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Abstract

In this paper we study the BCK algebras and their pa,rticula.r classes: the BCK(P) (residuated)

lattices, the Hr{jek(P) (BL) algebras and the Wajsberg (MV) algebras, we introduce new classes of

BCK(P) lattices, we establish hierarchies and we give many examples. The paper has five parts.

In the first part, the most important part, we decompose the divisibility and the pre-linearity

conditions from the definition of a BL algebra into four new conditions (C-), (Cv), (C^) and (Cx).

We study the additional conditions (WNM) (weak nilpotent minimum) and (DN) (double negation) on

a BCK(P) lattice. We introduce the ordinal sum of two BCK(P) lattices and prove in what conditions

we get BL algebras or other structures, more general, or more particular than BL algebras.

In part II, we give examples of some finite bounded BCK algebras. We introduce new general-

izations of BL algebras, named a, 0, .y, 6, a0, ..., a0'y6 algebras, as BCK(P) lattices (residuated

lattices) verifying one, two, three or four of the conditions (C-), (Cv), (Cn) and (Cx). By adding the

conditions (WNM) and (DN) to these classes, we get more classes; among them, we get many gener-

alizations of Wajsberg (MV) algebras and of Ro (NM) algebras. The subclasses of lwivrrz) Wajsberg

algebras (lwruuyMV algebras) and of iwivvyHrijek algebras (twNprlBL algebras) are introduced' We

establish connections (hierarchies) between all these new classes and the old classes already pointed

out in Part I.
In part III, we give examples of finite MV and (wivlzyMV algebras, of Hrijek(P) (i.e. BL) algebras

ar'd s,y7,1 ylBL algebras and of o,yd (i.e. divisible BCK(P) lattices (divisible residuated lattices or

divisible integral, residuated, commutative l-monoids)) and of divisible 1wi',',rzyBCK(P) lattices.

In part IV, we stress the importance of aB1 algebras versus oB (i.e. MTL) algebras algebras and

of Re (i.e. NM) algebras versus Wajsberg (i.e. MV) algebras andof lwutntyaBT algebras versus BL

algebras and of o7 versus o7d algebras. We give examples of finite IMTL algebras and of (wr'rrrzyIMTL

(i.e. NM) algebras), of aB1 algebras andof 1wwt,t;oB7 (Roman) algebras and frnally of a7 algebras.

In part V, we give other examples of finite BCK(P) lattices, flnding examples for the others

remaining an open problem. We make final remarks and formulate final open problems.

Keywords MV algebra, Wajsberg algebra, BCK algebra, BCK(P) lattice, residuated lattice, BL

algebra, Hd,jek(P) algebra, divisible BCK(P) lattice, a, 0,'Y, 6, d0, ..., a0'y6 algebra, MTL algebra,

IMTL algebra' WNM algebra, NM algebra, Re algebra, (wruv;MV, (wNtt1BL, (wNM) aB7, Roman

algebra

Part II has two sections.
In Section 5, we give examples of some finite bounded BCK algebras.

In Section 6, we introduce new generalizations of Hdjek(P) (BL) algebras, named a, 0, ^1,6, a0, ...,

aB76 algebras, as BCK(P) lattices (residuated lattices) verifying one, two, three or four of the conditions

(C-), (Cu), (Cn), (Cx) found in Part I. We make the connections witir MTL algebras [18] and with

divisible integral, residuated, commutative l-monoids [33]. By adding the conditions (WNM) and (DN)

to these classes, we get more classes of gyNula algebras, alolry algebras, 1sz1,ry;o1arv; algebras etc'



Thus, we get generalizations of BL and (wNrr41BL algebras, and of Wajsberg (MV) algebras and of NRa

algebras. We establish connections (hierarchies) between all these new classes and the old classes already

pointed out in Part I and Part II. We make the connections with MTL, WNM, IMTL and NM algebras

ifA1, 1Zf1 and with Ro [73], [63] and N-Ra algebras [5a]. See the Remarks 6.15, where we introduce the

name "Roman algebra".

Examples of finite bounded BCK algebras

In this section we shall give many examples, but we shall present the proof only in one case' as an

example of proof.

5.1 Examples of bounded BCK algebras which are not lattices

We give here three examPles.
1. Example of bounded BCK algebra which is not a lattice and

does not satisfy the condition (P)

Let us consider the set A = {0,a,b,c,d,n,I} organized as a poset which is not a Iattice as in Hasse

diagramme from Figure L and as a BCK algebra with the operation + as in the following table:

Figure 1: Bounded BCK algebra without or with condition (P), which is not a lattice

0 a b c d n l

This bounded BCK algebra does not satisfy the condition (P) since does not exist

eobno tg ion  m in {z lo  <  b  -+  z )  *  m in {a ,  b , c ,d , , n , l ) .

2. Example of bounded BCK algebra which is not a lattice and
which satisfies the condition (P)

0
a

b

d
n
I

1 1 1 1 1 1 1
0 1 n 1 1 1 1
0 n 1 1 1 1 1
O n n 1 n 1 1
O n n n 1 1 1
O n n n n 1 1
0 a b c d n l



Let us consider the set /= {0,a,b,c,d,n,1} organized as a poset which is not a Iattice as in Figure 1

and as a BCK algebra with condition (P) with the operation -+ and

roynotY ion  min{z  l r  <y  -+  z }

as in the following tables:

0 a b c d n l 0 a b c d n l

n
. l

I

n
n
n
b

Thus, ,4 is a BCK(P) algebra which is not a lattice'

3. Example of bounded BCK algebra which is not a lattice and

which satisfies the conditions (P) and (DN)

This example answers to the open problem raised in [42], Remarks2.a0Q). Let us consider the set

A= {g,*,o,b,c,d,,n,l} organized as a poset which is not a lattice as in Figure 2 and as a BCK algebra

with condition (P) with the operation -r and

royno t tnon  m in {z  I  r  < . y  -+  z }

as in the following tables:

Figure 2: Bounded BCK algebra with conditions (P) and (DN), which is not a lattice

0
d

b

d
n
I

1 1
n l
n n
n n
n n
n n
0 a

1 1 1 1
1 1 1 1
1 1 1 1
1 n 1 1
n 1 1 1
n n 1 1
c d n l

0

b

d
n
I

0 0 0 0 0 0 0
0 0 0 0 0 0 a
0 0 0 0 0 0 b
0 0 0 0 0 0 c
0 0 0 0 0 0 d
0 0 0 0 0 0 n
0 a b c d n l



I

n
c
d

b
m
0

Hence, for ali u, u e A,

m a b d n l
1 1
1 1
n l
n n
n n
n n
n n
m a

0 m a
0
m
a
b
c
d
n
1

0 0  0  0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 m
0 0 m 0
0 0 m m
0 m a b

u { u
0 < u < u < I
u  =  r n r u  : 0

u = a r ' u = 0
u = b r u = 0
, u , = c r u = 0

u : d r u = 0
U , :  n r u  : 0

u = 1
{ (o,b)  ,  (b,  a)  ,  (c ,  d) ,  (d,  c) }  .

n 1-+

1 1
1 1
n 1
1 1
- 1

n n
n n
b c

1 1 1
1 1 1
1 1 1
1 1 1
n 1 1
1 1 1
n 1 1
d n 1

' u , - + u :

t ,
n 1

n ,
c1

d,
Q )

o,
rn l
u)
n ,  (u ,u )  e

To prove that (4,  ) ,  +,1) is a BCK
have (z -+ r) -+ (y -+ r) > Y -+ z.

Let us denote

algebra it is sufficient to prove (I), i.e' that for all r,y,z € A, we

TInotg!|on e -+ r) -+ (y -+ r) and T2notglnon y _+ z.

Hence, we have to prove that for alI r,y, z € A, Tt > 7.2. Indeed, we have the following cases:

l ) y 1 2 ,
2 ) 0 < z < y < 1 ,
3 )  z  = 0  a n d  9  €  { m , a , b , c , d , n ) ,
4 ) a : L ,
5 )  ( y , r )  €  { ( a , b ) ,  ( b , a ) , ( c , d ) , ( d , c ) ) .

r  1 ) .  I f  A  S  z , then z  )  r  I  l J  )  r ,hence71 = I ,  T2 :  1 ,  thus  ( i )  ho lds '

o 2). I f  01 z 1y (  1,  then we have the fol lowing subcases:

2 . I ) y = a i  z = r m ,
2 . 2 ) 1 1  = b ,  z = m ,
2 . 3 ) Y = c , z e { m , a , b } ,
2 . 4 ) ' 1 1  = d , z € { m , a , b } ,
2 . 5 )  u  =  n ,  z  €  { m , a , b , c , d ) .

2.I): y : a, z = rn. Then T2 = U -+ z = a -+ rm : n.
- I f  r  =  0 ,  then TL= (z  -+  r )  -+  @ -+  * ) : (m -+  0)  -+  (o .  -+  0 )  :  n -+  c :n=T2 '
- I f  r :  r n ,  t h e n  T l =  ( z  - +  r )  +  ( y  - +  * )  =  ( m - + m )  - +  ( a - + m )  -  I - + n = n = 7 2 '
- I f  r  e  {a ,c ,d , ,n ,  1 } ,  then r )  y  =  o ;  hence y  -+  s ) :1and consequent ly ,T l :  (z  -+  r )  -+  (y  -+

r ) = ( z - + r ) ' + l : I l T 2 .
- If r = b, then T1 = (z -+ r) -+ (y -+ 

") 
= (m -+ b) -r (a -+ b) = | -+ n : n = T2'

Thus, (I) hoids.

2.2) V -- b, z = rn. Similar to 2.1).

2 . 3 ) Y : c , z e { m , a , b ) :



2.3.L) y = c1 z: rn. Then T2 : U -+ z = c -+ rn = n'
- I f  r :0 ,  then T l :  (z  -+  r )  -+  (y  -+  r )  =  (m -+  0)  -+  (c  -+  0 )  =  n  -+  a -  n -72 '
- If n € {m,a,b), then we have 0 I z 1 r < y < | and hence TL : I -+ n = n - T2'

- l f  r = d , t h e n T I : ( n L - ) d )  - +  ( c - + d )  = 1 = + n = n = T 2 '
- I f r e { c , n , | ) , t h e n w e h a v e r ) y : c , h e n c e y - + t r = l a n d c o n s e q u e n t l y , T l = | > T 2 .

2.3.2) y : ct z: a. Then T2 = A -+ z = c -+ & = n'
- I f  r :0 ,  then T l :  (z  -+  r )  -+  (y  -+  r )  -  ( ,  -+  0 )  -+  (c  -+  0 )  =  c -+  a=n=72 '
- If r :rn, then Tl : (a -+ m) -+ (c -+ m) : n 1 n = | > 72.
- I f  r : a , t h e n T I = ( a - l a )  - +  ( c - + a )  = 1 - + n = n = 7 2 .
- I f  r  =b, then Tl = (a-+ b) -+ (c -+ m) = n -+ n = |  )  T2.
- I f  r  =  d ,  t h e n  T I =  ( a - +  d )  - +  ( c - +  d )  =  1 - +  n = n = 7 2 .
- l f  r  € {c,n,L}, then r )  a :  c,hence y -+ tr  =1 and consequent ly Tl  = |  )  72.

2.3.3) a = c,  z:  b '  Simi lar to 2.3.2) '

2.4) y = d,,  z e {m,4, b} :  Simi lar to 2'3) '

2 . 5 )  Y  :  n ,  z  €  { m , a , b , c , d }  :

2.5.1) y = nj z = rn. Then T2 = U -+ z = n -+ m : n'
- tf * :0, then Tl = (z -+ r) -+ (A --> r) = (m -+ 0) -+ (rz -+ 0) = n -) rn = n = T2'

- If r :rn, then Tl = (m -+ m) -+ (n -+ rn) : 1 + n = n : T2'
-  I f  r  €  {a ,b ,cd} ,  then 0  <  z  <  r  I  y  11 ,  hence T l  =  I  -+  n  :  n  :72 '
- If r €i,, 1), then a Za : n,hence gt -+ r = 1 and consequently Tr : | > T2'

2.5.2) y = n, z:  a.  Then T2 = U -+ z :  n -+ & = n'
- Ii, =0, then Tl = (z -+ r) -+ (y -+ r) - (o -+ 0) -r (n -+ 0) = c --' rn : n = T2'

- If r = m, then Tl : (a -+ m) -+ (n -+ m) = n -+ n = | > T2'
- I f  r  e  { a , c , d , } , i h e n  0  1  z  1  r  1 U  l I , h e n c e  ? 1  =  1  - +  n  =  n  = 7 2 '

-  I f  r :  b,  then TL: (a -+ b) -+ (n -+ b) = n 1 n = |  > 72.
. I f . r € { n , I } , t h e n r ) - a = n , h e n c e g _ + t r = l a n d c o n s e q u e n t l y T | = | ) 7 2 .

2 .5 .3 )  y  :  f l ,  z :  b .  S imi la r  to  2 '5 '2 ) '

2 . 5 . A )  y  = n )  z  = c .  T h e n  T 2 = U  - +  z = n - + c = n '
- I f  r : 0 ,  t h e n  T L = ( z  - +  r )  - +  ( y  - +  r ) : ( c - +  0 )  - i  ( n  - +  0 )  =  a - + r n = n : 7 2 '
- I f  r  €  { m , a , b ) ,  t h e n  0  < r  <  z  1 y  1 1 ,  h e n c e  7 1  = n - + n = l } 7 2 '
- If r =d, then Tl : (c-l d) -+ (n -+ d) = n -+ n : | > T2'
- I f  r = c , t h e n T T = ( c - + c )  - +  ( n - - t c )  = 1 - + n = n : 7 2 '
- I f r € { n , L ) , t h e n r ) a = n , h e n c e g - + t r = l a n d c o n s e q u e n t l y T l = L > 7 2 '

2 .5 .5 )  Y  =  n ,  2 :  d '  S imi la r  to  2 '5 '4 ) '

.  3 ) .  z :  0  a n d  a  €  { r n , a , b , c , d , n }  :

3.L) z :  0,  A =rn. Then T2 = a -+ z = rn -+ 0 = n'
- I f  r : 0 ,  t h e n  T l = ( z  - +  r )  - +  ( y  - +  r )  =  ( 0 - i  0 )  - +  ( r n  - +  0 )  =  l - ) n = n : 7 2 '
- If r =rn, then fl = (0 -+ rn) -+ (m -+ m) = 1 -+ 1 = 7 > T2'
-  I f  r  e {a,,b,c,d' ,n, ! \ , then r )  E'  hence lJ 1 r  = 1 and consequent ly Tl  = |  > T2'

3 . 2 )  z  = 0 ,  U  = a .  T h e n  T 2 = A  - +  z = a - + 0 = c '  - I f  n  = 0 ,  t h e n  T I = ( z - +  r )  - +  ( y  - +  * ) :  ( 0  - +

0) -+ (a -+ 0) = |  -+ c :  c =72'
-'If r :rn, then ?1 : (0 -+ m) -+ (a -+ rn) = 1 -+ n = n ) T2'
- I f  r  :b ,  then ?1  =  (0  *+  b)  +  (a  -+  b ) :  1  -+  n  :  n )  T2 '
- If. r e {a,c,d,,n,, 1}, then r ) U,hence g -+ ix = l and consequentiy Tl : 7

3.3) z = 0, a = b'  Simi lar to 3.2).

> T 2



3.4) z :  0,  U =c. Then T2 _- y -+ z =c J 0 = &. -  I f  t r  =O,then ?1 _ ( ,  -+ r)  -+ (y -+ r)  :  (0 _r

0) -r (c -+ 0) = L -+ a = a = T2'
- ' l t ,  e  { m , a , b \ , t h e n  0  =  z  1 t r  1 y  =  c <  1 ,  h e n c e  T l - - I  - } n = n > T 2 '

- If r :d, then-Tl = (0 -+ d') -+ (c -+ d) = l -+ n = n > T2'

- I f  r  e  {c ,n , l } , then r  )  y ,he tce  A 4  r  =  1  and consequent ly  T l : l>T2 '

3 .5 )  z  =0 ,  U:  d '  S imi la r  to  3 '4 ) '

3.6) z = 0, A =n,. Then T2 = A -+ z =n -+ 0 = ntr' -If r = 0' then ?1 - (t -+ r) -+ (y + r) = (0 -l

0) -+ (n -r 0) = I --+ m = m =72.
-  I f  t  L  { m , a , b , c , d ' ) , t h e n 0 _ -  z  1 r  1 !  =  n ,  h e n c e  T L = 7  - + n = n ) 7 2 '

- I f  r  e i r ,  1) '  then'r  )  y,  hence !  -)  r  = l  and consequent ly Tl=1)72'

o 4) y =1. Then T2 = A -+ z = L -+ z = z, fot  al I  z € A:

4 . I ) Y = I , z = 7 2 = 0 .' 
I Tt = (z -+ r) + (a -+r) = (0 -+ r) + (1 -+ r) = 1 -+ r = r ) T2'for all r € A'

4 . 2 ) y = l , z = 7 2 = m .' "- 
lt r= 0, then Tl : (z -+ r) -+ @ -+ *) - (* -+ 0) -+ (1 + 0) = n ) 0 = m : T2'

- I f  r €  { m , a , b , c , d , , n ' , l } ,  t h e n  z S r  ! 9  =  1 ,  h e n c e  T L = l  - +  ( 1  - r  r )  = t ) - 7 2 '

4 . 3 ) y = 1 ,  z = T 2 = a .'  - - I f  
r=  0 ,  then TL=(z  - r  z )  - r  (y  -+  r )  -  (o -+  0)  - r  (1  *  9  

=  c r  0  =  a=72 '

- If r :rn, then Tl = (a -+ m) -+ (1 -+ rn) : n -+ m = n > T2'
-  I f  r  e  {a ,c ,c l ,n ,1 } ,  then z  I  r  19  =  1 ,  hence T I= t -+  (1  -+  r )  =  r ) '  T2 '

-  I f  r  = i ,  t h " n  T l  =  ( a - +  b )  +  ( 1  - +  b )  : n  )  b  =  n > 7 2 '

4.4) y = I ,  z = T2 = b. Simi lar to 4'3) '

4.5) y = l, z = T2 = c. - If. r :0, then Tl = (z -+ r) -+ (g -+ 
") 

- (" -+ 0) + (1 -+ 0) : a -+ 0 : c :

72 .
- I f  r  €  { m , a , b } , t h e n  0  I  r  1  z  =  c  1 A =  1 ,  h e n c e  T ! =  n - +  ( 1  - l  r )  = n  - + ' t  = n >  T 2 '

-  I f  r  =d ,  then T I  =  (c -+  d)  - )  (1  -+  d )  =  n  -+  d= n>T2 '
-  I f  r  €  { c , n , I } , t h e n  z  I  r  I  y =  1 ,  h e n c e  T !  =  L - +  ( 1  - +  r )  =  I  1  t  =  t )  T 2 '

4.6) y = l ,  z =72 = d. Simi lar to 4'5) '

4.7) y = I ,  z = T2 = n. -  I f  r  :0,  then TI = (z -+ r)  -+ (a -+')  = (n -+ 0) -+ (1 -+ 0) = m 1 0 =

n = 7 2 .
-  I f  r  €  { m , a , b , c , d ' \ , t b e n 0  <  r  <  z  =  n  1 9  =  1 '  h e n c e  T r =  n  - +  ( 1  - l  r )  =  n  - 4  t r  = n  = T 2 '

-  I f  r  € { , ,1},  ther- '  z I  r  I  y= 1'  hence Tl =1'-+ (1 -+ r)  = |  -+ tr  :  r}  T2'

.  5 )  ( y ,  z )  e  { ( a , b ) , ( b , a ) , ( c , d ) , ( d , c ) } :

5.1) (y,  z) = (a,b).  Then T2 = l l  -+ z = a I  b = n''  
- - t t ,  =  0 ,  t h u n  T l = ( z  - +  r )  - +  ( y  - +  r ) :  ( b - + 0 )  - +  ( o - +  0 )  =  d - +  c = n = T 2 '
- If r, = m,ihen 71 = (b -+ m) -+ (a -+ m) = n -+ n = L ) T2'
- lf r = o, then TI = (b -+ o) -+ (a -+ a) = n -+ 1= | ) T2.
- I f  r  =  b ,  t h e n  T 1 =  ( b  - i  b )  - +  ( 4 .  - +  b )  =  1 - +  n : n = 7 2 '
-  I f  r  € {c,d,,n, l } ,  then r }  y -o, hence y -+ r  = 1 and consequent iy Tt = I  > T2.

5 .2 )  (y ,  z )  :  (b ,o ) .  S imi la r  to  5 .1 ) .

5 .3 )  (y ,  z )  =  (cd) .  Then T2 =  A -+  z  =  c  )  d ' :  n '
- lt *= 0, then TL = (z-+ r) -+ (y -+ r) = (d -+ 0) -i (c -| 0) : b -+ a = n = T2'
- I f  r  €  { m , a , b } ,  i h e n  0  1 r  1 y , z  <  1 ,  h e n c e  T 1  = n - - ' n = I > 7 2 '



- If r =c, then fL : (d-+ c) -r (c -+ c) = n -+ t -- 1 > T2'

- If r = d, then fl = (d -+ d,) -+ (c -+ d): 1 -+ n =,n: T2'

- If. t e{", 1}, then r'Z y =c' hence ! 4 r :1 and consequently Tl = I > T2'

5.4 (A,z) = (d,,c). Similar to 5'3)' Here the proof of (I) comes to the end'

Note that another proof of (I) consists in taking all ihe triples (y,',') € A x A x A, in the direct

Iexicographical order.
Thus, ,4 is a bounded BCK(P) algebra with condition (DN) (you have the values of rt = r -i 0 in

the tabie of -+, column of 0), which is not V-commutative'

5.2 Examples of bounded BCK algebras which are lattices and

which do not satisfy the condition (P)

We shall give four examples, very known as lattices'

Example 1

Let us consider the set A: {-t,O,a,b,L} organized as a lattice as in Figure 3 and as a BCK algebra

with the operation -+ as in the following table:

Figure 3: Example 1 of BCK lattice without (P)

I
- 1  0 a b
1
-1
- i
-1
-1

Remark (A, n, v, -+,0, 1) is a BcK lattice which does not satisfy the condition (P), since there are a'b € A

such that

o o bnot*oon min{z I  a  1b -+ z}  = min{o,  b,  1}

does not exist.

Example 2 (see [34])

-+

-1
0
a
b
1

1 1 1 1
1 1 1 i
0 1 b 1
0 a 1 1
0 a b 1







Figure 4: Example 2 of BCK lattice without (P)

Let us consider the set A = {0, a,b,c,L\organized as a lattice as in Figure 4 and as a BCK algebra

with ihe operation -) as in the following table:

0 a b c

Exampie 2

T h e n , 4 = ( A , A , v , - + , 0 , 1 ) i s a B C K l a t t i c e w h i c h d o e s n o t s a t i s f y t h e c o n d i t i o n ( P ) ' s i n c e t h e r e a r e
b , a € A s u c h t h a t

ba ono'glnon min{z I  b 3 a -+ z} = min{a, b 'c ' t }

does not exist.

f;"*"'3f:"rl '"t3, A = {0, a,b,c,r}.organized as a Iattice as in Figure 5 and as a BCK algebra

with the operation -+ as in the following table:

Figure 5: Example 3 of BCK lattice without (P)

0 a b c I
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Then,4 - (A,A,V,-+,0,1) is a BCK lattice which does not satisfy the condition (P), since there are

b,ce A such that

b o 
"no'*non 

min{z I b 1 c -+ z} = min{b, c, 1}

does not exist.
Example 4
Let us consider the set,4: {0, a,b,c,l} organized as a lattice as in Figure 6 and as a BCK algebra

with the operation -+ as in the following table:

I

,A..a ( f b> .

V
0

Figure 6: Example 4 of BCK lattice without (P)

0 a b c

Example 4

U

b

T

Then,4 - (A,A,V,-+,0,1) is a BCK lati ice which does not satisfy the condition (P), since there are

c , b e A s u c h t h a t

c o b ' o ' l o o n  m i n { z  I  c 1 b - +  z }  = m i n { b , c , l }

does not exist.

5.3 Concluding remark

Hence, we have the situation from Figure 7'

bounded BCK algebras,
which are not lattices,

without (P)

1 1 1 1 1
0 1 b c 1
0 a 1 c 1
0 a b 1 1
0 a b c 1

bounded BCK(P) algebras,
which are noi laltices

(p)y'\attice

ratti\,@)
BCK lattices,
without (P)

BCK(P) lattices

Figure 7: Classes of bounded BCK algebras



If we add the condition (DN), then, by Theorem ??, we get the situation from Figure 8'

BCK(P) lattices, with (DN)

Figure 8: Classes of bounded BCK(P) algebras, with (DN)

6 New classes of BCK(P) lattices (residuated lattices)

Recail [42],1431ihat a Hd,jek(P) (BL) aigebra is an algebra

A  =  ( A , n ,  V ,  - + , 0 ,  1 )

such that:
(81) "4 is a BCK(P) Iattice (residuated lattice),
(nz; rot a\l r,v € A, r AY = r o (r + 9) (divisibilitv);
(na; for aII r,y e A, (r -+ g)v (y -+ 

") 
= 1 (pre-lineariiv)'

Recail also that in [43], it was proved that:
(82) is equivalent with (C-+) + (Cn) * (Cx), while
(B3) is equivalent with (C*) * (Cv), hence
(82)+(83) is equivalent with (Cv) + (Cn) + (C-") + (Cx), where:

( C - )  ( , - + v )  - +  ( Y  - +  r ) = u  +  r ,
(Cr )  rv  y  =U,  -+  v )  -+  v lA  [ (v  -+  r )  -+  r ) ,
(C^) r  Ay = l r  o (n -)  y) l  v {a o (Y -+ r)1,
(Cx)  ro l (y  -+  r )  -+  ( r  -+v) )=vof ( r  -+a)  -+  (v  -+  * ) ) '

We shall introduce now new algebras, which are particular cases of BCK(P) Iattices (residuated lattices)

and generalizations of H6jek(P) aigebras (BL algebras)
. 1) We define flrst the algebras satisfying one of the above conditions; we get four algebras:

Def ini t ion 6.1
An a alqebra is a BCK(P) lattice satisfying the condition (e*)'

A 0 algebra is a BCK(P) Iattice satisfying the condition (Cv).
A 1 algebra is a BCK(P) lattice satisfying the conditio" (Cn)

A.6 algebra is a BCK(P) lattice satisfying the condiiion (Cx).

o 2) Now we define the algebras satisfying two of the above conditions; we have thus six algebras:

bounded BCK(P) algebras, with (DN)'
which are not lattices

?
I
I lattice

t
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Definit ion 6.2
An a0 algebra is a BCK(P) Iattice satisfying both conditions (C--') and (Cv), i.e. satisfying the

condition (B3).
An a7'algr6ro is a BCK(P) lattice satisfying both conditions (c*) and (c1).

An ad algebra is a BCK(P) lattice satisfying both conditions (c*) and (cx).

A h atgibra is a BCK(P) lattice satisfying both conditions (Cy) and (Cn).

A, B6 atgebra is a BCK(P) lattice satisfying both conditions (cy) and (c76).

A 16 atgebra is a BCK(P) lattice satisfying both conditions (ca) and (cx).

Remark 6.8 The aB algebra is just the weak-Bl algebra [20] (the MTL algebra [18]). Thus, "weak-Bl

aigebra", "MTL algebra" and"ap algebra" are dupiicate names for the same algebra'

. 3) Now we define the algebras satisfying three of the above conditions; we have four algebras:

Definit ion 6.4
An o.0l algebra is a BCK(P) Iattice satisfying the conditions (c-), (cv) and (cn).

A,n Cig6 algebra is a BCK(P) lattice satisfying the conditions (C-), (Cv) and (Cx).

Ln a16 algebrais a BCK(P) Iattice satisfying the conditions (C--n), (Cr,) and (Cv),i.e. satisfying the

condii ion (B2).
A 916 algebrais a BCK(P) lattice satisfying the conditions (cy), (cn) and (c;6).

Remarks 6.5
(i) Recatl ([43], Theorem 3.7) that a l inearly ordered BCK(P) lattice (BCK(P) chain) satisfies the

.oniit ion, (C-), '(Cr), (C,1), i.e. it is an al31 algebra, Consequently, all the examples of weak-Bl

algebras [zri] laupricai. nu-.' MTL algebras [18] ), i.e. of oB algebras, given in the literature are in

falt examples of linearly ordered aBy algebras (A is the real unit interval [0, 1] and O is a left-continuous

t -no rm on  [0 ,1 ] ) .
(ii) It remains an open problem to find examples of proper ap (dupiicate names: MTL, weak-Bl)

algebras, i.e which are not ap7 algebras'

(iii) there exist aBl algebras which are not linearly ordered (see in the sequel).

Remark 6.6 The o7d algebra is just (a duplicate name for) the "divisible BCK(P) Iattice" ("divisibie

residuated lattice", "divisible integral, residuated, commutative i-monoid" [33])'

r 4) Finally, we have:

Definit ion 6.2 An ap15 algebra is a BCK(P) iati ice satysfying all the conditions (C--'), (Cu), (Cn),

( C  x )

Remark 6.8 An ap16 algebra is just (a duplicaie name for) a Hajek(P) algebra (BL algebra).

Remark 6.9
We have used the short names "(1", ..., "a9'Y6" = Hrijek(P) algebras instead of the iong names

,,reversed left-a(p)",..., "reversed left-op7d(P)" algebras. We remind you that we have decided to work

with algebras from the world of "-+,1" (see the first column from the table from [43]' Figure 1).

When working with aigebras from the world of "O,t,l" (i.e. in the 3'd column from the table

lrom [43], Figure 1), the corresponding names wil l be: "X-a(RP)", ..., "X-c.l1d(RP)"=BL algebras,

respectively.

Remark 6.10 Recall the important result (143], Theorem 3.8) that a l inearly ordered BCK(P) lattice

inCK(p) chain) satisfies the conditions (C-+), (Cu), (Cn), i.e. it is an apl algebra' Consequently, only

crh and, ap16 = H6jek (BL) aigebras can be linearly ordered, all the others are not linearly ordered'

Consequentiy, note that:
- t l," four.onditions are divided into two groups: the three conditions (C-), (Cv), (Cn) on one side and

the condition (Cx) on the other side;
- since most of the above defined algebras are not linearly ordered, it is important that we know to make

the ordinal sum between two BCK(P) lattices, not necessarily linearly ordered'

1 1



We add now the conditions (WNM) and (DN) to a, B, . . ', a0l6 algebras' Thus, we give the following

definitions.

Deffnit ion 6.11
( 1 ) W e s h a l l n a m e ( w N M ) a t ( w N g g , " - ' . t ( w N M ) o B T 6 a t g e b r a s t h o s e o ' 0 ' " ' ' a p l 6 a l g e b r a s ' r e -

spectively, which satisfy the condition (WNM)'

(2) We shall name LtnNl, gpNy, . ' .., clB16pry algebras those a, 0, ..., aB16 algebtas, respectively,

which satisfy the condition (DN).

(3) We shall name (wNM)u(DN), (wNM)0@ru), .:-:-1I-I n\g!-pNl algebras those a' 0' " ' '  a0'y5

ulg.trrur, respectively, wnicn satisfy'both conditions (WNM) and (DN)'

We do not know exactly how the condition (WNM) reacts with the four conditions (C-), (Cv), (C^),

(Cx), but we know how condition (DN) reacts. Recall for this the following result from [43]:

Proposi t ion 6.12
iet A = (A, A, v, -r,0, 1) be a BCK(P) lattice' Then,

(Cn) + pN) e (c,) + (DN) e (Ci + (Cu) + @N)'

Remark 6.13 In the group of the three conditions (C-), (Cr), (C,r) the Iast two, (Cv) and (C,1), are

very special, since in 
"!C*1f1 

Iattice wiih condition (DN) they are equivalent (dual). Consequently, by

Proposition 6.12,
- th" pp*l algebras, the 71p1g1 algebras and the /lpNl algebras coincide;

the a'Bp'^D algebras, the o71617,,'; algebras and the a7l@N) algebras coincide;
- the pdbNi algebras, the 7d1o-rv1 algebras and the. BI6PY coincide;
- the aB'6ip7,1; algebras, the aldlurvy ilgebras and the apT\loNl algebras coincide; they are equivalent

definitions of Wajsberg algebra (MV algebra)'
We write:

g ( n N ) = 1 1 o N 1  = 0 ^ 4 o N 7 ,
agpN) = a'Y(DN)= aAIQw)'

P6pry = 7d1rru) = B16pN1,
a[ i6p'N1 - a161nN1 = a016@w) = W (MV)'

Note that ag@N) algebras, i.e. a87p1,11 algebras, are-already studied in the literature under the

names "IMTL algebias', (Involutive uonbiait t-norm based Logic), introduced in 2001 by Esteva'and

Godo [1g] or "weak-.Rs" algebras, introduced in 1997 by G.J. Wang [73]; note also that Pei [63] proved

that IMTL and weak-Ra algebras coincide (are categorically equivalent).

Recall [18] that a particuiar case of IMTL algebras are the "NM aigebras", i.e those IMTL algebras

sarisfying ihe condition (WNM) (or those WNM algebras satisfying the condition (DN) )
Rlcatt-t atso [63] that NM and Rs algebras are categorically equivalent and also IMTL and weak Ro are

categorically equivalent.
Finally, recali that:

1wN*':1MY= MV + (WNM)'

Hence, we have:
(1) NM = IMTL + (WNM)= WNM + (DN)=1141'1 + (DN) + (WNM),

(1') Ro = weak-Ro + (R6) = a0 +(DN) + (wNM) = al3"y+ (DN) + (wNM) = a01@N) + (wNM)=

twru u90l  + (DN)

(2) w = Ha(P) + (DN)=[apt + Qx)]+ (DN)= logt + (DN)l + (Cv)=laB + (DN)l + (Cx) =

weak-Rs + (Cx).

(2') MV = BL + (DN)=[X -a1t(RP) + (cx)] + (DN): [X-o0r(RP) + (DN)] + (Cx):[X-ap(RP)

+ (DN)l + (Cx) = IMTL + (DN)] + (Cx)= IMTL + (Cx).

( w N t r t l W = W * ( W N M ) '

T2



(3) ru,ry,,,zlW : W * (WNM)'2 WPr+ (DN)l + (Cx)l + (wNM)= [ah + (DN) + (WNM)] +
(Cy) =sxr,1ag"rg.q + Qx) = Ro * (Cx)'

( 2 ' )

(3') (rru^r)MV=MV + (WNM) 
'i,, 

llMtl + (Cx)l + (WNM)= IIMTI + (WNM)] + (c1)= 11114

+  (Cx ) .

Deffnit ion 6.14
We shall say that a BCK(P) lattice (residuated lattice) is proper if it does not verify the four condi-

tions (C-), (ir), (Cn), (C;6), the condition (WNM) and the condition (DN)' Their class is denoted bv

BCI((P)-t (R-L, respectively).

We shall say that a gNnrlBCK(P) lattice is proper if it does not verify the four conditions (C-1),

(Cu), (Cn), (Cyr) and tLe condition (DN)' Their class is denoted bv WNT4BCK(P)-L (1wruu;R-L'

respectively).^We 
shaiisay that a BCK(P)1pr,,; lattice is proper if ii does not verify the four conditions (C-), (Cr),

(Cn), (Cx) und th. condition (WNM;. fn.ir class is denoted by BCK(P)-L1l^ru) (R-L1lru;, respectively).

We shall say that a g N nrlBCK(P)trrul lattice is proper if it does not verify the four conditions (C* ),

(Cy), (Cn), (Cx). Their ctass ls denoted by 6ry,v11a1BCK(P)^-L1nru) (twr,',rzlR-L11ru;,.resPectively)'
' 

We shall say that the algebras a, 13, . . . , agl6 are proper if they satisfy oniy the condition (conditions)

from their definition. We define simiiarly a proper (wNM)a algebra, a proper ollr'1 algebra and a proper

(w N u)aQN; algebra, etc'

Note that BCK(P)-t(rrul (i.e. BCK(P) lattices with condition (DN)) are categoricaily equivalent

with residuated lattices wiih condition (DN), also named "Girard monoids" [33]'

Consequently, we have:
- in Figure g, the plane ("-up") P, of the hierarchies of the BCK(P) lattices which are generalizations of

Hajek(P) algebras (BL aigebras);
- i' f,igure i0, thu plane 1wN0 P, of the hierarchies of the the (wrulzyBCK(P) Iatiices which are gener-

alizations of 1 wrr,rzl HajekiP ) algebras (g N ulBL ulq"ltuu]'^- 
- .-.

- in Figure ti, i t" plane P11r,,1, of the Lierarchies of the BCK(P)tlrul latt ices which are generalisations

of Ha(P)1nru; algebras (i.e. of Wajsberg algebras);
- i., nigule'tz, ihe plane 1wNw1PpNl, of the hierarchies of th-e 1wruv)B.CK(P)(IN; lattices which are

generalisations of 1w',rz)fiaj.t1e;1r"i algebras (i.e. of lwrvuyWajsberg algebras).

In Figures 9, 10, Il', I'2,the sign"'=; means duplicate names, the sign " =" means equivalent definitions,

while ihe sign "=" means that the corresponding categories are eqrrivalent,

In those four Figures also, those classes for which we didn't found any examples' without or with

condition (WNM), aie marked by the sign "??" and those for which we didn't found examples are marked

by the sign "?";thus, it remains an open problem io find exampies for that classes'
" 

we give in Figure 13 the spacial uu" or the four planes P (see Figure 9), @NwP (see Figure 10)'

Ptr,ut (tu" Figure 11) and 1wx'u1PpN1 (see Figure 12)'
'-By 

cutting with vertical planes, we get the following hierarchies' for examples:

In part IIi and Part IV we shall give examples of algebras from Figure ?? and in Part V we shall give

examples of algebras from the other previous Figures'

Remarks 6.15
(1) The following pairs of BCK(P) lattices satisfying the condii ion (DN) seem to be very important;

the aigebras of each pair seem to be incomparable (under inclusion):

(I.I) i1ry1,1 1,aa1oi,,,y algebrasandodll,nry (??) algebrasfromFigurelg; wehaveonlyexamplesof 1qz1"nz;a1o,rv;

algebras (see Part V);

(iz) wi*l1ltnn (?) algebras and, B15pN1 (??) algebras from Figures 23 and 24; it remains an open

problem to find examPles;

ii.s) no = lttyNt,4a0r1oruy (NM) algebras and ap16p'M -= 
Wajsberc (MV) algebras from Figures 25 and

26 (another Figure appears in Part IV). We nuu" u*urnptes (see Part III and Part IV) which prove that

r.f



BCK(P)-L = R-L

(BCK(P) lattices = residuated latiices)

(cx)(c-)

a p =
3 weak-Bl

= MTL ?? (Cv)
(Cn )

a13"l 0t6 ??

aBt6

=Ha(P) = BL

Figure 9: plane P (Classes of BCK(P) lattices (residuated lattices), generalizations of H6jek(P) algebras

(BL algebras))

ldivisible---,-
cK(P)-L (R-

t4



M N M\BCK(P)-1,= @ N nryR-L

N t'tf ?7

1615 ??

WNM)oP =

o- 
1w N nrlMTL

= WNM ??

(c^)

W N M)a| 'Y

(Cx) (Ct )

WNM)o0'Y6
:  (wNr l1Ha(P) = (wNulBL

Figure 10: Plane (w N M)P (Classes of BCK(P)-L (R-L), generalizations of Ha(P) (BL), ail with condition

(wNM))

1wruvlBCK(P)-( w N M ) a
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a 1 o N 1 ?

(Cu) + (Cn)

a0eN)
=o7(DN)

=ap1@N)

: weak-Ro
ry weak-BlilN;

BCK(P)-Llorvy
o R-L(piv) : Girard monoids

(C*)

(Cx)(c*) d1ol,'y ??

(Cv)+  (Cn)

p6px)
-7d1orv)

= p16p7,11??

(C  x )
=MTL(pry)=IMTL

aP 6 p N1= a16 6t v1=a07d1orv)
= Ha(P)1mr) = w
c, MV cz Bl,1onl

Figure 11: plane p1l,nr; (Classes of BCK(P)fpr,,l lattices (residuated lattices with condition (DN))' gen-

eralizaiions of Waisberg algebras (MV algebras))

a61ny1??

Dp ( D N )

=^y(DN)

=0'rpN1
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(wNM)BCK(P)-L12ry = lwrnr;R-L1rr,,'; ?

rui.r;a61li,r;

wNM)p@N)
=(w N M) 'Y(DN)

=wNM)B'v@N) ?

(Cx)(c*)
(wNM)a@N)

(Cu) + (C")

WNuPBPYl
=(wNM)a Y@N)

=(wNu1aB1P*,

= Ro \>-

t gaNyvrlweak-Bl1lru;

:NM

lwNMf  pry  ??

(Cv)+  (Cn)

grvu106PN1
:(wNM)'Y6@N)

= (wNw7"ldllr'ry ??

(Cx) (C- )

W x Oa06@ n= (w N M)a15@ N: (w N v1ap16 p N1
:1wNm1H'a(P)1nruy = 1wr,rv;  W

7 sayyli|l{Y = gNnrlBllaruy

Figure 12: Plane (wNqPQNl (Classes of

(WNM) and (DN)), generalizations of /{R6

(wNM)))

twru,rzyBCK(P)-L11>1r; (residuated lattices with conditions

algebras (Wajsberg algebras (MV algebras) with condition

Figure 13: Spatial vue of the four planes P, (wNM)P, P1ary; , (wNM)P(DN)

(wNM)

(wNM)

I

,tt p@N)

t w  N  M ) P

1 r y



BCK(P)-I = R-L

(DN)

(wNM)
BCK(P)-L1rr,1i
=R-L larv) i6ryy1a1BCK(P)-t

=Girard monoids
=- 

{wNttlF"-L (wNM)

(DN)

w N ulBCK(P)-t1rlru1 = 1wi',',rz; R-L1nr,'; ?

Figure 14:vertical section through BcK(P) lattices (residuated lattices)

Ha(P) = BL

Ha(P)1rruy
= W  o M V
o Bl,lolu)

lwrv lz lHa(P)
= lwNttlBL

i rvr , 'u lHa(e)tr , . r)  =(rvlrM)W o 
lwrvulMV = 1wNu1BL1nN1

Figure 15: Vertical section through Ha(P) (BL) algebras

(wNM)

(wNM)
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wNM\BC( (P ) - I
= g N urlB-L

BCK(P)-L = R-L

(wNM) BCK(P)-L(DN)
= R-L1rru)

=Girard

(Cx)

ap16 = Ha(P) = Bt

(DN)

(Cx)

Ha(P)1rr1

= W '

", MV
= Bl,loir)

g NrIBCK(P)-L1or;
= 1ryrurrzyR-L11ru; ?

(wNM)

{Cx)

(wNnd.016(DN)= (wrulz1Ha(P)(pn) = lwnu;W = lwNr4BL(DN) = (wnnzlMV

Figure L6: Vertical sections through residuated lattices and BL algebras

apNl  ?

(wNM)a

(wNM)a@N)

Figure L7: Vertical section through o algebras

(wNM)

iwrvvyHa(P)
= lwNtttlBL

(wNM)
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dllrvy ??

W N m ) 6  ? ?

1wNt t16PN1??

( w N M ) a

Figure 18: Vertical section through d algebras

Q . !

1w N t t t1a6Pv1 ??

Figure 19: Vertical sections through a and ad algebras

aloNy ?

M) (wNM)

W N u )a6  ??



0@w) =7 leN)

a
( w N M ) t )

1w N m1 0 P N1= 1w N rr't1 131(oirrl ?

Fieure 20: Vertical section through B algebras

1 1 o N 1  : 0 7 1 n N 1

( w  N  M ) ^ l

( w  N  M ) 1 ( D N ) : ( w  N  n r ) [ J ' Y ( p N )  ?

Figure 21: Vertical section through 7 algebras
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0@N='Y@N;-0tpx1

gNt'r10

(w N v) A @ tt)= (w N M)"|(D N1= 1w N t'r1 07p N1 ?

Figure 22: "Yertical" sections through B and 1 algebras

p

gNq0t6plvy ??

Figure 23: "Vertical" sections through 0, 0'y,0d and p7d algebras

1w N rrr10l

WNnt)' l

wNM\P'Y2N) ?

gNu10

wNn4061Cn)

(D
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(wNM)

wNM)pT@N) ?
(wNM)

0loxl
(wNM)^l

w N rwn6 ?)
Cv)

(D

( w N M ) p  I

@Nnt1aB1

(DN)

0t6pNl ??

twNw10l6PYl  ??

Figure 24: "Yertical" sections through 'y, 0''1,76 and 016 algebras

qP'v

(Cx)

aB16 = Ha(P) = BL
(wNM)

(DN)

Ro: (w N rur\aglp N]= (w N uTaP Pi,
(wNM)

Ha(P)1oruy

= W
= M V

ry Bl, l lLr)

= 1wr-,,rzyMTL1lru;
=1vv1t1a1IMTL=NM

(Cx)

(wNM)c,P'Y6(DN)= twrulzyHa(P)(pry)  = 1wNu1W = gNulBL(DN) = (wry lz)MV

Figure 25: Vertical sections through al31 andHdjek(P) (BL) algebras

=a0@N)
= MTl,lor,ry

(wNM)

iwr',,rzyHa(P)
=  gNmlBL
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ap = weak BL=MTL??
(Cn

Cx)

(wNM)

=aB6 ??

(DN)

Ha(P)1p1,.;

= w = M V
= Bl,lon)

WNulaBl

(wNw1aB1p* ,
- R o = N M

(wNM)

(Cx )

twrvnzyHa(P)(pru) =(w,nrlzyW = wNttlBLprr) = 1wrirzlMV

Figure 26: "Vertical" sections through a0, a7.y, ap6 and aB15 (BL) algebras

they are incomParable.

(2) Consequently, the foilowing pairs of BCK(P) Iattices not satisfying the condition (DN) seem to be

very important; the aigebras of each pair seem to be incomparable (under inclusion):

(Z.i) g N v1o algebras and ad (??) algebras from Figure 19; we have only examples of 1w N u1a algebras

(see Part V);

iZ.Zl g*no1p7 algebras and p16 (??) algebras from Figures 23 and 24; it remains an open problem to

find examples;
(2.5) gNulapl algebrasand,aBl6 = Hd,jek (BL) algebras from Figures 25 and 26 (another Figure ap-

peais'in palt IV). We have examples (see Part III and Part IV) which prove that they are incomparable.

We shall cail as "Roman algebras" LheX-(wNMyapT(RP) algebras, i.e. we have:

Roman v twN*r ta07 just  as:

BL = alj16:IJa.
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