then, the condition (B2) is equivalent
with the following two conditions:

(Cr) zAy=[z0(@—=y)]Vyo(y—a2),

(Co) zoO(@—-y)=yo(y—2).

Proof. Obvious. 0O

Proposition 3.5 Let A = (4,A,V,—,0,1) be a BCK(P) lattice. Then, the condition (Cg) is equivalent
with the following two conditions:

Cs) @=y)2y—=a)=y—z,

(Cx) zo[ly—=2) > (@=2yl=yo(z—=y) = (Y- a)

Proof.
e (Co) = (C-): By (5), we have z < (z — y) — =; hence, by (1), we get:

(z—y) =2zl 2y<z—y. (57)
On the other hand, by (II), (x = y) = « < (z — y) — z, hence, by (4), we get:

z—=y<[lz—y) >z > (58)

By (57),(58) and (2) and by Proposition 2.7, we get
(e—y)»a—y<lay) o228 (cay) »a]2polasy) 2ol <co
slesysado(z-ry -y <e' B yop-(zoy o) <o @
\?4 comm. of ©

& (y=[lz—=y) =z)oy) =

BDyowolwoy)—»a))va=1 r=1
(v (3)
Sy—lz—=y)2zl]<y—-2&E @y = (y—z)<y—

—~

oy oa) 2y =1

—
o)

z
But, we also have, by (5), y = 2 < (x = y) = (y = z). Thus, by (V), (C,)) holds.
e (Co) = (Cx): since (Cp) implies (C,), it follows immediately (Cx).
e (C'x) and (C-,) implies obviously (Cg). O
Remark that in a BCK(P) lattice, if (C'x) holds, then (Cp) © (C-,) and if (C-,) holds, then (Cy)
(Cx).
By Propositions 3.4 and 3.5 we get the following
Theorem 3.6 Let A= (A,A,V,—,0,1) be a BCK(P) lattice. Then, the condition (B2) is equivalent with
the three conditions (Ch), (C) and (Cx).
O

Theorem 3.7 Let A= (A,A,V,—,0,1) be a BCK(P) lattice. Then, the condition (B3) is equivalent with

the conditions (C—,) and (Cy), where:
Cv) avy=[z—=y) =y Ay —2z)—a]

Proof.

e (B3) = (Cy): Denote by ”¢” the right side of (Cv).
We have z < (z = y) = y, by (II) and y < (z = y) =y, by (5); hence 2 Vy < (z — y) — y. Similarly,
zVy < (y—z) =z It follows that z Vy < a. '
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By Proposition 2.9,

a=001 B ao@oy) vy =)

But, a® (z = y) = ([(z = y) 2> y] A [

(19) . (43)
<lz—=y)=ylo@@—=y) =@y % [(w—w)—w] < (z-y)Ay<y.

Similarly, c © (y = 2) <[(y > 2) 2 2]O(y 2 2z) < (y>z) Az < 2.
Thus, e = [@a® (z 2 y)]V[eO(y 2 2)] <yVez. Tt follows that zVy = a.

o (B3) = (C-,): Since (B3) implies (Cy), it follows:
l=(=yVy—=2)=[(E2y)=2G22)2G=2)]A[((y22) > @) = (=)<
[((z =y) = (y = 2) = (y = 2)].
Hence, ((z = y) = (y = 7)) = (y = z) = 1,ie, by (VI), (z = y) = (y = z) < y — z; since we also
have, by (5), that y = 2 < (z = y) = (y = z), it follows that (z = y) = (y - z) =y — z, ie. (Cy)
holds.

e (C,) and (Cy) imply (B3): (z = y)V(y—= =
(e =9) = w=2) > @=2 A =>32) > @) > (@ y) E
(y=z)2 =) A[(z—>y) 2 (@-oy))=1A1=1 ad

= [a®(w—>y)]V[a®(y—>fc)]
—2z)3z])O(z—y)

(Cv)
) =

Theorem 3.8 Let A= (A,A,V,—,0,1) be a BCK(P) lattice. If A is a chain (i.e it is linearly ordered),
then it satisfies the condztzons (C_,) (Cv), (Ch).

Proof.
Let z,y € A; then either x <yory <z, ie eitherzc vy=1lory sz =1, respectively.
e (C,): We prove that (z = y) = (y = z) =y — z. Indeed,
-ifz<y,then (z 2 y) > (y—2)=1-(y > 2)=y =z and
-ify<z,then (z 2y) 2> (y-2z)=F2y) s 1l=1=y -z
e (Cv): We prove that zVy = [(z = y) = y] A [(y = z) = z]. Indeed, if z < y, for instance, then
(z=y) 2 ylAlly s a) 2 a]l=[12y]A[ly=2) »z]=yA[ly=2) v z]=y=2zVy,
since, by (II), y < (y = z) — z.
® (Ca): We prove that z Ay = [z © (z = ¢)] V [y © (y = 2)]. Indeed, if = < y, for instance, then
[zo—=2y)Viyoly—z)]=ollvlyo(y—2)]=2sVyo(ysa)=c=zAy,
since, by (43), y O (y = z) <z Ay ==z. a
By Theorems 3.6 and 3.7 we immediately get the following:

Theorem 3.9 A BCK(P) lattice is a Hdjek(P) (BL) algebra if and only if it satisfies the four conditions
(C5), (Cv), (CA), (Cx)

By this Theorem, we immediately get the following

Corollary 3.10 Let A be a BCK(P) lattice. Then we have:
(B2) + (B3) <= (C) + (Cv) + (Ca) + (Cx) <= (B2) + (Cy) < (B3) + (Cx) + (Cx).

Proposition 3.11 Let A be a BCK(P) lattice. Then, we have the equivalence:
(B2) + (DN) < (C).
Proof.
==: By Proposition 2.32 and Theorem 2.18, sVy = (27)" V(¥ )" = (2~ Ay )" =[z- 0 (z~ >

29
e Y e R R
<=: By Corollary 2.30, (C) = (DN). It remains to prove that (C) = (B2). Indeed, by Theorem

218, zAy=(z"Vy ) =[(y —+a:_)—):1:"]‘@—-9)[(.'):—->y)—%x"]_Z(x—)y)Gw:wO(x—)y).
O
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Corollary 3.12 Any divisible BCK(P) lattice satisfying the condition (DN) is a Wagsberg (MV) algebra.

Proof. Since the BCK(P) lattice satisfying condition (C) is an equivalent definition of Wajsberg
algebra. a

Proposition 3.13 A linearly ordered divisible BCK(P) lattice is a Hdjek(P) (BL) algebra (chain,).

Proof. By Theorem 3.8, any linearly ordered BCK(P) lattice satisfies the condition (CVv); then apply
Corollary 3.10. a

Proposition 3.14
Let A= (A,A,V,—,0,1) be a BCK(P) lattice. Then,
(CA) + (DN) <= (Cv) + (DN) <= (C\) + (Cy) + (DN).

Proof. It is sufficient to prove the following two implications:
e (Cp) + (DN) = (Cy): Indeed,

ovy S (@vi) ) P e ) Do s v o6 2o @m0 o
DIVy~ 0z = yllI" =y 2 2) 07| Ve =y oy~ @ (y=»z)0s )" Alz=y) oy ] &
(v = 2) =2l Allz > 9) > 4]

e (Cy) + (DN) => (C,) : Indeed,
eny 2 @ vy Dl sy syl o) s e Dy s a) oy lale ) -
)y 2) 2y Vi 2 9) 2o Py o neyviE 2 e = ko - piviey -
z)]. 0

Remarks 3.15

1) Among the four conditions (C_,), (Cv), (Ca), (Cx), the first three are very important, since any
linearly ordered BCK(P) lattice satisfies them, by Theorem 3.8.

2) Among the important three conditions (C_,), (Cv), (Ca), two are very important, (Cy) and (Ch),
since they are dual, i.e. in a BCK(P) lattice with condition (DN), (Cy) <= (Ca), by Proposition 3.14.

We then immediately get the following consequences.

Corollary 3.16 Let A be a residuated lattice (BCK(P) lattice). Then,
(B3) + (DN) <= (C,) + (Cy) + (Cp)+ (DN).

Corollary 3.17 Let A be a residuated lattice (BCK(P) lattice). Then,
(C) <= (C4) + (Cv) + (CA)+ (Cx) + (DN) <= (B2) + (B3) + (DN).

Proof.
By Proposition 3.11, Theorem 3.6, Proposition 3.14 and Corollary 3.10, we get:

(C) <= (B2) + (DN) <= (Ca) + (C5) + (Cx) + (DN)
& (Ca) + (C5) + (Cx) + (Cv) + (DN) <= (B2) + (B3) + (DN). 0

Corollary 3.18
IMTL = MTL + (DN)= R-L + (B8) + (DN) = R-L + (C) + (Cy) + (CA)+ (DN).

Corollary 3.19
(1) MV = IMTL + (Cx).
(1)) W = weak-Ry + (Cx).
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Proof.
MYV = BL + (DN) = R-L + (B2) +(B3) + (DN)=
=R-L + (C2) + (Cv) + (CA) + (Cx) + (DN) = IMTL + (Cx).
Thus, (1) holds.
(1°) follows immediately, by (1).
We also have:

NM = IMTL + (WNM) or, equivalently Ro= weak Ry + (R6).

We shall prove in Part IIT that the class of MV algebras (Wajsberg algebras) and the class of NM algebras
(Ry algebras) are incomparable (not included one in the other), but have "something” in common, namely

the subclass (wnayMV (wnmyW):
wrnyMV=MV + (WNM) = NM + (Cx).

Indeed, (wnayMV=MV + (WNM) = [ IMTL + (Cx)] +(WNM)=[ IMTL + (WNM)] +(Cx)=
NM + (Cx).

Remarks 3.20

+ (DN).

+ (DN).

We shall give examples of ( n ar) Wajsberg algebras ((wnar)MV algebras) and of (wnar)Héjek algebras

((wnaBL algebras) in the third part of this paper.
Very recently, Y.L. Liu and S.Y. Liu, have introduced the notions of normal (weak) Ro-algebra (cf.

[54]):
Definition 3.21 A normal (weak) Ro-algebra or, (NWRy) NW Ry for short is an (weak) Ro-algebra

verifying:
(z—=y)2y=@Hy—z) -

Since W Ry = IMTL, it follows that condition (Cy) is verified in (weak) Ry-algebras; consequently, in
a normal (weak) Ry algebra, we have: £ Vy = (z = y) — ¥, i.e. condition (C) holds.
We then obtain, by Corollary 3.17 and Theorem 2.31, that:

Theorem 3.22
(1) The normal weak Ro-algebra is an equivalent definition of Wajsberg algebra (MV algebra), i.e.

NWR() = W,’
(2) The class of normal Ro-algebras is a subclass of the class of Wagsberg algebras (MV algebras),

namely we have:
NRo =W + (R6) = W + (WNM)= wnmyW.

Let (PIM) (positive implicative) be the following condition (see [49]):
(PIM) z = (z = y) =z =y, for all z,y.

By [54], we have:

NR, + (PIM) <= Boolean or, equivalently,

wnmyW + (PIM) <= Boolean.
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Definition 3.23
(1) We shall say that a Héjek(P) algebra (BL algebra) is proper if it is not a Wajsberg (MV), a Product

or a Godel algebra and if it does not verify the condition (WNM).
(2) We shall say that a (w n ) Hajek(P) algebra ((wn ) BL algebra) is proper if it is not a (w v ) Wajsberg
((wnmyMV), a Product or a Gddel algebra. '

Resuming, we have for the moment the generalizations and the particular cases of Héjek(P) (BL) algebras
from Figure 2.

BCK(P)-L (R-L)

weak-BL =MTL

(CA) + (Cx) divisible BCK(P)-L

(Cv)

Ha(P) (BL)
(P1)+(P2) (DN)
Product W (MV)
(P1)
Boolean

Figure 2: Generalizations and particular cases of Héjek(P) (BL) algebras

When adding the condition (DN), we get the hierarchy from Figure 3.
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BCK(P)-L (R-L) + (DN) 2 Girard monoids

Boolean

Figure 3: Generalizations and particular cases of Wajsberg (MV) algebras

4 The ordinal sum of BCK(P) lattices

We generalize here the notion of ”ordinal sum” of two BL chains in the following way.

Definition 4.1 Let M; = (M;,>;,—4,0;,1:), 0; # 1;, 1 € {1,2} be two BCK(P) lattices such that

1, = 02 and (M1 \ {11}) ﬂ(Mg \ {02}) = @
The ordinal sum of M; and My (in this order) is the structure:

where:

M1 @Mz = (Ml UM2a Z:_)7Oa l)a

>y if (z,y € My and z >; y) or (z,y € My and z >3 y) or (x € M, and y € My), i.e. we have the
lattice reprezented by diagram Hasse from Figure 4;

0= 01, 1 = 12;
17
r—Yy= T — Y,
y?
or, equivalently
17
T — Y= { -1,
Y,

since in My, 11 = y1 = y1.

if
if
if
if
if
if

r<y
x>y,
T >y,

z<y
x>y,
x>,

T,y € M;, ,iE{l,Q}
IL'EMQ, 'yE Ml\{ll},

xayeMi, 716{1»2}
TE MZ\{02}7 Y € Ml\{ll}a

Hence, — has the following table:
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1=1,

M,

1, =09

=0
Figure 4: The ordinal sum M; @ M,

T =Y 0=0 Y1 oo | 11 =09 Y2 .o 1=14
0=0; 1 1 1 1 1
:cll xl—;lOl zl—;lyl 1 1 1
MOM Tt T T 1
1;2 O Y1 ZL'2‘_.)202 :1:2—.>2y2 1
onl oo o a due |l o

where z1,y1 € My \ {0 =01,11}, Z2,y2 € My \ {02,1 = 12}.

Remarks 4.2 Remark that the table of — in M; @ M contains:

1) the initial table of — in M3,
2) the initial table of — in M;, modified in the sense that 1, is replaced by 1,

3)if x € My \ {11} and y € My, then z — y =1, since z <y,
4) if z € My \ {02} and y € M; \ {11}, thenz = y =y.

Note that if M; and M, are BL chains, we get the well-known definition of ordinal sum of two BL
chains (written sometimes in an ambigous way).
Then we have the following

Theorem 4.3 Let M; = (M;, >s,—i,0i,1;), 1 € {1,2} be two BCK(P) lattices. Then M; @ Ma, is a
BCK(P) lattice.

Proof. Obviously, M; P M. is a lattice with first element 0 = 0; and last element 1 = 1.
We prove now that it is a BCK algebra:
e First we prove that
losz=z. (59)
Indeed, since 1 € Mo, it follows that 1 >z =1 =z =z,ifz € Myand 1l w2 =z, if z € M, \ {11}

Thus, (59) holds.

e Then we prove that
z<y— . (60)
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Indeed, if y < z, theny = x = 1 > z; if y,z € M;, © € {1,2}, then (60) holds; if y € My and z € My \{1,},
then y = rax = z > x. Thus (60) holds. ,

e Then we need that
z >z =1, (61)

which is true since z < z.
e Now we can prove (II), i.e. (y > z) 2>z >y.
Indeed,
-if y <z, then y = 2 = 1; hence (y—)a:)——)le—):zc(?—f)ny.
-ify,x € M;, 1 € {1,2}, then (II) holds.
-ify e My, z € My \ {11}, theny -z =2 and hence (y = z) 2z =2 == % g > y. Thus, (II) holds.
e Now we prove (I),ie. (z 2 z) = (y = 2)>Y =2
Denote _ ‘
T1™E" 5 2) = (y o w), T2"E"yoa

We must prove that 7'1 > T'2. Indeed,

if y,z € My, then:
- if z € My, then (I) holds, since it holds in Mj;
-if £ € M5\ {02}, then z > y, z, hence z rax = 1 = y — z and thus T'1 = 1; it follows that T2 < T'1.

if y,z € My, then:
- if x € M>, then (I) holds, since it holds in My;
61)

—ifxEMl\{ll},thenz—)ac:mandy—)x:x,henceTl:z—)x(: 1>T2.

ify € My, z€ My \ {11}, then T2 =y — 2z = z;
-ifaceMQ,thenzgwandhencez—)x:1;thenTl:(z—)x)—)(y—)m):l—)(y—)x)(Ei—?)

y = z € My; hence T1 > T2 = z;
(ur

-ifze My \{l;},theny vz =zandthenTl=(2—22) > (y2>2z)=(22z) >z > 2=T2

if z€ Mg, y € My \ {11}, theny <z, hence T2 =y = z = I;
- if & € My, then & > y, hence y — « =1 and consequently T1 = (z = z) = (y = z) = (2 > z) =
=1=7T2,since z - 2 < 1;
-if z € My \ {11}, then z — 2 = z and since by (60) z <y — z, it follows that T1 = (z = z) —
y=z)=z—-(y—z)=1=T2.

Thus, (I) holds and consequently M; € M is a BCK lattice.
e Finally, we must prove that the condition (P) is satisfied, i.e. for all z,y € M; |J M>, there exists

zOy=min{z |z <y - 2z}

Indeed, we get that
rQ;y, if z,y€ M,
ny:{ x, if .’IIGMl\{lI},yEMz,
_or, equivalently, since for any z; € My \ {11}, we have z; © 1; = x4,
POy = rOy, if zy€ M, ie{l,2}
z, if :l?EMl\{h}, yGMz\{Oz},
or, equivalently, since ® is commutative,
rOy, if =zyeM;,ie{l2}
TOY = z, if $€M1\{11},y€M2\{02}
y, if xeMZ\{02}> yEMl\{ll},

i.e. we have the following table:

28



g0y |0=0, ... w1 .. |1i=0]... oy ... 1=1,
o=0; | 0 ... 0 ... 0 |.. 0 .. o0
K IS I I
M @ M 11;02 o .m0 .. o . L=0
N S A L
1=1, 0 3/:1 02 Y2 1

Remark 4.4 The ordinal sum is not commutative, but it is associative, by definition of —.

Theorem 4.5 If the BCK(P) lattices My and My both satisfy the condition (B2), then M @ M, also
satisfies (B2).

Proof.
Obvious, if we consider instead of (B2), the equivalent cancellative condition (C.). O

Theorem 4.6 If the BCK(P) lattices My and Moy both satisfy the condition (B3), then:
(i) if M, is linearly ordered (a chain), then My @ My also satisfies (B3);
(i) if M is not linearly ordered, then My @ Mo does not satisfy (B3).

Proof.

Obvious.
(i) is obvious, since in this case, above the principal diagonal of the table of — we have always 1 and

thus (B3) holds.
(ii) Since M; is not linearly ordered, there are a,b € M; \ {0 = 04,15 = 0y} such that they are
incomparable, but since M; satisfies (B3), we have (a = b) V (b = a) = 1; # 1 = 1. Thus, (B3) is not

satisfied. 0

Corollary 4.7 If the BCK(P) lattices My and My both satisfy both conditions (B2) and (B3), then:
(i) if M is linearly ordered (a chain), then M, @ M2 also satisfies (B2) and (B3);
(i) if My is not linearly ordered, then M) @ M, satisfies (B2), but does not satisfy (B3), i.e. does not

satisfy (Cv).

Proof.
Obvious, by the previous two Theorems.

Remarks 4.8

(i) Any MV, Gédel or Product algebra is a BL algebra.

(ii) The ordinal sum ”liniar BL algebra (P BL algebra ” is a BL algebra, by Corollary 4.7.

(iii) The ordinal sum "non-liniar BL algebra (P BL algebra ” is a divisible BCK(P) lattice, by Corollary
4.7.
(iv) The ordinal sum ”linearly ordered Gédel algebra @ Gddel algebra ” is a Gédel algebra, by (ii).
(v) The ordinal sum "non-linearly ordered Gédel algebra P Gddel algebra ” is a divisible BCK( )
lattice of Gédel type, by (iii).

(vi) The ordinal sum of two BCK(P) lattices with condition (DN) is no more a BCK(P) lattice with
condition (DN), by the definition of the ordinal sum. Consequently, the ordinal sum "MV algebra © MV
algebra ” is never an MV algebra (there is 1; = 0z such that (17)” =07 =1 #1;).

(vii) Note that the ordinal sum M; @ M, preserves (Ca) and if My is non-linearly ordered, then it

does not preserves (Cy ).
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