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Abstract

In this paper we study the BCK algebras and their particular classes: the BCK(P) (residuated)
lattices, the Hajek(P) (BL) algebras and the Wajsberg (MV) algebras, we introduce new classes of
BCK(P) lattices, we establish hierarchies and we give many examples. The paper has five parts.

In the first part, the most important part, we decompose the divisibility and the pre-linearity
conditions from the definition of a BL algebra into four new conditions (C-), (Cv), (Ca) and (Cx).

We study the additional conditions (WNM) (weak nilpotent minimum) and (DN)

(double negation) on

a BCK(P) lattice. We introduce the ordinal sum of two BCK(P) lattices and prove in what conditions
we get BL algebras or other structures, more general, or more particular than BL algebras.
In part II, we give examples of some finite bounded BCK algebras. We introduce new general-

izations of BL algebras, named o, 8, v, 6, af, ..., a6 algebras, as BCK(P)

lattices (residuated

lattices) verifying one, two, three or four of the conditions (C), (Cv), (Ca) and (Cx). By adding the

conditions (WNM) and (DN) to these classes, we get more classes; among them,
alizations of Wajsberg (MV) algebras and of Ro (NM) algebras. The subclasses

we get many gener-
of (WNM) Wajsberg

algebras ((wnm)MV algebras) and of (wnvn)Héjek algebras ((wnum)BL algebras) are introduced. We
establish connections (hierarchies) between all these new classes and the old classes already pointed

out in Part L.

In part 111, we give examples of finite MV and (wnm)MV algebras, of Héjek(P) (i.e. BL) algebras
and (wnar)BL algebras and of ayd (i.e. divisible BCK(P) lattices (divisible residuated lattices or
divisible integral, residuated, commutative l-monoids)) and of divisible (w ~ar)BCK(P) lattices.

In part IV, we stress the importance of afy algebras versus af (i.e. MTL) algebras algebras and
of Ry (i.e. NM) algebras versus Wajsberg (i.e. MV) algebras and of (wwwm)ofy algebras versus BL

algebras and of avy versus a6 algebras. We give examples of finite IMTL algebras

and of (WNM)IMTL

(i.e. NM) algebras), of aBy algebras and of (wnaryaBy (Roman) algebras and finally of ary algebras.
In part V, we give other examples of finite BCK(P) lattices, finding examples for the others
remaining an open problem. We make fina) remarks and formulate final open problems.
Keywords MV algebra, Wajsberg algebra, BCK algebra, BCK(P) lattice, residuated lattice, BL
algebra, Héjek(P) algebra, divisible BCK(P) lattice, &, 8, 7, 6, &, .., afy6 algebra, MTL algebra,
IMTL algebra, WNM algebra, NM algebra, Ro algebra, wnmMV, wnyBL, (wn af~y, Roman

algebra

Part V has three parts.
In Section 18, we give other finite examples of generalizations of Wajsberg (MV

((WNM)MV) algebras.

In Section 19, we give other finite examples of generalizations of Hajek(P) (BL)
((WNM)BL) algebras.

In Section 20, we give final remarks and open problems.

) algebras and (w N M) Wajsberg

algebras and (wn M) Hal_jek(P)



18 Examples of other generalisations of Wajsberg (MV) algebras
and vy Wajsberg (wn wyMV) algebras

18.1 Example of proper BCK(P)(D}V) lattice (Girard monoid)
s a lattice as in Figure 1 and as a BCK(P)

Let us consider the set A = {0,a,b,n,¢,d,m, 1} organized &
— as in the following

algebra with the operation — and zOY notgtion min{z |z <y = 2z} = (z = y7)
tables:

1
m
c d
n
a b
p
0

Figure 1: Example of proper BCK(P)(pn lattice (Girard monoid)
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Then A = (4,A,V,—,0,1) is a BCK(P)(pn) lattice (you have the values of £~ = 2 = 0 in the table of
—, column of 0).

Note that it is a proper one, since:
- A does not satisfy the condition (C-,), since there exist ¢, d € A, such that
(c—)d)—)(d—)c):m—%mzl#m:d—%c;
- A does not satisfy the condition (Cy), since there exist a, b € A, such that

n:aVb#[(a-—)b)—-)b]/\[(b—)a)——)a]:(m—%b)A(m——)a):mAm:m.



- A does not satisfy the condition (C»), since there exist ¢,d € A, such that
n=cAd#[cO(cod]V[do(d—=c)]=(coOm)V(dom)=pVp=np;
- A does not satisfy the condition (Cx), since there exist a,b € 4, such that
a=a®l=a0(m > m)=a@[(b-a) = (a>b)]#b0[(a—=d) = (b—=a)]=b0(m—>m)=b01=0>.
- A does not satisfy the condition (WNM), since there are a,c € A, such that:
(aec)”V[aAc) > (ad@c)=p V[e—=pl=mVm=m#1

18.2 Example of proper wnyac(pn) algebra

Let us consider the set A = {0,a,b,c,d,1} organized as a lattice as in Figure 2 and as a BCK(P)

algebra with the operation —+ and z © y notgtion min{z |z <y = 2z} = (¢ = y~)~ as in the following
tables:
1
d
b C
a
0

Figure 2: Example of proper (wna)c(pn) algebra

- |0 a b ¢ d 1 ®l0 a b ¢ d 1
o1 1 1 1 1 1 0/]0 0O O O O O
ald 1 1 1 1 1 al0 0 0 0 0 a
blec ¢ 1 ¢ 1 1 b{0 O b 0 b b
c|b b b 1 1 1 ¢c|0 0 0 ¢ ¢ c
dla a b ¢ 1 1 d|{0 0 b ¢ d d
110 a b ¢ d 1 110 a b ¢ d 1

Then A = (A,A,V,—,0,1) is a BCK(P) lattice which satisfies the conditions (C,), (DN) and (WNM).
Consequently, A is a a algebra with conditions (DN) and (WNM), i.e. a (wnm)o(pn) algebra (you have
the values of = = £ — 0-in the table of —, column of 0).

Note that A is a proper (wnum)Q(pn) algebra, since:
- it does not satisfy the condition (C\):

d=bVe#[b—oe)=cA[c=b) =2b=(c=ac)Ab—=b) =1
- it does not satisfy the condition (Ch):
a=bAcEDPO(b—=)]V[O(c—=Dd)]=b0cVcob=0;
- it does not satisfy the condition (Cx):

aza@lza@(c—)l)za@[(b—)a)—->(a—>b)];éb®[(a—>b)—)(b—)a)]zb@[l—ﬂ:]:b@c:o.



18.3 Example of proper fvypn) algebra
Let us consider the set A = {0, a,b,c,d, 1} organized as a lattice as in Figure 3 and as a BCK(P) algebra
with the operation —+ and x © ¥ notation nin{z |z <y — 2z} =(z—y7)” asin the following tables:

0
Figure 3: Example of proper By (pN) algebra
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Then A = (4,A,V,—,0,1) is a BCK(P) lattice which satisfies the conditions (Cv), (Ca) and (DN).
Consequently, A is a B algebra with condition (DN), ie. a Bymn) algebra (you have the values of
¢~ =1z — 0 in the table of —, column of 0).

Note that A is a proper fy(pn) algebra , since:
- it does not satisfy the condition (C-,):

(b—#c)%(c-%b):d—)d:i;éd;
- it does not satisfy the condition (Cx):
bzb@l:b@[d—éd]zb@{(c—)b)—)(b—w)]#CG[(b—w)—)(c—w)]:c@[d—»d]:c®1:c;
- it does not satisfy the condition (WNM), since there is b such that:

bob)~ V[bAL) 2 (BOb)]=a"V[b—2a=dVvd=d#]1.

19 Examples of other new generalizations of Héjek(P) (BL) al-

gebras
and yyy)HAajek(P) (wnanBL) algebras



19.1 Example of proper BCK(P) and wnmBCK(P) lattices
19.1.1 Example of proper (WNM)BCK(P) lattice

Let us consider the set A = {0,a,b,n,¢,d,m,1} organized as a lattice as in Figure 4 and as a BCK(P)

algebra with the operation — and  ©y notglion min{z | £ <y — 2} as in the following tables:

0
Figure 4: Example of proper (wn ) BCK(P) lattice
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Then A = (4,A,V,—,0,1) is a BCK(P) lattice which satisfies the condition (WNM); it is a proper

(wn ) BCK(P) lattice, since:
_ A does not satisfy the condition (C_,): there exist ¢,d € A, such that

coaddarc)=m-am=1Fm=d=g
- A does not satisfy the condition (Ca): there exist ¢,d € A, such that
n=chd#[coc>d]V[do(d— )= (com)V(dom)=0vV0=0;
- A does not satisfy the condition (C\): there exist a,b € A, such that
n=aVvb#|[(a—b) = bA[b—a) —a] = (m = b)A(m —a)=mAm=m.
_ A does not satisfy the condition (Cx): there exist a,b € A, such that
a=a@l=a0(m—m)=a@(b—a) > (a— b)] # bO[(a = b) = (b — a)] =be(m —m) =001l =10

- it does not satisfy the condition (DN) (you have the values of z= = z — 0 in the table of —, column of
0).



19.1.2 Examples of proper BCK(P) lattices (residuated lattices)

We give three examples.
e Example 1 Let A; be the ordinal sum of £z and the above (WNM)BCK(P) lattice A, ie. A1 =

{0,p} U{p, a,b,n,c,d,m, 1} = {0,p,a,b,n,c,d,m, 1}, organized as a lattice as in Figure 5 and as a BCK(P)

algebra with the operation — and z QY notgtion min{z |z <y — z} as in the following tables:
1
m
c d
n
a b
P
0

Figure 5: Example 1 of proper BCK(P) lattice
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Then A, = (41,A,V,—,0,1) is a proper BCK(P) lattice, since:
- A, does not satisfy the condition (C_,): there exist ¢,d € Ay, such that

(c—)d)—%(d—)c)zm—)mzl;ém:d—)c;
- A; does not satisfy the condition (C): there exist ¢,d € Ay, such that
n=cAd# [c@(c—)d)]V[d@(d——)c)] = (c@m)V(d@m) =pVp=p;
- A; does not satisfy the condition (Cy): there exist a,b € Ay, such that
n:aVb#[(a—)b)—)b]A[(b—)a)—}a]:(m—éb)/\(m%a):m/\m:m.
- A; does not satisfy the condition (Cx): there exist.a,b € Ay, such that

a:a@l=a®(m—>m):a@[(b—%a)—)(a%b)]#b@[(a——)b)—)(b—»a)]:b@(m—-)m)Zb@l:b;



- it does not satisfy the condition (DN) (you have the values of 2~ = 2 — 0 in the table of =, column of
0);
- it does not satisfy the condition (WNM):
(a®a)"V[aAa—a®al=p Vje—-p|=0vm=m#L
o Example 2 Let A; be the ordinal sum of £5 and the proper BCK(P)(pny lattice A from the previous
section, i.e. Ay = {~1,0}U{0,p,a,b,n,¢,d,m,1} = {~1,0,p,a,b,n,c,d,m, 1}, organized as a lattice as

in Figure 6 and as a BCK(P) algebra with the operation — and z ©y notgtion min{z | z <y — 2z} as in
the following tables:

1
m
¢ d
n
a b
p
0
-1

Figure 6: Example 2 of proper BCK(P) lattice
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Then Ay = (A2, A, V, =, —1,1) is a proper BCK(P) lattice, since:
- As does not satisfy the condition (C_,), since there exist ¢,d € As, such that

(csd)=»doe)=m-rm=1#Fm=d—g
- Ay does not satisfy the condition (Cy), since there exist a,b € Az such that

n=aVvb#[a=b = bA[b—a)—a=(m—=b)A(m—a)=mAm=m.



- A, does not satisfy the condition (Ca), since there exist ¢,d € Ay, such that
n=cAd#[cO(c—>d]V[do(d—c)]= (cOm)V(dOm)=pVp=p;
- A does not satisfy the condition (Cx), since there exist a,b € A, such that
a=a01l=a0(m—m)=a0[(b-a)—= (a—=b)]#b0[a— b) = (b = a)] = bO(m = m) =bO1=b.
- A, does not satisfy the condition (WNM), since there are a,c € Ay, such that:
(@a@c)” Varc) = (a@c)]=p V]e—=p]= ~lvm=m#1L

- it does not satisfy, evidently, the condition (DN).
o Example 3 Let Az be the ordinal sum of the proper BCK(P)(pn) lattice A from the previous

section and Lo, i.e. Az = {0,p,a,b,n,c,d,m,1}U{1,2} = {0,p,a,b,n,¢,d,m, 1,2}, organized as a lattice
as in Figure 7 and as a BCK(P) algebra with the operation — and z ©y notabion min{z |z <y — 2} as
in the following tables:

2
1
m
c d
n
a b
p
0

Figure 7: Example 3 of proper BCK(P) lattice
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Then As = (As, A, V,—,0,2) is a proper BCK(P) lattice, since:
- A3 does not satisfy the condition (C_,), since there exist c,d € A3, such that

(cd)a>(dac)=m-am=2#m=d—g
- As does not satisfy the condition (C\/), since there exist.a, b € Az, such that
n=aVb#[(a—b) 2bA[b—a)—=a]=(m—=Dd)A(m—a)=mAm=m.
- As does not satisfy the condition (Cy), since there exist ¢,d € As, such that
n=cAd#[cO(c—=d)|V[do({d—-c)]=(cOm)V(dOm)=pVp=np;
- As does not satisfy the condition (Cx), since there exist a,b € As, such that
a=a02=a®(m—=m)=a®[b—a) = (a—=b)]#bO[(a—=Dd) = (b—a)=b0(m—m)=b02=0.
- As does not satisfy the condition (WNM), since there are a,c € As, such that:
(a@c)”" V[(@aAc) =2 (a@c)]=p V[a—=pl=mVm=m#2.

- A3 does not obviously satisfy the condition (DN) (you have the values of z~ = z — 0 in the table of —,
column of 0).

19.2 Examples of proper wyumo algebras

We shall give two examples.

Example 1 Let us consider the ordinal sum of the proper (wn e (pw) from the previous section and
of Ly, i.e. let us consider the set A = {0,a,b,¢,d,n} U{n, 1} = {0,a,b,c,d,n, 1}, organized as a lattice as
in Figure 8 and as a BCK(P) algebra with the operation — and 2 © y notgtion
the following tables:

min{z | x <y — z} as in

0

Figure 8: Examples of proper (wnu)@, v and Sy algebras

—-+]/0 a b ¢ d n 1 ®|l0 a b ¢ d n 1
o1 1 1 1 1 1 1 0{0 0 0 0 0 0 0
ald 1 1 1 1 1 1 al0 0 0 0 0 a a
blc ¢ 1 ¢ 1 1 1 b|0O 0O b 0 b b b
c|{b b b 1 1 1 1 c|0 0 0 ¢ ¢ ¢ ¢
dla a b ¢ 1 1 1 dj{0 0 b ¢ d d d
n|0 a b ¢ d 1 1 n|0 a b ¢ d n n
110 a b ¢ d n 1 1170 a b ¢ d n 1




Then A = (4,A,V, —,0,1) is a BCK(P) lattice which satisfies the condition (C_,) and and the condition

(WNM). Consequently, A is a proper (wn ) algebra, since:
- A does not satisfy the condition (Cy); indeed, there exist b,c € A, such that

d:ch#[(b——)c)—)c)/\[(c—)b)—)b]:(c—)c)—)(b——)b)zl;
- A does not satisfy the condition (C,); indeed, there exist b, ¢ € A, such that
a=bAc£bOb =) V[cO(—b)]=(0b0c)V(cob) =0
- A does not satisfy the condition (Cx); indeed, there exist a,b € A, such that
a=a®l=a0(c— 1):a®[(b—>a)—>(a—>b)];éb@[(a—>b)—)(b—>a)]:b®(1—>c):b®c:0.

- it does not satisfy the condition (DN) (you have the values of 2~ =z — 0 in the table of —, column of
0).
Example 2 Let us consider the ordinal sum of £, and the proper (wnum)(DN) from the previous
section, i.e. let us consider the set 4 = {0,n}{n,a,b,c,d, 1} = {0,n,a,b,¢,d, 1}, organized as a lattice
as in Figure 9 and as a BCK(P) algebra with the operation — and z © y notalion min{z |z <y — 2} as
in the following tables:

0

Figure 9: Examples of proper (wnaa, # and [y algebras

—-]0 n a b ¢ d 1 ®l0 n a b ¢ d 1
o1 1 1 1 1 1 1 0l0 0 0 0 0 0 O
nl|0 1 1 1 1 1 1 n|0 n n n n n n
al0 4 1 1 1 1 1 al0 n n n n n a
bl0 ¢ ¢ 1 ¢ 1 1 b|0O n n b n b b
¢c!0 b b b 1 1 1 ¢c|{0 n n n ¢ ¢ ¢
d|0 a a b ¢ 1 1 d|/0 n n b ¢ d d
110 n a b ¢ d 1 110 n a b ¢ d 1

Then A = (A, A,V,—,0,1) is a BCK(P) lattice which looses the condition (DN), i.e. it satisfies the
conditions (C_,) and (WNM). Consequently, A is a proper (wn e algebra, since:
- it does not satisfy the condition (Cy):

d=bVe#[b—oc) > dAllc=b) 2bl=(c=2c)Ab—=b) =1

10



- it does not satisfy the condition (Cx):

a=bAc#[bO (b= )] Vo (c—b) :b®cvé®b:0;
- it does not satisfy the condition (Cx):
a=a0l=a0(c=>1)=a0[(b—oa)>(a—=d)]#b0[(a—=d) = (b—=a)]=b0[l>c=b0c=0;
- it does not satisfies obviously the condition (DN).

Remark 19.1 Note that in these cases, taking the ordinal sum of Ly and the above (wnyar algebras,
we do not loose the condition (WNM), i.e. we do not get examples of proper « algebras.

19.3 Examples of proper § and (wyum)/f algebras
19.3.1 Example of proper (wyu)3 algebra

Let us consider the set A = {0,a,b,¢,d, 1} organized as a lattice as in Figure 10 and as a BCK(P)

notation

algebra with the operation - and @y~ =  min{z |2 <y — z} as in the following tables:

0

Figure 10: Example of proper (wnanf and By algebras

- 10 a b ¢ d 1 ®l0 a b ¢ d 1
o1 1 1 1 1 1 0j]0 0 0O 0O 0 O
ald 1 1 1 1 1 a0 0 0 0 0 a
bld d 1 d 1 1 b{0 0 0 0 0 b
c|d d d 1 1 1 ¢cl]0 0 0 0 0 c
d|d d d d 1 1 dfo 0 0 0 0 d
110 a b ¢ d 1 110 a b ¢ d 1

Then A = (A,A,V,—,0,1) is a BCK(P) lattice which satisfies the condition (Cy) and the condition
(WNM). Consequently, A is a proper (w8 algebra, since:
- A does not satisfy the condition (C_,); indeed, there exist b,c € A, such that
(b—=c)=(c=b)=d—=d=1+#d,
- A does not satisfy the conditicn (Cy); indeed, there exist b,c € A, such that

a=bAc#DBOb=|V[coO(c=D]=0b0d)V(cod =0v0=0;

11



- A does not satisfy the condition (Cx); indeed, there exist a,b € A, such that
1=a0l=a0d—=1)=a0[b=a) > @b #b0[a=b) > (b—=a]=b0(1—>d=b0d=0.

- it does not satisfy the condition (DN) (you have the values of = =z — 0 in the table of —, column of
0).

19.3.2 Example of proper j algebra

Let us consider the ordinal sum of £, and the above (wnar)fB algebra, ie. let us consider the set
A = {0,n}U{n,a,b,c,d,1} = {0,n,a,b,¢,d, 1} organized as a lattice as in Figure 9 and as a BCK(P)
min{z | z <y — 2} as in the following tables:

notation

algebra with the operation =+ and z ©y

=Nl Fon
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Then A = (A, A,V,—,0,1) is a BCK(P) lattice which satisfies the condition (Cy). Consequently, Ais a

proper 3 algebra, since:
- A does not satisfy the condition (C-,); indeed, there exist b,c € A, such that

(borc)=(c—=b)=d—=d=1#d,
- A does not satisfy the condition (Ca); indeed, there exist b,c € A, such that
a=bAcZ[pO b= V[co(c=b)]=00d)V(cod =nVn=mn;
- A does not satisfy the condition (Cx); indeed, there exist a,b € A, such that
a=a0l=a0d—=1)=a0[(boa)>(a=d)]#b0[(a=b) =2 (b—=a)]=b0(1—=d=b0d=n.

- it does not satisfy the condition (DN) (you have the values of 7 = & — 0 in the table of —, column of
0); - it does not satisfy the condition (WNM): there is b € A4, such that

bob)~ VDAL= bOb=n"VDb—on]=0vVd=d#1.

19.4 Examples of proper v and (w7 algebras
19.4.1 Example of proper (wyu)7 algebra

Let us consider the set A = {0,b,¢,d,n, 1} organized as a lattice as in Figure 11 and as a BCK(P)

notation

algebra with the operation — and £ ©y min{z | z <y — z} as in the following tables:

12



Figure 11: Example of proper (wnN M)y algebra
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Then A = (4,A,V,—,0,1) is a BCK(P) lattice which satisfies the condition (Cx) and the condition

(WNM). Consequently, A is a proper (w7 algebra, since:
- A does not satisfy the condition (C_,); indeed, there exist b, ¢ € A, such that

b=c)=(c=b)=n—-sn=1+#n;
- A does not satisfy the condition (C\); indeed, there exist b, c € A, such that
d=bVeE[(b=rc) = dA[lcab)=sbl=n—)An—=b=nAn=n
- A does not satisfy the condition (Cx); indeed, there exist b, ¢ € A, such that
b:b@lzb@(n—)n):b®[(c—>b)—>(b—>c)]75c®[(b—>c)—>(c—)b)]zc@(n—)n):c@l:c.

- it does not satisfy the condition (DN) (you have the values of 2~ = z — 0 in the table of —, column of
0).

19.4.2 Examples of proper v algebras

We shall give two examples.
Example 1 Let us consider the ordinal sum of £, and of the above (wn )Y algebra, ie. let us
consider the set 4 = {0,a}J{a,b,¢,d,n,1} = {0,a,b,¢,d,n, 1}, organized as a lattice as in Figure 8 and
notation

as a BCK(P) algebra with the operation — and 2 ©y " =" min{z | z < y — z} as in the following
tables:

13
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Then A = (4,A,V,—,0,1) is a BCK(P) lattice which satisfies the condition (C). Consequently, A is a
proper vy algebra, since:

- A does not satisfy the condition (C_,); indeed, there exist b,c € A4, such that

b—=c)=(cab)=n—-n=1+%#n;
- A does not satisfy the condition (C\); indeed, there exist b,c € A, such that
d=bVec#[b—=c)=cA[c=b) ab=n—=>c)A(n—=b) =nAn=n;
- A does not satisfy the condition (Cx); indeed, there exist b,c € A, such that
b=001=00Mn—-n)=00[(c=b s (b—=c)]#cO[boc)—=(c=b)]=cO(n=n)=coOl=c
- it does not satisfy the condition (DN) (you have the values of 2= = 2 — 0 in the table of =, column of
E) )115 does not satisfy the condition (WNM): there is b € A such that
(bOO)" VDAL= DOb=a"V[b—>a=0Vn=n#l.

Example 2 Let us consider the ordinal sum of Lyy2 and of the proper By(pn) algebra from the
previous section, i.e. let us consider the set A = {0,m,n,p}U{p,a,b,c,d,1} = {0,m,n,p,a,b,c,d, 1},
organized as a lattice as in Figure 12

Figure 12: Example 2 of proper v algebra
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Then A = (A,A,V,—,0,1) is a BCK(P) lattice which satisfies the condition (Cn). Consequently, A is
a proper - algebra, since:
- it does not satisfy the condition (C,):

b=c)2(c=b=d>d=1+#d;
- it does not satisfy the condition (Cy ):
p=mVn#[mran) = n]Al(n >m) sml=[n s n]Am-om]=1A1=1;
- it does not satisfy the condition (Cx):
bzb@l:b@[d—)d]zb@[(c—)b)%(b—)c)]#c@[(b—éc)ﬁ(cﬁb)]:c@[d—)d]:c@l:c;
- it does not satisfy the condition (WNM), since there is b such that:
OO V[(bAD) = (bOb)]=a"Vb—=a =0Vd=d+#1;

- it does not satisfy obviously the condition (DN) (you have the values of 2= = z — 0 in the table of -,
column of 0).

Remark 19.2 Note that the ordinal sum M; @ M, preserves (Ca) and if M, is non-linearly ordered, as
it was the case in this example, then it does not preserves (C\ ).

19.5 Examples of proper Sy and (w87 algebras
19.5.1 Example of proper (wy )7y algebra

Let us consider the set A = {0,b,¢,d, 1} organized as a lattice as in Figure 13 and as a BCK(P) algebra,
with the operation — and z © y notation min{z | # <y — 2z} as in the following tables:

= oo ooll
— oo oo®
(ool o B v I o o | R
T oo o oo
o oo oolo
0o ooola
Q0 T Ol

O Qo
T A= =T
O A= Q=0
O = == =
e el e ey

Then A = (A,A,V,—,0,1) is a BCK(P) lattice which satisfies the conditions (C\) and (C,) and the
condition (WNM). Consequently, A is a proper (wN )Py algebra, since:
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Figure 13: Example of proper (w87 algebra

- A does not satisfy the condition (C-,); indeed, there exist b,c € A, such that
b—oe)=(c=ab)=d—>d=1#d=c— b;
- A does not satisfy the condition (Cx); indeed, there exist b,c € A, such that
b=b01=b0(d—=d)=b0[c=b) 2 (b=c)]#cO[(boc)=(c2b)]=cO(d=d =coOl=c

- it does not satisfy the condition (DN) (you have the values of 2= =z — 0 in the table of —, column of
0).

19.5.2 Examples of proper v algebras

We shall give three examples.
Example 1 Let us consider the ordinal sum of £, and the above proper wna By algebra, ie. let us
consider the set 4; = {0,a}{a,b,c,d,1} = {0,a,b,c,d, 1}, organized as a lattice as in Figure 10 and as

a BCK(P) algebra with the operation — and z ®y notgtion min{z | 2 <y — z} as in the following tables:

=10 a b ¢ d 1 !0 a b ¢ d 1
oj1 1 1 1 1 1 0j]0 0 0 0 0 O
a0 1 1 1 1 1 a|l0 a a a a a
b0 d 1 d 1 1 b|0 a a a a b
c |0 d d 1 1 1 cl|0 a a a a c¢
d|j]0 d d d 1 1 d|0 a a a a d
110 a b ¢ d 1 110 a b ¢ d 1

Then A; = (A1,A,V,—,0,1) is a BCK(P) lattice which satisfies the conditions (C\) and (C4). Conse-
quently, A; is a proper S algebra, since:
- Ay does not satisfy the condition (C-,); indeed, there exist b,c € A, such that
(b—=c)=(cab=dad=1#d=c—b;
- Ay does not satisfy the condition (Cx); indeed, there exist b, ¢ € Ay, such that

b:b@l:b@(d—)d)=b®[(c—)b)—)(b—>c)];éc@[(b—)c)——)(c»%b)]:c@(d%d):c@lzc.
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- it does not satisfy the condition (WNM), since there is b such that:
0Ob)~ V[bAD) = (bOb)])=a"V[—=a=0vVd=d#1.

- it does not obviously the condition (DN) (you have the values of 2= = z — 0 in the table of —, column
of 0).

Example 2
Let us consider the set A = {0,a,b,¢,d,n, 1} organized as a lattice as in Figure 8 and as a BCK(P)

notation

algebra with the operation — and z ® y min{z | z <y — z} as in the following tables:

=B oo o ol
O O Q- Q=
—~ B8 oo o o
cCoococoo oo
Yy oCOoOOoOo O
TTT v O O olc
o0 &M oo oo
A v v O ol
BB Ao oy ol
=B oo o ol

SO ® T o oo
IS Sl o P e Pl e B N e )
T O QT
(o e i T ey
el e T T e iy i

Then A = (A,A,V,—,0,1) is a BCK(P) lattice which satisfies the conditions (Cy) and (Cx). Conse-

quently, A is a proper B~ algebra, since:
- A does not satisfy the condition (C_,); indeed, there exist b,c € 4, such that

boc)a(cab)=d=sd=1#£d=c—b;
- A does not satisfy the condition (Cx); indeed, there exist b,c € A, such that
b=b01=b0(d—=d)=b0[c=b) > (b=c)]#cO[boc)=(cob)]=cO(d=d =cOl=c
- it does not satisfy the condition (WNM): there is b € A such that
(b@b)_\/[b/\b-%b@b]:a_V[b—)a]:dvd:d;él.

-it does not satisfy obviously the condition (DN) (you have the values of 2= = 2 — 0 in the table of —,
column of 0).

Example 3
Let us consider the set A = {0,n,a,b,¢,d,1} organized as a lattice as in Figure 9 and as a BCK(P)

notation

algebra with the operation = and z ©y min{z |z <y — z} as in the following tables:

=10 n a b ¢ d 1 10 n a b ¢ d 1
0|1 1 1 1 1 1 0j]0 0 0 O 0 0 O
n|d 1 1 1 1 1 1 n|0 0 0 0 0 0 n
al|ld d 1 1 1 1 1 al0 0 0 0 0 0 a
blc ¢ d 1 d 1 1 b0 0 0 a 0 a b
c|b b d d 1 1 1 c|0 0 0 0 a a c
dla a d d d 1. 1 d|0 0 0 a a a d
110 n a b ¢ d 1 1170 n a b ¢ d 1
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Then A = (4,A,V,—,0,1) is a BCK(P) lattice which satisfies the conditions (Cy) and (Cx). Conse-
quently, A is a proper B algebra, since: '

- A does not satisfy the condition (C_,); indeed, there exist b,c € A, such that

(boc)=>(cob=d->d=1#d=c— b
- A does not satisfy the condition (Cx); indeed, there exist b,c € A, such that
b=b01=b00(d—=d)=00(c=>b0) = b—=0c)]#cO[lb=c)=(c=b)]=cod=d=cOl=c
- it does not satisfy the condition (WNM): there is b € A such that
bob) " VDhAb—=bOb =a"Vb—oal=dVd=d#1.

-it does not satisfy obviously the condition (DN) (you have the values of z~ = z — 0 in the table of —,
column of 0).

20 Final remarks and open problems

We get the hierarchies from Figure 14 of all the descendents (particular cases) of BL algebras mentioned
in this paper.

wnm)BL(pN

- (WNM)W = (WNM)Mgoolean

Figure 14: Some descendents (particular cases) of BL algebras

By combining the two hierarchies from Figures 77 and 14, we get the hierarchies from Figure 15.
Final remarks
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(WNM)Oéﬂ“Y

wnm)BL(p

=wnm)W = (M

Boolean

Figure 15: Vertical sections through afy and BL algebras and other algebras

1) The divisible BCK(P) lattices seem to be a significant generalization of BL algebras, very closed
connected with BL algebras. Recall that a linearly ordered divisible BCK(P) lattice is a BL algebra and
that divisible BCK(P) lattice with condition (DN) and BL algebras with condition (DN) coincide (with
Wajsberg (MV) algebras).

2) The affy algebras seem to be a significant generalization of BL algebras also; they deserve to be
called "MTL” algebras, not the a8 algebras. The relation "ary algebras - afy algebras” is similar to the
relation ”divisible residuated lattices - BL algebras”: recall that a linearly ordered ary algebra is an afy
algebra and that oy algebras with condition (DN) and afy algebras with condition (DN) coincide (with
IMTL algebras).

3) We have not yet examples of proper a3 (weak-BL =MTL) algebras. The relation "af algebras -
affy algebras” is similar to the relation "divisible residuated lattices - BL algebras”: recall that a linearly
ordered of algebra is an afy algebra and that 8 algebras with condition (DN) and afy algebras with
condition (DN) coincide (with IMTL algebras).

4) The Ro (NM) algebras seem to be as much important as Wajsberg (MV) algebras are. They are
incomparable as classes, by Remark 77 (there are Ry (NM) algebras which are not Wajsberg (MV) algebras
and there are Wajsberg (MV) algebras which are not Ry (NM) algebras). The intersection of the two
classes is the subclass of () Wajsberg ((wNm)MV) algebras (see the hierarchies from Figure 77).

We have got the following chain (by set inclusion) of liniarly ordered Ry (NM) algebras:

NMsy =Ly, NMs3 = L3, NMy, ..., NMn+1, o (n> 1),
where
NMupi1 = (Lnga, A = min,V = max, =, ~,n), (n>1),
with 7 =n — x (strong negation) and — is Fodor’s implication [7], [4]:
n, ifz<y
x—)y:{ max(n — z,y), if x>y,
while the corresponding (i.e. with the same support sets, the sets Lypi1, n > 1) chain of linearly
ordered Wajsberg (left-MV) algebras is:
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Eg, [,3, E4, cey En-{—la (n 2 1),
where
Lot1 = (Lnt1,—* 1),
with £~ = n — z (strong negation) and — is Lukasiewicz’s implication:
n, ifz<y : '
x%y:{ pegty, FEsy, = min(n,n — 2 +Y¥),
zVy=(z—y) > y=max(z,y) and
Ay =20 (z—y)=min(z,y).

The two common algebras (i.e. the two (wnar) Wajsberg ((wn wmMV) algebras) of the two chains of
algebras are £y and L3, where Lo is even a Boolean algebra.

5) The (wnafy algebras seem to be as much important as Héjek(P) (BL) algebras are. They are
incomparable as classes (there are (wy By algebras which are not Héjek(P) (BL) algebras and there
are Hajek(P) (BL) algebras which are not (wnaafy algebras algebras). The intersection of the two
classes is the subclass of (wnaryHa(P) ((w ~m)BL) algebras (see the hierarchies from Figure 77).

6) There are cases when the ordinal sum of two BCK (P) lattices with condition (WNM) is no more a
BCK(P) lattice with condition (WNM).

Final open problems

1) A first group of open problems concernes the algebras without condition (DN):
- Find example of proper a algebra.
- Find examples of proper a8 (MTL) algebra and of proper (wn ) af (WNM) algebra.
- Find examples for the other proper algebras marked by the signs 7?9 and ”?” in Figures 77 and 77,
- Find a representation theorem for o8 (MTL) algebras, for ay algebras and for ayd algebras (divisible
residuated lattices).
2) A second group of open problems concernes the algebras with condition (DN):
- Find examples of proper (WNM)BCK(P)(DN) lattice, of proper a(py) algebra, of proper (wnum)BY(DN)
algebra.
- Find examples for the other proper algebras marked by the signs "??” and ”?” in Figures 77 and 77.

3) General open problem:
Study the distributivity of the algebras given as examples (almost all are distributive) and find examples

of non-distributive ones.
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