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Abstract

This is the second part of a series of papers which aim to develop an abstract
group theoretic framework for the Cogalois Theory of field extensions.
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2 Cogalois groups of cocycles

In this section we define the concept of abstract Cogalois group and establish various
equivalent characterizations for such groups, including a Quasi-Purity Criterion, an
abstract version of the structure theorem for Kneser groups from the field theoretic
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Cogalois theory, and an analogue of Theorem 1.20 (the abstract Kneser criterion) for

Cogalois groups.

For a given subgroup G of Z}(T', A), the lattice L(G) of all subgroups of G and the

lattice L(I'|G*) of all closed subgroups of I' lying over G~ are related through the
canonical order-reversing maps H — HL and A — GNAL = GnKer (resh ). Clearly,

these two maps establish a Galois connection, which is _i{lduced by the one considered
in Proposition 0.1 (1). Notice also that L(G) (resp. L(T|G1)) is a closed subspace
of the spectral (Stone) space L(Z!(T',A)) (resp. L(T')) and the two maps above are

continuous by Proposition 0.3.

Definition 2.1. A subgroup G of Z'(T', A) is said to be a Cogalois group of Z LT, A)
if it is a Kneser group of Z*(T',A) and the maps (=)t : L(G) — L(T|GY) and
an (=)t : L(0|G) — L(G) are lattice anti-isomorphisms, inverse to one another. O

Some characterizations of Cogalois groups of Z(T', A) are given in the next result.

Proposition 2.2. The following statements are equivalent for a Kneser group G of
Z\(T, A).

5) The canonical maps L(G) — L(T'|GY) and E(F[GL) — L(G) are homeomor-
phisms of spectral (Stone) spaces inverse to one another.

(6) G is a Cogalois group of Z*(T, A).

Proof. (1) <= (2) by Corollary 1.12.
(1) = (3): For any A € L(I'|G1), we have A = HL, where H=Gn AL € L(G).
: (3) = (4): Let A1, Aq € L(I'|GF) be such that GNA{ = GNAgy. By assumption,
Ay = Hi*, Ay = Hy for some Hy, Hy € L(G). By Lemma 1.5, H; = GnNnH{ =
GNA+=GNnAy=Gn Hi-1 = Hy, and hence, A; = Ay, as desired.

(4) => (5): For any H € L(G), we have G N H* = H by Lemma 1.5, so the
composition of the canonical maps L(G) — L(I'|Gt) — L(G) is the identity. It
follows that the map A — GN AL is onto, and hence bijective, with inverse H — H .

(5) = (6): As order-reversing maps inverse to one another, the canonical maps
above are lattice anti-isomorphisms inverse to one another, as desired.

(6) = ‘(1): Let A € L(T'|Gt). Then, by assumption, there exists a unique
H € L(G) such that A = H' and H = GNAL; hence A = (GNAL)L, as required. O
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Corollary 2.3. A subgroup G of Z'(T', A) is Cogalois if and only if resk(G) is a
Kneser group of ZY(A, A) for every A € L(T'|GL).

In particular, ZY(T', A) is a Cogalois group of itself if and only if Z1(T',A) is a
Kneser group of itself.
Proof. As T' € L(['|G1) for every G < ZYT, A), and P(A,A) C P(T,A) for all
A € I(T), the result follows immediately from Proposition 2.2 and Corollary 1.22. [

Definition 2.4. A subgroup D of an Abelian group C is said to be quasi n-pure, where
n is a given positive integer, if Cn] C D, or equivalently C[n| = D[n]. For M C N,
C is quasi M-pure if C is quasi n-pure for all n € M.

Recall that a well established concept in Group Theory is that of n-purity: a
subgroup D of an Abelian group C is said to be n-pure if D NnC = nD. There is
no connection between the concepts of m-purity and quasi n-purity; e.g., the subgroup
27./47, of Z/4AZ is quasi 2-pure but not 2-pure, and any of the three subgroups of order
2 of the dihedral group Dy is 2-pure but not quasi 2-pure. Notice that the abstract
notion of quasi m-purity goes back to the concept of n-purity from the field theoretic
Cogalois Theory (see Albu [1], Albu and Nicolae [6]).

For any subgroup G of Z}(T', A) we denote Pg := Og NP, ie., Pg is the set of

those p € P for which exp(G[p]) = p.
The quasi Pg-purity plays a basic role in the characterization of Cogalois groups

of ZI(I', A). The next result is the abstract version of the General Purity Criterion
[1], Theorem 2.3, from the field theoretic infinite Cogalois Theory.

Theorem 2.5. (The Quasi-Purity Criterion). The following statements are equivalent
for a subgroup G of Z1(T, A). '

(1) G is Cogalois.
(2) The subgroup AL of AS" s quasi Pg-pure.
(3) G+ ¢ ebL for all p € Pa NP(T, A).

Proof. (2) = (3): Let p € PaNP(I', A). Then 1//?7 € A\ A", and hence 1//\p ¢ ACT
as AC"[p] = AU[p] by hypothesis. Consequently, there exists o € G* such that

—

al//\p # 1/p, ie., 0 & ei)L, which shows that Gt ¢ E;,L, as desired.

(3) = (2): Let p € Pg. Then clearly 1//; € A. Assuming 1//\p e AL, we
obtain that Al[p] = AS"[p] = (1/p)Z/Z, as desired. Now assume that 1//; ¢ A,
Since G1 ¢ EIJ; by hypothesis, it follows that AL[p] = AC* [p] = {0} for p # 4, and
ALlp] = A% [p] = (1/2)Z/Z for p = 4.

(1) => (3): Suppose that G is Cogalois, and let p € Pg NP(T, A). Then 1//\p =
A\ A', and there exists a cocycle h € G of order p. Let H = Z/pZ denote the

subgroup of G generated by h. Since G is a Kneser group of ZX(T', 4), (T : H) =
|H| = p. Assuming that G+ C EZJ;, we have to derive a contradiction. We distinguish

the following two cases:
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Case (i): p € P\ {2}. Since G € K(T',4), it follows by Theorem 1.20 that
ep & G. Setting oo :=h —¢gp € Z\(T, (1/p)Z/Z) \ -G, we deduce that ord(c) = p and
(ep) N (@) = {0}. Consequently, again by Theorem 1.20, (o) € K(I', A), and hence
(T : at) = p. Since G+ < ht and G+ <, by assumption, it follows that GL < ot
As G is Cogalois, we deduce that o = (GN ott)l and |Gnatt| = (T :at) =p,
therefore G N att = Z/pZ. Now consider the subgroup H = H+ (Gnatt)
of G. As p is a prime number, it follows that either H' = H = Z/pZ or H' =
Ho (Gnall) = (Z/pZ) & (Z/pZ). Since H' < G € K(T, A), we deduce that
(T H'*) € {p,p*}. This implies that (T : 51;,") | p? since Ht <htnot < ei;. On the
other hand, & is the kernel of the (nontrivial) action of ' on A[p] = (1/p)Z/Z, and
hence 2 < (I': 5;) | (p — 1), which is a contradiction.

Case (ii): p=4. Let &, € Z}(T', A[4]) = Z(T, (1/4)Z/Z) be the 1-cocycle defined
in Section 1, and remember that €4 = 2€j. As I//Z ¢ AT, the action of I" on A[4] =
(1/4)Z/Z., whose kernel is 7 = ¢yt is nontrivial, and hence T/ef = (Z/AZ)* = 1/2Z,
ie, (I': Ei‘) = 2. Since G is Cogalois and G-« si by assumption, it follows that
er = (GNegt)t and [Enetl] = (8] =2, ie, G Neft = Z/2Z. One easily
checks that €4 is the unique element of order 2 of Eil, and hence G N EiL = {8 ), itk
particular, €4 € G. On the other hand, since G € K(T, A), it follows by Theorem 1.20
that €} & G, and hence h ¢ {e}, —€,}. Set f:=h—¢j and H):= (h,e4) < G. Then
0 # B ¢ (e). Two subcases arise:

Subcase (1): €4 € H. Then 2h = ¢4 and 20 = 2h—2¢), =2h—e4 =0, ie,
ord(8) = 2. By Lemma 1.1, we have (I': B1) < |(B)| = 2. Observe that gLt £T, for
otherwise, we would have 0 # 8 € g+t = I't = {0}, which is a contradiction. Thus,
(T : 8+) = 2. On the other hand, Gt <H+t=H'n ei =htn sﬁll < B*, and hence
Cnptt < GnH = H gt = @nph)t, and [GnpHt| = (T: ) =2, as
G is Cogalois. Since (g4) is the unique subgroup of order 2 of H = 7./47., it follows
that G N G+L = (g4). Therefore B € (BH)+ = (G )t = eft, so B = &4 since
ord(8) = 2 and ¢4 is the unique element of order 2 contained in 5. In particular,
B € G, and hence ¢j = h — € G, which is a contradiction.

Subcase (2): €4 ¢ H. Then Hy = H®(e4) = Z/AZOL/2Z. Since 2 = 2h—e4 #0
and 48 = 0, it follows that ord(8) = 4. But &y & (8), so (8) € K(I', A) by Theorem
1.20, and then, (I': B+) = 4. Since H; < G,G- € Hi-= Rt N Eéf = ht ﬂeﬁf < B,
and G is Cogalois, it follows that Hy := G N g <an Hiu- = Hj, Hzl = @1, and
|Hy| = (T': B+) = 4. Thus, Hy is asubgroup of order 4 of H;. Setting Hs = Hy+(g4),
we deduce that Hi = Hsy Nef = BN gt < htnef = H- < Hf Nef, so
Hi = Hi, and hence H3 = H; by Lemma 1.5, as G € K(I', A) and H; + H; < G.
Since H; = H @ (e4) & Z/AZ ® 7./27 and |Ha| = 4, we deduce that Hy = Z/4Z,
and hence either Hy = H or Hy = (h — g4). Assuming that Hy = H, it follows that
(h—¢y)t = gt = Hy = H*+ = h'. Therefore H: <eft =¢}, and so g4 € GNegt <
G N H++ = H, which is a contradiction. Thus, it remains only to consider the case
Hy = (h—¢4). Then (h—e)t =pt=H = (h— e4)*. Replacing B with h + €}
and proceeding as above, we finally obtain that (h + ej)* = (h — et = (h— &)t
and hence T'\ ef C h', as one easily checks. On the other hand, since (I': & =21
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follows that I' = e Uo €4 for some (for all) o € I'\ez. Consequently, for every 7 € €F
and o € I'\ef we have 0 = h(oT) = h(0)+0h(T) = oh(T), and hence et < h*. Thus
ht =T, ie., h =0, which is a contradiction.

(3) => (1): Using Corollary 2.3, we have to show that G = resh (G) € K(A, A)
for every A € L(I'|G*). Assuming the contrary, it follows by Theorem 1.20 that there
exist A € L(T|GL) and p € P(A,A) C P(T,A), ie, 1/p € A\ A2 C A\ AT, such
that ep|a € G if p# 4 and €ja € G if p = 4. Consequently, there exists h € G
such that h|a = epla if p # 4, and h|n = €j|a if p = 4. Let n = ord(h). Since
ord(gp|a) = p for p # 4 and ord(ey|a) = 4 for p =4, as 1//\p € A\ A2, it follows that

p|n, and hence p € PoNP(I', A). On the other hand, G-<htnAK si,L, contrary

to our hypothesis. O

We denote by C(I', A) the poset of all Cogalois groups of Z(I', A) and by C*(T', A)
its subset consisting of all Cogalois groups G which additionally are closed elements
of the canonical Galois connection described in Proposition 0.1 (1), i.e., G = G+,
Remember that K(I', A) denotes the poset of all Kneser groups of Z(I',A) and

KHT, A) = {G € KT, A) |G = G ).

Corollary 2.6. CT(I',A) = Kt (T, 4).

Proof. Apply Theorem 2.5 and Corollary 1.21 (|

Set M(T', A) := K(T, A) \ C(T, A). Obviously C(T', A), C*(T', A), and M(T', A) are
stable under the action of I'.

Corollary 2.7. C(I', A) is a closed subset of the spectral space K(I', A). In particular,
C(T, A) has a natural structure of spectral (Stone) I'-space, and Ct(,A) is a closed

I'-subspace.
Proof. By Theorem 2.5, M(I',A) = Upeporpra{G € KT, A) |G < ey} is the
inverse image trough the canonical continuous map K(I',A) — L(T), G — G- of

the union U,ep,np(r,4) ME# of basic open sets of the spectral space L(T"), and hence

M(T, A) is an open subset of the spectral space K(I', A). Consequently, C(I',A) is

closed, as desired. &2

Corollary 2.8. The following assertions hold.
(1) C(T, A) is a lower subset of the poset KC(I', A).

(2) The property of a subgroup G of ZYT, A) being Cogalois is of finitary character,
i.e., GeC(T,A) if and only if F € C(T',A) for all finite subgroups F' of G.

(3) For any G € C(T, A) there ezists a mazimal Cogalois group lying over G.

(4) The set C(I'y A)max of all mazimal Cogalois subgroups of ZYT, A) has a natural
structure of Hausdorff I'-space.
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Proof. (1) For any G € C(T', A), the closure {G} = L(G) in the spectral space K(I', A)
is contained in C(T, A) since the latter set is closed by Corollary 2.7. Thus H € C(T', A)
whenever H < G, as desired.

(2) According to the definition of the spectral topology on L(Z 1T, A)), for any
G € L(Z1(T, A)), L(G) is the closure of the subset of L(ZY(T', A)) consisting of all
finite subgroups of G, so (2) follows at once from Corollary 2.7.

(3) and (4) follow in a similar way as the assertions (3) and (4) of Corollary 1.8. L[]

Corollary 2.9. Let p be an odd prime number, and let G be a p-subgroup of Z1(T', A).
Then G is Cogalois if and only if G is Kneser.

Proof. By Corollaries 1.7 and 2.8 (2), we may assume that the p-group G is finite.
Assume that G is Kneser and prove that G is Cogalois with the aid of Theorem 2.5.
Of course, we may assume that p € P(T, A), for otherwise we have nothing to prove.
As we have already seen at the beginning of the proof of Lemma 1.18, the index (I : 55)
is a divisor # 1 of p— 1, in particular it is prime to p. Since the p-group G is Kneser,
it follows that (I': G1) = |G| is a power of p, and hence Gt ¢ 5;,’-, as desired. O

Remarks 2.10. (1) Corollary 2.9 may fail for p = 2. Indeed the simplest example of
a Kneser non-Cogalois 2-group is the one corresponding to the action of type D4 or

Dg (see Definition 2.16 and Lemma 2.17).

(2) In contrast with the property of Kneser groups given in Corollary 1.16, the
condition that all p-primary components of G are Cogalois, is in general not sufficient
to ensure G being Cogalois. To see that, observe that the group corresponding to the
action of type D, is Kneser but not Cogalois, and has all its primary components
Cogalois (see again Definition 2.16 and Lemma 2.17). ]

The next theorem essentially shows that a subgroup G < Z I, A) is Cogalois if
and only if G has a prescribed structure, and is the abstract version of the structure
theorem [1, Theorem 4.3] for Kneser groups from the field theoretic infinite Cogalois

Theory. :
For any subgroup G of Z (T, A) and for any prime number p, denote

G+L(p) if either p € Pg, or p=2 and 4 € P,
—{ G2 if p=2, 4¢ Pg, and G[2] #0,
0 otherwise,

Gy

and
G=@ G,
p€ElP

Now, consider the subgroup

ne= | Wmz/z=> u0)=P( |J nD)

neOg heG pEP  heG(p)
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of A, and let ZY(T'|G*,pg) = G+ N ZY(T, ue) denote the subgroup of ZY(T, A)
consisting of those cocycles which are trivial on G~ and take values in ug. Clearly,

G < Z\(T|G* ue) <G < GH,

which implies that _
Gl = 24T |G pe)t = GL.

Notice also that
P =Pzir|ct ue) = Pa-

Theorem 2.11. With the notation above, the following assertions are equivalent for a
Kneser group G of Z1(T, A).

(1) G is Cogalois.
(2) G=2Z"T|G*, o).
3) G=G.

Proof. (1) = (3): If G is Cogalois, then G is also Cogalois by Theorem 2.5 since

Pc =Pz and Gl = GL. In particular, G € K(T, A), and hence G = GnGtt =G,
by Lemma 1.5, as desired.

(3) = (2) is trivial.

(2) = (1): Assume that G = ZY (|Gt ue) and G is not Cogalois. Then,
by Theorem 2.5, there exists p € Pg N P(T',A) such that G+ C ej. Therefore,
£p € ZY |Gt ug) = G for p # 4, and ¢ € Z\T |Gt ue) = G for p = 4. By
Theorem 1.20, we deduce that G is not a Kneser group, contrary to our hypothesis. [

Recall that by C(T',A) we have denoted the I-poset of all Cogalois groups of
Z(T", A); this set also has a natural structure of spectral (Stone) I'-space by Corollary

2.17.

Corollary 2.12. For any G, H € Q(I‘, A) we have H < G if and only if G- < H+.
In particular, the map C(T', A) — L(T'), G — G+, is coherent and injective.

Proof. Let G, H € C(I', A) be such that Gt < H', and prove that H < G. By the
definition of the groups G and H, and using Theorem 2.11, it suffices to show that
Py C Pe and H[2) # {0} = G[2] # {0}. Let p € Py U {2} and h € H be such
that ord(h) = p. Since H € C(I', A), we have (I : h't) = p, and moreover, there exists
only one proper subgroup (of index 2) lying over ht if p =4. Since G € C(T, A) and
G+ < HE < bt it follows that GN htL is a cyclic subgroup of G of order p, and
hence either p € Pg or p=2 and G[2] # {0}, as desired.

The injectivity of the canonical map C(I', A) — L(I") is now obvious, so it remains
only to show that it is coherent. Let A be an open subgroup of T', and denote by
W = {G € C(T,A)|G+ < A} the inverse image through the map considered above
of the basic quasi-compact open set Ua of the spectral space L(I"). We have to show
that W is also open quasi-compact. We may assume that W # @, since otherwise we
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have nothing to prove. For any G € W C C(T', A), it follows that (GN AL = A and
GN AL is a finite subgroup of G of order (I': A), in particular, it belongs to W. As
the canonical map above is injective, it follows that F':= G N AL does not depend on
the choice of G € W. Consequently, W = Ur NC(T', A) is a basic quasi-compact open
set of the spectral space C(I', A), as desired. a

Remarks 2.13. (1) An alternative proof of the first part of Corollary 2.12 can be
done using the following fact: if G is Cogalois, then the order/index-preserving map
U — UL maps bijectively the cyclic subgroups of G (which are the only finite subgroups
U of the torsion Abelian group G for which the lattice L(U) is distributive) onto the
open subgroups A of I' lying over G for which the lattice L(I'|A) is distributive.
In particular, Og consists of those positive integers n for which there exists an open
subgroup A of I' lying over GL such that (I': A) = n and the lattice L(I'|A) is

distributive.

(2) By Corollary 2.12, C(I',A) is identified through the injective coherent map
G — G with a closed subspace of the spectral (Stone) space L(I'|Z*(T, A)L), which
is stable under the coherent action of I' by conjugation. 0

Corollary 2.14. The following assertions are equivalent for G € C(T', A).

(1) G is stable under the action of T, i.e., G is a I'-submodule of Z\(T, A).
(2) G+ «T.

(3) ug" = ne-
Proof. (1) = (2) holds for any G < Z1(T", A) since (6G)t =oGLo~ for all o €T

(2) = (3): As pc = ) ,cq9(I'), we have only to show that og(t) = g(r) for
all g € G, 0 € GL, 7 € T. Since, by assumption, Gt 4T, we have 771lo7 € G1, so
0=g(r'or) = 77} (og(r) — g(7)), and hence og(r) = g(7), as desired. Note that the
implication (2) = (3) holds for any G < Z*(T, 4).

(3) = (1): Let g € G, 7 €I, and prove that 7g € G. Since G = ZY T | GY, ug)
by Theorem 2.10, we have to show that 7g|gr = 0 and (7¢)(I') C pg. From the
hypothesis it follows that (79)(c) = Tg(t7tor) = 0g(r) — g(1) = 0 for any o € G+,
as desired. Note that the latter condition holds in general since any subgroup of A, in
particular ug, is stable under the action of T'. O

Corollary 2.15. If G € C(TI', A) is a T'-submodule of Z}(T, A), then
G = ZNT/G*, pe).

Proof. Since G is Cogalois, we have G = Z'(TI'| G*, ug) by Theorem 2.11, and since
G is a I'-submodule of Z 1‘(I‘,A), we have G+ < T' by Corollary 2.14. To conclude,
observe that ZY(I'| G, ug) = ZHT'/G*, pe). O
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According to Lemma 1.18, the Kneser groups are precisely those subgroups of
ZY(I', A) which do not contain some particular cyclic groups, namely the minimal
subgroups B, which are not Kneser, p € P(I', A). Using Corollary 2.8 we are going to
present a similar characterization for Cogalois groups. To do that we will first describe
effectively the minimal subgroups of Z!(T', A) which are Kneser but not Cogalois. A
special class of actions which are introduced below plays a major role in this description.

Definition 2.16. Let I be a finite group, and let A be a finite subgroup of Q/Z on
which the group T' acts. One says that the action of T' on A, or the I'-module A, is

(1) oftype Dy if =Dy = (o, 'r]a —7'2“(0"7”)2 1) = Z)27 x L/2Z,
= (1/4)Z/Z, and 01/4— ——1/4 71/4— 1/4

(2) oftype Dg if I'= Dg—(UTIO' —T4 (o )2 ) /A7 x L) 2Z,
— (1/4)Z/Z, and o1/d=—1/4, 71/4= 1/4.

(3) of type Dpr if T'=(o,7|0" =1’ =070 1y “—1) Z/pZm Z/rZ,
= (1/pr)Z/Z, and al/pr = ul/pr Tl/pr = l/pr
wherepEIP p>2, reN, r>1, r|(p—1), and
u € (Z/prZ)* is such that the order of wmodp in
(Z/pZ)* is v and umodl=1mod! forall L€ P,|r. O

Remember that by M(T, A) we have denoted the 7s-open set (possibly empty)
K(T, A) \ C(T,A) of all Kneser groups of Z 1(I', A) which are not Cogalois groups.
Clearly, for any G € M(L', A) there exists at least one minimal member H of M(T, A)
such that H C G. By M(T, A),;, we shall denote the set of all minimal members of
M(L, A), and call them minimal Kneser non-Cogalois groups. Observe that whenever
G € M(T', A)min, then necessarily G is a nontrivial finite group according to Corollary
2.8 (2).

Lemma 2.17. The following conditions are equivalent for G € K(I', A).

(1) G € M(T,A),m

(2) G+ < T' and the action of /Gt on pg is one of the types D4, Dg, or Dy,
defined above.

Proof. (1) => (2): First assume that G € M(T, A) min. Then, as was observed above,
G is finite. Since G is not Cogalois, it follows by Theorem 2.5 that there exists
p € P(I', A) N 'Pg such that G- c EJ‘ Assume p is minimal with the property above,
and let H be a cyclic subgroup of G of order p. Since G is Kneser, its subgroup H is
also Kneser, and hence (I' : HY) = |H| = p, in particular, H # B,. We distinguish the
following two cases:

Case (i): p = 4. We are going to show that Gt 4T and the action of I'/G1 on
pg is either of type Dy or of type Dg. Two subcases arise:

Subcase (1): es € H. As H = 7Z/4Z and H* < < ef, H is not Cogalois by Theorem
2.5, so by the minimality of G we have G = H = Z/4Z and pg = (1/4)Z/Z. Since
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og—g € BT, ug) = (e4) < G for all o € T, g € G, it follows that G is stable
under the action of I', therefore G* < I' and G < ZY /Gt ue). As the Kneser
non-Cogalois group G is cyclic of order 4, it follows that I/GL = 7/27Z x Z/2Z and

the action of T'/G* on ug is of type Dy.

Subcase (2): €4 ¢ H. First, show that ¢4 € G. Since G is Kneser, it follows
that G(2)* < ef, for otherwise (G@)L : (G2t nef)) = (T :e5) =2,50 2|G(2)| =
(' : (G(2)*nef)) | IT| = |G|, which is a contradiction. Thus, the 2-primary component
G(2) is Kneser, and is not Cogalois by Theorem 2.5. Consequently, by the minimality
of G, we deduce that G = G(2). Since L := ressl}(G) is a 2-group as a factor of
G and 4 € P(ef, A), it follows by Theorem 2.5 that L is a Cogalois (in particular,
Kneser) group of Z!(ef, A). Therefore, (G N ef1)t = ef by Corollary 1.12, so the
Kneser group GN €4LL of Z1(T', A) is cyclic of order 2. Since the only cocycle of order
2 belonging to Ei‘J‘ is €4, we deduce that 4 € G, as desired.

Consequently, by the minimality of G, we have G = H® (e4) = ZJALDL)2Z, pg =
(1/4)Z/4Z, and L = H = Z/4Z. Moreover, since 4 € G, it follows as in the Subcase
(1) that G is stable under the action of I'. Therefore GL aT and G is canonically
identified with a subgroup of Z}(I'/G*, ug). In particular, Gt <&, and e /Gt =
ef/L* = ZJAZ as L = Z/47 is a Cogalois group of Z1(ef,A). Observe that the
canonical action of HL/G+ = T'/ef = Z/2Z on ef /Gt = Z/AZ is non-trivial, for
otherwise we would have I'/G1 2 G, contrary to the fact that G is not Cogalois.
Thus, T'/G+ = ef /Gt % I'/e; = Ds, i.e., the action of I'/G+ on pg is of type Dg, as

required.

Case (ii): p € P\ {2}. We are going to show that G+ <« T and the action of
/Gt on pg is of type Dy, where r:= (T': 52-,}). Let G’ denote the subgroup of G
consisting of all its elements of order prime to p. As G is Kneser, so is also G', and
hence (G/L : Glz = (G : G') is a power of the prime number p. Consequently, its
divisor (G’ L.¢*n sj) is also a power of p. On the other hand, as sbL, the kernel of
the non-trivial action of I' on A[p], is normal in T, we have Gt n Elf < G't. So, the
factor group G'1/(G'*+n ey) is identified with a subgroup of the cyclic group I‘/E;
of order r, with r|p — 1 and (r,p) = 1. Therefore Gt g 61-}.' Since G’ # G, it
follows from the minimality of G that G’ is Cogalois. Thus, K := G' N EIJ;‘L is also
Cogalois and K+ = E;J,‘. Moreover, K is cyclic of order r since I'/K+ = Z/rZ. In
particular, we have pg = (1/r)Z/Z < A. As K+ «T, Corollaries 2.14 and 2.15 imply
that (1/r)Z/Z < A% and K = Z\('/et, (1/7)Z/Z).

From the minimality condition satisfied by G it follows that G = H ® K = Z/pr’Z
and pg = (1/pr)Z/Z. Since Kt =¢f < T and ((T: HbY), ([T : K1) = (pr) =1,
we deduce that T' = HLKL and G+ = H-n K1t < HL. So, to conclude that
GL QT it suffices to show that G- <1 K+, For any A€ G+, v € K+, h € H we have
h(vAv~1) = h(v) — (vAv=Y)h(v) = 0 since h(v) € (1/p)Z/Z = AK" and viv~1 € KL,
Thus G < T, the kernel of the canonical action of I'/GL on pug is e /G, and
/Gt =ef /G x HL/GL. Let o € Ht r¢ elf, u € (Z/prZ)* be such that oGt is
a generator of H-/Gt = 7/rZ, TG is a generator of e:;%/GL &~ 7./pZ, and 017177" =
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ul//;r. Clearly 717;1* == 17;1" and the order of wmod p € (Z/pZ)* is r. Moreover,
oro~! = r%(mod G1) since G = H @ K, h(oro™t) = oh(r) = uh(r) = h(*) for all
h € H (as hlEbL € Hom (Ezf, (1/p)Z/Z)), and k(oro™t) = k(%) =0 for all k € K.
Consequently, T'/G+ = Z/pZ x,, Z/rZ. Therefore, to conclude that the action of
/Gt on ug is of type Dy, it remains only to check that u mod ! = 1 mod! ie.,

l/\/l € AT for all | € P, 1|r. Assuming the contrary, let [ € P(I', A) be such that

I|r. Since 1/r € A%, we deduce that GL < e+ < . Thus | € P(I, A) N Pe and
p l

G- 5}; hence [ > p, which is a contradiction.

(2) = (1): Assume that G+ < T' and the action of ['/GL on pg is of one of the
types Dy, Dg, or Dyr. Since G is canonically identified with a subgroup of ZYT, ug),
we may assume without loss of generality that Gt = {1} and A = pg, ie., (I'|A)
is one of the actions described in Definition 2.16. We have to show that every Kneser
group G < Z := ZY(T, A) satisfying G+ = {1} and pe = A is minimal non-Cogalois.
We distinguish the following three cases:

Case (a): ([,A) is of type Dy. Then, the morphism h — (h(o),h(T)) maps
isomorphically Z onto A x 24 = 7Z/AZ x Z/2Z. Thus Z = (¢'4) ® (p), where ¢ # &4
is defined by ¢(0) =0, p(T) = 1//\2 Notice that G := (¢4 + ¢) = Z/4Z is the unique
Kneser group of Z such that ug = A, in particular G+ = {1}, and G is the unique
Kneser non-Cogalois subgroup of Z as well.

Case (b): ([',A) is of type Dg. Then, the morphism h — (h(o), k(1)) maps
isomorphically Z onto A x A = Z/4Z x ZL[4Z. Con/sgquently, Z = (€4) @ (o),
where the cocycle o is defined by a(o) = 0, a(r) = 1/4. Observe that there exist
only two Kneser groups G of Z such that Gt = {1}, ie., |G| = |I'| = 8, hence
ue = A = (1/4)Z/7, namely Gy = (e4) ® (@) and Gy = (e4) ® (o + €'4), both
isomorphic to Z/27 @& 7,/4Z and stable under the action of I". They are also the only
Kneser (minimal) non-Cogalois groups of Z of order 8. Notice that, on the other
hand, (g'4 4 20) = Z/47 is the unique Kneser non-Cogalois subgroup of order 4, the
corresponding action being of type Dy.

Case (c): (T, A) is of type Dy, where p is an odd prime number and r |p—1,r> 1.

F—1:

Let u € (Z/prZ)* be the unit defining the action. Since N(o) = Zui = 0 mod pr,

i=0
the morphism h — (h(c), k(7)) maps isomorphically Z onto A x rA = Z/prZ x Z]pZ.
Consequently, Z = B, ® (o) ® (8), where the cocycles o and 3 are defined by a(o) =
1//\7“, a(t) =0, B(o) =0, B() = 1//\p As P(T, A) = {p}, the necessary and sufficient
condition for a subgroup G of Z to be Kneser is, according to Theorem 1.20, that
G N B, = 0. Consequently, G is a maximal Kneser group of Z <= G is a direct
summand of B, <= G is a Kneser group isomorphic to Z/prZ <= G is a Kneser
group with G+ = {1} <= G is a Kneser group with ug = A. The only subgroups of Z
satisfying the equivalent conditions above are the subgroups G; = (iep+a+ B) = Z/prZ,
i € Z/pZ. Since P(I', A) = {p} and the unique subgroup H < Gi,i € Z/pZ, for which
p||H| and H g 5; is the whole group G, it follows by Theorem 2.5 that the G;’s are
also the only Kneser non-Cogalois subgroups of Z. Notice that, in contrast with the
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actions of type Dy or Dg, the subgroups Gi,i € Z/pZ are not stable under the action
of . More precisely, I acts transitively on the set {G;|i € Z/pZ} with stabilizers

(tioT™%) 2 Z/rZ,i € L/pZ. O
Corollary 2.18. Any Kneser minimal non-Cogalois group of ZX(T, A) is isomorphic
either to Z/4Z, or to Z/2Z & L/AZ, or to Z/prZ for an odd prime number p and a
divisor r #1 of p—1.

Proof. Let G be a Kneser minimal non-Cogalois group of Z 1(T', A). By Lemma 2.17,

Gt < T and the action of F/GJ- on uc is of one of the types Dg,Dg or Dy, The
possible isomorphism types for the group G are now immediate from the proof of the

implication (2) = (1) of Lemma 2.17. O
The next result provides an analogue of Theorem 1.20 for Cogalois groups.

Theorem 2.19. The following statements are equivalent for a Kneser subgroup G of
Z(T, A).
(1) G is Cogalois.
(2) G contains no H for which HL < T and the action of T/HL on py is one of
the types Dy, Dg, or Dp,.

Proof. The result follows at once from Lemma 2.17 and from the following fact we
already mentioned just before Lemma 2.17: for any L € M(L, A) there exists at least
one K € M(T, A),,, such that K C L. d

As it follows from Lemma 2.17, the fact that all the p-primary components of a
subgroup G of Z}(T', A) are Cogalois does not imply that the whole group G is Coga-
lois. The next result provides a supplementary lattice theoretic (topological) condition
which ensures such an implication, obtaining in this way a local-global principle for

Cogalois groups.

Theorem 2.20. Let G be a subgroup of Z*(T', A), and let

6 :L(r|cY) — [JLTIGE)Y), A= (AUGE)))per-
p€eP

Then, the following statements are equivalent.
(1) G is Cogalois.

(2) G(p) is Cogalois for all prime numbers p, and the order-preserving map 6 is a

lattice isomorphism.

(3) G(p) is Cogalois for all prime numbers p, and the coherent map 0 is a homeo-
morphism of spectral (Stone) spaces.

(4) G is Kneser, G(2) is Cogalois, and A =T whenever A € L(T|G*) is such that
6(A) = 6(I).
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Proof. (1) = (2): Assuming that G is Cogalois, we only have to prove that 6 is a
lattice isomorphism. As G and the G(p)’s are Cogalois, the canonical order-reversing
maps ¢ : L(G) — L(T|GY), ¢p : L(G(p)) — L(I|G(p)t), H — H* are lattice
anti-isomorphisms. On the other hand, since the canonical map

3 :L(G) — [[L(G®)), H — (H(p))per
peP

is a lattice isomorphism, the composed map

([T e») owoe™t: LTIGH) — [JLTIGE™T), A= (G0 A1) (p) " per

peP p€EP

is also a lattice isomorphism, so it remains only to check that (J[,cp Pp) oot =0,
e, (GNAY)(p)t = (AUG(p)t) forall pe P,A € L(T|Gt). Now, as ¢ is a lattice
anti-isomorphism, we deduce that

@nahp)t = (Gnat)neE)*t = (GnAah)tuGE)H) = (AU GE)),

as desired.
(2) <= (3) is obvious.

(2)

2) =

(4) = (1): Assuming that G is Kneser but not Cogalois, we have to show that
either G(2) is not Cogalois or there exists A € L(T'|G*) such that A #T and 0(A) =
6(I"). Let H be a minimal non-Cogalois subgroup of G. According to Lemma 2.17, H-
is an open normal subgroup of I' and the action of I'/H L on ppy is one of the actions
described in Definition 2.16. If the action above is of type Dy or of type Dg, then it
follows that H < G(2), and hence G(2) is not Cogalois. So, it remains to consider
only the case when the action is of type Dy, where p is an odd prime number and
r|p—1, r > 2. Notice that (HUG(p)t) = HYG(p)t as H- <, (I': HLG(p)t) is
a power of p as G € K(T', A), and (I": H(p)t) = |H(p)| =p as H(p) < G € K(T', 4)
and H(p) = Z/pZ (since H = Z/prZ by Corollary 2.18 and (p,7) =1). On the other
hand, since H+ < HLG(p)* < H(p)t < T and (T: HY) = pr,r|p—1, it follows
that HLG(p)* = H(p)*. As T/H' = Z/pZ x, Z/rZ for a suitable u € (Z]prZ)*
by Definition 2.16, there exists an open subgroup A of T' lying over H* such that
(T:A)=p and A # H(p)t. Consequently, (AUG(p)t) = (A U H(p)t) =T, and,
similarly, (AUG(g)+) =T for any prime number g # p since all open subgroups of
T' lying over G(g)* have g-th power indices in I' as G € K(T, A). Thus, we found a
subgroup A of I' with the desired properties, which finishes the proof. O

(4) follows at once from Corollary 1.16.

Finally, we consider the case when G is stable under the action of I'. Then, the
local-global principle for Cogalois groups has the following simple formulation.

Proposition 2.21. The following assertions are equivalent for a T'-submodule G of
Z\(T, A).
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(1) G is Cogalois.
(2) G(p) is Cogalois for all prime numbers p.

(3) G is Kneser, and G(2) is Cogalois.

Proof. The implication (1) = (2) is trivial, while the implication (2) = (3) follows
at once from Corollary 1.16.

(3) = (1): Assuming that the [-module G is Kneser but not Cogalois, we have
only to show that G(2) is not Cogalois. Let H be a minimal non-Cogalois subgroup of
G. According to Lemma 2.17, HL < T and the action of I‘/Hl on py is the one
described in Definition 2.16. If the action is of type D4 or of type Ds, then H < G(2),
and hence G(2) is not Cogalois, as desired. Now assume that the action is of type Dpr.
Then, as in the proof of Theorem 2.19 we deduce that (r: HLG(p)t) = p. On the
other hand, G(p)* < T since G(p) is a I-submodule of G. Hence H1G(p)*+ < T, and
so, Z/pZ is a quotient of I'/H' = 7,/pZ x,, Z/rZ, which is a contradiction. O
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