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Abstract

In this paper we study the BCK algebras and their particular classes: the BCK(P) (residuated)
lattices, the Hajek(P) (BL) algebras and the Wajsberg (MV) algebras, we introduce new classes of
BCK(P) lattices, we establish hierarchies and we give many examples. The paper has five parts.

In the first part, the most important part, we decompose the divisibility and the pre-linearity

conditions from the definition of a BL algebra into four new conditions (C5),

(Cv), (C/\) and (Cx).

We study the additional conditions (WNM) (weak nilpotent minimum) and (DN) (double negation) on
a BCK(P) lattice. We introduce the ordinal sum of two BCK(P) lattices and prove in what conditions

we get BL algebras or other structures, more general, or more particular than

BL algebras.

In part II, we give examples of some finite bounded BCK algebras. We introduce new general-

izations of BL algebras, named «, 8, 7, 8, af, ...,

afé algebras, as BCK(P) lattices (residuated

lattices) verifying one, two, three or four of the conditions (C—), (Cv), (Ca) and (Cx). By adding the
conditions (WNM) and (DN) to these classes, we get more classes; among them, we get many gener-
alizations of Wajsberg (MV) algebras and of Ro (NM) algebras. The subclasses of (wnar) Wajsberg
algebras ((wnmyMV algebras) and of (WNM)Hé,jek(P) algebras ((w~am)BL algebras) are introduced.

We establish connections (hierarchies) between all these new classes and the old
out in Part I

classes already pointed

In part III, we give examples of finite MV and (wn )MV algebras, of Héjek(P) (i.e. BL) algebras
and (wna)BL algebras and of avyé (i.e. divisible BCK(P) lattices (divisible residuated lattices or

divisible integral, residuated, commutative l-monoids)) and of divisible (wnm)

BCK(P) lattices.

In part IV, we stress the importance of afy algebras versus of (i.e. MTL) algebras algebras and
of Ro (i.e. NM) algebras versus Wajsberg (i.e. MV) algebras and of (wnmyfy algebras versus BL
algebras and of ary versus a6 algebras. We give examples of finite IMTL algebras and of (w nar)IMTL
(i.e. NM) algebras), of afy algebras and of (wnmyeBy (Roman) algebras and finally of ary algebras.

In part V, we give other examples of finite BCK(P) lattices, finding examples for the others
remaining an open problem. We make final remarks and formulate final open problems.

Keywords MV algebra, Wajsberg algebra, BCK algebra, BCK(P) lattice,
algebra, Hajek(P) algebra, divisible BCK(P) lattice, a, 8, 7, 0, @B, - ., af3yé

residuated lattice, BL
algebra, MTL algebra,

IMTL algebra, WNM algebra, NM algebra, Ro algebra, wrmyMVY, wna)BL, (wna) afy, Roman

algebra

Part III has seven sections.

In Section 7 we give examples of finite Wajsberg (MV) algebras, useful in the next sections.

In Section 8 we give examples of finite linearly ordered reversed left-Hajek
which are not Wajsberg (MV ) algebras.

(P) algebras (BL algebras)

In Section 9 we give examples of finite non-linearly ordered reversed left-Héjek(P) algebras (BL)

algebras which are not Wajsberg (MV ) algebras.



In Section 10 we give examples of infinite proper BL algebras, obtained as ordinal sums of two product

algebras.
In Section 11 we give examples of finite

lattices). N
In Section 12 we give an example of infinite proper divisible reversed left-BCK

sum of two product algebras.
In Section 13 we present two open problems.
In this section we shall give examples of algebras

the hierarchy from Figure 2.

divisible reversed left-BCK(P) lattices (divisible residuated

(P) lattice, as an ordinal

from the hierarchy from Figure 1, which is a part of

avé= divisible BCK(P)-L
apyé=Ha(P)
~ BL

(DN)

Ha(P)(pn)
=W = MV
= BL DN
wnaHa(P) wn
= (wnBL

wanHa(P) oy EwnmW = wnm)BLoN) = (wrnm)MV

Figure 1: ”Vertical” sections through ayd and afyd (BL) algebras

7 Examples of finite Wajsberg (MV) and Ny Wajsberg (wnmyMV)
algebras

In the examples we shall indicate not only the primitive operation, —, but the derived one, ®, too.
Recall that by [23], Proposition 2.32, any Wajsberg algebra satisfies the condition (P2).
We shall sometimes use only the shorter name, MV algebra, in the sequel.

7.1 Examples of linearly ordered Wajsberg (MV) and (wyu) Wajsberg (wnmyMV)
algebras



=ayd
afyé=Ha(P)
= BL

DN
(w Ny eBY (BN}
Ha(P)(DN)
=W =2 MV
= BL(DN)

=~ Roman

WNM
(WNM)CBY(DN) ( )

= Ry = NM (Cx)

wnnHa(P)ony EwnnW =2 winyBLon) = wrmyMV
Figure 2: " Vertical” sections through a7y, a7y, ayé (divisible residuated lattices) and afyd (BL) algebras

Recall that the linearly ordered set L,1 = {0,1,2,...,n}, (n > 1), organized as a lattice with A = min
and V = max, can be organized:

e as (right-)MV algebra: (Ln41,®, " %,0),

with

z @y = min(n,z +y),
Tz B =i~
zopy=(@@Yy ")

e as left-MV algebra: Lny1 = (Lnt1,®, 7, 1),

with

2T =n-—z,

tOy =@ ®y ) =n—-(z"Qy") = n — min(n,z” ®y~) = n —min(n,(n — z) + (n —y)) =
n —min(n,2n — z —y) = 0 — min(0,n — z — y) = max(0,z +y — n),

toy=c—oLy=(0y")” =min(n,y—z+n);

o as Wajsberg algebra (or, equivalently, as bounded, (V-)commutative BCK algebra): Lpt1 = (Lny1, =

bl 7n)7

with
t — y = min{n,y — 2z +n},
- =z—=0=min{n,n—2}=n—-2z, (0=n")and
20y " min{z |z <y -2} =(z—>y")” =max{0,z +y—n}.
Note also that the algebra (Lny1,V = max,A = min,®,—,0,n) is a Hajek(P) (BL) algebra with
condition (DN).



Hence, for n = 1,2,3,4,5, we have the linearly ordered Wajsberg (left-MV) algebras Lo, Lg; Ly Lsn
Lg, whose tables are the following:

10 1 olo 1
Ly 01 1 0/0 O
110 1 110 1
-0 1 2 ©|0 1 2
£30222 00 0 0
11 2 2 110 0 1
210 1 2 210 1 2
-0 1 2 3 ©@l0o 1 2 3
013 3 3 3 0/0 0 0 O
£, 112 3 3 3 10 0 0 1
211 2 3 3 210 0 1 2
310 1 2 3 310 1 2 3
10 1 2 3 4 olo 1 2 3 4
014 4 4 4 4 0/0 0 0 0 O
Lo 113 4 4 4 4 110 0 0 0 1
212 3 4 4 4 210 0 0 1 2
311 2 3 4 4 310 0 1 2 3
410 1 2 3 4 410 1 2 3 4
510 1 2 3 4 5 o]0 1 2 3 4 5
05 5 5 5 5 5 0/0 0 0 0 0 O
114 5 5 5 5 5 110 0 0 0 0 1
Le 213 4 5 5 5 5 210 0 0 0 1 2
312 3 4 5 5 5 310 0 0 1 2 3
411 2 3 4 5 5 410 0 1 2 3 4
510 1 2 3 4 5 510 1 2 3 4 5
Remarks 7.1

(1) For n = 1,2, the Wajsberg (MV) algebras L, and L5 verify the condition (WNM), hence they are

examples of (w ) Wajsberg ((wNmMV) algebras.
(2) For n = 3, the Wajsberg (MV) algebra L4 does not verify the condition (WNM) for 2, for example:

(2@2)"\/[(2/\2)—>(2®2)]:1"V[2»—>1]:2\/2:2753.

Hence, L4 is a proper Wajsberg (MV) algebra.
(3) For n > 4, the Wajsberg (MV) algebra L4 does not verify the condition (WNM). Indeed, the
condition (WNM) fails for the elements n — 2, n — L:

[(n—2)0(n—-1)]"V[(n—2)A(n—1) = (n-2)®(n—1)] = (n=3)"V[(n-2) = (n=3)] = 3V(n-1) =n-1#n,

since:

@ (n ~ 1) = max(0, (n — 2) + (n — 1) = n) = max(0,n — 3) =n — 3, since (n-3)>#4-3)=1,
n—-3)"=n-(n-3)=3,

- (n—3)=min(n,(n —3) -~ (n—2) +n) =min(n,n—-1)=n -1 and

2

(4-1)=3.

Remarks 7.2



(i) Recall that the algebra By = (Ly = {0,1},V = max, A = min, =,0,1) is the standard (canonical)
Boolean algebra, where ¢~ =z = 0=1-1, for all z € Ly. Remark that corresponding BL algebra,
(La,V, A, ®,—,0,1), is not only a Wajsberg (MV) algebra, but it is also a Godel and a Product algebra
(since every Boolean algebra is a Product algebra) in the same time.

(ii) Remark also that for n > 1, the corresponding BL algebra (Lnt1,V, A O, =, 0,1) is not a Godel
algebra, since there is 1 € Lny1 such that 1 © 1 = max(0,1 +1—n) =0 # 1 and it is not a Product
algebra, since condition (P1) is not satisfied (there is = 1 € Ly41 such that 1A 1"=1A(n-1)=
min(l,n — 1) =1#0).

(iii) For n = 3, there is another one (and only one) structure of BCK(P) lattice with condition (DN)
on the chain Ly, which satisfies the conditions (CL), (Cv), (Ca)- 1t will be presented in the third part of

this paper (as example of linearly ordered afy+(DN) algebra (IMTL algebra)).
(iv) For n = 4 there are another two (and only two) structures of BCK(P) lattices with condition (DN)

on the chain Ls, which satisfy the conditions (C-), (Cy) and (Cp). They will be presented in the third

part of this paper (as examples of linearly ordered afy+(DN) algebras (IMTL algebras)).
(iv) For n = 5 there are another six (and only six) structures of BCK(P) lattices with condition (DN)

on the chain Lg, which satisfy the conditions (C,), (Cv) and (Ca). They will be presented in the third
part of this paper (as examples of linearly ordered ay-+(DN) algebras (IMTL algebras)).

Remark 7.3
Remark that L satisfies the condition (P1), while L1, for n > 1, do not satisfy (P1).

7.2 Examples of non-linearly ordered Wajsberg (MV) and wnm) Wajsberg
(wnmyMV) algebras

We give five examples.
Example 1
The set

Loxz = {0,a,b,1} =2 Ly X Ly = {0,1} x {0,1} = {(0,0), (0,1),(1,0),(1,1)},
organized as a lattice as in Figure 3 and as a BCK(P) algebra with the operation — and
TOY notation in{z |z <y — 2z} =(@—=y7)"

as in the following tables, is a non-linearly ordered MV algebra, denoted Lax2.

1

0
Figure 3: The non-linearly ordered MV (Boolean) algebra Loxo
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Remark that Lo is a Boolean algebra. Tt satisfies the condition (WNM), hence is a proper (wn M) Wajsberg

((WNM)MV) algebra.
Example 2
The set

Lsxs = {0,a,b,¢,d, 1} = Lz X Lz ={0,1,2} x {0,1} = {(0,0), (0, 1),(1,0),(1,1),(2,0),(2, 1},
organized as a lattice as in Figure 4 and as a BCK(P) algebra with the operation — and

Oy megion min{z |z <y = 2y=(@—-y7)"”

as in the following tables, is a non-linearly ordered MV algebra, denoted by L3x2.

Figure 4: The non-linearly ordered MYV algebra L3y2 and BL algebra H (s 2)x2

510 a b ¢ d 1 ©l0 a b ¢ d 1
ol1r 1 1 1 1 1 0lo 0o 0 0 0 O
ald 1 4 1 4d 1 a0 a 0 a 0 a
L3y blc ¢ 1 1 1 1 b0 0 0O O b b
c|b ¢ d 1 d 1 ¢c|0 a 0 a b ¢
dla a ¢ ¢ 1 1 dlo 0 b b d d
110 a b ¢ d 1 110 a b ¢ d 1

Tt verifies the condition (WNM), hence is a proper (wn ) Wajsberg algebra.

Example 3
The set

Lows = {0,a,b,¢,d, 1} 2 Ly x Ly = {0,1} x {0,1,2} = {(0,0),(0,1),(0,2),(1,0), (1, 1),(1,2)},
organized as a lattice as in Figure 5 and as a BCK(P) algebra with the operation — and

notation

gly=re)={g—=y )

% min{z

as in the following tables, is a non-linearly ordered MV algebra, denoted by Laxs.



Figure 5: The non-linearly ordered MV algebra Lax3 and BL algebra Hax (2 2)

—]0 a b ¢ d 1 ®|0 a b ¢ d 1
o1 1 1 1 1 1 0j0 0 0 0 0 O
a|d 1 1 4 1 1 al0 0 a 0 0 a
Loy3 blc d 1 ¢ d 1 b|0 a b 0 a b
c|b b b 1 1 1 c|{0 0 0 ¢ ¢ ¢
dla b b d 1 1 d|lo 0 a ¢ ¢ d
110 a b ¢ d 1 110 a b ¢ d 1

Note that L3x9 and Lax3 are isomorphic.
Example 4

The set
L3><3 = {O,a,b,c,d,e,f,g,l} —} L3 X L3 = {07172} X {0,1,2} =

= {(0,0),(0,1),(0,2), (1,0),(1,1),(1,2),(2,0),(2,1),(2,2)},
organized as a lattice as in Figure 6 and as a BCK(P) algebra with the implication — and

notation

z min{z |z <y—z}=(z =y )"

as in the following tables, is a non-linearly ordered MV algebra, denoted by L3x3-

Figure 6: The non-linearly ordered MV algebra L33 and BL algebra H (s 2)x(2,2)
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Tt verifies the condition (WNM), hence is a proper (w n ) Wajsberg algebra.

Example 5 N
The algebra Lyxs = L4 x Ly , with A = {0,a,b,¢,d,e, f, 1}, does not verify the condition (WNM):

(e@e)" V[ene) » (eOe)] =dVe=e#1.
Hence, it is a non-linearly ordered proper Wajsberg (MV) algebra.

Remarks 7.4

(i) Recall that the algebra Bax2 = (L2x2 = {0,a,b, 1}, A = min,V = max, ~,0,1) is a Boolean algebra,
where 2= = z — 0, for all € Lax2. Remark that corresponding BL algebra, (Lax2,A,V,®,—,0, 1), is
not only a Wajsberg (MV) algebra, but it is also a Godel and a Product algebra (since every Boolean
algebra is a Product algebra) in the same time.

(ii) Remark also that for n > 1 or m > 1, the corresponding BL algebra

(L(n+].)><(m+1)7/\av>®: ~—),0, 1) = (LTL-H x Lm+1,/\,V,®, - (O,O)» (nam))w

where Ln+1 X Lm+1 = {0, ]., a ¥ ,TL} X {0, 1, v w ,m} =

= {(0,0),...,(0,m), (1,0),...,(L,m), .coy.ceyonn (n,0),...,(n,m)}, .
is only a Wajsberg (MV) algebra; it is not a Godel algebra, since, if for instance n > 1, then there is
(1,0) € L1 X Ly, such that

(1,0) ® (1,0) = (max(0,1+ 1 —n), max(0,0 +0 —m) = (0,0) # (1,0);

it is not a Product algebra, since it does not satisfy the condition (P1): if for instance n > 1, there is
(1,0) € L1 X Lyp41 such that

(1,0) A (1,0)” = (1,0) A (n — 1,m — 0) = (min(1,n — 1), min(0,m)) = (1,0) # (0,0).

Final remark for non-linearly ordered MV algebras
Remark that Loy satisfies the condition (P1), while the other three examples and in general, Lint1)x(m+1)»
with n > 1 or m > 1, do not satisfy condition (P1).

8 Examples of finite, linearly ordered, proper Hajek(P) (BL)
algebras and vy Héjek(P) (wnu)BL) algebras

We. shall sometimes use the shorter names, BL and MV algebras.

The examples are of one of the following forms:

8.1 linearly ordered MV @ linearly ordered MV, :

8.2 linearly ordered MV @ linearly ordered BL or linearly ordered BL @ linearly ordered MV,
8.3 linearly ordered BL @ linearly ordered BL.



8.1 Examples of the form: linearly ordered MV @ linearly ordered MV

Denote Hm+1,n+1 = Lm+1 D Lat1, for m,n > 1.

8.1.1 Examples of the form: Hypny1 = L2 €D Lyt1, for n > 1

Denote Hy nt1 = Lo Ln+1 = {-1,0 U{0,1,2,... ,n}=1{-1,0,1,2,...,n}.
For n = 1,2,3,4,5, we have the linearly ordered Hdjek(P) (BL) algebras Hao = L2€D L2, Haz =

Lo@® Ly, Hoa = Lo @ Ly, Has = Lo @D Ls, Hae = L2 @ Ls , whose tables are the following:

= ]-1 0 1 ©@[-1 0 1
11 1 1 11 1 -1
Hay2 0l-1 1 1 0/-1 0 0
1/-1 0 1 1-1 0
> -1 0 1 2 @]-1 0 1 2
112 2 2 2 d =1 =1 T -1
Ha s 0l-1 2 2 2 0/-1 0 0 0
1]-1 1 2 2 1/-1 0 0 1
2 -1 0 1 2 21-1 0 1 2
—]-1 0 1 2 3 ©l-1 0 1 2 3
13 3 3 3 3 11 -1 -1 -1 -1
" 614 3 3 3 3 0/-1 0 0 0 O
, 1/-1 2 3 3 3 1/-1 0 0 0 1
2 1-1 1 2 3 3 21-1 0 0 1 2
311 01 2 3 3(-1 0 1 2 3
~l-1 0 1 2 3 4 ©l-1 0 1 2 3 4
14 4 4 4 4 4 1-1 -1 -1 -1 -1 -1
0]-1 4 4 4 4 4 0l-1 0 0 0 0 O
Ha s 11-1 3 4 4 4 4 1/-1 0 0 0 0 1
21-1 2 3 4 4 4 211 0 0 0 1 2
3011 2 3 4 4 3/-1 0 0 1 2 3
411 0 1 2 3 4 411 0 1 2 3 4
-1 0 1 2 3 45 |1 0 1 2 3 4 5
105 5 5 5 5 5 5 -1 -1 -1 -1 -1 -1 -1
0l-1 55 5 5 5 & 0l-1 0 0 0 0 0 0
. 1|/-1 4 5 55 5 5 1|1 0 0 0 0 0 1
%l 21-1 3 4 5 5 5 5 211 0 0 0 0 1 2
31-1 2 3 4 5 55 3/-1 0 0 0 1 2 3
4111 2 3 4 55 41-1 0 0 1 2 3 4
501-1 0 1 2 3 4 5 51-1 0 1 2 3 4 5

Note that Ho o and Ha s satisfy the condition (WNM), hence they are proper (wn)BL algebras,
while the other do not satisfy the condition (WNM) (Hz4 for 2, Has for 2,3, Hae for 3,4), hence they

are proper BL algebras.
Note also that the subalgebra of Ha n41 (n > 2) obtained by subtracting 707 is Han-






Remark 8.1 Hs n41, for n > 1 is not a Wajsberg (MV) algebra, since there is 0 € Hj nt1 such that
(07)" =(-1)" =n #0, where 2~ =2 = —1.

Remarks 8.2
(i) Ha,2 is a Godel algebra.
(ii) Ha.nt1, for n > 1 is not a Godel algebra, since there is 1 € Ha ny1 such that 101 = max{0, 1+

1-n}=0#1

Remarks 8.3
(i) Since the first algebra of the ordinal sum is £Ls, it follows that Hs ni1, n > 1, verify the condition
(P1), since if # = —1, then 2~ =z — —1 =n and if ¢ # —1, then 2~ = —1, by Definition ?7.

(i) But, remark that Hs n11, n > 1, is not a Product algebra, since the condition (P2) is not satisfied:
there are x = n, y =0, 2 =0 € Hy p41 such that

(z7)"0[z02) > (y02)]=n00=0=n0n=nLz—>y=0

8.1.2 Examples of the form: Hs i1 = L3P Lpt1, forn >1

Denote Hs 11 = L3 Lnt+1 = {-2,-1,0}U{0,1,2,...,n} = {-2,-1,0,1,2,.. S}
Example 1 The linearly ordered Hajek(P) (BL) algebra Hs» = L3 @ Ls, whose tables are the fol-
lowing:

=+ 1-2 -1]10]1 ®l-2 1101

211 1 (1|1 20-2 2]-2|-2

Hs o 1] -1 1111 112 2(-11-1
2 <111 2 171010

11-2 11011 11-2 11071

It satisfies the condition (WNM).

Remark that Hz s = L3 @D Lo is not a Wajsberg (MV) algebra; it is not a Godel algebra; it does not
satisfies evidently condition (P1) and it does not satisfy also condition (P2): there arez =1, y =2 =0
such that

() 0lze2) > (yo2))=10[0-20=101=1L0=2—>y;
consequently, it is not a Product algebra. Hence, it is the proper, liniarly ordered, Hajek(P) (BL) with

the smallest number of elements.
Example 2 The linearly ordered Héjek(P) (BL) algebra Hz 3 = L3 @ L3, whose tables are the fol-

lowing:

]2 -1]l0]1 2 ol2 -1lo0]1 2
212 21202 2 22 222 =2
2 A1 2022 2 g3 o8 el |1 -1
33 0|2 122 2 02 -1/0]0 0
1 ]2 -1]1]2 2 112 -1]0]0 1
21-2 1|01 2 212 -1]0]1 2

It does not satisfy the condition (WNM) for 1.

Remark that Hs s = L3 @ L3 is not a Wajsberg (MV) algebra; it is not a Gédel algebra; it does not
satisfies evidently condition (P1) and it does not satisfy also condition (P2): there arez =1, y =2 =10
such that

)" olzez) = (yo02)]=20[0—=0=202=2L1=2 =y

10



consequently, it is not a Product algebra. Hence, it is a proper, liniarly ordered, Héjek(P) (BL).

Remark 8.4 341, for n > 1 is not a Wajsberg (MV) algebra, since there is 0 € Hj n41 such that
(07)" =(-2)" =n#0, wherez~ =z — —-2.

Remark 8.5 H3 41, for n > 1 is not a Godel algebra, since there is —1 € H3 41 such that —1© -1 =
-2 # -1

Remarks 8.6 _
(i) Since the first algebra of the ordinal sum is L3, it follows that Hs nt1, n > 1, does not verify the
condition (P1), since there is z = —1, such that zAz™ = —1A (=1)~ = =1A-1=—-1# —2. It does not

satisfy the condition (P2) also, since there are x =n, y = 2z = 0 such that
(z7) 0[z02) > (yY0z)]=n00=0=ngL0=2 =y

(ii) By (i), H3,n+1, n > 1, is not a Product algebra.

8.2 FExamples of the form: linearly ordered MV @ linearly ordered BL or
linearly ordered BL  linearly ordered MV

Denote Hmt1,n+1,p41 = Lmt1 D Hat1,p+1 = L1 @_(ﬁ_nﬂ @D Lp1) =
= (Lont1 D Lnt1) B Lpr1 = Hmt1,n+1 D Lps1, by associativity of .
Example For m =n =p =1, the set

Hypg = Lo| JHaz = {~1,0}{_J{0,1,2} = Hap| J Lo = {-1,0,13 [ _J{1,2} = {-1,0,1,2},

organized as a lattice in an obvious way and as the ordinal sum Hz 2 = Ho o @ Lo, with the tables:

= ]-1 0 1 2 ©[-1 0 1 2
112 2 2 2 11 -1 -1 -1
Ha2 01-1 2 2 2 0]-1 0 0 O
1|-1 0 2 2 -1 0 1 1
2 /-1 0 1 2 2 /-1 0 1 2

is a BL algebra; it is a Godel algebra, hence it verifies the condition (WN M); it satisfies condition (P1),
but not (P2): there are z = 2, y = z = 0 such that

(z7) 0z02) 2 (y02)]=200-0=202=2£0=z—y.

Hence, Hz 2,2 is not a Product algebra.

8.3 Examples of the form: linearly ordered BL ¢ linearly ordered BL or
equivalent forms

Denote Hm+1,n+1,p+1,q~1-1 = H1n+1,n+l @Hp+1,q+1. = (£m+1 @ £n+1) @(ﬁpﬂ @ Eq-H) =
= Hmt1nt1p+1 D Lot1 = Lons1 @ Hpg1,p41,¢+1, Dy associativity of P.
Example For m =n =p = ¢ =1, the set

Hyppo=Hap| JHoz = Hyzo| JLo = {~1,0,1,2}[ J{2,3} = {-1,0,1,2,3} =

11



= Lo JHz0 = {-1,0}[ J{0,1,2,3},

organized as a lattice in an obvious way and as the ordinal sum H2 22,2, with the tables:

—-|-1 0 1 2 3 -1 0o 1 2 3

.13 3 3 3 3 11 -1 -1 -1 -1

ST 01-1 3 3 3 3 0(-1 0 0 0 O
B 11-1 0 3 3 3 11-1 0 1 1 1

2 (-1 0 1 3 3 21-1 0 1 2 2

3 |-1 01 2 3 3|-1 0 1 2 3

is a BL algebra; it is a Godel algebra, hence satisfies the condition (WNM); it satisfies (P1), but not (P2):
there are z = 3, y = z = 0 such that

(z_)*Q[(x(Dz)—>(y@z)]:3(9[0—%0]-——3@3:3$0:w~+y.

Hence, it is not a Product algebra.

9 Examples of finite, non-linearly ordered, proper Hajek(P) (BL)
algebras and (WNM)Ha'jek(P) (wnwuBL) algebras

We shall sometimes use the shorter names, BL and MV algebras.

The examples are of one of the following forms:

9.1 linearly ordered MV @ non-linearly ordered MV,

9.2 isomorphic copies of direct products of two linearly ordered MV /BL algebras,

9.3 linearly ordered MV € non-linearly ordered BL or linearly ordered BL @ non-linearly ordered

MV,
9.4 linearly ordered BL € non-linearly ordered BL.

9.1 Examples of the form: linearly ordered MV @ non-linearly ordered MV

Denote al+1,(n+l)><(m+l) = [:p-(—l 6} C(n+1)><(m+l)1 for p,n,m > L
We give two families of examples.

9.1.1 Examples of the form: Hy (ni1)x(m+1) = Ls P Lint1)x(m+1), for n,m > 1

Denote HQ,(n+1)><(m+1) =Ly UL(n+].)><(m+l)v with n,m > 1.
We give four examples.
Example 1

The set
H2,2><2 = L‘ZUL2><2 = {_1)0} U{Oaaabal} = {'—Loaaabu 1}7

organized as a lattice as in Figure 7 and as a BCK(P) algebra with the operations — and ©® as in the
following tables, is a non-linearly ordered Hsjek(P) (BL) algebra, denoted Ha2x2 = Lo @ Loxoa.

12
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Figure 7: The non-linearly ordered Héjek(P) (BL) algebra Hz 2x2

511 0 a b 1 ol-1 0 a b 1
T 1 1 1 1 1 T - s = -
a 0l-1 1 1 1 1 0l-1 0 0 0 O
2,2x2 al-1 b 1 b 1 al-1 0 a 0 a
bl-1 a a 1 1 b|l-1 0 0 b b
11 0 a b 1 1]-1 0 a b 1

Remark that Ha2x2 is a Godel algebra, hence verifies the condition (WNM) and thus is a (wnwm) BL

algebra.

It is not an MV algebra, since there is 0 € {—1,0, 4,0, 1} such that (07)™ = (=1)7 =1 #0.

It is not a Product algebra since it satisfies (P1), but it does not satisfy (P2): there are z = a, y =
b, z = a such that:

(z“)“@[(x@z)%(y@z)]:l@[O——)O]zlﬁm—)y:b.

Example 2
The set
H2,3><2 = L2UL3X2 = {_LO} U{Oaa7b7c7d71} = {'170)a7bvca d7 1}7

organized as a lattice as in Figure 8 and as a BCK(P) algebra with the operations — and © as in the
following tables, is a non-linearly ordered BL algebra, denoted by Ha 3x2 = Lo Lsxa-

-1.

Figure 8: The non-linearly ordered BL algebras Mz 3x2 and Hs (2,2)x2

13



—=]-1 0 a b ¢ d 1 ®|l-1 0 a b ¢ d 1

.11 1 1 1 1 1 1 -1(-1 -1 -1 -1 -1 -1 -1

of(-1 1.1 1 1 1 1 0(-1t o 0o 0O O O O

ST al-1 4d 1 d 1 d 1 a|l-1 0 a 0 a 0 a
' b|l-1 ¢ ¢ 1 1 1 1 b|-1 0 0 O O b b
¢c|-1 b ¢ d 1 d 1 cl|-1 0 a 0 a b ¢

d|-1 a a ¢ ¢ 1 1 d|-1 0 0 b b d d

1]-1 0 a b ¢ d 1 1(/-1 0 a b ¢ d 1

Remark that Hz 3x2 is not a Godel algebra, since there is b such that b© b = 0 # b. It does not verify the
condition (WNM) for b.

It is not an MV algebra, since there is 0 such that (07)~ = (=1)" =1 #0.

It is not a Product algebra since it satisfies (P1), but not (P2): there are = a, y = z = d such that:

) O[ze2) =2 (yo2)]=100-d=101=1Ld=2—>y.

Example 3
The set

H‘2,3><3 = L2UL3><3 = {_170} U{O7aab>c,d,e7fag71} = {_1:07aabacad7€1f7ga1}>

organized as a lattice as in Figure 9 and as a BCK(P) algebra with the implication — and © as in the
following tables, is a non-linearly ordered BL algebra, denoted by Hz 3x3 = Lo Lsxs.

Figure 9: The non-linearly ordered BL algebra Ha 3x3

—-|-1 0 a b ¢ d e f g 1 ©l-1 0 a c d e f g 1
.11 1 1 1 1 1 1 1 11 1]1 1 -1 -1 -1 -1 -1 -1 -1 -1
o}-1 11 1 1 1 1 1 1 1 0of-1 o o 0 0 0O O O O O
a|-1 ¢ 1 1 g 1 1 g 1 1 al-1 0 0 a 0O 0 a 0 0 a
b|-1 f g 1 f g 1 f g 1 bl-1 0 a b 0 a b 0 a b
Ho 3x3 c|-1 e e e 1 1 1 1 1 1 cl-1 0 0 O O O 0 ¢ ¢ ¢
d|-1 d e e g 1 1 g 1 1 dl-1 0 0 a 0 0 a ¢ ¢ d
e |-1 ¢ d e f g 1 f g 1 el-1 0 a b 0 a b c d e
f1-1 b b b e e e 1 1 1 fl-1 0-0 0 ¢ ¢ ¢ £ f:f
gl-1 a b b d e e g 1 1 g|-1 0 0 a ¢ ¢ d f f g
1 (-1 0 a b ¢ d e f g 1 1/-1 0 a b ¢ d e f g 1

—_
~



Remark that Hs 3x3 is not a Godel algebra, since there is ¢ such that cO ¢ = 0 # c. It does not verify the

condition (WNM) for a,d.
It is not an MV algebra, since there is 0 such that (07)” = (=1)7 =1#0.

It is not a Product algebra since there are £ = b, y = 2z = f such that:

()" 0lzez) - o) =100 fl=101=1£f=z—>y.

Example 4
The set

Hyaxe = Lo\ Laxz = {10} J{0,a.b,¢,d e, f,1} = {=1,0,¢,b,c.d e, f, 1}
is a BL algebra. It does not verify the condition (WNM) for e.

Remark 9.1 Hy (n41)x(m+1), for n,m > 1, is not a Wajsberg (MV) algebra, since there is 0 such that
(07)" =(~-1)"=1#0, wherez™ =z = —-L

Remark 9.2 Hy (n41)x(m+1), forn > 1orm > 1,is not a Gédel algebra, since if n > 1 for instance, then
HZ,(n+1)X(m+l) = {—*1,0} U{O, 1, T ,n} X {0, oo ,m} =

= {~1,01 [ J{(0,0),...,(0,m), (1,0),...,(L,m), .y (n,0),...,(n,m)}

and there is (1,0) such that (1,0) ® (1,0) = (1© 1,0 0) = (max(0,1 + 1 — n), max(0,0 + 0 — m)) =
(0,0) # (1,0).

Remarks 9.3
(i) Since the first algebra of the ordinal sum is Ly, it follows that Ha (n41)x(n+1)s 7 2 1, verify the
condition (P1), since if z = —1, then 2~ =z - —1 =l and if z # —1, then 2~ = —1, by Definition 77.

(ii) But, remark that Hs (nt1)x(m+1), nm > 1, is not a Product algebra, since the condition (P2) is
not satisfied: there are z = (0,m), y = z = (n,0) such that:
(z7)" = (-1)7 = (n,m),
O z=(0,m) O [n,0)=(06nmo0)=(max(0,0 +n —n),max(0,m + 0 — m)) = (0,0),
y©2z=(n0)0(n,0) =(non,0060) = (max(0,n +n —n),max(0,0 + 0 —m)) = (n,0), hence
) Oz02) = (y©2)]=(nm)o[0,0) = (n0)]=(nm)o0>n0—0)=
= (n,m) ® (min(n,n — 0+ n),min(m,0 — 0 +m)) = (n,m) © (n,m) = (n,m) £ >y =

= (0,m) = (n,0) = (min(n,n — 0 + n), min(m,0 — m +m)) = (n,0).

9.1.2 Examples of the form: M3 (n11)x(m+1) = L3 @D Lint1)x(m+1)s for n,m > 1
We give here only one example, when n =m = 1.
The set
H3,2><2 = L3 UL2><2 = {_2? ”—1,0} U{Oa a7b7 1} = {_2y _1,0a aaby 1}3

organized as a lattice as in Figure 10 and as a BCK(P) algebra with the operations — and © as in the
following tables, is a non-linearly ordered Hajek(P) (BL) algebra, denoted Hsz2x2 = L3 D Laxa.
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Figure 10: The non-linearly ordered Héjek(P) (BL) algebras Hszax2 and Hz22x2

-2 -1 0 a b 1 ©|l-2 -1 0 a b 1
211 1 1 1 1 1 212 2 -2 -2 -2 -2
1011 1 1 1 1 112 2 -1 -1 -1 -1
Hs %2 0o}-2 -1 1 1 1 1 0|2 -1 0 0 0 O
al-2 -1 b 1 b 1 al-2 -1 0 a 0 a
b|-2 -1 a a 1 1 b|l-2 -1 0 0 b b
11-2 -1 0 a b 1 112 -1 0 a b 1

Remark that H32x2 is not a Godel algebra, since there is —1 such that —1® —1 = =2 # —1. But,
since for z @y # —2 we have Ay = z @y, it follows that it verifies the condition (WNM), hence it is a

(WNM) BL algebra
It is not an MV algebra, since there is 0 € {—2,—1,0,a,b,1} such that (07" =(-2)"=1#0.

It does not satisfy the condition (P1), since there is = —1 such that zAz™ = —1A—1 = —1# -2.
Tt does not satisfy the condition (P2) too: there arez =a, y =b, 2 =0 such that:

(z)"0(z0z) 2 (20y)|=1La—>b=0.
Hence, it is not a Product algebra.

Remark 9.4 Hzoxo = L3 @ Laxs is the proper non-liniar wn ) Hajek(P) ( (wnm)BL) algebra with
the smallest number of elements.

9.2 Examples of the form: isomorphic copies of direct products of two linearly
ordered MV /BL algebras

Note that at least one of the two BL algebras must not be an MV algebra to get a direct product
which is not an MV algebra. We give two classes of examples.

9.2.1 Examples of the form: isomorphic coppy of linearly ordered MV x linearly ordered
BL or linearly ordered BL x linearly ordered MV

Denote, for any n,m,p > 1, the Hajek(P) (BL) algebras:

H(p+1)><(n+1,m+1) = EIH—I X Hn+1,m+1
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and
Hint1,ma1)x(pr1) = Hntimir X Lot

Example Forn=m=p=1, Hpax2 = Hao o X L.
The set

H(2,2)><2 :{O,a, b, c, d71} EH2,2XL2 :{—1,0,1})({0,1}:{(—“1,0),(—1,1), (0a0)7(07 1)7 (1)0),(1)”}

organized as a lattice as in Figure 4 and as a BCK(P) lattice with the operations — and © as in the

following tables, is a BL algebra, denoted by H(2,2)x2-

10 a b ¢ d 1 ®|l0 a b ¢ d 1
o1 1 1 1 1 1 0(o0 0 0 0 0 O
a|d 1 d 1 d 1 al0 a 0 a 0 a
H(zz)xg b a a |1 1 1 1 b 0 O b b b b
c |0 a d 1 d 1 ¢c|0 a b ¢ b ¢
d|la a ¢ ¢ 1 1 dl0o 0 b b d d
110 a b ¢ d 1 110 a b ¢ d 1

Remark that {0,1} and S = {0,c, 1} are its BL subalgebras and that S is just Hao.

9.2.2 Examples of the form: isomorphic copy of linearly ordered BL x linearly ordered
BL

Denote, for any n,m,p,q > 1, the Hajek(P) (BL) algebra:
Hint1,m+1)x(p+1,041) = Harrmar X Hpri,041-

Example Forn=m=p=q= 1, 7‘[(2,2)><(212) = HQYQ X 7‘[2,2.
The set

H(Q’Q)X(Q)Q) == {O,a,b, e, d,e, f,9, 1} = Hog X Hyp = {—1,0, 1} X {—1,0, 1} =
= {(—1,—1),(_1,0),(—1,1), (O>—1)7(0a0)7(03 1), (1)_1)7(170),(111)}

organized as a lattice as in Figure 6 and as a BCK(P) lattice with the operations — and © as in the
following tables, is a BL algebra, denoted by H(2 2)x(2,2)-

O O T Hmm RO
O T TOR |
[ S o N S Y PN
0% = =0 = o= o
@ = = = e = | (D
or v o » ol

[¢)

o

o
(o
o

)
R R OO0 OO O

=0 om0 o T ol
L e el e T i o T
e e Y S Gy S G S Y [
=R om0 A0 o o0
o e i o s o [ e Bl - O o B o |
T o0 oo o oo
o 00 o0 o0 o0 ooolo
Ao Ao » e Olo
o 0 0 Ao T oo
R0y Ao ® o O
—0g @ 0 O O

o
&
o
oo
e o
@
&

R — =08 = =03 —= —|0g

Corollary 9.5 The BL algebra Hs axo 1s isomorphic with a subdirect product of Hoo X Hao.
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Proof. Remark first that the BL subalgebra S = {0,d, e, g, 1} of H (3 2)x(2,2) is isomorphic with H32x2.
Remark more that S is a subdirect product of Ha 2 X Hz 2, since

S = {(_17 _—1)7 (070)7 (0) 1)1 (1’0)’ (17 1)}

and pr1(S) = Ha s = {—1,0,1}, pro(S) = Ha o = {—1,0,1}, where pr; and pry are the projection functions
of the direct product Hz 3 X Ha 2. O

9.3 Examples of the form: linearly ordered MV @ non-linearly ordered BL
or linearly ordered BL & non-linearly ordered MV

Denote, for u,v,n,m > 1, the BL algebras:

Hur ot (nt 1) x(mt) = Lutt @D Lot P Linsty(mer) =

= Lyt @Hu+l,(n+1)x(m+l) = Hut1,v+1 EB Lins1)x(m+1)s

by the associativity of €.
We give two examples.
Example 1 For u = v =n =m = 1, consider the BL algebra

Ha2,2x2 = Lo @Hz,zxz =Hao @ Loya.
The support set, {—2,—1,0,a,b,1}, of the lattice from Figure 10 can be considered either as the union of

sets:
Hoy2xe = {2, "1}U{—1;0}] U{O,a,b, 1} = [Lo ULz] UL2><2 = Hsp UL2><2

or as the union
Hy 2,2x2) = {=2, -1} JI{~1,0} [ J{0,a,b,1}] = L2 UIZ2 | L2xa) = Lo | Ha 2o

It has the following tables:

= 1-2 -1 0 a b 1 ®|-2 -1 0 a b 1
2011 1 1 1 1 1 21-2 -2 -2 -2 -2 -2
112 11 1 1 1 112 -1--1 -1 -1 -1
Ho 2 2x2 02 -1 1 1 1 1 0o(-2 -1 0 0 0 O
a|-2 -1 b 1 b 1 al|-2 -1 0 a 0 a
b|-2 -1 a a 1 1 bl|-2 -1 0 0 b b
11-2 -1 0 a b 1 11-2 -1 0 a b 1

Remark that Ha 2 2x2 = H(2,9)2x2 = Ha (2,2x2) is a Godel algebra.

It is not an MV algebra, since there is —1 such that ((=1)7)” =(-2)" =1 # —1.

It satisfies the condition (P1), but it does not satisfy the condition (P2), since there are x = a, y =
b, z = —1 such that

) ozez2) 2 (yo2))=10-1=-1j=1Lz—=y=0
Hence, it is not a Product algebra.
Example 2 For v = v =n =m =1 also, consider the BL algebra Hy (3 2)x2 = L2 D H(z,2) x2-
The set,

HZ,(Z,Z)XZ = LQUH(Z,Q)XZ = {—170}U{07a’7b>ca d7 1} = {H].,OJI,b,C,d, 1}’
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organized as a lattice as in Hasse diagramme from Figure 8 and as a BCK(P) lattice with the operations
— and ® from the following tables is a BL algebra, denoted My (2,2)x2-

-]-1 0 a b ¢ d 1 ®©l-1 0 a b ¢ d 1
11111 1 1 1 1 1/-1 -1 -1 -1 -1 -1 -1

o0f(-1 11 1 1 1 1 0o|-1 0 0o O o0 O O

2 a|-1 4 1 d 1 d 1 al-1 0 a 0 a 0 a
%)% b|-1 a a 1 1 1 1 bl-1 0 0 b b b b
c|-1 0 a d 1 d 1 cl-1 0 a b ¢ b ¢

dl|-1 a a ¢ ¢ 1 1 dl-1 0 0 b b d d

11-1 0 a b ¢ d 1 11-1 0 a b ¢ d 1

9.4 Examples of the form: linearly ordered BL @ non-linearly ordered BL or
equivalent forms

Denote, for u,v,n,m,p > 1, the BL algebras:

Hu+l,v+1,(n+1,m+1)x(p+l) = Hu+1,v+1 @ H(n+l,m+l)x(p+l)'

Example For u =v =n =m = p =1, consider the BL algebra
Ha o (2,2)x2 = Ma2 @ Heoyxz = (L2 @ L) @ Hz,2)x2 = L2 @ Ha,(2,2) x2
with the support set
Hyaoxs = Hap | J Hezyxe = {=2,-1,0} {0,a,b,¢,d,1} = {~2,-1,0,0,b,¢,d, 1},

organized as a lattice as in Figure 11 and as a BCK(P) algebra with the operations — and © as in the
following tables:

Figure 11: The non-linearly ordered BL algebras Hs 5 (2,2)x2
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-/-2 -1 0 a b ¢ d 1 @l92 -1 0 a b .e d 11
21 1 1 1 1 1 1 1 212 2 2 2 -2 -2 -2 -2
-1(-1 1 1 1 1 1 1 1 1/1-2 -2 -1 -1 -1 -1 -1 -1
0/-2 -1 1 1 1 1 1 1 0(2 -1 0 0 0 0 0 O
Ha2,(2,2)x2 a|l-2 -1 41 d 1 d 1 al-2 -1 0 a 0 a 0 a
b|-2 -1 a a 1 1 1.1 b|l-2 -1 0 0 b b b b
c|2 -1 0 a d 1 d 1 ¢c|2 -1 0 a b ¢ b c
dl|-2 -1 a a ¢ ¢ 1 1 dl-2 -1 0 0 b b d d
11-2 -1 0 a b ¢ d 1 112 -1 0 a b ¢ d 1
* ok ok

Note that an important class of BL algebras is that of those BL algebras satisfying the condition (P1),
where 0 is the first clement of the lattice. Recall that BL algebras satisfying condition (P1) are called

SBL algebras.
Remark that any Gédel and any Product algebra is a SBL algebra, but not any MV algebra is, only

the Boolean algebras.

10 Examples of infinite proper BL algebras

Recall first the following examples of Product algebras [2].

Let G = (G, A, V,+, —,0) be an abelian I-group (i.e. lattice ordered group) and let G~ = {z € G,z < 0}
be the negative cone of G. Let L be an element not belonging to G. On the set P(G) = G~ (J{L} define
the implication — by:

OAN(y—=z), if z,yeG™
T Y= 0, if z=1
L, if zelG ,y=L.
Then " a
: z+y, uUz,yelG”
TOY OiE |6 5§ ¢ # = 1, if otherwise.

It follows that (P(G) = G~ U{L},A,V, -, L,0) is a Product algebra, denoted P(G).
o For the linearly ordered standard Product algebra P(Z) = (P(Z) = Z~ [J{-oo}, max, min, =
,—00,0), we get the following tables:

notation

& |-c0 ... 3 -2 1 0 ® | =0 ... 3 -2 1 0
—00 0 .0 0 0 0 -0 | -0 ... —00 —00 —00 —00

P(2) 3]0 ... 0 0 0 0 % |- ... 8 5 4 B
92 -0 ... -1 0 0 0 5 | —sg ... B A 5 B

1l ... 2 1 0 0 A | ees .o 4 F 2 -l

0 | —co ... -3 2 -1 0 0 |0 ... 3 2 1 0

Remark 10.1 The Product algebra P(Z) does not satisfy the condition (WNM) for —1, —2:
(-2)® (=1)7 V[(=2) A (=1) > (=2) @ (=1)] = (=3)” V[(=2) = (=3)] = (-o0) V (=1) = (-1) #0.

o We shall analyse first the ordinal sum of two Product algebras, the infinite P(Z) and the finite Lo.
We build the two ordinal sums.
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Example 1 The linearly ordered set (chain) Hp(z)2 = P(Z) ULy =(Z7U{-ch ULz =
{-00,...,—3,-2,—-1,0}U{0,1} = {-o0,..., =3, -2, -1,0,1},
with the operations — and ® defined by the following tables, is a linearly ordered Hajek(P) (BL

denoted by Hp(z),2 = P(Z) D L.

) algebra,

- | -0 ... -3 2 -1]0]|1 ® -0 ... -3 -2 -1 0 1
—00 1 .. 1 1 111 -0 | —00 ... =00 —00 —00 | —00 | —00
3 | -0 ... 1 1 {11 -3 -0 ... -6 -5 -4 -3 -3
-2 -0 ... -1 1111 -2 —00 ... b -4 -3 -2 -2
-1 -0 ... 2 -1 1]1/|1 -1 -0 ... 4 -3 -2 -1 -1
0 —00 302 111 0 —00 -3 -2 -1 0 0
il —00 302 1101 1 —00 -3 -2 -1 0 1

The BL algebra H p(z) 2 is not Godel, since -30-3=-6#-3.
It satisfies (P1); it does not satisfy (P2), since there is z = 1, y =0, z =0 such that

(z7)"0[(z0z) > (20y)]=100—-0=1Lz—>y=0.

Hence, it is no more a Product algebra.
Thus, it is an infinite, proper, BL chain.

Example 2 The linearly ordered set (chain) Hy p(z) = L2 U P(Z) = Ly U(Z~ U{-00}) =
{~00g, —00} J{~00,...,—3,-2,—1,0} = {~000, -0,...,—3,—2,—1,0},
with the operations — and @ defined by the following tables, is a linearly ordered Hajek(P) (BL) algebra,

denoted by Ha p(z) = L2 D P(2).

— —00g | —00 3 -2 -1 0 O] —00g | —00 -3 -2 -1 0
—00 0 0 0 0 0 —0Q00 —0Q0 —000 —000 —0Q0p —0Q00 —0Q00
—00 | —00g 0 0 0 0 O —00 | —00g | —00 -0 —00 —00 =0

-3 —o0g | =00 | ... 0O 0 0 O -3 —00g | —00 | ... -6 -9 -4 -3

-2 —o0g | =m0 | ... -1 0 0 0 -2 —00g | —00 | ... -5 -4 -3 -2

-1 —00g | —00 | ... 2 -1 0 O -1 —00g | —00 | ... -4 -3 -2 -1

0 —0Q0 —00 .03 2 -1 0 0 —000 —00 -3 -2 -1 0

The BL algebra Hy p(z) is not Godel, since =3 —3 = —6 # —3.
It satisfies (P1); it does not satisfy (P2), since there is z = 3, y = z = —000, such that

)" 0[(z0z) 2 (20Y)] =00 (-0 =+ —0)=0L 2z =y =—00.

Hence, it is no more a Product algebra.
Thus, it is an infinite, proper, BL chain.

e Now we give an example of infinite proper non-linearly ordered BL algebra.
Example Consider the non-linear Wajsberg (MV) algebra Lsx2 from Figure 3. Then, the set

Hp(zyax2 = P(Z)J Laxa = (Z7 U{—00}) U Laxz =
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{-00,...,~3,-2,~1,0} J{0,a,b,1} = {-o0,...,~3,~2,~1,0,a,b,1},
organized as a lattice as in Figure 12, with the operations — and ® defined by the following tables, is a
non-linearly ordered Héjek(P) (BL) algebra, denoted by Hp(z)2x2 = P(Z) P Laxs.

Figure 12: The infinite, non-linearly ordered, proper BL algebra Hp(z),2x2

- | —00 3 -2 -110
—00 1 1 1 111
3 | —o 1 1 111 1 1
Hp(z)2x2 -2 | —00 -1 11441 1 1
-1 —00 2 -1 1|11 1 1
0 —00 3 -2 1|11 1 1
a -0 ... 3 -2 -1|/b|1 b 1
—00 3 -2 -llaja 1 1
1 -0 3 -2 -1{0fa b 1
(O] -0 ... -3 -2 -1 0 a b 1
—00 | =00 ... —00 —00 —00|-00|-00 -0 -0
-3 =00 ... -0 -5 -4 -3 -3 -3 -3
Hp(z).2x2 2 -0 ... b -4 -3 -2 -2 -2 <2
-1 -0 ... -4 -3 -2 -1 -1 -1 -1
0 -0 ... -3 -2 -1 0 0 0 0
a —00 ... -3 -2 -1 0 a 0 a
b -0 ... -3 -2 -1 0 0 b b
1 —00 ... -3 -2 -1 0 a b 1
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The BL algebra H p(z),2x2 is not Gddel, since -3 -3 = -6 + -3.
It satisfies (P1); it does not satisfy (P2), since there is z = a, y = z = b, such that

() 0z = (oY =100t =1gzsy=b

Hence, it is not a Product algebra.
Thus, Hp(z),2x2 is an infinite proper non-linearly ordered BL algebra.

11 Examples of finite, proper divisible BCK(P) lattices and
wn i BCK(P) lattices

The examples will be of the form: non-linearly ordered MV/BL algebra @ MV/BL algebra, more
precisely of one of the following forms:

11.1 non-linearly ordered MV € linearly ordered MV,

11.2 non-linearly ordered MV € non-linearly ordered MV,

11.3 non-linearly ordered MV € linearly ordered BL,

11.4 non-linearly ordered MV €D non-linearly ordered BL;

11.5 non-linearly ordered BL € linearly ordered MV,

11.6 non-linearly ordered BL @ non-linearly ordered MV,

11.7 non-linearly ordered BL €P linearly ordered BL,

11.8 non-linearly ordered BL @ non-linearly ordered BL.

It follows that they are not MV algebras and are not linearly ordered.
In the sequel we shall simply say ”BL algebra” instead of "BL algebra which is not an MV algebra”.

11.1 Examples of the form: non-linearly ordered MV @ linearly ordered MV

Denote, for p,q,n > 1,

D(z>+1)x(q+1),n+1 = L(p+1)><(q+l) @ Lnir.

We give three examples.
Example 1 For p = ¢ = n = 1, the divisible BCK(P) lattice

Daxaz2 = Laxso @ Lo,
with the support set
Dyxao = Lo ULz = 1 Osd; f U{c,l} = {0, 1, bye, 1},

is organized as a lattice as in Figure 13 and as a BCK(P) algebra with the operations — and © as in the
following tables.

=10 a b ¢ 1 !0 a b ¢ 1

Oo/1 1 1 1 1 0|0 0O 0 0 0

Disns a|lb 1 b 1 1 a0 a 0 a a
' bla a 1 1 1 b|0 0O b b b

c |0 a b 1 1 c|0 a b ¢ ¢

1170 a b ¢ 1 110 a b ¢ 1




Figure 13: The divisible BCK(P) lattice Dyx2 2

Note that the condition (Cy) is not verified, since there are a, b such that:
c=aVb#[(a—=b) 2 bA[(b—=a)—=al=0b=DbA(a—a)=1

The divisible BCK(P) lattice Dyxa 2 is of Godel type, namely is the divisible BCK(P) lattice of Godel
type with the smallest number of elements. Hence, it verifies the condition (WNM), i.e. it is a divisible

(WNM)BCK(P) lattice.
It verifies the condition (P1).
It does not verify the condition (P2): there are z = 1, y = z = ¢ such that
(z7)" 0(z02) 2> (20y)]|=10c==1Lzry=c
Hence, it is not of Product type.

It follows that it is not proper.
Example 2 For p = ¢ = 1, n = 2, the divisible BCK(P) lattice

Daxa,3 = Laxa @ Ls,

with the support set
D2><2,3 = L2X2 UL3 = {O,(l, ba C} U{ca d> 1} = {O,Ga b,C, d7 1}3

is organized as a lattice as in Figure 14 and as a BCK(P) algebra with the operations — and © as in the

following tables.

Figure 14: The divisible BCK(P) lattices Daxa,3 and Dax2,2,2
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The condition (Cy) is not verified, since there are a, b such that:
c=aVb#[a—=b) = bA[b—>a)—2a=0b-=>b0A(a—=a)=1

The divisible BCK(P) lattice Dax2 3 is not of Gédel type: there is d such that d®d = c # d.

It verifies the condition (P1).
It does not verify the condition (P2): there are © = dy = z = c such that

(z7)"0[(z02) = zoy)l=10c=d=1Lz=y=d

Hence, it is not of Product type.
It follows that it is proper, namely is the proper divisible BCK(P) lattice with the smallest number of

elements.
Example 3 For p=1, ¢ = 2, n = 1, the divisible BCK(P) lattice
Daxsz = Laxs @ Ly,
with the support set

D2><3,2 = L2X3 ULZ == {O,G,b,c,d,n} U{na 1} = {O,(l,b,C,d,n, 1}5

is organized as a lattice as in Figure 15 and as a BCK(P) algebra with the operations — and ® as in the
following tables.

Figure 15: The divisible BCK(P) lattice Dyxs .2
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The condition (Cy) is not verified, since there are b, d such that:
n=bVd#£[b—=d) =+dA[(d—=>b) b =(d—=>dAb->b=1.

The divisible BCK(P) lattice Dax3 o is not of Gédel type, since there is a ® a = 0 # a.
It does not satisfies (P1), since there isaAa™ =aAd=a # 0.
It does not satisfies (P2), since there are z = 1, y = z = n such that

(z7)"0l(z0z) 2 (20y))=10n—=n]=1Lz =y =n.

Hence, it is not of Product type.
Hence, it is a proper divisible BCK(P) lattice.

11.2 Examples of the form: non-linearly ordered MV @ non-linearly ordered
MV
For n,m,u,v > 1, denote
Dint1) x (mt1),(ut 1) x (v+1) = Lnt1) x(m+1) @ Lut1)x(v+1)-

We shall present only the casen =m=u=v = 1.
Example The divisible BCK(P) lattice

Daxz2x2 = Lax2 @£2x2)
with the support set
D2><2,2><2 = LQXEUL‘Z)(Q = {O)aaban} U{n)ca d; 1} = {O,Q,b,n,c,d, 1}7

is organized as a lattice as in Figure 16 and as a BCK(P) algebra with the operations — and ® as in the
following tables.

— | 0 b n ¢ d 1 ®|{0 a b n ¢ d 1

oO/1 1 1 1 1 1 1 0j]0 0 0 0 O 0 O

a|/b 1 b 1 1 1 1 al0 a 0 a a a a

D, bla a 1 1 1 1 1 b0 0 b b b b b
2x2,2x2 n|{0 a b 1 1 1 1 n|0 a b n n n n

c {0 a b d 1 d 1 c|0 a b n ¢ n c

d |0 a b ¢ ¢ 1 1 d{0 a b n n d d

110 a b n ¢ d 1 110 a b n ¢ d 1

The divisible BCK(P) lattice Days 2x2 is of Godel type.
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0
Figure 16: The divisible BCK(P) lattice Dax2 2x2

It satisfies the condition (P1).
It does not satisfy the condition (P2), since there are: z = ¢, y = z = n such that
(Z7)"0l(z0z) 2 (z0y))=10h—on]=1Lz—>y=d

Hence, it is not of Product type.
Hence, it is not proper.

11.3 Examples of the form: non-linearly ordered MV @ linearly ordered BL
or equivalent forms

Denote, for any p,q,n,m > 1,

D(p+1)><(q+1),n+l,m+] = [’(p+1)><(q+l) @H71+1,m+1-

We shall give here only one example, the case p=¢g=n=m = 1.
Example The divisible BCK(P) lattice

Dax22,2 = Laxa @7{2,2 = Lax2 @(ﬁz @52) =Daxay2 @ Lo,
with the support set
Dyyan2 = Lo UH2,2 ={0,a,b,c} U{C, d,1} ={0,a,b,c,d, 1},

is organized as a lattice as in Figure 14 and as a BCK(P) algebra with the operations — and ©® as in the
following tables.

D2><2,2,2

— o oo ol
oY O ol

C oo o RO
L O ® = |
O O o ]
[T = = e
i e e e Y s
— a0 o ol®
(= I < e Y e - oo i e | K}
oo oo O oo
o0 o0 o oo
Q.0 T o oo
= o0 T o O

The divisible BCK(P) lattice Dyys 9.2 is of Godel type.
It verifies the condition (P1).
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It does not verify the condition (P2): there are z = d, y = z = ¢ such that
(27)"0lz02) =+ (20Y)]=10c—==1Lz—y=c

Hence, it is not of Product type.
It follows that it is not proper.

11.4 Examples of the form: non-linearly ordered MV @ non-linearly ordered
BL or equivalent forms

Denote, for m,n,p,u,v > 1, the divisible BCK(P) lattice

D(m+l)x(n+1),p+1,(u+1)x(v+1) == [:(m+1)><(n+1) @ H(p+1),('u+1)><(v+1)'

We shall consider only one example, form =n=p=u=v=1.
Example The divisible BCK(P) lattice

Dayapoxa = Laxa @7{2,2x2 = Lox2 @(52 @@w) = (Lax2 @£2) @£2x2 = (Dax2,2 @(£2x2,
with the support set
D2><2,2,2><2 = szz UH2,2><2 = {0,(1, b,p} U{p,n} U{n,c, d, 1} = {O,a,b,p,n,c, d, 1},

is organized as a lattice as in Figure 17 and as a BCK(P) algebra with the operation — and © as in the
following tables.

0

Figure 17: The divisible BCK(P) lattice Dyx2 2 2x2

-0 a b p n ¢ d 1 ®©]0 a b p n ¢ d 1
oj1r 1 1 1 1 1 1 1 00 0 0 0 0 0 0 O
a|b 1 b 1 1 1 1 1 al0 a 0 a a a a a
bfla a 1 1 1 1 1 1 b0 0O b b b b b b
D2x272,2><2 p 0 a b 1 1 1 1 1 P 0 a b p P p p p
n|0 a b p 1 1 1 1 n{0 a b p n n n n
c |0 a b p d 1 d 1 c|0 a b p n ¢ n ¢
d|{0 a b p ¢ ¢ 1 1 d{0 a b p n n d d
110 a b p n ¢ d 1 110 a b p n ¢ d 1
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11.5 Examples of the form: non-linearly ordered BL @ linearly ordered MV
or equivalent forms

We consider here only one example among the very many possible ones.
Example The divisible BCK(P) lattice

Ds2x2,2 = Ha2x2 @ Lo = (L2 @£2x2) @ Ly =Ly @(L:sz @ L2) = Ly @ Diyx2,2
with the support set
D2,2><2,2 = H2,2><2 ULQ = {O;n,aab7m} U{ma 1} = {O,Tl,a,b,m, 1}7

is organized as a lattice as in Figure 18 and as a BCK(P) algebra with the operations — and ® as in the

following tables.

Figure 18: The divisible BCK(P) lattice Dy 2x2,2

=10 n a b m 1 |0 n a b m 1
o1 1 1 1 1 1 0O/0 0 0 0 0 O
n|0 1 1 1 1 1 n|{0 n n n n n
Dy oyao a |0 b 1 b 1 1 a|l0 n a n a a
b0 a a 1 1 1 b|0 n n b b b
m |0 n a b 1 1 m|0 n a b m m
110 n a b m 1 170 n a b m 1

It does not verify the condition (Cy), since there a, b such that:
m=aVb#[(a—=b) =+bA[b—a)—a]=1.

The divisible BCK(P) lattice Dj 5x2,2 is of Godel type.
It verifies the condition (P1).
It does not verify the condition (P2): there are x = 1, y = z = m such that

(z7)"0lz02) > (z0y)=10m->m]=1Lz > y=m.

Hence, it is not of Product type.
It follows that it is not proper.
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11.6 Examples of the form: non-linearly ordered BL @ non-linearly ordered
MYV or equivalent forms

We shall present only one example.
Example The divisible BCK(P) lattice

Daax2,2x2 = Haaxo @ﬁzxz = (L @ﬁzxz) @£2x2 == Ly @(£2x2) @ﬁzm) ==L, @szz,th
with the support set
D2,2><2,2><2 = H2,2X2 UL2><2 = {_1707avb)n’} U{nvca d; 1} = {_laoaa’)banacy da 1})

is organized as a lattice as in Figure 19 and as a BCK(P) algebra with the operations — and ® as in the
following tables.

-1
Figure 19: The divisible BCK(P) lattice Dy ox2.2x2

= /-1 0 a b n ¢ d 1 ®©l-1 0 a b n ¢ d 1
-1 1 1 1 1 1 1 1 -1{-1 -1 -1 -1 -1 -1 -1 -1
OJ]-1 1 1 1 1 1 1 1 0/-1t 0 0 0O O O 0 O
a -1 b 1 b 1 1 1 1 a|-1 0 a 0 a a a a
DZ,‘ZXZ,ZX‘Z b -1 a a 1 1 1 1 1 b -1 0 0 b b b b b
n -1 0 a b 1 1 1 1 n|{-1 0 a b n n n n
c|(-1 0 a b d 1 d 1 c|-1 0 a b n ¢ n ¢
d|-1 0 a b ¢ ¢ 1 1 d|-1 0 a b n n d d
11-1 0 a b n ¢ d 1 1{-1 0 a b n ¢ d 1

11.7  Examples of the form: non-linearly ordered BL @ linearly ordered BL
or equivalent forms :

We shall present only one example.
Example The divisible BCK(P) lattice

Dirox2,22 = Haoxe @ Hao == (L @ Loxa) @(52 @ Ly) ==Ly @ Dix22 ED Lo,
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with the support set
D2,2>(2,2,2 = H2,2><2 UH2,2 = {_1; 0; a, ba C} U{C’ da 1} = {—la 07 a, b) &) d7 1}a

is organized as a lattice as in Figure 20 and as a BCK(P) algebra with the operations — and ® as in the
following tables.

Figure 20: The divisible BCK(P) lattice Dy 2x2 2.9

—+1-1 0 a b ¢ d 1 -1 0 a b ¢ d 1
1111 1 1 1 1 -1(-r -1 -1 -1 -1 -1 -1

O|-1 1 1 1 1 1 1 0j-t 0 0 0 0 0 O

D a|-1 b 1 b 1 1 1 al-1 0 a 0 a a a
212x2,2,2 b|-1 a a 1 1 1 1 b|-1 0 0 b b b b
c|-1 0 a b 1 1 1 c|-1 0 a b ¢ ¢ ¢

d|-1 0 a b d 1 1 df{-1 0 a b ¢ ¢ d

1 1-1 0 a b ¢ d 1 1{-1 0 a b ¢ d 1

11.8 Examples of the form: non-linearly ordered BL @ non-linearly ordered
BL or equivalent forms

We shall give here only one example, among the very many possible ones.
Example The divisible BCK(P) lattice

Dyaxa22x2 = 7{2,2x2@7{2,2x2 = (Ly @ﬁwz) @(ﬁz @£2x2) =
=Ly @ Doya2 @ﬁwz ==Dyrox2,2 @ Loxs,

with the support set
D2,2><2,2 = H2,2><2 U H2,2><2 = {O,m, a, bap} U{p) n,c, d; 1} = {Oa m,a, bvpa n,c, d: 1};

is organized as a lattice as in Figure 21 and as a BCK(P) algebra with the operation — and ® as in the
following tables.
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0
Figure 21: The divisible BCK(P) lattice D2,2><2,2,2><2
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The divisible BCK(P) lattice Da 2x2,2,2x2 is of Godel type.
It verifies the condition (P1).
It does not verify the condition (P2): there are x = 1, y = z = m such that

(z7)"0(z0z) 2 (z0y)]=10m—-am]l=1Lz 2 y=m.

Hence, it is not of Product type.
It follows that it is not proper.

12 Example of infinite proper divisible BCK(P) latice

Consider the non-linear Wajsberg (MV) algebra Loy from Figure 3. Then, the set Dyyy prz) =

Lax2UP(Z) = Lax2 U(Z7 U{-00}) =
{0_00,a,b, =0} [ J{~00,...,-3,-2,-1,0} = {0_,a,b, -0, ...,—3,-2,-1,0},
organized as a lattice as in Figure 22, with the operations — and © defined by the following tables, is a

non-linearly ordered divisible BCK(P) lattice, denoted by Days p(z) = Lax2 D P(Z).
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Figure 22: The infinite, proper, divisible BCK(P) lattice Dy o,p(2)

-+ |00 @& b|—-0c0]... -3 -2 -1 0

0_ss 0 0 0 0 0 0 0 0

a b 0 b 0 0 0 0 o0

b a a 0 0 0 0 0 o0

—00 [0 a b 0 0 0 0 O

Dy x2,p(2) . :

3 |00 a b| -0 0 0 0 O

2 | 0o & b|=-oc0f|... -1 0 0 O

-1 0bo @& b|=-0co|... -2 -1 0 0

0 0o @& b|=-0c0|... -3 -2 -1 0

© 0_o a b -0 | ... -3 -2 -1 0
0o | Ocoo 0o 0ioo | 0o | oo 0o 0oo 0o 0O_oo
a 0-0o a 0_co a a a a a
b 0o 0O_oo b b b b b b
—00 | O_so a b -0 -0 =00 —00 —00

Daxz,p(z) : : : : : : :

-3 0_ a b -0 | ... -6 -5 -4 -3
-2 | 0 a b —00 | ... b -4 -3 -2
-1 [ TS a b —00 | ... -4 -3 -2 -1
0 O—s3 a b -0 | ... -3 -2 -1 0

Note that it is not of Gddel type. It satisfies (P1), but not (P2), since there are z = -3, y = z = —o0,

such that:
(27)"0[(20z) 5 (20Y)] =00 (00 = —00) =0ZL z = y = —00.

Hence, it is not of Product type eather. Hence, Dyx2,p(z) 1s an infinite, proper, divisible BCK(P) lattice.

13 Conclusions and open problems
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We have the following hierarchies:

Ha(P)~ BL

wnayHa(P)
= wnm)BL

Boolean

Figure 23: Particular cases of Hajek(P) (BL) algebras

By examining the given examples of Wajsberg (MV) and Hajek(P) (BL) algebras, we conclude the
followings:

1) The Product algebras and (wnm) Wajsberg (MV) algebras are incomparable. Indeed, L3 is a
(wNm)MV algebra not satisfying (P1) and the Product algebra P(Z) does not verify both the conditions
(DN) and (WNM).

2) In the chain Ly, L3, ..., Lyq1 (n > 1) of liniarly ordered Wajsberg (MV) algebras, The first two,
Ly and Ls, are (wnum)Wajsberg (MV) algebras, £y being even a Boolean algebra.

3) By [16], we have:

NRy + (PIMP) = Boolean,
where the condition (PIMP) is:
(PIMP) z(zoy)=z-y.
It follows that we have:
wnmyMV + (PIMP) = Boolean.

Hence, we have the hierachies from Figure 24.
Following the examples from Sections 7-11, two groups of open problems raised.

Open problems 13.1

(0) Is any BL subalgebra of a BL algebra either an MV algebra or a Product algebra or an ordinal
sum: ”linearly ordered BL algebra @) BL algebra”? .

(1) By (0), it is possible to define reccurently BL algebras ? An ideea is the following:

Reccurent definition of BL algebras ?
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BL

SSBL
(™)
=MV
wnm)BL
™
Godel

wnyBL(DN

Boolean

Figure 24: Some descendents (particular cases) of BL algebras

(i) MV algebras and Product algebras are BL algebras;

(ii) The direct product of two linearly ordered BL algebras is a BL algebra;

(iii) The isomorphic immage (coppy) of a BL algebra is a BL algebra;

(iv) The ordinal sum "linearly ordered BL algebra @ BL algebra” is a BL algebra;

(v) Every BL algebra is obtained by applying the rules (i)-(iv) in a finite number of times.

Open problem 13.2

(1) Is it possible to define reccurently the divisible BCK(P) lattices? An ideea is the following:

Reccurent definition of divisible BCK(P) lattices ?
(j) Every BL algebra is a divisible BCK(P) lattice;
(i) The direct product of two divisible BCK(P) lattices is a divisible BCK(P) lattice;

(j3j) The isomorphic immage (coppy) of a divisible BCK(P) lattice is a divisible BCK(P) lattice;

(jv) The ordinal sum: ”non-linearly ordered divisible BCK(P) lattice € linearly ordered divisible BCK(P)

lattice (i.e. BL algebra)” is a divisible BCK(P) lattice;

(jij) Every divisible BCK(P) lattice is obtained by applying the rules (j) - (jv) in a finite number of times.

(2) Find a representation theorem for divisible BCK(P) lattices.
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