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Introduction

The efforts to generalize the famous Gauss' Quad,rati,c Reci,procity Law led to the theory

of Abelian extensions of algebraic and p-adic number fields, known as Class Fi,eld

Theory. This theory can be also developed in an abstract group theoretic framework,

namely for arbitrary profinite groups. Since the profinite groups are precisely those

*The second author gralefully acknowledges partial support from the Crarft 47/2002 awarded by
the Romanian Academy and the Programme CERES L521200L
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topological groups which arise as Galois groups of Galois extensions, an Abstract Galois

Theory for arbitrary profinite groups was developed within the Abstract Class Fi'eld'

Theory (see e.g., Neukirch [14]).

The aim of this paper is to present a dual theory we called Abstract Cogaloi,s Theory

to the Abstract Galois Theory. Roughly speaking, Cogaloi's Theory (see Albu [2])
investigates field extensions, finite or not, which possess a Cogalois correspondence.

This theory is somewhat dual to the very classical Galois Theory dealing with field

extensions possessing a Galois correspondence.
The basic concepts of Cogalois Theory, namely that of G-Kneser and G-Cogaloi's

field extension, as well as their main properties are generalized to arbitrary profinite

groups. More precisely, let I be an arbitrary profinite group' and let A be any

subgroup of the Abelian group QIZ srch that I acts continuously on the discrete

group ,4. Then, one defines the concepts of Kneser subgroup and Cogalo'is subgroup

of the group Z'(f ,A) of all continuous 1--cocycles of f with coefficients in A, and

one establish their main properties. Thus, we prove an Abstract Kneser Cri'teri'on fot

Kneser groups of cocycles, as well as a Quasi-Purity Criterion for Cogalois groups of

cocycles.
The idea to involve the group Zr (t,A) in defining the abstract concepts mentioned

above comes from the description due to Barrera-Mora, Rzedowski-Calder6n, and Villa-

Salvador [9], via the Hilbert's Theorem 90, of the Cogalois group Cog(ElF) of an

arbitrary Galois extension E lF x a group of cocycles. More precisely, Cog(E lF) is

canonically isomorphic to the group Zr(Gal(ElF),p(E)) of all continues l-cocycles

of the profinite Galois group Gal(E lF) of the extension E lF witln coefficients in the

group 11.(E) of all roots of unity in E. Note that the multiplicative group p(E) is

isomorphic (in a noncanonical way) to a subgroup of the additive group QlZ, and

that the basic groups appearing in the investigation of EIF from the Cogalois Theory

perspective are subgroups of Cog(E/F).
In this way, the above description of Cog(E lF) in terms of 1-cocycles naturally

suggests to study the abstract setting of subgroups of groups of type Zr(l,A), with I

an arbitrary profinite group and A any subgroup of QIZ such that f acts continuously

on the discrete group,4. Such a continuous action establishes through the evaluation

map f x Zr(l,A) - A, (o,g) ,- g(o), a Galois connection between the lattice

n-Q1(1,,4)) of all subgroups of Zl(f,.4) and the lattice il(f) ot all closed subgroups

of f. As the lattices above are naturally equipped with spectral (Stone) topologies

on which the profinite group I acts continuously, this Galois connection relates them

through canonical continuous f-equivariant maps. On the other hand, the continuous

act ion of I  on,4 endows the dual group ZL(| ,A) :  Ho-(Zt( l ,A),QlZ) with a

natural structure of topological f-module, related to f through a canonical continuous

cocycle 4 : | ----+ flCAl which will play a key role in the study of Kneser groups of

cocycles.

This paper is divided into four parts. Part I consists of two sections. In Section

0 we present the basic terminology and notation which will be used throughout the

paper, as well as some lattice theoretical and topological preliminaries. In Section 1 we

introduce and investigate Kneser groups of cocycles. The main result (Theorem 1.20) is
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an abstract version of the Kneser criterion [13] from the field theoretic Cogalois Theory,
where the place of the primitive pth roots of unity is taken by suitable cocycles.

The forthcoming Part II is devoted to Cogalois groups of cocycles. In Part III
we introduce the concept of Cogalois actton and provide a complete description of
the category of all these actions. In Part IV we apply our general theory to retrieve
the Abstract Kummer Theory and show how some basic results as well as some new
results of the field theoretic Cogalois Theory can be easily obtained from our abstract
approach.

0 Notation and Preliminaries

Throughout this paper I will denote a fixed profinite group with identity element

denoted by L, and ,4 will always be a fixed subgroup of the Abelian group QIZ such

that f acts continuously on ,4 endowed with the discrete topology, i.e., A is a discrete

f-module.
We denote by N the set {1, 2, ...} of all positive natural numbets, by IP the set

of positive prime numbers, by Z the ring of all rational integers, by Q the field of all

rational numbers, by R the field of all real numbers, and by C the field of all complex

numbers. For any integers k, rn e Z we shall denote by k mod m the congruence class

k + rnZ of k modulo rn; if n € N is a divisor of m, then we shall write occasionally

k + mZ mod n instead of k mod n. For any ring ,R with identity element, rR* will

denote the group of units of R. If q is a power of a prime number, then we denote by

IFo the flnite field with g elements.
For any n € N, n )- 2 we denote by Dz, the dihedral group of. order 2n. The

group of quaternions will be denoted by Q. Given an action of a group C on a group

D, the semidirect product of C by D is denoted by D x C, with a suitable subscript,

if necessary, to specify the action.
For any p € P we denote by Zp the ring of p-adic integers, by Qp the field of

p-adic numbers, and by V,o* the quasi-cyclic group of type p-, that is, the p-primary

component @lZ)(p) of the quotient group QlZ. Note that Zo* = QolZo
For any r € Q, the coset of r in the quotient group QIZ wiII be denoted by f.

The elements of f will be denoted by small Greek letters o, r, p,and the elements of

A by a, b, c. The action of o € | on a € -4 will be denoted by oa. The set of all

elements of ,4 invariant under the action of f will be denoted as usually by Ar.

An Abelian group C is said to be of of bounded order if kC : {0) for some k e N,

if C is of bounded order, then the erponent exp(C) of C is the least n € N such

that nC : {0}. The order of an element r € C will be denoted ord(z). If n is a

positive integer, and D is an Abelian torsion group, then we shall use the notation

Dln) : :  { r  e  D lnr :0 } .  For  any  p  €  IP  we denote  bV D(p)  the  p-pr imary

component of. D. By Oo we denote the set of all n e N for which there exists r € D

of order n,i.e., D[n] has exponent n. With respect to the divisibility relation and the

operations gcd and lcm, Op is a distributive Iattice with the least element !. Op has

a last element if and only if D is a group of bounded order, and in this case, the last

element of Op is precisely exp(D).
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For any topological group ? we denote by n (") the lattice of all subgroups of ?,

and by iL(f; tn" Iattice of all closed subgroups of ?. The notation U ( 7 means

that U is a subgroup of ?. For any U < T we denote by [,(" I U) (resp. T,g lU))
the lattice of all subgroups (resp. closed subgroups) of ? Iying over u. If x QT,

then X will denote the closure of X, and (X) will denote the subgroup generated by

X. The notation U < T means lhat U is a normal subgroup of ?. For a subgroup

u of T we shall denote by r/u the set {tult e T} ojall left cosets of. u in T.

We denote by Ch(") or by i tir" character group of ?, that is, the group of all

continuous homomorphisms of ? into the unit circle U : {r lz Q.C,lr l : t}.  I f  ,9 is

another topological group, then Hom(^9, ?) will denote the set of all continuous group

morphisms from ,S to ?. Note that if ? is a profinite group' then ? can be identified

with the Abelian torsion group Hom(?, AIZ)
Recall that a crossed homornorphism (or an l-cocycle) of f with coefficients in A

i samap  / : l - rA  such  tha t  f  ( o r ) :  f  ( " ) *o f ( r ) , o , r  e f ;  i npa r t i cu la r ,  / ( 1 )  : 0 .

The set of all continuous crossed homomorphisms of f with coefficients in A is an

Abelian group, which will be denoted by zI(r,A). Note that, in fact, z'(l,A) is

a torsion group. Indeed, since f is a profinite group and A is a discrete space' a

map h : | -----+ A is continuous if and only if ft. is locally constant, that is, there

exists an open normal subgroup A (in particular, of finite index in f) such that h

factorizes through the canonical surjection map f + f/A. Since A is a torsion group,

it follows now that for any continuous map h:f -----+ A there exists an n e N such

that h(f) c (Lln)Z'lZ, and then nh:0, i.e., h has flnite order.

The elements of. zr(l,A) will be denoted by f , g,h. Always G,-Fl will denote

subgroups of zr(l,A) and A,A subgroups of f. To any a € A one assigns the

7-cobound,arU fo: |  -+ A, defined by f"("): oa- a, o € f.  The set B1(f, A) ::

{f" l  o € A} is a subgroup of Zr(l ,A). The quotient group Zr(l ,A)1BLQ,'A) is

called the first cohomology group of f with coefficients in A, and is denoted as usually

uy Hl(r,a).
Consider the eualuat'ion map

( - , - )  :  f  x  Z r ( l , A )  -  A ,  ( o , h )  : h ( o ) .

F o r a n y  A < f ,  G < Z | ( T , A ) ,  s € Z r ( 1 , , 4 ) , a n d  ? € f  d e n o t e

A r  :  { n e  Z r ( r , A ) l ( " , , h )  : o , v o e  A } ,
G L  :  { o € f  l ( o , h )  : 0 , V h e G } ,

:: = I;:ill;'^1,11,1, :0,
one verifies easily that Ar < Zr(l,A), GL ( f, and gL : (9)r. observe that

gr is the set of zeroes of the continuous map g from f to the discrete group l. , hence

it is an opensubgroupof f.  Since GL:)sec9L, i t  fol lows that Gr €E(f).

The group Z'(t,A) is clearly a discrete left f -module with respect to the following

action: (oh)(r): oh(o-rro), o, r el,  h e. Zr(l ,A), I t  o € | and G €I,(Zr(l ,A)),
then 

GG)L : oGLo-r '
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For any A e n (f) one denotes by

resf ,  '  Zt( t ,A) -  Z ' (L,A),  hr+ hl6,

the restriction map.

The next result collects together the main properties of the assignmentr (-)a.

Proposition 0.1. The followi,ng assertions h,old.

(L) The maps

n-(21(l,A)) - l,1r;, c * GL,

L1r; ----- L(zL(r,A)), a '--,A4,

establish a Galois connection between the latti,ces L@IQ,A)) and T,(l), Le.,
they are order-reuers'ing maps and X ( Xlr for ang element X of n Ql (f,,4))
or L(r).

(2) For any L. € n (f) and G e Zr(l,A) one has

Ar : Ar : Ker (resf,) and, 1resf,1c;;r : ca n a.

(3) For any G1, G2 e. Zr(l,A) and Ar, Az € n (f) one has

(Gr + Gr)t : c{ nc{ and, nf n l} : (Ar rJ Ar)r.

Proof . The proof is straightforward, and therefore is left to the reader. n

Remarks 0.2. (1) Clearly, we have

1r  :  21(1 ,  A) ,

rr- : {o},
0 - L : f .

Note that (Zr(1,,4))r is a closed normal subgroup of f contained in the closed normal
subgroup (Bt(f,/))t, the kernel of the action of f on A. Setting Flt(f, A)t :

Bt( f  ,  A)L IZL(l ,A)1, we obtain the pair ing

flt(f,A)t r rlt(f, A) ----+ A

induced by the evaluation map. Note that the canonical continuous morphism

Ht(f ,  A)L -  Hom(I/ l ( f  ,A),A) :  n{f-3:r

is injective, in particular, the profinite group flt(f,A)r is Abelian. In general, the
monomorphism above is not onto. For instance, taking T : Zl2Z, and considering the

non-trivial action of I on A:Zl4Z, we obtain //t(f, A)L : {0}, while aff}; =

FI1(f ,  A) =V,/2V,.
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(2) Foliowing the standard terminology (see e.g., Stenstrom [18]), the closed ele-

ments of the Galois connection given in Proposition 0.1 (1) are the elements X of

n-(Zr(f ,,4)) or it(l) such that X - X[. Effective descriptions of such elements are

given in Corollaries 1.6 and 1.10, and in Section 3, Part III.

(3) The last part of Proposition 0.1 can be reformulated by saying that the maps

(-)I are semilattice anti-morphisms. One can ask when these maps are actually lattice

antlmorphisms, i.e., they also satisfy the following conditions:

(Gr n Gz)t :@ u G5 and (Ar n Az)r : nf + l*

for al l  Gt,  Gz €. ZL(| ,A) and Ar,  Az € n ( f) '

In Section 2,Part II we will discuss cases when the maps (-)r establish lattice anti-

isomorphisms between certain sublattices of \,(ZL(I,,4)) and it(l), wnite in Section

4, Part III we will see that for certain actions we called Cogalois act'ions we do obtain

Iattice anti-isomorphisms between L(ZL(|,A)) and n (f). n

on the other hand, the posets Lir; and n(zr(f,, )) are equipped with natu-

ral topologies for which the canonical maps defining the Galois connection above are

continuous.
The underlying topological space of the profinite group f is a Stone spacq i.e., a

(Hausdorff) compact and totally disconnected topological space. The Stone topology

on I  natural lymakesthesetof al lc losedsubsetsof f  a spectralspacq i .e. ,a Toquasi-

compact topological space which has a topology basis consisting of open quasi-compact

sets.
For more details concerning Stone and spectral spaces, which are duals by the

Stone's Representation Theorem to boolean algebras and to (bounded) distributive

lattices, respectively, the reader may consult [11], [15]' and/or [10].

The set n-(f) becomes a spectral space as a closed subset of the spectral space of

all closed subsets of the underlying Stone space of f. The spectral topology 7s on

L(f) is defined by the basis of open quasi-compact sets I'16: L(A) foLA ranging

over all open subgroups of f. Note that {A} : n (f lA) for all A e IL(l)' so the

spectral space 1[(f) is irreducible with the generic point {1} and with f as its unique

closed point. As the poset L(f) is the projective limit of the projective system of

finite posets [,(f/A) for A ranging over all open normal subgroups of f, with natural

order-preserving connecting maps, the topology r" is exactly the projective limit of the

?e topologies on the finite sets [,(f/A) induced by the partial order given by inclusion.

The Stone completi,on 16 of the spectral topology t" on n 1f), commonly called the

patch topology, is the topology defined by the basis of open compact sets

Va,^, : in e L(r) IAA : A/)

for all pairs (A, A'), where A is an open normal subgroup of f and A' € L(f lA).
The Stone space above is the projective limit of the finite discrete spaces n,(l/A) for A

ranging over all open normal subgroups of f . For any subset U of T"(l),7 is r"-open

if and only if U is both rb-open and a lower subset of ltlf; (the later condition means

that A e l ' {  and A'€ L(A) a . [ t  EQ).
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Being the dual of the Abelian torsion group Zr(1, g), Z\fJ) ilan Abelian profi-

nite group, namely the projective limit of the finite Abelian groups H :Hom(H,QIZ)

for H ranging over all finite subgroups of Zr(l,A). Ttus T,(fl@])) is naturally
equipped with the topologies defined above. Consequently, by duality, we obtain the

corresponding topologies on L(Z|Q,A)) as follows: for any finite subgroup F of

Zr(1, A) and for any subgroup F' of F, consider the following subsets of n @r(1, A))

and

t /p  :  {G €n"QrQ,A) ) lF  c  c }

vF,F '  :  {G en  Qr ( f , ,4 ) )  lG.  F  :  F ' } .

The family (Up)r for F ranging over all finite subgroups of ZL(|,A) is a basis of

open quaslcompact sets for a spectral topology rs on n'(Zr(1,,4)). Observe that for

H, G eL(Zr(1,,4)), we have 11 € TeI e H ( G, so the spectral space LQLQ, A))

is irreducible with the generic point ZI(t,A), and with {0} as its unique closed point.

As the poset n (Zr(f , A)) is the projective limit of the projective system of the finite
posets [-(F), for F ranging over all finite subgroups of Zr(T,.4), with restrictions as

connecting order-preserving maps, it follows that r" is exactly the projective limit of the

?6 topologies on the finite sets n (F) induced by the partial order opposite to inclusion.

On the other hand, the family (Vp,p,)p,r, for (F,F/) ranging over all pairs of fi-

nite subgroups of Zr(1,,4) with F/ < F is a basis of open compact sets for the Stone

topology 16 on n-(Zt (f,l)). The Stone space above, which in fact is the Stone comple-

tion of its underlying spectral space, is the projective limit of the finite discrete spaces

IL(F) for F ranging over all finite subgroups of Zr(l,A). A subset ll of. n'(21(f,,4))

is r"-open if and only if L/ is both rb-open and an uppe:" subset of [-(ZL(T,A)) (the

l a t e r c o n d i t i o n m e a n s t h a t  H e U  a n d  / 1  < G + G e U ) .

Proposition 0.3. The followi,ng assert'ions hold.

(I) The canon'ical act'ion

f x Lif; ------ n 1l;, (o, A) r-+ ol\o-7,

,is a coherent map, i,.e,, the'inuerse'image of any open quas'i-compact set is also

open quas'i-compact.

(2) The canon'ical act'ion

I  xn-Q| ( t ,A) )  -L (z r ( t ,A) ) ,  (o ,G)  ++ oG,

'is a coherent map.

(3) The map T,Q) ------, LQL(|,, )), A * Ar, is a rnorph'ism in the category of

spectral l-spaces wi,th l-equ'iuariant coherent nxaps as morphisms.

(a) Th,e map i.n (3) i,s also a morph,ism i,n the category of stone l-spaces w'ith, con-

t'inuous l-equ'iuariant maps as morphisms.
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(b) The map n (ZI(;,A)) ------+ i[(f), G ,- GI, i,s a morphi,sm i,n the category of

spectral l-spaces with conti,nuous l-equiuari,ant rnaps as morphr,sms.

Proof. (1) For any open subgroup A of f, we have

{ ( " , 4 )  € f  x i l t r )  l o l t o - r  ( A } :  U  ( A o x U o - r t o ) ,
oeA\l

so the inverse image of the basic quasi-compact open set l/6 of" the spectral space it(f)

is quasi-compact open as a finite union of basic quasi-compact open sets of the spectral
product space I x i[1f;, and hence the canonical action above is a coherent map.

(2) For any finite subgroup F of Z1(l,A), the stabilizer A: fr of ]7 in I is

open, and

{ (o ,G)€ |  x  n  Qr(1, -4) )  l r  (  oG} :  u  (Ao x  Uo- ,F) ,
o€A\ f

so the inverse image of the basic quasi-compact open set Up of. the spectral space

L(Zr(l,A)) is quasi-compact open as a finite union of basic quasi-compact open sets

of the spectral product space I xL(Zr(1, A)).

(3) Since (oAo-1)r : o(Ar) for all o € f and A € L(f), it remains to.show that

the canonical map A *-l AI is coherent. Let F be a finite subgroup of ZL(1,,4), so

Fr is an open subgroup of f. Then, the inverse image

{A € ]'(f) lF < Ar] : {A € il(f) lA < r'} : t 'tFt

of the basic quasi-compact open set l,{p of.the spectral space L(ZL(l,A)) through the

canonical map above is open quasi-compact, as required.

(a) As a coherent map, the map above is clearly continuous with respect to the

Stone topologies.

(5) Since ("G)L: o(GL)o-l  for al l  a € f  and G €[-(Zr( l ,A)),  i t  remains to

show that the canonical map G *, GL is continuous. Given an open subgroup A

of f ,  let  W: {G e nQr1f,A)) lct  < A} denote the inverse image of the basic

open set l,16 of the spectral space L(f). We may assume that W is nonempty, i.e.,

Zr(l,A)L ( A, since otherwise we have nothing to prove. Let Wplp denote the

(nonempty) set of all minimal members of. W with respect to inclusion. Thus, it

remains to show that all members of W-i,, are finite subgroups of. ZL1|,A), since by

Zorn's Lemma it follows that W: [J.eyv-,, Up, so W is r"-open as a union of basic

r"-open sets.
Assuming the contrary, let G € W*in be such that G is infinite. Consequently,

by minimality, we deduce that Fr f L, for all finite subgroups F of. G. Since the

family of nonempty closed subsets Fr \ A of f for F ranging over all finite subgroups
of G has the finite intersection property, it follows by the compactness of I that

G r \ A : 0 r ( F r \  L ) * o ,  i . e . ,  G r  (  A ,  w h i c h i s a c o n t r a d i c t i o n .  n
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The natural continuous action of I on the profinite Abelian group Zr(t,,4) induces
a canonical continuous l-cocycle 17 : | ----+ Z1(T,l) we are going to define below, and
which will play a keV19{in the rest of the paper.

First note that Zr(1, A) ::Hom(Zr(1, A),QIZ) :Hom(Zr (f, -4), A). Indeed, for^
arry p € ZL(1,,4) and for any g € ZL(1,,4), we have 9G) e (Lln)V,lV,, where n:
ord(g). On the other hand, as n is the lcm of the orders of g(o) for o € l, one easily
deduces that (rln)Zlv' e A, and hence p(g) e ,4, as required. The Abelian profinite
group Z'(l,A) becomes a topological f-module via the canonical continuous action of
the profinite group f given by

(odd) : oe(s),vo € r, e € fCA), s e z1(r,A).
: ^

Now, observe that Zt(t,1) : Homr(Zr(T,A),A), i.e., any continuous morphism
y : Z1(1, A) - QIZ takes values in ,4 and is also a morphism of f-modules. Indeed,

the canonical morphism a: Zr(l,A) - nffll defined bv 
"@)(d 

: pb) for g €
Zr(T,,4) and ,p e ZQ\) :Hom(Zt(|, /),,4) is an isomorphism by the Pontryagin

: ^
Duality, and hence for y € Zr(l,A),o € f, and g € Zr(1,,4.) we have y(oq):
("p)("-L(x)) : ov@-l(x)) : ox(p), as required.

F'or any subgroup G of Zr (t, ,4) set XG : Zr (1, A) lG. Then observe that TA :

Hom(X6,4) is identified with aclosed subgroup of. ZL(l,A), stable under the action^
of f, so the quotient Zr(t,A)l Xc ? G: Hom(G,,4) is also a topological f-module,

andd:  Homr(d, -4) .
Now consider the map

q :t -----+ Zflr]1, n@)b) : (o,s) :  g(o), o € t,  s € ZI(t,  A),

and for any G < Zt(t,A), let Tc : | ------ e denote the map obtained from 4 by
composing it with the canonical epimorphism of topological f-modules

reszclT'A) , 6@]1 - G, p r-.+ plc.

Proposition O.4. For any G < Zr(l,A), the rnap nG: | ------+ C 'i,t o continuous
I-cocycle satisfyi,ng the followi,ng un'iuersali,ty property: for euery g € G there erists a
un'ique continuous rnorphi,sm y: G -----+ A such tltat yoqc: g.

Proof. O:re easily checks that 176 is a continuous l-cocycle, so X orlc e 21(1,,4.) for

all y^€d:Homr(G,,q).Thus it is sufficient to show that the canonical morphism

0c,C ---+ Zt(l,A), X+ Xo45r, takes values in G and is the inverse of the canonical

isomorphism aG : als : G ----- e given by the Pontryagin Duality. The equality
gc o ac: 1c is obvious, so it remains only to check that ps is injective. Let y eG
be such thf gc(i: 0, and let g : ,ar Q) For all o, € f we have

0:  1c( i l (o) :  x(qc(o))  :  ac(g)(qc(o))  :  ryc(" ) (g) :  g(o) ,

so g - 0, and hence X: ac(g) : 0, as desired. tr
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1 Kneser groups of cocycles

In this section we define the concept of abstract Kneser group, present the main prop-

erties of these groups, and establish the abstract version of the field theoretic Kneser

Criterion [13].

Lemma L.L. I f  G i,s a f inite subgroup of Zr(l ,A), then (f :Gr) < lcl

Proof. The canonical cocycle rlc : | ---. e defined by nc(o)(g) : (or-d -- g(o),

o € l ,  9 e G, induces an injective map lfGL - G, so ( l :Gr) ( lcl  :  lGl, as

desired. n

Definition L.2. A subgroup G of zr(t,A)^is called, a Kneser group of z1(1,,A) if

the canon'ical cont'inuous cocycle rlc:l --'-"+ G 'is onto. n

Lemma L.g. A fini,te subgroup G of Zr(l,A) i's a Knes,er group of Zr(l,A) i,f and

only i,f (f : Gl) : lcl.

Proof. The result follows immediately from Lemma 1.1. n

We shall denote by K(1,,4) the set of all Kneser groups of Zr(1,,4), partially

ordered by inclusion, with {0} * the least element.

Lemma I.4. If G e K(l,A), then H e K(l,A) for any H { G; i'n other words,

rcQ, A) is a lower subset of the poset n'(Zt (1,,4)).

Proof. Since 4;r is obtained from qs by composing it with the canonical epimorphism
,esfi ' C ----- fr, g * 9111, and, 46r is onto by assumption, it follows that the cocycle

4s is onto too, so H e K(1,1), * desired. n

Lemma L.5. If G e K(l,A), then the map n (G) ----- L1f;,4 * HL, i,s i,njectr'ue. In
part ' icular, H: GaHLL for euery H e n'(G).

Proof. Let Hy Hz e n (G) be such that I1f : H+. We have to show that H1 - H2.
Since (I11 * Hz)L - H+ n H+ - H{ : H*, we may assume from the beginning that
Hz {  Ht .  S ince G € rc( f , ,4) ,  i t  fo l lows by Lemma 1.4 that  Ha e K( t ,A) , ' i :1 ,2,

and hence the map I lH! - Ht induced by the surjective cocycle \uo is bijective
foyi : 7,2. As rlu": res fr; o no, and .F/f : H+ by assumption, it follows that

,"rfit, t fr ------ fr2 i, un isomorphism, and hence Ht: Hz by the Pontryagin Duality.

Th" Iu"t part of the statement is now immediate since (G n g[;r : HL for any
H e n-G). n

Corollary L.6. If ZL(|,,4) e K(1, A), then the canonical map n'(21(l,A)) -----+ L(f)

zs i,njectr,ue, and, H - HLL for euery H e \,(ZL(|,A)), ' i.e., euery H en-Qt(f,, ))
'is a closed element of the Galoi,s connect'ion descri,bed i,n Proposr,ti'on0.l (1").

The next statement shows that the property of a subgroup of. Zr (1,,4) being Kneser
is of finitary character.

Proposition L.7. The fotlowi,ng assertions are equi,ualent for G < Z1(l,A).
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(1)  c  €rc( r ,A) .

(2) F e K(f, A) for any fin'ite subgroup F of G.

Proof. By Lemma 1.4, we have only to prove that (2) ===+ (1). By assumption the

continuous cocycle 4r : f ----+ F is onto for any finite subgroup F of G. We are

going to show that the continuous cocycle \c : T ---- e is also onto. Let I e G.

Since the family (nrt@lr))e of nonempty closed subsets of l, for F ranging over all

finite subgroups of G, has the finite intersection property, it follows by compactness

that ^9:: llr rtFr(glF) f a. Consequently, nc(o) 
- 

I fot all o € S, as rlc is the

projective limit of the projective system of maps (rtp)e. Thus 46 is onto, and so

G e K(f,,4), as desired. n

Corollary L.8. The followi,ng asserti,ons hold,.

(1) rc(|, A) is a closed subset of the spectral spacen'(Zr(f,A))'

(2) rc(f, A) has a natural structure of spectral (Stone) l-space.

(3) For any G € rc(f , A) there erists a marimal Kneser group lyr,ng ouer G.

@) The set K(l,A)^u* of allmari.mal Kneser subgroups of zL(l,A) has anatural

structure of Hausdorff l-space.

Proof. (1) Let G e n"Qr(f,A)) \rc(f,A). By Proposition 1.7, there exists a finite

subgroup F of. G such that F / K(l'A). Thus G ellr and Up nrc(f, A) : o, so

rcF, A) is r"-closed, as desired.

(2) As a closed subset of the spectral space n"(21(f , A)), rcQ, A) is a spectral space

with respect to the induced topology, and hence also a Stone space with respect to the

topology induced by the topology 16 of. n (Zt (f,A)). By Proposition 0.3, it remains

to check that K(f,,4,) is stable under the action of f. Assuming that G e K(l,A)'

i . e . ,  t h e c o c y c l e  r l c : l  - - - - - + G  i s o n t o ,  l e t  o € l a n d  g € ; d  w e h a v e t o s h o w

that g:qoc(r) for some f € | to conclude that rlog: f - oG is also surjective,

i .e. ,  oG € K(l ,A).  Let $ e G def inedbv ,b@): o-Lg(os) for al l  I  e G. Then

,lt : rtc@) for some p € l. Consequently, p(og) : olb!) : oqc(p)b) : og(p) :

1 " f i@)" -L ) :noc(opo- i )  fo r  a l l  9  €  G,  and hence 9 : \oc( r ) ,  where  r :  opo-L '

(3) follows at once by Proposition 1'7 and Zorn's lemma.

( )  Let Gi € K(l ,A), , 'o '  i :  I ,2,  be such that G1 * Gz'  Then, there exist

Ft {  Gt, ' i :7,2, such that 4 and'  F2 are both f in i te and f i I  Fz /  rc( l ,A),  s ince

otherwise it would follow by Lemma 1.4 that any finite subgroup of G1*Gz is Kneserl

then G1 I Gz € rc(f,,4) by Proposition 1.7, contrary to the maximality of the Kneser

groups G1 and, G2. For such a pair (&,Fz), we have Gi e l' lpu fot ' i:1,2, and

l, lFrOtlnaK(l ,A) :  q) so K(f ' -4)* '*  is a Hausdorf f  space with respect to the

topologylnduced from the spectral space K(f,,4). Finally, note that K(f,,4)-"" is

stable under the continuous action of f on rcQ,A). n

1 1
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Corollary 1,g. ZL(f ,4") : Hom(f,A") e K(f ,A). In parti.cular, if the action of T

on A is triui,al, then Zr(1,/) : Hom(l,A) e rc(|,,A).

Proof. By Proposition 1.7, we have to show that G € K(f,,4) for any finite subgroup

C oi Zr'(1,,4f): Hom(l,Ar). For any such G it follows that GL: fls6cK"t(O)

is an open normal subgroup of f, the quotient tlGL is a finite Abelian group, and

G can be embedded into Hom(f/Gr,-4") < Hom(f/Gr,Q.lZ) : {@ = llGL'

Consequently, by Lemma 1.1, (f :Gr) ( lcl  < (f 'Gr), so G € rc(Ia'A) by Lemma

1.3.  n

Denote by K+(f, A) the subset of K(f,.A) consisting of all Kneser groups G

which additionally are closed elements of the canonical Galois connection described in

Proposition 0.1 (1), i.e., G: GLL. The main properties of these gloups are collected

together in the next result.

Corollary L.LO. The following assert'ions hold.

(1) G € rc+(f, A) ,f and only if gLL € rc(f,,A)'

(2) rc+(f, A) is a lower subset of the poset n (Zr(f,,4))'

(3) G € rc+(f, A) ,f and only if F e rc+(f, A) for euery fini,te subgroup F

(4) rc+(f, A) is a closed subset of the spectral space K(l,A).

(5) rc+(f, A) inheri,ts from K(l,A) a natural structure of spectral (Stone)

Proof. (1) One implication is trivial, while the other one follows at once from

1.5 .

(2) is an immediate consequence of (1) and Lemma 1.4.

(s) By (2), it remains to prove that if F e K+(f,,A) for every finite subgroup F

of G, then G e K+(f,/). Bv Proposition L.7, G e rc(|,,4), and hence we have only

to show that G : GLL. For any g e GLL, we have GL : (Gtt)t ( gr, therefore, by

compactness, there exists a finite subgroup F of G such that tr'-L < 9r. Consequently,
g e gLL ( F[ : F < G, as desired.

(4) follows at once from (3), while (5) is a consequence of (4), corollary 1.8, (2),

and of the fact that IGLL: (oG)[ for any G en'QLQ,,A)) and o € f . tr

Proposit ion 1.1L. Let G € rc(f,  A), L € L(f), and, d'enote d: resl(G), G' :

Ar n G. Then, the following assertions are equiualent.

0 e€rc (A,A) .
(2) The'inclus'ion map A, ', G'L ind,uces a cont'inuous surject'ion A ------+ 6rL16t.

(g) The inclusion map L '-- G'r ind,uces a homeomorphism Llet --, G'r lGL.

@) G'L:  AGr.

of G.

T-space.

Lemma
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Proof. By assumption, G € rc(f,A), so G' e K(l,A) since G/ is a subgroup of G
and K(f,,4) is a lower subset of the posetn(21(f,A)) by Lemma 1.4. Note that
A g 6rr < G'r and dr : GL fl A; hence, the canonical map Llet --, G'L IGL is
injective, and so, (Z) <+ (e) <+ (a).

Observe that the morphism resf, : Z'(f ,A) - Z'(L,,4) induces an epimorphism
G ------+ d with kernel Ker(resf,) r..tG: Aa n G : G', and hence, an isomorphism

GfG' = d, and, by the Pontryagin Duality, a continuous isomorphism GIG =A.
The canonical continuous cocycle rlc : | ------+ G is^onto by assumption, so it induces

a homeomorphism of Stone spaces grt16t ----- e whose restriction to the closed
subspace LlGt o LGL IGL is the injective continuoT *up induced by the continuous

cocycle Ts: A, ------+ G. Now it follows at once that G € rc(A, A),i.e., 116 is onto, if
and only if the embedding Llet -, grL 16r is onto too, which proves the equivalence
(t) +=+ (s). tr

Corol lary L.L2. Let G e K(l ,A),  and lef  A € [ , ( f )  be suchthat GL c A,.  Then
resf,(c) € rc(A, A) ,f and only ,f (LL r G)a : 4. tr

Proposit ion 1.13. Let G < Z1(l,A), L € L(f), d: resl(G), and, H : L^L nG.
tY G eK(L,A)  and,  H € rc( f ,  A) ,  then G eK( l ,A) .

Proof. Assuming Ihat d € rc(A,.A) and H e K(t,A), we have to show that the

cocycle \c:l ----- e is onto. Note that GIH = G,ro G1d = fr by the Pontryagin
D u a l i t y .  L e t g  € G .  A s  H e  K ( t , , A ) , t h e r e e x i s t s r € l s u c h t h a t  q a G ) : e l a ,

and hence ,1, :: I - rts(r) e G. Since the canonical map resfi , G ----- F ir un

epimorphism of topological f-modules, it follows that its kernel d is stable under the

action of f, therefore r-14t e d. As d € rc(L,A), there exists d e A such that

n4@):r-rr!.Sett ing o:16, i t  fol lows that for any g e G,

qc(o)(d - g?) : g(o) - g(") :  rs(6) : rqe@)bla) : '("-1rh)(gln) : rh@|i l

:  e(d - qc(r)(g) : p(g) - g(r),

and hence g : nc(o),, as desired. tr

The next results investigate when an internal direct sum of Kneser subgroups of a
given G < Z'(1,,4) is also Kneser.

Proposition L.14. Let G < Zr(t,A), and assun'Le that G is an'internal direct sum
of a fini,te fami.Iy (Go)r<r<, of fini,te subgroups. If gcd(lG;l,lcil) : I for all i,I j i,n

{ 1 , . . .  , n } ,  t h e n

G e K( t ,A)  + Gt  € K( I ,  A) ,  V i , ,  1  (  z  (  n .

Proof. Assume that every G.; is a Kneser group of. Zr(l,A). Then,

1 0
l-.f

lGl :  I I  lGrl:  l I  f .  ,G*).
1( i (n 1( i (n
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Since Gr < G*,  i t  fo l lows that  ( f  ,  G*)  |  ( f  :  Gl )  for  a l l  ' i :  L , . . . .n . .But  ( l  t  ,G{) :
lGal are mutually relatively prime by hypothesis, hence l1<,<,(f , Gl) | (f : Gr), and

so, lGl l(f : Ga). On the other hand, (f , Gr) < lcl bv Lemma 1.1, which implies

that lGl : (f : Gr), i.e., G is a Kneser group.

The implication " 9 " fsll6vvs at once from Lemma 1.4. !

Remark 1.15. In general, an internal direct sum of two arbitrary nonzero Kneser

subgroups of Zr(1,-4) is not necessarily Kneser, as the following example shows. Let

l:  Do : (o,r lo' :  r3 : (or)2: 1), and let A: (1"13)V,lV' with the action defined

b y  o a - - a ) r a : a  f o r  o € A .  T h e m a p  Z L ( | , A ) - A x A , g , - ( g ( o , g J r ) )  i s a

group isomorphism. Let g,h e Zr(l ,A) be defined by g(o) :0, h(o) : 113, g(r) :

n(r) : 1li. Then, it is easily verified that ZL(|.,A) has two independent Kneser
subgroups of order 3, namely, G :: (g) and fI ,: (h), whose (internal direct) sum is

n o t K n e s e r s i n c e  l f l  
- 6 < g : l G O I l l .  !

The next result is the local-global pri,nciple for Kneser groups.

corollary L.L6. A subgroup G of zr(r,A) i.s a Kneser gr-oup i,f and only if any of
i,ts p-primary conxponents G(p) 'is a Kneser group.

Proof. For the nontrivial implication, assume that G(p) € rc(f, A) for every p € IP.
By Proposition 1.7, we have to prove that any finite subgroup .FI of G is Kneser.
Then 1/(p) : GaG(p), so 11(p) is a Kneser group of. ZL(I,A) for every p € P. If
[  : :  {p e PlI l(p) + 0}, then.F/: Oper H(p). Now, observe that II  is f inite and
gcd(lH(e)1,lff(q)l) : 1 for all pl q in II. Hence 11 is a Kneser group by Proposition
r .14.  !

Corollary 1.16. can be reformulated in topological terms as follows.

Corollary L.I7. The canon'ical'i,somorphi,sm of spectral (Stone) l-spaces

LQ1(|,A)) -: '  
f f i ,1Zr1r, A@)), G *+ (G(p))oEp,
p€r

'induces by restri,ction the i,somorphisms of spectral (Stone) l-spaces

and

rcQ, A) -:' ll rcQ, A(fl)
PelP

rc+(r, A) -:- fl"*(r, a@))
P€lP

n

We are now going to present the main result of this section, namely an abstract
version of the Kneser Criterion [13] from Field Theory. To do that, we need some basic
notation which will be used in the sequel.
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Let ,A/(f, A) denote the r"-open set (possibly empty) L(ZL(1,,4)) \ rc(f, A) of all
subgroups of ZL(1,,4) which are not Kneser groups. Clearly, for any G e N(t,A)
there exists at least one minimal member H of. If(f, A) such that H g G. By

.,\/(f , A)^i,, we shall denote the set of all minimal members of ,A/(f , A). By Proposition

1.7 and Corollary 1.16, if G eN(|,, )min, then necessarily G is a nontrivial finite p-

group for some prime number p.

If p is an odd prime number und lfi € -4. \,4r, define the 1-coboundary

€e € BL (t,  (t  I  e) V,lZ) < B1(f, A)

by
€ p ( , ) : o l f i - 1 6 , o € f '

fi t4 € -4 \ Ar, deflne the map

ela : | ------ (1, I 4) V,IZ'

by

It is easily checked that

e'ne zr( t , ( r l4)z, lv , )  4 zrg, lS.

Observe that et4 has order 4 and €4 i:2e! is the generator of the cyclic group

Bt(f, (114)V,lV,) ( Hom(|,,4[2])

of order 2.

Recall that by IP we have denoted the set of all positive prime numbers. In the

sequel we shall use the foilowing notation:

P  :  ( P \ { 2 } ) u { 4 } ,

P ( r , A )  :  { p  e P t { l p , - 4 \ A r } .

We shall also use the following notation:

Bp: BL(t , (L ldv, lz)  :  Bt( f ,  A[p])  :  \eo) =ZlpZ i f  a* p e P(r ,A),

Ba : (eta) > V,l4V, it 4 eP(l,A).

Recal l  that we have denoted. Os;:  {ord(g) lg e G}. For any G < Z'( l ,A) we

shali denote

t-LG: l) {tl")212.
n€Og

Observe that, since Os is a directed set with respect to the divisibility relation, Fc is

asubgroup of A, and hence a discrete f-submoduleof A too. One easily checks that

ILc is the subgroup Dsecg(f) of QfZ generated by Ug.cg(f), and hence it is the

smallest subgroup n of L for which G < Z1(l,B). Also notethat pc(d: Fc(p):

Ugec(p)9(f) for all P e IP'

15

-, , \ | (F if "lB: 
-lR

€ ' t l o l : \  ^  ^  ^- { \  /  
[  o  i f  o r l 4 : l l 4
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Lemma L.'1.8. With the notati'on aboue, we haue ,A/(l' ,4)-in : {Bpl p e P(|, A)} '

Proo f .  I t  4+  p  e  P ( r ,A ) ,  t hen  B* :  r i :  {o  €  r l " lD : iD }  i s  theke rne l
of the (nontrivial) action of f on AWI: Qlflzlv" so llB[ is identified with a

nontrivial subgroup of (ZlpZ).: F'; .  Thus (f ,  Bi l lp-I 1p: lBol, and hence

Bo e Al '(t ,A)-in.
I f  4eP( l ,A )  t hen  B I :  r ' t ' :  { o  e  l l o l l a :  t l 4 ) : , t  i s  t he  ke rne l  o f  t he

(nontrivial) action of I  on A[4]: (U )V'|V'5 so (f :  B[):2 <4:lBql, and hence

ba e ,l\/(f, A). Since the unique proper subgroup of. Ba, namely Bt(|, A[4]) : (ta) =

Zl2V,,belongs to K(f,,4) as (f ,  e[1:2: ord(64), i t  fol lows that Ba € I/(f ,A)-i ' '

Thus, we proved the inclusion {Bpl p e P(l,a)} q,A/(f 'A)-i".  To prove the

opposite inclusion, Iet G € ,l\/(f, A)-ir,. As we have already noticed, G is a nontrivial

f in i tep-group for  somep € IF.  Then' ic :  ( I lp \Z lT-y some n >t ,G < Z ' ( l ,pc) ,

a n d t h e r e e x i s t g e  G a n d o e  f  s u c h t h a t  g ( o ) : t l p " .
obviously, G e "A/(f, l,G)min, so we may assume from the beginning that A -- Fc :

(Ilp\V,lV,. Let A::-81(f,,4)r denote the kernel of the action of f on A. We claim

that A g GL, i.e., G :: resl(G) : {0}. In particular, this will imply that n 2 2

f o r p t - 2 , f o r o t h e r w i s e , i f n : ' t a n d ' p : 2 w e w o u l d h a v e A : f : G r , a n d h e n c e
G g g[ : fI : {0}, which is a contradiction.

Assume the contrary, i.e., L g GL. Then Ar qC + G, and hence Ar nG e

K(T,A) as G e I/(f ,A)*i, , .  On the other hand, e < Z'(L,A) : Hom(A,A), so

G e K(A,,,a) by Corollary 1.9, and hence G e K(f, A) bV Proposition 1.13, contrary

to our assumption. This proves the claim that A < Gr.

Thus G can be identified with a subgroup of zrQlt,,4.), and moreover G €

JV(llL,,A)-in, so we may assume without loss of generality that f is a subgroup of

(Zlp"Z). acting (faithfully) by multiplication on A t: (Llp")ZlZ, G e ,A/(f''4)*i',

and .p ,s :  A , i . e . ,  g ( r ) : l f pn f .o r  some g  e  G  and  r€  f .  Reca l l t ha t  n2 I fo tp+2 ,
a n d n > . 2 f o r p : 2 .

First, note that G is cyclic of order p', generated by 9. Indeed, assuming the

contrary, it follows that the proper subgroup G' of G generated by I is a Kneser group

of Zr(1,,4,) since G e ,A/(f,A)-,,,, so

p - : l G , l : ( f  : G , t )  < l f l  ( p ( p ' )  : p " - l ( p - 1 ) ,

which is a contradiction. By the same reason it follows that the subgroup pG, properly

contained in G, is a Kneser group of Zt(l,A), hence (f : (pG)-) : lpGl 
- p'-1. This

implies that pn-r I  l f  I  and l ipCitt :  ( l f  |  :pi-t1l@@") : p"-1), and so, t: :  l(pG)Ll
isadiv isor  of  p-1. .

Recall that for any integers k and m we denote by k mod rn lhe congruence class
k + mZ of k modulo rn. Set

, , _ l { k m o d p " e  ( Z l p " Z ) *
'  - 1 .  

{ k m o d p " e  ( Z l 2 " Z ) *
k e V , , , k :  1  ( m o d p ) )  i f  p + 2  a n d  n ) 7 ,
k e Z , k :  1  ( m o d 4 ) )  i f  p : 2  a n d  n ) - 2 .

Using the considerations above, it follows that, if p f 2, then

| .r f/ x (pG)r is cyclic of order p'-rt, with t | (p - 1),
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and i f  p :2,  then Gr :  (2G)L:  {1}  and

f - (Zl2"Z). 3 f' x {1 mod 2n, -I mod.2n } = ZIZ'-zZ x Zl2Z.

Observe that if l, : {1}, then, for p + 2,

| = V,ltZ, is a nontrivial subgroup of IF|, G : ZL(l,Fo) : Bt(f, Fo) : Bp,

whi le ,  for  p-2,
G:  zr ( (z l4z) . ,v ,142) :  f i4 :  (e ta) ,

as desired.

Now assume that l' * {7}, i.e., n ) 2 for p # 2, and n } 3 for p : 2. Set

d : resF , (G)  :  ( g l r , ) .  No te  tha tdL :GLr r t / :  { 1 }  s ince  G t l f ' g  (pc ) rn l / :

{ U  f . 5  p # 2 ,  a n d  G r :  { 1 }  f o r  p : 2 .  A s  1 <  l f ' l  :  ( f / : d - )  <  1 d 1 , i t  f o l l o w s
that d + {0} and l'r .G + G; hence Pr n G e ,K(l,A). By Proposition 1.13,

i t f o l l ows  tha td  e  I / ( f ' , , 4 , ) ,  i . e . ,  p ' -7 :  ( f ' : d -1  <  l d l  l l c l  
-  pn  i f  p+2 ,

and 2"-2:  ( f /  :  d- )  a  lc ' l l lc l  :2n I f  p :2;_Consequent ly ,  to1_n f  2  wehave
d- -c= -Z /pnZ ,  and fo r  p :2  wehavee i the r  C  =212" - r z  o r  C  =c=v ,12 ' v ' .
Thus we arrived to a contradiction since

v,f p"-ru if p + 2,
V,lzn-zV i f  p:2.

Indeed, Iet

. : [ ( 1  + p )  m o d p "  i f  p + 2
"  

t  5 m o d 2 "  i f  P : 2

be the canonical generator of the cyclic group f/. The injective group morphism

Zt (T ' ,  A)  -  A ,  h  r -  h (o) ,

maps Zr(t/,A) onto Ker(,n/) and B1(f',,4) onto T(A), where N : A ------+ A is the

norm sending 0 € A: (7|p")ZfZ to Na,

z ' ( l ' ,A) :  Br( r ' , ,4)  =  
{

-n-r -1

\ -  1 t - r - \ i  i f  m J )P 7-  " jL
; -n

qn-2  r

s- -;
)  5 '  i f  p : 2 ,

lJ
; -n

a n d  
^  ^  (  p o  i f  p + 2 ,

T : A "--+ A, a,- oo, -  cL: 
t  ; ;  i f  i :  Z.

Now, it is easily checked by induction that the p-adic valuation of the natural number

l {  i s  n - 1 f o r  p + 2  a n d  n - 2 f o r  p : 2 .  T h i s i m p l i e s t h a t

Ker( l / )  :T (A)  :  {  
oo=v ' fP ' - rz  i f  P+2 '

t 4.A o V,12"-2V, if p :2,

._l,t- 
I

nas desired.
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Remark 1.19. Lemma 1.18 provides a precise description of the open subset .Af(f ' A)

of the spectral space n (Zt(f,a)) as the union of the basic quasi-compact open sets

I,lBo for p ranging over P(t,A). n

The next statement, which is an equivalent form of Lemma L.18, is actually an

abstract version of the Kneser Criterion [13] from the field theoretic Cogalois Theory'

Note that the place of the primitive pth roots of unity (p, P odd prime, from the

Kneser Criterion [13] is taken in its abstract version by ep, while e! corresponds to

7 - C n '

Theorem 1.20. (The Abstract Kneser Criterion). The following assert'ions are equ'iu-

alent for G < Zr (1, A) .

(1) G ' is a Kneser group of Zr(l ,A).

(2 )  , r / .G  wheneuer  4 f  peP( l ,A )  and  € ' t  /G  wheneuer  4e  P (T ,A ) .

Proof. (1) + (2): Assume that G e K(l,A). I f  €p e G for some a# p €P(l,A),
then Bo: (€p) ( G, hence Bo e K(1,,4,), which contradicts Lemma 1.18' Similarly,
if. 4 e P(l,A) and etn € G then Ba: (eta) ( G, hence Ba € K(t,A), which again
contradicts Lemma 1.18.

(2) + (1): Assume that G / rc(l ,A), i .e., G e Al( l ,A). Then G contains
a minimal member of ,A/(f,A), i.e., an element of the set ,A/(f,/)-in. To conclude,
apply now Lemma 1.18. tr

Corollary L,2L. The followi,ng assert'ions are equiualent for G < Z1(l,A).

(1)  G € rc+(r ,A) .

(2) G' I ef for all p € P(r, A).

Proof. By Corollary 1.10 (1), G € rc+(f , A) e Gu € K(t, A). On the other hand,
byTheorem ! .20 ,  GLL  € rc ( f ,A )  i f  andon ly i f  eo / .G t t  whenever  A lpcP( l ,A )
and et4 / Gtt whenever a ePQ,A). Since ef - ,'4L - BI if. 4 e P(l,A), and
€ € GLr e GL c er, the result follows. n

Corollary L.22. ZL(|,A) i,s a Kneser group of i,tself i,f and only i,f P(t,A): at'i.e.
Alpl e Ar for att p € P. n
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