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Abstract
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2 Cogalois groups of cocycles

In this section we define the concept of abstract Cogalois group and establish various

equivalent characterizations for such groups, including a Quasi'-Purity Cri'teri'on, an

abstract version of the structure theorem for Kneser groups from the field theoretic
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Cogalois theory, and an a,nalogue of Theorem 1.20 (the abstract Kneser criterion) for

Cogalois groups.

For a given subgroup G of. zL(t,.A), the lattice n (G) of all subgroups of G and the

latrice fiflCl) oi all closed subgroups of f lying over GL are related through the

canonical order-reversing maps H t-+ HL and A r-+ Gfl AI : Gn Ker (resf,)' Clearly,

these two maps establish a Galois connection, which is induced by the one considered

in Proposition O.t (1). Notice also that [,(G) (resp. L(flGI)) is a closed subspace

of the spectral (stone) space n @L(l,A)) (resp. L(f)) and the two maps above are

continuous by Proposition 0.3.

Definition 2.1. A subgroup G of zL(T, A) is saiil to be a cogalois group o/ zr,(1, A)

if i,t is a Kneser g*"p of Z'(f,A) and, the maps (-)a ' ['(G) -' j1,(flcr) and

Gn (-)a : L(f 1Cr) ---+ [,(G) are lattice anti-i,somorphisms, inuerse to one another. D

Some characterizations of Cogalois groups of. Zr(l,A) are given in the next result.

proposition 2.2. The following statements are equiualent for a Kneser group G of

zL ( t ,A ) .

(1 )  A : (GnAr )a  fo reae ry  A€ i [ ( l l c r ) .

(2) resl(c) e K(A, A) for euery L € [(rlca)'

(3) The map n'(G) -' [1f1Ca), H,-. Ht, is onto.

(a) The map T,(flGt) --* n (G), L' = G fl Aa, i's injecti'ue.

(5) The canonical rnaps \,(G) -+ r(flcr) and. il(rlcr) ---+ [,(G) are homeomor-

phisms of spectral (Stone) speces inuerse to one another'

(6) G i,s a Cogaloi,s group of ZL(T,A).

Proof. (1) <+ (2) bV Corollary L.12'

(1) + (3): For any A € f(f lcl),  we have L,: HL,where H : GnAa e n (G).

(3) =+ (4): Let Ar, Az € f(f lca) be such that GnAf : G.L+'Bv assumption,

Ar : 'H{, L'r:  H* for some Hr, Hz € [,(G)' By Lemma L'5, H1: Gl H{t:

GnA* :  Gn  A t :GnH*L :  H2 ,  and  hence ,  A t :  Az ,  as  des i red '

(a) ===+ (5): For any H € [,(G), we have G n HLL : H by Lemma 1.5, so the

composition of the canonical maps [,(G) --' iL(flGI) - n (G) is the identity. It

follows that the map A e GAAr is onto, and hence bijective, with inverse H r- HL.

(S) + (6): As order-reversing maps inverse to one another, the canonical maps
above are lattice anti-isomorphisms inverse to one another, as desired.

(6) =+ (1): Let A € E(flcr). Then, by assumption, there exists a unique

H e n @) sdch thit A,: HL amd, H: GnAa; hence A : (GnAa)r, * required' n
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Corollary 2.3, A subgroup G of ZL(|,A) i,s Cogaloi,s if and, only i,f resf,(G) ,s a
Kneser grcup of ZL(A^,A) for euery A, € il(llcr).

In par-ticular, ZL(|,A) i,s a Cogalois group of itsetf if and only if ZL(|,A) is a
Kneser group of i,tself.

Proof. As f € f(llcr) for every G < Z|Q,A), and P(L,A) g P(1,.4) for all
A € (f), the result follows immediately from Proposition 2.2 and Corollary I.22. f1

Definition 2.4. A subgroup D of an Abelian group C i,s said to be q:uasi r?.-pure, where
n 'is a giuen positiue 'integer, l,f C[n] e D, or equi,ualently CWI : D[n]. For M g N,
C is quasi M-pwe if C is quasi n-pure for all n e M.

Recall that a well established concept in Group Theory is that of. n-purity: a
subgroup D of. an Abelian group C is said to be n-pure if. D ) nC : nD. There is
no connection between the concepts of n-purity and quasi ra-purity; e.g., the subgroup
2V,l4V, of Zl4Z is quasi 2-pure but not 2-pure, and any of the three subgroups of order
2 of. the dihedral group Da is 2-pure but not quasi 2-pure. Notice that the abstract
notion of quasi n-purity goes back to the concept of rz-purity from the field theoretic
Cogalois Theory (see Albu [1], Albu and Nicolae [6i).

For any subgroup G of ZL(I,A) we denote P6:: Oc)P,i.e., Pc is the set of
those p e P for which exp(G[p]):p.

The quasi Ps-purity plays a basic role in the characterization of Cogalois groups
of Z1(T,,4). The next result is the abstract version of the General Purity Cri,terion

[1], Theorem 2.3, from the field theoretic infinite Cogalois Theory.

Theorem 2.5. (The Quasi-Purity Criterion). The followi,ng statements are equiualent

for a subgroup G of Zr (1, A).

(1) G i,s Cogaloi,s.

(2) The subgroup Ar of Ac' i,s quasi P6-pure.

(3) cr { ef fo, aH p e Pc.P(r,, A).

Proof. (2) + (3): Let p ePcnP(f,,A). Then lD e,4\,4r, and hence lE /'q*',
as AGTWL lrp] by hypothesis. Consequently,,there exists o e GL such that

o llp * If p, i.e., o / €t,which shows that G! Q ef , as desired.

(3) + (2): Let p € Pc. Then clearly lD e e. Assuming {fi e Ar, we

obtain that Arfu\: Ac'lpl: OldZfZ, as desired. Now assume that Llp / Ar.

Since Gr Q ti bv hypothesis, it follows that Ar$\: AG' [p] : {0} for p 14, and

ArWl : AG' [p) : (i,|z)zlz ror p : 4.

(i) + (3): Suppose that G is Cogalois, and let p € P6 nP(l,A). Then {D e

A\1r ,  andthereex is ts  acocyc le  h  e  G o f  o rderp .  Le t  H =  Z lpZ denote the

subgroup of G generated by h. Since G is a Kneser group of. Zr(f ,,4), (f : HL1 :

lfll: p. Assuming that GL g rot, *" have to derive a contradiction. We distinguish

the following two cases:
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case (i): p e P \ {2} Since G € rc(f,,A), it follows by Theorem 1.20 that

€p /  G.  Se6ing a: :  h-Lo € ZL( t , ( I ldZlZ) \G,  we deduce that  ord(a) :p  and

(i"i n (o) : {O}. Consequently, again by Theorem 1.20, (a) 
S.rc(f'1)l 

and hence

(f : ar) - p. Since 6r g [r 
""'a 

dt a ri Ot assumption, it follows that Gr ( or.

As  G  i sCoga lo i s ,wededuce tha t  aa : (Gno- l - r ; J -  and  lGnor t l  : ( f  :  o ,L )=y ,

therefore Ga C'LL = ZlpZ. Now 
"onsider 

the subgroup H' 
": 

H + (G nott)

of G. As p is a prime number, it follows that either H' : H = ZlpZ ot H' :

H @(G nort) = (V' leZ)e(ZleV'). Since ,[/ /  < G €,rc(t, ,A), we deduce that

ii ' a"t, e {p,p2).'ini" i-pri"r ihat' (f t t[)ln2 since r1'r < hr n ot < +. on the

other hand , ef is the kernel of the (nontrivial) action of I on Alp]: (Llflzlz, and

hence 2 < (f , ef)l(n - 1), which is a contradiction.

Case (ii): p -- 4. Let etn € Z1(T,AIAJ) : Zr(lJLl4)ZlZ) be the L-cocvcle defined

in Section 1, and remember that e+_ 2€t4. ArlR/ Ar, the action of f  on Al4l:

(11 )Z|V,, whose kernel is ef : e'nL, i, nontrivial, and hence I lef = (V'l4V'). = V'f 2V',

i.".,'1f : e[):2. Since G is Cogalois and Gr < e[ by assumption, it follows that

,t : G ;;t\L and lGnul-tl : (f : u[) : 2, i.e.,, G. ?tL = v,l2v'.,one easilY
checks that sa is the unique eiement of order 2 of e[L, and hence G n €tL : (ea), in

particular, ea € G. On the other hand, since G e K(1, A), it follows by Theorem 1'20

thu t  r ' n /G ,and 'hence  h / { t ' a , -d } .  Se t  B ' . -h -e 'a  and  H1 : : \ h , ' n )  (G '  Then

0 + p / (e'al Two subcases arise:

Subcase  (1 ) :  ea  €  H .  Then  2  h :  €4  and  20  :2h  -2€ '4 :2h  -  ea . :  0 ,  i ' e ' ,

ord(B)  :2 . 'B iy  Lemma L.L,  we have ( f  :Ba)  < l (B) l  :2 .  Observe that  BL f  l , for

otherwise, we would have 0 t g e PLL: fr: {0},which is a contradiction' Thus,

(1- ' 0r) - 2. On the other hand, Gr < HL .:.HL n €[ : hr,l r'nt ( 0t:,and hence

C n ' B t ' t  <  G n  H L L :  H , B L :  ( G n  g t t ) t ,  a n d  l G  n B L L I :  ( l :  g L ) : 2 ,  *

G is Cogalois. Since (ea) is the unique subgroup of order 2 of H = V'| Z', it follows

tha t  G  -B t t :  ( sa ) .  The re fo re  B  e (BL)L :  ( (GnBu) r )a  : r t l t so  B :  s4  s ince

ord(p) : 2 and ea is the unique element of order 2 contained in efa. In particular,

g e G, and hence €t4: h - 0 e G, which is a contradiction'

subcase (2): ea /. H. Then Ht: H@(td) = v' lLzev' lzz' since 2 0 :2h-e4 t '  0

and. 4 B: 0, it follows that ord(B) : 4. But uL / @) ' so (B) € rc(f , A) bV Theorem

1.20, and then, (f i  BL) :4. Since f lr ( G,Gr ( H{ : ht l  r [  :  hL le'4t,{ 
gL,

and G is Cogalois, it follows that H2 :: G oB[ < G nH L : Hr, H* : BL, and

lHzl : Q t gL): 4. Thus, H2 is asubgroup of ,order 4 of H1. Setting Hz : Hzf.(ea),

we deduce that 1/51 : H+ n ef : BL a u'n' < hr i ef : //tt ( Ht a ef,, so

H{ :11f , and hence Hs : Ht by Lemma 1.5, as G e K(f, A) and IIr + //e ( G.

S ince  f l r  :  H@ ( tn )  =  V , |  V ,@V' I2Zand  lHz l :4 ,  wededuce tha t  HzZV ' l 4V ' ,

and hence either Hz : H or H2 : (h -ea). Assuming that Hz : H,it follows that

(h - r ' ) r :  gL :  H* :  HL :  h r .  The re fo re  HL  {  t l r : e f ,  andso  s4  €  cne f r  (

G o HLr : //, which is a contradiction. Thus, it remains only to consider the case

H 2 =  ( h - r n l . T h e n  ( h  - t L ) L :  g L :  H * :  ( h - r + ) L . R e p l a c i n g  B  w i t h  h l e , t a

and proceeding as above, we finally obtain that (h + ,L)L : (h - ,n)t : (h - ,')L,

and hence | \ tf g hL, as one easily checks. On the other hand, since (f : ef,) : 2, it
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follows that f : etuo ef, forsome (for all) o e f\ef . Consequently for.every r e ef
and a e f \ef we have 0: h(or): h(o)+oh(r) : oh(r), and hence ef < hr. Thus
hr : f, i.e., h: 0, which is a contradiction.

(3) ==+ (1): Using Corollary 2.3, we have to show that d :: resl(Q e rc(L,A)
for every A € L(f lcr). Assuming the contrary, it follows by Theorem 1.20 that there

exis t  A € f ( f lc r )  and p e P(L,A)  9P( t ,A) ,  i .e . ,  l lp  e  A\Aa -c  / \ ,4 f ,  such
that eol6 e. G if. p + 4 and etnl6 € G if. P : 4. Consequently, there exists h e G

such tha t  h l t :  eo la  i f  p+4 ,  and  h la  :e ' a l t  l t p :1Le t  n :o rd (h ) .  S ince

ord(eola)  -p  for  p l4and'  ord(e i la)  :4  for  P:4,as l f f  € .4\A^,  i t fo l lowsthat
pln,'and, hence p € Pc )P(1, A). On the other hand, Gr ( hr n A < tot' contrary

!to our hypothesis.

We denote by C(f , ,4) the poset of all Cogalois groups of Zr(1, A) and by C+(l' ,4)
its subset consisting of all Cogalois groups G which additionally are closed elements
of the canonical Galois connection described in Proposition 0.1" (1), i.e.,,G : GL'.

Remember that K(f,,4) denotes the poset of all Kneser groups of zL(l,A) and

K*(r , / )  :  {G e K(1,  A) lG :  G-"  } .

Corollary 2.6. C+ (1, A) : K+ (T, A).

Proof. Apply Theorem 2.5 and Corollary 1.21 tr

Set M(f, A):: K(l,A) \C(f,,4). Obviously C(f, A), C+(1,,4"), and M(T,A) ate

stable under the action of f.

Corollary 2.7. C(l,A) i,s a closed subset of the spectral space K(l,A). Inparticular,

c(t,A) has a natural structure of spectral (stone) f-space, and c+(l,A) i,s a closed
l-subspace.

Proof.  By Theore m 2.5, M(T, A) :  l )pep"np(r,A){G e K(1, A) lGr < # }  is t rru

inverse image trough the canonical continuous map KG,A) ------ L(0, Q v' GL, of

the union Upep6np(t,qUui of basic open sets of the spectral space [.(f), and hence

M(1,,4) is an open subset of the spectral space K(1,,4). Consequently, C(f,,4) is
nclosed, as desired.

Corollary 2.8. The following asserti,ons hold.

(1) C(f ,  A) i ,s a lower subset of the poset K(l ,A).

(2) The property of a subgroup G of zr(l,A) bei.ng cogaloi,s i.s of fini.tary character,
'i.e., G € C(f, A) i.f and only if F €C(l,A) for all finite subgroups F of G.

(3) For any G € C(f, A) there euists a maTimal Cogalois group lying ouer G.

@) The set c(r,/)*u* of allmarimal cogalois subgroups of zr(T,A) has anatural

stntcture of Hausdorff l-space.
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proof. (1) For any G € c(f , .4), the closure @l : n'(g) in the spectral space lc(|, A)

is 
"ont"inea 

in C(r, A) since the latter set is closed by Corollary 2.7. Thus H e C(t, A)

whenever F/ < G, as desired.

(2) According to the definition of the spectral topology on n'(Zr(t,A)), for any

c ii,1Zt1f,A)t [,(G) is the closure of the subset of \'(ZL(y,A)) consisting of all

finite subgroups of G, so (2) follows at once from corollary 2.7.

(3) and (4) follow in a similar way as the assertions (3) and (4) of corollary 1"'8' tr

Corollary 2.g. Let p be an od,d. pri.me number, and' let G be a p-subgroup o7 ZL (f , A) '

Then G is Cogaloi,s i'f and only i'f G i's Kneser'

Proof. By Corollaries 1.7 and 2.8 (2), we may assume that the pgroup G is finite'

Assume that G is Kneser and prove that G is Cogalois with the aid of Theorem 2'5'

of course, we may assume that p €.P(l,A),for otherwise we have nothing to prove'

As we have already seen at the beginning of the proof of Lemma L'18, the index 1f : eor)

is a divisor I I of p-L, in particular it is prime to p. since the pgroup G is Kneser,

it follows that (f t G\ - lit ir a power of p, and hence Gt # ef,, as desired. tr

Remarks2 .1 .0 . (1 )Coro l l a ry2 .gmay fa i l f o rP :2 . Indeed thes imp les texamp leo f
a Kneser non-Cogalois 2-group is the one corresponding to the action of type Da or

Ds (see Deflnition 2.16 and Lemma 2.17).

(2) In contrast with the property of Kneser groups given in corollary 1.16, the

"oniition 
that all pprimary components of G are Cogalois, is in general not sufficient

to ensure G being Cogalois. To see that, observe that the group corresponding to the

action of type Do" is Kneser but not Cogalois, and has all its primary components

Cogalois (s"" agr,in Definition 2.16 and'Lemma2'17)' n

The next theorem essentially shows that a subgroup G < Zr(1,,4) is Cogalois if

and only if G has a prescribed structure, and is the abstract version of the structure

theorem [1, Theorem 4.3] for Kneser groups from the field theoretic infinite Cogalois

Theory.
For any subgroup G of ZI(1, A) and for any prime number p, denote

GLL(p)  i f  e i ther  pePc,or  p -  2  and 4ePc,
GLLl2l if p : 2, 4 e Pc, and G[21 + 0,
0 otherwise,

and
G : @ e ,

p€P

Now, consider the subgroup

FG: l )  { t ldz lz :Dh(r )  :O(  U h( f ) )
n€2a hec peP heG(p)

er :  
{
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of A, and let ZL(TlGL,t"c) : QLL n ZL(l,pc) denote the subgroup of ZL(|,A)

consisting of those cocycles which are trivial on Ga and take values in 1"". Clearly,

G < z L F l G L , p c ) < 6 < c t t ,

which implies that
GL:  z ' ( r lGL,pc)L  :  dL .

Notice also that
P g : P n F l G t , t " c ) : P e .

Theorem z.LL. With the notati,on aboue, the following assertions are equ'iualent for a

Kneser group G of Zr( l ,A).

(1) G is Cogaloi,s.

(2 )  G:  Zr ( l lGL,pc) .

Q)  G :  e .

Proof. (1) + (3): If G is cogalois, thelL d is also cogalois by Theorem 2.5 since

i;: i6' una bL : GL. rnpJrti.uiur, G e K(t,A), anJ hence G: d.GLL : d,
by Lemma 1".5, as desired.

(3) + (2) is rrivial.

(2) + (1): Assume that G : Zr(llGr,pc) and G is not cogalois. Then,

by iheorem'2.b, there exists p e PcnP(t,A) such that 6L e ei. Therefore,

€e  e  Z r (T lGL , t t c ) :  G  fo r  p  *  4 ,  and  e 'n  €  Z r ( f  lG t ,pc ) :  G  fo r  p :  4 .  By

Theorem 1-.20, we deduce that G is not a Kneser group, contrary to our hypothesis. n

Recall that by C(t,A) we have denoted the f-poset of all Cogalois groups of

Zr(f ,,l); this set also has a natural structure of spectral (Stone) l-space by Corollary

2.7.

Corollary 2.!2. For any G, H eC(t,A) we haue H <G Lf and, only i , f  Gr < Hr.

In parti,cular, the map C(1, A) ------+ i[(I.), G - Gr, 'is coherent and znjecti,ae.

Proof. Let G, H e C(f ,4 b" such that G-L < HL, and prove that 11 < G. By the

definition of the groups G and I/, and using Theorem 2.11, it suffices to show that

Pu e Pc and,  Ht2)+ {0}  ==+ GIz l+ {0} .  Letp ePn u{2}  and h € / {  besuch

that ord(h) : p. si.r"" H e C(t,A), we have (l : hL1 : p, and moreover, there exists

only one'proper subgroup (of index 2) lying over hL if p:4. Since G e C(T,,4,) and
gr g Hr < hL, it follows that G n hLL is a cyclic subgroup of. G of order p, and

hence either p ePc ot p - 2 and G[2] + {0}, * desired.

The injectivity of the canonical map C(f, A) - II (f) is now obvious, so it remains

only to show that it is coherent. Let A be an open subgroup of l, and denote by

W : {G e C(l,A)lGL < A} the inverse image through the map considered above

of the basic quasi-compact open set l,16 of. the spectral space Lif;. We have to show

that W is also open quasi-compact. We may assume that W f a, since otherwise we
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have nothing to prove. Fbr any G eW g C(f,.A), it follows that (GnAf)f = A and

G n Ar is a finite subgroup of G of order (f : A), in particular, it belongs to W. As

the canonical map above is injective, it follows that F :: G fl Ar does not depend on

the choice of. G eW. Consequently, W :l,lp nC(f,,4) is a basic quasi-compact open

set of the spectral space C(f , A), as desired. fl

Remarks 2.13. (1) An alternative proof of the first part of Corollary 2'L2 can be

done using the following fact: if G is Cogalois, then the order/index-preserving map

U ,- UL maps bijectively the cyclic subgroups of G (which are the only finite subgroups

U of the torsion Abelian group G for which the lattice n,(U) is distributive) onto the

open subgroups A of f lying over GI for which the lattice n (f lA) is distributive.

In particular, O6 consists of those positive integers n for which there exists an open

,ubgronp A of f lying over Ga such that (f : A) : n and the lattice n'(f lA) is

distributive.

(Z) BV Corollary 2.12, C(1,,4) is identified through the injective coherent map

G a 
'GL 

with a closed subspace of the spectral (Stone) space n (f l Zt (l , A)\ , which

is stable under the coherent action of f by conjugation' !

corollary 2.L4, The following assertions are equ,iualent for G e c(l,A).

(1) G ts stable und,er the action of l, i.e., G is a l-submodute of Zr(t,A)'

Q )  G L  < I .

(s) p8' : FG'

Proo f .  (1 )  + (2 )  ho lds fo rany  G<Zr ( l ,A )  s ince  ( "G) t :oGLo- r  f o ra l l o€ f .

(z) + (3): As FG : Dnrca(f), we have only to show that og(r) : g(r) for

all g e G, o e GL, re l. Since, by assumption, Gr { l, we have r-ror € Gr, so
g: g(r-ror) : r-r(og(r) - g(")), and hence og(r) :9(r), as desired. Note that the

implication (2) + (3) holds for any G < Zl(t, A).

(3) + (1): Let 9 € G, r € f,  and prove that rg e G. Since G: ZL(t lGL,pc)

by Theorem 2.1-0, we have to show that rglcL : 0 and ("g)(f) e pc. From the

hypothesis it follows that (rg)(o): rg(r-ror) : og(t) - g(r):0 for any o e GL,
as desired. Note that the latter condition holds in general since any subgroup of /, in
particular pG, is stable under the action of f . D

Corollary 2.L5. If  G e C(l,A) i ,s a l-submod'ule of Zr(l ,A), then

G = ZL (t IGL , pc).

Proof. Since G is Cogalois, we have G: Zr(llGr,pc) by Theorem 2.11, and since
G is a f-submoduleof. ZL(1,-4), we have Ga < f by Corollary 2.L4. To conclude,
observe that Zr(l lGL, ttc) = Zr(t f GL, pc). n
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According to Lemma 1.18, the Kneser groups are precisely those subgroups of

ZL(y,A) which do not contain some particular cyclic groups, namely the minimal

subgroups Bo which are not Kneser, p eP(1,.4). Using Corollary 2'8 we are going to

present a similar charaxterization for Cogalois groups. To do that we will first describe

effectively the minimal subgroups of. ZL(|,,A) which are Kneser but not Cogalois. A

special class of actions which are introduced below plays a major role in this description.

Definition 2.L6. Let I be a f,nite group, and let A be a fi,nite subgroup of Qlz on

whi,ch the group I acts. One says that the action of I on A, or the l-module A, is

(L)  
" f  

type Da i f  l :  Da:  (o

A: (Ll4)ZfZ, and o

: 12 : (or)2 : 1) =- V,lzZ x Zf2Z,'---:-
-  L l4 ,  r  I /4 :  L /4.

(2) , f  type Ds i f  l :  Ds:  (  o, jP' : ! : :  ( " ! : \=V' l4V'xZl2Z,

A :  (L l4)V' fZ,  and o l f4 :  - I14,  r  114 :  114'

(S) o/ type Dp, if f : (o,rlo' :!: org:r-"-t) = V'lnZ xuZf rZ,

A: (IlVr)Zf Z, and oLlp, : uI/?r, ,llP, : I/Pr,
w h e r e  p € P ,  P ) 2 ,  r € N ,  r ) 1 ,  r \ ( P - I ) ,  a n d

u e (ZlprZ)* is such that the order of umodp in

( Z l p Z ) .  i s r  a n d  u m o d l : 1 m o d l  f o r a l l l e P , l l r .  t r

Remember that by M(l,A) we have denoted the 
"s-open 

set (possibly empty)

K(l,A) \ C(f, A) of all Kneser groups of zL(T,A) which are not cogalois groups.

Clearly, for any G e M(t,A) there exists at least one minimal member H of M(t, A)

such that H g G. By M(t,A)^in we shall denote the set of all minimal members of

M(t,A), and call them minimal Kneser non-Cogalois groups. Observe that whenever

G e M(T,A)*i,, then necessarily G is a nontrivial finite group according to Corollary

2 .8  (2 ) .

Lemma 2.I7. The following cond'iti 'ons are equ'iualent for G e K(l,A)'

(1 )  G e  M( l ,A)*on .

Q) GL 4l and' tlte act'ion of tlGL on ltG 'is one of the types D4,D3, or Dpr

defined aboue.

Proof. (1) + (2): First assume that G € M(t,A)-i,,. Then, as was observed above,

G is finite. Since G is not Cogalois, it follows by Theorem 2.5 that there exists

p e P(1, A) OPc such that GL C d. Assume p is minimal with the property above,

and let H be a cyclic subgroup of. G of. order p. Since G is Kneser, its subgroup fI is

also Kneser, and hence (r : Hr) : lHl 
- p, inparticular, H # Bp. we distinguish the

following two cases:

Case (i): p:4. We are going to show that GL < f and the action of. lf GL on

pc is either of type Da or of type Ds. Two subcases arise:

Subcase(L):  ea€.I / .  As H=Z,|  V, and HL <6i- ,  HisnotCogaloisbyTheorem

2.5, so by the minimality of G we have G : H a- ZIAV, and pc = Gl4)zfz. since

,!o'
t / 4 :
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og - g e Bl(f, pc) : (ea) ( G for all o € l, 9 € G, it follows that G is stable

,rrrd", the action of f, th"r"fore GI ( | and G < ZI(llGL,ltc). As the Kneser

non-cogalois group G is cyclic of order 4, it follows that t lct o zl2v' x zl2z and

the action of tlGL on l"c is of type Da.

subcase (2): ,a / H. First, show that eq e G. Since G is Kneser, it follows

that G(2)L g ef ,  for otherwise (GQ)L : @(2)L n sf )) :  (f  :  ' t)  :2, so 2lc(2)l :

(f : (G(2)a nrf )) | lf | : lGl , which is a contradiction. Thus, the 2-primary component

G(2)'is'Kneser, and is not Cogalois by Theorem2.5, Consequently, by the minimality

of i, we deduce that G: G(2). Since.L :: resl(G) is a 2-group as a factor of

G and a ( p(e[,A), it follows by Theorem 2.5 that L is a Cogalois (in particular,

Kneser) group'oi Zile[,1\. Therefore, (Gner[)r : e[ by Corollary L'12, so the

Kneser group G n €tL of. Zr(t,,A) is cyclic of order 2. Since the only cocycle of order

2 belonging to efr is €4' we deduce that ea € G, as desired'

Consequently, by the minimality of G, we have G : H@(t+) = Zl4V'AV'122, FG :

(114)V,l4Z, and.L d H =V,14V,. Moreover, since e4 € G,.it follows as in the Subcase

if) iftrt G is stable under the action of f. Therefore Gr < f and G is canonically

identified with a subgroup of zI(tlGL,pc). In particular, GL < rt, and eff GL :

,*ILL = z,lLv, as .L ry zl4z is a cogalois group ,ot z,L(e[,A). observe that the

canonical action of. HLIGL - lle[ = V,l2V, on ef IGL = V,IAV' is non-trivial, for

otherwise we would havelfGL ry G, contrary to the fact that G is not Cogalois.

Thus, llGL z eflGL xlle[ ry Ds, i.e., the action of TIGL on ltc is of type Ds, m

required.

case (ii): p €P \ i2) We are going to show that GL < f and the action of

llGL oL Ltc is of type Dp", where r:: (f : €t). Let, G/ denote the subgroup of G

consisting of all its elements of order prime to p' As G is Kneser, so is also G', and

hence (G,t t Gt) : (G : Gt) is a power of the prime number p. consequently, its

divisor (G't , G'L a6pr) is also a power of p. On the other hand, as ef , the kernel of

the non-trivial action of f on Afpl, isnormal in l, we have G'r nrt <G/r. So, the

factor group G'LI(G'L neor) is identified with a subgroup of the cyclic group f/€el

of order r, with ,lp - 1 and (r,p) : L. Therefore G'-L < eoa. Since Gt + G, it

follows from the minimality of G that G/ is Cogalois. Thus, K :: Gt a rit is also

Cogalois and KL: r[.Moreover, K is cyclic of order r since tlKL PZfrZ. In

particular, we have ryK: Q/r)V'lV' ( A. As KL < f, Corollaries2.T4 and 2.15 imply

thar (Llr)zlv, < A"t and, K = zrFl€t,Qlr)zlz).
Flom the minimality condition satisfied by G it follows that G : H @ K = ZlprZ

and ps:  ( l lpr )Z, lZ.  S ince KL:  d < f  and ( ( f  t  Ht ) , ( f  :Ka))  -  (p , r ) :1 ,

we deduce that f - HLKL and GI : HL n KL < HL. So, to conclude that

GL <f it suffices to show that Gr < KL. For any ) € Gr, u e KL, h e H we have
h(u) ,u- r ) :h(u)- (uAu-r )h(u) :o  s ince h(z)  e  ( t l f lv , lz ' :AK'  and u) 'u-L eKr '
Thus Gr < f, the kernel of the canonical action of. llGL oL l.tc is ef f GL, and
TIGL : etlGL x HLIGL. Let o € HL, r € ef,, u e (ZlprZ)* be such that oGr is

a generator of HLIGL =ZfrZ, rGL is a generator of e[lCL =ZlpZ, and ofif,r:
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"{i. 
Clearly 

"{i 
-- li and the order of u mod p e (ZlpZ)* is r. Moreovet,

oro-L : ru(modGa) since G : H @ K, h(oro-t) : oh(r) : uh(r) : h(r") for all

he H ( *  h l+  €Hom1ef , ( t ldz lZ) ) ,and k (oro-L) :k ( r " ) :0  fo r  a l l  ke  K .

Consequently, llGL o ZlpZx,ZfrZ. Therefore, to conclude that the action of
llGL on pG is of type Dprl it remains only to check that umodl : L modl i.e.,

Jt e I for all t e P, tlr. Assuming the contrary, let I e P(1,,4) be such that

l l r .  S ince T i ,  / ' * ,we deduce that  Gr  < e1-  < ef .  Tnus t  eP( l ,A)nPc and

Ga < e/; hence | )- p, which is a contradiction.

(2) + (L): Assume that GL < f and the action of TIGL on l.tc is of one of the

types'Da, Ds, or Dp,.Since G is canonically identified with a subgroup of. Zr(T, ps),

we may assume without loss of generality that Gr : {1} and A : PG, i.e', (f, '4)

is one of the actions described in Definition 2.L6. We have to show that every Kneser

group G < Z :: Zr(l,A) satisfying GL : {1} and Fc: A is minimal non-Cogalois.

We distinguish the following three cases:

Case (a): (f,,4) is of type Da. Then, the morphism h + (h(o),h(r)) maps

isomorphically z onto ,4. x2A=Zl4Z xZl2Z. Thts z : (e'a) O (p), where 9l e+

is defined by p(o) : 0, pG) : tl2. Notice that G'.: (t' ++ d = Zl4Z is the unique

Kneser group of. z suchthat p,6: A,in particular GL: {1}, and G is the unique

Kneser non-Cogalois subgroup of Z as well.

Case (b): (f,A) is of type Ds. Then, the morphism h -+ (h(o), h(r)) maps

isomorphica l ly  z  onto AxA=V, laZ,xV, l4V, .  consequent ly ,  z :  (e 'a)  @(o) ,

w h e r e t h e c o c y c l e a i s d e f i n e d b y o ( o ) : 0 , a ( z ) : | l 4 . o b s e r v e t h a t t h e r e e x i s t
only two Kneser groups G of Z such that gL - {1}, i.e., lcl : lfl : A, hence

F G :  A :  $ l Q Z f Z , n a m e l y  G t :  ( s 4 )  O ( " )  a n d  G 2 :  ( € 4 )  e ( a + e / a ) ,  b o t h

isomorphic to Zl2Z@Z,l4Z, and stable under the action of f. They are also the only

Kneser (minimal) non-Cogalois groups of Z of. order 8. Notice that, on the other

hand, (e'a *2cr) =Z,l4Z is the unique Kneser non-Cogalois subgroup of order 4, the

corresponding action being of type Da.

case (c): (f ,A) isof type Dp", where p isanoddprimenumberanf r lp-L, r > l .

Let u e (ZlprZ). be the unit defining the action. Since l\/(a) : D"o 
: 0 mod pr,

i:o
the morphism h r-+ (h("),h(r)) maps isomorphicaLly Z onto ,4 x rAiZlprZxV'lpZ.

Consequently,, Z : Br@ (al O (p)'where the cocycles a and B are defined by a(o):

Ti, 
"(r) 

:0, g@) :0, g(r) :11p. As 2(f, A) : {p}, the necessary and sufficient

condition for a subgroup G of. Z to be Kneser is, according to Theorem 1.20, that

G n B, : g. Consequently, G is a maximal Kneser group of Z e G is a direct

summand of Bo e G is a Kneser gloup isomorphic to ZlprZ g Q is a Kneser

group with Gr : {1} e G is a Kneser group with pr6 : -4. The only subgroups of Z

satisfying the equivalent conditions above are the subgroups Gi : ('ieo*"+0) = Zf prZ,

i, e zlpz. since 2(f, A) : {p} and the unique subgroup H { Gt.,i, e Z/pZ, for which

pllql and. HL ( d is the whole group G;, it follows by Theorem2.S that the G,;'s are

also the only Kneser non-Cogalois subgroups of Z. Notice that, in contrast with the

1 1
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actions of type Da or D6, the subgroups Gi,,i' e V,fp% are not stable under the action

of l. More precisely, f acts transitively on the set { G; lf e Z'lpV'} with stabilizers

(rior-i) = zf rZ,i e zlpz. n

Corollary 2.L8. Any Kneser minimal non-Cogaloi's group of ZI(|,A) is isomorphic

either to zl4z, or to zf2z@zlLv,, or to zfprz for an odd prime number p and, a

d i ,u isor  r l l  o f  p -L

Proof. Let G be a Kneser minimal non-Cogalois group of. ZL(t, A). BV Lemma 2.!7,

Gr < f and the action of tlGL on pG is of one of the types Da,Ds or Dpr. The

possible isomorphism types for the group G arc now immediate from the proof of the

implication (2) + (1) of Lemma2.I7' fl

The next result provides an analogue of Theorem L.20 for Cogalois groups'

Theorem Z.Lg. The following statements are equ'iualent for a Kneser subgroup G of

zr( t ,  A) .

(1) G is Cogalois.

(2) G contains no H for which HL <l and the action of l/HL on lta is one of

the types D+, Da, or Dpy

Proof. The result follows at once from Lemma 2.tT and from the following fact we

already mentioned just before Lemma 2.L7: for any L e M(1,,4) there exists at least

one K e M(f ,/)-i, such that K g L. tl

As it follows from Lemma 2.17, the fact that all the pprimary components of a

subgroup G of. ZI(|,A) are Cogalois does not imply that the whole gloup G is Coga-

lois. The next result provides a supplementary lattice theoretic (topological) condition

which ensures such an implication, obtaining in this way a tocal-global principle for

Cogalois groups.

Theorem 2.2O. Let G be a subgroup of Zr(f ,A), and let

e :it(rlca; --* IIL1r1c6;r;, A * ((^ u G(p)r))p.e.
p€P

Then, the following staternents are equ'iualent.

(L) C i,s Cogalois.

(z) c(p) i,s cogalois for all prime numbers p, and the order-preser"u'ing map 0 is a

latti,ce'is omorphism.

(s) c(p) i,s cogaloi,s for atl prime numbers p, and, the coherent map 0 i.s a homeo-

morphism of spectral (Stone) spaces.

(4) G 'is Kneser, G(2) i,s Cogalois, and, A:T wheneuer A€ n (flcr) i 's suchthat

a(a) : a(f).
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Proof. (1) + (2): Assuming that G is Cogalois, we only have to prove that 0 is a

Iattice isomorphism. As G and the G(p)'s are Cogalois, the canonical order-reversing

maps (p : U(C) ----- f(flcL), go : \'(G(p)) ---+ ]1,(r'lc(p)r), H e' HL are lattice

anti-isomorphisms. On the other hand, since the canonical map

{ : \,(G) -- II L(c(p)), H r + (H (fl)o6e
p€P

is a lattice isomorphism, the composed map

(fl eo) o,b o s-L: L1r1cr; --- II L1r1cp;r;, A * ((G n ar)1p)r)oee
p€lP P€P

is also a lattice isomorphism, so it remains only to check that ([o.* pp) o rlt o 9-r : 0,

i.e., (G n Ar)1o)a : (A u G1oH for all p €P,A € L(f IGI). Now, as <p is a lattice

anti-isomorphism, we deduce that

(cn ar)(p)r : ((cn ar) n c(p))I :  @ : (,\UG(p)r),

as desired.

(2) e (3) is obvious.

(2) + (4) follows at once from Corollary 1'16.

(a) + (1): Assuming that G is Kneser but not Cogalois, we have to show that

either G(2) is not cogalois or there exists a € L(f lcr) such that A I I and 0(a) :
d(l). Let H be aminimal non-Cogalois subgroup of G. According to Lemma 2'L7, HL

is'an open normal subgroup of I and the action of llHL oL ltr is one of the actions

described in Definition 2.16. If the action above is of type D4 or of type D6, then it

follows that H < G(2), and hence G(2) is not cogalois. so, it remains to consider

only the case when the action is of type Dp", where p is an odd prime number and

r lp - t , r22 .  No t i ce thu t  @f  uC@S: ,HLG(p )L  asHL  < f  ,  ( f  : aaC@)r )  i s

u io*" .  o f  p  as G e K( f ,A) ,  and ( f  : f / (p) r )  : lH(p) l :p  as / { (p)  < G e K( l ,A)

una ff@) o ZlpZ (since H =V,lprZ by Corollary 2.L8 uld (p,r) : 1). On the other

hand, since fIr < HtC(p)t ( I /(p)r ( f  and (f : I1r) :  pr,r lp-I '  i t  fol lows

that HLG(p)t :  H(p)L. As t lHL o ZlpZxuZfrZ for a suitabLe u € (Zlprv').

by Definition 2.L6, there exists an open tubg.ggP-A-of ,f tyilq o"9=t, fl1 such that

( i :A)  :p  and,  A.*  H(p)L-Consequent lv ,  (Auc(p)r )  :  (Au H(p) t ) :  f ,  and,

similarly, 1,1 uqAT : I for any prime number q I p since all open subgroups of

f lyingover G(q)r have g-th power indices in I as G e K(t,,4). Thus, we found a

subgroup A of I with the desired properties, which finishes the proof. n

Finally, we consider the case when G is stable under the action of f. Then, the

Iocal-global principle for Cogalois groups has the following simple formulation.

proposition 2.2L. The fottowi,ng assert'ions are equiualent for a l-submod,ule G of

zr(t ,  A).

13
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(1) G i,s Cosalois.

(Z) C(p) i,s Cogalois for all prime numbers p'

(3) G is Kneser, and G(2) i,s Cogaloi's.

ALBU and BASARAB

Proof. The implication (1) + (2) is trivial, while the implication (2) + (3) follows

at once from CorollarY 1.1-6.

(3) =+ (1): Assuming that the f-module G is Kneser but not cogalois, we have

only to show ihat G(2) is not Cogalois. Let H be a minimal non-Cogalois subgroup of

G. According to Lemma 2.L7, HL < f and the action of tlHL on ltH is the one

described in Definitio n 2.16. If the action is of type Da or of type D3, then H < G(2),

and hence G(2) is not Cogalois, as desired. Now assume that the action is of type Do"'

Then, as in the proof of Theorem 2.I9 we deduce that (f : ULCfu1,L1.- p' On the

other hand , C@jt { | since G(p) is a f-submodule of G. Hence HtG(p)t ( 1., and

so, zf pz is a quotient of. t IHL = zlpz xuzf rz, which is a contradiction. n
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