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Abstract

In this paper we study the BCK algebras and their particular classes: the BCK(P) (residuated)
lattices, the H4jek(P) (BL) algebras and the Wajsberg (MV) algebras, we introduce new classes of
BCK(P) lattices, we establish hierarchies and we give many examples. The paper has five parts.

In the first part, the most important part, we decompose the divisibility and the pre-linearity
conditions from the definition of a BL algebra into four new conditions (C-), (Cv), (Ca) and (Cx).
We study the additional conditions (WNM) (weak nilpotent minimum) and (DN) (double negation) on
a BCK(P) lattice. We introduce the ordinal sum of two BCK(P) lattices and prove in what conditions
we get BL algebras or other structures, more general, or more particular than BL algebras.

In part II, we give examples of some finite bounded BCK algebras. We introduce new general-
izations of BL algebras, named o, 8, v, §, af, ..., By algebras, as BCK(P) lattices (residuated
lattices) verifying one, two, three or four of the conditions (C—), (Cv), (Ca) and (Cx). By adding the
conditions (WNM) and (DN) to these classes, we get more classes; among them, we get many gener-
alizations of Wajsberg (MV) algebras and of Ro (NM) algebras. The subclasses of (wwna) Wajsberg
algebras ((wnm)MV algebras) and of (wnn)Héjek algebras ((wna)BL algebras) are introduced. We
establish connections (hierarchies) between all these new classes and the old classes already pointed
out in Part L.

In part III, we give examples of finite MV and (wna)MV algebras, of Hajek(P) (i.e. BL) algebras
and (wnar)BL algebras and of ayd (i.e. divisible BCK(P) lattices (divisible residuated lattices or
divisible integral, residuated, commutative l-monoids)) and of divisible (w n)BCK(P) lattices.

In part IV, we stress the importance of afy algebras versus a8 (i.e. MTL) algebras algebras and
of Ro (i.e. NM) algebras versus Wajsberg (i.e. MV) algebras and of (w w7y algebras versus BL
algebras and of ary versus ay§ algebras. We give examples of finite IMTL algebras and of (w n ) IMTL
(i.e. NM) algebras), of aBv algebras and of (wnum)afy (Roman) algebras and finally of ay algebras.

In part V, we give other examples of finite BCK(P) lattices, finding examples for the others
remaining an open problem. We make final remarks and formulate final open problems.

Keywords MV algebra, Wajsberg algebra, BCK algebra, BCK(P) lattice, residuated lattice, BL
algebra, Hajek(P) algebra, divisible BCK(P) lattice, e, 8, 7, 4, @B, ..., a0 algebra, MTL algebra,
IMTL algebra, WNM algebra, NM algebra, Ro algebra, (wnayMV, (wnam)BL, wwn) afy, Roman
algebra

Part II has two sections. _

In Section 5, we give examples of some finite bounded BCK algebras.

In Section 6, we introduce new generalizations of Hajek(P) (BL) algebras, named «, 8, v, 6, af, ...,
a6 algebras, as BCK(P) lattices (residuated lattices) verifying one, two, three or four of the conditions
(C), (Cy), (Ca), (Cx) found in Part I. We make the connections with MTL algebras [18] and with
divisible integral, residuated, commutative l-monoids [33]. By adding the conditions (WNM) and (DN)
to these classes, we get more classes: of (wn Mm@ algebras, a(pny algebras, (wnwm)(DN) algebras etc.



Thus, we get generalizations of BL and (wnar)BL algebras, and of Wajsberg (MV) algebras and of NRo
algebras. We establish connections (hierarchies) between all these new classes and the old classes already
pointed out in Part I and Part II. We make the connections with MTL, WNM, IMTL and NM algebras
[18], [21] and with Ro [73], [63] and NRy algebras [54]. See the Remarks 6.15, where we introduce the

name ”Roman algebra”.

5 Examples of finite bounded BCK algebras

In this section we shall give many examples, but we shall present the proof only in one case, as an

example of proof.

5.1 Examples of bounded BCK algebras which are not lattices

We give here three examples.
1. Example of bounded BCK algebra which is not a lattice and

does not satisfy the condition (P)
Let us consider the set A = {0,a,b,¢,d,n,1} organized as a poset which is not a lattice as in Hasse

diagramme from Figure 1 and as a BCK algebra with the operation — as in the following table:

1

0
Figure 1: Bounded BCK algebra without or with condition (P), which is not a lattice
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This bounded BCK algebra does not satisfy the condition (P) since does not exist

notation

a®b min{z | a < b — z} = min{a,b,¢,d,n,1}.

2. Example of bounded BCK algebra which is not a lattice and
which satisfies the condition (P)



Let us consider the set A = {0,qa,b,c,d,n, 1} organized as a poset which is not a lattice as in Figure 1
and as a BCK algebra with condition (P) with the operation — and

zOY notgtion min{z |z <y — z}
as in the following tables:
10 a b ¢ d n 1 ®l0 a b ¢ d n 1
ojr 1 1 1 1 1 1 0|0 0 0 0O O O O
aln 1 n 1 1 1 1 al0 0 0 0 0 0 a
b|ln n 1 1 1 1 1 b|0 0 0 0 0 O b
¢c|/n n n 1 n 1 1 c|0 O 0 O 0 0 ¢
d/n n n n 1 11 d/o 0 0 0 0 0 d
n|in n n n n 1 1 n|0 0 0 O O O n
1/0 a b ¢ d n 1 110 a b ¢ d n 1

Thus, A is a BCK(P) algebra which is not a lattice.
3. Example of bounded BCK algebra which is not a lattice and

which satisfies the conditions (P) and (DN)
This example answers to the open problem raised in [42], Remarks 2.40(2). Let us consider the set
A ={0,m,a,b,¢,d,n,1} organized as a poset which is not a lattice as in Figure 2 and as a BCK algebra

with condition (P) with the operation — and

notation

z min{z |z <y — z}

as in the following tables:

Figure 2: Bounded BCK algebra with conditions (P) and (DN), which is not- a lattice



5|0 m a b ¢ d n 1 ®©l0 m a b ¢ d n 1
ol1 1 1 1 1 1 11 ojlo-0 0 0O O O O O
m|n 1 1 1 1 1 1 1 m|0O O O O 0 O O m
alc n 1 n 1 1 1 1 al0 0 0 0 0 m m a
bld n n 1 1 1 11 bl0 0 0 0 m 0O m b
¢la n n n 1 n 1 1 ¢c|0 0 0 m m m m ¢
d|/b n n n n 1 1 1 d/0 0 m 0 m m m d
n|lm n n n n n 1 1 n|0 0 m m m m m I
110 m a b ¢ d n 1 110 m a b ¢ d n 1
Hence, for all u,v € A4,

1, u<v

n, O<v<u<l

n, =0 =0

& u=a,v=0

d, u=>bv=0

u—v=

a, U=ev=10

b, u=d,v=0

m, u=mn,v=0

v, y=1

n, (u,v) € {(a,),(b,0a),(c,d),(d,c)}.

To prove that (A4,>,—+,1) is a BCK algebra it is sufficient to prove (I), i.e. that for all z,y,z € A, we
have (z = z) = (y = z) >y — =z

Let us denote
notation

T moteken (z—=z)—>(y—2z) and T2 Yy — 2.

Hence, we have to prove that for all z,y,2 € A, T1 > T2. Indeed, we have the following cases:
y <z,

0<z<y <],

z=0andy € {m,a,b,c,d,n},

y =1,

(y,2) € {(a,b), (b,a),(c,d), (d,c)}.

1)
2)
3)
4)
5)

o1) Ify<zthenz—>z<y—uz, hence T1 = 1, T2 = 1, thus (I) holds.
e 2). If 0 < z <y <1, then we have the following subcases:

)y =a, z=m,

Yy="b, z=m,

)y = ¢,z € {m,a,b},

) y= d,Z € {m7aab}>

5y =n,z € {m,a,b,c,d}.

DD NN

1
2
1
2
3
4
=4

DO

21):y=a,z=m.ThenT2 =y > z=a—->m=n.
Ifz=0thenTl=(z—2) > (y—=2z)=m—=0)=(a=>0)=n—rc=n=T2
“z=m,thenTl=(z—=2z)>@y—=z)=m-=m)=(a=m)=1-an=n=T2
_If z € {a,¢,d,n,1}, then ¢ >y = a; hence y = = = 1 and consequently, T'1 = (z = x) = (y =
)=(z—z)=>1=1>T2
~Ifz=>bthenTl=(z—=z)=(y—z)=(m—=b) = (a=b=1an=n=T2
Thus, (I) holds.

2.2) y = b, z =m. Similar to 2.1).

2.3)y =¢,z € {m,a,b}:



231)y=c,z=m. ThenT2=y > z=c—om=n.
IFz=0thenTl=(z—=2z) > (y—2z)=m—=>0)=>(c=0=n2ra=n=T2
—Ifxe{m,a,b},thenwehave0<z§:n<y<1andhenceTl:1—>n:n:T2.
Ifz=d then Tl=(m—=d) = (c=>d)=1=n=n=T2
~If z € {¢,n,1}, then we have z > y = ¢, hencey = z =1 and consequently, T'1 =1 > T2.

232)y=c, z=a ThenT2=y s> z=c—>a=n.
Ifz=0,thenTl=(z—22)=>@y—oz)=@—=0=3(c=>0=cara=n=T2
_Ifz=m,thenTl=(a—=m) = (com)=n—-n=1>T2
-Ifz=a,thenTl=(a—a)—=(c=a)=1=n=n=T2
Ifz=bthenTl=(a—=b) = (c=am)=n—-n=1>T2
Ifz=d thenTl=(a—d) = (c=d=1—=n=n=T2
-Ifz € {¢n,1},thenz >y =¢, hence y —+ z = 1 and consequently T'1 =1 > T2.

2.3.3) y = ¢, z = b. Similar to 2.3.2).
2.4) y = d,z € {m,a,b} : Similar to 2.3).
2.5) y =n,z € {m,a,b,c,d} :

251)y=n,z=m. ThenT2=y > 2z=n—-m=n.
—Ifx:O,thenle(z—é:L')—>(y—):c):(m—>0)—>(n—>0):n—>m:n:T2.
Ifz=m,then Tl=(m —>m) > (n—=m)=1->n=n=T2
—Ifa:e{a,b,c,d},then0<z<x<y<1,henceT1:1—>n:n:T2.
-Ifz € {n,1}, then z >y =n, hence y — = = 1 and consequently T'1 =1 > T2.

252 y=n,z=a ThenT2=y—=>2=n—-a=n.
SIfz=0thenTl=(z=2)=@y—22)=@=0 =m0 =co2m=n=T2
_Ifz=m,thenTl=(a—m)—=(n—-m)=n—->n=1>T2
—Ifxe{a,c,d},then0<z§x<y<l,hencelelén:n:TZ
“Ifz=bthenTl=(a—=b) = (n—=b=n—=n=1>T2
-If z € {n,1}, then T > y = n, hence y — = = 1 and consequently T'1 =1 > T2.

2.5.3) y =n, z =b. Similar to 2.5.2).

254)y=mn,z=c ThenT2=y >z=n—c=n.
—Ifx:O,thenTl:(z%w)—%(y—)x):(c—)O)——)(n—éO):a—ém:n:TZ.
—Ifxe{m,a,b},then0<x<z<y<1,henceT1:n-—>n:1>T2.
~Ifz=d thenTl=(c—d) = (n—=d)=n->n=1>T2
Ifz=cthenTl=(c=c)>(n—=c)=1=n=n=T2
-Ifz € {n,1}, then z >y =n, hencey = = =1 and consequently T1 =1 > T72.

2.5.5) y = n, z = d. Similar to 2.5.4).

3). z=0and y€ {m,a,b,c,d,n}:

31)z=0,y=m. ThenT2=y = z=m = 0=n.
—Ifx:O,thenTl:(z—)x)—)(y—m:)=(O-—>O)——>(m—>0):1——>n:n:T2.
Ifz=m,then Tl=(0—-=m)>(m—=m)=1-1=1>T2
-If z € {a,b,¢,d,n,1}, then x > y, hence y — = = 1 and consequently T'1 =1 > T2,

32)z=0,y=a ThenT2 =y —»z=a—-0=c SIfz=0,then Tl =(z —2z) = (y =>z)=(0—
0) = (a—=0)=1=c=c=T2
“Hz=m,then T1=(0—=m)=(a=m)=1=n=n>T2
Ifz=0bthenTl=(0—b) = (a—=b=1—=n=n>T2
-Ifme{a,c,d,n,l},thenxZz,hencey—éleand consequently T'1 =1 > T2.

3.3) z =0, y = b. Similar to 3.2).



34)2=0,y=c Then T2 =y @+ z=c—0=a. —If:v:O,thenTl:(z—)x)-+(y—>x)_(0—)
0)=(c=0=1=a=a=T2
—Ifa:E{m,a,b},thenO:z<x<y:c<1,henceT1:1—>n:n>T2.
—Ifx:d,thenTl:(O—%d)——)(c—+d):1—+n:n>T2.
-Ifz € {c,n,1}, thenz >y, hence y — = = 1 and consequently 7'1 =1 > T°2.

3.5) z =0, y = d. Similar to 3.4).

36)2=0, y=n. ThenTsz—>z:n->0:m.—Ifsz,thenTl:(z—)x)—)(y——)x)z(O—)
0)=n—=0)=1->m=m=T2
—If:zze{m,a,b,c,d},thenO:z<x<y:n,hencele1—>n:n>T2.
-Ifzx € {n,l},theany,hencey—ém:1and consequently 71 =1 > T2.

ed)y=1 Then T2 =y - z=1—2=2zforall z € A:

41)y=12=T2=0.
—Tl:(z——):z:)—»(y—+x):(0—)m)~)(1——>x):1—)x:w>T2,f0rallm€A.

42)y =1, z=T2=m.
—Ifx:O,thenTl:(z—)x)~—>(y——>x):(m—>0)—>(1—+0):n——>0:m:T2.
—Ifa;e{m,a,b,c,d,n,l},thenzgwgyzl,hencelel—é(l—Hx):xZTZ.

43)y=12=T2=a.
—Ifx:O,thenTl:(z—ém)—)(y—):z):(a—)O)—%(l—)O):c—H):a:TZ
“Ifg=m,thenTl=(a—=m)—=(L=>m)=n—-m=n>T2
~Ifa:€{a,c,d,n,l},thenz§x§y:1,henceT1:1—>(1—)m):szZ.
“Ifz=bthenTl=(a—b) = (1=>b=n—2b=n>T2

44)y =1, z=T2=". Similar to 4.3).

4.5)y:1,z:T2:c.-Ifa:z(),thenTl:(zW)a:)—)(y—>m):(c—>0)-—)(1—>0):a—%0:c:
T2.
—Ifxe{m,a,b},then0<x<z:c<y:1,henceT1=n—>(1—>x):n—)m:n>T2.
Jfz=d thenTl=(c—>d) = (1=d=n—>d=n>T2
~Ifa;6{c,n,l},thenzgxgy:1,henceT1:1—>(1—>x):1~>x:x2T2.

46)y =1, z=T2=d. Similar to 4.5).

47V y=1 2=T2=n. —Ifa::O,thenle(z—)x)—)(y—)x):(n—)O)—é(l—)O):m—)O:
n ="T2.
—Ifafe{m,a,b,c,d},then()<w<z:n<y:1,henceT1:n—>(l%x):n—)x:n:TZ.
—Ifxe{n,l},thenz§x§y:1,henceT1:1—>(1—>x):1—>x:x2T2.

. 5) (y’z) e {(a’ b)’(b’a')’(c7d)7(d7c)} :

5.1) (y,2z) = (a,b). Then T2 =y »z=a—=b=n.
—If:r;:O,thenTl:(z—}x)—)(y——):r;):(b—>0)—>(a->0)=d—>c:n=T2.
~fz=m,then Tl=(b—=m)—= (a=m)=n—+n=1>T2
~Ifz=a,thenTl=(b—a)—= (a—a)=n—1=1>T2
“faz=bthenTl=(b—=b) > (a=b)=1>n=n=T2
-If x € {¢,d,n, 1}, then z > y = a, hence y — = = 1 and consequently T'1 =1 > T'2.

5.2) (y,2) = (b,a). Similar to 5.1).

5.3) (y,2) = (¢,d). Then T2 =y » z=c—>d=n.
Ifz=0,thenTl=(z—=2)=(y—22)=Wd—=20)=(c=0=b=2a=n=T2
—Ifme{m,a,b},then0<$§y,z<1,henceT1:n—>n:1>T2.



—If:v:c,thenTl:(d—%c)—)(c—)c):n-—)1:1>T2.

-Ifz=d, then T1=(d = d) = (c=d)=1-n=n=T2

~Ifze{n,1},thenz >y =c, hencey >z = 1 and consequently 71 =1 > T'2.
5.4) (y,2) = (d,c). Similar to 5.3). Here the proof of (I) comes to the end.

Note that another proof of (I) consists in taking all the triples (y,z,z) € Ax A x A, in the direct

lexicographical order.
Thus, A is a bounded BCK(P) algebra with condition (DN) (you have the values of 27 =z — 0 in

the table of —, column of 0), which is not V-commutative.

5.2 Examples of bounded BCK algebras which are lattices and
which do not satisfy the condition (P)

We shall give four examples, very known as lattices.

Example 1
Let us consider the set A = {—1,0,a,b,1} organized as a lattice as in Figure 3 and as a BCK algebra

with the operation — as in the following table:

-1

Figure 3: Example 1 of BCK lattice without (P)

Example 1

—~|-1 0 a b 1

111 11 1 1

0ol-1 1 1 1 1

al-1 0 1 b 1

b|l-1 0 a 1 1

11-1 0 a b 1
Remark (4, A,V,—,0,1) is a BCK lattice which does not satisfy the condition (P), since there are a, be A
such that

a®b "% min{z | a < b — 2} = min{a,b, 1}

does not, exist.

Example 2 (see [34])









Figure 4: Example 2 of BCK lattice without (P)

Let us consider the set A = {0,a,b,¢,1} organized as a lattice as in Figure 4 and as a BCK algebra
with the operation — as in the following table:

510 a b ¢ 1

ol1 1 1 1 1

al0 1 ¢ 1 1

Example 2 blo ¢ 1 11
clo ¢ ¢ 1 1

110 a b ¢ 1

Then A = (4,A,V,—,0, 1) is a BCK lattice which does not satisfy the condition (P), since there are
b,a € A such that

bOa notation in{z | b < a -z} = min{a, b, ¢, 1}
does not exist.

Example 3 (see [35]) .
Let us consider the set A = {0,a,b,c, 1} organized as a lattice as in Figure 5 and as a BCK algebra

with the operation — as in the following table:

0

Figure 5: Example 3 of BCK lattice without (P)

Example 3




Then A = (4,A,V,—,0,1) is a BCK lattice which does not satisfy the condition (P), since there are
b,c € A such that

bO e Boigtyn min{z | b < ¢ — z} = min{b, ¢, 1}

does not exist.

Example 4
Let us consider the set A = {0,a,b,c,1} organized as a lattice as in Figure 6 and as a BCK algebra

with the operation — as in the following table:

0
Figure 6: Example 4 of BCK lattice without (P)

Example 4

— o o ol
cooo~o
O =
o T =T =T
O = O O =IO
el e R

Then A = (A, A,V,—,0,1) is a BCK lattice which does not satisfy the condition (P), since there are
¢,b € A such that

CGbnota:tion min{z le<b— z} = min{b,C,l}

does not exist.

5.3 Concluding remark

Hence, we have the situation from Figure 7.

‘bounded BCK algebras,
which are not lattices,
without (P)

(P)/ \lattice .
bounded BCK(P) algebras, BCK lattices,
which are not lattices . without (P)
lattice\ /(P)

BCK(P) lattices

Figure 7: Classes of bounded BCK algebras



If we add the condition (DN), then, by Theorem ?7, we get the situation from Figure 8.

bounded BCK(P) algebras, with (DN),
which are not lattices

lattice
BCK(P) lattices, with (DIN)

Figure 8: Classes of bounded BCK(P) algebras, with (DN)

6 New classes of BCK(P) lattices (residuated lattices)

Recall [42], [43] that a Héjek(P) (BL) algebra is an algebra
A= (4,AV,—,0,1)

such that:

(B1) A is a BCK(P) lattice (residuated lattice),

(B2) forall z,y € A,z Ay =z O (z — y) (divisibility);
(B3) forall z,y € A, (z = y)V (y 2 z) =1 (pre-linearity).

Recall also that in [43], it was proved that:
(B2) is equivalent with (C,) + (Ca) + (Cx), while
(B3) is equivalent with (C_,) + (Cv), hence
(B2)+(B3) is equivalent with (Cy) + (Ca) + (C) + (Cx), where:

C,) =y~ (ly—o)=y—,
Cy) zvy =y = ylAll—2) =2l
Cr) zAy=[o@E-=y]Vyo )
Cx) z0ly—z) > (@-2y))=y0lz-y) =)
We shall introduce now new algebras, which are particular cases of BCK(P) lattices (residuated lattices)
and generalizations of Hajek(P) algebras (BL algebras).
o 1) We define first the algebras satisfying one of the above conditions; we get four algebras:

(
(
(
(

Definition 6.1
An « algebra is a BCK(P) lattice satisfying the condition (C,).
A B algebra is a BCK(P) lattice satisfying the condition (Cy).
A v algebra is a BCK(P) lattice satisfying the condition (Ch).
A § algebra is a BCK(P) lattice satisfying the condition (Cx).

e 2) Now we define the algebras satisfying two of the above conditions; we have thus six algebras:

10



Definition 6.2 _

An af algebra is a BCK(P) lattice satisfying both conditions (C-) and (Cvy), ie. satisfying the
condition (B3).

An av algebra is a BCK(P) lattice satisfying both conditions (C-) and (Ch).

An aé algebra is a BCK(P) lattice satisfying both conditions (C_,) and (Cx).

A B algebra is a BCK(P) lattice satisfying both conditions (Cy) and (Ch).

A B5 algebra is a BCK(P) lattice satisfying both conditions (Cv) and (Cx).

A 78 algebra is a BCK(P) lattice satisfying both conditions (Cp) and (Cx).

Remark 6.3 The o algebra is just the weak-BL algebra [20] (the MTL algebra [18]). Thus, ”weak-BL

algebra”, ”MTL algebra” and ” af algebra” are duplicate names for the same algebra.

o 3) Now we define the algebras satisfying three of the above conditions; we have four algebras:

Definition 6.4
An afy algebra is a BCK(P) lattice satisfying the conditions (C,), (Cy) and (Ch).
An afd algebra is a BCK(P) lattice satisfying the conditions (C3), (Cy) and (Cx).
An a6 algebra is a BCK(P) lattice satisfying the conditions (C), (Cp) and (Cx), i.e. satisfying the

condition (B2).
A B~ algebra is a BCK(P) lattice satisfying the conditions (Cy), (CA) and (Cx).

Remarks 6.5
(i) Recall ([43], Theorem 3.7) that a linearly ordered BCK(P) lattice (BCK(P) chain) satisfies the

conditions (CL), (Cv), (Ca), ie. it is an afy algebra. Consequently, all the examples of weak-BL
algebras [20] (duplicate name: MTL algebras [18] ), i.e. of af algebras, given in the literature are in
fact examples of linearly ordered a7y algebras (A is the real unit interval [0,1] and © is a left-continuous

t-norm on [0, 1]).
(ii) It remains an open problem to find examples of proper aff (duplicate names: MTL, weak-BL)

algebras, i.e which are not afy algebras.
(iii) There exist /87 algebras which are not linearly ordered (see in the sequel).

Remark 6.6 The ayé algebra is just (a duplicate name for) the ”divisible BCK(P) lattice” ("divisible
residuated lattice”, ”divisible integral, residuated, commutative l-monoid” [33]).

e 4) Finally, we have:
Definition 6.7 An af~yd algebra is a BCK(P) lattice satysfying all the conditions (C4), (Cy), (Ch),
(Cx).
Remark 6.8 An afy8 algebra is just (a duplicate name for) a Hajek(P) algebra (BL algebra).

Remark 6.9
We have used the short names "a”, ..., "afyd” = Héjek(P) algebras instead of the long names
»reversed left-a(P)”,. . ., "reversed left-a8vy6 (P)” algebras. We remind you that we have decided to work

with algebras from the world of ”—,1” (see the first column from the table from [43], Figure 1).

When working with algebras from the world of "®,—,1” (i.e. in the 3" column from the table
from [43], Figure 1), the corresponding names will be: ”X-a(RP)”, ..., "X-afyd(RP)”"=BL algebras,
respectively.

Remark 6.10 Recall the important result ([43], Theorem 3.8) that a linearly ordered BCK(P) lattice
(BCK(P) chain) satisfies the conditions (C,), (CV), (Ca), ie. it is an afy algebra. Consequently, only
afBy and afyé = Héjek (BL) algebras can be linearly ordered, all the others are not linearly ordered.

Consequently, note that:
_ the four conditions are divided into two groups: the three conditions (C-), (Cv), (Cx) on one side and

the condition (Cx) on the other side;
- since most of the above defined algebras are not linearly ordered, it is important that we know to make

the ordinal sum between two BCK(P) lattices, not necessarily linearly ordered.
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We add now the conditions (WNM) and (DN) to @, B, ..., a6 algebras. Thus, we give the following
definitions.

Definition 6.11
(1) We shall name (wnwm)2, wnMm)By o (WNM)ozﬁ’ﬂS algebras those a, 3, ..., affyd algebras, re-

spectively, which satisfy the condition (WNM).

(2) We shall name a(pny, B(DN)s -+ - afyd(pn) algebras those a, B, ..., af6 algebras, respectively,
which satisfy the condition (DN).

(3) We shall name (WNM)Q(DN), (WNM)ﬂ(DN): - (WNM)OAB’)/(s(DN) algebras those B, ..., afyé
algebras, respectively, which satisfy both conditions (WNM) and (DN).

We do not know exactly how the condition (WNM) reacts with the four conditions (CL), (Cv), (CA),
(Cx), but we know how condition (DN) reacts. Recall for this the following result from [43]:

Proposition 6.12
Let A= (4,A,V,—,0,1) be a BCK(P) lattice. Then,
(Cp) + (DN) < (Cy) + (DN) <= (CA) + (Cv) + (DN).

Remark 6.13 In the group of the three conditions (C-), (Cv), (Ca) the last two, (Cy) and (Cn), are
very special, since in a BCK(P) lattice with condition (DN) they are equivalent (dual). Consequently, by
Proposition 6.12,

- the B(pn) algebras, the y(pn) algebras and the By(py) algebras coincide;

- the af(pn) algebras, the ary(pn) algebras and the afy(pn) algebras coincide;

- the B6(pn) algebras, the Y6(pn) algebras and the Byd(pny coincide;

- the aBd(pn) algebras, the ayd(pn) algebras and the afyd(pn) algebras coincide; they are equivalent
definitions of Wajsberg algebra (MV algebra).
We write:

Bony = YpN) = BYDN),

aBpny = @Y (pN)= aBV(DN),

Béon) = Y9Ny = BYO(DN);

aBépny = avdpny = abrdpny = W (MV).

Note that aB(pn) algebras, i.e. afyon) algebras, are already studied in the literature under the
names "IMTL algebras” (Involutive Monoidal t-norm based Logic), introduced in 2001 by Esteva -and
Godo [18] or "weak-Ro” algebras, introduced in 1997 by G.J. Wang [73]; note also that Pei [63] proved

that IMTL and weak-Rq algebras coincide (are categorically equivalent).
Recall [18] that a particular case of IMTL algebras are the "NM algebras”, i.e those IMTL algebras

satisfying the condition (WNM) (or those WNM algebras satisfying the condition (DN) ).

Recall also [63] that NM and Ry algebras are categorically equivalent and also IMTL and weak Ry are
categorically equivalent.

Finally, recall that:

(WNM)MVZ MV + (WNM), (WNM)W =W + (WNM)

Hence, we have:
(1) NM = IMTL + (WNM)= WNM + (DN)=MTL + (DN) + (WNM),

(1) R = weak-Rg + (R6) = af +(DN) + (WNM) = afiy + (DN) + (WNM) = afypny + (WNM)=
(wnmyaBy + (DN).

(2) W = Ha(P) + (DN)=[aBy + (Cx)] + (DN)= [efy + (DN)] + (Cx)=[af + (DN)] + (Cx) =
weak-Rg + (Cx).

(2") MV 2 BL + (DN)=[X —afy(RP) + (Cx)] + (DN)= [X-afy(RP) + (DN)] + (Cx)=[X-af(RP)
+ (DN)] + (Cx) = [MTL + (DN)] + (Cx): IMTL + (Cx).
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3) wnyW =W + (WNM) @ [afy + (DN)] + (Cx)] + (WNM)= [afy + (DN) + (WNM)] +
(Cx) =wnmeBypny + (Cx) = Ro + (Cx).

(3") (wnmyMV=MV + (WNM) v [IMTL + (Cx)] + (WNM)= [IMTL + (WNM)] + (Cx)= NM
+- (Cx)

Definition 6.14
We shall say that a BCK(P) lattice (residuated lattice) is proper if it does not verify the four condi-

tions (C,), (Cv), (Ca), (Cx), the condition (WNM) and the condition (DN). Their class is denoted by
BCK(P)-L (R-L, respectively).

We shall say that a (wnn)BCK(P) lattice is proper if it does not verify the four conditions (C-),
(Cv), (C), (Cx) and the condition (DN). Their class is denoted by (wnuBCK(P)-L ((wnaR-L,
respectively).

We shall say that a BCK(P)(py) lattice is proper if it does not verify the four conditions (C,), (Cv),
(Ca), (Cx) and the condition (WNM). Their class is denoted by BCK(P)-L(pn) (R-L(py), respectively).

We shall say that a (wnarBCK(P)(pny lattice is proper if it does not verify the four conditions (C-),
(C\y), (Cr), (Cx). Their class is denoted by wnmyBCK(P)-Lpny ((wnmR-Lpny, respectively).

We shall say that the algebras «, f, ..., afyd are proper if they satisfy only the condition (conditions)
from their definition. We define similarly a proper (w @ algebra, a proper a(pn) algebra and a proper

(WNM)X(DN) algebra, etc.

Note that BCK(P)-L(py) (i-e. BCK(P) lattices with condition (DN)) are categorically equivalent
with residuated lattices with condition (DN), also named ”Girard monoids” [33].

Consequently, we have:

- in Figure 9, the plane ("map”) P, of the hierarchies of the BCK(P) lattices which are generalizations of
Hajek(P) algebras (BL algebras);

~in Figure 10, the plane (ynanP, of the hierarchies of the the (wna)BCK(P) lattices which are gener-
alizations of (WNM)Hajek(P) algebras ((wnar)BL algebras);

- in Figure 11, the plane P(ppy, of the hierarchies of the BCK(P)pn) lattices which are generalisations
of Ha(P)(pn) algebras (i.e. of Wajsberg algebras);

- in Figure 12, the plane (w )Py, of the hierarchies of the (WNM)BCK(P)(DN) lattices which are
generalisations of (WNM)Héjek(P)(DN) algebras (i.e. of (wnn)Wajsberg algebras).

In Figures 9, 10, 11, 12, the sign ”=" means duplicate names, the sign ” =” means equivalent definitions,
while the sign ”22” means that the corresponding categories are equivalent.

In those four Figures also, those classes for which we didn’t found any examples, without or with
condition (WNM), are marked by the sign ”??” and those for which we didn’t found examples are marked
by the sign ”?”; thus, it remains an open problem to find examples for that classes.

We give in Figure 13 the spacial vue of the four planes P (see Figure 9), (wnn)P (see Figure 10),
Pipny (see Figure 11) and wnm)Ppny (see Figure 12).

By cutting with vertical planes, we get the following hierarchies, for examples:

In Part I1I and Part TV we shall give examples of algebras from Figure 77 and in Part V we shall give
examples of algebras from the other previous Figures.

Remarks 6.15

(1) The following pairs of BCK(P) lattices satisfying the condition (DN) seem to be very important;
the algebras of each pair seem to be incomparable (under inclusion):
(1.1) (w N M) (DN) dlgebras and ad(pyy (?7) algebras from Figure 19; we have only examples of (w nan (o)
algebras (see Part V);
(1.2) wnmBrony (7) algebras and Byd(pny (77) algebras from Figures 23 and 24; it remains an open
problem to find examples;
(1.3) Ro = (wNm)@BYV(DN) (NM) algebras and afyd(pny = Wajsberg (MV) algebras from Figures 25 and
26 (another Figure appears in Part IV). We have examples (see Part ITI and Part IV) which prove that
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BCK(P)-L & R-L
(BCK(P) lattices = residuated lattices)

~divisible
)-L (R

afBvyé
=Ha(P) = BL

Figure 9: Plane P (Classes of BCK(P) lattices (residuated lattices), generalizations of Héjek(P) algebras
(BL algebras))
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wnm)BCK(P)-L= wnanR-L

(w Ny eBY0
= wnwnHa(P) = ) BL

Figure 10: Plane (w P (Classes of BCK(P)-L (R-L), generalizations of Ha(P) (BL), all with condition
(WNM))



BCK(P)-L(pn)
= R-Lipn) = Girard monoids

Siom 77
(DN
(Cv) + (Ch) Biom) (Cv) +(Ch)
=Y(DN)
:ﬂV(DN)
aB(on) Bé(pN)
=ONDN) =Y4(DN)
- =aBy(pN) = Bvéony 77
= weak-Ry

= weak—BL(DN)
=MTLpn)=IMTL

aBdpny= avdpny=abYd(DN)
= Ha(P)(DN) =W
>~ MV = BL(DN)

Figure 11: Plane P(py) (Classes of BCK(P)(pn) lattices (residuated lattices with condition (DN)), gen-
eralizations of Wajsberg algebras (MV algebras))
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wninBCK(P)-Liony = wnmR-Lion) 7

wnmdony 77

(Cv) +(CA) (Cv) + (Ch)

(wNM)B(DN)
=(WNM)Y(DN)
=wnmBron) ?

(wNM)QB(DN) wNM)BO(DN)

=(WNM)FVDN) :(WNMW(S(DN)
=w @B = wnm)BYdpny 77
= Ry
= (WNM)weal<~BL(DN)
—NM (Cx) (Cs)
W B (DN)= (WNM)XYS(DN)=(w N ) BYO(DN)
= wnmyHa(P)on) = wvmy W
= wymyMV = (wnvnBLoow)

Figure 12: Plane (wna)EP(pn) (Classes of (WNM)BCK(P)—L(DN) (residuated lattices with conditions
(WNM) and (DN)), generalizations of NRy algebras (Wajsberg algebras (MV algebras) with condition

(WNM)))

\\(D N)
N

(WNM)

wnm)P(on)

Figure 13: Spatial vue of the four planes P, wnm)Ps Powny, wNmyPpN)
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BCK(P)-L = R-L

(DN)

(WNM)

BCK(P)-Lpn)
E(WNM)BCK(P)—L ~R-L (DN)
L R-L =Girard monoids |
= (wNmbs
o (WNM)

(DN)

5 0

wniBCK(P)-Lipn) = (wymR-Lon

Ha(P) & BL
(DN)
(WNM)
‘ Ha(P)(pn)
=W =MV
(WNM)

wnaHa(P) = BL(pn)

(DN)

wNmyMV = 4y nnBLpw)

Figure 15: Vertical section through Ha(P) (BL) algebras
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BCK(P)-L = R-L

afyé = Ha(P) = BL

(WNM) BCK(P)-L(pn)
= R-Lpn)

=Girard monoids

(WNM)BCK(P)—L
= wnmR-L (DN)
Ha(P)pw)

=W
= MV
= BL(DN)
WNM
wn ) BCK(P)-Lpn) ( )
= wnmnR-Lpn) ?
wnnaByon= wnmnHa(P)on) = wninW = wnm)BLon) = (wymMV

Figure 16: Vertical sections through residuated lattices and BL algebras

(DN)
(WNM)

&(DN)

(WNM)&
(WNM)

(DN)

Figure 17: Vertical section through o algebras



(DN)
(WNM)
S
(wnm)o 77
| (WNM)
(DN)
wNM)ODN) 77

(X(S(DN> 7

(WNM)Q(DN)

7

(WNM)QO(DN)

Figure 19: Vertical sections through o and ad algebras
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Bon) =BYDN)

(wnM)B

wnmBomy=wnanByon) ?

Figure 20: Vertical section through f algebras

YoN)y =BYDN)

(WNM)Y

Figure 21: Vertical section through v algebras
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(WNMBDN)=WNM)VDN)= wNm)BYDN) 7

Figure 22: " Vertical” sections through B and v algebras

77

(wNM)BYI(DN)

Figure 23: " Vertical” sections through 5, fv, 80 and 0 algebras
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(WNM)ﬁV

7

(wNMBYI(DN)

Figure 24: " Vertical” sections through 7, By, 76 and Bvd algebras

(WNM)Oéﬂ’Y
Ha(P)(DN)
~ MV

= BL(DN)

WNM

Ro=(wnm)afyon= (wnm) BN ( )

~ wnmyMTL(pN) (Cx)
:(WNlM)IMTL:NM
(WNM)BYO(DN)= wanHa(P)on) = wymW = wnmBLony = (wnmuyMV

Figure 25: Vertical sections through afy and Hajek(P) (BL) algebras
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(WNM)Oéﬁ“Y
Ha(P)pn)
=W =2 MV
= BL(DN)

(WNM)GBV(DN)
=Ry =2 NM (Cx)

wnnHa(P)ony =wnmW = wyvanBLoon) = wyinMV
Figure 26: " Vertical” sections through a8, afv, a0 and afyé (BL) algebras

they are incomparable.

(2) Consequently, the following pairs of BCK(P) lattices not satisfying the condition (DN) seem to be

very important; the algebras of each pair seem to be incomparable (under inclusion):
(2.1) (wnmye algebras and o (?77) algebras from Figure 19; we have only examples of (wnm)& algebras

(see Part V);
(2.2) (wnm)By algebras and By (?7) algebras from Figures 23 and 24; it remains an open problem to

find examples;
(2.3) (wnmafy algebras and afyd = Héjek (BL) algebras from Figures 25 and 26 (another Figure ap-
pears in Part IV). We have examples (see Part ITT and Part IV) which prove that they are incomparable.

We shall call as "Roman algebras” the X-(wnu)fy(RP) algebras, i.e. we have:
Roman 2 (yyp)afy  just as:

BL & afyé=Ha.
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