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Abstract

This paper presents an optimal solution of the H 2 gtate-feedback control problem
for time varying periodic stochastic linear systems subjected both fo jump Markov
perturbations and fo multiplicative white noise. It is proved that the optimal solu-
tion is a static gain which is also optimal in the class of all higher order controllers.
This solution is expressed in terms of the stabilizing solufion of some suitable system

of coupled Riccati type differential equations.

__eywords: linear stochastic systems, periodic coefficients, H 2_norms, Riccafi differential

equafions.

1 Infroduction

The H? and the linear quadratic control problem for linear stochastic systems have been
widely studied in the current literature. A particular attention was paid to two classes
of stochastic systems, namely to Markov jump linear systems and to systems subjected
fo multiplicative white noise. When an important and unpredictible variation causes a
discrefe change in the plant characterization af isolated points in fime, a Markov chain
with a finife state space is a natural model for the plant parameter processes.

Some illustrative applications of these systems can be found for example in [17, 1, 16, 18,
12] and their references, where stochastic stability properties and useful results concerning
controllability, observability and optimal control are presented.

More recently, the H? confrol problem for Markov jump linear stationary systems has
been studied in [2] for the state-feedback case using convex analysis and in [4] for the
output-feedback case. Here the solufions of the H? problem is explicitly expressed in
terms of the solutions of some linear matrix inequalities (LMI).

The stochastic systems with mulfiplicative whife noise naturally arise in control problems
of linear uncerfain systems with stochastic uncertainty (see [21, 11, 15, 20] and the ref-
erences therein). Resulfs concerning the H? control problem for this fype of systems are

derived for instance in (3, 5].
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The approach derived in the present paper uses the stabilizing solution of a suifable
system of coupled Riccafi differential equations (SGRDE). In [6] was proved that if the
coefficients of (SGRDE) are periodic functions then its stabilizing solution is a periodic
function too. Therefore this solution may be computed applying an iterafive procedure
on an compact inferval equal with a period.

The optimal solution providing the minimum of the H? norm of the resulting systems is
a zero-order dynamics controller. Moreover, it is proved that this solution is also opfimal
in the class of all higher order controllers, extending thus the corresponding known result

from the deterministic framework ([10]).

2 Problem formulation

A. Consider the system (é) described by the state-space equations:

dz () = Ao(t,n(t))x(t)+§T:Hk(t,n(t))x(t)dwk(f)+Bv(t,n(t))dv(t) (2.1)

k=I

z2(t) = C{t,n®)z ()

where z () € R™ is the state, 7 (¢), t > 0 is a right confinuous homogenous Markov chain
with the state space the set D = {I,...,d} and the probability transition maftrix P (1) =
[pi; (1)) = €9F, & > 0; here Q = [i;] with Z?:I g; =0,i€Dand g; >01if s £ 7 (see [9]);
[w* () v*@)]", t > 0is an (r +m,)-dimensional standard Wiener process on a given
probability space {Q, F, P}, w(t) = (wi (), - wr )", v() = (v (t), - Um, (¢))* (for
more details, see [13, 19]); Ag(-,3) : R = R¥™", 0< k<7, By (,3) : R = R™™, C (i) :
R — RP*" 4 e D are confinuous and periodic functions with period § > 0.

Throughout this paper it is assumed that {w (£)},s0, {v ()} {n (t)};s, are indepen-
dent stochastic processes and P {n(0) =i} > 0 for all ¢ € D. -

Let H, be the smallest o-algebra with respect fo which all functions w; (s),n(s),1=
j<r 0<s< ¢t are measurable and ’}%t be the smallest o-algebra with respect to which
all functions w; (s), 1< j<r, v (s), IS I<my, 0 (5), 0 < s <t are measurable.
Using a standard argument of successive approximations and the properties of stochastic
infegral, one can prove that for each £y > 0, 7o € R" the equafion (2.1) has a unique so-
lution z (¢, ty, 7o) with the initial condition z (to, to, To) = To. Moreover, { — (t,to, o)
is continuous with probabilify 1 and

sup E [|a: (t, to,xo)lz‘l] < 00,
te[tOvT] )

for all infegers a > 1, for all 7' > ¢, where E denotes as usually the expectafion.



Consider now fhe homogeneous sysfem:
dz (8) = Ao (1,1 (1)) = (V) dt + 3 Ax (8,1 (1)) = (2) do (2 (2:2)
k=1

associated with (2.I) and denofe by ® (¢,s), t > s > 0 its fundamental mafrix solution.
This means that its j's column @; (t,s) = z (¢, 3,e;) where e; = [0, ...,0,1,0, . O] s
vector of canonical bases in R™.

Based on the It6-fype formula, the following representation formula for the solution of
(2.1) can be obtained (see [7]):

2t to,50) = @ (b 0) 70 + ® (1, t0) [ 7 (s,t0) By (5,7 (5)) dv (s), (2.3)

lo

t>1 >0,z € R™
Definition. The zero solution of the equation (2.2) is called exponentially stable in
mean square (ESMS) or equivalently, the system (Ao, ..., A-; Q) is stable if there exist
a >0, 3 > 1 such that

B (|9 (t,t0) 2ol m(to) = ] < BemC~) |
for all t > &y, zo € R™, 7 € D, where E[-|n(ty) = 4] stands for the conditional expectation
with respect to the event {n(to) = i}.

B. For the system (G) described by (2.1) we introduce the following norms:
|Gl = [Jim —/ El2(t)|?df) (2.4)

and
1G> = { fim = Z / (1) PIn(to) = i)de}¥ (2.5)

respectively, where E[:|[n(ty) = 4] is the conditional expectation with respect to the event
n(to) = ¢ and E stands for the mathematical expectation.

It can be verified that if the zero solution of (2.2) is (ESMS) then (2.4) and (2.5) are
independent of ¢y and zy and therefore the norms (2.4) and (2.5) are well defined.

We shall see in the next section that under the assumption that the zero solution of (2.2)
is exponentially stable in mean square (ESMS), the above limits exist and do not depend
upon %y and zo and therefore these norms are well defined. The norm (2.5) extends to the
periodic case a norm considered in [8] while the norm (2.4) extends to this framework the
well known norm widely investigated in the literature (see [2, 10, 3, 5, 8] and references

therein).
C. Consider the system G described by:
dz (t) = [Ao (tyn(f))x(t) + By (2,7 (2)) u (2)] dt
Z £ (8) 2 (8) + Be (b, (2) u (b)) dwk () (2.6)
( n(t)) dv (¢)
z(t) = (t n(t)z (L) +D (L n{)u(t)

3



where z € R™ is the state vector, u € R™ denotes the vector of control variables, z €
R? is the regulated output and Ag (-1), By (1), 0 < k<7, C (-,1) are as before and
Bi (i) : R = R™™, D (-,i) : R — RP*™ are also continuous and O-periodic functions.

Consider the following family of controllers G, described by:

o (t) = Ao (1)) () + Be(t,n () ue () (2.7)

e (t) = Ce(t,n(®)ze(t) + De (b7 (2)) e (2)
where z, € R™,u, € R, y. € R™, A.(,i) : R — Rrexme B,(-, 1) : R — R™*™, Cy(+,1)
R — R™" and D,(-,i) : R — R™" are continuous and ¢-periodic functionc.
Lot us remark that the controller G, of form (2.7) is completely determined by the set
of parameters (ne, Ac(-,2), Be(-,4),Cc (1) ,D.(-,i),i € D) where n, > 0 denofes the
controller order.
In the parficular case n. = 0 the controller (2.7) reduces fo

Ye () = De (8,7 (£)) ue (2)

which shows that the zero order (state-feedback) confrollers are included in the set of
controllers (2.7).

The resulting system G obtained by coupling a confroller of form (2.7) fo the system
(2.6) by taking u. (¢) = = (t) and u (t) = y. (t) Is:

drg (t) = Aoa (t,n(t))zq (t)dl + ZT: Aga (8,1 (8)) za (t) dwg (t)
k=1

By (t,7(2)) o (1) (28)
ya (t) = Ca(t,n(t))za(t)
where
T = fc};

[ Ao(t,8) + Bo(t,i) De(t,i) Bo(t,i) Ce (k)

Awa (68) = | B, (t.1) A, (¢, ) }

Moglfd] = Ak(t,z)JrB;B(t,i)Dc(t,i) Bk(t,i)OCc(t,z')};

B,a(t,i) = B“ét’?;) };

Cu(t,d) = [C(ti)+D(ti)De(t,i) D (t,)Celt,i)]-

Definition. A controller G, of form (2.7) is called stabilizing for the system (2.6) if the
zero solution of the closed loop system (2.8) (in the absence of the noise v) is (ESMS).

By K, (G) it is denoted the set of all stabilizing controllers G, of the form (2.7).
Then two optimization problems will be formulated and solved in this paper:

(OP1) Find a stabilizing controller of the form (2.7) minimizing ||Gqall,;

(OP2) Find a stabilizing controller of the form (2.7) minimizing [||Gal|[2-

4



3 Observabilify Gramian

Let S, € R™™ be the linear space of n x n symmetric matrices and S=8,0..08,

and consider the linear operator ' _
L(t):88— S?

defined by
L(#)S =[L:(t)S  LaP)S ... L4(t)S]
where
r d
Li(t)S = Ao (t,1) S (3) + S (1) Ay (t,7) + z—: Ay (1,1) S (2) 4 (8,4) + Z ¢S (J). (3.1)

If £*(t) : S — 8% is the adjoint operator of L(t) with respect to the usual inner product
on S8

(S, H) Z;TT [5(5) H (9)],

then by direct computations it follows that

L£X#)S = [L1(t)S L5(1)S ... L3(t)S]
where

r d
L3(t)S = Ay (£,1) S (3) + S (1) Ao (2,8) + Y Ax (8,9) S (1) A (£,9) + >_ 4155 (4)
k=1 j=I
for all S € S2.
Throughout this paper T (¢,t) is the linear evolution operator over S3 defined by the
lincar differential equation:
d
%S (1) =L()S ().
Since £(t) and L£*(t) are periodic functions with period  we obfain that 7'(t +6,5+6) =
1(t,8) and T*(t +0,s + 0) =1*(t,s) foe al £, s € R.
In the developments of the next sections a crucial role is played by the unique periodic
solution of the following affine differential equation on Sé:

%Po(t) L LR +C(t) = 0 (3.2)

where C(t) = (C(t,1) C(t,d)), C(t,i) = C*(t,1)C(t,1).
The next result follows from Corollary 4.9 in [7].

Proposition 3.1 If the zero solution of (2.2) is (ESMS) then (3.2) has unique periodic
solution. Moreover this periodic solution is given by

P,(t) = / T*(s,)C(s)ds, teR (3.3)
t
P,(t) extends to this framework the well known observability Gramian.

5



4 H?-norms for linear stochastic systems

In this section we show how the norms (2.4) and (2.5) are expressed in ferms of the
observability Gramian of the system (2.1).

Firstly we prove:

Lemma 4.1 If the zero solution of the system (2.2) is (ESMS3 ') then

to+T d  rto+T - - - ‘
Bl i |2(¢) P dt|n(to) = Z/ 7T[Bz(SaJ)Po(S,J)Bu(Sa])]Pii(s—to)d5+¢i($o,to,T)'
0 g=I
where

" ,
Jm ;[.wi(xo,toﬂ) =0
for all tg > 0,79 € R™,% € D, F(t) = (P,(t,1) ... P,(t,d)) being the unique periodic

solution of equation (3.2).

Proof. Under the considered assumptions we obtain from Proposition 3.1 that the equa-
tion (3.2) has a unique periodic solution F, : R — St P,(t) = Po(t, 1) ..P(t,d)).
Applying Theorem 3.1 from [7] to the function v(t,x,1) = 2*Pp(t,7)r and to the system

(2.1) one gets

B[ 12 Pdtin(te) = i] = (1)

o

E[/to—l—T Tr{B;(s, n(s))P,(5,7(5)) By(s,n(s)) }ds|n(to) = i] + (zo, b0, T)

to
where

bi(zo, to, T) = x5 Py(to, 3)0 — Elz*(to + T) Po(to + T, n(to + T))z(to + 1) |n(te) = il

and z(t) = z(t, o, z9). By Theorem 5.1 in 7] (0, Lo, -) is a bounded function and then

we have

1
’Il'in(io 'TwL (Io, t(), 7’) ={). (42)

On the other hand we have:

B[ Tr(Bi(sn() P, 1(5)) Bl n(s))dsln(ia) =

o
{l t0+T * . . . .
=) /t Tr[B(s,§) Po(8, 5)Bu(8, 1) ElXn(s)=3In(t0) = ilds
j=1
which leads to
to+T

Bl Tr(B(s,n(s)) Py(s,m(s)) Bu(s,1(5))ds[n(to) = i]

to

-3 T La(B2(5,) Po(s 5) Buls, )lpis(s — to)ds. (3)



Combining (4.2), (4.3) with (4.1) we obtain the equalify in the statement and thus the
proof is complete.

In what follows we shall use the notations:

m () = P{n()

P llmP()_

t—00

i},

with elements p;; (the existence of the above limif is proved in [9])
o= P{(0) =i} = (0)

d
Moo = D Mibji.
j=1

It is obvious that m; (t) = Z?:I 7;p;i (t) and hence limy,o0 m; (2) = Mi0o. Set

B, (s,i) = m(s)B,(s,i) B (s,1)
B, (5,1) = TisoBy(s,4) B (s,1).
Theorem 4.2 If the zero solulion of the system (2.2) is (ESMS) then

% 1.9 /0
(1Gl)* = 5 ;/0 TjoaTT[By(8,5) Po(s,7) Bu(s, j)lds (4.4)

Proof. Applying Lemma 4.1 one obfains:

t

0+T 2 o+T
2 dt = Zm WEL[ [0 dtin(to) =il =

to
d d to+T . . .
ZWi(tO)/I TT[B:;<5’.7)PO(57])Bv(s».7”pij(5 - tO)dS (4'5)
j=14=1 o

d
-+ Z 7T,,‘,<t())'l/)>7‘,(x(), tO) CZ’)
=1
Since m;(to) = Zle mpi(to) one obfains that
d
Z (tO plj §— i() Zﬂ—lpl]
=T

Further we have:

Soito) [ TrB (s, )Puls,3)Buls (s — to)ds
= tt0+TTT‘[B:(S,j)PO(S,j)BU(S,j)]ﬂ’jOOdS (46)
d to+T i
+;m~ /to Tr[By(5,7) Po(8,7) Bu(8, )| (pis(5) — Piz)ds.



Using (4.5) and (4.6) together with im0 ps;(s) = Pij one obfains
t0+T )
Jim E'/ |2(t)[*dt = Jim —Zvr]oo/ (5,7)Po(5,5)Bu(s,7)|ds

Since the infegrant is periodic function we may erte:

lim — Tr(B2(s,7)Po(s, 5)Bu(5, J)|Tjods =

T
lim %/ 17[BX(8,7)Ps(s, 7) Bu(5, 1) Tjoods =
0

L ro ; . .
5 [ Tr(Bi(5,3)Pals 9)Buls, ) mseeds

Thus we have obtained that

o+T d 1 (0
hm E[/ lz(t)IZdS] - Z ’_/ ijy‘r[B:(&j)PO(S)j)B“<Saj)]dS
T—o0 T ZibJo

and ths the proof is complefe.

Theorem 4.3 If the zero solution of equation (2.2) is (ESMS) then

(1€1)? z 5 [ 6171825, 3)Po(s, 1) Buls, s (4.7)

where §; = Zleﬁ,-j.
Proof. Using the equality proved in Lemma 4.1 one obtains:

ZE [ EPdnte) = 1=

d d to+1"
o> by / Tr[By(s,5)Po(s,5) Bu(s, 5)lds + Z(i/)@'(l"o, to, 1) + hi(to, 7)) (4.8)

where 9;(z, to, ") are as in Lemma 4.1 and
] d to+T . ] B § B
hlto, T) =3 [ TriBi(s,9)Pals,3)Bal5,3))(pigls — to) = Fig)ds.
j=177%0
The proof goes one as in the previous theorem.

Remark 4.4
a) From (4.4) and (4.7) it follows that the norms (2.4) and (2.5) do not depend upon
(t(),x(),i) & R+ x R™ x D.

b) Since 8; > 7o it follows that [|Gllz < [||G|||o- From (4.7) one can see that || - [||> does
not depend upon the initial distribution © = (71, m ...mz) of the Markov chain.



5 Solution of the optimization problems

In this section we solve the optimization problems stated in section 2. For the sake of

simplicity we shall unify the notations writing ||-|l,,, £ = I,2 where ||-||, ; stands for ||-[|,
defined by (2.4) and ||-||,, stands for ||| - |||> defined by (2.5). Thus from Theorems 4.2

and 4.3 we have

2 _xa L f?
[Gallye = Yevg [ 77 (B 519) P (5) Bus (5,1 s (5.1

with
B = My Tor £=1 (5.2)

g = (Si for J =2

and Pou(s) = (Poat (8,1) , ..., Poat (8,d)) Is the unique periodic positive semidefinite solution

of the Lyapunov type equation on 82, :

EdZPOCl (t’ Z) + A(*J‘cl (t7 7’) POCl (tv i) + POCl (ta Z) :’4001 (t7 i) + z:llrc':l Ach (ta 7’) POCl (t’ Z) Akcl (t, i)
+ 5L g5 Poe (,5) + C (8,8) Ca (1,4) = 0, i € D.
(5.3)

One can associate to the system (2.6) the following stochastic generalized Riccati differ-
ential equations (SGRDE):

X (04) + AL (15) X (53) + X (53) Ao (64) + 32 AL (6) X (6,6) A (1)

dt k=I
d r
+ Zqin (¢,7) — [X (t,2) Bo (t,1) + Z A; (6,9) X (,%) Be (t,3) + C* (t,4) D (¢,1)
= k=1 ,
<[ v+ s e x e B 5.4)

k=1

X [B(’f (t,7) X (¢, i)+i By (t,1) X (t,1) Ag (t,3)+D* (1,4) C (t,z')} +C* (¢,3) C (1,1) =0,

7 € D, which can be written in a compact form as:

4 X(0) +£0XE) - P (1 XO)YR ¢ XO)P (¢, X(0) +C) =0

where L(t) is the Lyapunov operafor defined by (3.1) and
Pt,X)=(Pi(t,X),..., Pt X))

with
P; (t, X) = By (t,1) X (1) + Z By (t,1) X (i) Ay (¢,3) + D* (t,3) C (¢,1)

and R (1, X) = (Ri(¢,X),...,Ra(t, X)) with

Ri(t, X) = D* (t,9) D (t,i) + Z B (t,4) X (i) By (t, 1) -

k=1



Definifion. A solution X(t) = ()N( (t,1),..., X (t, d)) of the equaftion (5.4) is called

stabilizing solution if it has the following properties:

a
)
R (t,f((t)) >0, teRieD.

b) The system (}40+BOF~’, A1+BIF,...,AT+BTT:';Q) is stable, where Ft) =
(F(t,1), F(2,2), -y F(t, d)), with

F(ti) = —R7 (4, X(®) P (6, X(1), tER,IED. (5.5)

Remark. The solution X(t) of the system (5.4) is a stabilizing solution if the control
u(t) = F(t,n(t))z(t) stabilizes the system (2.6) in the absence of the additive noise v (t).

Denofe by 7 |
N (X) = N (X), s Ng (X)) € 844 X € CY(R,S))

the generalized dissipation matriz, where
M) = | EXED+LOX) @O+ PrEX) |
1 P; (¢, X) | R (t, X)
Throughout this section A = (Ao, A1,..,4,), B = (Bo, B1, ..., Br).

We make the following assumptions:
H1. The system (A, B;Q) is stabilizable (the concept of stabilizability for the triple
(A, B; Q) is defined in the standard way see e.g. [7]).

H2. Assume thaf there exists a periodic C'-function X(t) = (X (t,1),, X (t, d)) such
that N (X(t)) > 0.
Applying Theorem 4.9 and Theorem 5.1 in [6] it follows that the (SGRDE) (5.4) has a

unique stabilizing solution X (¢) which is #-periodic function.

If we take u(t) = F'(t,n(t))z(t) the corresponding closed loop system denoted by G is:
dza(t) = [Ao(t,n(®)+Bo(t,n(®) F (tn(0)]« (t) at
+ 3 [Actn @) + Be (b n () F (6,0 (1))] = (1) due (2)

k=1

+Bv (t’ n (t)) d’U (t) (‘)'6)
2(t) = [Cln®)+DEnW)Ftnw)] =)

Then the following result holds:

Proposition 5.1 Under the assumptions H1 and H2 we have

Je.

2 L B N 5
2,622575/0 YT<BU (5,7) X (5,7) B (S’j)) ds

10



where X (t) is the stabilizing solution of (SGRDE) (5.4).

Proof. By direct algebraic manipulations one obtains that the (SGRDE) (5.4) verified
by X (&) can be written in a Lyapunov form as follows:

%X@n+p%@n+mamﬁaﬁrima+X@np%@a+&amﬁa@]
+ 3 [Ae () + Be () F (1,0] X (89) [Ax (66) + Be () 7 (1,9)]

+i%xﬁJH{0@n+D@oﬁmﬂﬁcmn+D@nﬁmﬁ:o

which shows that the observability Gramian P,y associated with the closed loop system
(5.6) coincides with the stabilizing solution X (t) of the (SGRDE) (5.4). The conclusion
in the statement follows from Theorems 4.2 and 4.3.

The main resulf of this section is:
Theorem 5.2 Assume that H1 and H2 are fulfilled. Under these conditions,

. LI L N 3
o min 1Gally, = L;ejéfo Zl’r(Bv (5,7) X (5,7) By (S,J)) ds

and the optimal control is )

u(t) =F(tn)z()
where X (t) is the stabilizing solution of (SGRDE) (5.4), F(t) = (I: (t,1), ...,F(t,d)) is
the stabilizing feedback gain defined by (5.5) and €; are defined in (5.2).
Proof. Let G, € K4(G) and G the corresponding closed-loop system and P, () denotes
fhe observabilify Gramian. Let

Unt (t,4) Ur (t,4)
Uty (8,4)  Un (t,9)

be a partition of P,y (t,7) conformably with the partition of the state matrix of the
resulting system. Partitioning (5.3) according with the partition of P,y (2,4) it follows

- that:

+ 50 gsUn (69) + (C (54) + D (t, i) De (t,1))" (C (1,1) + "D (t,48) Dy (69)) = 0
t, )) UIQ(t Z)+ t,Z)UQQ(t Z)—f—UII(t Z)Bo(t Z)Oc (lf,Z)
,1) + By (t,3) D, (t,z)) Uz (¢, 1) By (¢,1) C. (L, 1)

D (,3) D, (t,1))* D (t,1) C. (£,%) =0

&

(;_,ltUIQ(ta Z) ( (t17')+BO(t Z)DC(
+U12 (t,’L)A (t,z) ( % (t
+

‘ +
+ 341 qUr2 (8, 7) + (C (t )
(5.8)

11



Lloa(t, 1) + Cs (t,8) By (£,4) Una (8,3) + A * (t,4) Upg (t,3) + Uty(8,7)Bo (t,1) Ce (¢,7)
+U22 (t ?’) A (t Z) + Zk 1 O* (t Z) (t, ) UII (t 7’) Bk (t) 7’) Cc (ta 'L)
+ %2 45Uz (1,9) + C5 (8,4) D* (4,9) D (8,7) Ce (¢,1) = 0.

i)
By
(5.9)
The (SGRDE) (5.4) can be written for the sﬁablhzmg solution X () in the following

Lyapunov form:

(5.10)

Denoting by 3 .
Un (4,4) = U (£,3) — X (4,%)

and subtracting (5.10) from (5.7) one easily obtains that

- [ Uuntd) Un(i)
U(ti)= [ U, (t,3) Una (t,1) } ’

is the periodic solution of the folowing affine differential equation:

L07(t,6) + Ay (£,8) U (6,) + U (8,8) Aga (8,6) + Sy A (6:8) U (46 Ara (89)
Yyt a0 (17) +©° ()R (1, X(0) ©(13) =0,

with i
O(ti) = [De(t,)) = F(t,5)  Celt, i)

Since the system (Aoas Ately -y Ara; Q) 1s stable it follows via Proposifion 4.8 in [7] that
U (t,%) > 0. Further one obtains

d. 1 0 . . _
IGall2, = Z%/@ Tr (B%, (4,1) Poa (t,1) Boa (1,7)) dE
=1

_ Zs%/efl’r (B (t,0) X (4,9) B, (1,1)) di

e Z%/ Tr (Bl (t,3) 0 (1,6) Bua (8,7)) dt.
Since U (t,1) is positive semidefinite it follows thaf

d 1 s -
2 ) % K . 5
IGall?, > ;eig/o Tr (B; (1,6) X (t,9) By (1,1)) ot

for all stabilizing controllers G.. Using Proposition 5.1 the conclusion in the statement
follows immediately.

Remark. From Theorem 5.2 it follows that both optimization problems (OP1) and
(OP2) have the same optimal solution given by the confrollers with the sef of paramefers
n.=0, A, (t,2) =0, B.(t,7) =0, C.(t,2) =0, D, (t,¢) = F'(t,1), 1€ D.
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