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CHAPTER II

,S.DECOMPOSABLE OPERATORS

This paper is devoted to the study of the ̂ S-decomposable operators defined in the introduction (see

[21]' [16]). First, we show some structural properties of spectral maximal spaces of the S-decomposable

operators. Then, we shall present the behavior ofthese operators at direct sums, at projections, at soparate

parts of the spectrum, at the Riesz-Dunfort functional calculus and at the quasinilpotent equivalence. We

will also give proof of an important structural theorem of spectral maximal spaces, generalising the

following from [53] and [59]. We shall define and sfudy the spectral s-capacities, and give several s-

decomposability criteria. We shall further study the restrictions and the .i-decomposable operators'

quotients.

2.1. TIIE STRUCTURE OF SPECTRAL MAXIMAL SPACES OF

^9.DECOMPOSABLE OPERATORS

In this paragiaph we shall goneralise the corresponding follows from [37], [48],
obtained for decomposable operators. The main result will be that Xr(f) * a spectral
maximal space for any F c ,S c,S., Fclosed.

2.1.1. LBurra e. Let f e n(X)Ue a S-decomposable operator, and let G be an open set

such that:

c n (o(r)t s)= a
then there exists a maximal spectral space r*{o\ of T such that a(Tly)cc. If
dims <I and Gnlnto(Z)+A @ being an open set), then there exists a maximal
spectral sprce f + l0} of T such that a(T ly). G.

Proof. Let Gsbe an open set such that:

S c G ,  l o ( f )
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and
GrvG=o( r ) .

Z being S-decomposable, there exists a sistem of spectral maximal spaces Ys, Y from Z

such that:
o( r l r r )cG" ,  a ( r l r )cc

and
X = X s + Y .

If Y={O}, *e have I, =X and, o(f lfr)=o(f)cG5, contradiction, hence f +{O\.

When dim,S ( I and GaIntc(T)*A it follows that cn(o(f 1f)f S)+ A,

consequently f * {O\.
2.l.2.Tssoxnv. If T e n(X) is S4ecomposable where dims .-1, then

ooo(T)=":(z) =a (see [3U, 1.3.6.),
Thasthesingle-valuedextensionproperty(Sr=A)and o'(f)=o,(f).  I f  Sr+A,then

S . c S  a n d d i m S = 2 .

Proof,If o-|(r) =A,let G be a component of o|(r). Then, by proposition 1.3.7.

[37], there doesn't exist any spectral maximal space I + {O} of f such that

o(r lv)c c;
by the preceding lemma, Gno(f) =A, therefore Gno|(f) =A whtchis impossible

(since G c. o0o(Z) c Int o(Z);. Su-e for o, (r).

Consequently

ooo(T)= oo,Q)=a

since S. ="1(z), and of (z)=o(r)to,(r), we have s, =a (meaning thatT has the

single-valued extension property) and
o(r)= ",(r) '

Now let S, +A. In order to verify the inclusion S, c,S it will suffice to veri$r that

"t 
(f)c S . Suppose that 

"l 
(f) ( ,S ; then there exists a component Go of o'| (f) such

that:

co € .s and Go n (o(r)t S)+ a

By the preceding lemma there follows that there exists a spectral maximal space Yo of T,

% * {o} such that: 

o.(r I rr) c Go;

contradicts proposition 1.3.7. [37], consequently ,S. c S . But S, + O implies dim,S = 2
(we have Int,S, * A)hence Int,S.+ 0.



^S c F. o(r).

Then Xr(F) is a spectral maximal space of T and
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2.1.3. THnonsM. IEt T . B(X) be a s-decomposable operator and let F c C be a

closed. set suchthat

"(r 1x,(r)) - r
conversely, for any spectral maximal space Y of T such that oQ I r), s we haw

r = x,(cQ 1r)).
proof. lret F c o(f) be closed such that,9 c F (S. c S c -F) and let G' Flbe two

open sets satisfyingconditions G, = F, H A F = A and G, w H >"(f). W" shall put

G r = G , G r = H .

Let {Y,}i a" u corresponding slstem of spectral maximal spaces of Z such that:

c ( r  1 r , ) .  G ,  ( i  =1 ,2 )

and
y  = y ,  + y r .

I f  xe  X r (F ) ,  t hen  x  =y* !2 ,  l i eY ,  ( i =1 ,2 )  and  o ' r ( x )cF ,  ; f o r  l , . p r ( r )  x ( f . )

has meaning and
(xr -r)*(x)= x

hence for l" e EF ap(r lYr) welnve

(l.r - r[n(1",7 | Y,)y, - 
"(r)) 

= lz - x = -!r,

from which it follows that t".pr(yr).But l,e,S:,S., consequently

l,e S"(y,)n Q, =pr(!r) and from this it derive that

o r ( y , ) c F v " @ l Y r ) c F v G ,

therefore
lF aEG, cPr(Y,).

Let now f be a bounded system of simple closed curves surrounding F and included in

EF ntGr. For l, e f we have

v, (r) = -R(1,, r lYr)v, + x(l') , Hence

I  n  / \  1  r  1

lniIv,OM 
= -*lo(t, r |Y,b,ax+fit"(r")ai' '

The spectral maximal space { of Zbeing Z-absorbing ([76], proposition 3.1.), if y, eY,,

then y,(f). I for l. e pr(y,) and since o(r 1vr) is "outside" f we obtain

! lr,(r,)al . Y,, ! ln(r,r lY,bdl. = o.
2 n i  r ' ' '  '  2 m  {

Consequently
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' = *,r=;il,o ,r>d?" = *l'o)u^ = *[ -r, (r)ar . v, ,
thus

xr(r) c. lr = z .
G1=F

Byothermeans, if z eZ thenfromthe inclusions

it follows that

",.(r)=y,Q)wS. 
c f- lG, =,{

Gr>F

hence z e Xr(f) and Z c Xr(f); so we conclude that

x,(r)= nr,
G t ) F

fromwhereitfollows that Xr(F) isclosed. Byproposition3.4. 1761, X?.(f) isaspectral

maximal space of T and oQ1Xr(f))- f . Conversely,if Y is a spectralmaximal space

of Z such that o'(I I f) - S, then according to those proved before we obtain that

o(r 1x, (o(r t r)))- "(r 1 r)
hence

x,("@ lr))cr .
But from the evident inclusion Y c Xr(o(f I f)) one finally obtains

r = x,.(o(r 1r)).
At this momerf the theorem is completely proved. When Z has the single-valued
extension property (S. = A) we have the following

2.1.4. ConoLLARy. Let Ten(X) a s-decomposable operator with Sr=A and let

F e c  be such that  e i ther  snF =a or  Frs,  and Fn(st  s , )=a,where s ,  is  a

separated part of s. Then x,(e) rs a spectral maximnl space of T and

o(r1x,(r))-r. Conversely, if Y is a spectral msximal space of T such that

"(f IY)= F and F has one of the two properties abwe, then y = X,(o(f 1f)).
Proof, If Fn S=O (Fco'(Z) closed), by the preceding theorem X,(.S) and

X.,.(F v,S) are spectral maximal spaces of Zand

X ,.(F u .!) = x ., (r) + x, (S),
whence it follows that Xr.(f') is also a spectral maximal space for 7(see [4], proposition

4.e) and c(r(x,(r)))c r .

If

v,Q). y,o,Q)c o(r lY,).  G,
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s=s,u( .s \sr) ,
where ̂ 1, is a separatedpartof^Sand F r S,, Fn(StS,)= Z, thett

x,(F u (s r E)) = x,(r) +x.(s i q) ;
therefore Xr(f) is again a spectral maximal space of 7. The final part of the corollary

results identically as in the preceding theorem namely from the evident inclusion$"
Y c x,(a(r I r)) and o(r 1x,(a(r t r)))- "(r ly).

2.1.5. PnoposrnoN. Let T e f(X) a S-decomposable operator and S, a separated part

of S with dim,S, = 0. Then T is S' -decomposable where S' = S \,Sr.

Proof, The case Sr = O has been proved in proposition 1.2.9. Keeping the notations

from the proposition 1 .2.9. prove, we will obtain the spectral maximal spaces {f, } u {f 
'};

of Z such that o(Z I fr) - c, , o'(f lY,). Gi 1t = t,2,...,n)

and

X  = Y s  + Y , ' + Y i  + . . . + Y j .

Bu t  Y ,  =  Yo ,+  f " ,  +  Yo"  *  . . . *  Yo - ,  where  o ( f  1 f r )=  o ' ( J  o r  L - /  6z  U . . . \ - . /  on :

"(f I  f",)= o',  o(I lY.,)= o, ( i  = 1,2,.. . ,n).Yo, ,Yo, being spectral maximai spaces of Z,

a n d  o ' c 4 , ,  o i C G i c . G , .  I - e t  6 , = G , u o ( f  1 4 ) .  S i n c e  6 , n S ' = A ,  w e h a v e

Xr.6' u6,)= Xr(S')+Yu,, where Yu, are spectral maximal spaces of T,

"(f l fo)-4 . Gi U=1,2,... ,n). We have Y,'+Yo, c ).u and Xr(S')+YncXr.(o-'uS')=Yr,,

therefore X =Ys, +I/u +...*Ya,^, and Zis,S'-decomposable.

2.1.6. Remark Let f e B(X) be a S-decomposable operator and ̂ 9, c S the closing

of the set of S's points in which S has the dimension 0, dimS, = 0 and thus that

S' = S \ S, be closed (and thus separated from S, ); then from the preceding proposition it

follows that Z is,S' -decomposable.

2 .1 .7  Pnopos r roN.  Le t  T " .V )  (u=1 ,2 )  and  l e t  T ,@TruB8 ,@Xr ) .  I f

Y c. X,@ X2 is a spectral maximal space of T,@Tr, then Y =Yr@Y, where Yr, Y, are

spectral maximnl spaces of T, respectively Tr.

Proof. Let P, and Pz be the corresponding projectionst X,=f,(X,@Xr),

X, = PrT, @ Xr). It is easy to veri$r that P, and P, switch with fl @ T, and, since I is

ultrainvariant at T,@ 4, it followsthat l/is invariantto .( and Pr.By putting Y,=P,Y

and Y, : PrY, we have Y, c.Y , Y, CY , Yr@Y, c.Y , P, and.Q also being projections in

the Banach space Y,  Y, ,  Y2 c losed.  I f  yeY,  then y=ny@PzYeY,@Y2, so

Y = Yr @ Y2. L,et Z * (o = 1,2) two invariant at I subspace such that

6(T,l  Z,)c o'(r , ,  I  r")  ("  =r,2).

Then Z = Z, @ Z, is an(closed) invariant subspace at T, @ T, and
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o(4 @ T, I z, @ zr). o'(4 @ T2lYt @ Yr) ,
hence Zt @ 22 c 4 @ I, . From this inclusion it obviously follows that

Z, cy, Z, c.y,

consequently { and Y, arc spectral maximal spaces of { , respectively Tr.

2.2. DIRECT SUMS AND RIESZDT]NFORD FT]NCTIONAL CALCT]LUS WITIL

,S.DECOMPOSABLE OPERATORS

In the begnning of paragaph 2 we gSve a simple S-decomposability criterion that

greatly simplifies the subsequent proofs. We prove there that the direct sum of two
operators is S = S, u S, -decomposable if and only if each operator is ,S" -decomposable

(u =1,2 ). Particularly when P e B(X) is a projection and Z is S-decomposable there is

proved that T I PX is ,S, -decomposable (where Sr = ,S n o.(f I PX)).We further study the

demeanour of the S-decomposable operators in the functional calculus with analyic

functions and at quasinilpotent equivalence.
2.2.I. DsprNIttoN. Let Ten(X) and let ScC be a compact set. Tis saidto satisfr

conditionu , it X., (f) is closed for any closed F r S . Z is also said to satisfy condition

F, i f  foranyfiniteandopenS-covering {Gr}..r{G,}1 of 
"(f) 

andfur arLy xeX we

have

x = I s + x r + X z + . . . + X n )

where

y. (xr ) .  Gr ,  y  r ( * , )  c  G,  ( i  =  1,2, . . . ,n) .

2.2.2 Ler.,i,,re. An operator r e a(x) is s-decomposable if and onty tf T meets
conditiorx u, and Br.

Proof, Since @ n,S = A wenur",_ 
\

X r \G ,  uS)=  Y i@Ys ,

where x,'(G,.r,s), 4 and r, are spectral maximal spaces of z (see [76], propositions

2'4...and 3.D; also, if Y is a spectral maximal space of T we have
yr(")- yro6)co(r1r) for any xe I. Considering these remarks, our assertion is

obvious.
2.2.3 Tirponor',r.  Let T,en(X") (a=1,2) and let S:S, uSr,. then if  T, ,r.

So-decomposable (a = I,2), T, @ T, . BV, @ Xr) is S-decomposable.

Proof,, From the equalifies
x,, (rc)o xr,,@)= (x, o xr)r,*r,(r) f r r s),



T a*r,6r@ x, ) = t4 (x, ) u Y r,(xr) (xo e x o, a' = 1,2),

('i @'i)* I6 o *?F(*',,*i*i]t["4 *I'il
i = r  \ . ' " '  f r ' )  \ . " ' 1 ' )

i t fol lowsthatif  T, andTrmootcondit ions or,, or, *4 9',  9r,, then {Of ,meets

conditions o, and Br.

2.2.4 PpoposrloN. Let Tr@TreB(Xr@Xr) o S-decomPosable operator; then To

(a=1,2) are S-decomposable operdors where S* = S n o(f" I X") (a =l,Z)'

Proof.I'et F r S, closed; we shall be allowed to write

x,^@ u s)o xr,,(F u s)= (x, o xr),;*r,(r u s)

and since Tt@Tz is ,S-decomposable, also using proposition 2.I.7. it follows that

Xr,,@uS) is closed, hence Xr,,(F)= X,,,(F uS) is closed' Similarly, we verify that

Xr,,@) is closed for any closed F = Sr. Hence T, and T, meet cmditions cr, and ctr, '

The fact that T, and T, satisfu conditions B, *6 Fr, is proved same as for the

preceding proposition.

2.2.5. TsBonsu. Let T, . B(X,) (a = 1,2), let S be compact and let So = S n 
"(f" )

(u =1,2) (.! = S, v S, c 
"(4), "(frD. 

Then To (a =1,2) are So-decomposable

operators f ond only if T,@72 is S-decomposable.

Proof. There follows from the preceding assertions'

2.2.6. Coxot-LARy. The operators To e n(X") (a=1,2) are decomposable if and only

,f T,@7, is demmposable.

proof. There follows either from the preceding theorem, or directly from lemma2.2.2,

because T, and f satisfuconditions cr, and B, (with S=Q) if andonlyif Tter^T2

meets conditions o, and Pr.

2.2.7. PnoposrroN. Let Ten(X) be a S-decomposable operator and let PeB(X)

such that p2 = p and PT =TP. Then TIPX is a S,-decomposable operator, where

t 

":#E 
have x : Y, + Y,, where Yr = PX and Y, = (t - n)x (Y, aY,= {o}),

hence in accordance with proposition 2.2.4 T I PX is,S,-decomposable.

2.2.8. Conor-LARy. Let T e n(X\ be a S-decomposable operator, and also a separated

part of o(T). fnnn T I E(c,f)X is a Sr-decomposable operdor, where Sr = S oo and

E(c,r)= * tn(r", r)ar. ,

I being a Jordan Closed curves system surrounding o and separating sets a and

o ' =  o ( z ) \ o .
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Proof,, There follows by the preceding proposition.

From now on we shall put

f@)= *t/O.)R(^.,r)ar' 11+s1, L vll 3.e).

2.2.9. PnoposrrroN. Let T e n(X) be a S-decomposable operator and let f :G -+C .
(G-o@),G open and connected) be an analyticfunction, injective on aQ). fnei

f(r) x S,-decomposable,where S, =,f(,S).

Proof, Let F c o'(1(f)) closed, F - S, ; from the relations
sr(.) = r(s.)- /(s)= s, c f ("@))= "0(r))

and

f '(r)) .f '(s,)= s
it follows that

x ro>@)= x,("t"(r))
is closed (see l77l theorems 2.1,2.4), therefore f(r) meets condition or, . If

{o, }, {c,}; is an open and finite S, -covering or o(r(r)), then {f"(cr,)}, {f-'(g}
is a .9-covering of o-(f). From the equality

v ,r,>(*)= "f (v,.(r)) Q e x) l77l
it will follow that 7(r) also meets condition F5, , therefore f Q) it a s, -decomposable

operator.

2.2.10. coRor-r-nRv. Let T e a(x) be a s-decomposable operator and let f : G -+ c
(G = o(f), G open) be an analytic injectivefunction on each 6i = G, n 

"(f), 
where G,

is connected component of G. Then f(f) it f (S)-decomposable.

Proof. o'(f) Ueing connected, there exists a finite number of connected components
G, of G which cross o(z), let these be G,,...,G,. The sets o'j are separated pars of o.(r)

and

o(r) = or L/ o-2 \J... \'J o, ;

hence

X = @ E(a,,T)X

r =@8lE(o,, rV)

"f@)=g f@EG,,rV =@ fQ lE(o,, rV)

Since

j= l  i=l
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by propositions 2.2.5. and 2.2.9. and corollary 2.2.8. it follows that f(f) is /(S)-
decomposable.

2.2.II. Pnoposrnow. Let T . B(X) and let f be an analytic function such that there

exists G = cQ), G open and f injective on G. Then, tf f(f) is S,-decomposable, T is

S-demmposable, where S = ,f-t(S,)n o(f). o *

Proof, Since ,S11r;=,r(s.) ana xr(f-'(r))= Xrrr>(F) (theorems 2.1.,2.4. l77l)
with F: S, = S1(r1, we conclude that for any closed set F': S: S, (using the fact

that/is injective on o(f);, F' c o(T), there exists a closed F such that F = 7(f 
') and

F'=-f-'(F); therefor" Xr@')=Xrfr>(F) is closed and, T meets condition gr. If

{Cr}., {g}i t an open ,S-covering of o'(r), we can choose Gs, Gi c G (i =1,2,...,n),

and then from Q n^!= A utd -f(C,.rS)=/(C,).,/(S)= A ffis injective on G), as

well as from the fact that f@)-/(s)=,S, it follows that f(cs))uf(g))i is an
open ̂ s,-covering or o(7(r)). eut /(r) meets condition Fs, hence for any xe x we

have
, = x s , + . t r l + x r * . . . * x n t

where Trtrl(rs, ). f (cr), v r<r>G,)c. G,; but since y.("r,)=./-'(yrelftu ),
y,.(*,)= f-'(Vr<rl!)) it follows that T also meets condition F' therefore Z is

,S-decomposable.

2.2.12. CoRor-u.nv. Let T.B(X) with cQ) containedin an angle ,p.+ (having

vertex in the origin) where k is a integer positive number.. Then T i, S-au"o)posable if
andonly i f  Tk is  Sr-decomposable,whereS,  =So (So =[ , .C;Lr=]J , ] "e  Sf .

P r o of. There follows by propositi ons 2.2.7 0. and 2.2. 1 | .
2.2.13. PnoposrrroN. Let T,,Tren(X) If f, is S-decomposable, with Sr=O

(mmning that T, has the single-valued extensionproperty; particularly dim,s <l) and

7,, T, are quasinilpotent equivalent [38J, then T, is also decrrnposable.

Proof. If Tt, T2 are quasinilpotent equivalent, then

"(I ) = o@r), o,, (r) = o, (r) (x e x, 54 : s,, = a)

and
X,,(F)= Xr,(F)

foranyclosedFcC [38] therefore T, also meetsconditions oc, and B' thatis ?, is

also ,S-decomposable.
2.2.14. Remark. tf { is S-decomposable (S, =A) and S is minimal, meaning that

there doesn't exist any compact subset ,S, c S, ,S, *,S , such that T, is S, -decomposable,
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then in the proposition above S is also minimal for T, in this sense. Indeed, supposing

that there would exist S, c S compact, ,Sr I S, such that T2 is S, -decomposable, then

by the preceding asserticm, { would also be ,S, -decomposable, contradiction.

2.2.15. Conou-RRv. Let T . B(X) be a S-decomposable operator with Sr =O and let

Q a generalised nilpotent operator which commutes with T. Then T + Q z.s S; "

decomposable.

Proof.It follows from the preceding assertion.
2.2.16. Pnoposrrrou. Let T,,TreA(X) with ,Sr,,Sc +A. If T, is quasinilpotent

equivalent with 72, then
yn (r) = yr,(x)

f o r a n y x e X .
Proof, Let )..4r(r); then there exists an analytic function x,(1,) aenned on a

neiglrbourhood or e l. such that (l/ -f,)*,(f) = t for any l. e rrr. When proving theorem

1.2.4. l37l there is proved that if { is quasinilpotent equivalent with T2 and x,(1")

verifies the condition above on co. then

*,6)=it-tl @,-r,Y,EP
n=0

is absolutely and uniformly convergent on every compact K c r.tl, therefore it is analytic

on ro and moreover it verifies the equality
(xr - r,)x,(x) = (rr - 4 )", (r) = 

"
for any l. e co. Consequently 6. (x)c S, (x); analogously, one verifies the inclusion

5, (r) c 6,, (x), hence v ,1G) = y r,(x).
2.2.17 . PnoposrrroN . Let 7,,7, e B(X) with Sr = Sr, , and let 7,, T, be quasinilpotent

equivalent. Then, if T, is S4ecomposable T, is also S4ecomposable.

Proof. From the equality Sri = Sr and from the preceding proposition it follows that

for F: S : S, closed, we have

x"@)= xn(F),
hence condition cr, is also met by Tr. From the equality yr,(r)=V,i(x) QeX) it

follows that T, also meets condition B", therefore in accordance with lemma 2.2.2. T, is

S-decomposable.

2.3. A BISHOP PROPERTY FOR,S.DECOMPOSABLE OPERATORS

l 0
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We will prove that spectral maximal spaces of the S-decomposable operators can be

analogously characterisod with the ones of the .tr:,S U-scalar operators [53] and

decomposable [50] namely that Xr(F)= N"@,f) for any closed F r ^t. We remind

that the definition of .A{, (f, F ) was irspired by Bishop's definition of .a/(f, f) pZ1.

2.3.1. DpprNnroN. Let Ten(X) and let FcC be a compact set. We denote by"

N,(T,,F) the set of all xe X for which we have the property: for all e>0 and

K cC \.F compact, there exists an analytic function defined on a neighbourhood of K

verifying the inequality:

ll" - (u - rV(x)l < e, ?" e K .

2.3.2. Ls*n re. Let f e A(X) and let X =>Y, where Y, are o -stable subspaces for T
j= l

(meaning Y, are invariart subspaces for T and 
"(r 1 4 ). "Q) 7AS1 . nnn

o(r): s,. u lJo(r I r).

Proof. Obviously, we have

.s, u [Jo@ | r)c o(r).

Since x = lr * lz t...* !, with !, eY, (i =I,2,...,n) and Vr!).1)lr0),
t = L

y,(y,)cTrv,(y,). 
"(r | 4), it wil l follow lz6lthat

o(r): s., [Jr,G). s. r,=,,gn 
*,. (|jr,t,r) 

c,S. t, U"(r t r)

2.3.3.Larvrlta. Let f e n(X) be a S-decomposable operator and let o c.o(T) compact

such that onS =A and o=lnto- (in the topolog,t of 
"(fD 

Then there exists a

spectral maximal spsce Y of T with o(T I I)= o fthat is o is set-spectrum of T (see

definition 1.3.1.)).

Proof It is similarlycarried out as for decomposable operators. We have
X,'(o w S) = f" 6l X, (S),

where lis spectral maximal space of Zand 
"(f 

I f,)c o . It will be enough to prove that

I n t o c " ( r l r " )
(lnto in the topologu of 

"(f)). 
Let l,o e Into; then there exists a disk

5 = {i";f. e C,l}" - fol . o} such that 6 n 
"(r)= 

Into'. We put

u, = 
{^t )" e o@) lr - r,l . r},

il
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(  3 l
c, = 

{1.; 
l, e C,l}. - }.ol < 

iO| ,

c, ={x;xe c,l}. -^rl . *o}
t  6 )

It follows tl:rrt G.v G, > o(f) and 4 n6, =A .lf Ys, Y0 are corresponding spectral*

maximal spaces of Tsuch that

" ( r  l r r )  cGs ,  
" ( r  l r r ) c  Go  and  X  =Y ,  +Yo ,

then, by the preceding lemma it follows that
o(r) = s u o'(r I rr)r "(z I 

r,)
and since S, n (o'(f I f")t S)= g, we have

6, c o(r I  rr)- q n o'(r)c 6no(r)c Into' c o.

Consequently Yoc.Xr(cw^S)=y"OXr.(S), whence Yo.Y" and o(f I fr)-"(f I f");

oneobta ins l , ,o  e6,  co(r l r r ) - " ( r l r " )  that is  
" -o( r1r" ) .

2.3.4. Remark.If T e n(X) is S-decomposable and also has the propertyof the single-

valued extension, then, for any compact o, o c o(f) which has the following properties:

Into = o (in the topology of o(f)1 and there exists a separated part ,S, of S such that

o:S, ,  oA(StS,)=A,  we have the proper ty  o=o( f  lX, ( " ) ) ,  hence o is  a  set -

spectrum for T.If Zhas not the property of the single-valued extension and o : S : S.,

Into-=o, it is possible that o is no more a set-speotnrm for T, more exactly

o'(r I X.(o)) * o' (but 
"(f I X.(o))c o); this occurs because for decomposable

l n \

operators with S, + A ftis possible that wedo not have o'(f)= o(f 1 fr)ul U"€ | 1)l
\ r = l  /

2.3.5. PnoposrrroN. Let T e n(X) and let Y,, Y, be two spectralmaximal spaces of T.

Then Y, aY, is a spectral maximal spqce ofT, hence Y, Y, are reciprual c -stabile.

Proof. According to proposition 3.1. 176l a spectral maximal space of Z is Z-

absorbing. Let us verify that the intersection Y, nY, of two Zabsorbing subspaces is a

Zl { -absorb ing subspace( i=1,2) .  Indeed,  i f  ( } /  -T)y=x,  where xeYl , then yeY, ;

for  l .e  pQlY,)  wehave y=R()" ,T lY, )xeY, ,andfor  l .e  
" ( f  lY, )  therefo l lowsbythe

fact that  {  is  ?"-absorb ing.  Letnow (Xt- f  lY, )y=x wi th  xeY,AY,  and yeY, ; then

(xt-r)y=x and since x eY,^Y, andboth Ij and Y, are Z-absorbingit followsthat

yeYtAY,mear ing 4.Y,  is  T l { -absor t ing.  Same for  TIYr . I f  I is  an invar iant

subspace to ?l Z-absorbing then o(Z I f) - 
"(Z). 

Indeed, in that case I is invariant to

solvent (Xt -f)t (from the equality (Xt -f)-'y = t with y eY , we obtain

12
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y =W -T\z hence z er) and we have (xt -r lr)-' = (xt -r)' 1r for ).. ff))
hence p(r). p(r I r). consequently we have o(r | 4 oYr) c"(r I 4)n 6(r lYr). Let z

be an invariant subspaceto T such that 
"(r lZ)c o(r lY,aYr)c o(r l4)^ a(r 1rr\Z\t

fol lows Z c.YraYr.

2.3.6 PnoposrrroN. Let T . B8) be a S-decomposable operator and let Y be a spectra! *

maximnlspaceof Tsuchthat o(T lf)n S =A or o(rlr)> S. Then

"(r)=;ffl;fr tT),
where f ts the operator induced by T in the quotient sprce X = X lY .

Proof, We adapt the proof given at [2] for decomposable operators. From the equality

"(r)= "(f )r "(f 
I r) one can notice that only the following inclusion is left to be

Proved 
o(r)-;FfGmD.

Let oQ I r)n S = a. If l. e 
"(r)r;(i)-GF, ,let G,, G, be two open sets such that

) "eG,- ro@[F@17) ,  G,Ao@Jl i@1Y)=a,  G,nG,r" ( r ) .  By set t ing the

corresponding spectral maximal spaces to Y, Y, we have

"(z | 4) c G, ao(r)- o(r 1 r),
hence  Y ,cY .Le t  *eX  such tha t  ( l /  - i b=0 ,  and  xe* .  S ince  x  = ! , * / s ,  w i th

!, eY,, y, eYs, it follows that (Xt -f)x = y , with ! eY , from wich

(v  - r ) r ,  =(M - r  I  r r )x ,  -  y  - (x t  - r )y ,e  r ,  hence ( i . r - r ) r ,  e  Y oYr .  In

accordance with proposition 2.3.5., Y r-r I, is a spectral maximal space of Z therefore

also a spectral maximal space of Z I Y, (L41, I.4.2.(11)). But )zn I, is ultrainvariant to

TlY, and since ). ea(r l) ' r) we obtain xs = R(1, r lYs)/.)\ I  -I l l ,r).r,  eY n)'r,  hence

xeY,  i=0 .  Consequen t l y  ) "1  - f  i s  i n jec t i ve .  Le t  now != ! t * l se i ,  y ,eY . ,

l s€Ys ,  where  j ,= j , r ;  ) , eo ( r1 r r ) ,  xe I ,  and  ( x t - r ) x=y ,  i t  f o l l ows

(xt - f ) t=y 1x=(XI-Z l i ' r ) - ' .y r )  hence xI - f  is  sur ject ive.  We came to a

contradiction with the initial assumption that )". 
"(f) 

and the assertion is proved. Same

for the case o(I I  f),^t.

2.3.7. PnoposrrroN. Let T e n(X) a S-decomposable operator and ler {f,}, Uu a series

of analyt icfunctions defined on an open set GcC, with Gn,S= A and -f,6).X

such that for n -) @

(xr -r)"f.(r)+ o
uniformly on evqy compact c G. Thenfor n -+ @ we also hwe

y,(x) -+ o

unifurnrly on evqy compact c G.

l 3
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Proof. Without restricting the generality, we can suppos e G =['. C,ll"l < R], R > O

and moreover that (t) remains uniform on G. [,et us proof that (Z) is true uniformly on

G,  = f teC, l l , l .& ) ,  0 .&  <R.Let  p ,  pz  tha tver i f f&  <p , ,  p r  (  p r ,<R and le tus

set ,F1, = {fl. p,} (t =1,2).If Fis closed and lc'nS = A wewill set by Yo the spectral

maximal space of Zsuch that
Xr@ u S)= Y, + Xr(S) ,

and o(Z lYr) - F .Let X = X I Yn,ru, b"a quotient space, and f be the operatorinduced

by T in *. Since o = o(f)^ (nrl nr) is a set-spectrum for Z (lemma2.2.2.) we have
oV lYr,rn) = o und obviously Ynsu: 

. 
f.. In accordance with proposition2.2.5.,

"(r)=;FfGFiD
and we obtain that (H, f a, )n "@)= 

A, hence

"(r)- 4 .., (c \ H,).
But (l) implies

uniformlyon G. For ), e H, \ 11-,, by (:) *a (+) it fottows

n(i,;r["r -r)7;@=ffi -+o (3)

(4)and in accordance with the principle of the maximum

/fi-+ 0 uniform ly on Hr.

The proof fi.rther continues as in [50]; however we sketchthe proof on the hole. Irt

f,8')=Zo,-f (n = 1,2,'..)
K=0

the series development of f,(1") which is convergent in G. By Cauchy's inequalities it

follows

'u"{lr@Jl,x. u) ,,
U  ^ . -

pi^ p;'

In accordance with the definition of the norm in' X , for any n andK there exists A,r e X

such that

),,^ : d,^ una llA.rll = lla." ll. =+|  4 '  l l  l l  4 '  l l  2 ,  . p f

Let F,(1.)= i Anrt; then
K=0

(6)

t 4
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@  ' ( r ,  I  ) r ^ r *  (  . 1 )  Illr.0)l = Illr,.ll.lrl" = Il # . T .f ).lrl" 
= 
['. .ihl4

K = o  r < = o \ P r  z ' P r  )  ' .  -  , l _ l

if l" e G, (l! < Ro < p, ), hence

l l r ,0)l  =(,.* 1l P'
[ " "  

'  
2 '  ) p , - R n

for Go . Also, we have

,p,(1.) = -f,()")- F,6).Yn,-,, 
(7)

Analogously, there exists F, F, such that & . F, <Fr < p, and an analytic function

f (1") aennea on a neighbourhood of Go and verifying on Go the inequality

ll4o)=(r.+)#*
(where E" is obtained same wayas e, ); we also have

O,(r) = .f,(x)- F,6).Yn",n,. 
(9)

It will follow that

l lq,0)-0.6)=1140)-q,0)|=[,"+s.++] =i= 
(10)

\  " ' - ' ) R , - &
for l, e Go . But Hr\ H, and fr, \ fr, are compact and disjunct, therefore by proposition

2.2.4. andremark 1.1.18. we have
Y1n,rn)'(n,ra,)= Yn,'o, @ YEru,'

Consequently there exists a constant N such that

ll 'll.lFll<n llx+;ll
f o r x e  Y , , . . . i e Y .  - .

f r : ' f , t '  H . \ H ,

From (l t) it follows that 
(11)

l le.(r)l= t 
['. 

+i, +#)-'^--,

for l, e Go; finally, (8), (9) and (1t) geta

1, 1r) < (ru * r{," * ,. . +)E+*.
for  l ,eG- ' ,  f romwhere, inaccordancewi th (S) ,  

" ,+8, -+0 
when 

+-0 
andthe

proofis over.

2.3.8. Tuponpn. Let T e B(X) be a S-decomposable operator. Thenfor any closed F,

F cC.  ,F:  S wehrne

t5
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xr(r)= N"Q;F)'
Proof, This is verifu as in [50]. I-et xe N"(T;F) and G an open subset included in

C \F  such  tha tG  i scompac tanda lso inc luded in  C \F .  Fo r  r=11" ,  7 , (X )bean
n

analytic function taking values in X defined on a neighbourhood of G and verifuing the "

inequality

l l"- (u -r)f,@).;

for all )" eG . The existence of such a function is given by the definition of N" (f ; ,n)'

Let now K be an arbitrary compact set included in G. rc {t,6)\i=, w6 ,rot unifo#f

convergent on K, then there would exist e > 0 and the series {1", }c f ,

nr 1 ffit < n2 < ffiz { ... such that 1V,,6 ) 
- f ,r(x,)l> e . Settin g s,6) = f ,,6) - f , (},)

and using 0) as well as the preceding proposition we can obtain an obvious

contradiction. Therefore it follows that tf,|:=t uniformly converge (in X) on every

compact K c G. For ). e G we put /(1") =Ii:)f,()"). Then 7(l') is analytic on G and (in

accorrdance with (t)l it verifies the equation (xt-rf(X)=x in G, therefore

x e X.(C t C) whence x.)Xr(C\G)= Xrfi(Ct C)), the intersection being

considered for all G, G compact, G cC\F compact; hence f =[-l(C\G). As

conclusion we will present several results regarding Z-absorbing families or spectral

maximal subspaces fcr the f e B(X) operator, which will prove to be useful.

2.3.9. PnoposrrroN. Iel f e B(X) and let {Y,},.n be an arbitrary family of T-

absorbing subspaces which are invariant to T. Then y = l-lf" zs (f I Y")-absorbingfor

any index ae A and

" ( r I r ) .  Io ( r I r , ) .
Proof. I-et F e A fixed; obuio.rsly, i Yo is a Z-absorbing subspace and

Q, t - r ) *= !eYo  then  xeYo .  Le t  now (X t - r lY r ) yu=xeY ( !u .Yu ) ;  t he re fo re

xeYo  fo ra l l  ueA .S incea l lYoa reZ-abso ib ing , i t f o l l ows tha tyue  ) ' "  f o ra l l o -eA ,

therefore lpeY and consequently I/ is a (f lfo)-aUsorbing subspace. Since B is

arbitrary fromA it follows that Y is a (f l{)-absorbing subspace for all indexes ae A.

Proving proposition 2.3.5. it verifies that if I is a Z-absorbing subspace, then

"(r lY)- o(r), consequently o(r I r). |"(r | {) (where now I/ = lr" ).
a e A

t 6
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2.3.10. PnoposmroN. Let T.B(X) and let {Y"l".nbe afamity of spectral maximal

spaces of T. Then Y = OY" is a spectralmaximal space of T.

Proof,By the Or"#n, proposition it follows that Yis a (f I f")-absorbing for each

index a e A (since a spectral maximal space of Z is Z-absorbing [76]), hence _
o(r1r)c [^]o(rlr"). If Z is invaiant for Z subspace with o(z lz)-o(r;r), ttreri

aeA

"(Tlz)co(f l f") for al l  indexes aeA, hence Z.\ for any ae A, therefore

Z  c Y .

2.3.IL Conou-eRv. The family of T-absorbing invariant subspaces (particulady the

fomily of spectral maximnl spaces of an operator T) is formed out of reciproml a -stabile

for T subspaces.

Proof. It follows easilyby previous propositions.

2.4. ̂ S-DECOMPOSABILITY CONDITIONS FOR AN OPERATOR

We shall further give several S-decomposability criteria for an operator. We will also

show that spectral maximal spaces from the S-decomposability definition (particularly the

one of the decomposability) can be replaced with reciprocal o -stabile subspaces or
invariant, Z-absorbing subspaces. Also, there is generalised for (t,S)-decomposable

operators the result obtained in [8a] for 2-decomposable operators: an operator T is 2-

decomposable if and only if x,.(e) is closed and o(r)= ;(r)\oF I x;(F)), where 7 is

theoperatorinducedbyTin X = X tXr.(f), F cC arbitraryandclosed.

2.4.1. PnoposrrroN. Let Ten(X), and let Sco(f) be a compact set such rhat

S, c S ([76J Def. 2.2.). Then thefollowing conditions areequivalent:

a) Zis (1, S)-decomposable

b) X , (F) is closed for ary F > S closed and

"(r 1x rrd):;(F)\EF1%J
whereG is openin o(f) suchthat G nS =A, and Yn is thespectralmaximalspaceof

T defined by the equality
x'(srG)= x, (s)@Y,,.

Proof, The fact that a) implies b) follows by proposition 2.3.5. and by the fact that G

is a set-spectrum for Z(lemma2.3.3.). Let us prove that b) implies a). We first notice that
for any open G, G n .l = O , there exists a spectral maximal space I'- defined by the

equality

l 7



since

Chapter II - S-Decomposable operators

x,(s., d)= +(s) @Y6 ,
where . tndeed, since Xr(F) is closed for any closed F = ^S, by proposition 3.4. [76]
there followsthat X.(S u d) is spechal maximal space for T and

" ( r t + [ suc ) . suG.
ln accordance with theorem of decomposition by separated parts of the spectrwn therc "

follows that X.(Sud)=Xr(S)@Y6, where Yo is a spectral maximal space of

f I Xr(S u G) also of 7l and 
"(f 1 f")c G . We turther notice that the equality

"(r 1x rr-)= o(r)i o(r lYo)
is equivalent with the inclusion

"(r 1x tYr)-o(r)t c.
This follows by the equalities

o(r) = 
"(r 

y r-)u "(r 1 x t rr),
rnto(r I Ye)= "(r)r G@)-r"fr tE),

/  \  L .  # \c(r 1x ry,,).o(r)r rnto(r lyo)= o(r)r c = o(r)r ("(r)r(i)-GF I r;)=
= o(r)t "(r 1rr)- "Q 1x r rr)

Let {G' C} be an open and finite ,S-covering of o(f) and let us put H = G, n G ; then

"(r lx tyn)c"(r)r (c" .,c)= (o(r)r G,), ("(r)r c).
Since o'(Z)\ G, and o(f)f G have a void intersectiorl it follows that X lYo = Z, @ Z ,
where 

"(r I zr)- o'(r)t G, and 
"(r 

I z)- o(r)t G . rf cp is the canonical map defined

from Xto X lY, then

X = 9-, @ t r) = e-' @, @ Z) = rp-, (Z r) +,p. (Z).
But Z , = <p, (Z r) l Yr , 9-'@) t y, hence

"(r I,p-' (2,)) = o(z 1 z,) u 
"(r I 

y).tr u (o(r) r G,) c G,

"k I ,p-' (z))= 
"(r 1z)w "(r ly). (o(r)r G)w F c G,,

meaning Zis a (l,S)-decomposable.

2.4.2 DeerNrrron. A family of linear (closed) subspaces of x, L = {Y,},., is said to be

reciproml a -stabile for T e g(x), if each { is invariant for zand moreover

"(r I 4 nY,)c o(r I r1)n 
"(r ly,)

for any i,.j eI. We say that Ten(X) verifl, the (O") propefty if there exists a
reciprocal cr -stabile for 7 subspaces family X such that for any open (t, S)-covering of
o.(r) tnere exist subspuc", {r 'r}cx such thar o(rlrr) c.Gs, o(rly.)cG and
X =Ys +) ' (weremi i ld tha t  Gr : .9 ,  G oS =O) .

l 8
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2.4.3.LEuun. If T e B(X) verrfies proprty (nr) then S = S..

Proof .Let  F co( f )  c losed,  F nS =A,  Gs,  Gopensuchthat  G= F,  G)S =A,

G" .S  and  G ,  vG=" ( f ) ;  i f  . r e  X  and lueF  such tha t  W- f ) *=0 , then  xeY ,

where X-Yr+Y,  o( f1 f r )cq,  
" ( f  lY)cG.  tndeed,  we have x=!* ls  wi th

!  eY ,  y ,  eY,  and

y', = @I -r)y, = -()"1 -r)y ey ay, .

But l, e .F implies l. e 4 and l. E G, a G, hence

t" e @ | rn rr)c o(r I r)n o(r I Yr)- G, nG,

consequently
y',  =(?"1 -r ly ay.)- 'y ' ,  ey .

Since
yI - !, e I, and )" e o(f I I,.) one obtains

(xt -rYv', -yr)= (xt -r lr, n v\xt -rly, ny)-'y, - !'s =0,

hence ls = !! eY, thatis x e Y . I-etnow r : H -+ X bean analyic function such that

Q,t - f)r(X) = 0 (FIopery H n S = A ; wecan suppose that,tlis connected). Let also, 6

and 6' two closed disjunct disks contained in 1L Accordingly the above, taking into

account that F =5 and F=6', {GpG} and {c'r,c'\, the (1,,S)-coverings or o'(r), it

follows {y,rl and {rj, Y'}, the corresponding subspaces of these (t,S)-coverinp and

weshallhave x(},)e I for any ),e6, and x(1,)e Y' for any le6'. Fromanalyicitywe

have x(1") eY for any ?"eIy',  henc" r( i ,) eYr-t I / ' .  But 
"QlYnI' ' )c 

GnG' and

since 6a)6 '=O,we are a l lowedto choose G,  G' ,  such that  G^G'=CI ,whencei t

results that Y AY' = {O}; consequently r(}") = 0 on Hhence S : S, .

We remind the next proposition which was proved in [51].
2.4.4. PnoposrrroN. Let X be a Banach space, and let Yr, Y, be two linear (closed)

subspaces such that X = Yr +Y, and f : G -+ X (G open) an analyticfunction. Then.for

any )" e G there exists a neighbourhood of 7" H c. G and two analytic functions

E, :H -+Y,  ( i  =1,2)  suchthat  " f ( t t )=g, ( t )+ g16)  fo ,  pe H.

2.4.5. Tusoxprvt. Let f e B(X) and let S : ,S, compact. If T has the property that for

any open (1,5)-co,vering of o(r), {G' G}, there exists the subspaces reciprocal o -

stabile for T such that X=Ys+Y and o(Tllr)cGr, o(f 1f) c.G, then T is a

(1, S) - de c o *po s abl e op e r at o r.

Proof.It is enough to prove that X,,(F) is closed for any closed F : S (see lemma

2.2 .2 . ) . L -e t  G t=Gs  r  F  and  G ,  opensuch tha t  Grn !=? ,  O ,uGr ) " ( f ) .  f t * i t t

exist the system ofreciprocal o -stabile for Z subspaces {)j, X, } such that

t 9
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x  =Yr+Y,  o (T  l4 ) -  G , , ( i  = r ,2 ) .

If .re Xr(f)we shall prove tlnt xe {. We have r = lr * y, with !, e Yi Q =I,2) and,

p. (x)n s. (y, ) = (a," (")n o, )n (o, n s," (y, ))= p, (')^ pr(yr) , c

hence for l. e p.(r)^ pr(yr) we canwrite

y,(r)='(r)- y,()"). (1)" "
But  y  , ( y r ) c  € r ,hence  C  \  6L  c  6 ,  ( y r ) ,whence  G '=  p . ( " ) ^  (C  tC - r ) -

. pr(r)n Sr(yr)= p.(x)n pr(yr); it follows that equality (t) tat<es place on G'. [,et us

veriff that y,()")e { . We shall apply proposition 2.4.4. when !, I G' -+ X . For a fixed

)v e G' we obtain a neigfrbourhood H c. G' of l, and the analytic functions g,: H -+Y,

(i  =1,2) such that

y,(p)= g,(1r)+ srftr) for ste H . Q)

Applyng the operator pI -f to equality Q) *" will obtain Y,.yr-(rf -f)g,(f.r)=

= (N - r)g rftr) e Y,, hence hftt) = fut - r), s rfu) e Y, a Y, .
Then

k(r) = ft/ - r\r, a y,))' n(er)
is an analytic function on H taking values in { n Y, kftt) having sense since the

following inclusions take place

?," e H c. G' c.c \ c, c p@ | Yr) - p(r I Yt), p(r I yr) . p(r I y, ̂  yr) .
From the equality (Vt *r\tt(t)-gr(r))= O (pe G'nQ.) it follows that

k(ti = srfu)€ 4 . Y, . Y, for any V e H, hence

v,(p') = g,(p)+ srfu). Y,.
Observing that G' is "exterior" to o(Z lYr).Cr,let f be a system of simple curves
closed in G' , surrounding o'("); f being "exterio/'to o(Z lYr) fifollows

* P,o)ar = *l rot - r)tv,\' v, d), = o
hence

* tv, o)dr = 
*i.r(r,)ai. *[ r, (r,)ar =

=: i"(r")ar" =: [(u- ry x = x
tnt l^l=li1l-, znt l^l.-i1l.t

whence i t resu l t s tha t  x .  U {  hence  x , ( r ) .  n4 ;wehave  o , ( r )=y , , ( x )vs .c
Gt:F cr>F

c o(rl4)r,S. co(Zl4)s- G, for any G, >F open, hence o.(r). f- lc, = F ,that
Gt)F

is [^)tl - x,(r).Consequently
G ,  = F

20
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x,(F)= n{,
GPF

whence we deduce that Xr(F) is closed, q.e.d.

2.4.6. CoxoLLARy. Let f e A(X) venfying property (Dr)r then T is a (1,S)-

decomposable operdor.

Proof. There follows by lemma2 .4.3. andtheorcm2.4,5.
2.4.7. Coxor-LARy. Let T e n(X) and let S r S' S c o(f) compact. If .fo, qny S-

covering {q}.rp,}l of 
"@) 

there exists the famity {rr},-.,{f }l of subspaces

reciproul o-stabile -fo, T such that X=Yr*fy,, o(f l Ir)-G' o(f 1f,)c.C,
i=l

(i =1,2,...,n), thenT is S4ecomposable.

2.4.8. ConoLLARy. Let T e A(X) and let E be a fomity of subspaces reciprocal o -

stabile for T. If fo, any s-covering {Gr}'.r{Cli "f 
o(T) there exists the subspaces

{fr}r{f;}i -> with the following properties X =Ys*ty,, o(rlIr).e,
i=l

"(T I 
Y,) c. G, ( i = 1,2,..., n ), then T is S-decomposab le.

Proof. Both corollaries follow easily by lemma 2.4.3., theorem 2.4.5. and lemma

2.2.2.

2.4.9. THsonrnr. Let f e n(X) and let S c o(f) compact. If for any open,

T-absorbing S-covering {Cr}, {C}i "f 
T, having the properties X=Is * ff, ona

l= l

o(f 1 fr)c Gr, 
"Q 

ly ). C, ( i  =I,Z,.. . ,n), then Tis S4ecomposable.

Proof. By corollary 2.3.I1. there follows that a family of Z-absorbing invariant for T

subspaces is reciprocal <r -stabile; the theorem follows by the preceding corollary.
2.4.10. Tuponev. Let T e B(X) and let l, be a fomily of subspaces reciprocal c -

stabile for T. If fo, any open covering {G,,Grl "f "Q) 
there exist the subspaces

{ f , , f r lc"Z having the proper t ies X=Y,+Yr,  c( f1 f , )cC,  ( i=1,2)  then T is

decomposable.

Proof. There follows by corollary 2.4.8. and by the fact that a 2-decomposable

operator is decomposable (which was recently obtained in [86]).
2.4.11. Pnoposrrroru. Let Ten(X) IJ'for any open covering {G,,Gr\ of o(T) fteru

exists the invariant T-absorbing subspaces {y,,yr} of T such that X=Y,+Y,

"(f 1f,) c. G, ( i = 1,2 ) then T is decomposable.

Proof. There follows by the preceding theorem and by proposition 2.3.9.

2 l
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2.4.12. Conou-any. Let T e n(X) hwing property of the single-valued extension. If

for any open covertng {G,Gr\ of 
"@) 

there exists the subs2nces reciprocal c -stabile

fo, T, V,Yrl such that X =Y, +Y, a(T | 4). G, (i =1,2) then T is decomposable.

Proof. There follows by theorem 2.4.10.; since we supposed Sr = A, one requires no

more that Y,, Y, belongto a larger reciprocal o -stabile subspaces family.

2.5. SPECTRAL,S-CAPACITIES

During this paragraph we shall generalise the concept of spectral capacity [4], [51], by

defining the spectral ,S-capacities and show that an operator is ,S-decomposable if and

onlyif it admits a spectral S-capacity.
2.5.1. DspNntoN. Let F, be the family of all closed sets F of the complex plan C

whichhavethe fol lowingproperty: either Fns =Q or,Fl,s, where,sis acompact
fixed set of C; if X is a Banach space, denote by E (X) the family of all (closed and

linear) subspaces ofX.
a) An map E :F, + S(X) which verifies the followingproperties:

(i) E(a)= {o}, r (c)= x ;
/ \
1 2  I  :( i i )  E l  I  le ,  l= f . |E( { ) ,where  F ,eF,  ( r=1 ,2 , . . . )
\u  = l  )  i= l

(iii) if {c" }.., {C }i i, utr open S-covering of C then

x =E(4).IE (c,)

b) By definition an operator f e A(X) is said to admit a spectral S-capacity E if for each
F eF, we have

(iv) ru (r)cE (r);
(v) o'(r 1r (r)) c r .
Remark By condition (ii) there follows that F,F, eF , and F, c. F, implies

E (f )-E (Fr). Indeed" if { c F, then F,oFr=4, hence e (E)=E(4 ^Fr)=E(4)..,
. lE ( r , ) -E( r , ) .

2.5.2. Trrcoxev. If f e A(X) is S-decomposable, then T admits a spectral S-capacity
E .

Proof.Let F eF, wi th Fn,s =a.Then xr.(F us) isaspectralmaximalspaceof

T and

Xr@ u s) = rF @ X? (^S),

22



Chapter II - S-Decomposable operators

where Io is also a spectral maximal space of Z and o(T lYr)c F. tndeed, we have

xr(Fus)= YF@Ys because 6(r lxr(Fus))=or vos,  wi th or c F'  os c,s '

where or =o(IlIr), o, =o(ZlIr), o"oos =Z;obviously, Yo and I, arespectral

maximal spaces of Zl Xr@uS) hence of T also, and fr=&(S). We shall set

f  ( r )= YF i f  F.rS= CI ande(r)= xr(r) i f  F=s.Letusver i fythatE thusdef ined-

is a spectral ,S-capacityof Z. First, we have
E (a)-- {o}, r (c) = x

since aas=o there fo l lows o(r1rr)c.a and E(c)=&.(c)=xr(o(r))=x.

Conditions (iii) and (iv) are obviously met, we only have to verifr condition (ii). One can
easily prove that F,,F, eF, md F, c. F, implies E (q) cE(fr); fot 4,.{ : S it is

evident that Xr(E)cXr(fl), and from the inclusion ro +x,(S) = Xr(|uS)c X,(Fru.S):
- Y F , @ x r ( S )  i t  r e s u l t s  t h a t  Y o , c Y " ,  ( F 1 , F z . F r , 4 n S =  A , i = ] , 2 ) . t e t  4  - F '

4 , S (i =1,2,...);we have 0E - S and hence fiom the equality
l = l

we obtain

= [nr)= f'(r)
When 4 .F,  and 4 nS = A ( i  =1,2, . . . ) ,  then f^ lE -  Fi  ( i  =1,2, . . . ) impl ies

Y-  CY, . ,
flc

"[nr)=1".rc)

YA -flro ,
I  14 i= l

'- ".[[no'),') = 'oo
but I =)Yo is a spectral maximal space of Zand o(f t f). l^.)4 , hence we have

@x,(s)

/ *  \  -
whence ,  - ra, ,  that is  =[n1j=n=(q).mnow F,4.F,  wi th Fns =a and

4 -S; then,obvious ly ,  Yrnr ,cYoaYr, ;  f rom o( f  1 fonf* )c  FaF,  i t resul ts that

Yo r:Yr, c, X,((f nf')uS)= Io^a, @X'(S) andhence Yo AYo, cYonr,.

Threrefore 
E (rn 4,)=E (r')nr (n).

ZJ
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Finally, i f  { eF, are arbiffary(i=I,2,.. .),byputt ing Fi=F, i f  {n S=A and F'=F

if Ft >S (i  = I,2,.. .),weobtain

( *  \  ( ( -  \  ( s  \ )  ( v  \  / r  \  ;
e lnq l=r l lnry l^ ln4"l  l=e 1f lry l" 'El l4" l=

\ i " ' )  [ \ ; = i " )  \ ' ' = i  ) )  \ i ; ' )  \ ' , o ' ' )
k -=[ffrr)^[n=*r)=l'ttr

2.5.3. PRoposrrrou. If F -+e (f) is a spectral S-capacity.for T, then E(r) x a

spectralmaximal space of T; more exactly, Yc.E(S), ff c.Y, o(T lf)- F implies

r cE (r).

The proof will be given in chapter III in a more general case for operators systems (also

see [17]).
2.5.4. THponsu. If f e n(X) admits a spectral S-capacity E , then T is

S-decomposable.

Proof, It follows by the preceding proposition and properly (iii) of the S-capacity

definition.

2.5.5. Tusoneu. An operator f e B(X) is S-decomposable if and only if it admits a

spectral ScapacityE .

Proof, There follows by theorems 2.5.2. and2.5.5.

2.5.6. Conormny. If T e B(X) admits a spectral S-capacity E , then this S-capacity is

single-determined, ,S: S. andfor any closed F = o(f) , F ) S we have

r (r) = x,@).
Proof. Let E 

* 
be another capacity of T; then o(f |f 

-(f))c 
f implies

f 
-(f)cf 

(f) and identically E (f)cf 
-(F), 

hence E is single-determined. Since Zis

S-decomposable S r S. . The inclusion o(I 1f (r'))cf implies f (r)c x'(r). nut

x,(r) being closed and o(r1x,.(r)).r we also have x,(r)cE(r), hence
r (r): x ,(r).

2.5.7.  Remark: .  (a) .  I f  Tef (X)  is  S-decomposable and FcC,  F-rS=O,by

proof of theorem 2.5.2. there follows that E (F)=y* where )'o is the spectral maximal

space of Z given by the equali ty Yo@X,(S)=Xr(FvS)=E(f uS), f  being the

spectral capacity of Z. (b). Let T e n(X) be a ,S-decomposable operator; then it will

suffice to take .S c o(f). Indeed, if E is the spectral ,S-capacig of T and ̂ !- = .t n cr(Z), :

one easily verifies that application E. defined by the equalities f 
-(f)=E 

(FuS) for

F:,S. andE-(l ')=e (f no(r)) i f  Fn S* =O isaspectralS-capacityof ?",
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2.5,8. DerrlnrroN.

capacity, the set

2.5.9. PnoposrrroN.

then

suppE = o'(r).
Proof, By the preceding remark we have Sco'(f). If F:"(f)t,S, then

e (r) = x,(F)= x,(F no(r)) = x,(o@))= x , henc" 
.,flf 

: o(r); but E ("(r)=

= x.("(r) = X hence utro 
,,fif 

- "(Z).

2.6. RESTRTCTIONS AND QUOTIENTS OF TIm,,S-DECOMPOSABLE

OPERATORS

The following paragaph is devoted to the study of the restrictions and quotients of the

S-decomposable operators and strongly ̂ l-decomposable operators. One can notice that

the class of the .9-decomposable operators is somehow closed regarding restrictiors and

quotients: the restriction or quotient of an ̂ l-decomposable (or strongly,S-decomposable

operator) is also a ,S'-decomposable (or strongly S'-decomposable) operator, where ,S'

is generally speaking another compact set ihan S.
2.6.1. DnerNtrtou. Z e n(X) is said to satisfy strongly condition B, if for any spectral

maximal space I of T, the restriction Z I I satisfies condition F' (r"" definition 2.2.I.),

where S, = S n o(f I i,), meaning if for any open ,S, -covering of o(r I r), {Go }, {G, }l
w e  h a v e  f o r  a n y  x e Y ,  y = l s t * l t * . . . * ! ,  w i t h  l s , , l i  € Y  ( i = 1 , 2 , . . . , n )  a n d

T,v\r,)t  G,, ,  T rp'(! ,) - c, '

2.6.2. PsoposrloN. An operator f e B(X) is strongly S-decomposable if and only if it

satisfies condition u, and strongly condition Br.
Proof. I-et T strongly .S-decomposable; then obviously Z satisfies condition cr, and

strongly condition B, . Conversely, let f e A(X) and H = {H r}r-l {fl, }i' be two open S-

coverings of o(f) such that HrcGr, H,cG, ( i  =1,2,.. . ,n). I f  I .  is an arbitrary

spectral maximal space of I, then G and H are also S,coverings of o(f 1f);
consequent ly ,  i f  xeY,  then x=/r ,  *  l r * . . . * ! ,  w i th  y ,  , ! ,eY ( i= I ,2 , . . . ,n)  and

yrv\ r , ) .Hrno ' ( r lY) ,  yrv$, ) -  H,aoQlY)  U=1,2, . . . ,n  ) .  S ince r is  z-absorb ing

We denote by suppE , and call the support of the spectral S-

suppE = fl,e.
e(r),,x

If T e A(X) X S-decomposable and E is its spectral S-capacity,..
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we have y.(/r,)=t.,r(rr,), yr(y,)=yrv(!,) and hence l,exr@,ns)= Yt@Y;,

where Y,, fs are spectral maximal spaces of Z with 
"(f 

11) cH,cG, and

rj c I/, = xr(trr)'rr; it followsthat

Y =Y  ̂ .Y ,  +Y  ̂  I l  +  . . .+Y aY,

and hence Z is stongly S-decomposable.
2.6.3. ConoLLARy. An operator f e n(X) is strongly S-decomposable if and only if

f V ,s Sr-decomposable for any spectral maximal space Y of T, where

sr  = ,sno(r1r ) .
Proof. If T lY is S, -decomposable for any spectral maximal space I of T, then T

satisfies strongly condition p, and by the preceding proposition it follows that Z is

strongly S-decomposable. Conversely, it is obvious.

2.6.4. PnoposrrroN. If T e n(X) is strongly S-decomposable, then for any spectral

maximal space Y of T, f lY ,s a strongly Sr-decomposable operator, where

sr  = ,sno( r1r ) .

Proof,If  {Gr,}r{g}i is an open S,-covering of o'(r lr) and Hr=Gr,up(r|r),

H, = G,n 8s , then {,81, }, {rl, }; is a s-coverage of o(r) . Let {r, }, {f }i ue ttre svstem

of spectral maximal spaces of land
Zr ,  =Y ,  AY  ,  Z ,  =Y ,  AY  ( t  =1 ,2 , . . . , n ) .

If Z is another spectral maximal space of T lY , then Z is also a spectral maximal space

for Zand

y oZ = (rn Z)aY, + 
f  € aZ)oY, = Zr,  aZ +7,@,^Z),
r = l  l = l

and o(I I Z,) - C,, o(Z I Zr,)- G,, ; hence Z I I/ is strongly ,S, -decomposable.

2.6.5. ConoLLARy. Let T e n(X) be a strongly S-decomposable operator and Y a

spectral maximnl space of T such that o(f 1f)n S=A; then f lY is strongly

decomposable.

Proof. By the preceding proposition it follows that T | )' is strongly S, -decomposable

with S, = o(r I r)n s =A,thereforestronglydecomposable.

2.6.6. Levwn. If T e n(X) is a strongly S-decomptosable operator and Y, Z are two

spectralmaximalspqces ofTsuchthatY =Z and o(r1r) = S or 
"(f 

1Z)aS =A then

o@ll=;ezt-Zl"(rtD,
where f 1Z is the opuator indrced by f lY in Y I Z .

Proof.It follows by proposition2.3.6. and the preceding corollary,
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2.6.7. PxoposrrroN. Let T e n(X) a S-decomposable operator and Y a spectral

maximal space of T. Then TIY is Sr-decomposable, where S, =(St"k)n"(f 1f)

and i is the opuator indrced by Tin X = X lY .

Proof, we have 
"(r)="k), 

o(r1r). ret {e}r{c;}l be a s,-covering of

"(r lY) 
and G,=Giap(r) ,  q =Gr,  U pQlY); then {cr}r{g} l  i r  a,S-coverage of t"

"(Z) 
. t€t {fs } , {q }i Ue ttr" system of spectral maximal spaces of Z such that

o(r  ;  r r )c G, oV lY,) .  G, ( i  =1,2, . . . ,n)

and

x =ys *fy,.
i=l

Form the inclusions

"(r ly,) c G, aGk)r 
"(r I r))= G, aoQ I r). "(r lY)

we have tl:r;t yt c Y (i = I,2,..., n). If x e Y, then

x = ! s t \ * , . , ! ,

where !, < Yr, li e Y, c It, hence

!s  =  x  -  ( y ,  *  l z  * . . . +  y , )eY  .

Consequently
Y = Y r , + 4 + . . . * Y n

where I", = I, n I/, hence I I I is S, -decomposable.

2.6.8. ConoLLARy. Let T e A(X) a S-decomposable operator and Y a spectral mmimnl

space of T such that a(T lf)n S =Q or c(T lY)- S. Then T lY is S,-decomposable,

where S, =o(f). ' ,  A"QIY) anddim.!, <1.

Proof. There follows by the preceding proposition and by lemmaZ6.6.

2.6.9. ConoLLARy. Let T . B(X) a S-decomposable operator with Sr = Q and Y a

spectral maximal space of T. Then T ,s Sr-decomposable, where

s , = o ( r ) n ( s u o ( r l r ) ) ;  , f  ^ s c o Q t r )  o ,  s n o ( z l Y ) = o ,  t h e n

S, = do(r 1 r)no(r) or S, =(a"(rl r)n"k)r S, where f ts the operator induced by

T i n X = X l Y .
Proof. It will be enough to prove that T is Sj-decomposable, where

Sl = suo(r l r )  (see 2.5.7.) .Let  F be a c losed set such that F: ,Suo(r1r) ;  thenby

proposition 1.1 .l . it follows that

VtrF)= xr(e)
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Indeed, if xe Xr(F), or(") c. F , or(i). or(r)uo(r 1r)c F and hence *e xr(r);

conversely, if *ekr@), then o.(x)cor(*)uo(r1r)cF and xeXr(F), hence
-------:'.....-

iexl@). Since X.(F)-:I the subspace V;(F) is closed, therefore xr(r) is also

closed, meaning i' satisfies condition o", . From the inclusion yi(i). yr("r) and by the

fact that any Sl-covering of 
"(f) 

is a ,S-covering of o'(f) there follows that Z is "

Si-decomposable, and therefore also S,-decomposable. If o(rlI)::S, then by

proposition 2.3.6. there follows that ^S, = Ao@ I f)n o(f). When S n o(f lY)= A we

obviously have ,s, = (a"(r I r)n o(r)v s .

2.6.11. Conou-anv. Let T e A(X) be a S-decomposable operator with a(f)eC and

let Y be a spectral maximal space of T such that a(T I f)- S . Thm i' is strongly

decomposable.

Proof. There follows bythe preceding proposition and theorem I.2.13.

2.6.12. LEvva. Let T e A(X) be a strongly S-decomposable operator and Y a spectral

maximal space ofT with 
"(f 

lY)- S . If 2 is spectral maximal space of f 1i being the

operator in&rced by T in X = X I Y ), then Z = g-'@) * a spectral maximal space ofT,

where q: X -+ X is the canonical map.

Proof. We have Sr=A (see 1.1.9.). If Z= I and Z is an invariant to Z linear

(closed) subspace of X, I'is also a spectral maximal space of TIZ (seel.2l2l) hence

Sco(Zlr). 
"(r lZ), 

that is X,("(r lz))-)z is a spectral maximal spaceof Z. By

lemma 2.6.6. there follows

But o(r I x, ("Q t z))). 
"(r I 

z) and o'(z lz)= o@fZ)uo(r ly) e being a spectral
maximal space of T I Z hence

"@l xreff V\D= ket-A).; 6(z I r))r o(r I y) c o(@
the equal i t ies TIXr("Qlz))=f lx,("(r lz)),  r lZ =t '12 one obtains

a@, (r t z)) -,p(z),hence X, (o@ t z)). Z ; consequentty Z = X,.(o@ | Z)), mearung

Z is a spectral maximal space of Z.

2.6.13. THEoneu. Let T e n(X) be a strongly S-decomposable operator and Y a

spectral maximal space of T with 
"(r lY)> S. Then f is a strongly S,-decomposable

operator,where Sr =Sno'(f),  and f istheoperatorinducedbyTin X:X /Y.

Proof. Let {Gr,}r {g}l be an open S, -covering of 
"(r) 

and G, = e, U pk); *.

can supposethat G, nS =O (i=1,2,.. . ,n ). Then {G,}rG}l ir  aS-coveringof o'(f).

Let fi'" ), {f }i Ue tn" corresponding system of spectral maximal spaces of Zsuch that

6Vlx,("Vlz
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o(r I  rs) c G" ,  "(r  14). G,, ( i  =1,2,. . . ,n)

x = y s * f l .

We sha l l  se t  os  =o(Z l r r )uo( r ; r ) ,  G i  =o( r t4 ) ro ( r1 r )  ( i=1 ,2 , . . . ,n ) ;  
"

Z, = Xr(ar) (; = I,2,...,n),2, = &(o,) (i =1,2,...,n) are spectral maximal spaces of Z
(wehave o, rs, oi ls, seetheorem 2.1.3) and Y c.25, Y c.Y,. consequently zs,
2, arespectralmaximal spaces of i 11+1,3.2.) andbylemma2.6.6. one obtains

"t | 2,) = o@ 1 z)=;e EJ;ef-t)
@co(r l ) , , ) -e,

and analogously

"(r I 
2,) = 

"(!Z)c 
o(r | {) - G, (i = 1,2,..., n).

lf 2 is an arbitrary spectral maximal space of f , then Z = gt(Z) is a spectral maximal
space of Z(where rp is the canonical map; see preceding lemma) hence

Y r n Z + 4 n Z + . . . + Y ^ o Z = 2 .

But from the inclusions Y, c. 2r, Y, c 2,, q(Ir, n Z)cy, nZ , g(4 ̂  Z) c.y, a 2
(i = 1,2,...,n ) it results

z = q(Y, a z)+q(4 ^ z)* ...+ q(y, a Z) c,

c  2 ,  a Z  +  2 ,  n i  + . . . +  2 ,  a Z  c . 2 ,
consequently Z is strongly S, -decomposable.

2.6.14. Conorr.aRv. Let T e A(X) be a strongly S-decomposable operator and Y a
spectral maximal space of T such that o(Z)n S =A; then Z is a strongly composable

operator.
Proof. There follows by the preceding theorem, since S, = I .

2.7 . THE PROPERTIES OF STRONGLY .'.DECOMPOSABLE OPERATORS

There will be given some of the most important properties of the strongly ,S-

decomposable operators: the demeanour at direct sums, at the Riesz-Dunfort functional

calculus, at quasinilpotent equivalence.

29



Chapter II - S-Decomposable operators

2.7.1. PnoposruoN. Let To e n(X,) two strongly S-decornposable operators (a =I,2);

then T =Tr@7, e n(xr9 xr) ,s a strongly S-decomposable operalor, where

S = S , u S r .

Proof. By proposition 2.6.2. and theorem 2.2.3. there follows that it will suffice to
show that Z satisfies strongly condition B, (see definition 2.6.I.\. I-et Y be a spectral .

maximal space of Z and G ={Gr,}.tr{C,}l an open ,S'-covering of o(rlI), where

,S' = ,S n o'(r I f). Then, in accordance with proposition 2.1.7., Y =Yr@I, , where { is a

spectral maximal space of To (u=1,2). If y eI, then y=y'c-y', with y" eY,

(a =1,2 ); since T, (a =1,2) are strongly,S-decomposable it follows that T" | { verifies

condition Fs, where Sl = S. n o(4 | f") (" =1,2) hence

y" = yI ,  + y i  + . . .+ y:  (a =1,2)

and 
y,0i)=r,.r"(r;)- c,, (a =1,2),

v r(yi= v r"r"! i).  G, (o = 1,2 i i  = 7,2,... ,n).

Consequently
y = yt @ y' =0,r,  * y; +.. .+ y' ,)+03, * y? +.. .+ y1)=

= 6l */3! )*. Qi a r?)*....* Q:* r:)= r" * lr r...* !,
and

v r(v r,) = T rv (! r) = T r1r,0! )t y,,r,(y'r;) - cr,,
y','(v,) = Y rv (/,) = T qr,0; ) t y r,r,(yl). g Q < i < n)

hence Z satisfies strcngly condition B, .

2.7.2. DsemLnoN. A ,S-decomposable operator Z e f(X) is said to be almost strongly

S-decomposable if for any spectral maximal space Y of T such that o(f 1 f)n S = A or

o(f lf):.9, we have that restriction TIY is a decomposable respectively S-

decomposable operator.

2.7.3. Remark. The necessity of the definition above becomes established by the

following: being given a S-decomposable (shongly,S-decomposable) operator, we know

about the existence of the spectral maximal spaces Y of T, that have the property that
o(f 1f)n S=A or o(f lf)-S; these are the spaces which result form the relations

r@x'(s) = X,(o@ lr)uS) or y = X,,(o@ lr)). However, we know nothing about

the existence of the spectral maxirnal spaces Y of T that have the property that
o(f 1 f)n,S = S' is a separated part of S (open and closed in $. Obviously strongly ,S-

decomposable operators are almost shongly S-decomposable. It seems that strongly S-
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decomposability (unlike the strongly decomposability) has not a such a favourable

demeanour as the one of the S-decomposability (considering the properties from 2.2.1.

and2.2.17.).
2.7.4. PnoposnroN. trel T=Tr@TreA(X,AXr) be a strongly S-decomposable

operator; then To (u=1,2) are almost strongly So-decomposable, whera*

S"  =Sn" (4)  (u=1,2) .

Proof, I twi l lsuf f icetoprovethat i f  ^nc<r(4) and.FAS, = A or F >S,, thenwe

also have FnS =A or, respectively, (rus)n"(4)-^S,. If FnS, =A, we also

have FnS =(Fns)no(4)= rn(sno(4))= r  ao!)=g, hence when

o(4 1r)n Sr=A we also have o({ lr)n S=A (where Iis a spectralmaximal space

o f 4 ) .

But it also follows that
xr*,,(oT, t {)v s)= x,;G(r t 4)u s)o x^("@, | {)r,s)=

= k * xn 6)h lY, * x,,(s)l= xnnn 6)* r
and one can easily verifo that Y=Yrct^Yz.TeTlYt@Y2 being decomposable, by

proposit ion2.2.6.there fol lowsthatTrl l l  isdecomposable.Letnow I{ beamaximal

space of { such that o'({ | 4) - S, . Then we havex' *" G @',.[l; ?,i;'l g;;i;;] aa !;fl ;i:" " 
=

= 4 @ x,,(ofi,l {)r s)
whence it results 4 | 4 ir ^1, -decomposable. Analogously, one verifies that T, is almost

strongly,S, -decomposable.

2.7 .5. Tseonpv. Let T = Tr @ T, e n(X, A X r) be a strongly decomposable operator.

Then T, and T, are strongly decomposable.

Proof. There follows by propositions 2.7 .1. and2.7 .4.

2.7.6. PnoposrrroN . Let f e B(X) be a strongly S-decomposable operator and

P e B(X) a projection commuting with T. Then f I PX is almost strongly ,S-

decomposable, where S, = o(Z I PX)n S.

P roo f ,  We  have  X=Xt@X2,  T=7 ,@72,  where  X r=PX,  X r=Q-p )X ,

Tt = T I X,, T, - T I X, and by proposition 2.7.4. wehave that T I PX is almost strongly

^1, -decomposable.

2.7.7. Conormnv. Let T e n(X) be a strongly decomposable operator and P e B(X)

a projection Then f I PX is strongly decomposable.

Proof. There follows by the preceding proposition.

3 l
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2.7.8. Pnoposnox. Let T e n(X) be a strongly S-d.ecomposable operator and let a be

a separated part of 
"(f). 

Ihen T I n(c,f)X is strongly Sr-decomposable, where

S, =,S ao (for E(c,r) see corollary 2.2.8.)

Proof. X, = E(a,T)X is a spectral maximal space of T.I-et Y, be aspectralmaximal

space of Z lX,. Then by proposition I.2. tzl Y, is also a spectral maximal space of Zo

hence f lY, is Si-decomposable, where Sl = o(f | 4)^ S. But o'(f ; 4)n q =

= o(r | 4)^ (on s)= (o(r I I)^ o)n S = Sl, henc" (r I Xr)lY, is Si -decomposable,

that is T I E(o,f)X is strongly S, -decomposable.

2.7.9. PsoposrrroN. Let T.B(X) be a strongly S-decomposable operator and let

f :G -+ C (G = o'(f) open and connected) be an arulytic function, injective on o(T).

fhen f (f) is almost strongly Sr-decomposable.

Proof,, From the equalities Xre{F)=Xr(f-'(F)) (where

x re>@ u ̂ s, ) = x r|'(r), s) = ro @ x,' (s) = ro @ xrrrl(s, )
and by proposition 2.2.9. there follows that the spectral maximal spaces Y of f (f) that

F =,S, = /(s)) and

(where FaSr=47

have the property 
"(f(f) lf)=S, o. 

"(f(f)lf)ns, 
=A are also spectral maximal

spaces of L One furtherperforms the proof as forproposition2.2.9., since a S,-covering

of o(7(f)) is easilytransformed trough fl into a S-covering of o(f).

2.8. A (1, S ) -DECOMPOSABLE OPERATOR IS,S-DECOMPOSABLE

During this paragraph we shall prove that a (l,S)-decomposable operator is,S-

decomposable. This result was inspired from the similar one concerning 2-decomposable

operators, which was recendy obtained by M. Radjabalipour.
2.8.1. PnoposrroN. Let T e A(X), and let Y be an invariant, T-absorbing subspace of

T (particulmly, Y is a spectral maximal space of T) and let i be the operator infurced by

T in the quotient sprce X = X lY . Then we hwe the inclusion:
S. c ,S, \ lnt o(fl f).

Proof, By proposition I .1.1. there follows that
S, c S, uo(r 1 r).

But from the definition of the analytic residue S. it results that S, = Int.S. , hence we

have the final inclusion

si = s, u tnto@1 v).
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It will suffice to prove that Into(TlY).C\Sr-C)2. L.et Gclnto(flI) open and

"f (t") u"analytic function on G taking values in ,:f such that

(xr-f)t(x)=o 1i..c;.
Then there exists an open set G, c G and an analytic frrnction /(i,) on G, such that

7W)= f @) and
(xr - r)f(x) = y(r) (r e c,)

with y(1")e )' (see [18], lemma2.1.). Since I'is Zabsorbing and ]"eG, - o(f lIl) one

obtairs f(X).v,, , f6).t ,  i(x)=O on G,, hence i6)=a; consequently

S,  c ,S.  \ ln to( l f ) .

2.8.2. CorcLLARy. Having the preceding conditions, if moreove, a(T lf)n S, =A,

we have

S. = S.'

Proof. By proposition 1 .1 .1 . we have
S, c S, uo(r 1r),
S r c S r u " ( r 1 r )

hence, by the preceding proposition we have ̂ 9. c S. and ,S, c S, hence S, = S. .

2.8.3. Remark. By the preceding proposition and corollary there follows, as a

particular case, the result obtained by $t. Frunzd in [53] namely that if Zhas the property

of the single-valued extension property and Y is a spectral maximal space, then Z also has

the property of the single-valued extension; also, if .Sr = A, Y is Z-absorbing and

o ( r 1 r ) ) S . , t h e n S r = Q .

2.8.4. Lev,lu,. Let f e n(X), Y an invariant subspace of T and f the operator

induced by T in X = X I Y . Thenfor F > S, closedwe have

xr(r)c4@u-ofrli)
Proof. Since ,S' cSrr-ro(f 1f), the right member of the inclusion has sense, and

from the relation
o, ('). o'(*)u 

"(r 1 r)
(proposition 1.1.l.) it follows that if * e X ,(F), then o, (*) c F,

", 
("). o'(*)v o(r I r) c F u 

"(r I 
r), meaning x e x,.(F u o(r I r)); consequently

i e X , ( F v o Q l Y ) ) .

2.8.5. DeprNrnoN. A S-decomposable operator T ef(X) is said to have an almost ̂S-

found spectrum if for any spectral maximal space of Z with o(f 1 f)n S = A and any

a a
J J
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covering {o,Y=, , of 
"(r;r) 

open with G, aS =A (i =1,2,...,m) and

Y . Y r + Y r + . . . r Y , .

2.8.6. Tneoneu. Let f en(X) a (t,S)-de"omposable operator with Sr=@

(particularly dimS <l). Then T is S-decomposable and its spectrurnis almost S-fowd.

Proof, Since Z has the property of the single-valued extension and it is

(t, ̂ S)-decomposable, we have that Xr(F) is a spectral maximal space for any F having

theproperty FnS =Q or.Fl,S. Oneeasilynoticesthatitwil lsuff icetoprovethatfor

any F closed with FaS=A and any open covering of F {G,Gr\, where

(c,ud,)n S=o we have x,(r)cx.(c,)+ X,@r) (one verifies that through
- m m

induction: if f c[JG, we take G',c.G,lcG, such that F.UG, and we obtain
; - l

x,.(r)c x,(c',)+...+ x,.@:-,uGi). x,(G,)*...* x,(G^_,)+ x,(G^_,)* x,(e) I
l -e t  H =GrA G,  andletus set  y=Xr(H) ;weshal la lsoput  Fr=F\G2,  Fz=F\Gr.

Since G,  vGr=F i t resul ts  4n Fz=A.  Byformula o( f )co( f ) t (G,^Cr)  lwt r lch

follows by generalisation of a formula belonging to C. Apostol l2l, see proposition 1.4.),

where Z is the operator inducedby Zin X=XlY,one obtains for xe Xr(f) tnx

"r ( , r )c  
F \ (c ,  ^  Gr)= Frw F,  (we a lso have 

" r ( t )c  
o( r [x)c  r  and

"r(*)-"(r)r(c, 
ncr);.  Consequently we have (u-r)r(r)=x for l ,eC\F while

0,1 - fh(L)= i for ). e c r (E, A).
We can choose two rectifiable Jordanian curyes systems l, fz surrounding 4,
respectively F, and separating F, by Fr. We shall define now

g,=+f *(1,)ol ,  ( j=1,2)
' 

/.7tI " i

and

n,(,)=*t("-x\ '*(r,)ar" ( j  =r,2)

for z 4 D,, where D, is the domain bounded by f 1 (i =1,2).

We obviouslyhave * = \, +i, and

Q - r\,@= * I a -1. + l. - fk -r,)'*(r")ar =
1 , .= 1i *; I ,Q 

-x\ '  *dl. = \, ( i  =t,21

since l. -+(r-l)-' is analytic in D,. Consequently (, . *r@,) (j =1,2). We choose

xi eEi and we notice the factthatwe have i=xr +i, hence x=xt+xzt!, with. In
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accoldance with lemma2.8.4. (where S, =Si =A) weobtain xr*!.Xr@rvH)+

xr(n). Xr@,) and Xr@r)r x, which was tobe proved.

2.8.7.Twroxeu. Let f eA(X) a Q,S)-ducomposableoperatorwith Sr+A. ThenT

is S4ecomposable.

Proof. Let Y aspectral maximal space of Zsuch that o(Z I f)n S = A andlet us note'

F = o@ | r). we know that rhas the following form r@xr(s) = x,(o@ lr)vs).
In order to prove the theorem, it will suffice to veri$r that for any open covering {C,Cr\

of F such that (GruG-r)n S=A and any xeY, there exists xt, xz, x, such that

yr . ( " r )c .G,  yr (xr ) .G,  y . ( " r )cG-,  and x=xr+x2+x,  (G,  )G) .  Thus i t  resul ts

that (l,S)-decomposability implies (Z,S)-decomposability through induction, one can

prove (n,S)-decomposability for all n. I-et H =G,^G, and Yn the spectral maximal

space of Zdefined by the equality YH @ X 7 (S) = X r(U u S). If we set by i *eoperator

induced by Z in the quotient space X = X I Yn , bV formula in propositi on 2.3 .6. we have

"(r)- "(r)t 
(G, o G,) ,

hence

"(r) . G(r) r c, )u (o(r)\ c, ).
I f  xeY then or( t )c ,FuS hence v,6) .y , ( t ) -Fu 'S.  On the other  hand

y, (t) - 
"(r)- G(r)t G, ), (o(r)t c, )

If we set F\G,:F2, F\Gr:f , then by the relations above and by the fact that

S, = S. (see proposition2.8.2.) we obtain:

or(t)= . r!)us, c (rus)n"(r)- ["(r)r(c, nc,)]n(n'us)-
. ( 4 u F , ) w S

Consequently pl,(i) r C4 aCF, n C,S = G and on set G we have the equality

(r"r - r)"1r.;=;.
One further leads the verification as in the preceding theorem. Let f', f, f, three

rectifiable Jordanian curves systems surrounding Ft, Fz, ,S and separating them. We shall

def inethen 

a,=: [  *6)al"  ( j  =t .z) ,€s =* [  *0x1,
"  l l t l  r  i  ZTCI " :

a n d 1 .

n,Q)= *l  € * rXr)a?" ( i  =t,z)
I

n,Q)=-! t Q - r")(r")4r.,'Znl r'
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where z eD j (i =1,2),2 eDs,D j, D" being the domains bounded by tl , l, (/ =r,2).

We obviouslyhave
* = 1 r + € ,  + € "

and

Q - r)', @= * I,Q - ̂  + x - ffu- r)' *(i.)ai, =
. l=\, **I A -i") '*al. =E U =t,z)

Q -fb,Q)=1,,
since l. -+(t-i")-' is analytic inD,, Dr.

Hence v r(E,). Dj ( i  = 1,2),y i .( |r)- o, and we can choose xi e\,,  xi e\r, x' ,  e \r,

such that
x = xlt + x', + f, + y (where ! eYr).

However  we  have  v r | ) . v r6 , )uHcD,vHcG,  ( j =1 ,2 )  and  y . ( x r ) c

.yr(*.r)u H c.Drufl.  Form the last inclusion it  fol lows that x'reXr.@rwH)

hence x! = x, f y, , where x, e Xr.(D") and y, e I" . We can finally write

x = X t + x 2 + x s )

where

xt  = x l  *  l r  *  ! ,  xz  = xL,  yr (x) .  C, ,  yr (* r )  -G,

y,,(r, ) . G, . By this the proof is over.

By proposition 2.4.1. and in accordance with the ones above we obtain the following

result:

2.8.8. THsoppv. Let f e B(X), and let S c o(f) be a compact set such that S, c" S.

Then the following conditions are equivalent:

1". T is S4ecomposable;

2". T is (t,S)-decomposable;

3'. Xr(F) is closedfor any closed F ) S

and

"(r)=;FIe.FlE),
where G is arbitrary open in 

"(f), 
Gn S : A, and Y- is the spectral maximal space of

T deJined by the equality

x,@ u s)= x, (s)o r" .

9 -
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This last paragiaph contains several remarks conceming the adjunct of a S-
decomposable operator when it has the property of the single-valued extension (5, = A),

particularlywhen dim^S < l. Denote by T. the adjunct of an operator 7.
2.9.I. PnoposnroN. Let T e n(X) an S-decomposable operator with Sr = A. Thenfor*"

any F c.C closedsuchthat.FnS =A or.F r,S, thespace Xr(Ctf)t ls aspectral

maximal spacefor T. and o@. I xr(c\ F)')c F.

The proof is identical with the one given in [59] for decomposable (2-decomposable)

operators, since the demeanour of the S-decomposable operator (more exactly of the
(t,,S)-decomposable operator) is in this case (and for sets having the property mentioned

the text of the theorem) the same with the one of a 2-decomposable operator.
2.9.2. Tsnonerra. If f e B(X) is a S-decomposable operator with ,i, = A Gtarticularly

dim S < I ), then Z. is also ,S-decomposable.
Proof. We shall prove (as in [59]) that Z. is (l,S)-decomposable. Let G, G, two

open sets covering the set o(f-)=o'(f) and let D, D, be another two sets covering

"k-) 
such that D cG, D-, c G, and moreover G ̂ S =A, D, -S. By setting

,o = (C \ pr)^ o(r) and r, = (c \ D)n o(r) we obtain two closed, disjunct sets F, ,(

hence Xr(F u 4r) = Xr(F)@ Xr(Fr).

Let now u be an arbitrary element from X* and let us define i,: Xr(F u F') + C by

i,Q,+ rr)=u(rr), xt+ x2 e X,.(f)O X,(fr). It is obvious that the functional i, canbe

extended to a linear continuous functional u, e X* (using theorem Hahn-Banach). But we

also have u, e X.,.(f) and by setting uz =u-u,,itfollows easily that x, e X,(4)t. We

notice the fad" that X,.(f)= x,.(C\ D")r x, (Ct o"), X,(Fr)= Xr(C\D)-

= xr(c\ D), hence x,.(p)' = x.,.(c\ 4r)' , xr(Fr)' c x,(c\ D)' and corsequently
x" = xr(c\ Dr) '  + x,(c\ D)'.

Applying the preceding proposition one obtairs that T. is S-decomposable, being (t, S)-

decomposable.

2.9.3. Conou-nnv. If f e B(X) is S-decomposable with Sr = A, then

x i . (e )=X , . (C \ r )L  fo ranyc losd  FcC such tha t  FnS :a  o r  ̂ F : ,S .

Remark By theorem 2.9.2., knowing that S, = A ft doesn't follow fhat 5,. : g .

a -
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