

INSTITUTUL DE MATEMATICĂ AL ACADEMIEI ROMÂNE

PREPRINT SERIES OF THE INSTITUTE OF MATHEMATICS OF THE ROMANIAN ACADEMY

ISSN 0250 3638

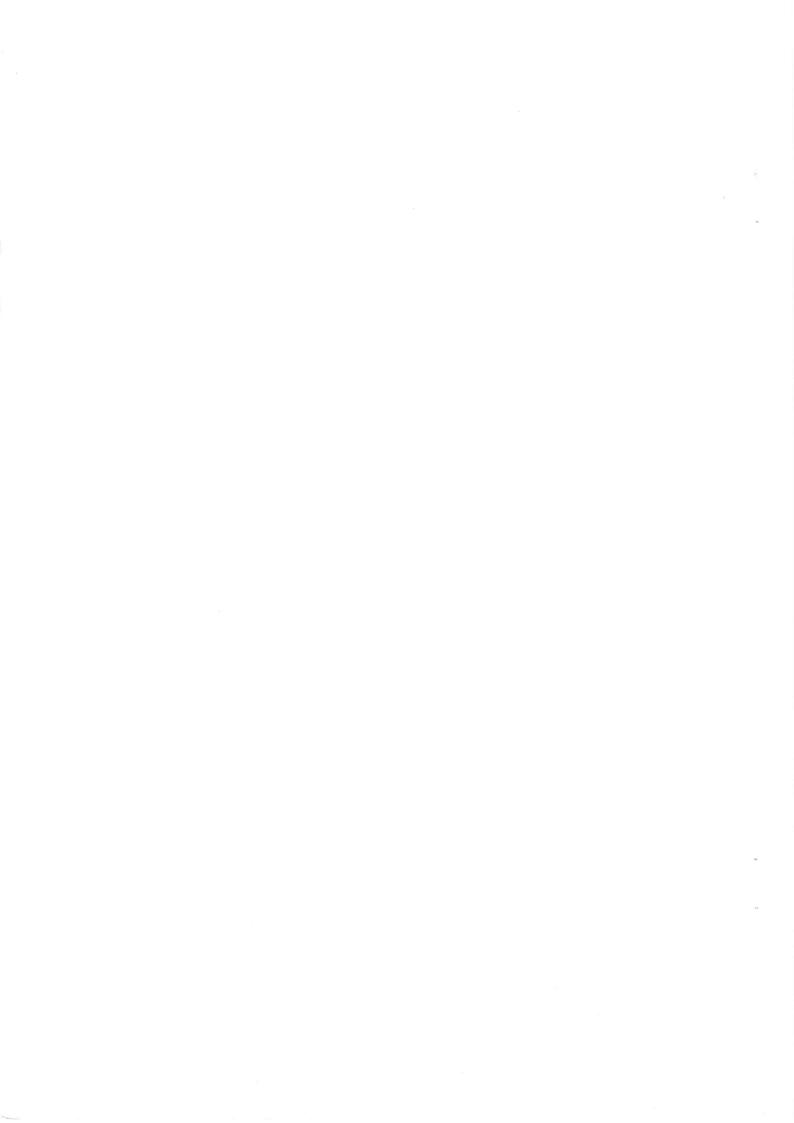
TOWARD AN ABSTRACT COGALOIS THEORY (II): COGALOIS GROUPS OF COCYCLES

by

TOMA ALBU AND SERBAN A. BASARAB

Preprint nr. 9/2004

BUCUREȘTI



TOWARD AN ABSTRACT COGALOIS THEORY (II): COGALOIS GROUPS OF COCYCLES

by

TOMA ALBU* AND SERBAN A. BASARAB*

February, 2004

E-mail address: Serban.Basarab@imar.ro

Koç University, Department of Mathematics Rumeli Feneri Yolu, 34450 Sariyer–Istanbul, Turkey and Institute of Mathematics "Simion Stoilow" of the Romanian Academy, P.O. Box 1–764, RO – 70700 Bucharest 1, Romania.

E-mail address: talbu@ku.edu.tr, Toma.Albu@imar.ro

Institute of Mathematics "Simion Stoilow" of the Romanian Academy, P.O. Box 1–764, RO – 70700 Bucharest 1, Romania.

~ 2

TOWARD AN ABSTRACT COGALOIS THEORY (II): COGALOIS GROUPS OF COCYCLES

TOMA ALBU

Koç University, Department of Mathematics Rumeli Feneri Yolu, 34450 Sariyer-Istanbul, TURKEY

and

Institute of Mathematics "Simion Stoilow" of the Romanian Academy P.O. Box 1–764

RO - 70700 Bucharest 1, ROMANIA e-mail: talbu@ku.edu.tr, Toma.Albu@imar.ro

ŞERBAN A. BASARAB * Institute of Mathematics "Simion Stoilow" of the Romanian Academy P.O. Box 1-764 RO - 70700 Bucharest 1, ROMANIA *e-mail*: Serban.Basarab@imar.ro

Abstract

This is the second part of a series of papers which aim to develop an abstract group theoretic framework for the Cogalois Theory of field extensions. 2000 Mathematics Subject Classification: 20E18, 12G05, 12F10, 12F99, 06A15, 06E15.

Key words and phrases: Profinite group, continuous 1-cocycle, Abstract Galois Theory, Abstract Kummer Theory, Abstract Cogalois Theory, Kneser group of cocycles, Cogalois group of cocycles, Stone space, spectral space, coherent map.

2 Cogalois groups of cocycles

In this section we define the concept of abstract Cogalois group and establish various equivalent characterizations for such groups, including a *Quasi-Purity Criterion*, an abstract version of the structure theorem for Kneser groups from the field theoretic

^{*}The second author gratefully acknowledges partial support from the Grant 47/2002 awarded by the Romanian Academy and the Programme CERES 152/2001.

Cogalois theory, and an analogue of Theorem 1.20 (the abstract Kneser criterion) for Cogalois groups.

For a given subgroup G of $Z^1(\Gamma, A)$, the lattice $\mathbb{L}(G)$ of all subgroups of G and the lattice $\overline{\mathbb{L}}(\Gamma|G^{\perp})$ of all closed subgroups of Γ lying over G^{\perp} are related through the canonical order-reversing maps $H \mapsto H^{\perp}$ and $\Delta \mapsto G \cap \Delta^{\perp} = G \cap \text{Ker}(\text{res}_{\Delta}^{\Gamma})$. Clearly, these two maps establish a Galois connection, which is induced by the one considered in Proposition 0.1 (1). Notice also that $\mathbb{L}(G)$ (resp. $\overline{\mathbb{L}}(\Gamma|G^{\perp})$) is a closed subspace of the spectral (Stone) space $\mathbb{L}(Z^1(\Gamma, A))$ (resp. $\overline{\mathbb{L}}(\Gamma)$) and the two maps above are continuous by Proposition 0.3.

Definition 2.1. A subgroup G of $Z^1(\Gamma, A)$ is said to be a Cogalois group of $Z^1(\Gamma, A)$ if it is a Kneser group of $Z^1(\Gamma, A)$ and the maps $(-)^{\perp} : \mathbb{L}(G) \longrightarrow \overline{\mathbb{L}}(\Gamma | G^{\perp})$ and $G \cap (-)^{\perp} : \overline{\mathbb{L}}(\Gamma | G^{\perp}) \longrightarrow \mathbb{L}(G)$ are lattice anti-isomorphisms, inverse to one another. \Box

Some characterizations of Cogalois groups of $Z^1(\Gamma, A)$ are given in the next result.

Proposition 2.2. The following statements are equivalent for a Kneser group G of $Z^1(\Gamma, A)$.

- (1) $\Delta = (G \cap \Delta^{\perp})^{\perp}$ for every $\Delta \in \overline{\mathbb{L}}(\Gamma | G^{\perp})$.
- (2) $\operatorname{res}_{\Delta}^{\Gamma}(G) \in \mathcal{K}(\Delta, A)$ for every $\Delta \in \overline{\mathbb{L}}(\Gamma | G^{\perp})$.
- (3) The map $\mathbb{L}(G) \longrightarrow \overline{\mathbb{L}}(\Gamma | G^{\perp}), H \mapsto H^{\perp}$, is onto.
- (4) The map $\overline{\mathbb{L}}(\Gamma|G^{\perp}) \longrightarrow \mathbb{L}(G), \ \Delta \mapsto G \cap \Delta^{\perp}$, is injective.
- (5) The canonical maps $\mathbb{L}(G) \longrightarrow \overline{\mathbb{L}}(\Gamma | G^{\perp})$ and $\overline{\mathbb{L}}(\Gamma | G^{\perp}) \longrightarrow \mathbb{L}(G)$ are homeomorphisms of spectral (Stone) spaces inverse to one another.
- (6) G is a Cogalois group of $Z^1(\Gamma, A)$.

Proof. (1) \iff (2) by Corollary 1.12.

(1) \implies (3): For any $\Delta \in \overline{\mathbb{L}}(\Gamma | G^{\perp})$, we have $\Delta = H^{\perp}$, where $H = G \cap \Delta^{\perp} \in \mathbb{L}(G)$.

(3) \Longrightarrow (4): Let $\Delta_1, \Delta_2 \in \overline{\mathbb{L}}(\Gamma | G^{\perp})$ be such that $G \cap \Delta_1^{\perp} = G \cap \Delta_2^{\perp}$. By assumption, $\Delta_1 = H_1^{\perp}, \Delta_2 = H_2^{\perp}$ for some $H_1, H_2 \in \mathbb{L}(G)$. By Lemma 1.5, $H_1 = G \cap H_1^{\perp \perp} = G \cap \Delta_1^{\perp} = G \cap \Delta_2^{\perp} = G \cap H_2^{\perp \perp} = H_2$, and hence, $\Delta_1 = \Delta_2$, as desired.

(4) \Longrightarrow (5): For any $H \in \mathbb{L}(G)$, we have $G \cap H^{\perp \perp} = H$ by Lemma 1.5, so the composition of the canonical maps $\mathbb{L}(G) \longrightarrow \overline{\mathbb{L}}(\Gamma | G^{\perp}) \longrightarrow \mathbb{L}(G)$ is the identity. It follows that the map $\Delta \mapsto G \cap \Delta^{\perp}$ is onto, and hence bijective, with inverse $H \mapsto H^{\perp}$.

(5) \implies (6): As order-reversing maps inverse to one another, the canonical maps above are lattice anti-isomorphisms inverse to one another, as desired.

(6) \implies (1): Let $\Delta \in \overline{\mathbb{L}}(\Gamma | G^{\perp})$. Then, by assumption, there exists a unique $H \in \mathbb{L}(G)$ such that $\Delta = H^{\perp}$ and $H = G \cap \Delta^{\perp}$; hence $\Delta = (G \cap \Delta^{\perp})^{\perp}$, as required. \Box

Corollary 2.3. A subgroup G of $Z^1(\Gamma, A)$ is Cogalois if and only if $\operatorname{res}_{\Delta}^{\Gamma}(G)$ is a Kneser group of $Z^1(\Delta, A)$ for every $\Delta \in \overline{\mathbb{L}}(\Gamma | G^{\perp})$.

In particular, $Z^1(\Gamma, A)$ is a Cogalois group of itself if and only if $Z^1(\Gamma, A)$ is a Kneser group of itself.

Proof. As $\Gamma \in \overline{\mathbb{L}}(\Gamma | G^{\perp})$ for every $G \leq Z^1(\Gamma, A)$, and $\mathcal{P}(\Delta, A) \subseteq \mathcal{P}(\Gamma, A)$ for all $\Delta \in \overline{\mathbb{L}}(\Gamma)$, the result follows immediately from Proposition 2.2 and Corollary 1.22. \Box

Definition 2.4. A subgroup D of an Abelian group C is said to be quasi *n*-pure, where n is a given positive integer, if $C[n] \subseteq D$, or equivalently C[n] = D[n]. For $M \subseteq \mathbb{N}$, C is quasi M-pure if C is quasi *n*-pure for all $n \in M$.

Recall that a well established concept in Group Theory is that of *n*-purity: a subgroup D of an Abelian group C is said to be *n*-pure if $D \cap nC = nD$. There is no connection between the concepts of *n*-purity and quasi *n*-purity; e.g., the subgroup $2\mathbb{Z}/4\mathbb{Z}$ of $\mathbb{Z}/4\mathbb{Z}$ is quasi 2-pure but not 2-pure, and any of the three subgroups of order 2 of the dihedral group \mathbb{D}_4 is 2-pure but not quasi 2-pure. Notice that the abstract notion of quasi *n*-purity goes back to the concept of *n*-purity from the field theoretic Cogalois Theory (see Albu [1], Albu and Nicolae [6]).

For any subgroup G of $Z^1(\Gamma, A)$ we denote $\mathcal{P}_G := \mathcal{O}_G \cap \mathcal{P}$, i.e., \mathcal{P}_G is the set of those $p \in \mathcal{P}$ for which $\exp(G[p]) = p$.

The quasi \mathcal{P}_G -purity plays a basic role in the characterization of Cogalois groups of $Z^1(\Gamma, A)$. The next result is the abstract version of the *General Purity Criterion* [1], Theorem 2.3, from the field theoretic infinite Cogalois Theory.

Theorem 2.5. (The Quasi-Purity Criterion). The following statements are equivalent for a subgroup G of $Z^1(\Gamma, A)$.

(1) G is Cogalois.

(2) The subgroup A^{Γ} of $A^{G^{\perp}}$ is quasi \mathcal{P}_{G} -pure.

(3) $G^{\perp} \not\subseteq \varepsilon_p^{\perp}$ for all $p \in \mathcal{P}_G \cap \mathcal{P}(\Gamma, A)$.

Proof. (2) \Longrightarrow (3): Let $p \in \mathcal{P}_G \cap \mathcal{P}(\Gamma, A)$. Then $\widehat{1/p} \in A \setminus A^{\Gamma}$, and hence $\widehat{1/p} \notin A^{G^{\perp}}$, as $A^{G^{\perp}}[p] = A^{\Gamma}[p]$ by hypothesis. Consequently, there exists $\sigma \in G^{\perp}$ such that $\sigma \widehat{1/p} \neq \widehat{1/p}$, i.e., $\sigma \notin \varepsilon_p^{\perp}$, which shows that $G^{\perp} \not\subseteq \varepsilon_p^{\perp}$, as desired.

(3) \Longrightarrow (2): Let $p \in \mathcal{P}_G$. Then clearly $\widehat{1/p} \in A$. Assuming $\widehat{1/p} \in A^{\Gamma}$, we obtain that $A^{\Gamma}[p] = A^{G^{\perp}}[p] = (1/p)\mathbb{Z}/\mathbb{Z}$, as desired. Now assume that $\widehat{1/p} \notin A^{\Gamma}$. Since $G^{\perp} \not\subseteq \varepsilon_p^{\perp}$ by hypothesis, it follows that $A^{\Gamma}[p] = A^{G^{\perp}}[p] = \{0\}$ for $p \neq 4$, and $A^{\Gamma}[p] = A^{G^{\perp}}[p] = (1/2)\mathbb{Z}/\mathbb{Z}$ for p = 4.

(1) \Longrightarrow (3): Suppose that G is Cogalois, and let $p \in \mathcal{P}_G \cap \mathcal{P}(\Gamma, A)$. Then $1/p \in A \setminus A^{\Gamma}$, and there exists a cocycle $h \in G$ of order p. Let $H \cong \mathbb{Z}/p\mathbb{Z}$ denote the subgroup of G generated by h. Since G is a Kneser group of $Z^1(\Gamma, A)$, $(\Gamma : H^{\perp}) = |H| = p$. Assuming that $G^{\perp} \subseteq \varepsilon_p^{\perp}$, we have to derive a contradiction. We distinguish the following two cases:

Case (i): $p \in \mathbb{P} \setminus \{2\}$. Since $G \in \mathcal{K}(\Gamma, A)$, it follows by Theorem 1.20 that $\varepsilon_p \notin G$. Setting $\alpha := h - \varepsilon_p \in Z^1(\Gamma, (1/p)\mathbb{Z}/\mathbb{Z}) \setminus G$, we deduce that $\operatorname{ord}(\alpha) = p$ and $\langle \varepsilon_p \rangle \cap \langle \alpha \rangle = \{0\}$. Consequently, again by Theorem 1.20, $\langle \alpha \rangle \in \mathcal{K}(\Gamma, A)$, and hence $(\Gamma : \alpha^{\perp}) = p$. Since $G^{\perp} \leq h^{\perp}$ and $G^{\perp} \leq \varepsilon_p^{\perp}$ by assumption, it follows that $G^{\perp} \leq \alpha^{\perp}$. As G is Cogalois, we deduce that $\alpha^{\perp} = (G \cap \alpha^{\perp \perp})^{\perp}$ and $|G \cap \alpha^{\perp \perp}| = (\Gamma : \alpha^{\perp}) = p$, therefore $G \cap \alpha^{\perp \perp} \cong \mathbb{Z}/p\mathbb{Z}$. Now consider the subgroup $H' := H + (G \cap \alpha^{\perp \perp})$ of G. As p is a prime number, it follows that either $H' = H \cong \mathbb{Z}/p\mathbb{Z}$ or $H' = H \oplus (G \cap \alpha^{\perp \perp}) \cong (\mathbb{Z}/p\mathbb{Z}) \oplus (\mathbb{Z}/p\mathbb{Z})$. Since $H' \leq G \in \mathcal{K}(\Gamma, A)$, we deduce that $(\Gamma : H'^{\perp}) \in \{p, p^2\}$. This implies that $(\Gamma : \varepsilon_p^{\perp}) | p^2$ since $H'^{\perp} \leq h^{\perp} \cap \alpha^{\perp} \leq \varepsilon_p^{\perp}$. On the other hand, ε_p^{\perp} is the kernel of the (nontrivial) action of Γ on $A[p] = (1/p)\mathbb{Z}/\mathbb{Z}$, and hence $2 \leq (\Gamma : \varepsilon_p^{\perp}) | (p-1)$, which is a contradiction.

Case (ii): p = 4. Let $\varepsilon'_4 \in Z^1(\Gamma, A[4]) = Z^1(\Gamma, (1/4)\mathbb{Z}/\mathbb{Z})$ be the 1-cocycle defined in Section 1, and remember that $\varepsilon_4 = 2\varepsilon'_4$. As $1/4 \notin A^{\Gamma}$, the action of Γ on $A[4] = (1/4)\mathbb{Z}/\mathbb{Z}$, whose kernel is $\varepsilon_4^{\perp} = \varepsilon'_4^{\perp}$, is nontrivial, and hence $\Gamma/\varepsilon_4^{\perp} \cong (\mathbb{Z}/4\mathbb{Z})^* \cong \mathbb{Z}/2\mathbb{Z}$, i.e., $(\Gamma : \varepsilon_4^{\perp}) = 2$. Since G is Cogalois and $G^{\perp} \leq \varepsilon_4^{\perp}$ by assumption, it follows that $\varepsilon_4^{\perp} = (G \cap \varepsilon_4^{\perp\perp})^{\perp}$ and $|G \cap \varepsilon_4^{\perp\perp}| = (\Gamma : \varepsilon_4^{\perp}) = 2$, i.e., $G \cap \varepsilon_4^{\perp\perp} \cong \mathbb{Z}/2\mathbb{Z}$. One easily checks that ε_4 is the unique element of order 2 of $\varepsilon_4^{\perp\perp}$, and hence $G \cap \varepsilon_4^{\perp\perp} = \langle \varepsilon_4 \rangle$, in particular, $\varepsilon_4 \in G$. On the other hand, since $G \in \mathcal{K}(\Gamma, A)$, it follows by Theorem 1.20 that $\varepsilon'_4 \notin G$, and hence $h \notin \{\varepsilon'_4, -\varepsilon'_4\}$. Set $\beta := h - \varepsilon'_4$ and $H_1 := \langle h, \varepsilon_4 \rangle \leq G$. Then $0 \neq \beta \notin \langle \varepsilon'_4 \rangle$. Two subcases arise:

Subcase (1): $\varepsilon_4 \in H$. Then $2h = \varepsilon_4$ and $2\beta = 2h - 2\varepsilon'_4 = 2h - \varepsilon_4 = 0$, i.e., ord $(\beta) = 2$. By Lemma 1.1, we have $(\Gamma : \beta^{\perp}) \leq |\langle \beta \rangle| = 2$. Observe that $\beta^{\perp} \neq \Gamma$, for otherwise, we would have $0 \neq \beta \in \beta^{\perp \perp} = \Gamma^{\perp} = \{0\}$, which is a contradiction. Thus, $(\Gamma : \beta^{\perp}) = 2$. On the other hand, $G^{\perp} \leq H^{\perp} = H^{\perp} \cap \varepsilon_4^{\perp} = h^{\perp} \cap \varepsilon_4^{\prime \perp} \leq \beta^{\perp}$, and hence $G \cap \beta^{\perp \perp} \leq G \cap H^{\perp \perp} = H, \beta^{\perp} = (G \cap \beta^{\perp \perp})^{\perp}$, and $|G \cap \beta^{\perp \perp}| = (\Gamma : \beta^{\perp}) = 2$, as G is Cogalois. Since $\langle \varepsilon_4 \rangle$ is the unique subgroup of order 2 of $H \cong \mathbb{Z}/4\mathbb{Z}$, it follows that $G \cap \beta^{\perp \perp} = \langle \varepsilon_4 \rangle$. Therefore $\beta \in (\beta^{\perp})^{\perp} = ((G \cap \beta^{\perp \perp})^{\perp})^{\perp} = \varepsilon_4^{\perp \perp}$, so $\beta = \varepsilon_4$ since $\operatorname{ord}(\beta) = 2$ and ε_4 is the unique element of order 2 contained in $\varepsilon_4^{\perp \perp}$. In particular, $\beta \in G$, and hence $\varepsilon'_4 = h - \beta \in G$, which is a contradiction.

Subcase (2): $\varepsilon_4 \notin H$. Then $H_1 = H \oplus \langle \varepsilon_4 \rangle \cong \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$. Since $2\beta = 2h - \varepsilon_4 \neq 0$ and $4\beta = 0$, it follows that $\operatorname{ord}(\beta) = 4$. But $\varepsilon'_4 \notin \langle \beta \rangle$, so $\langle \beta \rangle \in \mathcal{K}(\Gamma, A)$ by Theorem 1.20, and then, $(\Gamma : \beta^{\perp}) = 4$. Since $H_1 \leqslant G, G^{\perp} \leqslant H_1^{\perp} = h^{\perp} \cap \varepsilon_4^{\perp} = h^{\perp} \cap \varepsilon_4^{\prime \perp} \leqslant \beta^{\perp}$, and G is Cogalois, it follows that $H_2 := G \cap \beta^{\perp \perp} \leqslant G \cap H_1^{\perp \perp} = H_1, H_2^{\perp} = \beta^{\perp}$, and $|H_2| = (\Gamma : \beta^{\perp}) = 4$. Thus, H_2 is a subgroup of order 4 of H_1 . Setting $H_3 = H_2 + \langle \varepsilon_4 \rangle$, we deduce that $H_3^{\perp} = H_2^{\perp} \cap \varepsilon_4^{\perp} = \beta^{\perp} \cap \varepsilon_4^{\prime \perp} \leqslant h^{\perp} \cap \varepsilon_4^{\perp} = H_1^{\perp} \leqslant H_2^{\perp} \cap \varepsilon_4^{\perp}$, so $H_3^{\perp} = H_1^{\perp}$, and hence $H_3 = H_1$ by Lemma 1.5, as $G \in \mathcal{K}(\Gamma, A)$ and $H_1 + H_3 \leqslant G$. Since $H_1 = H \oplus \langle \varepsilon_4 \rangle \cong \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$ and $|H_2| = 4$, we deduce that $H_2 \cong \mathbb{Z}/4\mathbb{Z}$, and hence either $H_2 = H$ or $H_2 = \langle h - \varepsilon_4 \rangle$. Assuming that $H_2 = H$, it follows that $(h - \varepsilon_4')^{\perp} = \beta^{\perp} = H_2^{\perp} = H^{\perp} = h^{\perp}$. Therefore $H^{\perp} \leqslant \varepsilon_4^{\perp} = \varepsilon_4^{\perp}$, and so $\varepsilon_4 \in G \cap \varepsilon_4^{\perp \perp} \leqslant G \cap H^{\perp \perp} = H$ and proceeding as above, we finally obtain that $(h + \varepsilon_4')^{\perp} = (h - \varepsilon_4)^{\perp} = (h - \varepsilon_4)^{\perp} = (h - \varepsilon_4)^{\perp}$, and hence $\Gamma \setminus \varepsilon_4^{\perp} \subseteq h^{\perp}$, as one easily checks. On the other hand, since $(\Gamma : \varepsilon_4^{\perp}) = 2$, it

follows that $\Gamma = \varepsilon_4^{\perp} \cup \sigma \varepsilon_4^{\perp}$ for some (for all) $\sigma \in \Gamma \setminus \varepsilon_4^{\perp}$. Consequently, for every $\tau \in \varepsilon_4^{\perp}$ and $\sigma \in \Gamma \setminus \varepsilon_4^{\perp}$ we have $0 = h(\sigma\tau) = h(\sigma) + \sigma h(\tau) = \sigma h(\tau)$, and hence $\varepsilon_4^{\perp} \leq h^{\perp}$. Thus $h^{\perp} = \Gamma$, i.e., h = 0, which is a contradiction.

(3) \Longrightarrow (1): Using Corollary 2.3, we have to show that $\widetilde{G} := \operatorname{res}_{\Delta}^{\Gamma}(G) \in \mathcal{K}(\Delta, A)$ for every $\Delta \in \overline{\mathbb{L}}(\Gamma|G^{\perp})$. Assuming the contrary, it follows by Theorem 1.20 that there exist $\Delta \in \overline{\mathbb{L}}(\Gamma|G^{\perp})$ and $p \in \mathcal{P}(\Delta, A) \subseteq \mathcal{P}(\Gamma, A)$, i.e., $\widehat{1/p} \in A \setminus A^{\Delta} \subseteq A \setminus A^{\Gamma}$, such that $\varepsilon_p|_{\Delta} \in \widetilde{G}$ if $p \neq 4$ and $\varepsilon'_4|_{\Delta} \in \widetilde{G}$ if p = 4. Consequently, there exists $h \in G$ such that $h|_{\Delta} = \varepsilon_p|_{\Delta}$ if $p \neq 4$, and $h|_{\Delta} = \varepsilon'_4|_{\Delta}$ if p = 4. Let $n = \operatorname{ord}(h)$. Since $\operatorname{ord}(\varepsilon_p|_{\Delta}) = p$ for $p \neq 4$ and $\operatorname{ord}(\varepsilon'_4|_{\Delta}) = 4$ for p = 4, as $\widehat{1/p} \in A \setminus A^{\Delta}$, it follows that $p \mid n$, and hence $p \in \mathcal{P}_G \cap \mathcal{P}(\Gamma, A)$. On the other hand, $G^{\perp} \leq h^{\perp} \cap \Delta \leq \varepsilon_p^{\perp}$, contrary to our hypothesis. \Box

We denote by $\mathcal{C}(\Gamma, A)$ the poset of all Cogalois groups of $Z^1(\Gamma, A)$ and by $\mathcal{C}^+(\Gamma, A)$ its subset consisting of all Cogalois groups G which additionally are closed elements of the canonical Galois connection described in Proposition 0.1 (1), i.e., $G = G^{\perp \perp}$. Remember that $\mathcal{K}(\Gamma, A)$ denotes the poset of all Kneser groups of $Z^1(\Gamma, A)$ and $\mathcal{K}^+(\Gamma, A) = \{ G \in \mathcal{K}(\Gamma, A) | G = G^{\perp \perp} \}.$

Corollary 2.6. $C^+(\Gamma, A) = \mathcal{K}^+(\Gamma, A)$.

Proof. Apply Theorem 2.5 and Corollary 1.21

Set $\mathcal{M}(\Gamma, A) := \mathcal{K}(\Gamma, A) \setminus \mathcal{C}(\Gamma, A)$. Obviously $\mathcal{C}(\Gamma, A)$, $\mathcal{C}^+(\Gamma, A)$, and $\mathcal{M}(\Gamma, A)$ are stable under the action of Γ .

Corollary 2.7. $\mathcal{C}(\Gamma, A)$ is a closed subset of the spectral space $\mathcal{K}(\Gamma, A)$. In particular, $\mathcal{C}(\Gamma, A)$ has a natural structure of spectral (Stone) Γ -space, and $\mathcal{C}^+(\Gamma, A)$ is a closed Γ -subspace.

Proof. By Theorem 2.5, $\mathcal{M}(\Gamma, A) = \bigcup_{p \in \mathcal{P}_G \cap \mathcal{P}(\Gamma, A)} \{ G \in \mathcal{K}(\Gamma, A) | G^{\perp} \leq \varepsilon_p^{\perp} \}$ is the inverse image trough the canonical continuous map $\mathcal{K}(\Gamma, A) \longrightarrow \overline{\mathbb{L}}(\Gamma), G \mapsto G^{\perp},$ of the union $\bigcup_{p \in \mathcal{P}_G \cap \mathcal{P}(\Gamma, A)} \mathcal{U}_{\varepsilon_p^{\perp}}$ of basic open sets of the spectral space $\overline{\mathbb{L}}(\Gamma)$, and hence $\mathcal{M}(\Gamma, A)$ is an open subset of the spectral space $\mathcal{K}(\Gamma, A)$. Consequently, $\mathcal{C}(\Gamma, A)$ is closed, as desired.

Corollary 2.8. The following assertions hold.

- (1) $\mathcal{C}(\Gamma, A)$ is a lower subset of the poset $\mathcal{K}(\Gamma, A)$.
- (2) The property of a subgroup G of $Z^1(\Gamma, A)$ being Cogalois is of finitary character, i.e., $G \in \mathcal{C}(\Gamma, A)$ if and only if $F \in \mathcal{C}(\Gamma, A)$ for all finite subgroups F of G.
- (3) For any $G \in \mathcal{C}(\Gamma, A)$ there exists a maximal Cogalois group lying over G.
- (4) The set $\mathcal{C}(\Gamma, A)_{\max}$ of all maximal Cogalois subgroups of $Z^1(\Gamma, A)$ has a natural structure of Hausdorff Γ -space.

Proof. (1) For any $G \in \mathcal{C}(\Gamma, A)$, the closure $\overline{\{G\}} = \mathbb{L}(G)$ in the spectral space $\mathcal{K}(\Gamma, A)$ is contained in $\mathcal{C}(\Gamma, A)$ since the latter set is closed by Corollary 2.7. Thus $H \in \mathcal{C}(\Gamma, A)$ whenever $H \leq G$, as desired.

(2) According to the definition of the spectral topology on $\mathbb{L}(Z^1(\Gamma, A))$, for any $G \in \mathbb{L}(Z^1(\Gamma, A))$, $\mathbb{L}(G)$ is the closure of the subset of $\mathbb{L}(Z^1(\Gamma, A))$ consisting of all finite subgroups of G, so (2) follows at once from Corollary 2.7.

(3) and (4) follow in a similar way as the assertions (3) and (4) of Corollary 1.8. \Box

Corollary 2.9. Let p be an odd prime number, and let G be a p-subgroup of $Z^1(\Gamma, A)$. Then G is Cogalois if and only if G is Kneser.

Proof. By Corollaries 1.7 and 2.8 (2), we may assume that the *p*-group *G* is finite. Assume that *G* is Kneser and prove that *G* is Cogalois with the aid of Theorem 2.5. Of course, we may assume that $p \in \mathcal{P}(\Gamma, A)$, for otherwise we have nothing to prove. As we have already seen at the beginning of the proof of Lemma 1.18, the index $(\Gamma : \varepsilon_p^{\perp})$ is a divisor $\neq 1$ of p-1, in particular it is prime to *p*. Since the *p*-group *G* is Kneser, it follows that $(\Gamma : G^{\perp}) = |G|$ is a power of *p*, and hence $G^{\perp} \notin \varepsilon_p^{\perp}$, as desired. \Box

Remarks 2.10. (1) Corollary 2.9 may fail for p = 2. Indeed the simplest example of a Kneser non-Cogalois 2-group is the one corresponding to the action of type D_4 or D_8 (see Definition 2.16 and Lemma 2.17).

(2) In contrast with the property of Kneser groups given in Corollary 1.16, the condition that all *p*-primary components of G are Cogalois, is in general not sufficient to ensure G being Cogalois. To see that, observe that the group corresponding to the action of type D_{pr} is Kneser but not Cogalois, and has all its primary components Cogalois (see again Definition 2.16 and Lemma 2.17).

The next theorem essentially shows that a subgroup $G \leq Z^1(\Gamma, A)$ is Cogalois if and only if G has a prescribed structure, and is the abstract version of the structure theorem [1, Theorem 4.3] for Kneser groups from the field theoretic infinite Cogalois Theory.

For any subgroup G of $Z^1(\Gamma, A)$ and for any prime number p, denote

$$\widetilde{G}_p = \begin{cases} G^{\perp\perp}(p) & \text{if either } p \in \mathcal{P}_G, \text{ or } p = 2 \text{ and } 4 \in \mathcal{P}_G, \\ G^{\perp\perp}[2] & \text{if } p = 2, \ 4 \notin \mathcal{P}_G, \text{ and } G[2] \neq 0, \\ 0 & \text{otherwise}, \end{cases}$$

and

$$\widetilde{G} = \bigoplus_{p \in \mathbb{P}} \widetilde{G}_p.$$

Now, consider the subgroup

$$\mu_G = \bigcup_{n \in \mathcal{O}_G} (1/n)\mathbb{Z}/\mathbb{Z} = \sum_{h \in G} h(\Gamma) = \bigoplus_{p \in \mathbb{P}} \left(\bigcup_{h \in G(p)} h(\Gamma) \right)$$

of A, and let $Z^1(\Gamma | G^{\perp}, \mu_G) = G^{\perp \perp} \cap Z^1(\Gamma, \mu_G)$ denote the subgroup of $Z^1(\Gamma, A)$ consisting of those cocycles which are trivial on G^{\perp} and take values in μ_G . Clearly,

$$G \leqslant Z^1(\Gamma \,|\, G^\perp, \mu_G) \leqslant \widetilde{G} \leqslant G^{\perp \perp},$$

which implies that

$$G^{\perp} = Z^1(\Gamma \,|\, G^{\perp}, \mu_G)^{\perp} = \widetilde{G}^{\perp}.$$

Notice also that

$$\mathcal{P}_G = \mathcal{P}_{Z^1(\Gamma \mid G^\perp, \mu_G)} = \mathcal{P}_{\widetilde{G}} \,.$$

Theorem 2.11. With the notation above, the following assertions are equivalent for a Kneser group G of $Z^1(\Gamma, A)$.

- (1) G is Cogalois.
- (2) $G = Z^1(\Gamma | G^{\perp}, \mu_G).$
- (3) $G = \widetilde{G}$.

Proof. (1) \implies (3): If G is Cogalois, then \widetilde{G} is also Cogalois by Theorem 2.5 since $\mathcal{P}_G = \mathcal{P}_{\widetilde{G}}$ and $G^{\perp} = \widetilde{G}^{\perp}$. In particular, $\widetilde{G} \in \mathcal{K}(\Gamma, A)$, and hence $G = \widetilde{G} \cap G^{\perp \perp} = \widetilde{G}$, by Lemma 1.5, as desired.

 $(3) \Longrightarrow (2)$ is trivial.

(2) \implies (1): Assume that $G = Z^1(\Gamma | G^{\perp}, \mu_G)$ and G is not Cogalois. Then, by Theorem 2.5, there exists $p \in \mathcal{P}_G \cap \mathcal{P}(\Gamma, A)$ such that $G^{\perp} \subseteq \varepsilon_p^{\perp}$. Therefore, $\varepsilon_p \in Z^1(\Gamma | G^{\perp}, \mu_G) = G$ for $p \neq 4$, and $\varepsilon'_4 \in Z^1(\Gamma | G^{\perp}, \mu_G) = G$ for p = 4. By Theorem 1.20, we deduce that G is not a Kneser group, contrary to our hypothesis. \Box

Recall that by $\mathcal{C}(\Gamma, A)$ we have denoted the Γ -poset of all Cogalois groups of $Z^1(\Gamma, A)$; this set also has a natural structure of spectral (Stone) Γ -space by Corollary 2.7.

Corollary 2.12. For any $G, H \in \mathcal{C}(\Gamma, A)$ we have $H \leq G$ if and only if $G^{\perp} \leq H^{\perp}$. In particular, the map $\mathcal{C}(\Gamma, A) \longrightarrow \overline{\mathbb{L}}(\Gamma), G \mapsto G^{\perp}$, is coherent and injective.

Proof. Let $G, H \in \mathcal{C}(\Gamma, A)$ be such that $G^{\perp} \leq H^{\perp}$, and prove that $H \leq G$. By the definition of the groups \widetilde{G} and \widetilde{H} , and using Theorem 2.11, it suffices to show that $\mathcal{P}_H \subseteq \mathcal{P}_G$ and $H[2] \neq \{0\} \Longrightarrow G[2] \neq \{0\}$. Let $p \in \mathcal{P}_H \cup \{2\}$ and $h \in H$ be such that $\operatorname{ord}(h) = p$. Since $H \in \mathcal{C}(\Gamma, A)$, we have $(\Gamma : h^{\perp}) = p$, and moreover, there exists only one proper subgroup (of index 2) lying over h^{\perp} if p = 4. Since $G \in \mathcal{C}(\Gamma, A)$ and $G^{\perp} \leq H^{\perp} \leq h^{\perp}$, it follows that $G \cap h^{\perp \perp}$ is a cyclic subgroup of G of order p, and hence either $p \in \mathcal{P}_G$ or p = 2 and $G[2] \neq \{0\}$, as desired.

The injectivity of the canonical map $\mathcal{C}(\Gamma, A) \longrightarrow \overline{\mathbb{L}}(\Gamma)$ is now obvious, so it remains only to show that it is coherent. Let Δ be an open subgroup of Γ , and denote by $\mathcal{W} = \{ G \in \mathcal{C}(\Gamma, A) \mid G^{\perp} \leq \Delta \}$ the inverse image through the map considered above of the basic quasi-compact open set \mathcal{U}_{Δ} of the spectral space $\overline{\mathbb{L}}(\Gamma)$. We have to show that \mathcal{W} is also open quasi-compact. We may assume that $\mathcal{W} \neq \emptyset$, since otherwise we have nothing to prove. For any $G \in \mathcal{W} \subseteq \mathcal{C}(\Gamma, A)$, it follows that $(G \cap \Delta^{\perp})^{\perp} = \Delta$ and $G \cap \Delta^{\perp}$ is a finite subgroup of G of order $(\Gamma : \Delta)$, in particular, it belongs to \mathcal{W} . As the canonical map above is injective, it follows that $F := G \cap \Delta^{\perp}$ does not depend on the choice of $G \in \mathcal{W}$. Consequently, $W = \mathcal{U}_F \cap \mathcal{C}(\Gamma, A)$ is a basic quasi-compact open set of the spectral space $\mathcal{C}(\Gamma, A)$, as desired. \Box

Remarks 2.13. (1) An alternative proof of the first part of Corollary 2.12 can be done using the following fact: if G is Cogalois, then the order/index-preserving map $U \mapsto U^{\perp}$ maps bijectively the cyclic subgroups of G (which are the only finite subgroups U of the torsion Abelian group G for which the lattice $\mathbb{L}(U)$ is distributive) onto the open subgroups Δ of Γ lying over G^{\perp} for which the lattice $\mathbb{L}(\Gamma \mid \Delta)$ is distributive. In particular, \mathcal{O}_G consists of those positive integers n for which there exists an open subgroup Δ of Γ lying over G^{\perp} such that $(\Gamma : \Delta) = n$ and the lattice $\mathbb{L}(\Gamma \mid \Delta)$ is distributive.

(2) By Corollary 2.12, $C(\Gamma, A)$ is identified through the injective coherent map $G \mapsto G^{\perp}$ with a closed subspace of the spectral (Stone) space $\overline{\mathbb{L}}(\Gamma|Z^1(\Gamma, A)^{\perp})$, which is stable under the coherent action of Γ by conjugation.

Corollary 2.14. The following assertions are equivalent for $G \in C(\Gamma, A)$.

- (1) G is stable under the action of Γ , i.e., G is a Γ -submodule of $Z^1(\Gamma, A)$.
- (2) $G^{\perp} \lhd \Gamma$.
- (3) $\mu_G^{G^{\perp}} = \mu_G.$

Proof. (1) \Longrightarrow (2) holds for any $G \leq Z^1(\Gamma, A)$ since $(\sigma G)^{\perp} = \sigma G^{\perp} \sigma^{-1}$ for all $\sigma \in \Gamma$.

(2) \Longrightarrow (3): As $\mu_G = \sum_{g \in G} g(\Gamma)$, we have only to show that $\sigma g(\tau) = g(\tau)$ for all $g \in G, \sigma \in G^{\perp}, \tau \in \Gamma$. Since, by assumption, $G^{\perp} \triangleleft \Gamma$, we have $\tau^{-1}\sigma\tau \in G^{\perp}$, so $0 = g(\tau^{-1}\sigma\tau) = \tau^{-1}(\sigma g(\tau) - g(\tau))$, and hence $\sigma g(\tau) = g(\tau)$, as desired. Note that the implication (2) \Longrightarrow (3) holds for any $G \leq Z^1(\Gamma, A)$.

(3) \Longrightarrow (1): Let $g \in G, \tau \in \Gamma$, and prove that $\tau g \in G$. Since $G = Z^1(\Gamma | G^{\perp}, \mu_G)$ by Theorem 2.10, we have to show that $\tau g|_{G^{\perp}} = 0$ and $(\tau g)(\Gamma) \subseteq \mu_G$. From the hypothesis it follows that $(\tau g)(\sigma) = \tau g(\tau^{-1}\sigma\tau) = \sigma g(\tau) - g(\tau) = 0$ for any $\sigma \in G^{\perp}$, as desired. Note that the latter condition holds in general since any subgroup of A, in particular μ_G , is stable under the action of Γ .

Corollary 2.15. If $G \in \mathcal{C}(\Gamma, A)$ is a Γ -submodule of $Z^1(\Gamma, A)$, then

 $G \cong Z^1(\Gamma/G^{\perp}, \mu_G).$

Proof. Since G is Cogalois, we have $G = Z^1(\Gamma | G^{\perp}, \mu_G)$ by Theorem 2.11, and since G is a Γ -submodule of $Z^1(\Gamma, A)$, we have $G^{\perp} \triangleleft \Gamma$ by Corollary 2.14. To conclude, observe that $Z^1(\Gamma | G^{\perp}, \mu_G) \cong Z^1(\Gamma / G^{\perp}, \mu_G)$.

According to Lemma 1.18, the Kneser groups are precisely those subgroups of $Z^1(\Gamma, A)$ which do not contain some particular cyclic groups, namely the minimal subgroups B_p which are not Kneser, $p \in \mathcal{P}(\Gamma, A)$. Using Corollary 2.8 we are going to present a similar characterization for Cogalois groups. To do that we will first describe effectively the minimal subgroups of $Z^1(\Gamma, A)$ which are Kneser but not Cogalois. A special class of actions which are introduced below plays a major role in this description.

Definition 2.16. Let Γ be a finite group, and let A be a finite subgroup of \mathbb{Q}/\mathbb{Z} on which the group Γ acts. One says that the action of Γ on A, or the Γ -module A, is

(1) of type
$$D_4$$
 if $\Gamma = \mathbb{D}_4 = \langle \sigma, \tau | \sigma^2 = \tau^2 = (\sigma \tau)^2 = 1 \rangle \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$,
 $A = (1/4)\mathbb{Z}/\mathbb{Z}$, and $\sigma 1/4 = -1/4$, $\tau 1/4 = 1/4$.

(2) of type
$$D_8$$
 if $\Gamma = \mathbb{D}_8 = \langle \sigma, \tau | \sigma^2 = \tau^4 = (\sigma\tau)^2 = 1 \rangle \cong \mathbb{Z}/4\mathbb{Z} \rtimes \mathbb{Z}/2\mathbb{Z}$,
 $A = (1/4)\mathbb{Z}/\mathbb{Z}$, and $\sigma \widehat{1/4} = -\widehat{1/4}, \tau \widehat{1/4} = \widehat{1/4}$.

(3) of type
$$D_{pr}$$
 if $\Gamma = \langle \sigma, \tau | \sigma^r = \tau^p = \sigma \tau \sigma^{-1} \tau^{-u} = 1 \rangle \cong \mathbb{Z}/p\mathbb{Z} \rtimes_u \mathbb{Z}/r\mathbb{Z}$,
 $A = (1/pr)\mathbb{Z}/\mathbb{Z}$, and $\sigma \widehat{1/pr} = u\widehat{1/pr}, \tau \widehat{1/pr} = \widehat{1/pr},$
where $p \in \mathbb{P}$, $p > 2$, $r \in \mathbb{N}$, $r > 1$, $r | (p - 1)$, and
 $u \in (\mathbb{Z}/pr\mathbb{Z})^*$ is such that the order of $u \mod p$ in
 $(\mathbb{Z}/p\mathbb{Z})^*$ is r and $u \mod l = 1 \mod l$ for all $l \in \mathcal{P}, l | r$.

Remember that by $\mathcal{M}(\Gamma, A)$ we have denoted the τ_s -open set (possibly empty) $\mathcal{K}(\Gamma, A) \setminus \mathcal{C}(\Gamma, A)$ of all Kneser groups of $Z^1(\Gamma, A)$ which are not Cogalois groups. Clearly, for any $G \in \mathcal{M}(\Gamma, A)$ there exists at least one minimal member H of $\mathcal{M}(\Gamma, A)$ such that $H \subseteq G$. By $\mathcal{M}(\Gamma, A)_{\min}$ we shall denote the set of all minimal members of $\mathcal{M}(\Gamma, A)$, and call them *minimal Kneser non-Cogalois groups*. Observe that whenever $G \in \mathcal{M}(\Gamma, A)_{\min}$, then necessarily G is a nontrivial finite group according to Corollary 2.8 (2).

Lemma 2.17. The following conditions are equivalent for $G \in \mathcal{K}(\Gamma, A)$.

- (1) $G \in \mathcal{M}(\Gamma, A)_{min}$.
- (2) $G^{\perp} \triangleleft \Gamma$ and the action of Γ/G^{\perp} on μ_G is one of the types D_4 , D_8 , or D_{pr} defined above.

Proof. (1) \Longrightarrow (2): First assume that $G \in \mathcal{M}(\Gamma, A)_{\min}$. Then, as was observed above, G is finite. Since G is not Cogalois, it follows by Theorem 2.5 that there exists $p \in \mathcal{P}(\Gamma, A) \cap \mathcal{P}_G$ such that $G^{\perp} \subseteq \varepsilon_p^{\perp}$. Assume p is minimal with the property above, and let H be a cyclic subgroup of G of order p. Since G is Kneser, its subgroup H is also Kneser, and hence $(\Gamma : H^{\perp}) = |H| = p$, in particular, $H \neq B_p$. We distinguish the following two cases:

Case (i): p = 4. We are going to show that $G^{\perp} \triangleleft \Gamma$ and the action of Γ/G^{\perp} on μ_G is either of type D₄ or of type D₈. Two subcases arise:

Subcase (1): $\varepsilon_4 \in H$. As $H \cong \mathbb{Z}/4\mathbb{Z}$ and $H^{\perp} \leq \varepsilon_4^{\perp}$, H is not Cogalois by Theorem 2.5, so by the minimality of G we have $G = H \cong \mathbb{Z}/4\mathbb{Z}$ and $\mu_G = (1/4)\mathbb{Z}/\mathbb{Z}$. Since

 $\sigma g - g \in B^1(\Gamma, \mu_G) = \langle \varepsilon_4 \rangle \leq G$ for all $\sigma \in \Gamma, g \in G$, it follows that G is stable under the action of Γ , therefore $G^{\perp} \triangleleft \Gamma$ and $G \leq Z^1(\Gamma/G^{\perp}, \mu_G)$. As the Kneser non-Cogalois group G is cyclic of order 4, it follows that $\Gamma/G^{\perp} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ and the action of Γ/G^{\perp} on μ_G is of type D₄.

Subcase (2): $\varepsilon_4 \notin H$. First, show that $\varepsilon_4 \in G$. Since G is Kneser, it follows that $G(2)^{\perp} \leq \varepsilon_4^{\perp}$, for otherwise $(G(2)^{\perp} : (G(2)^{\perp} \cap \varepsilon_4^{\perp})) = (\Gamma : \varepsilon_4^{\perp}) = 2$, so $2|G(2)| = (\Gamma : (G(2)^{\perp} \cap \varepsilon_4^{\perp}))| |\Gamma| = |G|$, which is a contradiction. Thus, the 2-primary component G(2) is Kneser, and is not Cogalois by Theorem 2.5. Consequently, by the minimality of G, we deduce that G = G(2). Since $L := \operatorname{res}_{\varepsilon_4^{\perp}}^{\Gamma}(G)$ is a 2-group as a factor of G and $4 \notin \mathcal{P}(\varepsilon_4^{\perp}, A)$, it follows by Theorem 2.5 that L is a Cogalois (in particular, Kneser) group of $Z^1(\varepsilon_4^{\perp}, A)$. Therefore, $(G \cap \varepsilon_4^{\perp \perp})^{\perp} = \varepsilon_4^{\perp}$ by Corollary 1.12, so the Kneser group $G \cap \varepsilon_4^{\perp \perp}$ of $Z^1(\Gamma, A)$ is cyclic of order 2. Since the only cocycle of order 2 belonging to $\varepsilon_4^{\perp \perp}$ is ε_4 , we deduce that $\varepsilon_4 \in G$, as desired.

Consequently, by the minimality of G, we have $G = H \oplus \langle \varepsilon_4 \rangle \cong \mathbb{Z}/4\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$, $\mu_G = (1/4)\mathbb{Z}/4\mathbb{Z}$, and $L \cong H \cong \mathbb{Z}/4\mathbb{Z}$. Moreover, since $\varepsilon_4 \in G$, it follows as in the Subcase (1) that G is stable under the action of Γ . Therefore $G^{\perp} \lhd \Gamma$ and G is canonically identified with a subgroup of $Z^1(\Gamma/G^{\perp}, \mu_G)$. In particular, $G^{\perp} \lhd \varepsilon_4^{\perp}$, and $\varepsilon_4^{\perp}/G^{\perp} = \varepsilon_4^{\perp}/L^{\perp} \cong \mathbb{Z}/4\mathbb{Z}$ as $L \cong \mathbb{Z}/4\mathbb{Z}$ is a Cogalois group of $Z^1(\varepsilon_4^{\perp}, A)$. Observe that the canonical action of $H^{\perp}/G^{\perp} \cong \Gamma/\varepsilon_4^{\perp} \cong \mathbb{Z}/2\mathbb{Z}$ on $\varepsilon_4^{\perp}/G^{\perp} \cong \mathbb{Z}/4\mathbb{Z}$ is non-trivial, for otherwise we would have $\Gamma/G^{\perp} \cong G$, contrary to the fact that G is not Cogalois. Thus, $\Gamma/G^{\perp} \cong \varepsilon_4^{\perp}/G^{\perp} \cong \mathbb{D}_8$, i.e., the action of Γ/G^{\perp} on μ_G is of type D₈, as required.

Case (ii): $p \in \mathbb{P} \setminus \{2\}$. We are going to show that $G^{\perp} \triangleleft \Gamma$ and the action of Γ/G^{\perp} on μ_G is of type D_{pr} , where $r := (\Gamma : \varepsilon_p^{\perp})$. Let G' denote the subgroup of G consisting of all its elements of order prime to p. As G is Kneser, so is also G', and hence $(G'^{\perp} : G^{\perp}) = (G : G')$ is a power of the prime number p. Consequently, its divisor $(G'^{\perp} : G'^{\perp} \cap \varepsilon_p^{\perp})$ is also a power of p. On the other hand, as ε_p^{\perp} , the kernel of the non-trivial action of Γ on A[p], is normal in Γ , we have $G'^{\perp} \cap \varepsilon_p^{\perp} \triangleleft G'^{\perp}$. So, the factor group $G'^{\perp}/(G'^{\perp} \cap \varepsilon_p^{\perp})$ is identified with a subgroup of the cyclic group $\Gamma/\varepsilon_p^{\perp}$ of order r, with $r \mid p - 1$ and (r, p) = 1. Therefore $G'^{\perp} \leqslant \varepsilon_p^{\perp}$. Since $G' \neq G$, it follows from the minimality of G that G' is Cogalois. Thus, $K := G' \cap \varepsilon_p^{\perp \perp}$ is also Cogalois and $K^{\perp} = \varepsilon_p^{\perp}$. Moreover, K is cyclic of order r since $\Gamma/K^{\perp} \cong \mathbb{Z}/r\mathbb{Z}$. In particular, we have $\mu_K = (1/r)\mathbb{Z}/\mathbb{Z} \leqslant A$. As $K^{\perp} \triangleleft \Gamma$, Corollaries 2.14 and 2.15 imply that $(1/r)\mathbb{Z}/\mathbb{Z} \leqslant A^{\varepsilon_p^{\perp}}$ and $K \cong Z^1(\Gamma/\varepsilon_p^{\perp}, (1/r)\mathbb{Z}/\mathbb{Z})$.

From the minimality condition satisfied by G it follows that $G = H \oplus K \cong \mathbb{Z}/pr\mathbb{Z}$ and $\mu_G = (1/pr)\mathbb{Z}/\mathbb{Z}$. Since $K^{\perp} = \varepsilon_p^{\perp} \triangleleft \Gamma$ and $((\Gamma : H^{\perp}), (\Gamma : K^{\perp})) = (p, r) = 1$, we deduce that $\Gamma = H^{\perp}K^{\perp}$ and $G^{\perp} = H^{\perp} \cap K^{\perp} \triangleleft H^{\perp}$. So, to conclude that $G^{\perp} \triangleleft \Gamma$ it suffices to show that $G^{\perp} \triangleleft K^{\perp}$. For any $\lambda \in G^{\perp}, \nu \in K^{\perp}, h \in H$ we have $h(\nu\lambda\nu^{-1}) = h(\nu) - (\nu\lambda\nu^{-1})h(\nu) = 0$ since $h(\nu) \in (1/p)\mathbb{Z}/\mathbb{Z} = A^{K^{\perp}}$ and $\nu\lambda\nu^{-1} \in K^{\perp}$. Thus $G^{\perp} \triangleleft \Gamma$, the kernel of the canonical action of Γ/G^{\perp} on μ_G is $\varepsilon_4^{\perp}/G^{\perp}$, and $\Gamma/G^{\perp} = \varepsilon_4^{\perp}/G^{\perp} \rtimes H^{\perp}/G^{\perp}$. Let $\sigma \in H^{\perp}, \tau \in \varepsilon_p^{\perp}, u \in (\mathbb{Z}/pr\mathbb{Z})^*$ be such that σG^{\perp} is a generator of $H^{\perp}/G^{\perp} \cong \mathbb{Z}/r\mathbb{Z}, \tau G^{\perp}$ is a generator of $\varepsilon_p^{\perp}/G^{\perp} \cong \mathbb{Z}/p\mathbb{Z}$, and $\sigma \widehat{1/pr} =$ $u\widehat{1/pr}$. Clearly $\tau\widehat{1/pr} = \widehat{1/pr}$ and the order of $u \mod p \in (\mathbb{Z}/p\mathbb{Z})^*$ is r. Moreover, $\sigma\tau\sigma^{-1} \equiv \tau^u (\mod G^{\perp})$ since $G = H \oplus K$, $h(\sigma\tau\sigma^{-1}) = \sigma h(\tau) = uh(\tau) = h(\tau^u)$ for all $h \in H$ (as $h|_{\varepsilon_p^{\perp}} \in \operatorname{Hom}(\varepsilon_p^{\perp}, (1/p)\mathbb{Z}/\mathbb{Z}))$, and $k(\sigma\tau\sigma^{-1}) = k(\tau^u) = 0$ for all $k \in K$.

Consequently, $\Gamma/G^{\perp} \cong \mathbb{Z}/p\mathbb{Z} \rtimes_u \mathbb{Z}/r\mathbb{Z}$. Therefore, to conclude that the action of Γ/G^{\perp} on μ_G is of type D_{pr} , it remains only to check that $u \mod l = 1 \mod l$ i.e., $\widehat{1/l} \in A^{\Gamma}$ for all $l \in \mathcal{P}, l \mid r$. Assuming the contrary, let $l \in \mathcal{P}(\Gamma, A)$ be such that $l \mid r$. Since $\widehat{1/r} \in A^{\varepsilon_p^{\perp}}$, we deduce that $G^{\perp} \leq \varepsilon_p^{\perp} \leq \varepsilon_l^{\perp}$. Thus $l \in \mathcal{P}(\Gamma, A) \cap \mathcal{P}_G$ and $G^{\perp} \leq \varepsilon_l^{\perp}$; hence $l \geq p$, which is a contradiction.

(2) \Longrightarrow (1): Assume that $G^{\perp} \triangleleft \Gamma$ and the action of Γ/G^{\perp} on μ_G is of one of the types D_4 , D_8 , or D_{pr} . Since G is canonically identified with a subgroup of $Z^1(\Gamma, \mu_G)$, we may assume without loss of generality that $G^{\perp} = \{1\}$ and $A = \mu_G$, i.e., (Γ, A) is one of the actions described in Definition 2.16. We have to show that every Kneser group $G \leq Z := Z^1(\Gamma, A)$ satisfying $G^{\perp} = \{1\}$ and $\mu_G = A$ is minimal non-Cogalois. We distinguish the following three cases:

Case (a): (Γ, A) is of type D₄. Then, the morphism $h \mapsto (h(\sigma), h(\tau))$ maps isomorphically Z onto $A \times 2A \cong \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. Thus $Z = \langle \varepsilon'_4 \rangle \oplus \langle \varphi \rangle$, where $\varphi \neq \varepsilon_4$ is defined by $\varphi(\sigma) = 0$, $\varphi(\tau) = \widehat{1/2}$. Notice that $G := \langle \varepsilon'_4 + \varphi \rangle \cong \mathbb{Z}/4\mathbb{Z}$ is the unique Kneser group of Z such that $\mu_G = A$, in particular $G^{\perp} = \{1\}$, and G is the unique Kneser non-Cogalois subgroup of Z as well.

Case (b): (Γ, A) is of type D₈. Then, the morphism $h \mapsto (h(\sigma), h(\tau))$ maps isomorphically Z onto $A \times A \cong \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$. Consequently, $Z = \langle \varepsilon'_4 \rangle \oplus \langle \alpha \rangle$, where the cocycle α is defined by $\alpha(\sigma) = 0$, $\alpha(\tau) = \widehat{1/4}$. Observe that there exist only two Kneser groups G of Z such that $G^{\perp} = \{1\}$, i.e., $|G| = |\Gamma| = 8$, hence $\mu_G = A = (1/4)\mathbb{Z}/\mathbb{Z}$, namely $G_1 = \langle \varepsilon_4 \rangle \oplus \langle \alpha \rangle$ and $G_2 = \langle \varepsilon_4 \rangle \oplus \langle \alpha + \varepsilon'_4 \rangle$, both isomorphic to $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$ and stable under the action of Γ . They are also the only Kneser (minimal) non-Cogalois groups of Z of order 8. Notice that, on the other hand, $\langle \varepsilon'_4 + 2\alpha \rangle \cong \mathbb{Z}/4\mathbb{Z}$ is the unique Kneser non-Cogalois subgroup of order 4, the corresponding action being of type D₄.

Case (c): (Γ, A) is of type D_{pr} , where p is an odd prime number and r | p-1, r > 1. Let $u \in (\mathbb{Z}/pr\mathbb{Z})^*$ be the unit defining the action. Since $N(\sigma) = \sum_{i=0}^{r-1} u^i = 0 \mod pr$, the morphism $h \mapsto (h(\sigma), h(\tau))$ maps isomorphically Z onto $A \times rA \cong \mathbb{Z}/pr\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$. Consequently, $Z = B_p \oplus \langle \alpha \rangle \oplus \langle \beta \rangle$, where the cocycles α and β are defined by $\alpha(\sigma) = \widehat{1/r}, \alpha(\tau) = 0, \beta(\sigma) = 0, \beta(\tau) = \widehat{1/p}$. As $\mathcal{P}(\Gamma, A) = \{p\}$, the necessary and sufficient condition for a subgroup G of Z to be Kneser is, according to Theorem 1.20, that $G \cap B_p = 0$. Consequently, G is a maximal Kneser group of $Z \iff G$ is a direct summand of $B_p \iff G$ is a Kneser group with $\mu_G = A$. The only subgroups of Z satisfying the equivalent conditions above are the subgroups $G_i = \langle i\varepsilon_p + \alpha + \beta \rangle \cong \mathbb{Z}/pr\mathbb{Z}, i \in \mathbb{Z}/p\mathbb{Z}$. Since $\mathcal{P}(\Gamma, A) = \{p\}$ and the unique subgroup $H \leqslant G_i, i \in \mathbb{Z}/p\mathbb{Z}$, for which p | |H| and $H^{\perp} \leqslant \varepsilon_p^{\perp}$ is the whole group G_i , it follows by Theorem 2.5 that the G_i 's are also the only Kneser non-Cogalois subgroups of Z. Notice that, in contrast with the actions of type D_4 or D_8 , the subgroups $G_i, i \in \mathbb{Z}/p\mathbb{Z}$ are not stable under the action of Γ . More precisely, Γ acts transitively on the set $\{G_i | i \in \mathbb{Z}/p\mathbb{Z}\}$ with stabilizers $\langle \tau^i \sigma \tau^{-i} \rangle \cong \mathbb{Z}/r\mathbb{Z}, i \in \mathbb{Z}/p\mathbb{Z}$.

Corollary 2.18. Any Kneser minimal non-Cogalois group of $Z^1(\Gamma, A)$ is isomorphic either to $\mathbb{Z}/4\mathbb{Z}$, or to $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z}$, or to $\mathbb{Z}/pr\mathbb{Z}$ for an odd prime number p and a divisor $r \neq 1$ of p-1.

Proof. Let G be a Kneser minimal non-Cogalois group of $Z^1(\Gamma, A)$. By Lemma 2.17, $G^{\perp} \lhd \Gamma$ and the action of Γ/G^{\perp} on μ_G is of one of the types D_4, D_8 or D_{pr} . The possible isomorphism types for the group G are now immediate from the proof of the implication (2) \Longrightarrow (1) of Lemma 2.17.

The next result provides an analogue of Theorem 1.20 for Cogalois groups.

Theorem 2.19. The following statements are equivalent for a Kneser subgroup G of $Z^1(\Gamma, A)$.

- (1) G is Cogalois.
- (2) G contains no H for which $H^{\perp} \triangleleft \Gamma$ and the action of Γ/H^{\perp} on μ_H is one of the types D_4 , D_8 , or D_{pr} .

Proof. The result follows at once from Lemma 2.17 and from the following fact we already mentioned just before Lemma 2.17: for any $L \in \mathcal{M}(\Gamma, A)$ there exists at least one $K \in \mathcal{M}(\Gamma, A)_{\min}$ such that $K \subseteq L$.

As it follows from Lemma 2.17, the fact that all the *p*-primary components of a subgroup G of $Z^1(\Gamma, A)$ are Cogalois does not imply that the whole group G is Cogalois. The next result provides a supplementary lattice theoretic (topological) condition which ensures such an implication, obtaining in this way a *local-global principle* for Cogalois groups.

Theorem 2.20. Let G be a subgroup of $Z^1(\Gamma, A)$, and let

$$\theta: \overline{\mathbb{L}}(\Gamma|G^{\perp}) \longrightarrow \prod_{p \in \mathbb{P}} \overline{\mathbb{L}}(\Gamma|G(p)^{\perp}), \, \Delta \mapsto (\overline{\langle \Delta \cup G(p)^{\perp} \rangle})_{p \in \mathbb{P}}.$$

Then, the following statements are equivalent.

- (1) G is Cogalois.
- (2) G(p) is Cogalois for all prime numbers p, and the order-preserving map θ is a lattice isomorphism.
- (3) G(p) is Cogalois for all prime numbers p, and the coherent map θ is a homeomorphism of spectral (Stone) spaces.
- (4) G is Kneser, G(2) is Cogalois, and $\Delta = \Gamma$ whenever $\Delta \in \overline{\mathbb{L}}(\Gamma | G^{\perp})$ is such that $\theta(\Delta) = \theta(\Gamma)$.

Proof. (1) \Longrightarrow (2): Assuming that G is Cogalois, we only have to prove that θ is a lattice isomorphism. As G and the G(p)'s are Cogalois, the canonical order-reversing maps $\varphi : \mathbb{L}(G) \longrightarrow \overline{\mathbb{L}}(\Gamma | G^{\perp}), \varphi_p : \mathbb{L}(G(p)) \longrightarrow \overline{\mathbb{L}}(\Gamma | G(p)^{\perp}), H \mapsto H^{\perp}$ are lattice anti-isomorphisms. On the other hand, since the canonical map

$$\psi : \mathbb{L}(G) \longrightarrow \prod_{p \in \mathbb{P}} \mathbb{L}(G(p)), \ H \mapsto (H(p))_{p \in \mathbb{P}}$$

is a lattice isomorphism, the composed map

$$(\prod_{p\in\mathbb{P}}\varphi_p)\circ\psi\circ\varphi^{-1}:\overline{\mathbb{L}}(\Gamma|G^{\perp})\longrightarrow\prod_{p\in\mathbb{P}}\overline{\mathbb{L}}(\Gamma|G(p)^{\perp}),\,\Delta\mapsto((G\cap\Delta^{\perp})(p)^{\perp})_{p\in\mathbb{P}}$$

is also a lattice isomorphism, so it remains only to check that $(\prod_{p\in\mathbb{P}}\varphi_p)\circ\psi\circ\varphi^{-1}=\theta$, i.e., $(G\cap\Delta^{\perp})(p)^{\perp}=\overline{\langle\Delta\cup G(p)^{\perp}\rangle}$ for all $p\in\mathbb{P}, \Delta\in\overline{\mathbb{L}}(\Gamma|G^{\perp})$. Now, as φ is a lattice anti-isomorphism, we deduce that

$$(G \cap \Delta^{\perp})(p)^{\perp} = ((G \cap \Delta^{\perp}) \cap G(p))^{\perp} = \overline{\langle (G \cap \Delta^{\perp})^{\perp} \cup G(p)^{\perp} \rangle} = \langle \Delta \cup G(p)^{\perp} \rangle,$$

as desired.

 $(2) \iff (3)$ is obvious.

 $(2) \Longrightarrow (4)$ follows at once from Corollary 1.16.

(4) \implies (1): Assuming that G is Kneser but not Cogalois, we have to show that either G(2) is not Cogalois or there exists $\Delta \in \overline{\mathbb{L}}(\Gamma | G^{\perp})$ such that $\Delta \neq \Gamma$ and $\theta(\Delta) =$ $\theta(\Gamma)$. Let H be a minimal non-Cogalois subgroup of G. According to Lemma 2.17, H^{\perp} is an open normal subgroup of Γ and the action of Γ/H^{\perp} on μ_H is one of the actions described in Definition 2.16. If the action above is of type D_4 or of type D_8 , then it follows that $H \leq G(2)$, and hence G(2) is not Cogalois. So, it remains to consider only the case when the action is of type D_{pr} , where p is an odd prime number and $r \mid p-1, r \ge 2$. Notice that $\overline{\langle H^{\perp} \cup G(p)^{\perp} \rangle} = H^{\perp}G(p)^{\perp}$ as $H^{\perp} \lhd \Gamma$, $(\Gamma : H^{\perp}G(p)^{\perp})$ is a power of p as $G \in \mathcal{K}(\Gamma, A)$, and $(\Gamma : H(p)^{\perp}) = |H(p)| = p$ as $H(p) \leq G \in \mathcal{K}(\Gamma, A)$ and $H(p) \cong \mathbb{Z}/p\mathbb{Z}$ (since $H \cong \mathbb{Z}/pr\mathbb{Z}$ by Corollary 2.18 and (p,r) = 1). On the other hand, since $H^{\perp} \leq H^{\perp}G(p)^{\perp} \leq H(p)^{\perp} \leq \Gamma$ and $(\Gamma: H^{\perp}) = pr, r \mid p-1$, it follows that $H^{\perp}G(p)^{\perp} = H(p)^{\perp}$. As $\Gamma/H^{\perp} \cong \mathbb{Z}/p\mathbb{Z} \rtimes_u \mathbb{Z}/r\mathbb{Z}$ for a suitable $u \in (\mathbb{Z}/pr\mathbb{Z})^*$ by Definition 2.16, there exists an open subgroup Δ of Γ lying over H^{\perp} such that $(\Gamma:\Delta) = p$ and $\Delta \neq H(p)^{\perp}$. Consequently, $\overline{\langle \Delta \cup G(p)^{\perp} \rangle} = \overline{\langle \Delta \cup H(p)^{\perp} \rangle} = \Gamma$, and, similarly, $\overline{\langle \Delta \cup G(q)^{\perp} \rangle} = \Gamma$ for any prime number $q \neq p$ since all open subgroups of Γ lying over $G(q)^{\perp}$ have q-th power indices in Γ as $G \in \mathcal{K}(\Gamma, A)$. Thus, we found a subgroup Δ of Γ with the desired properties, which finishes the proof.

Finally, we consider the case when G is stable under the action of Γ . Then, the local-global principle for Cogalois groups has the following simple formulation.

Proposition 2.21. The following assertions are equivalent for a Γ -submodule G of $Z^1(\Gamma, A)$.

- (1) G is Cogalois.
- (2) G(p) is Cogalois for all prime numbers p.
- (3) G is Kneser, and G(2) is Cogalois.

Proof. The implication $(1) \Longrightarrow (2)$ is trivial, while the implication $(2) \Longrightarrow (3)$ follows at once from Corollary 1.16.

(3) \Longrightarrow (1): Assuming that the Γ -module G is Kneser but not Cogalois, we have only to show that G(2) is not Cogalois. Let H be a minimal non-Cogalois subgroup of G. According to Lemma 2.17, $H^{\perp} \triangleleft \Gamma$ and the action of Γ/H^{\perp} on μ_H is the one described in Definition 2.16. If the action is of type D_4 or of type D_8 , then $H \leq G(2)$, and hence G(2) is not Cogalois, as desired. Now assume that the action is of type D_{pr} . Then, as in the proof of Theorem 2.19 we deduce that $(\Gamma : H^{\perp}G(p)^{\perp}) = p$. On the other hand, $G(p)^{\perp} \triangleleft \Gamma$ since G(p) is a Γ -submodule of G. Hence $H^{\perp}G(p)^{\perp} \triangleleft \Gamma$, and so, $\mathbb{Z}/p\mathbb{Z}$ is a quotient of $\Gamma/H^{\perp} \cong \mathbb{Z}/p\mathbb{Z} \rtimes_u \mathbb{Z}/r\mathbb{Z}$, which is a contradiction. \Box

References

- [1] T. ALBU, Infinite field extensions with Cogalois correspondence, Comm. Algebra **30** (2002), 2335-2353.
- [2] T. ALBU, "Cogalois Theory", A Series of Monographs and Textbooks, Vol. 252, Marcel Dekker, Inc., New York and Basel, 2002, 368 pp.
- [3] T. ALBU, Infinite field extensions with Galois-Cogalois correspondence (I), Rev. Roumaine Mat. Pures Appl. 47 (2002), Number 1.
- [4] T. ALBU, Infinite field extensions with Galois-Cogalois correspondence (II), Rev. Roumaine Mat. Pures Appl. 47 (2002), Number 2.
- [5] T. ALBU and Ş. BASARAB, Lattice-isomorphic groups, and infinite Abelian G-Cogalois field extensions, J. Algebra Appl. 1 (2002), 243-253.
- [6] T. ALBU and F. NICOLAE, Kneser field extensions with Cogalois correspondence, J. Number Theory 52 (1995), 299-318.
- [7] T. ALBU and F. NICOLAE, Finite radical field extensions and crossed homomorphisms, J. Number Theory 60 (1996), 291-309.
- [8] T. ALBU and M. ŢENA, Infinite Cogalois Theory, Mathematical Reports 3 (53) (2001), 105-132.
- [9] F. BARRERA-MORA, M. RZEDOWSKI-CALDERÓN, and G. VILLA-SALVADOR, On Cogalois extensions, J. Pure Appl. Algebra 76 (1991), 1-11.

- [10] Ş.A. BASARAB, The dual of the category of generalized trees, An. Ştiinţ. Univ. Ovidius Constanţa Ser. Mat. 9 (2001), no. 1, 1-20.
- [11] P.T. JOHNSTONE, "Stone Spaces", Cambridge University Press, Cambridge, 1982.
- [12] G. KARPILOVSKY, "Topics in Field Theory", North-Holland, Amsterdam, 1989.
- [13] M. KNESER, Lineare Abhängigkeit von Wurzeln, Acta Arith. 26 (1975), 307-308.
- [14] J. NEUKIRCH, "Algebraische Zahlentheorie", Springer-Verlag, Berlin Heidelberg New York, 1992.
- [15] F. POP, Classicaly projective groups and pseudo classicaly closed groups, in "Valuation Theory and Its Applications", Vol. II, eds. F.-V. Kuhlmann, S. Kuhlmann, and M. Marshall, Fields Institute Commun. Series, Amer. Math. Soc., 2003, pp. 251-283.
- [16] J.P. SERRE, "Cohomologie Galoisienne", Lecture Notes in Mathematics 5, Springer-Verlag, Berlin, 1964.
- [17] J.P. SERRE, "A Course in Arithmetic", Springer-Verlag, New York Heidelberg Berlin, 1973.
- [18] B. STENSTRÖM, "Rings of Quotients", Springer-Verlag, Berlin Heidelberg New York, 1975.

