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Abstract

This is the first part of a series of papers which aim to develop an abstract
group theoretic framework for the Cogalois Theory of field extensions.
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Introduction

The efforts to generalize the famous Gauss’ Quadratic Reciprocity Law led to the theory
of Abelian extensions of algebraic and p-adic number fields, known as Class Field
Theory. This theory can be also developed in an abstract group theoretic framework,
namely for arbitrary profinite groups. Since the profinite groups are precisely those
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topological groups which arise as Galois groups of Galois extensions, an Abstract Galois
Theory for arbitrary profinite groups was developed within the Abstract Class Field

Theory (see e.g., Neukirch [14]).

The aim of this paper is to present a dual theory we called Abstract Cogalois Theory
to the Abstract Galois Theory. Roughly speaking, Cogalois Theory (see Albu [2])
investigates field extensions, finite or not, which possess a Cogalois correspondence.
This theory is somewhat dual to the very classical Galois Theory dealing with field
extensions possessing a Galois correspondence.

The basic concepts of Cogalois Theory, namely that of G-Kneser and G-Cogalois
field extension, as well as their main properties are generalized to arbitrary profinite
groups. More precisely, let I' be an arbitrary profinite group, and let A be any
subgroup of the Abelian group Q/Z such that T' acts continuously on the discrete
group A. Then, one defines the concepts of Kneser subgroup and Cogalois subgroup
of the group Z'(T',A) of all continuous 1-cocycles of I' with coefficients in A, and
one establish their main properties. Thus, we prove an Abstract Kneser Criterion for
Kneser groups of cocycles, as well as a Quasi-Purity Criterion for Cogalois groups of
cocycles.

The idea to involve the group Z'(T, A) in defining the abstract concepts mentioned
above comes from the description due to Barrera-Mora, Rzedowski-Calderén, and Villa-
Salvador [9], via the Hilbert’s Theorem 90, of the Cogalois group Cog(E/F) of an
arbitrary Galois extension E/F as a group of cocycles. More precisely, Cog(E/F) is
canonically isomorphic to the group Z(Gal(E/F),u(E)) of all continues 1-cocycles
of the profinite Galois group Gal(E/F) of the extension E/F with coefficients in the
group w(E) of all roots of unity in E. Note that the multiplicative group u(E) is
isomorphic (in a noncanonical way) to a subgroup of the additive group Q/Z, and
that the basic groups appearing in the investigation of E/F' from the Cogalois Theory
perspective are subgroups of Cog(E/F).

In this way, the above description of Cog(E/F) in terms of 1-cocycles naturally
suggests to study the abstract setting of subgroups of groups of type Z LT, A), with T'
an arbitrary profinite group and A any subgroup of Q/Z such that I" acts continuously
on the discrete group A. Such a continuous action establishes through the evaluation
map I' x Z}(',A) — A, (0,9) — g(0), a Galois connection between the lattice
L(ZY(T', A)) of all subgroups of Z!(T, A) and the lattice L(I") of all closed subgroups
of T'. As the lattices above are naturally equipped with spectral (Stone) topologies
- on which the profinite group I' acts continuously, this Galois connection relates them
through canonical continuous I'-equivariant maps. On the other hand, the continuous
action of T' on A endows the dual group Z(TI',A) = Hom(Z'(T, A),Q/Z) with a
natural structure of Bp\ological I'-module, related to ' through a canonical continuous
cocycle n: T — Z1(T', A) which will play a key role in the study of Kneser groups of
cocycles. .

This paper is divided into four parts. Part I consists of two sections. In Section
0 we present the basic terminology and notation which will be used throughout the
paper, as well as some lattice theoretical and topological preliminaries. In Section 1 we
introduce and investigate Kneser groups of cocycles. The main result (Theorem 1.20) is
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an abstract version of the Kneser criterion [13] from the field theoretic Cogalois Theory,
where the place of the primitive p-th roots of unity is taken by suitable cocycles.

The forthcoming Part II is devoted to Cogalois groups of cocycles. In Part III
we introduce the concept of Cogalois action and provide a complete description of
the category of all these actions. In Part IV we apply our general theory to retrieve
the Abstract Kummer Theory and show how some basic results as well as some new
results of the field theoretic Cogalois Theory can be easily obtained from our abstract
approach.

0 Notation and Preliminaries

Throughout this paper I' will denote a fixed profinite group with identity element
denoted by 1, and A will always be a fixed subgroup of the Abelian group Q/Z such
that T acts continuously on A endowed with the discrete topology, i.e., A is a discrete
[-module.

We denote by N the set {1, 2, ...} of all positive natural numbers, by P the set
of positive prime numbers, by Z the ring of all rational integers, by Q the field of all
rational numbers, by R the field of all real numbers, and by C the field of all complex
numbers. For any integers k, m € Z we shall denote by k& mod m the congruence class
kE+mZ of k modulo m;if n € N is a divisor of m, then we shall write occasionally
k + mZ mod n instead of k mod n. For any ring R with identity element, R* will
denote the group of units of R. If g is a power of a prime number, then we denote by
[F, the finite field with g elements.

For any n € N, n > 2 we denote by Dy, the dihedral group of order 2n. The
group of quaternions will be denoted by @. Given an action of a group C on a group
D, the semidirect product of C by D is denoted by D x C, with a suitable subscript,
if necessary, to specify the action.

For any p € P we denote by Z, the ring of p-adic integers, by @Q, the field of
p-adic numbers, and by Z,e the quasi-cyclic group of type p>, that is, the p-primary
component (Q/Z)(p) of the quotient group Q/Z. Note that Zpeo = Qp/Zy.

For any r € Q, the coset of 7 in the quotient group Q/Z will be denoted by 7.
The elements of I' will be denoted by small Greek letters o, T, p, and the elements of
A by a, b, c. The action of 0 € ' on a € A will be denoted by oa. The set of all
elements of A invariant under the action of I' will be denoted as usually by AT.

An Abelian group C is said to be of of bounded order if kC' = {0} for some k € N;
if C' is of bounded order, then the ezponent exp(C) of C is the least n € N such
that nC = {0}. The order of an element z € C' will be denoted ord(z). If n is a
positive integer, and D is an Abelian torsion group, then we shall use the notation
D[n] := {z € D|nz = 0}. For any p € P we denote by D(p) the p-primary
component of D. By Op we denote the set of all n € N for which there exists z € D
of order n, i.e., D[n] has exponent n. With respect to the divisibility relation and the
operations ged and lem, Op is a distributive lattice with the least element 1. Op has
a last element if and only if D is a group of bounded order, and in this case, the last

element of Op is precisely exp(D).
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For any topological group T' we denote by LL(T) the lattice of all subgroups of T,
and by L(T) the lattice of all closed subgroups of T'. The notation U < T' means
that U is a subgroup of T. For any U < T we denote by L(T'|U) (resp. L(T'|U))
the lattice of all subgroups (resp. closed subgroups) of T' lying over U. If X CT,
then X will denote the closure of X, and (X) will denote the subgroup generated by
X. The notation U < T means that U is a normal subgroup of T'. For a subgroup
U of T we shall denote by T/U the set {tU|t € T} of all left cosets of U in T
We denote by Ch(T") or by T the character group of T, that is, the group of all
continuous homomorphisms of T’ into the unit circle U= {z|z€C, [¢|=1}.If § is
another topological group, then Hom(S,T) will denote the set of all continuous group
morphisms from S to T. Note that if T' is a profinite group, then T can be identified
with the Abelian torsion group Hom(T,Q/Z).

Recall that a crossed homomorphism (or an 1-cocycle) of T’ with coefficients in A
isamap f:I — A such that f(o7)= f(0)+0of(r), 0,7 €T} in particular, f(1) = 0.
The set of all continuous crossed homomorphisms of I' with coefficients in A is an
Abelian group, which will be denoted by Z*(I', A). Note that, in fact, ZNT,A) is
a torsion group. Indeed, since I' is a profinite group and A is a discrete space, a
map h : I' — A is continuous if and only if A is locally constant, that is, there
exists an open normal subgroup A (in particular, of finite index in I') such that h
factorizes through the canonical surjection map I' — I'/A. Since A is a torsion group,
it follows now that for any continuous map h : I' — A there exists an n € N such
that k(') C (1/n)Z/Z, and then nh =0, i.e., h has finite order.

The elements of Z(T', A) will be denoted by f, g, h. Always G,H will denote
subgroups of Z1(I'yA) and A,A subgroups of I'. To any a € A one assigns the
l-coboundary f, : T — A, defined by fo(c) = 0a —a, o € I'. The set BT, A) =
{fa] a € A} is a subgroup of ZY(', A). The quotient group ZY(,A)/BY(T, A) is
called the first cohomology group of I' with coefficients in A, and is denoted as usually
by HY(T, A).

Consider the evaluation map

(=, =):Tx ZYT,A) — A, (o,h) = h(0).
For any A <TI', G < ZY(T, A), g € ZY(T, A), and v € T denote

L, A),
At = {heZYT,A)|(o,h) =0,VoeA},
Gt = {oel|{oh) =0,VheG},
gt = {oel|{og)=0}
vt o= {heZ'(T,A)[{r,h)=0}.
One verifies easily that AL < Z4(T,A), G+ < T, and g+ = (g)*. Observe that
g is the set of zeroes of the continuous map g from I' to the discrete group A hence
it is an open subgroup of I'. Since G+ = Nyec gL, it follows that G+ € L(T).
The group Z'(T, A) is clearly a discrete left I'-module with respect to the following
action: (oh)(r) = och(c~'10), 0, 7€, h € Z{(T,A). If 0 €T and G € L(Z\(T, A)),
then

(o
(o,

(e@)*t = oGLo.
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For any A € L(I") one denotes by
resp : ZH(T', A) — Z1(A, A), h+— ha,
the restriction map.
The next result collects together the main properties of the assignments (—)*.
Proposition 0.1. The following assertions hold.
(1) The maps
L(Z!(T, A)) — L(I), G — G+,
L) — L(Z\(T, A)), A — AL,

establish a Galois connection between the lattices L(ZY(T, A)) and L(T), d.c.,
they are order-reversing maps and X < X+ for any element X of L(Z'(T, A))
or L(T).

(2) For any A € L(T) and G € ZY(T', A) one has

At = AT = Ker (resk) and (resk(G)* =GtnA.

(3) For any Gy, Gy € ZL(T, A) and A1, Ag € L(T) one has
(C1+ Gt =G NGy and AL NAF = (A UA)

Proof. The proof is straightforward, and therefore is left to the reader. O

Remarks 0.2. (1) Clearly, we have

1t = ZYT1,A),
FL = {O}a
ot = I.

Note that (Z(I', A))* is a closed normal subgroup of I' contained in the closed normal
subgroup (BY(I',A))*, the kernel of the action of I" on A. Setting H(I', A)*+ =
BN, A)*/ZY(T, A)*, we obtain the pairing

HYI, At x HY(I,4) — A

induced by the evaluation map. Note that the canonical continuous morphism

—

HY T, At — Hom(HY(T', A), A) = HY(T', A)

is injective, in particular, the profinite group H'(T', A)* is Abelian. In general, the
monomorphism above is not onto. For instance, taking I' = Z/2Z, and considering the

o —

non-trivial action of I' on A = Z/4Z, we obtain H'(T', A)* = {0}, while H}(T', A) =
HY (T, A) 2 7Z/2Z.



6 ALBU and BASARAB

(2) Following the standard terminology (see e.g., Stenstrom [18]), the closed ele—
ments of the Galois connection given in Proposition 0.1 (1) are the elements X of
L(ZY(T, A)) or L(T') such that X = X Ll Effective descriptions of such elements are
given in Corollaries 1.6 and 1.10, and in Section 3, Part III.

(3) The last part of Proposition 0.1 can be reformulated by saying that the maps
(—)J- are semilattice anti-morphisms. One can ask when these maps are actually lattice
anti-morphisms, i.e., they also satisfy the following conditions:

(Gl N GQ)L = m and (Al n AQ)"L — Af‘ =+ A%‘

for all G1, Go € Z1 (I, A) and A1, Ag € L(T).

In Section 2, Part II we will discuss cases when the maps (—) establish lattice anti-
isomorphisms between certain sublattices of L(Z1(T', 4)) and L(T"), while in Section
4, Part III we will see that for certain actions we called Cogalois actions we do obtain
lattice anti-isomorphisms between L(Z'(T, A)) and L(T). [

On the other hand, the posets L(I") and L(Z(I', A)) are equipped with natu-
ral topologies for which the canonical maps defining the Galois connection above are
continuous.

The underlying topological space of the profinite group I' is a Stone space, i.e., a
(Hausdorff) compact and totally disconnected topological space. The Stone topology
on I' naturally makes the set of all closed subsets of T a spectral space, i.e., a To quasi-
compact topological space which has a topology basis consisting of open quasi-compact
sets.

For more details concerning Stone and spectral spaces, which are duals by the
Stone’s Representation Theorem to boolean algebras and to (bounded) distributive
lattices, respectively, the reader may consult [11], [15], and/or [10].

The set L(I") becomes a spectral space as a closed subset of the spectral space of
all closed subsets of the underlying Stone space of I". The spectral topology 7s on
L(I") is defined by the basis of open quasi-compact sets Up = L(A) for A ranging
over all open subgroups of I'. Note that {A—} = L(T|A) for all A € L(T), so the
spectral space LL(T) is irreducible with the generic point {1} and with I' as its unique
closed point. As the poset L(I') is the projective limit of the projective system of
finite posets IL(I'/A) for A ranging over all open normal subgroups of I', with natural
order-preserving connecting maps, the topology 75 is exactly the projective limit of the
Ty topologies on the finite sets IL(I'/A) induced by the partial order given by inclusion.

The Stone completion 7, of the spectral topology 7, on LL(I'), commonly called the
patch topology, is the topology defined by the basis of open compact sets

VA,A’ = {A € E(F) |AA = A/}

for all pairs (A,A’), where A is an open normal subgroup of I' and A’ € L(T'|A).
The Stone space above is the projective limit of the finite discrete spaces L(I'/A) for A
ranging over all open normal subgroups of I'. For any subset &/ of L(T'), U is 7s-open
if and only if U is botkl_ m-open and a lower subset of L(I") (the later condition means
that A€ U and A € L(A) = A e U).
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—

Being the dual of the Abelian torsion group Z(T', A), Z1(T', A) is an Abelian profi-
nite group, namely the projective limit of the finite Abelian groups H= Hom(H,Q/Z)
for H ranging over all finite subgroups of Z(T', 4). Thus E(Z@)) is naturally
equipped with the topologies defined above. Consequently, by duality, we obtain the
corresponding topologies on L(Z(T',A)) as follows: for any finite subgroup F' of
ZY(T', A) and for any subgroup F’ of F, consider the following subsets of L(Z(T', A))

Ur = {G e L(Z(T,A))|F C G}

and
Ver ={GeL(ZYT,A)|GNF=F'}.

The family (Up)p for F ranging over all finite subgroups of Z(T', 4) is a basis of
open quasi-compact sets for a spectral topology 7, on L(Z(T, A)). Observe that for
H, G € L(ZY(T, A)), we have H € {G} <= H < G, so the spectral space L(Z*(', A))
is irreducible with the generic point Z!(T', A), and with {0} as its unique closed point.
As the poset L(Z!(T', A)) is the projective limit of the projective system of the finite
posets L(F), for F' ranging over all finite subgroups of Z!(T', A), with restrictions as
connecting order-preserving maps, it follows that 75 is exactly the projective limit of the
Ty topologies on the finite sets IL(F') induced by the partial order opposite to inclusion.

On the other hand, the family (Vg p/)pp for (F,F') ranging over all pairs of {i-
nite subgroups of Z!(I', A) with F' < F' is a basis of open compact sets for the Stone
topology 7, on L(Z!(T', A)). The Stone space above, which in fact is the Stone comple-
tion of its underlying spectral space, is the projective limit of the finite discrete spaces
LL(F) for F ranging over all finite subgroups of Z!(I', A). A subset U of L(ZL(T, A))
is 75-open if and only if U is both 7,-open and an upper subset of L(Z(T, A)) (the
later condition means that H € Y and H < G = G € U).

Proposition 0.3. The following assertions hold.

(1) The canonical action

I x L") — L), (0,A) — gAa™!,

is a coherent map, i.e., the inverse image of any open quasi-compact set is also

open quasi-compact.
(2) The canonical action
I x L(ZYT, A)) — L(Z(T, A)), (0,G) — oG,
is a coherent map.

(3) The map L(I') — L(ZYT,A)), A — AL, is a morphism in the category of
spectral T'-spaces with D'-equivariant coherent maps as morphisms.

(4) The map in (3) is also a morphism in the category of Stone I'-spaces with con-

tinuous I'-equivariant maps as morphisms.
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(5) The map L(ZY(T,4)) — LT, G — G+, is a morphism in the category of
spectral T-spaces with continuous I'-equivariant maps as morphisms.

Proof. (1) For any open subgroup A of I', we have

{(0,0) eTx L) oAt <A} = | (Ao xUs-1a0),
geA\T

so the inverse image of the basic quasi-compact open set U of the spectral space L)
is quasi-compact open as a finite union of basic quasi-compact open sets of the spectral
product space I' x L(I"), and hence the canonical action above is a coherent map.

(2) For any finite subgroup F' of Z1(T, A), the stabilizer A =T'p of F in I' is
open, and

{(6,8) e T xL(Z\T, A)|F <0G} = |J (Ao xUy-1p),
oceA\T

so the inverse image of the basic quasi-compact open set Up of the spectral space
L(ZY(T, A)) is quasi-compact open as a finite union of basic quasi-compact open sets
of the spectral product space T' x L(Z1(T, A4)).

(3) Since (cAo~1)L = o(AL) for all ¢ €T and A € L(T), it remains to show that
the canonical map A — AL is coherent. Let F' be a finite subgroup of Z LT, 4), so
FL is an open subgroup of I'. Then, the inverse image

{AeLM)|F <A ={A L) |AS F'} = Ups
of the basic quasi-compact open set Up of the spectral space L(Z(I', A)) through the
canonical map above is open quasi-compact, as required. :

(4) As a coherent map, the map above is clearly continuous with respect to the
Stone topologies.

(5) Since (0G)t = o(GL)o~! for all o € T and G € L(Z}(T, A)), it remains to
show that the canonical map G — G is continuous. Given an open subgroup A
of T, let W= {G e L(Z}(T,A))|G+ < A} denote the inverse image of the basic
open set Un of the spectral space L(I'). We may assume that W is nonempty, i.e.,
ZU(T, AL < A, since otherwise we have nothing to prove. Let Whin denote the
(nonempty) set of all minimal members of W with respect to inclusion. Thus, it
remains to show that all members of Wi, are finite subgroups of Z!(T', A), since by
Zorn’s Lemma, it follows that W = |J FeWw,., UF, s0 W is 7s-open as a union of basic
Ts-Open sets.

Assuming the contrary, let G € Wy, be such that G is infinite. Consequently,
by minimality, we deduce that F- ¢ A for all finite subgroups F' of G. Since the
family of nonempty closed subsets F*- \A of I" for F' ranging over all finite subgroups
of G has the finite intersection property, it follows by the compactness of I' that
G\ A =Np(FL\A)#2,ie, G+ ¢Z A, which is a contradiction. O
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The natural continuous action of I' on the profinite Abelian group Z@) induces
a canonical continuous 1-cocycle n: ' — Z@) we are going to define below, and
which will play a key role in the rest of the paper.

First note that Z1(T, A) := Hom(Z\(T', A),Q/Z) = Hom(Z'(T, A), A). Indeed, for
any ¢ € Z@) and for any g € ZY(T, A), we have ¢(g) € (1/n)Z/Z, where n =
ord(g). On the other hand, as n is the lem of the orders of g(c) for ¢ € T, one easily
deduces that (1/n)Z/Z C A, and hence ¢(g) € A, as required. The Abelian profinite
group Z@) becomes a topological I'-module via the canonical continuous action of
the profinite group I given by

(00)(9) = 0(g), Vo €T, g € Z(T, A), g € Z\(T, A).

Now, observe that Zl/(l“TA) = HOHI]"(Z@),A), i.e., any continuous morphism
x : ZHT', A) — Q/Z takes values in A and is also a morphism of Imodules. Indeed,

o
—

the canonical morphism o : Z1(T', A) — Z1(T', A) defined by a(g)(p) = ¢(g) for g €
ZYT,A) and ¢ € ZI(T, A) = om(Z1(T, A), A) is an isomorphism by the Pontryagin

—_—
— —

Duality, and hence for x € Z}(T',A), 0 € I', and ¢ € Z1(I', A) we have x(op) =

(o) (a7t (x)) = op(a™(x)) = ox(p), as required. -
For any subgroup G of Z1(T, A) set X¢g = ZY(', A)/G. Then observe that Xg =

—

Hom(Xg, A) is identified with a closed subgroup of Z1(T', 4), stable under the action
of T, so the quotient Z1(T', A)/ Xe 206 = Hom(G, A) is also a topological I'-module,

and G = Homp (G, A).
Now consider the map

—

n: T — ZYT, A), n(0)(g) = (0,9) = g(0), 0 € T, g € Z'(T', A),
and for any G < Z1(T, A), let g : I — G denote the map obtained from 7 by
composing it with the canonical epimorphism of topological I'-modules
resgl(r’A) : Zl/(l"jél) — @7 0 pla.

Proposition 0.4. For any G < ZY(T, A), the map ng : T — G is a continuous
1-cocycle satisfying the following universality property: for every g € G there exists a
unique continuous morphism x : G — A such that x ong = g.

~ Proof. O/l\le easily checks that n¢ is a continuous 1-cocycle, so x o ng € Z}(I', A) for
all y €G = Homp(a, A). Thus it is sufficient to show that the canonical morphism
Ba :é — ZYT', A), x — x o ng, takes values in G and is the inverse of the canonical
isomorphism ag = a|g : G — é given by the Pontryagin Duality. The equalitz
Ba o ag = 1g is obvious, so it remains only to check that B¢ is injective. Let x € %
be such that Be(x) =0, and let g = ag'(x). For all o € I' we have
0= Ba(x)(0) = x(ne(0)) = ac(g)(na()) = na(o)(9) = 9(),
so g =0, and hence x = ag(g) =0, as desired. O
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1 Kneser groups of cocycles

In this section we define the concept of abstract Kneser group, present the main prop-
erties of these groups, and establish the abstract version of the field theoretic Kneser
Criterion [13].

Lemma 1.1. If G is a finite subgroup of Z(T', A), then (I': G+) <|G|.

Proof. The canonical cocycle ng : I' — G defined | by nc(o)(9) = (0,9) = g(0),

A~

o €T, g € G, induces an injective map T'/G+ — G, so (I': GH) < |G| = |G, as
desired. O

Definition 1.2. A subgroup G of Zl(I‘,A)A is called a Kneser group of Z(T, A) if

the canonical continuous cocycle ng : I' — G is onto. O

Lemma 1.3. A4 finite subgroup G of Z'(T, A) is a Kneser group of ZY(T, A) if and
only if (T: GH) =|G.

Proof. The result follows immediately from Lemma 1.1. O

We shall denote by K(T, A) the set of all Kneser groups of Z LT, A), partially
ordered by inclusion, with {0} as the least element.

Lemma 1.4. If G € K(T',A), then H € K(I', A) for any H < G; in other words,
K(T,A) is a lower subset of the poset L(Z(T, A)).

Proof Since 7y is obtained from ng by composing it with the canonical epimorphism
res o G — H @ — ¢|g, and ng is onto by assumption, it follows that the cocycle
ng is onto too, so H € K(I', A), as desired. O

Lemma 1.5. If G € K(I', A), then the map L(G) — L(T'), H — HYL | is injective. In
particular, H =GN H for every H € L(G).

Proof. Let Hy, Hy € L(G) be such that HL = HQL We have to show that H; = Ho.
Since (Hy + Hy)* = Hi- N H2 = Hi = Hy, we may assume from the beginning that
H, < Hy. Since G € K(T', A), it follows by Lemma 1.4 that H; € K(I', A), i = 1, 2,
and hence the map I'/H; o H induced by the surjectlve cocycle np, is bijective
fori =1,2. As ng, = resg ong, and Hj i = Hs by assumption, it follows that
rest! H, . H; ] — H, 9 is an isomorphism, and hence H; = Hy by the Pontryagin Duality.
The last part of the statement is now immediate since (G N H+1+)+ = H* for any
H e L(G). O

Corollary 1.6. If Z}(I', A) € K(T', A), then the canonical map L(Z(T, A)) — L(T')
is injective, and H = H+L for every H € L(ZY(T', A)), i.e., every H € L(ZY(T, A))
is a closed element of the Galois connection described in Proposmon 0.1 (1).

The next statement shows that the property of a subgroup of Z(I', A) being Kneser
is of finitary character.

Proposition 1.7. The following assertions are equivalent for G < ZY(T', A).
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(1) Ge KT, A).
(2) F e K(T,A) for any finite subgroup F of G.

Proof. By Lemma 1.4, we have only to prove that (2) => (1). By assumption the
continuous cocycle np : I' — F' is onto for any finite subgroup F of G. We are
going to show that the continuous cocycle ng : I' — G is also onto. Let ¢ € G.
Since the family (np'(¢|r))p of nonempty closed subsets of T', for F' ranging over all
finite subgroups of G, has the finite intersection property, it follows by compactness
that S := pnp (¢|lF) # @. Consequently, na(c) = ¢ for all o € 5, as ng is the
projective limit of the projective system of maps (nr)r. Thus ng is onto, and so
G € K(T', A), as desired. O

Corollary 1.8. The following assertions hold.
(1) K(T', A) is a closed subset of the spectral space L(Z1(T, A)).
(2) K(T',A) has a natural structure of spectral (Stone) I'-space.
(3) For any G € K(T', A) there ezists a mazimal Kneser group lying over G.

(4) The set K(I'y A)max of all mazimal Kneser subgroups of ZYT, A) has a natural
structure of Hausdorff I'-space.

Proof. (1) Let G € L(Z}(T',A)) \ K(I', A). By Proposition 1.7, there exists a finite
subgroup F' of G such that F ¢ K(T', A). Thus G € Up and Ur NK(I', A) = &, s0
K(T, A) is Ts-closed, as desired.

(2) As a closed subset of the spectral space L(Z'(I', A)), K(T', A) is a spectral space
with respect to the induced topology, and hence also a Stone space with respect to the
topology induced by the topology 7, of L(Z 1(T', A)). By Proposition 0.3, it remains
to check that KC(I',A) is stable under the action of I'. Assuming that G e KT, A),
i.e., the cocycle ng : I' — G is onto, let o € I' and ¢ € JG We have to show
that ¢ = nog(r) for some 7 € I' to conclude that ny¢ : I' — oG is also surjective,

e.,, oG € K(I',A). Let ¢ € G defined by ¢(g) = 0"lp(og) for all g € G. Then
% = ne(p) for some p € I'. Consequently, p(og) = o¥(9) = ona(p)(g) = o9(p) =
(09)(opo~") = noc(opo™!) for all g € G, and hence ¢ = 1o¢(7), where 7 = opo~!

(3) follows at once by Proposition 1.7 and Zorn’s lemma.

(4) Let G; € K(I', A)max, ¢ = 1,2, be such that Gi # Ga. Then, there exist
F < Gy, i = 1,2, such that Fy and Fy are both finite and Fy + Fy ¢ K(T, A), since
otherwise it would follow by Lemma 1.4 that any finite subgroup of G +Gsg is Kneser;
then Gy + G € K(I', A) by Proposition 1.7, contrary to the maximality of the Kneser
groups Gy and Gs. For such a pair (F, Fy), we have G; € Up, for i =1, 2, and
Up, NUR, NK(T,A) = 9, so K(T, A)max is a Hausdorff space with respect to the
topology induced from the spectral space K(I, A). Finally, note that (', A)max 18
stable under the continuous action of I' on K(T', A). O
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Corollary 1.9. Z}(I', AT) = Hom(T', A") € K(T', A). In particular, if the action of T
on A is trivial, then Z(T', A) = Hom(T', A) € K(T', A).

Proof. By Proposition 1.7, we have to show that G € K(T, A) for any finite subgroup
G of ZY(T,Al) = Hom(F AT). For any such G it follows that Gt = N,ecKer(g)
is an open normal subgroup of T, the quotient r/ G is a finite Abelian elian group, and
G can be embedded into Hom(I'/GL, AT) < Hom(I'/G*+,Q/Z) = I‘/Gl ~ T'/GL.
Consequently, by Lemma 1.1, (I' : G+) < |G| < (' : G*), so G € K(T', A) by Lemma
1.3. O

Denote by Kt(I', A) the subset of K(T',A) consisting of all Kneser groups G
which additionally are closed elements of the canonical Galois connection described in
Proposition 0.1 (1), i.e,, G = G1L. The main properties of these groups are collected
together in the next result.

Corollary 1.10. The following assertions hold.
1) Ge KH(T,A) if and only if G e KT, A).
2) KT(T, A) is a lower subset of the poset L(ZY(T, A)).

4) KH(T, A) is a closed subset of the spectral space K(T',A).
)

(1)

(2)

(3) G € K*(T',A) if and only if F € K*(T',A) for every finite subgroup F of G.
(4)

(5) KT(T,A) inherits from K(T',A) a natural structure of spectral (Stone) I'-space.

Proof. (1) One implication is trivial, while the other one follows at once from Lemma
1.5

(2) is an immediate consequence of (1) and Lemma 1.4.

(3) By (2), it remains to prove that if F' € K+(I', A) for every finite subgroup F'
of G, then G € K*(T', A). By Proposition 1.7, G € K(I', A), and hence we have only
to show that G = G-+, For any g € G, we have G+ = (GLL)l < g7, therefore, by
compactness, there exists a finite subgroup F' of G such that F L < gt. Consequently,
g€ gt < FH = F < G, as desired.

(4) follows at once from (3), while (5) is a consequence of (4), Corollary 1.8, (2)
and of the fact that oG+ = (¢G)*+ for any G € L(Z'(T', 4)) and o €T O

Proposition 1.11. Let G € K(T,4), A € L(T'), and denote G = resh (G), G' =
AL NG. Then, the following assertions are equivalent.

(1) G e K(A, 4).

(2) The inclusion map A — G- induces a continuous surjection A — G'-/GL.
(3) The inclusion map A — G' induces a homeomorphism A/C:YL —s GG
(4)

4) G = AGHL.
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Proof. By assumption, G € K(I',4), so G’ € K(T', A) since G’ is a subgroup of G
and KC(T', A) is a lower subset of the poset L(Z'(I',A)) by Lemma 1.4. Note that
A < A <G and G = G N A; hence, the canonical map A/él —s G /G s
injective, and so, (2) <= (3) < (4).

Observe that the morphism resk : Z1(T, A) — Z!(A, A) induces an epimorphism
G —> G with kernel Ker (resg) NG = AtNG = G’, and hence, an isomorphism
G/G = é, and, by the Pontryagin Duality, a continuous isomorphism é/é ~ G
The canonical continuous cocycle ng : I' — G is onto by assumption, so it induces
a homeomorphism of Stone spaces G’ /Gl — G whose restriction to the closed
subspace A/ Gt~ AGh /G is the injective continuous map induced by the continuous

cocycle nz : A — G. Now it follows at once that G € K(A, A), ie., ng is onto, if
and only if the embedding A/ Gt oot /G is onto too, which proves the equivalence

(1) <= {3). O
Corollary 1.12. Let G € K(T,A), and let A € L(T) be such that G- C A. Then
resh (G) € K(A, A) if and only if (AtNG)Lt =A. O

Proposition 1.18. Let G < ZY(T, 4), A € L(I'), G =resk(G), and H = ALt nC.
If Ge K(A,A) and H € K(I', A), then G € K(T, A).
Proof. Assuming that G € K(A,A) and H € K(T, A), we have to show that the

cocycle ng : T’ —>§ is onto. Note that G/H = G, so é/é ~ [ by the Pontryagin
Duality. Let ¢ € G. As H € K(T', A), there exists 7 € T" such that ng(7) = ¢|g,
and hence ¥ := ¢ —ng(r) € G. Since the canonical map res% : G — H is an

epimorphism of topological I‘—moAdules, it follows that its kernel G is stable under the
action of T, therefore 7711 € G. As G ¢ K(A, A), there exists 6 € A such that

na(0) = 714, Setting o = 76, it follows that for any ¢ € G,
nc(o)(9) — 9(r) = g(o) = g(7) = 79(8) = ™0z(8)(gla) = 7(r7 %) (gla) = ¥(gla)
= ©(g) —nc(7)(g) = ©(g) — 9(7),
and hence ¢ =ng(0), as desired. O

The next results investigate when an internal direct sum of Kneser subgroups of a
given G < Z}(T, A) is also Kneser.

Proposition 1.14. Let G < Z' (T, A), and assume that G is an internal direct sum
of a finite family (G;)i<icn of finite subgroups. If ged(|Gi,|G;|) =1 for alli % j in
{1,...,n}, then

GeKI,A) < G, e K(T,A), Vi, 1<i< n.

Proof. Assume that every G; is a Kneser group of Z'(I', A). Then,

Gl= ]I lail= ] C:6).

1<ikn 1<ikn
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Since G+ < G, it follows that (I': Gf)|(T': G*) forall i =1,...,n. But (I': G =
|G;| are mutually relatively prime by hypothesis, hence [; ;¢ (I': GH (T : GF), and
so, |G|| (' : GL). On the other hand, (I': G) < |G| by Lemma 1.1, which implies
that |G| = (T : G*), i.e,, G is a Kneser group.

The implication “==" follows at once from Lemma 1.4. O

Remark 1.15. In general, an internal direct sum of two arbitrary nonzero Kneser
subgroups of Z!(T', A) is not necessarily Kneser, as the following example shows. Let
L=Dg=(0,7|0?=73=(07)2=1), and let A = (1/3)Z/Z with the action defined
by 0a = —a, Ta = a for a € A. The map Z}([,A) — AX A, g+ (g(a)/,\g(T)) is a
group isomorphism. Let g,h € Z1(T, A) be defined by g(c) =0, k(o) = 1/3, g(7) =
hir) = 1//§ Then, it is easily verified that Z(I',A) has two independent Kneser
subgroups of order 3, namely, G := (g) and H := (h), whose (internal direct) sum is
not Kneser since |[I'| =6 < 9= |G & H|. O

The next result is the local-global principle for Kneser groups.

Corollary 1.16. A subgroup G of Z'(I',A) is a Kneser group if and only if any of
its p-primary components G(p) is a Kneser group.

Proof. For the nontrivial implication, assume that G(p) € K(T', A) for every p € P.
By Proposition 1.7, we have to prove that any finite subgroup H of G is Kneser.
Then H(p) = GNG(p), so H(p) is a Kneser group of Z'(T', A) for every p € P. If
I:= {p e P|H(p) # 0}, then H = P, H(p). Now, observe that I is finite and
ged(|H (p)|, |H(q)]) =1 for all p# ¢ in 1. Hence H is a Kneser group by Proposition
1.14. O

Corollary 1.16. can be reformulated in topological terms as follows.

Corollary 1.17. The canonical isomorphism of spectral (Stone) T'-spaces

L(ZI(F’A)) - H]L(ZI(F7A(Z)))7 G (G(p))PEP’
peP

induces by restriction the isomorphisms of spectral (Stone) I'-spaces

K(T, 4) = [T €T, Ap)
peP

and
KHT, A) = [T, Ap)).
peP
O

We are now going to present the main result of this section, namely an abstract
version of the Kneser Criterion [13] from Field Theory. To do that, we need some basic
notation which will be used in the sequel.
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Let N(T', A) denote the 7s-open set (possibly empty) L(Z'(I',A))\ (T, A) of all
subgroups of Z!(T', A) which are not Kneser groups. Clearly, for any G € N(T, A)
there exists at least one minimal member H of N (L', A) such that H C G. By
N(T, A),;, weshall denote the set of all minimal members of N(T', A). By Proposition
1.7 and Corollary 1.16, if G € N(T', A)min, then necessarily G is a nontrivial finite p-
group for some prime number p.

If p is an odd prime number and 1//;7 € A\ A" define the 1-coboundary
, € BY(T, (1/p) Z/2) < B\(T', 4)
by L
ep(0)=01/p—1/p,0 €.
If 1//\4 € A\ AT, define the map
ey : T — (1/4)Z)Z

(o) :{ i it o1/d=—1/4
0 if o1/4=1/4
It is easily checked that
ey € ZNT,(1/4) Z)Z) < ZX(T', A).
Observe that €y has order 4 and €4 := 2¢) is the generator of the cyclic group
BT, (1/4)Z/Z) < Hom(T', A[2])

of order 2.
Recall that by P we have denoted the set of all positive prime numbers. In the

sequel we shall use the following notation:
P o= (PA{2)U4}
P,A) = {peP|l/peA\A"}.
We shall also use the following notation:
B, = B'(T, (1/p) Z/Z) = B'(T, Alp)) = (5) 2 Z/pL if 4#peP(T,A),
By= () 2Z/AZ if 4€PT,A).
Recall that we have denoted Og := {ord(g)|g € G}. For any G < Z!(I', A) we

shall denote
we= J (1/n)Z/Z.
neOqg
Observe that, since Og is a directed set with respect to the divisibility relation, ug is
a subgroup of A, and hence a discrete I'-submodule of A too. One easily checks that
pe is the subgroup 3 g g(T') of Q/Z generated by UQGG g(T"), and hence it is the
smallest subgroup B of A for which G < Z1(T', B). Also note that uc(p) = kap) =

UgeG(p) g(T") for all p e P.
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Lemma 1.18. With the notation above, we have N(T, A)min = { By|p € P(T', A) }.

Proof. If 4 # p € P(I',A), then B];L = aIJ; = {0 € F|01//\p = 1/p} is the kernel
of the (nontrivial) action of T on Alp] = (1/p)Z/Z, so ['/B; is identified with a
nontrivial subgroup of (Z/pZ)* = Fy. Thus (I': Bz-,L) |p—1 < p = |Bp|, and hence
By € N(T, A) . o

It 4 € P(T, A) then Bf =&t = {0 € T'|o1/4 = 1/4} = e is the kernel of the
(nontrivial) action of I on A[4] = (1/4)Z/Z, so (I': Bj) = 2 < 4 = |By, and hence
By € N(T, A). Since the unique proper subgroup of By, namely BT, A[4]) = (e4) =
7,/27, belongs to K(T', A) as (T': ef) = 2 = ord(ey), it follows that By € N(T', A) i

Thus, we proved the inclusion {B,| p € P(I',A)} € N([', A)min. To prove the
opposite inclusion, let G € N (', 4),;,- As we have already noticed, G is a nontrivial
finite p-group for some p € P. Then ug = (1/p")Z /Z for some n > 1, G < ZNT, pe),
and there exist g € G and ¢ € I’ such that g(o) = W

Obviously, G € N(T', 4G )min, S0 We may assume from the beginning that A = pg =
(1/pMZ)Z. Let A := BY(T, A)t denote the kernel of the action of I' on A. We claim
that A C G, ie, G = resh (G) = {0}. In particular, this will imply that n > 2
for p = 2, for otherwise, if n =1 and p = 2 we would have A =1" = G+, and hence
G < G+ =T+ = {0}, which is a contradiction.

Assume the contrary, i.e., A € G-. Then At NG # G, and hence ALNG e
K(,A) as G € N(T,A)_... On the other hand, G < Z'(A, A) = Hom(A, 4), so
Ge IC(A, A) by Corollary 1.9, and hence G € K(I', A) by Proposition 1.13, contrary
to our assumption. This proves the claim that A < aL.

Thus G can be identified with a subgroup of Z(I'/A, A), and moreover G €
N(T/A, A)min, s0 We may assume without loss of generality that I' is a subgroup of
(Z/p"Z)* acting (faithfully) by multiplication on A := (1/p")Z/Z, G € N (T, A)min,
and pug = A, ie., g(1) = ﬁ]; for some g € G and 7 € I'. Recall that n > 1 for p # 2,
and n > 2 for p=2.

First, note that G is cyclic of order p", generated by g. Indeed, assuming the
contrary, it follows that the proper subgroup G’ of G generated by g is a Kneser group

of ZYT', A) since G € N(T', 4) iy S0
n L n n—
ph =G =(T:G) <D< el =p""(p - 1),

which is a contradiction. By the same reason it follows that the subgroup pG, properly
contained in @, is a Kneser group of Z!(T', A), hence (I : (pG)*) = |pG| = p*~. This
implies that p"~! ||T| and |(pG)*| = (IT] : "1 | (p(p") : p"~1), and so, t := |(pG) "]
is a divisor of p — 1.

Recall that for any integers k and m we denote by k mod m the congruence class
k +mZ of k modulo m. Set

o — {kmod p" € (Z/p"Z)* |k € Z, k=1 (mod p)} if p#2 and n>1,

{kmodp" € (Z/2"Z)* |k €Z, k=1 (mod4)} if p=2and n>2.

Using the considerations above, it follows that, if p # 2, then

| RE=N R (pG)J‘ is cyclic of order p"~'t, with t|(p—1),
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and if p =2, then G+ = (2G)* = {1} and
= (Z/2"Z)* 2T’ x {1 mod 2", —1 mod 2" } = Z/2"Z x Z/2Z.
Observe that if IV = {1}, then, for p # 2,
['= Z/tZ is a nontrivial subgroup of F,, G = ZI(F,]FP) = BYI,F ) = By
while, for p = 2,
G = 2\(Z/AZ)", 2/AT) = By = (&}),

as desired.

Now assume that I # {1}, ie, n > 2 for p # 2, and n > 3 for p = 2. Set
G = resk, (G) = (g|r/). Note that G —ginr = {1} since G+ ﬂI" C (pG)t NI’ =
(1) for p#£2 and GE = {1} for p=2. As 1 < |['| = (' : &) < |CF), it follows
that G’ # {0} and I'" NG # G; hence r'tnge K(T', A). By Proposition 1.13,
it follows that &' € N(I",4), ie, p"' = (I : G) < |G|]|G] = p* if p # 2,
and 2% = (I : ZJJ’L) < ||| |G| = 2" if p = 2. Consequently, for p # 2 we have

G' =~ G = Z/p"Z, and for p = 2 we have either G e Z)2"'Z or GG Z]2"L.
Thus we arrived to a contradiction since

Z/p'Z it p#2,

11V _ nlv ~
A (F’A)_B (F7A)—{ Z/Zn_QZ if p:2.

Indeed, let
[ (I4+p)modp™ if p#2
| 5mod 2" if p=2

be the canonical generator of the cyclic group I". The injective group morphism
ZNIV, A) — A, h— h(0),

maps Z!(I", A) onto Ker(N) and B'(I",A) onto T(A), where N : A — A is the
norm sending a € A = (1/p™)Z/Z to Na,
n—l_l

> (1+p) if p#2,

N = 1=0
2n2_1

Z 5t if p=2,
i=0

p

and
pa if p#2,
4a if p=2.

Now, it is easily checked by induction that the p-adic valuation of the natural number
N is n—1 for p# 2 and n— 2 for p = 2. This implies that

AT/ it p#2,
Ker(V) =T(4) = { A= z?ng it ﬁ . 2

as desired. O

T:A—aA,ai—um—a:{
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Remark 1.19. Lemma 1.18 provides a precise description of the open subset A (I, A)
of the spectral space L(Z!(T, A)) as the union of the basic quasi-compact open sets
Up, for p ranging over P(L, A). O

The next statement, which is an equivalent form of Lemma 1.18, is actually an
abstract version of the Kneser Criterion [13] from the field theoretic Cogalois Theory.
Note that the place of the primitive p-th roots of unity ¢, p odd prime, from the
Kneser Criterion [13] is taken in its abstract version by ep, while €} corresponds to

1—¢y.
Theorem 1.20. (The Abstract Kneser Criterion). The following assertions are equiv-
alent for G < Z\(T, A).

(1) G is a Kneser group of Z (T, A).

(2) &p & G whenever 4 # p € P(I',A) and ey ¢ G whenever 4 € P(L, 4).

Proof. (1) = (2): Assume that G € K(I', 4). If ¢, € G for some 4 # p € P(T, A),
then B, = (g,) < G, hence B, € K(I', A), which contradicts Lemma 1.18. Similarly,
if 4 € P(T,A) and ) € G then By = (¢)) < G, hence By € K(I', A), which again
contradicts Lemma 1.18.

(2) = (1): Assume that G ¢ K(T',4), ie., G € N(I';A). Then G contains
a minimal member of NV (T, A), i.e., an element of the set N (T, A)min. To conclude,
apply now Lemma 1.18. O

Corollary 1.21. The following assertions are equivalent for G < Z(T', A).
(1) Ge KT(T,A).
(2) Gt Z et for all pe P(T, A).

Proof. By Corollary 1.10 (1), G € K*(T', A) <= G+ € K(I', A). On the other hand,
by Theorem 1.20, G+ € K(T, A) if and only if €, ¢ G-+ whenever 4 # p € P(T, A)
and ¢, ¢ G+ whenever 4 € P(T',A). Since ef = et = Bf if 4 € P(T, 4), and
ee GH «— G1 Cel, the result follows. O

Corollary 1.22. ZY(T, A) is a Kneser group of itself if and only if P(T',A) = @, i.e.
Alp] € AT for all p € P. O
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