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Asymptotic behaviour of higher order
derivatives of Perron-Frobenius operator

A. Berechet

1. Introduction. Preliminaires.

We consider in this paper the transfer operator U of. an unidimensional
(B c Rl) measurable fibred system (B,E,r) in the class delimited below.
This class generalizes pw m t.s for which are descrbes in [8] associated
Markov chains (tr,)n.>o and their transition operators. Many properties of
such Markov chains can be extended at certain classes of fibred systems.
Some of their properties have been used to study conditional expectations
and distributions of several associated random variables in [6], [7].

The needed in the description of many fibred systems verification of
Gauss' (or Kuzmin's) equation amounts to the proof of fact that the family
of functions Uy(i,)hlh, 'i € A define a transition probability function; here
(i,), A € i, arc cylinders of order 1 of the given fibred system, h is the invariant
rest the Perron-Frobenius operator U density. Hence it is essential for the
possibility to obtain iterates of a system.

The relation between the Perron-Robenius operators and the integral
Markov operators (in particular sums) is viewed conformly to 15], Ch VI and
VIII.

We continue this first section with prerequisites.
Then we delimit the class of fibred systems we deal with and we restate

Theorem 1, [3] which sums Kuzmin type theorems proved in [2]. It is valid
for fibred systems in the class considered and is essentially used in the proof

of Theorem 3 below. We postponed the notations of spaces and norms in an
Appendix.

In Section 2 we introduce the condition (E") o" derivatives of order s ) 1
of rt,l ) 1. Then, by Theorem 3, we prove that the s-th derivative on cells



h f 
("), of h exists and is Lipschitz continuous on every cell (i.e. h l(')6 L; see

Appendix) The proof is reminiscent of methods from last mentioned paper'
- 

The main result, Theorem 5, is a consequence of Lemma 4 from Section

3 . By this theorem one sees that the derivative on cells of order 3 ( s of.l,ll,

(U\ l@, considered on C'can be approximated using the operator we denote
y{i,D, (1, S e N, F ( s). The analogous in a sense of Kuzmin's equation

(concerning as it is well known l,lth, I > 1) holds asymptotically as I -+ oo

ior VG,t)h. On what I know these results are not known even in continued

fraction (abbr. RCF) case. In the case of RCF one also shows that h(l) is

an eigenvector excepi a normating functiotr og y(s'l) and one gives a formula

allowing the iterative reduction of order of derivative (of S).

Let B : lc, dl be a compact interval of IRl, X be the o algebra of Borel

sets of 6, ) ihe Lebesgue measure on X. Let A be the index set and (z),

i e A the fundamental intervals or cylinders of the measurable fibred system

( B , D , r ) .
we denote by x{E;.} : xE the indicator function of arbitrary set E c B

and given the real map g onB,by g l, the restriction of g at E; we also set

s@fu\ ,: *p,in points y € B in which it exists' s € N*.' dU'
The map i l.>:, ri where i, e Ais injective by general definition of fibred

systems (cf [7]); we assume here that (a) are open, i, e A and that ri,'i e A

aie for a n > l, C"-difruomorphisms r(z) 1-1 (r). We denote u6 i: 16 L 
t i, e A.

Then u; a,restrictly monotonic. Given any "block" 'i@) 
."- (it, ' ",in) € A =

Ax.. .  x A we def ine i terat ively the set (z("))  : :  ( ; ("- t l ;  f i ( r" - t  € ( i " ) ) ,

{n) 6 A("). We consider as collection X, of fundamental intervals or cylinders

of order n is the set X,, :: {(z(")) : i@) e A and'.1((zf"l;; > 0}' We denote

A61 :: 1l@ e A" : ),((i@ )) >.0) and we call its elements admissible blocks.

W.'d.troi. t :: B\ t)t(i)Ear,, QO\, j > 0, the collection of end points of fun-

damental intervals of order n.
one defines the label sequence (an),2r of given fibred system by

a{a) : i '  i ff y e (r); a*(i l -- or(r"-t (v)), if u / t"

Then whatever we have (i(")) : {y e B,o(")@) -- i'(")}, 'i(") e A@),

n ) r. under the assumptions stated below, A(€") : 0, r ) 1 and (an)n2r

is a sequence of. A valued random variables on B' Under that assumptions,

whatever n € N- the set of cylinders of order n is a partition of 6 (mod 0).

Whatever , {n)  E A we denote 6@).-  ( in, . . . , i1)  and when r"( i { " ) )  10,
'u;(n) t: 'uir o ... s'uin' Hence rfu ,: Tin o ... o rit and u6{d : ( ' fu)-'



Under the assumptions below (see namely (C) and (E)), 0,< ?/t?) (t) < 
",

t  € rn( i@)),  i tu)  e A6s,We denote u( i@), t ) : : l * rur1tSl , , i ro e A61,
l d t  

' '  '  ' l '  \ ' - l

t e rn(,i@)l; w(i@),t) : 0, a / r"(i@) (convention uiro used in [8]).
In this paper we assume that the next conditions on fibred system enun-

ciated also in [8], [9] and [1] hold

(A) 6(n):: sup diam fui*t\;lj,

where the supremum is considered o.'er a(-) e A61.
The finite range condition is:
(B) There is a finite collection of subintervals of B, Er, L < t < i such

that, given any i@) e A61of order n,^rn (i@)) : 5i for a i : i1';@)) < t.
The collection of sets 51, 1<t < I induces a finite partition of 6 denoted

?1, whose elements are called cells.
(C) (Renyi's condition) There exists a real constant c 2l such that

a( ' i (*) , i l  < a, t ( i , (*)  ,11,6(m) € A61,t ,a € r*( , i (*)7.

One says that the cylinder^(z(")) is proper or full i ffr"(i@)):6
(D) Every set 51, 1 < t < I contains a proper cylinder.
Let )r be the number defined by ll\:: min;.;XSr). By above (B) and

(D),  ) t  > 1.  We denote )1c: :  C.
Using condition (C) we obtain (see e.g. [9])

^(Q(")DlC 1u( i ( " ) , t )  <  ̂ (U@DC

t €r"(i@),' i@) e A61, n > 1. The last condition we assume in this section
is

(E): There exists a positive real'ibnstant, N such that

luQ@,w)  _  uQ(" ) , t ) l  S  l ( ( i ( " ) ) )h r l  _  , l t / ,  w , t  €  ( t ( " )y , i ( " )  e  A@).

By condition (A), denoting X,, the o algebra generated by Xn, we have
W>JX, :  X .

Note that the condition called (G) in 18] automatically holds in our unidi
mensional case. A relation stronger than condition (.F) assumed in [8] holds.
Indeed, using (t) one can write whateveri@) E.412,; and t,w €rn(iln))

a(l@)d;l  S )((et"); ;cl t  -  wl (2)

3

( 1 )

1u661 (w) -u ;@)Q) l : l  l ,



Given the measures u1 and u2 on the same measurable space' the order

relation "u1 is equivalent to t't2" will be denoted I/r - t'/2-
suppose that the conditions (A),...,(E) hold. Then: i) r is ergodic wrt

). ii), There exists an unique probability on (B,E) absolutely continuous
wrt.\ preserved by r; we denote it p. i i i) Actually p- \; let dp,f i l ,:: h'

These properties are also evidentiated in [1], [2], [9]. since they hold,

(8,D,r,1t") is a measurable dynamical system (see 12], [8], [9]).
The class of fibred systems we deal with is delimited by conditions

(A), . . . , (E) and by the requirements:  1 :  d imB; I :  ^(B);  a i  ater for  a

n € N- , C" diffeomorphisms, (r) ++ r(z). From now on we suppose all these

conditions and requirements satisfied. We shall denote (E ) where s € N-

the assumption we introduce in addition in next section'
The expression used in [2] of Perron-Frobenius operators is valid also for

that associated with r under ), denoted hete U. Let J € 7{; we denote

ln,u]:: f i(") e A61,u e r"(i@71, rz € N*. By propositions 3 and 4 from

[S] we have fn,ul :  fn,wl  + A,,  ]  1,  t  e J.  Hence we may denote

[ n , u ] : 1 l n , J l ,  J  >  u .
For any f e Lr(6) (see definition in Appendix) we have

U" f  ( r )  =Ei@)61n,*1f  (ux^t(r))uQ{") , r ) ,a.e '  in B (3)

n ) L. AIso Lt" f : {(U" f)V, J e ?{}.
Then summing (1), last relation, we obtain, whatever n) |

I/"I(r) :- Ei@)6ln,r1a(i(") ,r) 1 C, a.e. in B.

By the relation

r € B , f e h ( B )

we define on L1(B) 
" 

linear bounded operator.

Remark Assume that B : [0, 1] :: 1 and that a dual conformly to [7]
algorithm (i.e. a dual system (B#,D#,r#)) exists. Consider arbitrary w € I;

we associate with r a sequence of .I-valued random variables on (1,D,p),

(sl)"ex defined as sff :: l){*1(r), n > 1; s3 : tu. Assume that a kernel o
as defined in [7] also exists. Then (r#)">o is a discrete Markov process on

(I,D,p) having U as transition operator, where U is the Perron-Frobenius

u,f  ( r ) :  h(n)  
|  f  o^,



operator rest p. I.e. il is the linear application L'(B) -+ LL(B) defined as
ilp =uhelh. n

If, given f e C(L), where A is a subinterval of B one can extend /(')
at A, then we denote this extension by / lf). Clearly / lH) means left
(resp. right) derivative lts)Q in end points of A; its restriction at A will
be denoted / l("). By Lemma 3.1.13, [6], /fa exists if / is Lipschitz on A,

and' L(f ,A) : ,(/,4].-4. tpecial case cu(z(")), i@) e A6l have continuous

extensions, finite, or"(i@) and on J, J e ?{;we denote / l(') th. function
def ined as /  l ( ' )  (o)  =, f (")  l r  (o) ,  o€ J,  J e '11.

The next proposition is Theorem 6, [2] which is valid for Markov transition
operators associated to a transformation r of a fibred system in the class we
deal with in this paper in particular. In its statement I denotes either the
space L or the space C (definitions in Appendix) in assertions valid for each
of these spaces.

Theorem L. i. The Percon-Frobeni,us operator U is an endomorphism
of normed space Q. i,i,. Il is ergodic and aperi,odi'c operator on I . iii. The
only ei,genualue o of U which has lol : I is 1 and has algebrai'c multipli,ci'ty
1; the corresponding eigenuectors are scalar multi'ples of h. n

We shall use in the sequel that since U is aperrodic rest I there exists
0 <1 such that

l l l u " - u r l l l : O ( 0 " ) ,  n € N  ( 4 )

t.e. l,fi: lim,-+*l'{" in the norm lll .lJl
Clearly the spectra of operators U and U on I arc identical and if fi is

an eigenvector coresponding to o1 of U, hlh is an eigenvector corresponding

to o1 ofU.
In the special case considered above, Theorem 1 [3] yields in terms of

conditional expectation IE1 rest )

n € N , f e 9 .l l ln^(/(,1)1,3) - n I tatt| : o(0")l l l / l l l ,



2. Conditions on higher order derivatives
of r and derivability of invariant density'

In this section we state the condition (Er), s € N on derivatives of

w(ifu),u), u € rnQ@) under which the density h belongs to L'. We then

prove, by Theorem 2 this appartenence.
Wedenote (E,), s € Nthecondition: u(i '), i '  e .4have (s+l)thcontinuous

derivative with finite extension onT(i,) and there exists a constant 861t 0,

such that whatever s ) 5 ) 0,

lu@ 1, i@) ,q -  u(E) 1i(")  ,w) l  S l ,  -  t ) , ( ( i ,@|)861 (5)

t ,w  €  r " ( i@)7.
Evidently, condition (8,), where s ) 1 implies conditions (E ), s s

s. If 5 : 0 condition (8,) becomes condition (E) plus an assumption on

derivatives of u(i.). Whenever is fulfilled (8,) *e denote max(61,;, C,N) ::

B . H e n c e B > 1 .
Since condition (F') from [1] is valid for fibred systems we deal with in

this paper, we may apply here all propositions proved in 11] and l2]. Note

also that (2) has the same form as (S) and that the assumptions on u(z) and

r.,,(z) given in Section 1 imply that u{,f, does not change its sign inr"('i@)),

whateveli@) e A@).

Lemma 2. Assume that condi,ti'on (E') holds. Then

i .  ( r l ^k@D) . l r to l t i , ' l , f i l<B,  s(s ,  te  r "p@), i ( " )  e  N (6)

zz. Whateuer I e N, the restri'ction (t/tL) l@ J it domi,nated by B, J e'17

we haue
l (u 'L) l ( ' ) . r l {Dta)e[ t , r t l  ( r^ . ' ( ; t t ) ; ; ro Es (7)

5 ( s; hencell ' t l t i ,s s ti,mes termwise differenti,able i 'n,1.

Proof. i. Given an arbitrary cylinder (l(d1 points the integer t,w e
rn (itn)) , t * w and 5 ( s, by (5) we have

1
,;----- , lu@ 16@) ,D - a@ 1i(") ,w)l < )((?(")))S (s)
I t - u l

Hence there existsT e [t , tr]  (or resp. [ 'u, l ]) such that

lo(s+t)1, i{^),7) l  < .1111t- l))  .B (e)



Since (8) holds whatever t,w € rn(i(n)) and since ,(s+t)(2(n)).finitely
exists inr:^fi@)1, we obtain (9) with every w e rt('itn)) replacingl Hence
we have

l ( r ( ' ;@), tu) ) {s) l  < . l1q1t - l ) )8 ,  t  <  s  < L in

whatever  w ern( i ( * ) ) , ' i ( * )  e  A61
ii .  Summing (10) over i(-) €l*,tr] ,  where w € J (hence J cr*\ i t*t lr)r,

sinc€ X;{-) e1*,4)((i@))) < 1, one gets the last inequality appearing in (7)

(with n, replacing l).
We denote Y the well known from Analysis implication concerning the

impact on a converging in some point series (resp. sequence) of functions /r,
of the uniform convergence of series (resp. sequence) of derivatives /l and

the equality of derivative of sum (limit) of former with sum (limit) of latter.

We deduce iteratively using Y and the summability of family {o(a(-); 1t"l

,,i(*) € AWI\ that uniformly in t e J one has, punctually on rm('itm))

lD r@) el*,tlu(s- 
t) 

1i(rn), r) ] 
(1) : ((t/^ 11(s - t) 

1t; ; {t) :
(1  1 )

tr

(U*t\Gl (t) : Di1*1rl^,t1w?) 1l(*) ,t)

m ) S. Hence U*l It is s times termwise differentiable.

Theorem 3. Suppose cond'it'ion (8,) holds. Then h: dp'ld) e L'

Proof. By the above lemma one has whatever J e ?7

C L ( J ) . 1 ( s ( r , (r2)

since L((t/'l;{'), J) : (Utr)lt-"*t', s I r. Hence the family of maps appearing
in (12) is, whatever s ,--r, bounded in the norm ll l  l l lof .C. Proposition 42
from [1] can be applied; hence there exists a (sub)sequence with powers l(n),
n € N say, (ltrI(")1 l( ')),ex converging to a map d € L in the norm l '1.

Consider the family from (12) wiih 1 : s. By 11] Proposition 43, there
exists {lln)}" C N and h € L(J) such that as n -+ oo

pl t r (n) l1(1)J -  gr l  -+ 0 (13)

Having in view that, by Theorem 1, l im,,-- lhlt- l / t ' (")11, ' l  :  0 we deduce

bv Y that

h:  (h  l ( t )  . f )

7

(10)

{rerr)tf)},,,

(13')



Hence

lh lrq) -(t/t '(n)\Q, lr* 0 as n -) oo (13')

There exists, bv [f] (again proposition [i] A3) a subsequence, (l,lt'(")1;tz);,

say, where tr(d J}and 
l2(n) c t1(n) converging to a map 92 e L(J). Hence

(13) with 1 replaced by 2 holds. Using Y and (13') we deduce

(n 1! l l ; t t l  :  (g,)( ' )  :  e2:  h lQ) i  (14)

clearly the above (diagonal) procedure can be continued with D : 3, . . . , s.

One obtains

lh l9) -(t/Is@)r) l!9)lr* 0 as n J @, 1 ( 5 ( s,

where h l9)€ LQ),1 < g ( s. Since these relations hold whatever cell ..I, we

a l s o h a v e  h e L ' .

Remark. We even have, when (Er) holds, h e C'+r as proved in [3].

3. Superior bounds for derivatives of
iterates of Perron-Frobenius operator /,/

One considers the Perron-Frobenius operator acting on L' and C'. The
crucial result of paper is the next lemma. The main theorem, involving the
operators yls,n) with approximation role results then easily.

W e  d e n o t e  t h e  " s e g m e n t "  o f  i n t e g e r s  { n , n *  1 , . . . , n + l } b y  l n , n * I l ,
whatever l,n € N-p.

Lemlma 4. Let condi,ti,on (8,) be sati,sfied. Fir J e ?1, g € L'. Then
whateuer '1(m) E [^, J) one has

@U@)p@o<-r))(u) = 0r(5) (r t*)1 .  9(u6<*t)  + d(s,  i ,@)),  any s € 11, s l

punctually on J, where 0 (which is a rest, dependi,ng on e) is defi,ned by

I r t . - o l  p @ ) , e . ( e @ , < * t  ( a ) ) ) t n ) (  
;  ) : 0 ( a , s , , i @ ) ) ,  a € J

; - 1



and satisfies for any E e l2,sl, a € J

l0(a,s, t@)l S 6(m\(Q{*)))r(s)(l l ,p(1)l l + . . . + l lp(') l l),

where

B(r) :- B1+" exp{(s + 2)(5 + 1)log t/i + stog ( r ( 5 .

Proof. Let 5 5 s; one has_L(p@ir-y)(s); < oo. Hence g(u,ir*t) l(s+t; exists

a.e.. Moreover, if we denote O the set include d in B and containing all points

a where for all ' ;(m) 6l*,o1, (p(ror^,(a))) lts+t) exist whatever n'L ) 1, we

have )(O) :1.
The inequalities stated rely on condition (8") and are uniform rest rn € N

and.I €?7. We begin by deducing the relations (16-18) for z e [1,4] instead
o1 ,{m) € L*,a] and we do not write the point argument a (supposed e .f);
hence we may also suppress the symbol "17".

Like in [3] we use the relation

2siI e
.  - " - = > ( :  ) , a n Y n( s + 1 ) u 2  - ' n '

Using (10) and Leibnitz's formula, fori e
we have

(15)< 5 , 5 > 1 .

l l , a l , a e O n J , l < s ( 1 f s

l ( ,p(r,))(41 = I (a(i)er)(uo))(s-r) l  = lDi: i  uG-n-L)(x)(e!)(u;))(a){ 
t;  t  

) l  <
3 - 1

B^((t)){ lp( ')(r,) l  + i ]  l (r ,"(u;))t")t  
t ;  t  

l t i  <
?=i

B A((xD {le(r) (ua) | + I, lrrt) (ur) ) (a 16 1 f s) . zs .}
f i ,=L

( 1 6 )

anew the same procedure for summands from last sum.

: g" (w), w e (it in next alineates (and using )((r)) < 1)

Then we apply

Denoting ffiv@)

" '  ) . 0
5 + 1 ' , ' ,



we have

s - I

D l(r,t,(u;))t")l : t l(p"(ro))('- ')ar(i)l s
Ft=l fi=L

s-r  ?r - t  
rP 

-  
\  <t t@(n-n-t)Q)@"(uo))( t) , ,  

"  
,  -

n=0 fi_g
5 -1  n - l

6)((i))tr L,l(r"(ro))(;)l l .(uG-) .2'-', .
f i=L i=0 

s_2

n\(tl)lle"@o)l +T,lt "t u))(")ll . Gl\/i -1) '2'-1-
Ft=l

(16) continues with (in formulas bellow s- > 3)

s-2 r=' 1

< 6'* ')((?))i l(p(1)(ru)l + lp,,(ro)l + t ,1rr ')@t))@,[/= .25+(s-1)
ft=l

Similarly with the last estimation we get iteratively (S - 3 steps more: we

write (V" @))(n) : ((p(3) (u))(n-t)r(z), Leibnitz's formula, etc, ...)

s-l n-r f;_ 1
< Bt+2^((il)l lpo(,0)l + . + lp(r)(ro)l + rt ;1rre)(u,))(",,,/d]+ . 2ss-3 <

n=L ,-o

(16')

B3l , ( (z) ) | |e( r ) (u ; ) |+ ' . .+ | (p(3) ( ,o) |+ I | ( ' . , , (u ; ) ) i " ) t tVY
/ -  { \ / -  A \

(5  -  r / \ s  -  z )  o35_3
s-3

s+(l-s) n-1

S )((?))6s11r{r)(u;) l  +. . .  + l rp(s-t)(r , ) l  + I  !  t t , r to(ua)) i") ;1
n=L n=0

In  conc lus ion  i f  o  /d , ,  a  €  J , '  e  [1 ,a ] ,  s  <1  +  s  we have

l@@o@)))(5) l  < B(s-r) ,1((z)) t l rpt t ) (ua(a)) l+. . .+1rt ' - r ) (u6(a)) l+ lp(o(uc(o)) l l
(16')

,  n / (s  
-  t ) (s  -  Z)  .  .  .  t  .  23s-3* . . . *s- (s-1)

10



By Leibnitz's formula again, we have

5 - I

(u(t ')e@6\to=Dr{d1)(p(uo))( '- ')( i  ) (17)
n=0

Recording that B@- 1) > B(r), r < 5 - 1 and using (6) we deduce

D

l ! r t ' -or U)(p(,0))(o'< i  l t  =
f t =L

5

^((ilBI l(e(ru)fnt1' Qlf s -11 ' 2'*'(?
n = l

^((x)) (r I \ft +17 . zs+t B x

B(t  -  1) t  )(( , )) i le( ' ) (ru) l+. . .+ l<ptt)1r,) l l  <
1<r<5 

s-

) , (( t )) 'z&(s -  L).8 (r l \E+r) f1; ,pGr(u;) l  + . . .+leo(uo)l l2 '+ '  <
l= l

^((i)) 'zg(s) i lp( ')(r,) l  + ...  + lrptsr(u,;11
(18)

To write (18) we used that (Il\trT1).zs+r B(s-I) B < 6(s) since 5-1 <

Now we observe that the relations (16)-(18) (and all relations written
above) are valid with z(-) e l*,a] replacing e e [1, a]. Then the quantity d

as defined in the statement satisfies (in CI)

5 _

l0 (a, s, l@) 11 :  l  t  (  to 
) rr '  -  *,  ( t@, o) (p (u i<*1 (a))G -n) 

1 <
it=L

o(m)B(s)11eo (u,<*t (o)) l  + .  .  .  + le(s) (u,16(a)) l))(( ;r-r ; ;

n

Assume that (,E,) holds. We denote

y ( s , n ) r 1 o \ . :  t  , ( s ) 1 1 @ ) , a ) 9 @ 6 6 1 ( o ) ) , n )  L , a e  B , g  € C , 0  (  F (  1 * s,  y  \ - , /  . -  
/  .

i@)  € [n ,a ]

1 1



Then yG,n) is [near bounded operatoi on .Loo. Indeed, whatever J e'17

using (7) to write the last relation below, we have

IVG'"t ' 1' '
t@) eln,Jl

3llell ' I lo(')11(");l < c' llell '.
i@) eln,Jl

y(s,n) applies .Cs (resp. Cs) into itself; y(s'n) is weakly sequentially compact

on these spaces.
Wedeno te ,  g i ven  ag€C

R(a,n,s)  : - -  t  O(a, ' i ( " ) ,5) ,5  < 1*  s ,  n)  7 , ,  a  €  B.
a@) eln,al

Theorem 5. Assume hypothesi,s (E') holds. Fir I € L', s € 12, sl,
n € N

Then
i.  (U"dG) (r)  = y(s,n)g(a) *  R(a,n,s) ,  a e 8,5 (  s,

where
la(a,n,s) l  I  a(n).s(s)( l lp{t) l l  +.  .  + l le( ' ) l l ) .

and B(S) are defined i,n the statement of precedi'ng propos'iti'on.
ii. Whateuer the order s,VGJ)h approrimates as I -+ oo theS-th deriua-

ti,ue of h, h\s) :
1rG) -- (Un1f'l =,q3 Y(s,t)1, (19)

Whateuer rank n, B(s) andD,,rt"' ll both rncrease with s. In 'i. s and,

n are completely r,nd,epend,ent oriiho* another.
iii. If llntoll > 0, (19): i,s the asymptotic analogous of deri,uatiue of Gauss'

equati,on (UInTro - \t(s), a.s., 5 ( s,l € N.

Proof of Theorem 5. i. As consequence of (6) and of lllelll(') ( oo
the relations (16) , (LT) and (18) are summable over 11, Jl. Then i. follows
by summing up (16), iaking into account (17) and replacing i, e ll,a] by
i@)  s  [n ,o ) .
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ii. We already recorded that h : l,llh, N e I (see [3] Theorem 1). By

above Theorem 3 L ) h(') so that the left equality in (19) holds. By z with

h: g we have

Kiln1r't - y{s,t)71 < B(s). i ln(trl + . . . + lnts);1a11;
since by condition (,4), a(l) 

;j, 
the second equality (19) also holds in

the norm llt, J €'17. Then it also holds in the stated form.

zaz. Obvious (eventually see the Appendix).

Remarks to Theorem 5 1. As a consequence of [3] Theorem 5 and of

i. above theorem we have

)iglvt',,t, 
: |r\s) [ vat, ,p e L'.

This does not mean that V("n) is aieriodic operator'
2. The domination constants 6(S) whose existence allows our formulation

of main result have independent rest n and o values so that the statements

of above propositions 4,5 are satisfactory. In cases s S 3 one can obtain

directly less domination values but then we have to mention in the statement

particularisations nonessential in the sequel'
The existence and generality rest n of 6(S) is a remarkable property of

the class of (dynamical) fibred systems considered in [8]
3. One can obtaiJr an analogous with 2., Theorem 5 assertion for Perron-

Frobenius operator iJ rest pr. This is obvious by the identity following formula
(20) below.' '4. 

Clearly VG,") are different from Ruelle's operators usually denoted G.

a. Higher order derivatives of Perron-Frobenius
operator associated with R.C.F

The aim of this section is to prove that the hypothesis of main result is

consistent and that the method used in the proof of last theorem can be used

for different purposes. It shows that the rather long differential formulas

from previous section expressions easy to handle can be find'

The fibred system associated with the continued fraction expansion is:

1
r t , r l :  _  _ f 1 l

L;J,a .e .  n  €  ( ' ,  1 l  :  B ;  ( i ) :  (# ,  * )  , "  .  *

1 3



where [y] denotes the integer part of y € R+
The conditions denoted (,a) - (E) in Section 1 are satisfied; in fact these

conditions are set so to make as near as possible to pwmts the class of fibred

systems considered.
All cylinders are proper and one has not conditions in digits. The applica-

tion o(m) appearing in condition (A) lends to null exponentiaLly A(m) 1 c0*,

where d is the "golden number" ,f As constant I/ of condition (E) we

may take 2; as constant of Renyi (C), 4 (see also [7]).
The invariant measure rest r is Gauss' measure on [0,1], with density

1
a(n) :;-- - \-; ^. A dual system exists it is not uniquely determined (see- ' \ - - l  

( r  * l ) l o g 2
[7]); hence the above Remark applies in this case.

We repeat the definiton of some random variables because we use them

also for the reversed label sequence (.. . ,an,... ,ar) for which precisations

are required.
We suppose known the definition and first properties of continuants Q,

(see Ch. I, $1.2 of 6 for presentation and proofs).

As the definition of random variables Pt, Qt, u)t, m ) I, t € N-.

q1 : :  q1 ( i ,@)  :  QrU , r , .  .  . , i r )

y t1 : :  p1 ( i ,Q ) )  :  Q r - , . ( i 2 t .  .  . t i r ) ; r r :  
p : , 2 ( t )  

e  N
Qt

Q - t  :  P o  =  0 , P - t :  Q o  =  I ; Q t : ' i t .

We note that Q1QQ)) : et : QrQall : qt(i!)) (record that fr ::

( ' i r , .  .  . , i ) , ; ;  : :  ( i t - , r , .  .  .  , ' i2) ,  etc)

pr-t{lta, : Qt-l it-r...r) : n-t(i?-r)1 :

pt ; 1 ( ' i  p,...,2)) : p t- t ( i, p,t- r,...,21) : Qt -z ( ' i  6 - r,r7

p*(l) : Qt-r(ir-r,r) : Qt-t(z(t-t l ; : Qt-r(l?-tl1

, A )  :

u(i{*)s € N and in particular u!)(d,y) : (+1)(s  + 1) !
(u +'i ' l '* ' '

(the sign is * when s is even and - when it is odd

Since upt(A) = 
, 

it is immediate that ,@11@)
(q* + q*-ra)'+2'

. 1
, o )  =  " .qaa e I ;
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We also use that

Qm-r * Prn-tw to\,  1 :  
( f  t )s!

g^*p^w 
"-  -  u{ ; ) (w);a\ ' ) (w, 

(r* to)s+r u,gi 'w 
€ I 's  )  0;

a\s)(u;1^7 (r)) : , 
s!(rl) lq-+p*w)s+L 

.- .
(q^ + Qm-t * Pmw * P*-tw)s+r

The general formula (see end of Remark 1 and [6] Ch I)

i l*y1q'ir*t)Xr) = u('i@), O*#not : t",((i,@\)

yields in present case

(+)(1 + w)ul .1w1 r-r  w
. .  r t : ( m \ t \  -  

'  "  '  i \ n ) '  '

F w \ \ r " ' 1 1 : - r * $ f u ) - :

w € L , m ) 1 .
The rn-th power of Perron-Frobenius operator associated with r rest the

Gauss'  measure , rU*p1r1:  f ; r - )6ry1" g(utr^t  ( r ) )  ' t l *y1\ l t* l ) ; ) ( r )

Now we are able to write succesively (compare with (16') and (18)

(VG,^)*(')px{(t(*)l; })(,u) 
- 1rG)(i*),w) . e@{;) 1u))ot"t(u- (tr))

:# , (s - t ) , i4?n l1w191u( l { * , , *D# ' (s -1) \uQ?, l ,w) )Q0)

:  o(tu)s(s + 1)(tz( '-t ,rn)*(s-t)r) .  F*(Q{^))).

Hence we also have whatever ?rl € I, i(*) € Nf , s,m) l .

, 
r-1Yt"o 

oc) p)(r)
log 2' (2I)

: s(s + 1)(+1) Dn,^, u.((t{*)111y?-2,m)o(m-r)9{i@) }(r))

Clearly a differential equation of order rn (order 2 in particular) with
nonconstant coefficients whose sum is 1 can be written; we have

"t-)10) 
= (-l* I tog2; ox@)(1) = (-L)* l2**1 log 2

and 1 : Dr(-reN_ t-t.((i{*)y1.
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By (2I), in RCF case we obtain iterative rest (s, rn) expressions of yG'm)

where s is the order of a derivative. This is not possible in general case. More-

over in present case these expressions are subconvex (even convex sometimes)

combinations of summands of U non derivated.
Taking 2n: s, ffi -- 1, I : I by (21) we obtain similarly

1yQ", t )o@))( r )  :  o@(w)\ - (p, , ( ( r ) ) "* t (2n+ 1) ! ) ( t1)  .  (22)

1,

It is seen that in particular with n : 0, this equation becomes

a :  L l a .  ( 2 3 )

By Gauss' equation, a is the solution of an equality defining an eigen-

vector of l,l. Regarding y(s' ) (also other operators) appearing in 2.5 The-

orem which is sum of differential expressions (monomes) similar with (23)

equations are usually written with linear (polynomial) combinations of dif-

ferential monomes. Hence adopting the same point of view, (23) can be

regarded as an extension concerning a(") of. Gauss' equation concerning
y(2";) , a@) is a solution of Gauss' equation involving yQn'r) modulo the

factor Lo0t,((r))n+r(2n + 1)!(+1) (which is I 0, w e I,  rn > I)

Consider now (22) divided only by Do0t,(\l'))n+t). Note trlnu1 s@), n)

1 are proper vectors of fI,, :: (+1)y2n'r * f Dt F**((i))"*t correspond to

increasing in n eigenvalues (equal with (2n+ 1)!) of fI,, respectively.

, .  e \n )  1
Since lim" :, e [0, 

*J 
and (21) involves factors with small and great

values together an estimation of numerical size of operators y(s'') is usefull.

We have

y(s,L)o(s+l) (r) :  -Lr*rl  t  , ,  ,  
( i  +,r,{:1') ,

log2'- - '  6;  ( i  +W((s 
+ t ) ! ) r+r  :

j f  f  iGj ! ! ) l - ' ,  :  (  -+L c(s *  1,  w) -  a(w))  t t ,  *  1) ! ) r+r
Iog2  Q (?  +  1*  r .u )s+ t  

-  
\ log2 ' \  /

where  C(s  +  7 , t )  : :  ) - - - ' * -  i s  decreas ing  on  1 .
? i u + t ) ' + '  o

Using that ((2,0 =T, eQ',0):  1_ *.  calculated that'  6 ' , "  9 U

y(rJ)*rr € (2,2784;3,7223); y(3't)oQ) € (0,4685; 1, 19136).
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Appendix. Notations of spaces and norms.

N- -  {L,2, . . . } ;  X:  N U {Oh A denotes an arbi t rary interval  o. f . lRl '

we record that in section I we denoted the restriction at A c B of f@ 6t

.f lar"l and its continuous extension at A Uy 7 l[)
Below A is an arbitrary interval C B. We denote:
- ,(A) the Banach space of Lebesgue integrable functions / on A en-

dowed with the norm ll/ l l t : f"lf laX

fuf al,: I f d^, f e h(A)
-7*(N tire Banach space of real maps / on A finite ll/lla ': €ss sup,E4lf @)l'

We denote l l/ l l  = l l / l lr The norm ll/ l l  is in general denoted l ' l*,4
- C(A) the set of real bounded continuous functions on A with ll/ll6 ::

suPzeA l f  @) l '
-Z'(n), where s € N., the collection of real maps on A with continuous

derivative'1(s) ol order s in A, for which l/ l(") lo :: DLo l/lf i . *

We endow with the norm l/(")lo.
- Cn, tu e N the collection of real maps f on B with all restrictions at

cells l/ l(") l.r ( oo, any J e ?t. We endow this space with the norm

;y("); :: rrr3,x1411lf l(") Jl.
- L(f ,A) the Lipschitz coefficient of continuous function / on A; also of

t l
J  I A .

- f'(A), s € N the collection of real functions / on A with finite Lipschitz

continuous derivative of order s on A, 1("); i'e. / having L(fls), A) < *'

We endow it with the norm l l /( ') l l" , :  l /  IX) +fif17t'1,4; '
- L' the collection of real maps f on B with l l l /( ') l l l  :: rnax1sv l l l /(") l l l ,

Endowed with norm ll l /( ') l l l  this is a Banach space.
-  l l l / l l l o , :  l l l / l l l t ;  l l l / l l l  =  l l l / l l l '
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