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S - spectral decompositions 11

By
IOAN BACALU
CHAPTER II

S-DECOMPOSABLE OPERATORS

This paper is devoted to the study of the S-decomposable operators defined in the introduction (see
[21], [16]). First, we show some structural properties of spectral maximal spaces of the S-decomposable
operators. Then, we shall present the behavior of these operators at direct sums, at projections, at separate
parts of the spectrum, at the Riesz-Dunfort functional calculus and at the quasinilpotent equivalence. We
will also give proof of an important structural theorem of spectral maximal spaces, generalising the
following from [53] and [59]. We shall define and study the spectral s-capacities, and give several s-
decomposability criteria. We shall further study the restrictions and the S-decomposable operators’

quotients.

2.1. THE STRUCTURE OF SPECTRAL MAXIMAL SPACES OF
S-DECOMPOSABLE OPERATORS

In this paragraph we shall generalise the corresponding follows from [37], [48],
obtained for decomposable operators. The main result will be that X . (F ) is a spectral
maximal space for any F < § < S, F closed.

2.1.1. Lemma. Let T e B(X)be a S-decomposable operator, and let G be an open set
such that:

G (o(T)\8)=>

then there exists a maximal spectral space Y # {O} of T such that G(T Y )C G. If
dimS <1 and GnNInt G(T );t & (G being an open set), then there exists a maximal
spectral space Y # {0} of T such that o(T/Y)cG.

Pfoof Let G be an open set such that:

ScGgp G(T)
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and .
G, uGoo(T).
T being S-decomposable, there exists a sistem of spectral maximal spaces Y, Y from T’
such that:
o(T %)< Gy, o(TY)c G .
and

X=X,+Y.
If Y= {O}, we have Y, =X and O'(T | YS)=0'(T )c G, contradiction, hence Y # {O}
When dimS<1 and GnInto(T)=@ it follows that Gn(o(T|Y)\S)=D,
consequently ¥ # {0}

2.1.2. Tusorem. If T € B(X) is S-decomposable where dim S <1, then
o' (7)=0)(T)=D (see[37], 1.3.6),
T has the single-valued extension property (S, =@) and o(T)=o,(T). If S, # D, then
S, S and dimS =2.
Proof. If c?,(T )=, let G be a component of G([),(T ). Then, by proposition 1.3.7.

[37], there doesn’t exist any spectral maximal space Y # {O} of T such that

o(T|Y)cG;
by the preceding lemma, G N O'(T ) =, therefore G N c‘; (T ) = which is impossible
(since G < c(; (T) c Int G(T)). Same for o, (T)
Consequently |

o' (1)=c'(T)=0

since S, = %, and o°(T)=o(T)\ 6,(T), we have S, =@ (meaning that T has the
single-valued extension property) and

O‘(T ) =0, (T)
Now let S, # . In order to verify the inclusion S, S it will suffice to verify that
G?,(T ) c §'. Suppose that G([),(T) ¢ §'; then there exists a component G, of G(; (T ) such
that:

Gy ¢S and G, " (c(T)\S)= .

By the preceding lemma there follows that there exists a spectral maximal space Y, of 7,
Y, # {O} such that:
’ o(T'Y,)c Go;
contradicts proposition 1.3.7. [37], consequently S, = S. But S, # @& implies dimS =2
(we have IntS, # @) hence IntS#0.
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2.1.3. Tueorem. Let T € B(X) be a s-decomposable operator and let F c C be a

closed set suchthat
S c Fco(l).
Then X, (F) is a spectra maximal space of T and
o(T | X,(F)cF. a

Conversely, for any spectral maximal space Y of T such that G(T |Y ) > S we have
Y =X,(c(T|7)).
Proof. Let F c o(T) be closed such that S ¢ F (S, S < F') and let G, H be two
open sets satisfying conditions Gy D F, HNF = and Gy UH S o(T'). We shall put
G =Gy, G, =H.
Let {Y, } be a comresponding system of spectral maximal spaces of 7 such that:
o(T1Y)cG, (i=12)
and
X=X +7,.
If xe X,(F), then x=y,+y,, y, €Y, (i=12) and o,(x)c F; for Le p,(x) x()
has meaning and
(A -T)x(1)=x
hence for A € 6F M p(T | Yz) we have
(A =TYROLT | 1,)y, =x(M) =y, —x ==,
from which it follows that Aep, (y, ) But AgS>S,, consequently
L€, (y1 )mQT = pT(y1 ) and from this it derive that
c,,(y])c Fucs(T]Yz)cFuC_}2
therefore
tF NEG, p,,(yl).
Let now I be a bounded system of simple closed curves surrounding F and included in

6F NG, . For L eI’ we have
»(\)=-ROT|Y,)y, + x()), Hence

—L O )dx———LR(k T\Y, ), dk+—_[x(x)dx

The spectral maximal space Y, of I"being 7-absorbing ([76], proposition 3.1.), if y, € Y},
then y,(\)e Y, for A e pT(yl) and since o(T | Y2) is “outside” I" we obtain

1 1
— [n@ne, o [ROT1Y, )y, =0,

Consequently
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1 1 1
x=— [R(,T)dh :E—ngix(x)dk :%Ly[(k)d?»e Y,,

21 oo

thus
X, (F)eY=2.

G\oF
By other means, if z € Z then from the inclusions
YT(Z) S Yoy, (Z) = G(T | Yl) <G,

it follows that
GT(Z): YT(Z)U Sy ﬂGl =K

G|oF
hence z € X,(F) and Z c X, (F); so we conclude that

XT(F): ﬂYn

GoF
from where it follows that X, (F ) is closed. By proposition 3.4. [76], X, (F ) is a spectral
maximal space of T and o(T | X, (F))c F. Conversely, if Y is a spectral maximal space
of T such that ()‘(T |Y ) D §, then according to those proved before we obtain that

o(T| X, (o(T|7))co(r|Y)
hence
X, Y)Y,
But from the evident inclusion ¥ ¢ X, (G(T |Y )) one finally obtains
Y =X,(o(T|7)).
At this moment the theorem is completely proved. When 7' has the single-valued
extension property (S, = &) we have the following
2.1.4. Corouiary. Let T e B(X) a s-decomposable operator with S, =0 and let
FeC be such that either SONF =@ or F>S, and F(S\S,)=D, where S, isa
separated part of S. Then X,(F) is a spectral maximal space of T and
G(T | X ,(F )) c I'. Conversely, if Y is a spectral maximal space of T such that
o(T|Y)=F and F has one of the two properties above, then Y = X,.((T'| ¥)).
Proof. If FNS=J (F CG(T) closed), by the preceding theorem X, (?) and
X, (Fus ) are spectral maximal spaces of 7"and _
X (FUS)=X,(F)+Xx,(9),
whence it follows that X, (F ) is also a spectral maximal space for 7' (see [4], proposition

4.9) and o(T(X,.(F))) c F.

If
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S=8uU(S\S),
where S, is a separated part of Sand F 5 S,, F N (S\ S,)=, then
X (Fu(S\S)=X,(F)+X,(S\5,);
therefore X, (F ) is again a spectral maximal space of 7. The final part of the corollary
results identically as in the preceding theorem namely from the evident inclusiong”
Y < X, (o(7'|Y)) and o(T' | X, (o(T'| Y)) c o(T'| Y).

2.1.5. Provosimion. Let T € B(X) a S-decomposable operator and S, a separated part
of Swith dimS, = 0. Then T is S’ -decomposable where S' =S\ S,.

Proof. The case S, = has been proved in proposition 1.2.9. Keeping the notations
from the proposition 1.2.9. prove, we will obtain the spectral maximal spaces {YS }u {Y '}f
of T suchthat o(7 | ¥; ) c G, o(T|Y)c G (i=12,.,n)
and

X=Y+Y'+Y +..+Y .
But Yy =Y, +Y, +Y, +..+Y, , where o(T|¥¢)=06'Uo,Uc,U..UG,,
o(T|Y,)=0o, G(Tl Y, ): o, (i=12,.,n).Y,,Y, being spectral maximal spaces of 7,
and ¢'cGy, 0,cG cG,. Let 6,=0,Uc(T|Y). Since 6,NS'=@, we have
X, (S'Ué,)=X, (") + Y, , where Y, are spectral maximal spaces of 7,
oAT'|Y, )8, G (i=12,...n). We have Y/ +Y, ¥, and X,(S)+Y, c X,(c'US)=Y,,
therefore X =Y, +Y, +..+Y, ,and T'is S"-decomposable.

2.1.6. Remark. Let T € B(X ) be a S-decomposable operator and S, ¢ S the closing
of the set of S‘s points in which S has the dimension 0, dimS, =0 and thus that
§"=S8\S, be closed (and thus separated from S, ); then from the preceding proposition it
follows that 7'is S" -decomposable.

2.1.7 Provosition. Let T, e(X,) (a=12) and let T®T, eBX,®X,). If
Y X, ®X, is aspectral maximal space of T, ®7T,, then Y =Y, ®Y,, where Y,, Y, are
spectral maximal spaces of 1, respectively T,.

Proof. Let K, and P, be the corresponding projections: X, = Pl(X L OX 2),
X, =P(X, ®X,). It is easy to verify that F, and P, switch with 7, @7, and since Y is
ultrainvariant at 7, ©7,, it follows that Y is invariant to 7 and P,. By putting ¥, = PY
and ¥, =PY,wehave ¥, cY, Y, cY, Y, ®Y,cY, B, and P, also being projections in
the Banach space Y, Y, Y, closed. If yeVY, then y=Ry®PRYeY, ®@Y,, so
Y=Y, ®@Y,.Let Z, (a.=12) two invariant at 7 subspace such that

o, 12,)co(l, 1Y) (2 =12).
Then Z = Z, ® Z, is an (closed) invariant subspace at 7, ® 7, and
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o, ®L12,07,)co(,®T,|Y,®L,),
hence Z, ® Z, c ¥, @Y, . From this inclusion it obviously follows that
Z,cY,Z, ct,
consequently ¥, and Y, are spectral maximal spaces of T}, respectively 7,.
2.2. DIRECT SUMS AND RIESZ-DUNFORD FUNCTIONAL CALCULUS WITH
S-DECOMPOSABLE OPERATORS

In the beginning of paragraph 2 we give a simple S-decomposability criterion that

greatly simplifies the subsequent proofs. We prove there that the direct sum of two
operators is S =S, U .S, -decomposable if and only if each operator is S, -decomposable

(a=1,2). Particularly when Pe B(X ) is a projection and 7T is S-decomposable there is
proved that T'| PX is S, -decomposable (where S, =S G(T | PX ) ). We further study the
demeanour of the S-decomposable operators in the functional calculus with analytic

functions and at quasinilpotent equivalence.
2.2.1. Dermirion. Let T'e B(X ) and let § < C be a compact set. T is said to satisfy

conditiono.; if X, (F ) is closed for any closed ' o S . T'is also said to satisfy condition
Bs if for any finite and open S-covering {GS}U {G,. }f of O‘(T ) and for any xe X we

have
X=Xg +X +X, +..+X,,

where
y,.(xS)C Gy, y.,(xl,)c G; (i=12,..,n)
2.2.2 Lemma. An operator T e B(X ) is S-decomposable if and only if T meets
conditions oz and B.
Proof. Since G, N S =& we have
XV'(EI‘ US): Y @Y,
where X, ((7, US), Y, and Y are spectral maximal spaces of T (see [76], propositions

24. and 34); also, if Y is a spectral maximal space of 7 we have
Y, (x)c Vo (x)c o(T'|Y) for any xe7Y. Considering these remarks, our assertion is

obvious.
2.2.3 Tueorem. Let T, e B(Xa) (a=12) and let S=8,US,; then if T, is
S, ~decomposable (0. =1,2), T, ® T, € B(X, ® X,) is S-decomposable.

Proof. From the equalities
X, (Flox, (F)=(x,@X,),,, (F) (F>5),

@
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Vr,eau(xl @x2)= T (xl)UYT2 (xz) (x,€X,,a=12),

@ ox )3 eax;}(x; +ix}j®(x§z +}":x3]
i=l i=1 i=l

it follows that if 7, and 7, meet conditions a5, a5 and By, By, , then T, @T,, meets
conditions o5 and (. "

2.2.4 Provosition. Let T, ®T, € B(x, ®X ,) a S-decomposable operator; then T,
(o.=1,2) are S-decomposable operators where S, =S 0 o(T, | X,) (a=12).

Proof. Let F o S, closed; we shall be allowed to write

X, (Fus)®Xx,, (FUS)=(X, ®X,), e, (FUS)

and since 7 ®7, is S-decomposable, also using proposition 2.1.7. it follows that
X, (F U S) is closed, hence X 1y (F)=X Iy (FuS ) is closed. Similarly, we verify that
X, (F) is closed for any closed F" > S, . Hence 7 and T, meet conditions o and o .

The fact that 7, and 7, satisfy conditions B, and By is proved same as for the

1

preceding proposition.
2.2.5. Tueorem. Let T, € B(Xa) (a.=12), let S be compact and let S, = Sno(T,)

(a=12) (S=8US,c G(Tl)u G(Tz)). Then T, (au=12) are S, -decomposable
operators if and only if T, ® T, is S-decomposable.

Proof. There follows from the preceding assertions.

2.2.6. CoroLLaRY. The operators T, € B(X a) (o =1,2) are decomposable if and only
if T, ®T, is decomposable.

Proof. There follows either from the preceding theorem, or directly from lemma2.2.2,
because 7, and 7, satisfy conditions o, and By (with S=0) if and only if 7, ®7T,
meets conditions o.; and B .

2.2.7. Prorositon. Let T' € B(X ) be a S-decomposable operator and let P € B(X )
such that P> =P and PT =TP. Then T|PX is a S,-decomposable operator, where
S =8no(T).

Proof. We have X =Y, +Y,, where ¥, =PX and Y, = (I-P)X (Y,nY,={0}),
hence in accordance with proposition 2.2.4 T'| PX is S, -decomposable.

2.2.8. CoroLLARY. Let T € B(X ) be a S-decomposable operator, and also a separated
part of G(T ) Then T | E(G, T )X is a S, -decomposable operator, where S, = SNo and

E(,T)= 5:71 [ T)d,

T being a Jordan closed curves system surrounding G and separating sets ¢ and
o' =o(T)\o.

@
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Proof. There follows by the preceding proposition.

From now on we shall put
f(@)= 2%1 [ FOIRG, T)d ([45),1, VI 3.9).

2.2.9. Prorosition. Let T € B(X ) be a S-decomposable operator and let f:G —>C _
(G> G(T), G open and connected) be an analytic function, injective on G(T ) Then
F(7T) is S,-decomposable, where S, = f (s).

Proof. Let F c o(f(T)) closed, F > S, ; from the relations

S,y = 8,)e £(5)=5, < f(o(1))=o(£(7))

and

[(F)= f(s)=58
it follows that

X,0y(F) =%, (/7 (F))
is closed (see [77] theorems 2.1,2.4), therefore f (T ) meets condition o . If
{GSI }u {G.} is an open and finite S, -covering of o(#(T)), then {f" (GSI )}u {f" G, )};7
1s a S-covering of O'(T ) From the equality

V()= f (%)) (x e X) [77]

it will follow that £(7') also meets condition 3 5, » therefore f (7) is a S,-decomposable

operator.
2.2.10. Cororrary. Let T e B(X ) be a S-decomposable operator and let f:G — C

(Goo(T ) G open) be an analytic injective function on each o, = G, N G(T ) where G,
is connected component of G. Then f (T ) is f (S ) -decomposable.

Proof. G(T ) being connected, there exists a finite number of connected components
G, of G which cross o(T' ) , letthese be G,,...,G, . The sets o, are separated parts of o(7')

and
o(T)=0,Uc,U..UG, ;
hence
F= @ E(s,, T)X
and
T = @(T | E(s,,T)X).
Since

10)=@ 106, T = /156, 7)¥)
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by propositions 2.2.5. and 2.2.9. and corollary 2.2.8. it follows that f(T) is f(S)-

decomposable.
2.2.11. Prorosition. Let T € B(X ) and let f be an analytic function such that there

exists G > o(T ), G open and f injective on G. Then, if f(T) is S,-decomposable, T is
S-decomposable, where S = (S, ) o(T). o™
Proof. Since S,y = f(S;) and XT(f“(F)):Xf(T)(F) (theorems 2.1., 2.4. [77])
with F'5 .8, 58y, we conclude that for any closed set F' >S5 > .S, (using the fact
that fis injective on o(T)), F' < o(T ), there exists a closed F such that F' = f (F') and
F'=f(F); therefore X,(F')=X f(T)(F ) is closed and T meets condition o. If
G, }u{G, }f is an open S-covering of o(T'), we can choose Gy, GG (i=12,.,n),
and then from G,NS=@ and f(G,nS)=7(G)n f(S)=@ (fis injective on G), as
well as from the fact that f(Gy)> f(S)=5, it follows that {f(G,)}u{f(G,)} is an
open S, -covering of o(f(T )). But f (T') meets condition Bs, » hence for any xe X we

have
X=%x +x+% +..tx,

where Y_/(T)(xsl )C f(GS): Y/'(T)(xl ) cG;; but  since v, (XS. ): /o (yf(T)(xSl »’
Yy (x,)z f (yf(r)(x,. )) it follows that 7' also meets condition B, therefore 7 is
S-decomposable.

2.2.12. Corourary. Let T € B(X) with o(T) contained in an angle ¢ <% (having

vertex in the origin) where k is a integer positive number. Then T is S-decomposable if
and only if T" is S,-decomposable, where S, = S, (S* = {Xl eCh =), e S}).

Proof. There follows by propositions 2.2.10. and 2.2.11.

2.2.13. Provosition. Let T,,T, € B(X). If T, is S-decomposable, with Sy =
(meaning that T, has the single-valued extension property; particularly dimS <1) and
1), T, are quasinilpotent equivalent [38], then T, is also decomposable.

Proof. If T;, T, are quasinilpotent equivalent, then

o(f)=0(1,), o, (x)=0,(x) (xe X,S, =5, =)
and
X, (F)=x,(F)

for any closed ' < C [38] therefore 7, also meets conditions o, and B, that is 7, is

also S-decomposable.
2.2.14. Remark. If T, is S-decomposable (S, =) and S is minimal, meaning that

there doesn’t exist any compact subset S, = S, S, # S, such that 7, is S, -decomposable,
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then in the proposition above S is also minimal for 7, in this sense. Indeed, supposing
that there would exist S, = .S compact, S, # S, such that 7, is S,-decomposable, then
by the preceding assertion, 7; would also be S, -decomposable, contradiction.

2.2.15. CorovLary. Let T € B(X) be a S-decomposable operator with S, =& and let

Q a generalised nilpotent operator which commutes with T. Then T+Q is S;«

decomposable.

Proof. 1t follows from the preceding assertion.
2.2.16. Provosition. Let T,T, € B(X) with SpsSy, #D. If T, is quasinilpotent

equivalent with T,, then

Yy, (x): Yz, (x)

forany xe X .
Proof. Let Aed, (x); then there exists an analytic function x, (k) defined on a

neighbourhood ® € A such that (A —T; )x,(A) = x for any A € ®. When proving theorem
1.2.4. [37] there is proved that if 7] is quasinilpotent equivalent with 7, and x,(%)

verifies the condition above on o, then
x0)=Y 1Y@ -1}
n=0

is absolutely and uniformly convergent on every compact K c o, therefore it is analytic

()
n!

on o and moreover it verifies the equality
(M =T, ), () = (M = T, ) (1) = x

for any A ew. Consequently 3, (x)c 8y (x); analogously, one verifies the inclusion
6T2 (x) = Sli (x) , hence Y, (x) =¥ (x)

2.2.17. Provosrion. Let T,,T, € B(X) with Sy =8y, and let T}, T, be quasinilpotent
equivalent. Then, if T, is S-decomposable T, is also S-decomposable.

Proof. From the equality S, =S, and from the preceding proposition it follows that
for F5 8§58, closed, we have

XTZ(F):XT, (F)’

hence condition a is also met by 7,. From the equality v, (x): Vi (x) (xe X) it

follows that 7, also meets condition B, therefore in accordance with lemma 2.2.2. 7, is

S-decomposable.

- 2.3. A BISHOP PROPERTY FOR S-DECOMPOSABLE OPERATORS

10
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We will prove that spectral maximal spaces of the S-decomposable operators can be
analogously characterised with the ones of the F S U-scalar operators [53] and
decomposable [50] namely that X, (F)=N,(T,F) for any closed F 5. We remind

that the definition of N, (7', F') was inspired by Bishop’s definition of N(T, F) [82].

2.3.1. Dervimon. Let Te B(X) and let F < C be a compact set. We denote by
NC(T v ) the set of all xe X for which we have the property: for all € >0 and
K < C\ F compact, there exists an analytic function defined on a neighbourhood of X
verifying the inequality:

e=Or-7)f() <e, rek.

2.3.2. Limma. Let T € B(X) and let X = ZY, where Y, are & -stable subspaces for T

i=1

(meaning Y, are invariant subspaces for T and G(Tl Y,)c G(T) [83]. Then
s()=5, 0| Jo(|Y)
i=l

Proof. Obviously, we have
Sy UOG(T’ Y)c o(T).
i=l

Since x=y,+y,+..+y, with y e¥ (i=L2,..,n) and yT(x)c OyT(y,.),
i=l
v+ (v,) =¥, (0,) = o(T'17,), it will follow [76] that

o0)-s,uUn@csv U (Un6))es,oUstn)

veX X=p by boty, \i=

2.3.3. Limma. Let T € B(X) be a S-decomposable operator and let & < o(T') compact
such that cnS=@ and o=Intc (in the topology of G(T)). Then there exists a
spectral maximal space Y of T with G(T |Y )= o (that is o is set-spectrum of T (see
definition 1.3.1.)).

Proof- 1t is similarly carried out as for decomposable operators. We have

X,(cus)=Y, ®X,(S),
where Y is spectral maximal space of 7"and G(T | Yc) c o . It will be enough to prove that
Into O'(T [ Yc)

(Intc in the topology of G(T )). Let A,€lIntc; then there exists a disk
i = {X;X eC, l~k0[ < p} such that 8 " o(T) = Intc . We put

5, :{x;xec(T)\xwa[ <%}

11
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G, :{K;XGC, 7\,_—_7»0] <%p},

G, ={x;xec,|x—xo|<§p}.

It follows that G, UG > o(T) and G, N8, =@. If Y;, ¥, are corresponding spectral

«

maximal spaces of 7 such that
o(T|Y,)c G, o(T | Y,)c G, and X =Y, +,,

then, by the preceding lemma it follows that
o(T)=Sue(T|Y)uo(T|Y,)
and since 8, N (o(7'| ¥, )u S) = D, we have
8, co(T|Y,)cG,no(T)c5no(T)c Into co.
Consequently ¥, c X,(cuUS)=Y, ® X,(S), whence ¥, c ¥, and o(TY,)co(T|Y,);
one obtains A, € 8, c o(T'| ¥,) c o(T' | ¥,) thatis o c o(T'| ¥,).

23.4. Remark. If T € B(X ) is S-decomposable and also has the property of the single-
valued extension, then, for any compact ¢, 6 < G(T ) which has the following properties:
Into =o (in the topology of G(T )) and there exists a separated part S, of S such that
DS, Gm(S\SI):Q, we have the property G=G(T|XT(G)), hence ¢ is a set-
spectrum for 7. If T has not the property of the single-valued extension and 6 5§ o S,,
Inte =0, it is possible that o is no more a set-spectrum for 7, more exactly
G(T | X, (cs)) #o (but G(T | X, (O')) co); this occurs because for decomposable
operators with S, # J it is possible that we do not have G(T )= G(T | ¥y )u (O G(T f Y’)J :

i=]

2.3.5. Proposition. Let T € B(X ) and let Y|, Y, be two spectral maximal spaces of T.
Then Y, NY, is a spectral maximal space of T, hence Y,, Y, are reciprocal o -stabile.

Proof. According to proposition 3.1. [76] a spectral maximal space of 7 is 7-
absorbing. Let us verify that the intersection ¥; NY, of two T-absorbing subspaces is a
T'| Y, -absorbing subspace (i =1,2). Indeed, if (M - T)y =x, where xeY,, then yeV;
for Lep(T'|¥,) wehave y=R(\T|Y)xeY,, and for A e (T |Y) there follows by the
fact that ¥, is T-absorbing, Let now (M —T'|Y;)y =x with xe¥, NY, and yeY,; then
(M ~T)y=x and since xe¥, NY, and both Y, and Y, are T-absorbing it follows that
yel¥ nY,, meaning ¥ NY, is T|Y -absorbing. Same for 7'|Y,. If Y is an invariant
subspace to 7, T-absorbing, then o(T'|¥)c o(T). Indeed, in that case Y is invariant to
solvent (M —~T)"' (from the equality (M -T)'y=z with yeY, we obtain

12
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y=(M~T)z hence zeY) and we have (W -T|Y)"'=(M-T)"|Y for A e o)
hence p(T") c p(T'| ¥). Consequently we have o(T|Y,nY,)c o(T|Y)no(T| Y,). Let Z
be an invariant subspace to 7' such that o(T'| Z) c o(T' | ¥, " Y,) c o(T| Y,)no(T| Y, )21t
follows Z c ¥, NY,.

2.3.6 ProposiTioN. Let T e B(X ) be a S-decomposable operator and let Y be a spectral
maximal space of T such that O'(T l Y)m S=0 or O'(T | Y)D S. Then

off)=T)\o T 1Y),

where T is the operator induced by T in the quotient space X=X/Y.

Proof. We adapt the proof given at [2] for decomposable operators. From the equality
o(T)= G(T )u o(T|Y) one can notice that only the following inclusion is left to be

off)= ST TY).
Let o(T|Y)nS=0.If Le G(T)\W), let G,, G, be two open sets such that
A Gy oo(TW\o(T'[Y), G no(T\o(l'|¥)=D, G nG;>0(l). By setting the
corresponding spectral maximal spaces to Y, , ¥y we have
o(T'|Y,)c G, no(T)co(T|Y),

hence ¥ c Y. Let xe X such that (M—T))'Cz@, and x € x. Since x =y, +yg, with
ye€Y, yse¥, it follows that (M—T)xzy, with ye?Y, from wich
(M =T, =M -T|Y)xg=y-(M~T)y, €Y, hence W -T)x;e¥ Y. In
accordance with proposition 2.3.5., Y N Y, is a spectral maximal space of T therefore
also a spectral maximal space of T'|Y; ([4], 1.4.2.(ii)). But Y Y, is ultrainvariant to
T|Y, and since A ¢ o(T|Y,) we obtain x, = RO T| Y XM =T | Yy )xs € Y N Y, hence
xeY, x=0. Consequently A/—T is injective. Let now y=y +y,€p, » €V,
yoeY,, where y=yg; Aeo(l|Yy), xe¥ and (M -T)x=y; it follows
(M —T)Sc =y (x= (M ~T| YS)*'yS) hence M -7 is surjective. We came to a
contradiction with the initial assumption that 2 € G(T ) and the assertion is proved. Same

for the case o(T'| ¥) > S .
2.3.7. Provosimion. Let T € B(X) a S-decomposable operator and let {f,, }” be a series

of analytic functions defined on an open set G < C, with GNS =0 and f, (K)e X

proved

such that for n —
(L -T)f,(0) >0

uniformly on every compact < G . Then for n — © we also have
£,(0) >0

uniformly on every compact < G .
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Proof. Without restricting the generality, we can suppose G = {7» eC, |kl < R}, R>0
and moreover that (1) remains uniform on G. Let us proof that (2) is true uniformly on
G, :{XEC,X <R0}, 0<R,<R.Let p,, p, that verify R, <p,, p, <p, <R and let us
set H, = ﬂk{ < p,} (i=12).If Fisclosed and F NS =< we will set by Y, the spectral

«

maximal space of T such that «
X, (FuUS)=Y, +X,(5),
and o(T'|¥,)c F.Let X=X /Y,

i, be a quotient space, and 7' be the operator induced

by T'in X . Since 6 =o(T)n (H,\ H,) is a set-spectrum for T (lemma 2.2.2.) we have
G(T | Y M, ): ¢ and obviously 17, =Y. In accordance with proposition 2.2.5.,

off)= STTTTT)
and we obtain that (H, \ H, ) G(T ) =, hence
o(f)c H u(C\H,).
But (1) implies
(L =7)7.() -0
uniformly on G. For A € H, \ H,, by (3) and (4) it follows
ROGT\0I ~7)7.6) = 7.0) - 0 3)
and in accordance with the principle of the maximum @
H}:) — 0 uniformlyon H, .

The proof further continues as in [50]; however we sketchthe proof on the hole. Let
L,0)=>a A (n=12,.)
K=0

the series development of f, (k) which is convergent in G. By Cauchy’s inequalities it

follows
maxﬁfn M) e I—_ll} €,
. Pl ol
In accordance with the definition of the normin' X, for any  and K there exists AceX
such that
Ay =a, and |4, ]<]a.|+ ﬁ . (6)

Let £,()= 3 4,3* ; then
K=0

14
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1 1

By T o O

.

Py

if LeG, ([kl <R, <p,), hence
< (s" + L)—L )
2" Jp — R,

for G,. Also, we have %)

9,0)=£,0)-F,MeY_,
Analogously, there exists p,, p, such that R, <p, <p, <p, and an analytic function
Fn (k) defined on a neighbourhood of G, and verifying on G, the inequality

Js(5g )
2" P1 =Py
(where €, is obtained same wayas €,); we also have )
(pn( ) f()L) ( )6)/[7 \[T[
It will follow that (10)
~ ~ - 1 R
0051 O-F6)s (5,454 57 72

for L e G,. But H, \ H, and i 5 \H , are compact and disjunct, therefore by proposition

2.2.4. and remark 1.1.18. we have
R A e T
Consequently there exists a constant N such that
[l + [ < - e+ ]
for xe Y,

Ao % €V .
From (11) it follows that b

-1 R
l(P” (}\.)} <N '[8” + Sn +F)_R:_l—]€0v
for A € G, ; finally, (8), (9) and (11) yield

Vg v 1(8” et 23‘ ] R Ij‘ R,

o - 1
for A € G,, from where, in accordance with (5), €, +%, >0 when =) — 0 and the

proof is over.
2.3.8. Turorem. Let T'e B(X ) be a S-decomposable operator. Then for any closed F,

FcC, FoS wehave
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X,(F)=N,(T;F).
Proof. This is verify as in [50]. Let xe N, (T 3 F ) and G an open subset included in

C\F such that G is compact and also included in C\ F . For € = 1 let £,(\) be an
n

analytic function taking values in X defined on a neighbourhood of G and verifying t}%‘e .
inequality
lx— @1 -T)f, @) < ;11-

for all L e G . The existence of such a function is given by the definition of N, (T ; F).
Let now K be an arbitrary compact set included in G. If {f, (7»)}11 was not uniformly
convergent on K, then there would exist €>0 and the series {X,}c K,
n, <m; <n, <m, <... such that Hfmj(?»_/.)—fmj(% M >g. Setting g»,(?»): - (7»)—]",1 (X)
and using (1) as well as the preceding proposition we can obtain an obvious

contradiction. Therefore it follows that { /. }:;I uniformly converge (in X) on every
compact K = G . For A e G weput f(L)=lim £, (). Then f() is analytic on G and (in

accordance with (1)) it verifies the equation (WM -T)f(\)=x in G, therefore
xe X, (C\ G) whence xe ﬂ Xy (C \G)=X, (ﬂ (C \ G)), the intersection being
considered for all G, G compact, G < C\F compact, hence F = ﬂ (C \ G). As

conclusion we will present several results regarding 7-absorbing families or spectral
maximal subspaces for the 7' e B(X ) operator, which will prove to be useful.

2.3.9. Provosition. Let Te B(X) and let {r, }aeA be an arbitrary family of T-
absorbing subspaces which are invariant to T. Then y = ﬁY(X is (T'|Y,)-absorbing for

oeA

any index a. € A and

o(T|Y)c ﬂG(T| Y,).

aed

Proof. Let Be A fixed; obviously, if Y, is a T-absorbing subspace and
(M—T)x=ye Y then xeY,. Let now (M—T{ Yﬁ)yﬁ =xeY (y;€Y); therefore
xeY, forall o€ 4. Sinceall ¥, are T-absorbing, it follows that y, € ¥, forall a e 4,
therefore y, €Y and consequently Y is a (T | YB)-absorbing subspace. Since 3 is
arbitrary from A it follows that Y is a (T | Ya)—absorbing subspace for all indexes o e 4.

Proving proposition 2.3.5. it verifies that if Y is a 7-absorbing subspace, then
G(Tl Y) c O‘(T), consequently G(T | Y) c ﬂG(T | Ya) (where now Y = ﬂYa ).

aeAd aeAd
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2.3.10. Prorosimion. Let T e B(X ) and let {Ya }ae ,be a family of spectral maximal

spaces of T. Then Y = ﬂ Y, is a spectral maximal space of T.

aed

Proof. By the preceding proposition it follows that Y is a (T | Ya)-absorbing for each

index o€ A4 (since a spectral maximal space of T is 7-absorbing [76]), hence _
o(T|Y)c ﬂG(TIYa). If Z is invariant for T subspace with o(T | Z)c o(T'|Y), then

aeAd

o(T|Z)co(T|Y,) for all indexes a.e 4, hence Zc Y, for any ae A, therefore

ZcY.
2.3.11. CoroLLary. The family of T-absorbing, invariant subspaces (particularly the
Jamily of spectral maximal spaces of an operator T) is formed out of reciprocal o -stabile
Jor T subspaces.

Proof. 1t follows easily by previous propositions.

2.4. S-DECOMPOSABILITY CONDITIONS FOR AN OPERATOR

We shall further give several S-decomposability criteria for an operator. We will also
show that spectral maximal spaces from the S-decomposability definition (particularly the
one of the decomposability) can be replaced with reciprocal o -stabile subspaces or
invariant, 7-absorbing subspaces. Also, there is generalised for (l,S )—decomposable
operators the result obtained in [84] for 2-decomposable operators: an operator 7" is 2-
decomposable if and only if X,.(F) is closed and G(T): o(T)\o(T | X, (F)), where T is
the operator induced by 7'in X = X / X, (F ) , I c C arbitrary and closed.

2.4.1. Provosirion. Let Te B(X), and let S < o(T) be a compact set such that
S, <8 ([76] Def. 2.2.). Then the following conditions are equivalent:

a) Tis (I,S)—decomposable

b) X,(F) is closed for aw F > S closed and

o(r| x17;)=o(T)\o(ITY,)

where G is open in o(T ) such that G NS =&, and Y. is the spectral maximal space of

T defined by the equality
X, (sUG)=x,(s)@Y;.

Proof. The fact that a) implies b) follows by proposition 2.3.5. and by the fact that G

is a set-spectrum for 7' (lemma 2.3.3.). Let us prove that b) implies a). We first notice that
for any open G, G NS =&, there exists a spectral maximal space Y- defined by the

equality
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X, (SuG)=x,(5)®Y;,
where . Indeed, since X, (F) is closed for any closed F > .S, by proposition 3.4. [76]
there follows that X, (S uG ) is spectral maximal space for 7"and
o(T| X,(SUG)cSUG.
In accordance with theorem of decomposition by separated parts of the spectrum there *
follows that X, (S uG ) =X, (S)® Y-, where Y- is a spectral maximal space of
I X; (S uG ) also of 7, and G(T | Y(f) c G . We further notice that the equality
olr |1 x/7.)=o(T)\o(T |, )
is equivalent with the inclusion
olT | X /Y. )co(T)\G.
This follows by the equalities
o(1)=o(r 7. )us(T| X/Y.),
IntG(T | Y-) — G(T)\ (G(T)\ O'(T l YE»’

G

since
oT| X /Y,) e o(T)\Into(T| Y, )= o(T)\ G = o(T)\ [6(T)\ (T )V oI 7, )=
=o(T)\o(T|¥;)col| X /1)
Let {GS,G} be an open and finite S-covering of G(T ) and letus put = G; "G ; then
o(T | X 1Y, )c o(T)\(Gy " G) = (o(T)\ Gy ) U (o(T)\ G).
Since G(T )\ G, and o7 )\ G have a void intersection, it follows that X /Y, =Z; ® Z,
where o(T'| Z;) < o(T)\ G, and o(T|Z)c o(T)\G. If ¢ is the canonical map defined
from X'to X /Y, then
X=0"(X17,)=0"(2,®2)=07(Z,)+0™ (2).
But Z =¢™'(Z,)/Y;, 97'(2)/ Y, hence
olT107(2,)=0(z12)uo(r|¥,)c HU(c(T)\G,)c G,
O'(T | (p’I(Z)): O'(Tl Z)u G(T | YH—)C (G(T)\G)u Hc Gy,

meaning 7'is a (1, 5)-decomposable.

2.4.2 Dernimion. A family of linear (closed) subspaces of X, T = {Y, },.e , 1s said to be
reciprocal o -stabile for T e B(X), if each Y, is invariant for 7 and moreover

oll ¥, nY,)co(r|Y)nalr|Y))

for any i,jel. We say that T e B(X) verify the (Dy) property if there exists a
reciprocal ¢ -stabile for 7" subspaces family £ such that for any open (I,S)—covering of
o(T) there exist subspaces {V,,Y}c T such that o(T|Y,)c Gy, o(T|Y,)c G and
X =Y; +Y (weremind that G, o S, G N S = D).
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2.4.3. Lemma. If T € B(X) verifies property (D) then S o S,.

Proof. Let FCG(T) closed, FnS =03, Gs', Gopensuchthat GO F, GNnS =49,
Gy S and G,UG > o(T); if xe X and L e F such that (\/ ~T)x =0, then x€7,
where X =Y,+Y, o(T|Y¥;)cG,, oT|Y)c G. Indeed, we have x=y+y, with
yeY, yse¥; and «
Vs = -T)ys =-(M -T)ye ¥ n¥;.

But A € F' implies A ¢ G; and A ¢ Gy NG, hence
Ae(T|YnY,)co(l|Y)no(T|Y)c Gy NG,
consequently
Vi=(M-T|YnY) yseY.

Since
yt —yse¥, and L & o(T | Y;) one obtains

(M =T)ys = ys)= (I =T | Y A YN =T | YY)y~ s =0,

hence y, =ys €Y, thatis xeY . Let now x:H — X be an analytic function such that
(M —T)x(L)=0 (H open, H NS = ; we can suppose that H is connected). Let also, &
and &' two closed disjunct disks contained in H. Accordingly the above, taking into
account that F =8 and F =98, {G,,G} and {G%,G'}, the (I,S)-coverings of o(T), it
follows {¥;,Y} and {¥{,Y’}, the corresponding subspaces of these (1, S)-coverings and
we shall have x(A)e Y forany A €8, and x(A)e Y’ for any A € &'. From analyticity we
have x(A\)eY for any AeH, hence x(A)eYnY". But o(T|YnY)c GNG' and
since &' =, we are allowed to choose G, G, such that G NG'=<, whence it
results that Y NY' = {O}; consequently x(k) =0 on Hhence S ©§,.

We remind the next proposition which was proved in [51].

2.4.4. ProvositioN. Let X be a Banach space, and let Y,, Y, be two linear (closed)
subspaces such that X =Y, +Y, and f:G — X (G open) an analytic function. Then for
any A€ G there exists a neighbourhood of A H < G and two analytic functions
g H—-Y (i=12) such that f(u)z gl(u)+ g2(u)ﬁ)r pe H.

2.4.5. Tueorem. Let T e B(X ) and let S © S, compact. If T has the property that for
any open (1,S)-covering of o(T), {Gs, G}, there exists the subspaces reciprocal © -
stabile for T such that X =Y, +Y and o(T|Y)c G, G(T]Y)C G, then T is a
(1,S)-decomposable operator.

Proof. 1t is enough to prove that X, (F ) is closed for any closed F © S (see lemma
2.2.2.). Let G, =G, > F and G, open such that G, "F =&, G, UG, D G(T). It will

exist the system of reciprocal & -stabile for 7" subspaces {Y, 5 YZ} such that
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X=Y+Y,0(|¥)cG,(i=12).
If x € X, (F) we shall prove that x € ¥;. We have x=y, + y, with y, € ¥; (i =1,2) and
pr(x)n8,(3,)=(8, (x)n Q)N (Q; N8,(,))=p, (x) N, (1),
hence for A € p,(x) p,(y,) we can write
»nM)=x0)-y,0). (M. -

But y,(y,)c G,,hence C\G, c &,(y,),whence G' = p, (x)n (C \G—z)c
cp, (x)m ST(yz) = pT(x)m pT(yz); it follows that equality (1) takes place on G'. Let us
verify that y,(\)e Y,. We shall apply proposition 2.4.4. when y, : G' — X . For a fixed
A € G’ we obtain a neighbourhood H c G' of A and the analytic functions g, : H > Y,

(i =1,2) such that )

7= g+ g, (W) for pe H.
Applying the operator W/ —7 to equality (2) we will obtain ¥ € y, —(u] -T )gl (],L):
= (W ~T)g, (1) e ¥;, hence h(w)= (W - T), g,(1)e ¥, NY,.
Then

k)= -TXY, A 1, )" Al
is an analytic function on H taking values in Y, NY,, k(u) having sense since the
following inclusions take place
LeHc G cC\G,cp(T|Y,)cpT|X)upl|V,)cpl|YNY,).
From the equality (u] -T )(k(u)— £ (u))z 0 (neG'mQ,) it follows that
k(p): gz(u)e Y Y, c¥ forany pe H, hence
AMESAMEFAMES

Observing that G’ is “exterior” to O'(T | Yz)c (—}2, let I' be a system of simple curves

closed in G', surrounding o, (x); I' being “exterior” to o(7| Y,) it follows

S [0 = [@I-T)E) b =0

hence
1 1 1
L =L 0w L 6
1 J‘ 1 T
= x(X)dk:—. I(X[—T) X =%
27 g 2 o

Whence it results that x UYl hence X,,(F)c ﬂYl ; we have o,(x)=y, (x)us, c

GoF GoF
c O‘(TIYI)U S, c G(T] Y)S < G, for any G, o F open, hence ,(x)c ﬂG, = I, that

GoF

is ﬂ Y, « X,(F). Consequently

G| oF

20
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XT(F): nYl,

GiDF
whence we deduce that X,.(F) is closed, g.e.d.
2.4.6. CoroLLary. Let Te B(X ) verifying property (Dg); then T is a (I,S)-

decomposable operator. .

Proof. There follows by lemma 2.4.3. and theorem 2.4.5.

2.4.7. Corovary. Let Te B(X) and let S S,, Sc o(T) compact. If for any S-
covering {Go}U{G }! of o(T) there exists the family {¥,}uiy, ' of subspaces
reciprocal o -stabile for T such that X =Y +ZY,., o(T|Y,)c G, o(T|Y)cG

i=l
(i=12,..,n), then T is S-decomposable.
2.4.8. CoroLrary. Let T € B(X ) and let ¥ be a family of subspaces reciprocal o -

n

stabile for T. If for any S-covering {GS}U{G, }1 of G(T ) there exists the subspaces

r.jufr Y ' with the following properties X = Y, + Z": Y, oT|Y,)cGs,
i=1

G(TI Y,.)c G, (i=12,..,n), then T is S-decomposable.
Proof. Both corollaries follow easily by lemma 2.4.3., theorem 2.4.5. and lemma

2.2.2.
2.49. THeorem. Let T eB(X ) and let SCG(T) compact. If for any open,

T-absorbing, S-covering {GS}U{G, }f of T, having the properties X =Y +ZK and

i=l
o(T'|Yy)c Gy, o(T|Y)c G, (i=12,..,n), then Tis S-decomposable.
Proof. By corollary 2.3.11. there follows that a family of 7-absorbing, invariant for 7'

subspaces isreciprocal o -stabile; the theorem follows by the preceding corollary.
2.4.10. Tueorem. Let T e B(X ) and let ¥ be a family of subspaces reciprocal -

stabile for T. If for any open covering {G,,G2} of G(T) there exist the subspaces
{YI,YZ}CE having the properties X =Y, +Y,, o(T|¥)c G, (i=12) then T is
decomposable.

Proof. There follows by corollary 2.4.8. and by the fact that a 2-decomposable
operator is decomposable (which was recently obtained in [86]).

2.4.11. Proposition. Let T € B(X). If for any open covering {G,,Gz} of G(T) there
exists the invariant T-absorbing subspaces {Y,,Yz} of T such that X =Y, +Y,,
o(T | Y,) <G, (i=12) then T is decomposable.

Proof. There follows by the preceding theorem and by proposition 2.3.9.
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2.4.12. CoroLLary. Let T e B(X ) having property of the single-valued extension. If
for any open covering {G,,G,} of o(T) there exists the subspaces reciprocal o -stabile
for T, {,,Y,} such that X =Y, +Y,, o(T |¥,)c G. (i=12) then T is decomposable.

Proof. There follows by theorem 2.4.10.; since we supposed S, =, one requires no
more that ¥, Y, belong to a larger reciprocal ¢ -stabile subspaces family. «“

2.5. SPECTRAL S-CAPACITIES

During this paragraph we shall generalise the concept of spectral capacity [4], [51], by
defining the spectral S-capacities and show that an operator is S-decomposable if and
only if it admits a spectral S-capacity.

2.5.1. Dermirion. Let F ; be the family of all closed sets F of the complex plan C

which have the following property: either F NS =@ or F > S, where S is a compact
fixed set of C; if X is a Banach space, denote by E (X) the family of all (closed and

linear) subspaces of X.
a) Anmapk :F; — S(X ) which verifies the following properties:
@) E@)=0}LE(©)=x;
& E [ﬁF} ~(EE), where F, €F ; (n=12,...)
i=l

n=l

(i)  if {Gs}U{G,} is an open S-covering of C then
x-£ G $EE)
i=l

b) By definition an operator 7" € B(X ) is said to admit a spectral S-capacity E if for each
FeF we have

(iv) YE(F)CE(F);

v) oTIE(F))cF.

Remark. By condition (ii) there follows that F,F, eF, and F, c F, implies
E (F)cE(F,). Indeed, if F, C F, then F,"F, =F, hence E (F,)=E (F, " E,)=E (F )~
NE (F,)cE (F,).

2.5.2. Tueorem. If T € B(X ) is S-decomposable, then T admits a spectral S-capacity
E .

Proof. Let I'eF ¢ with FnS = . Then X, (F uS ) is a spectral maximal space of

7 and
X (FuS)=v1, ®x,(s),
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where Y, is also a spectral maximal space of T and o(T'|Y,)c F . Indeed, we have
X, (FUS)=Y,®Y, because o(T|X,(FuUS)=0,Uocy, with 6, cF, o,CS,
where o, =o(T'|Y;), oy =o(T'|Yy), o, No, =D ; obviously, ¥, and Y; are spectral
maximal spaces of T'| X,(FuUS) hence of T also, and Y =X, (S). We shall set
E(F)=Y, if FnS =@ and E (F)= X, (F) if F 55 . Letus verify that E thus defined -
is a spectral S-capacityof 7. First, we have
E@)={0},E(C)=x

since @NS=@ there follows o(T'|Y,)c@ and E(C)=X,(C)=X,(c(7)=X.
Conditions (iii) and (iv) are obviously met, we only have to verify condition (ii). One can
easily prove that F|,F, eF and F, c F, implies E (F)cE(F,); for F,F,> S itis
evident that X, (F)c X,(F,), and from the inclusion Y. + X,(S) =X,(FuS)c X,(EZ uS) =
=7, © X,(S) it results that ¥, <Y, (F,F, eF ,FFnS=2,i=12). Let F;, cFyg,

F, oS8 (i=12,..); we have ﬂE < S and hence from the equality

Xr(w E}@XT(E)

i=l

we obtain

E[ﬁE]=ﬁE ").

i=1 i=l

When F, eF ¢ and F;,nS =@ (i=12,..), then [ F, < F, (i=12,...) implies

i=l
o0
Yy <y, 1, cﬂYE ;
ﬂfl ﬂF;’ i=l
i=l

i=1

but ¥ = ﬂ Y, is a spectral maximal space of 7'and G(T |Y )C ﬂE. , hence we have

i=l

Y XT[[ﬁFij U SJ = Yﬁ[i ®X,(5)

i=l

i=l

whence Y < ¥, , thatisE F,j =(E (F). Let now F,F; eF ¢ with F NS =@ and
N~ i1 '
Fy; © S ; then, obviously, Y, . c¥.NY, ; from cs(T | Yo N Y, )c F N F; it results that

Y, Y, c X,(FnF)usS)=Y,., ®X,(S)andhence Y. NY, ¥, .

i=l

Threrefore
E (F n Fy)=E (F)nE (F).
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Finally, if F, eF ; are arbitrary (i =1,2,...), by putting F/ = F, if ;nS=& and F'=F,
if ;58 (i=12,...), we obtain '

ol i
- [FE@))[PE@)-PEE

i=1
2.5.3. Provosirion. If F —E(F) is a spectral S-capacity for T, then E (F) is a
spectral maximal space of T; more exactly, Y cE (S ) 1Y cY, G(T |Y )c F implies
Y cE (F).
The proof will be given in chapter IIl in a more general case for operators systems (also

see [17]).
2.54. Tueorem. If T eB(X ) admits a spectral S-capacity E, then T is

S-decomposable.

Proof. 1t follows by the preceding proposition and property (iii) of the S-capacity
definition.

2.5.5. Turorem. An operator T € B(X ) is S-decomposable if and only if it admits a
spectral ScapacityE .

Proof. There follows by theorems 2.5.2. and 2.5.5.
2.5.6. CoroLLary. If T'e B(X ) admits a spectral S-capacity E | then this S-capacity is

single-determined, S © S, and for any closed I > O'(T ) , F' o8 wehave
E(F)=X,(F).

Proof Let E" be another capacity of 7. then G(T |E *(F ))c F  implies
E (F)cE (F) and identically E (F) cE *(F), hence E is single-determined. Since 7 is
S-decomposable S > S,. The inclusion o(T |E (F))cE implies E (F)c X, (F). But
X,(F) being closed and o(T | X,‘(F))c F we also have X,(F)cE(F), hence
E(F)=X,(F).

2.5.7. Remarks. (a). If T'e B(X) is S-decomposable and F = C, FnS =3, by
proof of theorem 2.5.2. there follows that E (F ) =Y., where Y, is the spectral maximal
space of T’ given by the equality ¥, ®X,(S)=X,(FuUS)=E(FuUS), E being the
spectral capacity of 7. (b). Let T'e B(X ) be a S-decomposable operator; then it will
suffice to take S < o(T). Indeed, if E is the spectral S-capacity of 7'and S* =5 G(T),
one easily verifies that application E * defined by the equalities E *(F ):E (F uS ) for
F> 8" andE (F)=E (F no(T)) if FNS" =@ is a spectral S-capacity of T
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2.5.8. Dermimion. We denote by suppE , and call the support of the spectral S-

capacity, the set
suppE = ﬂF .
E(F)x

2.5.9. Provosition. If T € B(X ) is S-decomposable and E is its spectral S-capacity, .
then )
suppE =o(T).

Proof. By the preceding remark we have S c O‘(T ) If Fo G(T ):) S, then
E(F)=X,(F)=X,(Fno(T))=X,(c(7))= X, hence [)F>o(T); but E(o(T))=

E(F)x

= X, (o(T)) = X hence also ﬂF co(T).
E(F)x

2.6. RESTRICTIONS AND QUOTIENTS OF THE S-DECOMPOSABLE
OPERATORS

The following paragraph is devoted to the study of the restrictions and quotients of the
S-decomposable operators and strongly S-decomposable operators. One can notice that
the class of the S-decomposable operators is somehow closed regarding restrictions and
quotients: the restriction or quotient of an S-decomposable (or strongly S-decomposable
operator) is also a S’ -decomposable (or strongly S’ -decomposable) operator, where S’

is generally speaking another compact set than S.
2.6.1. Dermimion. 7' € B(X ) is said to satisfy strongly condition B if for any spectral

maximal space Y of 7, the restriction 7'| Y satisfies condition Bs, (see definition 2.2.1.),

n

where S, =S o(T'| ¥), meaning if for any open S, -covering of o(7'| ¥), (G, }u{G,},
we have for any xeVY, x=yg+y +..+y, with y.,y, €Y (i=12,.,n) and
Yoy (ysl )c GSl , ym,( ,)C G..

2.6.2. PropositioN. An operator T € B(X ) is strongly S-decomposable if and only if it
satisfies condition og and strongly condition (.

Proof. Let T strongly S-decomposable; then obviously 7" satisfies condition o, and
strongly condition B;. Conversely, let Te B(X) and H ={H,}~{H,}' be two open S-
coverings of o(T') such that H, c Gy, H <G, (i=12,.,n). If Y is an arbitrary
spectral maximal space of 7, then G and H are also S, coverings of G(T |Y );
consequently, if xeY, then x=y; +y +...+y, with y;,y, €Y (i=12,.,n) and
Yo Ws ) Hy 0 o(T1Y), v,y (n)) € H, Ao(T'| Y) (1=12,...,n). Since ¥ is T-absorbing
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we have YT(yS,)ZYT|Y(yS,)’ YT(J’f)ZYT(y(yi) and hence yiEXT(HimS):Yi@YSi,
where Y, Y, are spectral maximal spaces of T with o(T'|Y)c H,c G, and
Y. c Y, = X,(H,)> Y ; it follows that

Y=YnY,+YnY +.+YNY,

@«

and hence T is strongly S-decomposable. -
2.6.3. CoroLLARY. An operator T € B(X ) is strongly S-decomposable if and only if

T|Y is S,-decomposable for any spectral maximal space Y of T, where
S =8no(T|Y).

Proof If T|Y is S,-decomposable for any spectral maximal space ¥ of 7, then T
satisfies strongly condition B and by the preceding proposition it follows that 7" is
strongly S-decomposable. Conversely, it is obvious.

2.6.4. Provosition. If T e B(X ) is strongly S-decomposable, then for any spectral
maximal space Y of T, T|Y is a strongly S, —decomposablé operator, where
S =Sno(T|Y).

Proof. If {GSI}U{G,. }f is an open S, -covering of o(T'|Y) and Hj =G up(T|Y),
H, =G, NES, then {H }U{H,} is a S-coverage of o(T). Let {r;,}u{r}' be the system
of spectral maximal spaces of 7" and

Z, =Y,nY,Z =Y, nY (i=12,.,n).
If Z is another spectral maximal space of 7'|Y, then Z is also a spectral maximal space

for T"and
YmZ:(YmZ)mYS+Z”:(YmZ)mY,. = Z mZ+Zn:(Z,mZ),
i=l

i=l

and G(T | Z,)c G, G(T | Z )C Gy, s hence T'| Y is strongly S, -decomposable.

2.6.5. CororrLary. Let T'e B(X ) be a strongly S-decomposable operator and Y a
spectral maximal space of T such that G(T |\ Y)NS =@, then T|Y is strongly
decomposable.

Proof. By the preceding proposition it follows that 7'| ¥ is strongly S, -decomposable
with S, =o(T'| Y )m S =, therefore strongly decomposable.

2.6.6. Lemma. If T € B(X) is a strongly S-decomposable operator and Y, Z are two
spectral maximal spaces of T such thatY > Z and s(T|Y)> S or o(T| Z)m S = then
o (2)=o[2)\e{|Y),

where m— is the operator induced by T |Y in Y/ Z.

Proof. 1t follows by proposition 2.3.6. and the preceding corollary.
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2.6.7. Prorosmion. Let T e B(X) a S-decomposable operator and Y a spectral
maximal space of T. Then T |Y is S,-decomposable, where S, :(S UG(T ))m o(T|Y)
and T is the operator induced by Tin X =X /Y .

Proof. We have G(T )z G(T )u G(T |Y ) Let {Gsl }u {G,' }f be a S-covering of
O'(T | Y) and G, =G/ N p(T), Gy =Gy v p(TI Y); then {GS}U {G,. }f is a S-coverage of«“
O‘(T ) Let {Y g }u {Y, }1" be the system of spectral maximal spaces of 7" such that

o(T|Yy)c Gy, o(T|Y)c G, (i=12,.,n)
and
X=&+iz.
P

Form the inclusions
o(T1Y) < G A (s(f)uo(T|Y)=G no(T|Y)c o(T | Y)

wehavethat Y c Y (i=12,.,n).If xe Y, then
X=Ys + Y+,
where y; €Y, y, €Y, <Y, hence
Vs :x—(y1 + ¥ +...+yn)e Y.

Consequently
Y=Y +%+..+L,

where Y =Y, nY, hence T'|Y is S, -decomposable.

2.6.8. CorovLary. Let T € B(X) a S-decomposable operator and Y a spectral maximal
space of T such that G(T | Y)r\S = or G(T | Y):) S. Then T'|Y is S,-decomposable,
where S, = G(T)m 0o(T' | Y) and dim S, <1.

Proof. There follows by the preceding proposition and by lemma 2.6.6.

2.6.9. CoroLLary. Let T e B(X ) a S-decomposable operator with S, = and Y a
spectral  maximal space of T. Then T is S -decomposable, where
S, =o(l)n(Sus(T|Y);, if Sco(|Y) or Snc|Y)=D, then
S, =0c(T|Y)n G(T) or §, = (6(5(T 1Y) G(T))u S, where T is the operator induced by
TinX=X/Y.

Proof. It will be enough to prove that 7 is S -decomposable, where
S/ =SUo(T|Y) (see 2.5.7.). Let F be a closed set such that /> SUo(T'|Y); then by

proposition 1.1.1. it follows that

m:Xr(F)
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Indeed, if x € X,(F), o,(x)c F, o,(¥)c o,(x)uc(T|Y)c F and hence x e )'(T-(F);
conversely, if xe X, (F), then o,(x)c c; (x)us(T|Y)c F and xe X, (F), hence
X e m Since X, (F)>Y the subspace m is closed, therefore X 7 (F) is also
closed, meaning 7' satisfies condition o 5, - From the inclusion v, () v,(x) and by the
fact that any S| -covering of G(T ) is a S-covering of G(T ) there follows that T is”
S| -decomposable, and therefore also S,-decomposable. If O'(T |Y ) oS, then by
proposition 2.3.6. there follows that S, = dc(T'| ¥) G(T ) When SNo(T|Y)=2 we
obviously have S, = (8G(T 1Y)~ G(T ))u S.

2.6.11. Cororrary. Let T e B(X) be a S-decomposable operator with o(T)eC and
let Y be a spectral maximal space of T such that G(T |Y ):>S . Then T is strongly

decomposable.

Proof. There follows by the preceding proposition and theorem 1.2.13.
2.6.12. LemMmA. Let T € B(X ) be a strongly S-decomposable operator and Y a spectral

maximal space of T with G(T Y )D S.If Z is spectral maximal space of T (T being the
operator induced by Tin X = X /Y ), then Z = (p’l(Z ) is a spectral maximal space of T,

where ¢ : X — X is the canonical map.
Proof. We have S, =& (see 1.1.9.). If Z>Y and Z is an invariant to 7" linear

(closed) subspace of X, Y is also a spectral maximal space of T'|Z (see 1.2 [2]) hence
Sco(l|Y)co(T|2), thatis X,(o(I'| Z))> Y is a spectral maximal space of 7. By
lemma 2.6.6. there follows
ol X, 61 2))=o1 X, 6T 1 Z2)No(T|Y).
But o(7| X, (c(T'| 2)))c o(T'| Z) and o(T'|2)= 0(TTZ)U o(T'|Y) (Y being a spectral
maximal space of 7| Z hence
o 1X,GsT12)=cT Z))oos@ Y\ |Y)c o(T| Z)

From the equalities T|X,,~((.7(T{Z)):T(XT(G(‘T]Z)), TiZ =T|Z one obtains
o(X (7| Z)) c ¢(Z), hence X, (o(T| Z))c Z ; consequently Z = X, (G(T | Z)), meaning

Z 1s a spectral maximal space of 7.
2.6.13. TueoreMm. Let T e B(X ) be a strongly S-decomposable operator and Y a

spectral maximal space of T with G(T |Y ) >S. Then T is a strongly S, -decomposable
operator, where S, =S N G(T), and T is the operator induced by Tin X = X /Y .

Proof. Let {GSl }U {G, };I be an open S, -covering of G(T ) and Gs =Gy Up(T ); we
can suppose that G, NS= (i=1,2,...,n). Then {GS}U {G, }f is a S-covering of G(T).

Let {X g }U {Y, }1” be the corresponding system of spectral maximal spaces of 7'such that
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o(T|Y,)c Gy, o(T|Y,)=G,, (i=12,..n)
and :

X=¥,+Y7.

i=l
We shall set o5 =o(l|¥)uo(T|Y), o,=0o(T|Y)uc(T|Y) (i=12,.,n); .
Zg = XT(O'S) (i =12,.50),Z; = XT(G,) (i=12,...,n) are spectral maximal spaces of T
(we have 6,05, 6, > 5, see theorem 2.1.3.) and Y < Z, ¥ c ¥,. Consequently Z,,
Z. are spectral maximal spaces of 7' ([4], 3.2.) and by lemma 2.6.6. one obtains
G(T‘ZS)=G(T|ZS):G(T‘ZS)\G(T|Y)
(o1 Y, )os(T [Y)\o(T[Y)c o(T|¥;) = Gy,

and analogously
o(f'12,)=o(T1Z)co(T|¥)cG, (i=12,.,n).
If Z is an arbitrary spectral maximal space of T, then Z = (p‘l(Z ) is a spectral maximal

space of T'(where ¢ is the canonical map; see preceding lemma) hence
YnZ+YnZ+.+Y nZ=27.
But from the inclusions Ys < Zg, Y, c Z,, o(tynZ)c¥,nZ, oY, nZ)c¥ nZ
(i=12,...,n) it results
Z=9¥;nZ)+ot,nZ)+..+9¥, nZ)c
cZnNZ+ZnZ+.+2 NnZcZ,

consequently 7' is strongly S, -decomposable.

2.6.14. CoroLLARY. Let T e B(X ) be a strongly S-decomposable operator and Y a

spectral maximal space of T such that G(T )m S=; then T is a strongly composable

operator.
Proof. There follows by the preceding theorem, since S, = & .

2.7. THE PROPERTIES OF STRONGLY S-DECOMPOSABLE OPERATORS

There will be given some of the most important properties of the strongly S-
decomposable operators: the demeanour at direct sums, at the Riesz-Dunfort functional

calculus, at quasinilpotent equivalence.
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2.7.1. Provosimion. Let T, € B(X,) two strongly S-decomposable operators (o =1,2);
then T=T ®T,eB(X,®X,) is a strongly S-decomposable operator, where
S=8uUS,.

Proof. By proposition 2.6.2. and theorem 2.2.3. there follows that it will suffice to
show that T satisfies strongly condition B; (see definition 2.6.1.). Let ¥ be a spectral «
maximal space of 7 and G ={G,}U{G,}/ an open S'-covering of o(T'|Y), where
§'=So(T|Y). Then, in accordance with proposition 2.1.7., ¥ =¥, @, , where Y isa
spectral maximal space of T, (a=12). If yeY, then y=y'®y*, with y*e?,
(a=12); since T, (o =1,2) are strongly S-decomposable it follows that 7 | Y, verifies
condition By, where S =S, No(T, | ¥,) (o =1,2) hence

Y=y + i +..+y (a=12)

and
vr(V%)= 1o 02)= Gy (2 =12),
Vs, (yf‘): Yrir, (yi"‘)c G (a=12;i=12,..,n).
Consequently
y=y' @y’ :(yfq{ + +...+y,17)+(y§£ + ! +...+y,f):
= (yél ® yg, )+ (y,l @yl2)+...+ (y,ll @yi% Yo+ Y+t y,
and

YT(yS’) =Yy (yS’) =Yy (y;,' )U Y1, (yég )C Gy,
Y'/'(y,') =Yy (yi) =Y, (y} )U Yy, (y,-z)c G, (1<i<n)
hence T satisfies strongly condition (3 .

2.7.2. Derinimion. A S-decomposable operator 7' e B(X ) is said to be almost strongly
S-decomposable if for any spectral maximal space Y of T such that O'(T | ¥ )m S=0 or
o(T|Y)> S, we have that restricion 7|Y is a decomposable respectively S-
decomposable operator.

2.7.3. Remark. The necessity of the definition above becomes established by the
following: being given a S-decomposable (strongly S-decomposable) operator, we know

about the existence of the spectral maximal spaces Y of 7, that have the property that
G(T Y )m S= or O‘(T |Y )3 §; these are the spaces which result form the relations

Y®X,(S)=X,(o(T| Y)uS) or Y = X,(o(T|¥)). However, we know nothing about

the existence of the spectral maximal spaces Y of T that have the property that
O'(T |Y )m §'=S8" is a separated part of S (open and closed in S). Obviously strongly S-

decorhposable operators are almost strongly S-decomposable. It seems that strongly S-
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decomposability (unlike the strongly decomposability) has not a such a favourable

demeanour as the one of the S-decomposability (considering the properties from 2.2.1.

and 2.2.17.).
2.7.4. Provosirion. Let T=T ®T, € B(X,®X,) be a strongly S-decomposable

operator; then T, (a=12) are almost strongly S, -decomposable, where, «
S, =Sno(l,) (a=12).

Proof. It will suffice to prove that if ¥ c o(T}) and F NS, =& or F 5 S|, then we
also have FNS=@ or, respectively, (FUS)nao(l})oS,. If FNS, =@, we also
have FnS=(FnS)no(l))=Fn(Sno(l))=Fno(l})=S, hence when
o(T 1Y) S, =T we also have o(T] | ¥ )m S = (where Y is a spectral maximal space
of 7}).

But it also follows that
XT,G)Tz(O-(Tl lYl)US):X'I; (G(Tl IK)US)@XTZ(G(YI IYI)US):

= B/l +XT, (S)]® [Yz +sz (S)]: Xnearz (S)+Y
and one can easily verify that Y=Y, ®@Y,. TeT|Y, @Y, being decomposable, by
proposition 2.2.6. there follows that 7; | Y, is decomposable. Let now ¥, be a maximal
space of 7, such that o(7; | ¥;) > S, . Then we have
Xyor, (G(Tl | Y])US): Xy, (G(Tl I Y])US)@XTZ (G(TI IYI)US):
= X3 (0@ [)v S]n o )@ X, 67 [ Y, )v 5)=
=1 ® X, 6 [%)vS)
whence it results 7, |1, is S, -decomposable. Analogously, one verifies that 7, is almost

strongly S, -decomposable.
2.7.5. Turorim. Let T =T, ®T, € B(X, ® X, ) be a strongly decomposable operator.

Then 1, and 1, are strongly decomposable.

Proof. There follows by propositions 2.7.1. and 2.7.4.
2.7.6. Provosition. Let TeB(X) be a strongly S-decomposable operator and

Pe B(X ) a projection commuting with T. Then T|PX is almost strongly S-

decomposable, where S, = o(T'| PX)NS.
Proof. We have X=X ,®X,, T=T®&T,, where X,=PX, X,=(I-P)X,
T =T|X,, T, =T| X, and by proposition 2.7.4. we have that T | PX is almost strongly

S, -decomposable.
2.7.7. CoroLLArY. Let T e B(X ) be a strongly decomposable operator and P B(X )

a projection. Then T | PX is strongly decomposable.
Proof. There follows by the preceding proposition.
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2.7.8. Prorosrrion. Let T € B(X ) be a strongly S-decomposable operator and let & be
a separated part of o(T). Then T|E(c,T)X is strongly S,-decomposable, where
S =Sno (for E(c,T) see corollary 2.2.8.)

Proof. X, = E(G, T )X is a spectral maximal space of T. Let Y be a spectral maximal
space of T'| X,. Then by proposition 1.2. [2] ¥, is also a spectral maximal space of T,
hence T'|Y, is S -decomposable, where S/ =o(T'|¥)nS. But o(T|})NS, =
=o(T 1Y) (cnS)=(6(T|%)nc)nS =S5/, hence (T|X,)|Y, is S;-decomposable,
thatis T'| E(c,T )X is strongly S, -decomposable.

2.7.9. ProrositioN. Let T eB(X ) be a strongly S-decomposable operator and let
f:G>C (G>o O'(T ) open and connected) be an analytic function, injective on G(T )
Then f (T ) is almost strongly S,-decomposable.

Proof. From the equalities X ,¢(F)=X, (f (F)) (where F5S,=f(S)) and
X, (Fus)=X,(f"(F)US)=1, ®X,(5)=7, ® X,4\(S,) (where FAS =2)
and by proposition 2.2.9. there follows that the spectral maximal spaces Y of f (T ) that
have the property o(f(T)|Y)> S, or o(f(T)|¥Y)nS, =@ are also spectral maximal
spaces of 7. One further performs the proof as for proposition 2.2.9., since a S, -covering

of o(f(7)) is easily transformed trough /' into a S-covering of o(T).
2.8. A (1,8)-DECOMPOSABLE OPERATOR IS S-DECOMPOSABLE

During this paragraph we shall prove that a (I,S)—decomposable operator is S-
decomposable. This result was inspired from the similar one concerning 2-decomposable

operators, which was recenfly obtained by M. Radjabalipour.
2.8.1. ProrosiTion. Let T e B(X ) and let Y be an invariant, T-absorbing subspace of

T (particularly, Y is a spectral maximal space of T) and let T be the operator induced by

T in the quotient space X = X Y . Then we have the inclusion:
S, < S, \Into(7]Y).

Proof. By proposition 1.1.1. there follows that
S, S, uas(T|Y).

But from the definition of the analytic residue S, it results that S, =IntS, , hence we

S, =8, ulInto(T|Y).

have the final inclusion
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It will suffice to prove that Into(T|Y)c C\S, =Q,. Let GcInts(7T]¥) open and
f (k) an analytic function on G taking valuesin X such that

(W -T)r()=0 (recC).
Then there exists an open set G, ¢ G and an analytic function f(A) on G, such that

76)= 76 and -
(A -7)f()=y(0) (reG))
with y(L)eY (see[18], lemma 2.1.). Since Y is T-absorbing and A € G, c o(T'| ¥;) one
obtains f(A)eY, f(A)e¥, Ff(A)=0 on G, hence f(A)=0; consequently
S, c S, \Into(71Y).
2.8.2. CoroLLArY. Having the preceding conditions, if moreover G(T | Y ) NS, =49,
we have
S, =58;.
Proof. By proposition 1.1.1. we have
S, cS,us(TY),
S, cS,uo(T|Y)
hence, by the preceding proposition we have S, c S, and S, c S, hence S; =S, .
2.8.3. Remark. By the preceding proposition and corollary there follows, as a
particular case, the result obtained by St. Frunza in [53] namely that if 7 has the property

of the single-valued extension property and Y is a spectral maximal space, then 7" also has
the property of the single-valued extension; also, if S, =&, Y is T-absorbing and

o(T|Y)>S,, then S, =@.
2.8.4. Lemma. Let TGB(X ) Y an invariant subspace of T and T the operator
induced by Tin X = X /Y. Then for F > S, closed we have
X, (F)c X,(FUoT|Y))

Proof. Since S, < S, Uo(T|Y), the right member of the inclusion has sense, and

from the relation
o,(x)c c; (x)ua(T|Y)
(proposition  1.1.1.) it follows that if xe X,-. (F), then c; (x) cl,
o, (x)c o (x)uo(T|Y)c Fuo(T|Y), meaning xe X,(Fuo(T'|Y)); consequently
xe X, (Fuo(T|Y)).
2.8.5. DermnitioN. A S-decomposable operator 7' e B(X ) is said to have an almost S-

found spectrum if for any spectral maximal space of 7" with G(T | Y )m S=O and any
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covering  {G,J", of o(T|¥) open with GNS=@ (j=12..,m) and
YcY +Y, +.+Y,. '

2.8.6. TueoreMm. Let TeB(X) a (1,S)-decomposable operaior with S, =0
(particularly dim S <1). Then T is S-decomposable and its spectrum is almost S-found.

Proof. Since T has the property of the single-valued extension and it i§
(I,S)-decomposable, we have that X, (F ) is a spectral maximal space for any /" having
the property F NS =& or F S . One easily notices that it will suffice to prove that for
any F closed with FNnS=¢ and any open covering of F {GI,GZ}, where
(@1 uC_?Q)mS =@ we have X,(F)c X,,((_}l)+ X,,(C_??_) (one verifies that through
induction: if F c LMJGj we take G C_}J <G, such that F c CJG; and we obtain

j=1 i=l

X, (F)c X,(G)+..+ X,(G., UG)c X,(G)+..+ X,(G, )+ X,(G,.)+ X, (G, ).).
Let H:W and let us set YzXT(H); we shall also put F, =F\G,, F, =F\G,.
Since G, UG, D F itresults F; N F, =. By formula G(T)C o(T)\(G, N G,) (which
follows by generalisation of a formula belonging to C. Apostol [2], see proposition 1.4.),
where T is the operator induced by 7 in X = X /Y, one obtains for x € X, (F) that
Gy-.(X)C F\N(G,nG,)=F, UF, (we also have c, (*)c o )x)c F and
o, (¥)c G(T)\ (G, NG,)). Consequently we have (A —T)x(A)=x for A e C\F while
(A =T)k() = % for L e C\(F, UF,).

We can choose two rectifiable Jordanian curves systems I, I, surrounding F;,

respectively F, and separating F, by F, . We shall define now

o1 .
& :%‘[/x(?»)dk (j=12)

and
@)= [E-2)'50)d (j=12)
i
for z ¢ Ej, where D, is the domainbounded by I'; (j =1,2).

We obviously have x =&, +&,, and
Y ooy ] : ey B
(z—T)j(z)_%L(z—mx—T =AY i()dn =
- ] L. - g
=E, +2—7ti th (Z—X) xdh=¢, (j=12)

since A —> (z - 7»)7' 1s analytic in 7); . Consequently & ;€ X i (5 j) (j=12). We choose

X, € 3 ; and we notice the fact that we have X = X, +x,, hence x=x, +x, +y, with. In

34



Chapter II - S-Decomposable operators

accordance with lemma 2.8.4. (where S, =S, =) we obtain x, +y e X; (D, U H)+
XT(H)C XT(C_ﬂ) and XT(@)a x, which was to be proved.
2.8.7. Tueorem. Let T € B(X) a (1,S)-decomposable operator with S, = . Then T

is S-decomposable.
Proof. Let Y a spectral maximal space of 7 such that G(T Y )f\ S =(J and let us note *

F =o(T'|Y). We know that Y has the following form Y®X,(S)=X,(o(T|Y)u S).
In order to prove the theorem, it will suffice to verify that for any open covering {Gl ’ Gz}
of F such that (C_?l UC—?Z)GS =@ and any xeVY, there exists x,, x,, x; such that
v,(6)cG,, v.(x,)cG,, v,(x;)c G, and x=x, +x, +x5 (Gy > G). Thus it results
that (l,S )-decomposability implies (2,S ) -decomposability; through induction, one can
prove (n,5)-decomposability for all n. Let H = G NG, and Y- the spectral maximal
space of T defined by the equality ¥, @ X,(S)= X, (H U S ). If we set by T' the operator
induced by T in the quotient space X = X /Y,,, by formula in proposition 2.3.6. we have
G(T)C o(T)\ (Gl nG,),
hence
G(T)C (c(T)\G,)u (c(T)\G,).
If xeY then o,(x)c FUS hence y,,(fc)c v,(x)c FUS. On the other hand
yy-.()'c)c G(T)c (c(T)\G,)u(s(T)\G,).
If we set F\G,=F,, F\G, =F,, then by the relations above and by the fact that
S, =S, (see proposition 2.8.2.) we obtain:
o, (®)=71,(0)US, c (FUS)No(T)c[o(T)\(G, NG, )N (FUS)c
c(HUER)US
Consequently p, (x) > CE, nCF, nCS =G and on set G we have the equality
(1 =T )()= x.
One further leads the verification as in the preceding theorem. Let I', I, I’y three

rectifiable Jordanian curves systems surrounding F;, [, S and separating them. We shall

define then
. 1 . . .1 ;
E»’j = % J:j x(x)d?\a (] - 192 )7&5 - 2TC] j; 'x(k)dx

and

v,(2)= 2%“ [ G-1)i0)an (j=1.2)
@)= 5 [ G2,
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where z ¢ D_j (j=12),z¢ ES,EI. , D, being the domains bounded by I, Iy (j=12).
We obviously have

x=& + &2 + és
and

(Z—T)/J‘(Z):';TE_[/Q_}V'i‘}”‘TIZ—?\,)l)'C(?\,)d?\,: .

5 1 — . - .
=§j+%.[,(z_7h) xdh=¢; (j=12)

(Z_T)‘}S(Z)z &s’
since A — (z—A)™" is analyticin D,, Ds.
Hence y,-.(&j)c Ej [ Je= 1,2),y7-,(&k§)c: D, and we can choose x| €&, x} € E,, xi ek,
such that

X=x+x,+x;+y (where ye¥,).

However we have yr(x/.)c yi,()'cj)uH c Ej VHcG, (j=12) and y,.(xS)c
c y,-.()'cs)uH c Dg U H . Form the last inclusion it follows that x| € X, (ES ) H)
hence x; = x, + y,, where x; € X, (ES) and y, € Y,,. We can finally write

xX=x+x,+x,
where

X=X Ay Ay, 5 =5, 1,8)cCG, ()6,
v, (%) © Gs. By this the proof is over.
By proposition 2.4.1. and in accordance with the ones above we obtain the following

result:
2.8.8. Turorem. Let T € B(X), and let S  o(T) be a compact set such that S, < S.

Then the following conditions are equivalent:
1°. Tis S-decomposable,
2°. Tis (1,S)-decomposable;
3°. X ,(F) is closed for any closed F > S

cs(T)zcriTi\(siTlY(7 ),
G

NS =, and Y- is the spectral maximal space of

and
where G is arbitrary open in o(T),

T defined by the equality
%G 0s)= 1)o7,

2.9 THE ADJUNCT OF A S-DECOMPOSABLE OPERATOR
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This last paragraph contains several remarks concerning the adjunct of a S-
decomposable operator when it has the property of the single-valued extension (S, = &),

particularly when dimS <1. Denote by 7" the adjunct of an operator T.

2.9.1. Provosition. Let T € B(X) an S-decomposable operator with S, = . Then for.
any F c C closed such that FN\S = or F > S, the space X, (C \F )L is a spectral
maximal space for T" and G(T* [X,[-(C\F)l)c F.

The proof is identical with the one given in [59] for decomposable (2-decomposable)
operators, since the demeanour of the S-decomposable operator (more exactly of the

(1, S)-decomposable operator) is in this case (and for sets having the property mentioned

the text of the theorem) the same with the one of a 2-decomposable operator.
2.9.2. Tueorem. If T € B(X ) is a S-decomposable operator with S, = (particularly

dim S <1), then T" is also S-decomposable.

Proof. We shall prove (as in [59]) that 7" is (1,S)-decomposable. Let G, G, two
open sets covering the set G(T *): o(T) and let D, D, be another two sets covering
o(r") such that DG, Dy =G, and moreover G NS =@, Dy >S. By setting
F= (C \ DS)m G(T) and F, =(C\ D)m o(T’) we obtain two closed, disjunct sets F, F,
hence X, (F U Fy)=X,(F)® X,(F,).

Let now u be an arbitrary element from X" and let us define # : X, (F U F,)— C by
i (x, +x,)=ulx,), x, +x, e X,(F)® X, (F,). It is obvious that the functional #, can be
extended to a linear continuous functional #, € X~ (using theorem Hahn-Banach). But we
also have u, € X,.(F) and by setting u, =u—u, , it follows easily that x, € X,(F,)". We
notice the fact that X,(F)=X,(C\D,)>Xx,(C\Dy), X,(F)=X,(C\D)>
> X,(C\ D), hence X, (F)" = x,(C\D, )", X,(F,)* < X,(C\D)" and consequently

X =x,(C\Dy) +x,(C\D)".

Applying the preceding proposition one obtains that 7 is S-decomposable, being (I,S)-
decomposable.

293. Corouary. If Te B(X) is S-decomposable with S, =, then
X;.(F)zX,.(C\F)L for any closal F c C such that FNS =@ or F>S.

Remark. By theorem 2.9.2., knowing that S, =& it doesn’t follow that S . =&
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