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S - spectral decompositions I

By

IOAN BACALU

In this paper we study some types of spectral decompositions, residual by some
way, having as main methods the restrictions and quotients of decomposable operators.
The starting point of this was the intention to give an answer to an open problem from
decomposable operators’ theory, which was formulated in the 6" chapter of the
monograph belonging to I. Colojoara and C. Foias named “Theory of Generalised
Spectral Operators”. The restriction and the quotient of a decomposable operator to a
spectral maximal space are they decomposable or not? In other words, is a decomposable
operator strongly decomposable or not? E. I. Albrecht built up an example of a
decomposable operator that is not strongly decomposable. Still, if the spectrum of 7'has a
dimension of 1 (more exactly G(T )e C, see [15] Def. 5) then decomposability implies
strongly decomposability ([15] theorem 6). Generally the restriction and the quotient of a
decomposable operator T are S-decomposable operators (for a spectral maximal space ¥
of T), where S is a part of the frontier of o(T|Y), §=55(T|Y)N o(T). The definition
of the S-decomposability is close to the one of the decomposability, only the open
covering of the spectrum is replaced with a S-covering (see [76] or the definition from the
preliminaries). Most of the decomposable operators’ properties are also true for the S-
decomposable ones, of course in adjusted, specific form. One must notice that the
properties of the commuters have no correspondent. The paper contains three chapters. In
the first one we study the restrictions and quotients of a decomposable (strongly
decomposable or spectral) operator to an invariant subspace, particularly a spectral
maximal space. We emphasise properties of the (topological) dimension of various parts
of the spectrum, where the sets having a dimension of 0 play an important role. In the
second chapter we give the properties of S-decomposable operators: structure theorems of
spectral maximal spaces, S-decomposability conditions, properties linked to direct sums,
functional calculus with analytic functions, S-spectral capacities etc. The third chapter
contains some conclusions on multidimensional spectral theory. We try to generalise for
operators systems some results obtained for a single operator. We study the restrictions
and quotients of spectral and decomposable systems of operators, and in the last
paragraph we define the systems analogue of the residual single extendibility.

0. PRELIMINARIES

In this paper we will use several notations and definitions from the specialised
literature, that will be also remind it here. Let X be a Banach space and let B(X) be the

algebra of all bounded linear operators of X. If T € B(X ) and Y is a linear (closed)
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invariant subspace of T (meaning TY c Y'), we shall denote by T'| Y the restriction of T

to Y, and by 7' the operator induced by T in the quotient space X=X/Y.In all that
follows by subspace of X we mean a closed linear variety of X. We shall also denote by
G(T ) the spectrum of 7, R(?», T ) the resolving of T and by C the complex plan.

Dermirion 0.1. A subspace Y ¢ X is called spectral maximal space of T € B(X )
if Y is invariant of T and for any other subspace Z also invariant of 7' such that”"
o(T'| Z)c o(T'| ¥) we have Z c Y [48], [37].

An operator T € B(X ) is decomposable if for any finite open covering {G, };’ of

the spectrum o(T') there exists a system of spectral maximal spaces of T {r, };’ such that

o(T|Y)c G, (i=12,.,n) and X =¥, [48] [37]. An operator T € B(X) is strongly

i=l

decomposable if 7' | Y is decomposable for any spectral maximal space ¥ of T'[2].

We call that 7" e B(X ) has a single analytic extension if for any analytic function
f:o— X (where ® c C is an open set), solution of the equation

(L -1)f(0)=0,
is by any means identical null [46], [45]. The single analytic extendibility provides the
possibility to attach each element x of space X a set from the complex plan C in which
outside the demeanor of some entities defined by the operator becomes controllable. A
point A, is belonging to the local resolving p, (x) of x e X ifin its neighbourhood there
exists a single analytic function x(), which verifies the identity
(A —T)(A)=x.
The set 6, (x)=C\p,(x) is named the spectrum of x regarding 7. Obviously we have
o(x) > o(T') (where p(T')= C\o(T) is the resolving set of ), hence o, (x)c o(T). One
denotes
X, (F)= {xeX,GT(x)c F}.

Tueorem 0.1. If X, (T ) is closed, then it is a spectral maximal space of T and
o(T | X, (F))c F [38].

In order to study the restrictions and quotients of an operator, as also to define and
analyse the properties of S-decomposable operators we need several notions from the
residual spectral decompositions theory, brought up by F. H. Vasilescu in [76], [77], [80].

n

DeriniTion 0.2. A family of open sets {GS }u {G, }1 of the complex plan C will be
said to be an S-covering of the compact set ccC (ScC also compact) if

G, U(UG,J:)GUS and GNS = (i=12,..,n)[76].
i=l

Dermvirion 0.3. An open set Q  C is of analytical singleness for T € B(X ), if for
any open set ® < € and any analytic function f, : @ — X verifying the equation

(W -T)f, (1) =0,
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it follows that £,(A)=0 in ® [76]. One shows that for any T € B(X) there exists a
(single) largest open set Q.. of analytic singleness [76]. We shall call analytic residuum
and we shall denote by S, the set S, = C\Q,. From the definition results that in any of
its points S, has either the (topological) dimension 2 or dim S, =~1 (meaning S, =J:
IntS, =< implies S, = ). The case S, = fits the single analytic extendibility [76].

If xe X, apoint Aed,(x) if, in a proximity ¥, of A, there exists at least an
analytic function f,(u) (called T-associated with x) such that (il =T)f.(u)=x for
ueV. We shall put 7,(x)=C\d,(x), p,(x)= 5,(x)nQ,, o(x)=C\p,(x)=
=y,(x)us, and X, (F)={xe X,0,(x)c F}. When S, =&, we have o (x)=7,([)
and a single analytic function x(1), T-associated with x, for any xe X exists in
Pr (x) =0rX.

Tueorem 0.2. If T € B(X), S, #0 and X,(F) is closed for F cC closed,
F>S, then X,(F) is a spectral maximal space of T and ol X, (F))c F ([76],

propositions 2.4., 3.4.).
Dermirion 0.4. Let T e B(X ) and let S ¢ C compact. We shall say that T"is S-

decomposable if for any finite open S-covering of (T ) {Gs}u{G,} there exists the

n

system of spectral maximal spaces of T' {K U {Y, }1 such that:
@) oY) Gs, ol |Y)cG, (12i<n);

() X=Y+)7.

i=1

If condition (ii) is replaced by
() Z=ZnY+).ZnY,

i=l
where Z is any spectral maximal space of 7, then we shall say that T is strongly S-
decomposable, and when the same condition (ii) is replaced with the weaker one

Gy X =Y+,
i=1

we shall say that 7 is weakly S-decomposable.
If in the definition of S-decomposability, Y, is not necessarily a spectral maximal

space of 7 and O'(T | YS)= 55 (if 4 c C is bounded, we denote A=C\ D, , where D
is the unbounded component of C\ 4), then we saythat 7' eDj.

An operator T € B(X) is named (m,S)-decomposable if in the definition of S-
decomposability we consider the S-covering composed out of exactly m+1 sets, that is
G,hu (G, },'":1 If m =1, we have (1,5)-decomposability and we shall prove that a (1,8)-

decomposable operator is S-decomposable.
~ Since in this paper we use quite much the (topological) dimension theory, we

shall give several definition and examples. We will be interested in the dimensions of the
sets from the complex plan C or C"; we use [13], [65], [67], [66].
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Dermvirion 0.5. Let X be a separable metric space. The symbol dim pX means the

dimension of X in the point p. The following three conditions define this condition
through induction:

1) dim X =-1 means X =,

2) if X # @, dim X is the superior edge of dim pX forany p€ X ;

3) dim pX <n+1 if there exist any open neighbourhoods of p, no matter how. -

small, such that their frontiers be of a dimension less than or equal to 7.

Condition 3) can be composed like this:

3") dim pX <n+1 means that in the family of the vicinities of p there exists an
open one which frontier has a dimension less or equal to 7.

By definition, a (nevoid) space has the dimension 0 if for any of its points there
exist neighbourhoods no matter how small having a void frontier. Thus, for example, the
space of the rational numbers on the axis has the dimension 0: each interval with
irrational extremities is a vicinity for the numbers contained within and has a void
frontier (the frontier contains no rational numbers). Same for the set of irrational
numbers, and generally speaking any frontier set of the real axis has the dimension 0. The
space of real numbers have the dimension less or equal to 1 since the frontier of an
interval is formed out of two points and this set has the dimension 0. Analogously the
plan has a dimension less or equal to 2 (since the circle is of a dimension less or equal to
1) and generally speaking the Cartesian space E" has a dimension less or equal to n. The
proof of the fact that dimE" = n is not elementary. The dimension of a space’s set is
never bigger than the one of the space itself.

Tueorem 0.3. The necessary and sufficient condition for a subset N of R" to have
the dimension n is for N to contain a nevoid open subset in R" ([13], lemma 1.2.),
IntN +J.

We remind that a space is named totally disconnected if any of its components
reduces to a single point. One proves that a space X locally compact has the dimension 0

if and only if it is totally disconnected.
The model space having a dimension of 0 is Cantor’s set (discontinuum). Any

space having a dimension of 0 is topologically contained in Cantor’s discontinuum. A
characterisation of the spaces having a dimension of 0 (that sometimes is considered as a
definition [66] XIX, 1) will be useful to us:

Tueorem 0.4. A nevoid space X has a dimension of 0 if to any finite open covering
X =G,UG, U..uG, corresponds a closed covering X = F) U F U...UF, such that
F.cG, FNF, =0 (i#j,i,j=12,.,m). The sets F, are therefore closed-open.

From 0.4 theorem results that the frontier of a set contained in the plan has a
dimension less or equal than 1, and for a set from the axis the dimension is less or equal

to 0.
Being given a compact set L in a plan having a dimension of 1, is the frontier of

any compact subset L, < L (in the relative topology of L) of dimension 0 or not? There
are examples of sets having a dimension 1 for which the answer is negative. For example
the set I' is defined as follows:
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{(x, sin %)x e(O,l]} =M,

{(O,y) ,—13y$1}= F.
We have I'=M UF compact, F cI' compact and the frontier of F, OF =oM = F
dimoF =1.
Also the “fan” set ([66], X VIII):
. _{{(x,l ~mx)x>0l-nx>0,n=12,.}=M,,
(b

{0.y)o<y<1}=F,
I'=M,UF,, F closed, oF = =0M, =F,, dimF| =1.
For the decomposable operators it seems that not only the compact sets with dimensions
1 (spectrum of operators or parts of them) that have a good demeanour as mentioned

above imply a great interest.
Dermvition 0.6. We shall denote by C  the class of all compact sets o — C with

dimo <1, and moreover meeting the property that for any closed subset o, c o we
have dimodo, =0 (0o, is the frontier of o, in the topology of o).

The family C isn’t void: any interval or finite reunion of intervals on the real axis
belongs to class C ; any set from the plan that is homomorphic with [0,1] belongs to class
C ; finite reunions of sets from C belong to C , the disk ﬂll = l} belongs to C . Let us

remark that the countable reunion of sets from C may not belong to C . Example: the set

L= [O,l]u U{(x,y)l xe [O,l]y = l} doesn’t belong to C . The sets I', I, L are not
n=l n

locally connexe and probable there exists an association between the sets that do not

belong to C and the sets that are not locally connexe.
Finally we remind the property: if X and Y are two separable metric spaces, then

dim(X x¥)<dimX +dimY . In the following we will remind a few ideas that will be

necessary in the third chapter of multidimensional spectral theory.
Let E" be the external algebra, generated by the undefined o = (s,,5,,...,5, ),

over the body of complex numbers C ([87] p. 183). The algebra E" is the complex
algebra with the e identity satisfying the relation s, As, =—s, As;, where by

(s,.,s ,)—>s,. As; we denote multiplication in E". The E" algebra is gradual and

9

E" = Z@ E}, where E AE'cCE] E” is pgenerated by the elements

P potq? P

Sy NS, Aens, (1)< ), <5 j, <n). We take £y ~ C, whare elements of £;

represent identity multiply. Also, £ ~ C, the base of E, that is constitute from the

single element s, A5, A...As, ,and B = ), p>n.
Let now X be a Banach space, a = (a,,a,,...,a,)c B(X) a system of commuting

operators, and let 4 be an operators algebra which centre contains the system

@

@
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a,,a,,.a,. We shall denote (see [58], chapter I) A (o, X)= E;(X)=X®e B s
AP [a, X ] can be viewed as a module over any A4 algebra, having the above property. By
writing xk for x®k, x€ X, k€ E" we notice that A” [cr, X ], the space of all external
forms having a p degree in s and coefficients from X is create of elements like

W= ijl...j,,sj, NSy NS, (X, €X). .

1£/,<jp << S0
We have A’[o, X ] = A'[o, X]= X and we put A’|o,X]=0 for p<0or p>n.
Through the spectrum of a system a = (a,,a,,...,a,) c B(X) one comprehends,

generally speaking, the complementary in C" of the set with the elements

z=(z,,2,,.-,2,) C C" with the property that the system z—a = (z, —a,,2, —ayrrz, — a,)
is not singular on X. From the sense given to the notion of nonsingularity one can obtain
several notions of spectrum. We shall be interested in the spectrum instituted by Taylor

[70] that seems to have more benefits against the classical ones.
The nonsingularity of z—a according to J. L. Taylor’s means the accuracy of a

certain series created using the space and the operators. This series is a variation, adjusted
for more operators of the elementary series

03 X =5 =0
that - in case of a single operator - shows the property of z—a of being simultaneous

injectiv and surjectiv

There are two types of series used to define the nonsingularity of an operators
system, a complex of Koszul [88] chains or a complex of cochains very much resembling
a complex of differential forms. Both can be described in terms of exterior algebra, the
natural duality existing between the two complexes makes them been simultaneously

exactly and define the same idea of nonsingularity.
The shared spatial base of the two complexes is represented by the spaces

A’ [0', X ], the two ones make a difference only through the link (frontier) operators,

respectively the cofrontier.
If 1 < p<n,we shall denote by

§,=6,(a): Ao, X]> Ao, X]
the operator defined by
o, <xsj.’ A NSy )z Zp:(—l);lxsjl By s Ay NSy
i=l
and

5p[ Zx/,-..f,ﬁs‘.f. /\.../\SUJ: 25/, Qj]wf,,S/} /\.../\Sjp)
ISji<..<j,<n ISji<.<j,n

where the circumflex stroke marks the absence of the letter above there is placed; if
p<0or p>n,weput &, =0. We shall also denote by

5, =6"(a): Mo, X]> Ao, X]



Chapter 1 — Restrictions and Quotients of Decomposable Operators

the homomorphism that acts upon a form from A’ [O',X ] through the exterior
multiplication on the left side with a,s, +...+a,s, (when p<0 or p>n we put
6,=0). The fact that the system a= (a,,az,...,a,,) is commutative assure the
verification of the relations &,5,, =0 and 6”"'6” =0, peZ. The chains complex
constitute from modules A”[o, X] and the frontier operators & , is named the Koszul -
complex associated to the system a = (a,,4,,...,a,) and is noted E(X,a). The complex
of chains represented by the modules A”[o, X| and the cofrontier operators 67, p e Z
will be mark as F(X,a). Hence we have
E(X,a):0> X = A" [a,X]iA"-' o, X](f;'...i/\2 [J,X]iA' [o, X]iAO lo,x]=Xx -0
and
s s R 5!

F(X,a): 05> X =AN[o. X Ao, X ][> Ao, X 5. > A o, X o Ao, X = X > 0
Generally speaking the two series aren’t accurate. The omology modules are marking the
incorrectness

H,(X,a)=Ker(5,,, : A7 = A”)/Im(5, : A” — A”)
for £ (X ,a) and the coomology modules are marking it for # (x, a),

H”(X,a)=Ker(67 : A = A ) Im(57 - A7 — A7),
One can easily verify that the two complexes E(X,a) and F(X,a) are equal regarding

accuracy [58].
Dermiion 0.7. The system a = (a,,a,,...,a,) © B(X) is said to be nonsingular, if

it is precisely the complex £ (X ,a) or equivalent, the complex F (X , a). The set of those
clements z=(z,,z,,..,z,)e C" for which the system z—a= (z, -z, —a,) is
nonsingular on X is said to be the resolving set of a on X and is denoted by r(a, X ) The
complementary in C" of this set, C" \r(a,X), is said to be the spectrum of @ on X and is
denoted by o(a, X).

We shall use the following function spaces defined on an open set U < C" and
taking values in a complex Banach space X :B (U , X ) — the space of continuous

functions admitting (regarding distributions) continuous partial derivatives regarded to
By a2, ([71], §2); B,(U,X) - a subspace of B (U, X) consisted of the functions

with a compact support; C (U , X ) — the space of continuous functions admitting partial
derivatives of any rank; C,” (U, X) — a subspace of C “(U,X) consisted of the functions
with a compact support; U (U X ) — the space of analytic functions on U. We will

permanently use the fact that B (U, X)=C “ (U, X) [82].
If UcC" is open, F is one of the function spaces described above and
o =(s,,8,,..,5,) a indeterminate system, then we shall denote by & the operator that

acts upon an exterior form y in the indeterminate o = (s,,s, ,...,s,) with coefficients in

F ,weA[oF ], according to the relation
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(@)=l —a)s +(z, ~ar)s, +. 4 (2, —a, )5, ] v (2)
and we shall denote by @ @0 the operator that acts similarly upon the exterior forms
w e A’[c Udz,F | in the indeterminate s and dz with coefficients in F

(@@"a‘)yxz){(z, M}(»%wﬁ-w}w()

Dermimion 0.8. The resolving analytic set of x regarding a = (a,,a,,..,a,)C B(x)"
is the set of those elements like z = (z,,2,,...,2,)€ C" so that there exists a closed V
neighbourhood of z and n functions analytic on V' with values in X, f,,f,,., Los
satisfying the identity x = ¢, - a ), C)+..+(, —a, )/, (&), CeV. The
complementary of this set in C" is said to be the analytic spectrum of x regarding a. We

shall denote them by p(a,x) respectively o(a, x).
Derinition 0.9. The resolving set of x regarding a = (a,,az,...,an), denoted by

r(a, x), is the reunion of all open sets V having the property that there exists a form
weA [0' udzC=(V,X )J satisfying the equality
x(s, A S, A .../\sn): [(z, —&, )91 ot (zn - @, )"n +£afz'l +m+8%d2"}\ l//(Z)
1 n
The complementary of this set (in C") is said to be the spectrum of x regarding a,
sp(a,x)=C"\ r(a,x).

In order to obtain a global solution y for the equation sx = (a@é)y, it is
necessary that the system satisfies a condition similar to the property of single analytic
extension in the case of a single operator namely:

Derinmion 0.10. We shall say that the system a = (q,,a,,...a,) verifies the
coomologic property (L) if H”"C °°(G, X),a @5): 0 for any open set G < C". In this
case we denote: X[a](F): {x,xe X,sp(a,x)c F} (FcC" closed),
X[(,](F): {x,x e X,o(a,x)c F}.

Dermvition 0.11. Let X be a Banach space, let S (X) be the family of the closed
linear subspaces of X, let S < C" be a compact set and let F ¢ be the family of closed

sets F© < C" that have the property: either F NS = or F > §.
We shall call S-spectral capacity an application E :F  —S (x ) that meets the

properties:
1°.E (@)= {0}, E (C")=x;
vm J - ﬁE (F,) for any series {F.}._, cF;

2°. E [ﬂF,-
1 i=1

3°, for any open finite S-covering {G U {G_/ }7:; of C" we have

m

X =E (C_;s)““ZE (C_’/ )

@
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A commuting system of operators a= (al " ,...,a,,) = B(X ) is said to be S-
decomposable if there exists a spectral S-capacity such that

4. afF (F)cE (F) for any F eF ; and for any/;

5°. o(aE(F))c F forany F eF .
In case S =, the spectral S-capacity is said to be a spectral capacity, and the system is _
decomposable. We must notice that for systems of operators having 7 >2, one doesn’t*

know whether the definition of the S-decomposability (and of the decomposability) given
for an operator (see [37]) is equivalent with definition 0.11. or not.

RESTRICTIONS AND QUOTIENTS OF DECOMPOSABLE OPERATORS

1.1. RESTRICTIONS AND QUOTIENS OF OPERATORS. RELATIONS BETWEEN
THEIR SPECTRUM

We shall start with a paragraph that contains results regarding the relations
between the spectrum of an operator and the spectrum of the restrictions and quotients
regarding an invariant subspace, the corresponding relations between the local spectrum
and the analytic residues as well as some results on particular invariant subspaces.

1.1.1. Prorosition. Let T € B(X ) let Y be an invariant subspace of T and let T' be

the operator induced by T on the quotient space X = X/Y. Then we have:
() S,cS,uo(T|Y),
(ii) S, =S, va(T|Y),
(iii) Sy < S; No(T]Y),
(iv) v (x)cy,(x)c Vi (x)ue(|r),
wo(t)co, (x)uo(T|7); o,(x)c o, (i)u o(T|Y) (xex).
Proof. Proof of (i) is given in 2.7. [80]. Let now @ < Q. N p(TI Y) be an open

set and let x(/l) :@ —> X be an analytic function such that for 4 € @ we have
(Al -T)x(2)=0.

(a7 -7 @)=,
hence RI): 0, consequently x(4) e Y . It will follow that (AL -T)x(A)=(-T|Y )x(4)

and (A7 =T |Y) "' (A1 =T ¥)x(A) = x(4) = 0, hence
8y €8, uo(T|Y).

Inclusion (iii) is obvious. We shall verify (iv). Let f, :@ — X be an analytic function
(@< 6,(x) is an open set) such that (Al ~T)f.(1)=x. Then (1 —Tf,(A)=% with
m analytic on @, hence &,(x)c o, (x) and }/,[-.()'c)c ¥y (x) In order to verify the -
inclusion 7, (x)c y,-,()'c)u o(T'|Y), let f:w—X be an analytic function; then, for

Then, for A € @, we have
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Jl e, there exists a neighbourhood @, of 4, ®w, c® and an analytic function

f:@w, > X such that ?ZL_z)= f(,u) for pew, (see [79] lemma 2.1.). If
Ay ewC (57-.()&)0 p(T'|Y) and

(r-7)7,(1)= %
with fx analytic on @ (@ open), then there exist the analytic functions f, (l) and y(/i)v

@

on @, € @ such that
@ -1)f.(2)=x+y(3),
where xex, f.(1)=/,(4) and y(4)e Y. By denoting Z(1)= (AL-T|Y)"'y(A) we
obtain
(i -7)7. (1)-2(1)=x,
hence A, €9, (x) and y, (x)c Vi (x)u O‘(T |Y). One also obtains o ()= 7 (x)u
WS CFy x)us,va(l|Y)=0, (x)uo(r|Y) and o,(x)=y,(x)US, c }/7-.(X)u S,
Vo(T|¥)=0,(x)uo(T|Y), that is (v).
1.1.2. Proposition. If T € B(X ) and Y is an invariant subspace of T, then we have:
() o(T)co(?)uo(rY),
(ii) G'(T)C o(T)uo(T|Y),
(iii) (T | ¥) < o(T) U o(T).
Proof. The inclusions result from lemma 1.2. [70], but we shall furthermore give
an elementary proof. (i) and (ii) result easily from the equality

o(1)=Jor, ()

xeX

([76] corollary 1) and from the preceding proposition. We shall verify (iii). Let us take
Ae p(T)n p(T); if R(A,T)a Y, then there exists y, € ¥ such that
R(/I,T)yo =z, ¢Y.
In other words y, = (M—T)z‘o =0. Since Ae p(T), it results that z, =0 and hence
z, € Y ; contradiction! Consequently R(/l, T)Y cY and
o(T|Y)c U(T)UO'(T).

1.1.3. CoroLLary. Considering the premises from the preceding proposition, by
denoting by D, the unbounded component of ,O(T) and by D, (ne N ) the bounded
components, we have:

1° D, noll)=2,

22 D, colf)
if and only if D, c U(Tj Y ) (meaning if and only if there exists Ay e D, such that
R(A,,T)Y ¢ Y).

- Proof. It results from the preceding proposition and from proposition 4.11. [41].

1.1.4. COROLLARY. Considering the same premises as in proposition 1.1.2. we

have
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@) o(M\a(T|¥)=o(f\a(T|Y),
(i) o\ o(f)=o(r [P)\o (),
(lll)O’( )\ o(T)=o(T | Y)\o(T).
If we denote o, =o(T), o, = (T ) o, =o(T|Y), then

Proof. It results from proposition 1.1.2.
1.1.5.  Remark. If Int(a(T )m o(T|Y))=& (or in other words

dim(a(T )m o(T|Y )) <1), and T has the single valued extension property then 7' also has
the single valued extension property; indeed, by proposition 2.7. [80] we have S, c
co(l|Y)us, = o(T'|Y), whence S, C o(T|Y)N J(T), meaning IntS, =J;
consequently S, = and T has the single valued extension property.

1.1.6. Prorosition. Let T € B(X ) an let Y be an invariant subspace of T. Then the
equality
a(T)= a( )UO‘(Tf Y)
is true in eachof the following case:

(1) o(T|Y)c o(T),

(2) p(T ) is connected,

3) o(T|Y)"olT)=2,

(4) T has the single valued extension property.

Proof. (1) If O'(T |Y ) c O'(T ), then, according to proposition 1.1.2., one obtains

O‘(T)C o(T|Y)ua(T)= o(T), hence o(T|Y)uU J(T)C O‘(T) and accordingly
J(T)u o(T|Y)=0o(T). (2) p(T) connected, it results D, = p(T), D, =@ (ne N, see
4.11. [41] and corollary 1.1.3.), hence o(T |Y)< o(T). (3) When o(T'|Y)no(T)=@
we shall have again o(T'|¥)c o(T), because otherwise there will exist a bounded
component D, #0 of p(T) with D, c o(T|Y) and according to corollary 1.1.3. we
also have D, c O'(T), D < O'(T[ Y)m G(T)= &, contradiction. (4) If S, =, from
Vi (x)= o, (x) and o, (x) cy.(x)cy, (x)u Sy =0y (x) (proposition 1.1.2.) one obtains

( ) UJ Ua, =o(T)

xeX xeX
hence U(T)C O‘(T), meaning G(T): O'(T)U o(T | Y).
1.1.7. Remark. Let T € B(X) and let Y be an invariant subspace of 7. From the
ones above it follows that if o(7'|Y)« o(T), then G(T)a o(T') and consequently
S, #J; it results that if 7" is decomposable and o(T'| Y)cz o(T'), then T hasn’t the

single valued extension property (particularly 7T is not decomposable). Hence we have
the possibility to obtain operators that don’t have the single valued extension property

11
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through factorisations with subspaces that are not o -stabile for 7' (meaning invariant of I’
and O'(T | Y)c O'(T)). '

1.1.8. Dermion. Let T € B(X); a subspace ¥ c X is said to be T-absorbing if
for any x € Y , the equation (Al -T )y = x has solutions y only in ¥ for any 1 € o(T|Y).
We remind that any spectral maximal space Z of T is T-absorbing ([76] definition 3.2.

@
«

and proposition 3.1.).

1.1.19. Proposirion. Let T € B(X) and let Y be an invariant subspace of T, T-
absorbing with O'(T |Y ) > S, (particularly S, =O). Then T, the operator induced by T
on X = XY has the single valued extension property (S, =D ).

Proof. We have S, c S, O'(T |Y ) (proposition 1.1.1.) hence it will be suffice to
prove that Into(T'|Y)c Q.. Let G Into(T | ¥) be an open set and let 7(2) be an

analytic function on G such that (/1[ ~T ) 7(1)=0 for 1€ G. Then there exists an open

set G,cG and an analytic function f (A) on G, so that ﬁi): f(@) and
(A1 -T)f(1)=y(1) with y(A)eY ([79] lemma 2.1.). Since Y is T-absorbing and
AeG c o(T | Y), one obtains f(A)er, f£(1)=0 on G,, meaning F(4)=0; it follows
S, = and T has the single valued extension property.

1.1.10. CoroLLArY. Let T € B(X ) with the single valued extension property and
let Y be a spectral maximal space of T. Then T has the single valued extension property.

The corollary above was observed by St. Frunzi.
1.1.11. Provosition. Let T e B(X) and let Y be an T-absorbing, invariant

subspace of T. Then Y is o -stabile for T and
G(T): O'(T l Y)ua(T).

Proof. If D, (n eN ) is a connected component of p(T ) and 4, e D, C c(T Y ),
then R(4,,T)Y &Y ([41], theorem 4.11.), hence (A,/ ~T)"'y=z¢ Y for at least a single
y from Y; but Y is T-absorbing and hence y = (4,/ —T)z implies z € Y ; contradiction!
Consequently D, =, 0(7" ! Y) c O'(T) and o(T)=o(T | V) cr(T).

1.1.12. Lemma. If Te B(X ) has the single valued extension property and
X =Y +Y,+..+Y, where Y (i=12,..,n) are spectral maximal spaces of T, then

aao=gaawx>

Proof. We have

o(r) = Uor (2

xeX

o7 1%)= o, @)= Uor @)

xeY; xeY;

and

since o, (x) =0, (x) if x€¥, ([37),1,3.5.), hence

12
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o0)= o, 6)c U[ Uar(y,-)}L"Ja(Ttx)c o7).

xeX i=1 \ yeY, i=l

1.1.13. Lemma. Let X be a Banach space, and let X,, X, two linear closed
subspaces of X such that X, " X, = {O} and X, +X, is closed If Y, c X, (i=1,2) are
two linear closed subspaces, then Y, +7, is also closed

Proof. Indeed, if y, €Y, +Y,, y, >y then y, =y, +y2, y' eV, (i=1,2);u
since X, +X, is closed, by the closed graph it follows y. — y' €Y, (i=1,2) hence
yet +7,.

1.1.14. CorovLary. If T is decomposable and Y,, Y, are two invariant subspaces

of T such that
o(T1%)no(T|Y,)=2

then Y, +7, is closed.

Proof We have Y, cX,(o(T'|1)), Y, cX,(0(T|1), X (o|1)+
+ X, (0T Y,))= X, (o(T|¥,)ua(T|Y,)) ([4], 2.3.); the last space being closed, it
follows by the preceding lemma that ¥, + 7, is closed.

1.1.15. Remark. Considering the premises of the preceding corollary, if we denote
X =X/Y and ¢:X — X the canonical application, it follows that ¥, can be identified

with ¥, = ¢(Y,) since Y, and Y, are (topologically) isomorphic, and T | Y, and T|Y, are
similar and o(7, |, )= o(T | ;).

1.1.16. Lemma. Let T € B(X), let Y be an invariant subspace of Tand X = X /Y,
where T, ¢ are same as above. If Zis an invariant subspace of T with
O'(T | Z )m O'(T Y ) =(J, then one can find an invariant subspace of T, Z (topologically)
isomorphic with 7 = (p(Z) and o(T | Z) = a(T | Z)

Proof. Sinceq ™' (Z )/ Y = Z and according to proposition 1.1.6. it follows that

o(T o' (2)=0(7| Z)ua(T| V).
We also have (p"(Z)z Z+Y', where J(T | Z): G(T | Z), G(TI Y): O'(T l Y'). Since Y’
is a spectral maximal space of 7| @™ (Z) ([37], 1.3.10.), it follows that ¥ — Y". But on the

other hand
J(T [ (p(Y’))c O'(T | Y),

hence J(T | (p(Y))m G(TI Z)z &, whence o(r')= {0} and Y =Y. Our affirmation
follows now from lemma 1.1.13. and by the preceding remark.

1.1.17. Coroviary. If in preceding lemma T is decomposable and Z is a spectral
maximal space of T, then Z is also a spectrd maximal space of T

Proof. Let W be an invariant subspace of T such that o(T'|W)c o(T'| Z)=
—o(f'|Z). Since o(T|W)no(T|Y)=@, from remark 1.1.15. it follows that

U(T | (p(W))z o(T' | W), hence o(W) < Z meaning W c Z .

«
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1.1.18. Remark. (a) Let T € B(X) and let ¥, ¥, be two invariant subspaces of T

such that ‘
o(T|K)no(T |,)=

Then we have Y, NY, = {0} in each of the following cases: 1°) T has the single valued
extension property (particularly T is decomposable); 2°) Y, Y, are T-absorbing, invariant
subspaces of T (particularly Y;, ¥, are spectral maximal spaces for 7);
3°) o(T'|¥,) < D2 and o(T'|Y,)c D., where D, is the unbounded component of the
resolving p(TI Y,) (i=1,2). Indeed, if S, =, we have

LY, c X, (0T 11)n X, (o 1,))=

= X, (1)o@ 1,))= X, @)=}
2°) results by the fact that the intersection of two T-absorbing subspaces Y, ¥, is a
T|Y,- absorbing subspace (i =1,2). Indeed, let (/11—T| Y,)y =x with xeY, nY, and
y e, hence (ﬂ] -T )y =x; since xe Y, and Y, is T-absorbing, it follows that y € ¥,,
ye¥ NY, and consequently ¥, NY, is T |, -absorbing. In accordance with 2.19. [21],
if Yis a T-absorbing, invariant subspace of 7, then O'(T |Y ) c O'(t), hence

o(T|Y,nY,)co(l|F,)no(l|Y,)=2
whence Y, NY, = {O} For 3°) we notice that ¥, NY, is an invariant subspace of T'| Y,
and T'| ¥, and according to proposition 5.4.11. [41] we have

o(T|Y,nY,)cCD. NCD2 =2
(b) If T is decomposable and Y,, Y, are two spectral maximal spaces of 7" such that
Y,nY, ={0}, then dim(o(T | ¥,)no(T | ¥,))<1; when o(T) is on a curve, then
dim(o(T' | ¥,)no(T | ¥,)) < 0. It follows by lemma I.4.3. [37].
1.1.19. THEOREM. Let T e B(X ) be a decomposable operator, let Y be an

invariant subspace of T, let T be the operator induced by T in the quotient space
X =X/Y and let ¢: X — X be the canonical map. Then for any closed set F c C

such that

@

@

Fooll|Y)or FAo(T|Y)=
we can say that (p(X # (F )) is a spectral maximal space for T. Conversely, if Z is a

spectral maximal space of T' such that
0(T!Z)mS=@ or J(TIZ)DS
(where S =o(T'|Y )m J(T )), then there exists a spectral maximal space Z of T such that

o(Z)=2.
Proof. First of all we assume that /" 5 O"(T |Y). Then Y c X, (F ) and according
to proposition 1.1.1,, 7 \x (x)cy,(x)=0,(x)c o, (x)uo(T|Y) and

S, CG(T’Y)(\O'( ) hence
o(X, (F)) e X,.(F) < o(x, (F U (T | Y)) = o[, ().

14
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Consequently X ; (F) is closed and it is a spectral maximal space of T (proposition 3.4.
[76]). Let now Fma(T{Y)=®. Then O'(T]XT(F))('\ 0(T|Y)= & and by corollary
1.1.14. and remark 1.1.15. it follows that (p(X . (F )) is closed and
. O'(T)!(P(XT(F»:O_(TIXT(F»‘
If W is an invariant subspace of 7' such that
G(T [ W)C O'(T l (p(XT (F)))
then, according to lemma 1.1.16., there exists an invariant subspace for 7, W with
(W) =W and o(T | W)= J(T l W), hence W < X, (F); consequently W o(X,(F)),
meaning (p(X ’ (F )) is a spectral maximal space of T'. Conversely, let Z be a spectral
maximal space of T. If O‘(T[Z)f\SZ@ (hence a(TlZ)ma(T! Y)z@), then,
according to corollary 1.1.17., there exists a spectral maximal space of 7, Z such that
o(Z)=Z . When O'(T f Z)D S, we have
olx, (o(f) 2)uo(T| V)= X,(o(7 | Z)uo(r| Y))=
% (oli12)-2
and for Z = X.,,(J(T | Z)u o(T'| Y))

1.1.20. CoroLiarY. Considering the premises of the preceding theorem, we have

for any closed F' D O'(T f Y) the equality
- olx, (F) = X, (F).
If S; =, we also have the above equality in case Fn cr(T | Y) =0.

Proof If > o‘(T Y ) the equality is verified during the preceding proof. Let
now Fno(T|Y)=@ and S, =@. It follows:

o(x, (Fua(r| 1) = o(X, (F) +o(X, (T Y))=
- X, (POt | V)= X, () X, G V)
(see [4],2.3.) and since cp(X., (O'(T | Y))) = X,,, (O'(T | Y)) =0 we have (p(X,. (F)) = X'/* (F)

1.1.21. Remark. From the proof of theorem 1.1.19. and corollary 1.1.20. one can
sce that those stay true if 7'is believed to be only two-decomposable.

1.1.22. CoroLLary. Let T e B(X ) be a spectral (scalar) operator [respectively U-
scalar, generalised spectral (scalar)] and let Y be an invariant subspace of T. If 7 isa
spectral maximal space of T such that

o7 Z)no(r|Y)=2.
Then T'|Z is a spectral (scalar) [respectively U-scalar, generalised spectral (scalar)]

operator.
Proof. According to theorem 1.1.19., there exists a spectral maximal space of T, Z

such that
o(T|Y)ne(T|Y)=2,

Z=0(Z) (¢: X — X = X /Y is the canonical map) and
G(TIZ):G(T|Z).

15



Chapter 1 — Restrictions and Quotients of Decomposable Operators

Since  ZnY c X, (0T 2)n X, (o(T | V)= X, (o(T | 2)no(T | Y)) = X, (@)= {0},
the map U = ¢| Z is bijective, hence U is bicountinuous (according to the closed graph
theorem). On the other hand, 7|Z and T|Z are similar (one can write T|Z =
=14 "(T | Z )U) hence T'|Z is spectral (scalar) [respectively U-scalar, generalised

«
™

spectral (scalar)].

1.2. RESTRICTIONS AND QUOTIENTS OF DECOMPOSABLE OPERATORS

We shall continue with a paragraph that refers to the restrictions and quotients of
a decomposable (strongly decomposable or spectral) operator regarding an invariant
subspace, and we shall study particularly the case in which the invariant subspace is a
spectral maximal space for the operator. Thus we try to give answer to an open problem
asserted in [37], 6.5. For operators with spectra belonging to the class C one can prove
that decomposability implies strongly decomposability. We also study the particular case
in which dim S =0, where S = O'(T[ Y)m O'(T).

1.2.1. Tueorem. Let T e B(X) be a decomposable operator and let Y be an
invariant subspace for T. Then T, the operator induced by T in the quotient space
X =X /Y isaS-decomposable operator, where S = a(T |Y )m G(T )

Proof. Let {GS }u {G, }; be an open finite S-covering of O’(T ) If we put
G, =G, U p(T) and G =G, U p(T'|Y) we shall obtain an open finite covering

Gilolay of ofr) (since o(T)c o(T|Y)U G(T )). Then there exists a system
{r,}o{r} of spectral maximal spaces of T such that
o(T 1Y) e Gy,
o(T|V)c G (i=12,.,n)
and
X:ﬁ+ix.

i=l

But from lemma 1.1.12. it follows that
o)=(t1%)((Jott1)
i=l
and since o(7'|Y,)no(T'|Y)c G no(T|Y)=@ (i=12,...,n) we shall obtain
o(T1Y)no(T)co(TYy),

Vo)=Y,

oY, ) are spectral maximal spaces

hence
Y X, (oTY)c X, (o

(1
According to the theorem 1.1.19., Y, = (p(YS) dY'=
of 7" and we have that Y, =X, (o(T 7)) =X ( (T'|Y)uoT|Y), hence

16
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o{f1%)c (o(r1%;)uo(r | 7)nolr)=

=T 1¥)ne@)os <G ol )os c G,

oT|¥)=o(T|¥,)c G/ cG, (i=12,.,n).

and

Finally, we also have
X=Y,+) 7,
i=l

hence 7" is S-decomposable.
1.2.2. Lemma. Let T € B(X), and let Y be an invariant subspace of T and let T' be

the operator induced by T in the quotient space X = X /Y. If T and T have the single
valued extension property, then
Y, = X, (o1 Y)\o(f)cr.

Proof. If xeY,, we have o, (x)c o(T | Y)\ G(T) and o, (¥)c o, (x)n U(T)c
c (O'(T | Y)\ O'(T))m J(T): @&, hence & = 0 and consequently x € Y .

1.2.3. Provosimion. Let T e B(X) be a decomposable operator, let Y be an
invariant subspace of T such that S, = and o = o(T| Y)\G(T);t &. Then we have
T|Y eDy(¥), where S = (T | Y) o(T).

Proof. If o # @, then X, (c)# {0} (where o is an open setin o(T'); see lemma
I1.1.2.[37]). According to the corollary 1.1.4. we have

O'(T)\O'(T): o(T | Y)\O'(T)Z o
and by the preceding lemma it follows that X,(¢)c Y. Let {G,}U{G.} be an open
finite S-covering of G(TI Y). By denoting G/ =G, N p(T) and G; =G, U p(TI Y) one
obtains an open finite covering {G;}u {G, };’ of O'(T). Since 7' is decomposable, there

exists a system of spectral maximal spaces {Y o }u {Y, }f of 7'such that
o(T|Y )G, olT|Y)c Gl (i=12,.,n),

X=v,+YY,.

(=)
But o(T'|Y,)c G no(T)=G, mp(T)mJ(T)zGi Nnoco, hence Y, c X, (o)cY
(i=12,..,n).If xeY,then

x=yo+y +o.ty,
with y, €Y, y, €Y, (i=12,.,n), hence y; = x—(y, +y, +..+y,)eY . It follows that
Y=Y+ Y,

=1 .

where Y! =Y, NY and o(T | ¥y)c Gy, hence T'|Y €D, (Y).
 1.2.4. CoroLLARY. Having the same premises as in the preceding proposition, the

restriction T | Y is a S-residual decomposable operator.
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Proof. It follows by the definition of the class D(¥).

1.2.5. Corouiary. If T € B(X ) is a decomposable operator and Y is a spectral
maximal space of T, then both T|Y and T are S-decomposable operators, where
S=00(T'|¥)noll), IntS =@ and S, =D (4 is the frontier of A).

Proof. It follows by theorem 1.2.1., by the proof of proposition 1.2.3. (becausein .
this case Y; =Y, NY is a spectral maximal space of 7" and a(T | Yv’)c Gy ) and by"
applying the relation J(T): WTI—Y) ([2], 1.4.) as well as the remark 1.1.5.

1.2.6. Provosition. If T e B(X ) is a S-decomposable operator and S, =, then

X, (F) is closed for any F closed such that F > S or FNS=0.
Proof. 1t is identical with the one of theorem II.1.5. [37] since the demeanour of

the operator in this case is resembling the one of a two-decomposable operator.
1.2.7. Remarks. (a) Considering the premises of the preceding proposition, if S| is

a separated part of S, then X,(F) is closed for any F oS, closed such that

Fn(S\S,)=2. Indeed, X, (FU(S\S,)) is closed and we have the equality
X'/'(FU(S\SI)):XY'(F)+X7'(S\SI)7

whence it follows that X, (F) is closed (see [4], 2.3.). (b) If T e B(X) is S-

decomposable and
=5 UVs,v.US,,

where S, NS, =& for i# j (i,j=12,.., p), thenin corollary 1.2.5. we can choose the

S-covering such that
E=5ek .81

and
Ty, =(r|y)er e e ryy),
where the sum is (topologically) direct, and Yq,Y{,...,YJ are spectral maximal spaces of
7. Indeed, since S§,,S,,...,S, are separated parts, we will be able to choose
G, =G UGl U..UG! such that Gy NGl =D, Gy,Gy,...,GI open and S, c G
(i=12,..,p).Since o(T | Y)c Gy UG U...UG! wehave
o(T|¥)=0,00,u..u0, (0, Gy)
o, compact and separated. Our assertion results now by the theorem of decomposition

after the separated parts of the spectrum ([60], theorem 5.11.1.).
1.2.8. DeriNirioN. We remind that a topological space W # & has the dimension 0

(or is totally disconnected) if for any finite covering G, UG, U...0G, =W of W, there
exists a finite closed covering FUF, ..Ul =W of W such that I <G,
FnF, =0 for i+ (i,j=12,.,n). We also remind that a subset N of R"has the

dimension # if and only if Int N # & in R" (see [67], §20, I and [13] I, theorem 4.4.).
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1.2.9. Prorosrion. Let T € B(X) be a S-decomposable operator with S, =2 and
let S, be a separated part of S, with dimS, =0. Then T is S'-decomposable, where

S'=S\5S,.

Proof. Let {G,}u{G, };’ be an open finite S'-covering of o(T) with
G, NS, =T. We put G/ =G, NCS,. Since {G,} is a covering of §, and dimS, =0, .
there exists an open covering {Gr,"}:l of S, such that G/c G, and G'NG] =0
(i#j,i,j=12,.,n)(lemma 6.1. §6 [13]). If

G5, =|JG! and G; = G5 UG,
i=1

we observe that {G, }U{G, };’ is an open S-covering of o(T') and since S’ and S, are
separated, we can choose G, Gy, such that Gy NGy = Let {ry}u {Y,'}f be the

corresponding system of spectral maximal spaces such that
G(T | Yv) c Gy,

o(T|Y)cG! (i=12,.,n)
and
X:n+iﬁ.
i=l

We also have Y, = X, (o(T'|Y;)) and Y= X, (o(T|¥))). But, according to remark
1.2.7. we can write ’

¥ :X,.(o")+X,.(J,)+...+X,.(0'n),
where o' no, =D, o,no; =D (i#j,i,j=12,.,n)and

o(T|Yy)=c'vo,u...uo,
with o’ < Gy, o, < G . Consequently
X =X, () +[X,(0)+...+ X, (,)]+[1/+..+ 1/].
By denoting Y, = X, (¢7), ¥, = X, [o(T'| ¥')U o, ] one obtains
o(l'|Yy)c Gy, o(T|Y,)cG, (1i<n)
and
x=Y,+37,

=l

hence T'is S'-decomposable.
1.2.10. Tueorem. Let T eB(X ) be a S-decomposable operator such that

dimS = 0. Then Tis decomposable.
Proof. In the preceding proposition we take S, =5, hence S’ =S\, = and T’

is & -decomposable, meaning that it is a decomposable operator.
1.2.11. Corovrary. If T € B(X) is decomposable and Y is an invariant subspace

for T such that
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dim(o(T | ¥)no(T))=0,
then T is decomposable. When Y is a spectral maximal space of T, both T |Y and T are

decomposable operators.
Proof. It follows by the preceding theorem and corollary 1.2.5.

1.2.12. Dermvition. We shall denote by C  the class of all closed sets o < C with
dimo <1 and having moreover the property that for any open subset o, c o we have:
dimdo, <0 (9o, is the frontier of o, in the relative topology of o ).

1.2.13. Tueorem. Let T € B(X) be a decomposable operator with o(T)eC . Then

T is strongly decomposable.
Proof. The case dim O'(T ) =0 is contained in [37]. Hence we only have to analyse

the case dimo(T)=1. Let Y be a spectral maximal space of T'and § = do(T|Y) O'(T )
Since o(T)eC it follows that dim 9o(T|¥Y)=0. But from the formula

J(T): W it follows that o(7'|¥)N G(T)z do(T | Y)N O'(T), and corollary
1.2.11. yields that T'| Y is decomposable, hence 7'is strongly decomposable.

1.2.14. CoroLLary. Let T be a decomposable operator with o(T)eC . Then T" is
a strongly decomposable operator.

Proof. It follows from the preceding theorem and from the corollary 3.3. [75].

1.2.15. CororLary. If T is a decomposable operator with a real spectrum (or
having its spectrum on a curve), then T is strongly decomposable.

Remark. Corollary 1.2.15. was previously observed by C. Foiag and C. Apostol.

1.2.16. CoroLrLary. Let T € B(X ) be a decomposable operator with G(T ) eC and
Y a spectral maximal space of T. Then T is strongly decomposable.

Proof. Since T is strongly decomposable, by theorem 1.8. [2] it follows that T is

strongly decomposable.
1.2.17. CoroLLary. Let T e B(X ) be a 2-decomposable operator with G(T )eC .

Then T, T", T", ... are strongly decomposable. If X is reflexive then T" is strongly

decomposable if and only if T is 2-decomposable.
Proof. If T is 2-decomposable and O'(T )eC , then by the proof of proposition

1.2.9. there follows that 7 is strongly 2-decomposable, meaning it is strongly

decomposable. From theorem 1.2.13 it results that 7°, 77, ... are strongly

decomposable.
1.2.18. Corotiary. Let T e B(X) a decomposable operator and let Y be a

subspace invariant to T such that
dimo(T|¥)=0

Then T is decompos'able.
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Proof. There follows by corollary 1.2.11., since we have dim(G(T 1Y) G(T )) =0.
1.2.19. ProrosiTion. Let T € B(X ) be a decomposable operator and let Y be an
invariant subspace for T such that
dim(o(T | Y)no(T))=0.
Then T |Y admits the following spectral decomposition: for any open covering {G,. }f ofs -

o(T' | Y) with simple connected sets, there exist the subspaces {Y, }:’ , invariant for T, such
that o(T'|Y,)c G, and X =3 Y.
i=1

Proof Let {G, }l" be a finite open covering of o(7'|¥') with simple connected sets.
Let us set G =G, p(T ); then {G,' }l" is a covering of G(Tl Y )\ S (where
S=o(T|Y)N G(T )). Since {G,}' is also a covering of § and dim S =0, there exists an
open covering {Gis }l" of § such that G’ < G,, G’ NG} =@ for i+ j (i,j=12,.,n)

(see lemma 6.1., [13]). By putting | |G’ =G, it is obvious that {G;jU{G!{  is a S-
i S S |

i1

covering of o(T'| Y ) By proposition 1.2.3. and remark 1.2.7. we obtain
Y=Y, +Y,+..+Y)+(V + Y2 +..+Y"),
where Y, (i=12,..,n) are spectral maximal spaces for 7 (hence for 7'|Y also) with
O'(TI Y,)c G/ (i=12,..,n), and Y¥; (i =12,..,n) are only invariant subspaces for 7" and
o{r|v)c G (¥i < Y). Letus set
X, =X,(o(r1)uo(r 1))

and let us notice that X, are spectral maximal spaces for T'and o(T|X,)cG U (N}; cG,

YcX,, Y, cX, (i=12,.,n). Since

Y=Y +Y )Y X,AY Y
i=l

P
and o((T'|Y)| X, " Y)c G, our proof is over.

1.2.20. Cororrary. Let T e B(X ) be a decomposable operator and let Y be a
T-absorbing subspace invariant for T, so that dim(G(T | Y )mG(T))zo; then T|Y is
decomposable.

Proof. It follows from the preceding proposition, since in this case we can
consider the covering {G, };’ of G(T |Y ) with open arbitrary sets (not necessarily simple

connected) and by the fact the intersection of two 7-absorbing subspaces invariant for 7,
Y,, Y,, is T'|Y -absorbing (see remark 1.1.18.); we also use the result from [24], where

one proves that in the definition of decomposability the spectral maximal spaces can be

replaced with T-absorbing subspaces (also see 2.4.11.).
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1.3. SPECTRUM-SETS. THE SPECTRUM’S DECOMPOSITION AFTER ITS PARTS

During this paragraph we shall define the spectrum-sets for an T" operator, which
are in some way generalisations of sets-spectra; they are not separated parts of the, «
spectrum any more but compact subsets of it, which are the spectrum of some restrictions
of the operator. We shall further emphasise the subsets of the spectrum of a

decomposable operator having size of 2 or 1, and we shall study the restrictions and

quotients related to the corresponding subspaces.
1.3.1. Dernvition. Let 7' B(X) and let o c o7 ) be a compact set. ¢ is a set-

spectrum for T if there exists a invariant subspace Y for 7" such that
G(T |Y ) =0. A
1.3.2. Proposirion. Let T € B(X ) be a decomposable operator and ¢ C O'(T ) such
that  =Into (in the topology of G(T ) ). Then ¢ and ¢’ = W are sets-spectra for T

and
o(l'| X,(0))=0, o(T| X,(¢') ="
Proof. According to theorem 1.3.8. [37] we have o(7' | X,(5)) c o . It will suffice
to prove that o(T'| X, (c)) > Intc (the interior is considered in the relative topology of

o(T)). Let A,elntc; then there exists a disk &= {7» : l?» = 7&0[ < p} such that
3N G(T) c Into. We shall put

4 :{x:xec(r)]x—xoké},
G :{ux_xyép}
0 0 4 H

G, :{x:|x-xo| <§p}.
Consequently G, UG, oo(T), G,nd, =@. If Y,, Y, are the corresponding spectral

maximal spaces of 7' such that
G(T'Y;))DGO, G(T‘Y;)CGU X=X +1,

then from the equality ,
o(T)=o(T | ¥,)uo(T | ¥,)

and since (7| ¥;)nd, =&, we have
d co(l'|Y,)cG,no(T)cdno(T)cInto co

It will follow
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Y, =X, (o(T| Y;)))C X, (o),
consequently A, ed, c o(T| Y)co(T| X +(c)), meaning oc o(T| X T(G)). Since
o' =Into’ (in o(T)) we shall also have o(T | X,(c"))=o".

1.3.3. CoroLarry. Let T e B(X) be a decomposable operator and let Y be a

spectral maximal space of T. Then there exists a spectrd maximal space Y, of T such that- -
o(r7,)=olr)
where T is the operator inducedby Tin X = X /Y .

Proof. From the equality G(T )= W [2] and by the preceding
proposition it follows that G:G(T ) is a set-spectrum of 7, hence Y = X,(c) and
c=0o(T| X,(c)).

1.3.4. Remarks. (a) From proposition 1.3.2. results that an operator 7' e B(X ) is
decomposable if and only if for any open and finite covering {G, }f of o(T), where

G. < o(T), G, is open in o(T), there exists a system of spectral maximal spaces of T

{r'}' suchthat

1
n

o(T|Y, )—G,X*ZY,

Indeed, if {G,’}K is a open covering of o(T), then G, = G/ " o(T) is a set-spectrum for T
and ¥, = X, (G_?,) (T'is supposed to be decomposable). Conversely, it is obvious. (b) Let

W be an arbitrary subset of X and

o= UG'/'(x)v

xeW
then o is a set-spectrum for 7"if 7' is decomposable. Indeed, we have G(T | Xp (0)) co

and

(71, (6 UG/ (x)> U(S,\(x)—

xeX, (cy xelW
If 7 is a spectral operator and c=Intc (in the topology of O'(T))> then

G(T} E(G)X ) =0, where E is the spectral measure of 7 also, if ¢ = U G, (x) we have
xeW

o(7' | E(c)X)= o, where W is an arbitrary subset of X.
1.3.5. Derinimion. Let ¥, ¥, be two invariant subspaces of 7' e B(X). Y, will be

said to be the spectral complement (related to 7) of Y if O'(T | Y,)z olI)\oll'|Y). Y, Y,
will be said to be spectrally conjugated (related to T), if each is the spectral complement

of the other.
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1.3.6. Prorosition. If T' e B(X ) is decomposable, then any Y subspace invariant
for T admits a spectral complement Y, (related to T); there exists a single spectral

complement Y, of Y (related to T) which is moreover a spectral maximal space of T.

Proof Let 6 =o(T)\o(T'| V). If 6 =@ then ¥, = {0}. When o # &, we shall put
Y, = X,(c). Since o is a set-spectrum for 7 and o(T)\o(T'| ) is open in o(T ), we have- «
Y = {O} and O'(T |Y,)=o. Obviously, Y, is the only spectral complement of Y (related to

1

T) which is also a spectral maximal space of 7.
1.3.7. Remark. Let T € B(X ) be a decomposable operator and let Y be a invariant

subspace for 7 so that o, =o(T)\o(T|Y)# D and o, =ciT;\csI ; then ¥, =XT((5‘1) and

Y, = X,(o,) are spectrally conjugated (related to 7). When Y is a spectral maximal space

of Tand Into(T|Y)= G(T l Y) (in the topology of O'(T)), then we have ¥ =7,.
1.3.8. ProvosiTion. Let T e B(X ) be a decomposable operator having the

following property
o, =o(T)\ Into(T)eC
and let us put czm, Y:X,,(c), Y, :X,,,((Sl), X=Xx/Y, X = X /Y, and denote
by T, T the operators induced by T in X, X.Then T Y, T are the decomposable
operators, and T'|Y,, T are strongly decomposable; we also have
o{rY)=o(T) and ofT | 1)= ofF).
Proof. o and o, are spectrum-sets for 7 and we have G(T | Y =0= G(f )
G(T f Y,)z =0, = 0'( ) (see corollary 1.3.3. and [2], 1.4.). We have o no, = 6(Guc )
in the topology of o, since d(cnao,)=(cNo,)N m =(cno,)n mz
=(c, no)n (m N I:G): ©, )N (@) Es)nto)=(c,no)n W:
=0, "o (we used the definition of the frontier in the relative topology of o, and the

fact that if 4 is open then 4N X = AN X ; (see [68], ex. 1, §8). Since o, €C , it follows

that
dim(c no,)=dimd(cno,)=0

hence from corollaries 1.2.20. and 1.3.3. we obtains that 7'|Y, 7Y, T, T are
decomposable; but o(7 | Y,)z G(T)EC and according to theorem 1.2.13., 7'| Y, and 7

are strongly decomposable operators.

1.3.9. CorovLLary. With the same conditions as in the preceding proposition, if Y is
a spectral maximal space of T such that o(T | Y)o Into(7) (particularly Y =X, ()
with F > Into(T) closed) and Y, = X, (m), then, by using the symbols fixed
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above, we have that T|Y, T are decomposable and T |Y.,, T are strongly

" decomposable.
Proof. Let 6 =Into(T) and o, =o(T)\o. If F> Into(T), F co(T) closed,

then X, (o)< X, (F) and
c=0o(T| X,(c))co(T| X,(F)). .
If o(7'| ¥) > Into(T"), we have once again
dim(o(T | ) o)) = dim(o(T | ¥, )~ o(T)) = 0
(since 6 c o(T'| ¥) and the frontier of m =o(T'|¥;) has dimension 0 in the
topology of &, ) and the proof is the same with the one of the proposition above.
1.3.10. Lemma. Let TeB(X) be a decomposable operator such that

o = G(T )\ Into(7)eC and let Y be a spectral maximal space of T. Then 7'|Y is a S-

decomposable operator, where

S=o(T|Y)NInto(T).

Proof. We shall put ¢ = Into(T) and X, (o(T'|Y)uc)=Z.If o(T'|¥)c o, then

S =o(T|Y) and our affirmation is obvious. Let now o(T|Y)z o and G, luic, }f a
bounded and open S-covering of o(T|Y). o(T'|¥)Uoc is a set-spectrum for 7' (sce
proposition 1.3.2. and remark 1.3.4.) hence

0(T|Z)=G(T[Y)UG.
If we take Gy =G;Up(T'|Y) and G/ =G nbo (i=12,.,n) then {G;}U{G} is a
bounded and open covering of O'(T | Z ) According to corollary 1.3.9., the operator 7' | Z
is decomposable. Let {ZS}U{Z, }l” be the corresponding system of spectral maximal

spaces of 7'| Z such that
o(T'|Z,)c Gy, o(T|Z)c G (i=12,..,n),

Z:a+iz.

il
Since  o(T|Z,)c (G, nEs)n(o(T|¥)uc)co(T|Y), one obtains Z <Y
(i=12,.,n).If xeY,then
X=Ys+y, vy, t...+),
where y,eZ;,, y,eZ cY (i=L2,..,n) hence g :x—(y, +...+y,,)e Y,

consequently
Y=2Z,nY+) Z,

=l
o(T|Z;Y)c Gino(T|Y)c G,
o(T|Z)c G nbo c G,
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hence T'|Y is an S-decomposable operator.
1.3.11. Tueorem. Let T € B(X) be a decomposable operator having the following

property: G, ZG(T )\ Into(T)eC . Then T is strongly S-decomposable where

S= IntGiTi.

Proof. Let {GS}U{G, };’ be a bounded open S-covering of G(T ) and let”
{H,}U{H,}' be another open S-covering of o(T') such that H; c Gy, H,cG,

(i=12,.,n).If {Y % }u {K }f is the corresponding system of spectral maximal spaces of T’

such that
G(TIYS)C H, c Gy,

o(T|Y)c H c G (i=12,.,n),
X:&+ix,
i=l

then we have Z, = X,(H,)oY,, Z =X, (H)>Y, oT|Z,)c H,, o(T|Z,)c H,
(i=12,..,n). But T|Y is §,-decomposable (where S, = Smc(TI Y )) for any spectral
maximal space Y of 7, according to the preceding lemma. Since {f? S,}u {H, }]" is also a S-
covering for o(T | ¥), let {X 5 }U {x, }f be the corresponding system of spectral maximal
spaces of 7'| Y . From the inclusions
olr | X, )co(r|7)n
o(T|X,)co(T|Y)NH,

I

T X

S
one obtains
X, =Y, (o(T| X)) X, (o(T | V)N Hy) e X, (H,)=Z,,

X, =Y, 6(T|X)cZ (i=12,.,n).
Consequently Xg c Y nZ, X, c Y N Z,, so from the equality

F =Xyt 3,
=l

it follows
F=¥rZy+ > ¥nZ,

i=l

meaning that 7'is strongly S-decomposable.

1.3.12. Provosition. With the same conditions as in proposition 1.3.8. if we denote
by T° and T" the operators induced by T" in X" =X'/Y* and X" = X" /Y we shall
have: (a) T" and T"| Y' are decomposable; (b) T" and T |Y" are strongly

decomposable.
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Proof. If T is decomposable, then T" is 2-decomposable ([54] theorem 2.3) hence
decomposable [86], and since X' /Y* =Y", X*/Y, =Y}, (x/¥) =Y+, (x/1) =1*
(see [45], 1, 2.4.18.) it follows easily that 7" and T, are similar (T, =T|Y,T, =T |Y,);

also, 7" | Y* with (T)‘ , T* with TYT and 7" | Y" with (T)‘ From the proposition 1.3.8.

@
«

and the corollary 1.3.9 it follows now our assertion.
1.3.13. Proposition. Let T € B(X ) be a strongly decomposable operator and Y a

subspace invariant to T. Then T' is strongly S-decomposable where S = O'(T Y )m G(T )

Proof Since T is S-decomposable (according to theorem 1.2.1.) we have left to

prove the equality
Z=2NY+ZNY +..+ZNY,

for any spectral maximal space Z of T'. But from the proof of theorem 1.2.1., keeping

the symbols, it follows that Y;,Y,,...,Y are the images of the spectral maximal spaces of
T,Y,Y,,...,Y through the canonical map. T'being strongly decomposable we have
L=lnY;+Znh+..+ZNY
for any spectral maximal space Z of 7. We may suppose that G, N G(T |Y ) =&
(i =120 ). Lt
Z, = X,(o(7'| Z)us(T]7)).
Theorem 1.1.19. and corollary 1.1.20. yield that Z, = X.,. (G(T l Z)u O‘(T [ Y)) is a spectral
maximal space of 7' and G(T} Zl>c G(T] Z)u o(7'|Y) (see [76], proposition 2.4. and
3.4.). Since
Zi=ZNY;+Z N +.+Z NY,
we shall have
Z=Z,nY +Z Y +.+Z,nNY,.
But ZcZ and from the inclusions G(TIZ, mY,)c G(Y’lZl)m G(T[Y,)c
(G(TI Z)u G(T | Y))m G, c G<T [ Z) it follows Z[ N Y, cZ (i=12,..,n).1f ZeZ, then
Z =g+ % +..+x with X, e ¥ and %, € ¥, Z (i=12,.,n)(since , NZ, =Y, N Z)
hence
ko =Z—(k +& +..+%)eZ,
whence it follows that
Z=ZnY +ZAY +.+ZNY,.
1.3.14.  Cororrary. Considering the circumstances from the preceding

proposition, if Z is a spectral maximal space of T, then T|Z is S,-decomposable,

where
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S, =8Sno(T|Y).
Proof. We have S mcr(T | Z ): O‘(Tl Y )m G(T| Z ) and from the preceding
proposition it results that T|Z is S,-decomposable.
1.3.15. Lemma. Let T € B(X ) be a strongly S-decomposable operator and let Y be
a spectral maximal space of T. Then T | Y is S,-decomposable, where S, =8N O‘(T |Y ) W
Proof. Let {GSI }u {G,. }f be an open, bounded S, -covering of O‘(T Y ); by putting
Gs =Gy Up(T|Y), it follows that {Gs}u{G.}' is an open S-covering of o(T). If

{Y }f U {X S,} is the corresponding system of spectral maximal spaces of 7, then

i

Y=YNY+> YNY,

i
o(T|Y " Y)co(T | Y)n (G, upll'|Y))=Gs,
o(T|YNY)co(l|Y)NG, cG, (i=12,.,n),

therefore T'| Y is S, -decomposable.
1.3.16. Tueorem. Let T € B(X ) be a strongly S-decomposable operator such that
dimS =0.
Then T is strongly decomposable.
Proof. Let Y be a spectral maximal space of T. According to the preceding lemma
there follows that 7'|Y is S,-decomposable where S, =5 N G(T Y ) Hence dim S, =0

and according to theorem 1.2.10., T'|Y is decomposable, hence 7 is strongly

decomposable.
1.3.17. Cororrary. Let T e B(X ) be a strongly decomposable operator and let Y

be an invariant subspace for T so that
dim(G(T 1Y) G(T)): 0

where T is the operator induced by T in the quotient space X=X/Y.Then T is a

strongly decomposable operator.
Proof. 1t easily follows from the preceding proposition and from proposition

1.2.13.
1.3.18. CororLary. Let T e B(X ) be a strongly decomposable operator and let Y

be an invariant subspace to T so that
dimo(7'|¥)=0.

Then T' is strongly decomposable.
Proof. 1t easily follows from the preceding corollary.
1.3.19. Provosition. Let H be a Hilbert space and let T € B(H) be a strongly

decomposable operator. If Y is an invariant subspace for T and ", and
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dim(G(TIY)ﬂG(TIYl))=O (especially dimG(T|Y):0), then T|Y and T|Y* are

strongly decomposable.
Proof. 1t follows from corollary 1.3.17.

1.4. RESIDUAL SPECTRAL MEASURES .

In this paragraph we shall introduce a spectral measure, residual in some
sense, and we shall demonstrate that the restrictions and quotients of spectral operators
admit such a spectral measure (spectral S-measure). We shall further emphasise some

properties of the operators that admit residual spectral measures.
1.4.1. DerviTioN. Let X be a Banach space, and let B(X) the algebra of all linear

bounded operators on X, let P , be the set of the projectors of X and B ; be the family of

all Borelian sets B of the complex plan C that have the property that BNS = or
B> S, where S is a compact set of C; an application E :B (—P , will be said to be a

spectral measure if:
1°. ES(BImB2):ES(BI)ES(BZ)’(BI’B2 €By),

20, ES(CJanx=iES(Bn)x, (B,eB,,B,NB, =D ,n+m),
i=l

i=1
3°, E(C)=1,
4°. sup||E(B)
BB ¢
An operator 1" € B(X ) will be said to be S-spectral if there exists a S-spectral measure
such that TE,(B) = E¢(B)I" and o(T' | E{(B)X)c B (BeB ).
1.4.2. Remark. A T operator is S-spectral if and only if it is a direct sum
T=T &7, where 1| is spectral and o(T,)c S . Indeed, if T is S-spectral, then one
easily verifies that the map E:B —P, (where B =B,) defined by
E(B)= E,(BNES) is a spectral measure for 7) = T|E,6S)X (BeB ), hence
T=T ®T, where T, =T | E(S)X and o(T | E4(S)X)c S . Conversely, if 7; € B(X,) is
spectral, and 7, € B(X ,) with O'(Tz)i)O'(T]), 7, not spectral, by putting S =o(T;),
X=X ®X,, T=I1®&T, the map E;:B;—>P, defined by the equalitics
E (B)=E(B)®0 if BNnS=@ and E,(B)=E(B)®I, if BoS (BeBy) is a &
spectral measure of 7' (£ is the spectral measure of 7;, and /, is the identical operator

inX,).

< 0.
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1.4.3. Provosition. Let T € B(X ) a spectral (scalar) operator having the spectral
measure E, let Y be a linear, closed invariant to T subspace, T is the operator induced
by Tin X=X/Y and ¢:X — X the canonical application. Then T=T ®T,, where
T =T |o(E(c')X) is spectrd (scalar) T,=T | o(E(c)X), o=0(T|Y),
G’=G(T)\0'(T|Y) andG(Tz)cSzc(TlY)mG(T). .

Proof. The operator T | E(G’)X is spectral (scalar) ([45], III, XV, 16) and since
Y c E(6)X =X,(c), we have YNE()X={0}. But E(c)X+Y=E(c)X®Y
(E(c’)X +Y being closed; see lemma 1.1.13.) so o(E(c')X)can be identified with
E(c')X , and 7, with T'| E(c')X , meaning T, is spectral (scalar). There is easy to verify
that (X, (c))= X i (c)=X ; (S) (corollary 1.1.20.) consequently O'(T | (X, (0'))) cS.

1.4.4. Proposition. Let T € B(X ) be spectral (scalar) and let Y be an invariant
subspace to T with X,(c)c Y (where ¢ =o(T|¥)\ G(T)): let also S=o(T|Y)N G(T)
and T,=T|Y. Then T,|E(c) and T,|X,(c) are spectral (scalar), and
T, = (T, E(c)Y)® (T, | E(S)Y) where o(T;, | E(S)Y)c S no(T}).

Proof. o being open in G(T ), there exists a growing series of open sets (csn)wN

with o= Ucn; from the continuity of the measures E()x it results that

neN

E(c)=1imE(c,), therefore E(s,)X =X,(c,)c X,(o) (411, V, 1.9.) implies

E(c)X c X,(c)c Y. The subspaces E(c)X and X,(c) are invariant to 7 and the
spectral measure E, so 7,|E(c) and T, | X,(c) are spectral (scalar). From
Y X, (o(T|Y))= E(c(T|Y)X it follows that Y= E(s(T|Y))Y =E(c) +E(S)Y,
hence Y is invariant to E(c) and E(S); consequently E(c)|Y and E(S)|Y are
projectors in ¥, E(c)V /and\E(S_)l are closed, and Y = E(c)Y + E(S)Y . We also obtain
that o(7;, | E(S)Y)c o(T | E(S)X)no(T|Y)c < S no(T|Y).

1.4.5. Tueorem. Let T € B(X ) be a spectral operator and let Y be a subspace
invariant for T such that X,(c)cY (where c=o(T|Y )\G(T )) and S =8, where
S = G(T |V )m G(T). Then T|Y and T are S-spectral operators.

Proof. There follows by the preceding propositions.

1.4.6. Coroiary. Let T e B(X) be a spectral (scalar) operator and let Y be an
invariant subspace for T so that dim(cs(T | Y )m G(T )): 0.Then 7'|Y and T are spectral
(scalar).

Proof. From dim(c(T[Y)m G(T)):O it follows that S, =& (remark 1.1.5.),
X, (G(T Y )\ G(T »c Y and according the preceding proposition, we have Y =Y, @Y,
where Y, = E(G)X = E(CS)Y and Y, = E(S)Y (c=0(T| P\ (S(T),S =o(T|7)n G(T)).
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Obviously, Y, is invariant to the spectral measure E. But o(T|Y,)co(T| E(S)X)c S
(since 6S is connected and S = S ) therefore. Y, is also invariant to E and according to
theorem V.4.4. [41] T|Y and T are spectral (scalar).

1.4.7. CoroLLArY. Let H be a Hilbert space and T € B(H ) a normal operator. If Y
is an invariant subspace to T so that dimS =0, where S =o(T | ¥)N G(T ) then T | Y~ -
and T | HOY are normal.

Proof. From the preceding corollary it results that Y is invariant to the spectral
measure E of 7, hence Y is also invariant to 7.

Remark. Corollary 1.4.6. is a generalisation of the result obtained in [44] which
states that the restriction T | Y of a spectral operator to an invariant subspace Y to T'is a

spectral operator if O'(T Y ) is totally disconnected (meaning G(T |Y ) =0).

1.4.8. ProrosiTion. Let T € B(X ) be a subscalar operator and T € B(/\N’ ) the
minimal scalar extension of T. Then T is S-scalar, where S = o(T')N O‘(T'; ) iy being the
operator induced by T in the qudient space X=X/X.

Proof: 1t is known that a subscalar operator is the restriction of a scalar operator to

an invariant subspace for the operator. The assertion follows by proposition 1.4.4.
1.4.9. Provosition. Let H be a Hilbert space and T € B(H ) a subnormal operator;

if ' we denote by Te B(AN’ ) the minimal extension of T, then T =T ®©T,, where T, is
normal, o(T})c o(T)\ G(T), o(T,)c o) G(f ) T being the operator induced by T in
the quotient space H=H/H.

Proof. Same as for proposition 1.4.4.
1.4.10. Remark. let Te B(X ) (or T eB(H )) be a subscalar operator

(respectively subnormal) and T the scalar minimal extension of T (respectively a scalar
extension of 7) such that dim(G(T )m G(f))z 0, where T is the operator induced by 7"in
the quotient space /\N’ = X /X (respectively ﬁ = H/H). Then T is scalar (respectively
normal). It results from propositions 1.4.8., 1.4.9. and corollaries 1.4.6., 1.4.7.

1.4.11. ProvositioN. Let T € B(X ) be a S-spectral operator. Then T is a strongly
S-decomposable S, < S

Proof. Tt follows from the fact that a spectral operator is strongly decomposable

and from remark 1.4.2.
1.4.12. Remark. If T € B(X) is S-spectral it will be enough to take S (7).

Indeed, by remark 1.4.2. it follows that 7' = 1] ® T, where o(7,)c S, and 7; is spectral.
We have G(T) = G(TI)U O‘(TZ), hence O'(Tz) c O’(T) and o(T,) o(T)nS = S". But the
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direct sum of a spectral operator 7, with another operator 7, is an operator, T =7, ®1T,,

S, -spectral where S, = o(7,) = o(T | E(S)X)c SN o(T).

1.4.13. Proposition. Let T € B(X ) be S-spectral; then the support of the spectral
S-measure of Tis o(T), and E4(o(T))=1.
| Proof. According to remark 1.4.2. wehave T =T, ® T, where T, =T | E (I:S )X is “
spectral, and T, =T | Es(S)X with o(T,)c S. Let ¥, = E;(8S)X, Y, = Es(S)X ; we
obviously have X =Y, @Y, and T =1,®T,. Since I, is spectral with the spectral
measure E defined by the equality E(B): E; (Bml:S) for any B c C borelian, the
support of the spectral measure E is o(T;). But Ej (S)= 1, is the identical operator in ¥,
(we have E(S)y=E (S)E;(S)x= E,(S)x=y for any ye E,(S)X ), hence
= E,(C)= Ey(CS)+ By(5)= EGU)® I, = 1, 01, = By (65,0 5) = By (o(r)),
consequently the support of Eg is G(T ) One can also verify directly, as in proof of
proposition 1.5. [41]. Accordingly supp £ = (T )

1.4.14. Provosirion. Let T € B(X) be a S-spectral operator, let E be one of its

“~spectral measures and w a proper value of T. If F < C is a closed set from B  and

we S UF, then, for any proper vector x corresponding to w, we have
Eg(Flx=0, Eg({wikx=x,

when we S, then
ES(F)x:O’ ES(FS)x:x

Jorany F, F; closed such that FNS =0, F; S §.

Proof. One proceeds as for spectral operators. For the first case, since
we o(T| Es(F)X) we have
Ey(F)x = R(w, T | Eg(F)X)-(w=T)E(F)x =

= Rw, T | E;(F)X)E,(F)-(w=T)x = 0.

F :{x,[x~w[zl},
n

and from E(F, )x =0 (for n = K big enough such that F, © §) it follows

A N A (VY X

hence E,({w})x = x. One verifies the same in the second case, when we S..

By putting

Remark. From the preceding proposition it results again very easy that S, < 5.
1.4.15. Tueorem. Let T e B(X ) be a S-spectral operator and let E; be one of its

twspectral measures. Then for any closed F < C such that F o S we have
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ES(F)X:XT(F)
Proof: Since o(T | E{(F)X)c F we evidently have

E{(F)X c X,(F).
Let us verify the inverse inclusion. Let xe X, (F), hence p,(x)>DC\F. Let ¢ be
closed (compact), c N F =. Let us prove that E(o)x =(0. We consider a admissiblg -
system ' of simple Jordan curves that contains in “the exterior” ¢ and leaves in “the
interior” the set F, hence I'  C\ F < p,.(x). If x(1) is the analytic function defined on
p,(x) such that x = (\f — T)x(1), then

[x()an =o.
Hence we shall be allowed to write:

By =5 [ RO T @) =

il

= [ ROTI B GMOEG N~

- _2.175 [RO.T | E,@W0)E@Ydn =

- [EGROTI B G~

- [ B0 = £, 6)- [ 50.30.~0,

The set C\ F being open we have C\ F' = ch,, with o, closed o, c c,, (o, canbe
neN

replaced with the compact sets o, N o(7')), consequently

(- 5= B\ )= £ U, o= limE o, )=0

hence x = E,(F)x e E;(F)X , whence
X, (F)c E{(F)x .

- 1.4.16. Corovrary. Let T € B(X ) be a S-spectral operator and let E; be one of

its spectral capacities. Then the map E  defined by the equality
E(F)=E,(F)X for F eF

is the spectral S-capacity of the strongly S-decomposable operator T.
‘ Proof. T is strongly S-decomposable hence it admits a spectral S-capacity E
which is unique (see theorem 2.5.5.); from the preceding theorem there follows that
EJ(F)X =X, (F) if F58 and EJ(F)X =Y, if FNS =@, where E;(FUS)X =
= E(F)X ® Eg(S)X = X, (FUS)=Y, ®X,(S). In theorem 2.5.5. and corollary 2.5.6.

there is proved that the spectral S-capacity of a strongly S-decomposable operator is
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~ given by the equalities E(F)=XT(F) for F58 andE(F)=Y, for FnS =@, where
Y, isgivenby X, (FNS)=Y, ®X,(S).
1.4.17. Remarks. a). From the preceding theorem and corollary it follows that if 7
is S-spectral then Eg (F )X is a spectral maximal space for T hence a subspace of X,
ultrainvariant to T for any F eF ;. b). Considering the conditions and the proof of the -
preceding corollary it results that for F < C closed such that FF NS =& we have
E,(F)X =Y., where Y, is the spectral maximal space given by the equality
E(FUS)X =X, (FUS)=Y, ®X,(S) and o(T | ¥,)c F .
1.4.18. Provosrion. Let T € B(X) be a S-spectral operator and let E be one of

its  S-spectral measures. Then for any operator A€ B(X ) interchangeable with T we

have
AE,(B) = E(B)4
Jorany BeB ;.

Proof. The standard procedure is applied, observing that it is enough to verify
only for BeB,, B> S, since I, =T | E(C\S)X is spectral (remark 1.4.2.). Let ¢ be

closed, o €B . Because £(c)X is an ultrainvariant subspace to 7'it follows that
AE (G) = Eg (G)AES (0)
Let F and F, eB closed, FNF, =&, F>S. So, using the preceding equality, we
obtain
Ey(F)AE(R)= E(F  R)AE(F ) = Es(@)AE(F)=0.
The set C\ I being open, there exists a growing series of sets (0'” )neN closed such that

CiFe= UG" . Hence

neN

E (F)AE,(C\ F)=1lim E;(F)A4E(c,)=0

n—»o

whence
Ey(F)A = Ey(F)AB(C) = Eg(F)AE, (F)+ E,(F)AE,(C\ F) =
= E(F)AE,(F)= AE,(F )q.e.d.
1.4.19. Tueorem. Any S-spectral operator T € B(X ) has a single spectral S-
measure Eg.
Proof. Let Eg, E; be two spectral S-measures of 7. From the exchange of F|

and E with 7, it follows that

g (B) = (Bl )ES (B)
for any B, B, €B ;. We also have E (F)X = X,(F)= EL(F) for F closed, F > S and
EJ(F)X = Y, = E (F)X for F, closed, F, NS =&, where Y, is given by the equality
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Y, ®X,(S)=X,(F US) (remark 1.4.17.). One knows that if P,Qe B(X) are two
projectors, then QP = P is equivalent with PX c OX (Lemma 1.12. [41]).

Consequently
Ey(F)ES(F)= E5(F), E(F)Es(F)= E(F)

and similarly for F, hence E (F)= Ej(F) for any closed F eB . According to th -
regularity of the measures <ES (-)x,x*> and <E; (-)x,x‘> it results that E(B)= Ej(B) for
any BeB.

1.4.20. Cororrary. If T e B(X ) is a S-spectral operator, then T can be written

uniquely as follows
I'=T &1,

where T, =T | Eg(C\S)X, and T, = T | E4(S)X has the spectrum o(T,)c S .

Proof. There follows by the preceding theorem and by remark 1.4.2.
1.4.21. Proposition. Let T € B(X ) be a S-spectral operator such that

dim S =0.
Then T is a U-scalar operator; if, moreover, T is the restriction to a subspace invariant

to a spectral operator, then T itself is spectral.
Proof. It results from the fact that an operator 7" with dimc(T ): 0 is U-scalar,

also a spectral operator is U-scalar [37]. The second assertion results from 4.13. [41].
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