

INSTITUTUL DE MATEMATICĂ AL ACADEMIEI ROMÂNE

PREPRINT SERIES OF THE INSTITUTE OF MATHEMATICS OF THE ROMANIAN ACADEMY

ISSN 0250 3638

S-SPECTRAL DECOMPOSITIONS II

by

IOAN BACALU

Preprint nr. 2/2005

S-SPECTRAL DECOMPOSITIONS II

by

IOAN BACALU

January, 2005

[&]quot;Politehnica" University of Bucharest, The Department of Mathematics II, 313 Splaiul Independentei, Bucharest, Postal Code 060032, Romania, Tel.: +4021 – 402 91 00

S - spectral decompositions II

Ву

IOAN BACALU

CHAPTER II

S-DECOMPOSABLE OPERATORS

This paper is devoted to the study of the S-decomposable operators defined in the introduction (see [21], [16]). First, we show some structural properties of spectral maximal spaces of the S-decomposable operators. Then, we shall present the behavior of these operators at direct sums, at projections, at separate parts of the spectrum, at the Riesz-Dunfort functional calculus and at the quasinilpotent equivalence. We will also give proof of an important structural theorem of spectral maximal spaces, generalising the following from [53] and [59]. We shall define and study the spectral s-capacities, and give several s-decomposability criteria. We shall further study the restrictions and the S-decomposable operators' quotients.

2.1. THE STRUCTURE OF SPECTRAL MAXIMAL SPACES OF S-DECOMPOSABLE OPERATORS

In this paragraph we shall generalise the corresponding follows from [37], [48], obtained for decomposable operators. The main result will be that $X_T(F)$ is a spectral maximal space for any $F \subset S \subset S_T$, F closed.

2.1.1. Lemma. Let $T \in B(X)$ be a S-decomposable operator, and let G be an open set such that:

$$G \cap (\sigma(T) \setminus S) = \emptyset$$

then there exists a maximal spectral space $Y \neq \{0\}$ of T such that $\sigma(T/Y) \subset G$. If $\dim S \leq 1$ and $G \cap \operatorname{Int} \sigma(T) \neq \emptyset$ (G being an open set), then there exists a maximal spectral space $Y \neq \{0\}$ of T such that $\sigma(T/Y) \subset G$.

Proof. Let G_S be an open set such that:

$$S \subset G_S \supset \sigma(T)$$

and

$$G_s \cup G \supset \sigma(T)$$
.

T being S-decomposable, there exists a sistem of spectral maximal spaces Y_s , Y from T such that:

$$\sigma(T \mid Y_S) \subset G_S$$
, $\sigma(T \mid Y) \subset G$

and

$$X = X_s + Y$$
.

If $Y = \{0\}$, we have $Y_S = X$ and $\sigma(T \mid Y_S) = \sigma(T) \subset G_S$, contradiction, hence $Y \neq \{0\}$. When $\dim S \leq 1$ and $G \cap \operatorname{Int} \sigma(T) \neq \emptyset$ it follows that $G \cap (\sigma(T \mid Y) \setminus S) \neq \emptyset$, consequently $Y \neq \{0\}$.

2.1.2. Theorem. If $T \in B(X)$ is S-decomposable where dim $S \le 1$, then $\sigma_n^0(T) = \sigma_n^0(T) = \emptyset$ (see [37], 1.3.6.),

T has the single-valued extension property $(S_T = \emptyset)$ and $\sigma(T) = \sigma_I(T)$. If $S_T \neq \emptyset$, then $S_T \subset S$ and $\dim S = 2$.

Proof. If $\sigma_p^0(T) = \emptyset$, let G be a component of $\sigma_p^0(T)$. Then, by proposition 1.3.7. [37], there doesn't exist any spectral maximal space $Y \neq \{0\}$ of T such that

$$\sigma(T \mid Y) \subset G$$
;

by the preceding lemma, $G \cap \sigma(T) = \emptyset$, therefore $G \cap \sigma_p^0(T) = \emptyset$ which is impossible (since $G \subset \sigma_p^0(T) \subset \operatorname{Int} \sigma(T)$). Same for $\sigma_r(T)$.

Consequently

$$\sigma_p^0(T) = \sigma_r^0(T) = \emptyset$$

since $S_T = \overline{\sigma_p^0(T)}$, and $\sigma_r^0(T) = \sigma(T) \setminus \sigma_l(T)$, we have $S_T = \emptyset$ (meaning that T has the single-valued extension property) and

$$\sigma(T) = \sigma_{I}(T)$$
.

Now let $S_T \neq \emptyset$. In order to verify the inclusion $S_T \subset S$ it will suffice to verify that $\sigma_p^0(T) \subset S$. Suppose that $\sigma_p^0(T) \not\subset S$; then there exists a component G_0 of $\sigma_p^0(T)$ such that:

$$G_0 \not\subset S$$
 and $G_0 \cap (\sigma(T) \setminus S) \neq \emptyset$.

By the preceding lemma there follows that there exists a spectral maximal space Y_0 of T, $Y_0 \neq \{0\}$ such that:

$$\sigma(T \mid Y_0) \subset G_0$$
;

contradicts proposition 1.3.7. [37], consequently $S_T \subset S$. But $S_T \neq \emptyset$ implies dim S=2 (we have $\operatorname{Int} S_T \neq \emptyset$) hence $\operatorname{Int} S \neq 0$.

2.1.3. Theorem. Let $T \in B(X)$ be a s-decomposable operator and let $F \subset \mathbb{C}$ be a closed set such that

$$S \subset F \subset \sigma(T)$$
.

Then $X_T(F)$ is a spectral maximal space of T and

$$\sigma(T \mid X_T(F)) \subset F$$
.

Conversely, for any spectral maximal space Y of T such that $\sigma(T \mid Y) \supset S$ we have

$$Y = X_T (\sigma(T \mid Y)).$$

Proof. Let $F \subset \sigma(T)$ be closed such that $S \subset F$ ($S_T \subset S \subset F$) and let G_S , H be two open sets satisfying conditions $G_S \supset F$, $H \cap F = \emptyset$ and $G_S \cup H \supset \sigma(T)$. We shall put $G_1 = G_S$, $G_2 = H$.

Let $\{Y_i\}_{i=1}^{2}$ be a corresponding system of spectral maximal spaces of T such that:

$$\sigma(T \mid Y_i) \subset G_i \ (i = 1,2)$$

and

$$X = Y_1 + Y_2.$$

If $x \in X_T(F)$, then $x = y_1 + y_2$, $y_i \in Y_i$ (i = 1,2) and $\sigma_T(x) \subset F$; for $\lambda \in \rho_T(x)$ $x(\lambda)$

has meaning and

$$(\lambda I - T)x(\lambda) = x$$

hence for $\lambda \in \mathbf{G}F \cap \rho(T \mid Y_2)$ we have

$$(\lambda I - T)(R(\lambda, T | Y_2)y_2 - x(\lambda)) = y_2 - x = -y_1,$$

from which it follows that $\lambda \in \rho_T(y_1)$. But $\lambda \notin S \supset S_T$, consequently $\lambda \in S_T(y_1) \cap \Omega_T = \rho_T(y_1)$ and from this it derive that

$$\sigma_T(y_1) \subset F \cup \sigma(T \mid Y_2) \subset F \cup \overline{G}_2$$

therefore

$$\mathbf{C}F \cap \mathbf{C}\overline{G}_2 \subset \rho_T(y_1).$$

Let now Γ be a bounded system of simple closed curves surrounding F and included in $\mathbf{C}F \cap \mathbf{C}\overline{G}_2$. For $\lambda \in \Gamma$ we have

$$y_1(\lambda) = -R(\lambda, T \mid Y_2)y_2 + x(\lambda), \text{ Hence}$$

$$\frac{1}{2\pi i} \int y_1(\lambda) d\lambda = -\frac{1}{2\pi i} \int R(\lambda, T \mid Y_2)y_2 d\lambda + \frac{1}{2\pi i} \int x(\lambda) d\lambda.$$

The spectral maximal space Y_1 of T being T-absorbing ([76], proposition 3.1.), if $y_1 \in Y_1$, then $y_1(\lambda) \in Y_1$ for $\lambda \in \rho_T(y_1)$ and since $\sigma(T \mid Y_2)$ is "outside" Γ we obtain

$$\frac{1}{2\pi i} \int y_1(\lambda) d\lambda \in Y_1, \frac{1}{2\pi i} \int R(\lambda, T \mid Y_2) y_2 d\lambda = 0.$$

Consequently

$$x = \frac{1}{2\pi i} \int_{|\lambda| = |T|+1} R(\lambda, T) x \, d\lambda = \frac{1}{2\pi i} \int_{\Gamma} x(\lambda) d\lambda = \frac{1}{2\pi i} \int_{\Gamma} y_1(\lambda) d\lambda \in Y_1,$$

thus

$$X_T(F) \subset \bigcap_{G_1 \supset F} Y = Z$$
.

By other means, if $z \in \mathbb{Z}$ then from the inclusions

$$\gamma_T(z) \subset \gamma_{T|Y_1}(z) \subset \sigma(T \mid Y_1) \subset G_1$$

it follows that

$$\sigma_T(z) = \gamma_T(z) \cup S_T \subset \bigcap_{G_1 \supset F} G_1 = F_1$$

hence $z \in X_T(F)$ and $Z \subset X_T(F)$; so we conclude that

$$X_T(F) = \bigcap_{G_1\supset F} Y_1$$
,

from where it follows that $X_T(F)$ is closed. By proposition 3.4. [76], $X_T(F)$ is a spectral maximal space of T and $\sigma(T \mid X_T(F)) \subset F$. Conversely, if Y is a spectral maximal space of T such that $\sigma(T \mid Y) \supset S$, then according to those proved before we obtain that

$$\sigma(T \mid X_T(\sigma(T \mid Y))) \subset \sigma(T \mid Y)$$

hence

$$X_T(\sigma(T \mid Y)) \subset Y$$
.

But from the evident inclusion $Y \subset X_T(\sigma(T \mid Y))$ one finally obtains

$$Y = X_T(\sigma(T \mid Y)).$$

At this moment the theorem is completely proved. When T has the single-valued extension property ($S_T = \emptyset$) we have the following

2.1.4. Corollary. Let $T \in B(X)$ a s-decomposable operator with $S_T = \emptyset$ and let $F \in \mathbb{C}$ be such that either $S \cap F = \emptyset$ or $F \supset S_1$ and $F \cap (S \setminus S_1) = \emptyset$, where S_1 is a separated part of S. Then $X_T(F)$ is a spectral maximal space of T and $\sigma(T \mid X_T(F)) \subset F$. Conversely, if Y is a spectral maximal space of T such that $\sigma(T \mid Y) = F$ and F has one of the two properties above, then $Y = X_T(\sigma(T \mid Y))$.

Proof. If $F \cap S = \emptyset$ ($F \subset \sigma(T)$ closed), by the preceding theorem $X_T(S)$ and $X_T(F \cup S)$ are spectral maximal spaces of T and

$$X_T(F \cup S) = X_T(F) + X_T(S),$$

whence it follows that $X_T(F)$ is also a spectral maximal space for T (see [4], proposition 4.9) and $\sigma(T(X_T(F))) \subset F$.

If

$$S = S_1 \cup (S \setminus S_1),$$

where S_1 is a separated part of S and $F \supset S_1$, $F \cap (S \setminus S_1) = \emptyset$, then

$$X_T(F \cup (S \setminus S_1)) = X_T(F) + X_T(S \setminus S_1);$$

therefore $X_T(F)$ is again a spectral maximal space of T. The final part of the corollary results identically as in the preceding theorem namely from the evident inclusions $Y \subset X_T(\sigma(T|Y))$ and $\sigma(T|X_T(\sigma(T|Y))) \subset \sigma(T|Y)$.

2.1.5. Proposition. Let $T \in B(X)$ a S-decomposable operator and S_1 a separated part of S with dim $S_1 = 0$. Then T is S'-decomposable where $S' = S \setminus S_1$.

Proof. The case $S_T = \emptyset$ has been proved in proposition 1.2.9. Keeping the notations from the proposition 1.2.9. prove, we will obtain the spectral maximal spaces $\{Y_S\} \cup \{Y'\}_1^n$ of T such that $\sigma(T \mid Y_S) \subset G_S$, $\sigma(T \mid Y_i') \subset G_i'$ (i = 1, 2, ..., n)

and

$$X = Y_s + Y_1' + Y_2' + ... + Y_n'$$

But $Y_S = Y_{\sigma'} + Y_{\sigma_1} + Y_{\sigma_2} + \ldots + Y_{\sigma_n}$, where $\sigma(T \mid Y_S) = \sigma' \cup \sigma_1 \cup \sigma_2 \cup \ldots \cup \sigma_n$, $\sigma(T \mid Y_{\sigma'}) = \sigma'$, $\sigma(T \mid Y_{\sigma_i}) = \sigma_i$ $(i = 1, 2, \ldots, n)$. $Y_{\sigma'}, Y_{\sigma_i}$ being spectral maximal spaces of T, and $\sigma' \subset G_{S'}$, $\sigma_i \subset G'_i \subset G_i$. Let $\hat{\sigma}_i = \sigma_i \cup \sigma(T \mid Y'_i)$. Since $\hat{\sigma}_i \cap S' = \emptyset$, we have $X_T(S' \cup \hat{\sigma}_i) = X_T(S') + Y_{\hat{\sigma}_i}$, where $Y_{\hat{\sigma}_i}$ are spectral maximal spaces of T, $\sigma(T \mid Y_{\hat{\sigma}_i}) \subset \hat{\sigma}_i \subset G_i$ $(i = 1, 2, \ldots, n)$. We have $Y_1' + Y_{\sigma_i} \subset Y_{\hat{\sigma}_i}$ and $X_T(S') + Y_{\sigma'} \subset X_T(\sigma' \cup S') = Y_{S'}$, therefore $X = Y_{S'} + Y_{\hat{\sigma}_1} + \ldots + Y_{\hat{\sigma}_n}$, and T is S'-decomposable.

- 2.1.6. Remark. Let $T \in B(X)$ be a S-decomposable operator and $S_1 \subset S$ the closing of the set of S's points in which S has the dimension 0, $\dim S_1 = 0$ and thus that $S' = S \setminus S_1$ be closed (and thus separated from S_1); then from the preceding proposition it follows that T is S'-decomposable.
- 2.1.7 PROPOSITION. Let $T_{\alpha} \in (X_{\alpha})$ ($\alpha = 1,2$) and let $T_1 \oplus T_2 \in B(X_1 \oplus X_2)$. If $Y \subset X_1 \oplus X_2$ is a spectral maximal space of $T_1 \oplus T_2$, then $Y = Y_1 \oplus Y_2$, where Y_1 , Y_2 are spectral maximal spaces of T_1 respectively T_2 .

Proof. Let P_1 and P_2 be the corresponding projections: $X_1 = P_1(X_1 \oplus X_2)$, $X_2 = P_2(X_1 \oplus X_2)$. It is easy to verify that P_1 and P_2 switch with $T_1 \oplus T_2$ and since Y is ultrainvariant at $T_1 \oplus T_2$, it follows that Y is invariant to P_1 and P_2 . By putting $Y_1 = P_1Y$ and $Y_2 = P_2Y$, we have $Y_1 \subset Y$, $Y_2 \subset Y$, $Y_1 \oplus Y_2 \subset Y$, P_1 and P_2 also being projections in the Banach space Y, Y_1 , Y_2 closed. If $Y \in Y$, then $Y = P_1Y \oplus P_2Y \in Y_1 \oplus Y_2$, so $Y = Y_1 \oplus Y_2$. Let Z_{α} ($\alpha = 1,2$) two invariant at T subspace such that

$$\sigma(T_{\alpha} \mid Z_{\alpha}) \subset \sigma(T_{\alpha} \mid Y_{\alpha}) \ (\alpha = 1,2).$$

Then $Z = Z_1 \oplus Z_2$ is an (closed) invariant subspace at $T_1 \oplus T_2$ and

$$\sigma(T_1 \oplus T_2 \mid Z_1 \oplus Z_2) \subset \sigma(T_1 \oplus T_2 \mid Y_1 \oplus Y_2),$$

hence $Z_1 \oplus Z_2 \subset Y_1 \oplus Y_2$. From this inclusion it obviously follows that

$$Z_1 \subset Y_1, Z_2 \subset Y_2$$

consequently Y_1 and Y_2 are spectral maximal spaces of T_1 , respectively T_2 .

2.2. DIRECT SUMS AND RIESZ-DUNFORD FUNCTIONAL CALCULUS WITH S-DECOMPOSABLE OPERATORS

In the beginning of paragraph 2 we give a simple S-decomposability criterion that greatly simplifies the subsequent proofs. We prove there that the direct sum of two operators is $S = S_1 \cup S_2$ -decomposable if and only if each operator is S_{α} -decomposable ($\alpha = 1,2$). Particularly when $P \in B(X)$ is a projection and T is S-decomposable there is proved that $T \mid PX$ is S_1 -decomposable (where $S_1 = S \cap \sigma(T \mid PX)$). We further study the demeanour of the S-decomposable operators in the functional calculus with analytic functions and at quasinilpotent equivalence.

2.2.1. Definition. Let $T \in B(X)$ and let $S \subset \mathbb{C}$ be a compact set. T is said to satisfy $condition \alpha_S$ if $X_T(F)$ is closed for any closed $F \supset S$. T is also said to satisfy condition β_S if for any finite and open S-covering $\{G_S\} \cup \{G_i\}_1^n$ of $\sigma(T)$ and for any $x \in X$ we have

$$x = x_S + x_1 + x_2 + ... + x_n$$

where

$$\gamma_T(x_S) \subset G_S$$
, $\gamma_T(x_i) \subset G_i$ $(i = 1, 2, ..., n)$.

2.2.2 Lemma. An operator $T \in B(X)$ is S-decomposable if and only if T meets conditions α_S and β_S .

Proof. Since $\overline{G}_i \cap S = \emptyset$ we have

$$X_T(\overline{G}_i \cup S) = Y_i \oplus Y_s$$

where $X_T(\overline{G_i} \cup S)$, Y_i and Y_s are spectral maximal spaces of T (see [76], propositions 2.4. and 3.4.); also, if Y is a spectral maximal space of T we have $\gamma_T(x) \subset \gamma_{T|Y}(x) \subset \sigma(T|Y)$ for any $x \in Y$. Considering these remarks, our assertion is obvious.

2.2.3 Theorem. Let $T_{\alpha} \in B(X_{\alpha})$ ($\alpha = 1,2$) and let $S = S_1 \cup S_2$; then if T_{α} is S_{α} -decomposable ($\alpha = 1,2$), $T_1 \oplus T_2 \in B(X_1 \oplus X_2)$ is S-decomposable.

Proof. From the equalities

$$\widehat{X}_{1_{r_1}}(F) \oplus X_{2_{r_2}}(F) = (X_1 \oplus X_2)_{r_1 \oplus r_2}(F) (F \supset S),$$

$$\gamma_{T_{1} \oplus T_{2}}(x_{1} \oplus x_{2}) = \gamma_{T_{1}}(x_{1}) \cup \gamma_{T_{2}}(x_{2}) \quad (x_{\alpha} \in X_{\alpha}, \alpha = 1, 2),$$

$$(x_{S_{1}}^{1} \oplus x_{S_{2}}^{2}) + \sum_{i=1}^{n} (x_{i}^{1} \oplus x_{i}^{2}) = \left(x_{S_{1}}^{1} + \sum_{i=1}^{n} x_{i}^{1}\right) \oplus \left(x_{S_{2}}^{2} + \sum_{i=1}^{n} x_{i}^{2}\right)$$

it follows that if T_1 and T_2 meet conditions α_{S_1} , α_{S_2} and β_{S_1} , β_{S_2} , then $T_1 \oplus T_2$, meets conditions α_{S} and β_{S} .

2.2.4 Proposition. Let $T_1 \oplus T_2 \in B(X_1 \oplus X_2)$ a S-decomposable operator; then $T_{\alpha}(\alpha=1,2)$ are S-decomposable operators where $S_{\alpha}=S\cap\sigma(T_{\alpha}\mid X_{\alpha})$ ($\alpha=1,2$).

Proof. Let $F \supset S_1$ closed; we shall be allowed to write

$$X_{1_{T_1}}(F \cup S) \oplus X_{2_{T_2}}(F \cup S) = (X_1 \oplus X_2)_{T_1 \oplus T_2}(F \cup S)$$

and since $T_1 \oplus T_2$ is S-decomposable, also using proposition 2.1.7. it follows that $X_{1_{T_1}}(F \cup S)$ is closed, hence $X_{1_{T_1}}(F) = X_{1_{T_1}}(F \cup S)$ is closed. Similarly, we verify that $X_{2_{T_2}}(F)$ is closed for any closed $F \supset S_2$. Hence T_1 and T_2 meet conditions α_{S_1} and α_{S_2} . The fact that T_1 and T_2 satisfy conditions β_{S_1} and β_{S_1} is proved same as for the preceding proposition.

2.2.5. Theorem. Let $T_{\alpha} \in B(X_{\alpha})$ ($\alpha = 1,2$), let S be compact and let $S_{\alpha} = S \cap \sigma(T_{\alpha})$ ($\alpha = 1,2$) ($S = S_1 \cup S_2 \subset \sigma(T_1) \cup \sigma(T_2)$). Then T_{α} ($\alpha = 1,2$) are S_{α} -decomposable operators if and only if $T_1 \oplus T_2$ is S-decomposable.

Proof. There follows from the preceding assertions.

2.2.6. Corollary. The operators $T_{\alpha} \in B(X_{\alpha})$ ($\alpha = 1,2$) are decomposable if and only if $T_1 \oplus T_2$ is decomposable.

Proof. There follows either from the preceding theorem, or directly from lemma 2.2.2, because T_1 and T_2 satisfy conditions α_S and β_S (with $S = \emptyset$) if and only if $T_1 \oplus T_2$ meets conditions α_S and β_S .

2.2.7. PROPOSITON. Let $T \in B(X)$ be a S-decomposable operator and let $P \in B(X)$ such that $P^2 = P$ and PT = TP. Then $T \mid PX$ is a S_1 -decomposable operator, where $S_1 = S \cap \sigma(T)$.

Proof. We have $X = Y_1 + Y_2$, where $Y_1 = PX$ and $Y_2 = (I - P)X$ $(Y_1 \cap Y_2 = \{0\})$, hence in accordance with proposition 2.2.4 $T \mid PX$ is S_1 -decomposable.

2.2.8. COROLLARY. Let $T \in B(X)$ be a S-decomposable operator, and also a separated part of $\sigma(T)$. Then $T \mid E(\sigma,T)X$ is a S_1 -decomposable operator, where $S_1 = S \cap \sigma$ and

$$E(\sigma,T) = \frac{1}{2\pi i} \int R(\lambda,T) d\lambda$$

 Γ being a Jordan closed curves system surrounding σ and separating sets σ and $\sigma' = \sigma(T) \setminus \sigma$.

Proof. There follows by the preceding proposition.

From now on we shall put

$$f(T) = \frac{1}{2\pi i} \int f(\lambda) R(\lambda, T) d\lambda$$
 ([45], I, VII. 3.9).

2.2.9. Proposition. Let $T \in B(X)$ be a S-decomposable operator and let $f: G \to \mathbb{C}$ ($G \supset \sigma(T)$, G open and connected) be an analytic function, injective on $\sigma(T)$. Then f(T) is S_1 -decomposable, where $S_1 = f(S)$.

Proof. Let $F \subset \sigma(f(T))$ closed, $F \supset S_1$; from the relations

$$S_{f(T)} = f(S_T) \subset f(S) = S_1 \subset f(\sigma(T)) = \sigma(f(T))$$

and

$$f^{-1}(F) \supset f^{-1}(S_1) = S$$

it follows that

$$X_{f(T)}(F) = X_T(f^{-1}(F))$$

is closed (see [77] theorems 2.1,2.4), therefore f(T) meets condition α_{S_1} . If $\{G_{S_1}\}\cup\{G_i\}_1^n$ is an open and finite S_1 -covering of $\sigma(F(T))$, then $\{f^{-1}(G_{S_1})\}\cup\{f^{-1}(G_i)\}_1^n$ is a S-covering of $\sigma(T)$. From the equality

$$\gamma_{f(T)}(x) = f(\gamma_T(x)) \ (x \in X) \ [77]$$

it will follow that f(T) also meets condition β_{S_1} , therefore f(T) is a S_1 -decomposable operator.

2.2.10. Corollary. Let $T \in B(X)$ be a S-decomposable operator and let $f: G \to \mathbb{C}$ $(G \supset \sigma(T), G \text{ open})$ be an analytic injective function on each $\sigma_i = G_i \cap \sigma(T)$, where G_i is connected component of G. Then f(T) is f(S)-decomposable.

Proof. $\sigma(T)$ being connected, there exists a finite number of connected components G_i of G which cross $\sigma(T)$, let these be $G_1,...,G_n$. The sets σ_i are separated parts of $\sigma(T)$ and

$$\sigma(T) = \sigma_1 \cup \sigma_2 \cup ... \cup \sigma_n;$$

hence

$$X = \bigoplus_{i=1}^{n} E(\sigma_{i}, T)X$$

and

$$T = \bigoplus_{i=1}^{n} (T \mid E(\sigma_i, T)X).$$

Since

$$f(T) = \bigoplus_{i=1}^{n} f(T)E(\sigma_i, T)X = \bigoplus_{i=1}^{n} f(T \mid E(\sigma_i, T)X)$$

by propositions 2.2.5. and 2.2.9. and corollary 2.2.8. it follows that f(T) is f(S)-decomposable.

2.2.11. PROPOSITION. Let $T \in B(X)$ and let f be an analytic function such that there exists $G \supset \sigma(T)$, G open and f injective on G. Then, if f(T) is S_1 -decomposable, T is S-decomposable, where $S = f^{-1}(S_1) \cap \sigma(T)$.

Proof. Since $S_{f(T)} = f(S_T)$ and $X_T(f^{-1}(F)) = X_{f(T)}(F)$ (theorems 2.1., 2.4. [77]) with $F \supset S_1 \supset S_{f(T)}$, we conclude that for any closed set $F' \supset S \supset S_T$ (using the fact that f is injective on $\sigma(T)$), $F' \subset \sigma(T)$, there exists a closed F such that F = f(F') and $F' = f^{-1}(F)$; therefore $X_T(F') = X_{f(T)}(F)$ is closed and T meets condition α_S . If $\{G_S\} \cup \{G_I\}_1^n$ is an open S-covering of $\sigma(T)$, we can choose G_S , $G_I \subset G$ (i=1,2,...,n), and then from $G_I \cap S = \emptyset$ and $f(G_I \cap S) = f(G_I) \cap f(S) = \emptyset$ (f is injective on G), as well as from the fact that $f(G_S) \supset f(S) = S_1$ it follows that $\{f(G_S)\} \cup \{f(G_I)\}_1^n$ is an open S_1 -covering of $\sigma(f(T))$. But f(T) meets condition β_{S_1} , hence for any $x \in X$ we have

$$x = x_{S_1} + x_1 + x_2 + ... + x_n$$

where $\gamma_{f(T)}(x_{S_1}) \subset f(G_S)$, $\gamma_{f(T)}(x_1) \subset G_i$; but since $\gamma_T(x_{S_1}) = f^{-1}(\gamma_{f(T)}(x_{S_1}))$, $\gamma_T(x_i) = f^{-1}(\gamma_{f(T)}(x_i))$ it follows that T also meets condition β_S , therefore T is S-decomposable.

2.2.12. Corollary. Let $T \in B(X)$ with $\sigma(T)$ contained in an angle $\phi < \frac{2\pi}{k}$ (having

vertex in the origin) where k is a integer positive number. Then T is S-decomposable if and only if T^k is S_1 -decomposable, where $S_1 = S_k$ ($S^k = \{\lambda_1 \in \mathbb{C}; \lambda_1 = \lambda^k, \lambda \in S\}$).

Proof. There follows by propositions 2.2.10. and 2.2.11.

2.2.13. Proposition. Let $T_1, T_2 \in B(X)$. If T_1 is S-decomposable, with $S_{T_1} = \emptyset$ (meaning that T_1 has the single-valued extension property; particularly dim $S \le 1$) and T_1 , T_2 are quasinilpotent equivalent [38], then T_2 is also decomposable.

Proof. If T_1 , T_2 are quasinilpotent equivalent, then

$$\sigma(T_1) = \sigma(T_2), \ \sigma_{T_1}(x) = \sigma_{T_2}(x) \ (x \in X, S_{T_1} = S_{T_2} = \emptyset)$$

and

$$X_{T_1}(F) = X_{T_2}(F)$$

for any closed $F \subset \mathbb{C}$ [38] therefore T_2 also meets conditions α_S and β_S , that is T_2 is also S-decomposable.

2.2.14. Remark. If T_1 is S-decomposable $(S_{T_1} = \emptyset)$ and S is minimal, meaning that there doesn't exist any compact subset $S_1 \subset S$, $S_1 \neq S$, such that T_1 is S_1 -decomposable,

then in the proposition above S is also minimal for T_2 in this sense. Indeed, supposing that there would exist $S_1 \subset S$ compact, $S_1 \neq S$, such that T_2 is S_1 -decomposable, then by the preceding assertion, T_1 would also be S_1 -decomposable, contradiction.

2.2.15. COROLLARY. Let $T \in B(X)$ be a S-decomposable operator with $S_T = \emptyset$ and let Q a generalised nilpotent operator which commutes with T. Then T + Q is $S_{\overline{a}}$ and decomposable.

Proof. It follows from the preceding assertion.

2.2.16. Proposition. Let $T_1, T_2 \in B(X)$ with $S_{T_1}, S_{T_2} \neq \emptyset$. If T_1 is quasinilpotent equivalent with T_2 , then

$$\gamma_{T_1}(x) = \gamma_{T_2}(x)$$

for any $x \in X$.

Proof. Let $\lambda \in \delta_{T_1}(x)$; then there exists an analytic function $x_1(\lambda)$ defined on a neighbourhood $\omega \in \lambda$ such that $(\lambda I - T_1)x_1(\lambda) = x$ for any $\lambda \in \omega$. When proving theorem 1.2.4. [37] there is proved that if T_1 is quasinilpotent equivalent with T_2 and $x_1(\lambda)$ verifies the condition above on ω , then

$$x_2(\lambda) = \sum_{n=0}^{\infty} (-1)^n (T_2 - T_1)^{n} \frac{x_1^{(n)}(\lambda)}{n!}$$

is absolutely and uniformly convergent on every compact $K \subset \omega$, therefore it is analytic on ω and moreover it verifies the equality

$$(\lambda I - T_2)x_2(\lambda) = (\lambda I - T_1)x_1(\lambda) = x$$

for any $\lambda \in \omega$. Consequently $\delta_{T_1}(x) \subset \delta_{T_2}(x)$; analogously, one verifies the inclusion $\delta_{T_2}(x) \subset \delta_{T_1}(x)$, hence $\gamma_{T_1}(x) = \gamma_{T_2}(x)$.

2.2.17. Proposition. Let $T_1, T_2 \in B(X)$ with $S_{T_1} = S_{T_2}$, and let T_1, T_2 be quasinilpotent equivalent. Then, if T_1 is S-decomposable T_2 is also S-decomposable.

Proof. From the equality $S_{T_1} = S_{T_2}$ and from the preceding proposition it follows that for $F \supset S \supset S_{T_1}$ closed, we have

$$X_{T_2}(F) = X_{T_1}(F),$$

hence condition α_S is also met by T_2 . From the equality $\gamma_{T_2}(x) = \gamma_{T_1}(x)$ ($x \in X$) it follows that T_2 also meets condition β_S , therefore in accordance with lemma 2.2.2. T_2 is S-decomposable.

2.3. A BISHOP PROPERTY FOR S-DECOMPOSABLE OPERATORS

We will prove that spectral maximal spaces of the S-decomposable operators can be analogously characterised with the ones of the $F \supset S$ U-scalar operators [53] and decomposable [50] namely that $X_T(F) = N_c(T, F)$ for any closed $F \supset S$. We remind that the definition of $N_c(T, F)$ was inspired by Bishop's definition of N(T, F) [82].

2.3.1. Definition. Let $T \in B(X)$ and let $F \subset \mathbb{C}$ be a compact set. We denote by $N_c(T,F)$ the set of all $x \in X$ for which we have the property: for all $\varepsilon > 0$ and $K \subset \mathbb{C} \setminus F$ compact, there exists an analytic function defined on a neighbourhood of K verifying the inequality:

$$||x - (\lambda I - T)f(\lambda)|| < \varepsilon, \ \lambda \in K.$$

2.3.2. Lemma. Let $T \in B(X)$ and let $X = \sum_{i=1}^{n} Y_i$ where Y_i are σ -stable subspaces for T (meaning Y_i are invariant subspaces for T and $\sigma(T | Y_i) \subset \sigma(T)$ [83]. Then

$$\sigma(T) = S_T \cup \bigcup_{i=1}^n \sigma(T \mid Y).$$

Proof. Obviously, we have

$$S_T \cup \bigcup_{i=1}^n \sigma(T \mid Y) \subset \sigma(T).$$

Since $x = y_1 + y_2 + ... + y_n$ with $y_i \in Y_i$ (i = 1, 2, ..., n) and $\gamma_T(x) \subset \bigcup_{i=1}^n \gamma_T(y_i)$, $\gamma_T(y_i) \subset \gamma_{T|Y_i}(y_i) \subset \sigma(T|Y_i)$, it will follow [76] that

$$\sigma(T) = S_T \cup \bigcup_{x \in X} \gamma_T(x) \subset S_T \cup \bigcup_{x = y_1 + y_2 + \dots + y_n} \left(\bigcup_{i=1}^n \gamma_T(y_i) \right) \subset S_T \cup \bigcup_{i=1}^n \sigma(T \mid Y_i).$$

2.3.3. Lemma. Let $T \in B(X)$ be a S-decomposable operator and let $\sigma \subset \sigma(T)$ compact such that $\sigma \cap S = \emptyset$ and $\sigma = \overline{\operatorname{Int} \sigma}$ (in the topology of $\sigma(T)$). Then there exists a spectral maximal space Y of T with $\sigma(T \mid Y) = \sigma$ (that is σ is set-spectrum of T (see definition 1.3.1.)).

Proof. It is similarly carried out as for decomposable operators. We have

$$X_T(\sigma \cup S) = Y_\sigma \oplus X_T(S),$$

where Y is spectral maximal space of T and $\sigma(T \mid Y_{\sigma}) \subset \sigma$. It will be enough to prove that Int $\sigma \subset \sigma(T \mid Y_{\sigma})$

(Int σ in the topology of $\sigma(T)$). Let $\lambda_0 \in \operatorname{Int} \sigma$; then there exists a disk $\delta = \{\lambda; \lambda \in \mathbb{C}, |\lambda - \lambda_0| < \rho\}$ such that $\delta \cap \sigma(T) = \operatorname{Int} \sigma$. We put

$$\delta_1 = \left\{ \lambda; \lambda \in \sigma(T) | \lambda - \lambda_0 | < \frac{\rho}{2} \right\},\,$$

$$G_0 = \left\{ \lambda; \lambda \in \mathbb{C}, \left| \lambda - \lambda_0 \right| < \frac{3}{4} \rho \right\},$$

$$G_S = \left\{ \lambda; \lambda \in \mathbb{C}, \left| \lambda - \lambda_0 \right| < \frac{5}{8} \rho \right\}.$$

It follows that $G_0 \cup G_S \supset \sigma(T)$ and $G_S \cap \delta_1 = \emptyset$. If Y_S , Y_0 are corresponding spectral maximal spaces of T such that

$$\sigma(T \mid Y_S) \subset G_S$$
, $\sigma(T \mid Y_0) \subset G_0$ and $X = Y_S + Y_0$,

then, by the preceding lemma it follows that

$$\sigma(T) = S \cup \sigma(T \mid Y_S) \cup \sigma(T \mid Y_0)$$

and since $\delta_1 \cap (\sigma(T \mid Y_S) \cup S) = \emptyset$, we have

$$\delta_1 \subset \sigma(T \mid Y_0) \subset G_0 \cap \sigma(T) \subset \delta \cap \sigma(T) \subset \operatorname{Int} \sigma \subset \sigma$$
.

Consequently $Y_0 \subset X_T(\sigma \cup S) = Y_\sigma \oplus X_T(S)$, whence $Y_0 \subset Y_\sigma$ and $\sigma(T \mid Y_0) \subset \sigma(T \mid Y_\sigma)$; one obtains $\lambda_0 \in \delta_1 \subset \sigma(T \mid Y_0) \subset \sigma(T \mid Y_\sigma)$ that is $\sigma \subset \sigma(T \mid Y_\sigma)$.

- 2.3.4. Remark. If $T \in B(X)$ is S-decomposable and also has the property of the single-valued extension, then, for any compact σ , $\sigma \subset \sigma(T)$ which has the following properties: $\overline{\operatorname{Int}\sigma} = \sigma$ (in the topology of $\sigma(T)$) and there exists a separated part S_1 of S such that $\sigma \supset S_1$, $\sigma \cap (S \setminus S_1) = \emptyset$, we have the property $\sigma = \sigma(T \mid X_T(\sigma))$, hence σ is a set-spectrum for T. If T has not the property of the single-valued extension and $\sigma \supset S \supset S_T$, $\overline{\operatorname{Int}\sigma} = \sigma$, it is possible that σ is no more a set-spectrum for T, more exactly $\sigma(T \mid X_T(\sigma)) \neq \sigma$ (but $\sigma(T \mid X_T(\sigma)) \subset \sigma$); this occurs because for decomposable operators with $S_T \neq \emptyset$ it is possible that we do not have $\sigma(T) = \sigma(T \mid Y_S) \cup \bigcup_{i=1}^n \sigma(T \mid Y_i)$.
- 2.3.5. Proposition. Let $T \in B(X)$ and let Y_1 , Y_2 be two spectral maximal spaces of T. Then $Y_1 \cap Y_2$ is a spectral maximal space of T, hence Y_1 , Y_2 are reciprocal σ -stabile.

Proof. According to proposition 3.1. [76] a spectral maximal space of T is T-absorbing. Let us verify that the intersection $Y_1 \cap Y_2$ of two T-absorbing subspaces is a $T \mid Y_i$ -absorbing subspace (i = 1, 2). Indeed, if $(\lambda I - T)y = x$, where $x \in Y_i$, then $y \in Y_i$; for $\lambda \in \rho(T \mid Y_i)$ we have $y = R(\lambda, T \mid Y_i)x \in Y_i$, and for $\lambda \in \sigma(T \mid Y_i)$ there follows by the fact that Y_i is T-absorbing. Let now $(\lambda I - T \mid Y_1)y = x$ with $x \in Y_1 \cap Y_2$ and $y \in Y_1$; then $(\lambda I - T)y = x$ and since $x \in Y_1 \cap Y_2$ and both Y_1 and Y_2 are T-absorbing it follows that $y \in Y_1 \cap Y_2$, meaning $Y_1 \cap Y_2$ is $T \mid Y_1$ -absorbing. Same for $T \mid Y_2$. If Y is an invariant subspace to T, T-absorbing, then $\sigma(T \mid Y) \subset \sigma(T)$. Indeed, in that case Y is invariant to solvent $(\lambda I - T)^{-1}$ (from the equality $(\lambda I - T)^{-1}y = z$ with $y \in Y$, we obtain

 $y = (\lambda I - T)z$ hence $z \in Y$) and we have $(\lambda I - T \mid Y)^{-1} = (\lambda I - T)^{-1} \mid Y$ for $\lambda \in \rho(V)$ hence $\rho(T) \subset \rho(T \mid Y)$. Consequently we have $\sigma(T \mid Y_1 \cap Y_2) \subset \sigma(T \mid Y_1) \cap \sigma(T \mid Y_2)$. Let Z be an invariant subspace to T such that $\sigma(T \mid Z) \subset \sigma(T \mid Y_1 \cap Y_2) \subset \sigma(T \mid Y_1) \cap \sigma(T \mid Y_2)$ 2 It follows $Z \subset Y_1 \cap Y_2$.

2.3.6 Proposition. Let $T \in B(X)$ be a S-decomposable operator and let Y be a spectral G maximal space of T such that $G(T \mid Y) \cap S = \emptyset$ or $G(T \mid Y) \supset S$. Then

$$\sigma(\dot{T}) = \overline{\sigma(T) \setminus \sigma(T \mid Y)},$$

where \dot{T} is the operator induced by T in the quotient space $\dot{X} = X/Y$.

Proof. We adapt the proof given at [2] for decomposable operators. From the equality $\sigma(T) = \sigma(\dot{T}) \cup \sigma(T \mid Y)$ one can notice that only the following inclusion is left to be proved

 $\sigma(\dot{T}) \subset \overline{\sigma(T) \setminus \sigma(T \mid Y)}$

Let $\sigma(T \mid Y) \cap S = \emptyset$. If $\lambda \in \sigma(\dot{T}) \setminus \overline{\sigma(T) \setminus \sigma(T \mid Y)}$, let G_1 , G_2 be two open sets such that $\lambda \notin G_S \supset \overline{\sigma(T) \setminus \sigma(T \mid Y)}$, $G_1 \cap \overline{\sigma(T) \setminus \sigma(T \mid Y)} = \emptyset$, $G_1 \cap G_S \supset \sigma(T)$. By setting the corresponding spectral maximal spaces to Y_1 , Y_S we have

$$\sigma(T \mid Y_1) \subset G_1 \cap \sigma(T) \subset \sigma(T \mid Y),$$

hence $Y_1 \subset Y$. Let $\dot{x} \in \dot{X}$ such that $(\lambda I - \dot{T})\dot{x} = \dot{0}$, and $x \in \dot{x}$. Since $x = y_1 + y_S$, with $y_1 \in Y_1$, $y_S \in Y_S$, it follows that $(\lambda I - T)x = y$, with $y \in Y$, from wich $(\lambda I - T)x_S = (\lambda I - T \mid Y_S)x_S = y - (\lambda I - T)y_1 \in Y$, hence $(\lambda I - T)x_S \in Y \cap Y_S$. In accordance with proposition 2.3.5., $Y \cap Y_S$ is a spectral maximal space of T therefore also a spectral maximal space of $T \mid Y_S$ ([4], 1.4.2.(ii)). But $Y \cap Y_S$ is ultrainvariant to $T \mid Y_S$ and since $\lambda \notin \sigma(T \mid Y_S)$ we obtain $x_S = R(\lambda, T \mid Y_S)(\lambda I - T \mid Y_S)x_S \in Y \cap Y_S$, hence $x \in Y$, $\dot{x} = \dot{0}$. Consequently $\lambda I - \dot{T}$ is injective. Let now $y = y_1 + y_S \in \dot{y}$, $y_1 \in Y_1$, $y_S \in Y_S$, where $\dot{y} = \dot{y}_S$; $\lambda \notin \sigma(T \mid Y_S)$, $x \in Y_S$ and $(\lambda I - T)x = y_S$ it follows $(\lambda I - \dot{T})\dot{x} = \dot{y}$ ($x = (\lambda I - T \mid Y_S)^{-1}y_S$) hence $\lambda I - \dot{T}$ is surjective. We came to a contradiction with the initial assumption that $\lambda \in \sigma(\dot{T})$ and the assertion is proved. Same for the case $\sigma(T \mid Y) \supset S$.

2.3.7. Proposition. Let $T \in B(X)$ a S-decomposable operator and let $\{f_n\}_n$ be a series of analytic functions defined on an open set $G \subset \mathbb{C}$, with $G \cap S = \emptyset$ and $f_n(\lambda) \in X$ such that for $n \to \infty$

$$(\lambda I - T) f_n(\lambda) \to 0$$

uniformly on every compact $\subset G$. Then for $n \to \infty$ we also have

$$f_n(\lambda) \to 0$$

uniformly on every compact $\subset G$.

Proof. Without restricting the generality, we can suppose $G = \{\lambda \in \mathbb{C}, |\lambda| < R\}$, R > 0 and moreover that (1) remains uniform on G. Let us proof that (2) is true uniformly on $G_0 = \{\lambda \in \mathbb{C}, |\lambda| < R_0\}$, $0 < R_0 < R$. Let ρ_1 , ρ_2 that verify $R_0 < \rho_1$, $\rho_1 < \rho_2 < R$ and let us set $H_i = \{|\lambda| < \rho_i\}$ (i = 1,2). If F is closed and $F \cap S = \emptyset$ we will set by Y_F the spectral maximal space of T such that

$$X_T(F \cup S) = Y_F + X_T(S)$$

and $\sigma(T \mid Y_F) \subset F$. Let $\dot{X} = X / Y_{\overline{H_2} \setminus H_1}$ be a quotient space, and \dot{T} be the operator induced by T in \dot{X} . Since $\sigma = \sigma(T) \cap (H_2 \setminus H_1)$ is a set-spectrum for T (lemma 2.2.2.) we have $\sigma(T \mid Y_{\overline{H_2} \setminus H_1}) = \sigma$ and obviously $Y_{\overline{H_2} \setminus H_1} = Y_{\sigma}$. In accordance with proposition 2.2.5.,

$$\sigma(\dot{T}) = \overline{\sigma(T) \setminus \sigma(T \mid Y)}$$

and we obtain that $(H_2 \setminus \overline{H}_1) \cap \sigma(\dot{T}) = \emptyset$, hence

$$\sigma(\dot{T}) \subset \overline{H}_1 \cup (\mathbb{C} \setminus H_2).$$

But (1) implies

$$(\lambda I - \dot{T}) \overrightarrow{f_n(\lambda)} \rightarrow \dot{0}$$

uniformly on G. For $\lambda \in H_2 \setminus \overline{H}_1$, by (3) and (4) it follows

$$R(\lambda; \dot{T})(\lambda I - \dot{T})\overline{f_n(\lambda)} = \overline{f_n(\lambda)} \to \dot{0}$$
(3)

and in accordance with the principle of the maximum

$$\frac{\dot{f}_n(\lambda)}{f_n(\lambda)} \to \dot{0} \text{ uniformly on } \overline{H}_2.$$
 (4)

The proof further continues as in [50]; however we sketch the proof on the hole. Let

$$f_n(\lambda) = \sum_{K=0}^{\infty} a_{nK} \lambda^K \quad (n = 1, 2, ...)$$

the series development of $f_n(\lambda)$ which is convergent in G. By Cauchy's inequalities it follows

$$\dot{a}_{n^{K}} = \frac{\max\left\{ \left| \frac{\dot{f}_{n}(\lambda)}{f_{n}(\lambda)} \right|, \lambda \in \overline{H}_{1} \right\}}{\rho_{1}^{K}} = \frac{\varepsilon_{n}}{\rho_{1}^{K}}.$$

In accordance with the definition of the norm in \dot{X} , for any n and K there exists $A_{n^K} \in X$ such that

$$\dot{A}_{n^{K}} = \dot{a}_{n^{K}} \text{ and } \|A_{n^{K}}\| \le \|\dot{a}_{n^{K}}\| + \frac{1}{2^{n} \cdot \rho_{1}^{K}}.$$
 (6)

Let
$$F_n(\lambda) = \sum_{K=0}^{\infty} A_{nK} \lambda^K$$
; then

$$\|F_n(\lambda)\| \leq \sum_{K=0}^{\infty} \|A_{n^K}\| \cdot |\lambda|^K \leq \sum_{K=0}^{\infty} \left(\frac{\varepsilon_n}{\rho_1^K} + \frac{1}{2^n \cdot \rho_1^K}\right) \cdot |\lambda|^K = \left(\varepsilon_n + \frac{1}{2^n}\right) \frac{1}{1 - \frac{|\lambda|}{\rho_1}}$$

if $\lambda \in G_0$ ($|\lambda| < R_0 < \rho_1$), hence

$$||F_n(\lambda)|| \le \left(\varepsilon_n + \frac{1}{2^n}\right) \frac{\rho_1}{\rho_1 - R_0}$$

for G_0 . Also, we have

$$\varphi_n(\lambda) = f_n(\lambda) - F_n(\lambda) \in Y_{\overline{H}_{n-H}} \tag{7}$$

Analogously, there exists $\widetilde{\rho}_1$, $\widetilde{\rho}_2$ such that $R_0 < \widetilde{\rho}_1 < \widetilde{\rho}_2 < \rho_1$ and an analytic function $\widetilde{F}_n(\lambda)$ defined on a neighbourhood of G_0 and verifying on \overline{G}_0 the inequality

$$\|\widetilde{F}_n(\lambda)\| \le \left(\widetilde{\varepsilon}_n + \frac{1}{2^n}\right) \frac{\rho_1}{\rho_1 - \rho_0}$$

(where $\widetilde{\epsilon}_n$ is obtained same way as ϵ_n); we also have

way as
$$\mathcal{E}_n$$
, we also have
$$\widetilde{\varphi}_n(\lambda) = f_n(\lambda) - F_n(\lambda) \in Y_{\widetilde{H}_n \setminus \widetilde{H}_n}.$$
(9)

It will follow that

$$\|\varphi_n(\lambda) - \widetilde{\varphi}_n(\lambda)\| = \|F_n(\lambda) - \widetilde{F}_n(\lambda)\| \le \left(\varepsilon_n + \widetilde{\varepsilon}_n + \frac{1}{2^{n-1}}\right) \cdot \frac{R_1}{R_1 - R_0}$$
(10)

for $\lambda \in G_0$. But $\overline{H}_2 \setminus H_1$ and $\overline{\widetilde{H}}_2 \setminus \widetilde{H}_1$ are compact and disjunct, therefore by proposition 2.2.4. and remark 1.1.18. we have

$$Y_{\left(\overline{H}_{2}\backslash H_{1}\right),\left(\overline{\widetilde{H}}_{2}\backslash\widetilde{H}_{1}\right)}=Y_{\overline{H}_{2}\backslash H_{1}}\oplus Y_{\overline{\widetilde{H}}\backslash\widetilde{H}_{1}}.$$

Consequently there exists a constant N such that

$$||x|| + ||\widetilde{x}|| \le N \cdot ||x + \widetilde{x}||$$

for $x \in Y_{\overline{H}_2 \setminus H_1}$, $\widetilde{x} \in Y_{\overline{\widetilde{H}}_2 \setminus \overline{H}_1}$.

(11)

From (11) it follows that

$$\|\varphi_n(\lambda)\| \le N \cdot \left(\varepsilon_n + \widetilde{\varepsilon}_n + \frac{1}{2^{n-1}}\right) \frac{R_1}{R_1 - R_0}$$

for $\lambda \in G_0$; finally, (8), (9) and (11) yield

$$||f_n(\lambda)|| \le (N+1)\left(\varepsilon_n + \widetilde{\varepsilon}_n + \frac{1}{2^{n-1}}\right)\frac{R_1}{R_1 - R_0}$$

for $\lambda \in \overline{G}_0$, from where, in accordance with (5), $\varepsilon_n + \widetilde{\varepsilon}_n \to 0$ when $\frac{1}{2^{n-1}} \to 0$ and the proof is over.

2.3.8. Theorem. Let $T \in B(X)$ be a S-decomposable operator. Then for any closed F, $F \subset \mathbb{C}$, $F \supset S$ we have

$$X_T(F) = N_c(T; F).$$

Proof. This is verify as in [50]. Let $x \in N_c(T; F)$ and G an open subset included in $C \setminus F$ such that \overline{G} is compact and also included in $C \setminus F$. For $\varepsilon = \frac{1}{n}$ let $f_n(\lambda)$ be an analytic function taking values in X defined on a neighbourhood of \overline{G} and verifying the inequality

 $||x - (\lambda I - T)f_n(\lambda)|| < \frac{1}{n}$

for all $\lambda \in \overline{G}$. The existence of such a function is given by the definition of $N_c(T;F)$. Let now K be an arbitrary compact set included in G. If $\{f_n(\lambda)\}_{n=1}^{\infty}$ was not uniformly convergent on K, then there would exist $\varepsilon > 0$ and the series $\{\lambda_i\} \subset K$, $n_1 < m_1 < n_2 < m_2 < \ldots$ such that $\|f_{mj}(\lambda_j) - f_{mnj}(\lambda_j)\| \ge \varepsilon$. Setting $g_j(\lambda) = f_{mj}(\lambda) - f_{nj}(\lambda)$ and using (1) as well as the preceding proposition we can obtain an obvious contradiction. Therefore it follows that $\{f_n\}_{n=1}^{\infty}$ uniformly converge (in X) on every compact $K \subset G$. For $\lambda \in G$ we put $f(\lambda) = \lim_{n \to \infty} f_n(\lambda)$. Then $f(\lambda)$ is analytic on G and (in accordance with (1)) it verifies the equation $(\lambda I - T)f(\lambda) = x$ in G, therefore $x \in X_T(\mathbb{C} \setminus G)$ whence $x \in \bigcap X_T(\mathbb{C} \setminus G) = X_T(\bigcap \mathbb{C} \setminus G)$, the intersection being considered for all G, G compact, $\overline{G} \subset \mathbb{C} \setminus F$ compact; hence $F = \bigcap \mathbb{C} \setminus G$. As conclusion we will present several results regarding T-absorbing families or spectral maximal subspaces for the $T \in B(X)$ operator, which will prove to be useful.

2.3.9. Proposition. Let $T \in B(X)$ and let $\{Y_{\alpha}\}_{\alpha \in A}$ be an arbitrary family of T-absorbing subspaces which are invariant to T. Then $y = \bigcap_{\alpha \in A} Y_{\alpha}$ is $(T \mid Y_{\alpha})$ -absorbing for

any index $\alpha \in A$ and

$$\sigma(T \mid Y) \subset \bigcap_{\alpha \in A} \sigma(T \mid Y_{\alpha}).$$

Proof. Let $\beta \in A$ fixed; obviously, if Y_{α} is a T-absorbing subspace and $(\lambda I - T)x = y \in Y_{\alpha}$ then $x \in Y_{\alpha}$. Let now $(\lambda I - T \mid Y_{\beta})y_{\beta} = x \in Y$ $(y_{\beta} \in Y_{\beta})$; therefore $x \in Y_{\alpha}$ for all $\alpha \in A$. Since all Y_{α} are T-absorbing, it follows that $y_{\beta} \in Y_{\alpha}$ for all $\alpha \in A$, therefore $y_{\beta} \in Y$ and consequently Y is a $(T \mid Y_{\beta})$ -absorbing subspace. Since β is arbitrary from A it follows that Y is a $(T \mid Y_{\alpha})$ -absorbing subspace for all indexes $\alpha \in A$. Proving proposition 2.3.5. it verifies that if Y is a T-absorbing subspace, then $\sigma(T \mid Y) \subset \sigma(T)$, consequently $\sigma(T \mid Y) \subset \bigcap_{\alpha \in A} \sigma(T \mid Y_{\alpha})$ (where now $Y = \bigcap_{\alpha \in A} Y_{\alpha}$).

2.3.10. Proposition. Let $T \in B(X)$ and let $\{Y_a\}_{\alpha \in A}$ be a family of spectral maximal spaces of T. Then $Y = \bigcap_{\alpha \in A} Y_{\alpha}$ is a spectral maximal space of T.

Proof. By the preceding proposition it follows that Y is a $(T \mid Y_{\alpha})$ -absorbing for each index $\alpha \in A$ (since a spectral maximal space of T is T-absorbing [76]), hence $\sigma(T \mid Y) \subset \bigcap_{\alpha \in A} \sigma(T \mid Y_{\alpha})$. If Z is invariant for T subspace with $\sigma(T \mid Z) \subset \sigma(T \mid Y)$, then $\sigma(T \mid Z) \subset \sigma(T \mid Y_{\alpha})$ for all indexes $\alpha \in A$, hence $Z \subset Y_{\alpha}$ for any $\alpha \in A$, therefore $Z \subset Y$.

2.3.11. Corollary. The family of T-absorbing, invariant subspaces (particularly the family of spectral maximal spaces of an operator T) is formed out of reciprocal σ -stabile for T subspaces.

Proof. It follows easily by previous propositions.

2.4. S-DECOMPOSABILITY CONDITIONS FOR AN OPERATOR

We shall further give several S-decomposability criteria for an operator. We will also show that spectral maximal spaces from the S-decomposability definition (particularly the one of the decomposability) can be replaced with reciprocal σ -stabile subspaces or invariant, T-absorbing subspaces. Also, there is generalised for (1,S)-decomposable operators the result obtained in [84] for Z-decomposable operators: an operator T is Z-decomposable if and only if $X_T(F)$ is closed and $\sigma(\dot{T}) = \overline{\sigma(T) \setminus \sigma(T \mid X_T(F))}$, where \dot{T} is the operator induced by T in $\dot{X} = X / X_T(F)$, $F \subset \mathbb{C}$ arbitrary and closed.

- 2.4.1. Proposition. Let $T \in B(X)$, and let $S \subset \sigma(T)$ be a compact set such that $S_T \subset S$ ([76] Def. 2.2.). Then the following conditions are equivalent:
 - a) T is (1,S)-decomposable
 - b) $X_T(F)$ is closed for any $F \supset S$ closed and

$$\sigma(T \mid X / Y_{\overline{G}}) = \overline{\sigma(T) \setminus \sigma(T \mid Y_{\overline{G}})}$$

where G is open in $\sigma(T)$ such that $\overline{G} \cap S = \emptyset$, and $Y_{\overline{G}}$ is the spectral maximal space of T defined by the equality

 $X_T(S \cup \overline{G}) = X_T(S) \oplus Y_{\overline{G}}$.

Proof. The fact that a) implies b) follows by proposition 2.3.5. and by the fact that \overline{G} is a set-spectrum for T (lemma 2.3.3.). Let us prove that b) implies a). We first notice that for any open G, $\overline{G} \cap S = \emptyset$, there exists a spectral maximal space $Y_{\overline{G}}$ defined by the equality

$$X_T(S \cup \overline{G}) = X_T(S) \oplus Y_{\overline{G}},$$

where . Indeed, since $X_T(F)$ is closed for any closed $F\supset S$, by proposition 3.4. [76] there follows that $X_T(S\cup \overline{G})$ is spectral maximal space for T and

$$\sigma(T \mid X_T(S \cup \overline{G})) \subset S \cup \overline{G}.$$

In accordance with theorem of decomposition by separated parts of the spectrum there follows that $X_T(S \cup \overline{G}) = X_T(S) \oplus Y_{\overline{G}}$, where $Y_{\overline{G}}$ is a spectral maximal space of $T \mid X_T(S \cup \overline{G})$ also of T, and $\sigma(T \mid Y_{\overline{G}}) \subset \overline{G}$. We further notice that the equality

$$\sigma(T \mid X / Y_{\overline{G}}) = \sigma(T) \setminus \sigma(T \mid Y_{\overline{G}})$$

is equivalent with the inclusion

$$\sigma(T \mid X / Y_{\overline{G}}) \subset \sigma(T) \setminus G$$
.

This follows by the equalities

$$\sigma(T) = \sigma(T \mid Y_{\overline{G}}) \cup \sigma(T \mid X / Y_{\overline{G}}),$$

Int $\sigma(T \mid Y_{\overline{G}}) = \sigma(T) \setminus (\overline{\sigma(T)} \setminus \overline{\sigma(T \mid Y_{\overline{G}})}),$

since

$$\sigma(T \mid X / Y_{\overline{G}}) \subset \sigma(T) \setminus \operatorname{Int} \sigma(T \mid Y_{\overline{G}}) = \sigma(T) \setminus G = \sigma(T) \setminus \left(\sigma(T) \setminus \overline{\sigma(T) \setminus \sigma(T \mid Y_{\overline{G}})}\right) = \sigma(T) \setminus \sigma(T \mid Y_{\overline{G}}) \subset \sigma(T \mid X / Y_{\overline{G}})$$

Let $\{G_S, G\}$ be an open and finite S-covering of $\sigma(T)$ and let us put $H = G_S \cap G$; then $\sigma(T \mid X \mid Y_{\overline{H}}) \subset \sigma(T) \setminus (G_S \cap G) = (\sigma(T) \setminus G_S) \cup (\sigma(T) \setminus G)$.

Since $\sigma(T) \setminus G_S$ and $\sigma(T) \setminus G$ have a void intersection, it follows that $X/Y_H = Z_S \oplus Z$, where $\sigma(T|Z_S) \subset \sigma(T) \setminus G_S$ and $\sigma(T|Z) \subset \sigma(T) \setminus G$. If φ is the canonical map defined from X to X/Y_H then

$$X = \varphi^{-1}(X/Y_{\overline{H}}) = \varphi^{-1}(Z_S \oplus Z) = \varphi^{-1}(Z_S) + \varphi^{-1}(Z).$$

But $Z_S = \varphi^{-1}(Z_S)/Y_{\overline{H}}$, $\varphi^{-1}(Z)/Y_{\overline{H}}$ hence

$$\sigma(T \mid \varphi^{-1}(Z_S)) = \sigma(Z \mid Z_S) \cup \sigma(T \mid Y_{\overline{H}}) \subset \overline{H} \cup (\sigma(T) \setminus G_S) \subset G,$$

$$\sigma(T \mid \varphi^{-1}(Z)) = \sigma(T \mid Z) \cup \sigma(T \mid Y_{\overline{H}}) \subset (\sigma(T) \setminus G) \cup \overline{H} \subset G_S,$$

meaning T is a (1, S)-decomposable.

2.4.2 Definition. A family of linear (closed) subspaces of X, $\Sigma = \{Y_i\}_{i \in I}$ is said to be reciprocal σ -stabile for $T \in B(X)$, if each Y_i is invariant for T and moreover

$$\sigma(T \mid Y_i \cap Y_j) \subset \sigma(T \mid Y_i) \cap \sigma(T \mid Y_j)$$

for any $i, j \in I$. We say that $T \in B(X)$ verify the (D_S) property if there exists a reciprocal σ -stabile for T subspaces family Σ such that for any open (1,S)-covering of $\sigma(T)$ there exist subspaces $\{Y_S,Y\} \subset \Sigma$ such that $\sigma(T \mid Y_S) \subset G_S$, $\sigma(T \mid Y_G) \subset G$ and $X = Y_S + Y$ (we remind that $G_S \supset S$, $\overline{G} \cap S = \emptyset$).

2.4.3. Lemma. If $T \in B(X)$ verifies property (D_S) then $S \supset S_T$.

Proof. Let $F \subset \sigma(T)$ closed, $F \cap S = \emptyset$, G_S , G open such that $G \supset F$, $G \cap S = \emptyset$, $G_S \subset S$ and $G_S \cup G \supset \sigma(T)$; if $x \in X$ and $\lambda \in F$ such that $(\lambda I - T)x = 0$, then $x \in Y$, where $X = Y_S + Y$, $\sigma(T \mid Y_S) \subset G_S$, $\sigma(T \mid Y) \subset G$. Indeed, we have $x = y + y_S$ with $y \in Y$, $y_S \in Y_S$ and

$$y_S' = (\lambda I - T)y_S = -(\lambda I - T)y \in Y \cap Y_S$$
.

But $\lambda \in F$ implies $\lambda \notin G_s$ and $\lambda \notin G_s \cap G$, hence

$$\lambda \notin (T \mid Y \cap Y_S) \subset \sigma(T \mid Y) \cap \sigma(T \mid Y_S) \subset G_S \cap G$$

consequently

$$y_S'' = (\lambda I - T \mid Y \cap Y_S)^{-1} y_S' \in Y.$$

Since

$$y_s'' - y_s \in Y_s$$
 and $\lambda \notin \sigma(T \mid Y_s)$ one obtains
$$(\lambda I - T)(y_s'' - y_s) = (\lambda I - T \mid Y_s \cap Y)(\lambda I - T \mid Y_s \cap Y)^{-1}y_s' - y_s' = 0,$$

hence $y_S = y_S'' \in Y$, that is $x \in Y$. Let now $x: H \to X$ be an analytic function such that $(\lambda I - T)x(\lambda) = 0$ (H open, $H \cap S = \emptyset$; we can suppose that H is connected). Let also, δ and δ' two closed disjunct disks contained in H. Accordingly the above, taking into account that $F = \delta$ and $F = \delta'$, $\{G_S, G\}$ and $\{G_S', G'\}$, the (1, S)-coverings of $\sigma(T)$, it follows $\{Y_S, Y\}$ and $\{Y_S', Y'\}$, the corresponding subspaces of these (1, S)-coverings and we shall have $x(\lambda) \in Y$ for any $\lambda \in \delta$, and $x(\lambda) \in Y'$ for any $\lambda \in \delta'$. From analyticity we have $x(\lambda) \in Y$ for any $\lambda \in H$, hence $x(\lambda) \in Y \cap Y'$. But $\sigma(T \mid Y \cap Y') \subset G \cap G'$ and since $\delta \cap \delta' = \emptyset$, we are allowed to choose G, G', such that $G \cap G' = \emptyset$, whence it results that $Y \cap Y' = \{0\}$; consequently $x(\lambda) \equiv 0$ on H hence $S \supset S_T$.

We remind the next proposition which was proved in [51].

- 2.4.4. Proposition. Let X be a Banach space, and let Y_1 , Y_2 be two linear (closed) subspaces such that $X = Y_1 + Y_2$ and $f: G \to X$ (G open) an analytic function. Then for any $\lambda \in G$ there exists a neighbourhood of λ $H \subset G$ and two analytic functions $g_i: H \to Y_i$ (i=1,2) such that $f(\mu) = g_1(\mu) + g_2(\mu)$ for $\mu \in H$.
- 2.4.5. Theorem. Let $T \in B(X)$ and let $S \supset S_T$ compact. If T has the property that for any open (1,S)-covering of $\sigma(T)$, $\{G_S,G\}$, there exists the subspaces reciprocal σ -stabile for T such that $X=Y_S+Y$ and $\sigma(T|Y_S)\subset G_S$, $\sigma(T|Y)\subset G$, then T is a (1,S)-decomposable operator.

Proof. It is enough to prove that $X_T(F)$ is closed for any closed $F\supset S$ (see lemma 2.2.2.). Let $G_1=G_S\supset F$ and G_2 open such that $\overline{G}_2\cap F=\varnothing$, $G_1\cup G_2\supset \sigma(T)$. It will exist the system of reciprocal σ -stabile for T subspaces $\{Y_1,Y_2\}$ such that

$$X = Y_1 + Y_2$$
, $\sigma(T \mid Y_i) \subset G_i$, $(i = 1,2)$.

If $x \in X_T(F)$ we shall prove that $x \in Y_i$. We have $x = y_1 + y_2$ with $y_i \in Y_i$ (i = 1,2) and

$$\rho_T(x) \cap \delta_T(y_2) = (\delta_T(x) \cap \Omega_T) \cap (\Omega_T \cap \delta_T(y_2)) = \rho_T(x) \cap \rho_T(y_2),$$

hence for $\lambda \in \rho_T(x) \cap \rho_T(y_2)$ we can write

$$y_1(\lambda) = x(\lambda) - y_2(\lambda).$$
 (1)

But $\gamma_T(y_2) \subset \overline{G}_2$, hence $\mathbb{C} \setminus \overline{G}_2 \subset \delta_T(y_2)$, whence $G' = \rho_T(x) \cap (\mathbb{C} \setminus \overline{G}_2) \subset \rho_T(x) \cap \delta_T(y_2) = \rho_T(x) \cap \rho_T(y_2)$; it follows that equality (1) takes place on G'. Let us verify that $y_1(\lambda) \in Y_1$. We shall apply proposition 2.4.4. when $y_1 : G' \to X$. For a fixed $\lambda \in G'$ we obtain a neighbourhood $H \subset G'$ of λ and the analytic functions $g_i : H \to Y_i$ (i = 1, 2) such that

$$y_1(\mu) = g_1(\mu) + g_2(\mu) \text{ for } \mu \in H.$$
 (2)

Applying the operator $\mu I - T$ to equality (2) we will obtain $Y_1 \in y_1 - (\mu I - T)g_1(\mu) = (\mu I - T)g_2(\mu) \in Y_2$, hence $h(\mu) = (\mu I - T)$, $g_2(\mu) \in Y_1 \cap Y_2$.

Then

$$k(\mu) = ((\mu I - T)(Y_1 \cap Y_2))^{-1}h(\mu)$$

is an analytic function on H taking values in $Y_1 \cap Y_2$, $k(\mu)$ having sense since the following inclusions take place

$$\lambda \in H \subset G' \subset \mathbb{C} \setminus G_2 \subset \rho(T \mid Y_2) \subset \rho(T \mid Y_1) \cup \rho(T \mid Y_2) \subset \rho(T \mid Y_1 \cap Y_2).$$

From the equality $(\mu I - T)(k(\mu) - g_2(\mu)) = 0$ $(\mu \in G' \cap \Omega_T)$ it follows that $k(\mu) = g_2(\mu) \in Y_1 \cap Y_2 \subset Y_1$ for any $\mu \in H$, hence

$$y_1(\mu) = g_1(\mu) + g_2(\mu) \in Y_1.$$

Observing that G' is "exterior" to $\sigma(T \mid Y_2) \subset \overline{G}_2$, let Γ be a system of simple curves closed in G', surrounding $\sigma_T(x)$; Γ being "exterior" to $\sigma(T \mid Y_2)$ it follows

$$\frac{1}{2\pi i} \int y_2(\lambda) d\lambda = \frac{1}{2\pi i} \int ((\lambda I - T) | Y_2)^{-1} y_2 d\lambda = 0$$

hence

$$\frac{1}{2\pi i} \int y_1(\lambda) d\lambda = \frac{1}{2\pi i} \int x(\lambda) d\lambda - \frac{1}{2\pi i} \int y_2(\lambda) d\lambda =$$

$$= \frac{1}{2\pi i} \int_{|\lambda| = |T|+1} x(\lambda) d\lambda = \frac{1}{2\pi i} \int_{|\lambda| = |T|+1} (\lambda I - T)^{-1} x = x$$

Whence it results that $x \in \bigcup_{G_1 \supset F} Y_1$ hence $X_T(F) \subset \bigcap_{G_1 \supset F} Y_1$; we have $\sigma_T(x) = \gamma_T(x) \cup S_T \subset \sigma(T \mid Y_1) \cup S_T \subset \sigma(T \mid Y_1) S \subset G_1$ for any $G_1 \supset F$ open, hence $\sigma_T(x) \subset \bigcap_{G_1 \supset F} G_1 = F$, that is $\bigcap_{G_1 \supset F} Y_1 \subset X_T(F)$. Consequently

$$X_T(F) = \bigcap_{G_1 \supset F} Y_1,$$

whence we deduce that $X_T(F)$ is closed, q.e.d.

2.4.6. Corollary. Let $T \in B(X)$ verifying property (D_S) ; then T is a (1,S)-decomposable operator.

Proof. There follows by lemma 2.4.3. and theorem 2.4.5.

2.4.7. COROLLARY. Let $T \in B(X)$ and let $S \supset S_T$, $S \subset \sigma(T)$ compact. If for any Scovering $\{G_S\} \cup \{G_i\}_1^n$ of $\sigma(T)$ there exists the family $\{Y_S\} \cup \{Y_i\}_1^n$ of subspaces reciprocal σ -stabile for T such that $X = Y_S + \sum_{i=1}^n Y_i$, $\sigma(T \mid Y_S) \subset G_S$, $\sigma(T \mid Y_i) \subset G_i$ (i = 1, 2, ..., n), then T is S-decomposable.

2.4.8. Corollary. Let $T \in B(X)$ and let Σ be a family of subspaces reciprocal σ -stabile for T. If for any S-covering $\{G_S\} \cup \{G_i\}_1^n$ of $\sigma(T)$ there exists the subspaces $\{Y_S\} \cup \{Y_i\}_1^n \subset \Sigma$ with the following properties $X = Y_S + \sum_{i=1}^n Y_i$, $\sigma(T \mid Y_S) \subset G_S$, $\sigma(T \mid Y_i) \subset G_i$ (i = 1, 2, ..., n), then T is S-decomposable.

Proof. Both corollaries follow easily by lemma 2.4.3., theorem 2.4.5. and lemma 2.2.2.

2.4.9. Theorem. Let $T \in B(X)$ and let $S \subset \sigma(T)$ compact. If for any open, T-absorbing, S-covering $\{G_S\} \cup \{G_i\}_1^n$ of T, having the properties $X = Y_S + \sum_{i=1}^n Y_i$ and $\sigma(T \mid Y_S) \subset G_S$, $\sigma(T \mid Y_i) \subset G_i$ (i = 1, 2, ..., n), then T is S-decomposable.

Proof. By corollary 2.3.11. there follows that a family of T-absorbing, invariant for T subspaces is reciprocal σ -stabile; the theorem follows by the preceding corollary.

2.4.10. Theorem. Let $T \in B(X)$ and let Σ be a family of subspaces reciprocal σ -stabile for T. If for any open covering $\{G_1, G_2\}$ of $\sigma(T)$ there exist the subspaces $\{Y_1, Y_2\} \subset \Sigma$ having the properties $X = Y_1 + Y_2$, $\sigma(T \mid Y_i) \subset G_i$ (i = 1, 2) then T is decomposable.

Proof. There follows by corollary 2.4.8. and by the fact that a 2-decomposable operator is decomposable (which was recently obtained in [86]).

2.4.11. Proposition. Let $T \in B(X)$. If for any open covering $\{G_1, G_2\}$ of $\sigma(T)$ there exists the invariant T-absorbing subspaces $\{Y_1, Y_2\}$ of T such that $X = Y_1 + Y_2$, $\sigma(T | Y_i) \subset G_i$ (i = 1, 2) then T is decomposable.

Proof. There follows by the preceding theorem and by proposition 2.3.9.

2.4.12. Corollary. Let $T \in B(X)$ having property of the single-valued extension. If for any open covering $\{G_1, G_2\}$ of $\sigma(T)$ there exists the subspaces reciprocal σ -stabile for T, $\{Y_1, Y_2\}$ such that $X = Y_1 + Y_2$, $\sigma(T \mid Y_i) \subset G_i$ (i = 1,2) then T is decomposable.

Proof. There follows by theorem 2.4.10.; since we supposed $S_T = \emptyset$, one requires no more that Y_1 , Y_2 belong to a larger reciprocal σ -stabile subspaces family.

2.5. SPECTRAL S-CAPACITIES

During this paragraph we shall generalise the concept of spectral capacity [4], [51], by defining the spectral S-capacities and show that an operator is S-decomposable if and only if it admits a spectral S-capacity.

- 2.5.1. DEFINITION. Let F_S be the family of all closed sets F of the complex plan \mathbb{C} which have the following property: either $F \cap S = \emptyset$ or $F \supset S$, where S is a compact fixed set of \mathbb{C} ; if X is a Banach space, denote by $\mathbb{E}(X)$ the family of all (closed and linear) subspaces of X.
- a) An map $E : F_s \to S(X)$ which verifies the following properties:
 - (i) $\mathsf{E}(\varnothing) = \{0\}, \mathsf{E}(\mathbb{C}) = X;$
 - (ii) $\mathsf{E}\left(\bigcap_{n=1}^{\infty} F_n\right) = \bigcap_{i=1}^{\infty} \mathsf{E}\left(F_n\right)$, where $F_n \in \mathsf{F}_S$ (n=1,2,...)
 - (iii) if $\{G_s\} \cup \{G_i\}_1^n$ is an open S-covering of $\mathbb C$ then

$$X = \mathsf{E}\left(\overline{G}_{S}\right) + \sum_{i=1}^{m} \mathsf{E}\left(\overline{G}_{i}\right).$$

- b) By definition an operator $T \in B(X)$ is said to admit a spectral S-capacity E if for each $F \in F_S$ we have
 - (iv) $T \to (F) \subset \to (F)$;
 - (v) $\sigma(T \mid E(F)) \subset F$.

Remark. By condition (ii) there follows that $F_1, F_2 \in F_s$ and $F_1 \subset F_2$ implies $E(F_1) \subset E(F_2)$. Indeed, if $F_1 \subset F_2$ then $F_1 \cap F_2 = F_1$, hence $E(F_1) = E(F_1 \cap F_2) = E(F_1) \cap CE(F_2) \subset E(F_2)$.

2.5.2. Theorem. If $T \in B(X)$ is S-decomposable, then T admits a spectral S-capacity E .

Proof. Let $F \in F_S$ with $F \cap S = \emptyset$. Then $X_T(F \cup S)$ is a spectral maximal space of T and

$$X_T(F \cup S) = Y_F \oplus X_T(S),$$

where Y_F is also a spectral maximal space of T and $\sigma(T \mid Y_F) \subset F$. Indeed, we have $X_T(F \cup S) = Y_F \oplus Y_S$ because $\sigma(T \mid X_T(F \cup S)) = \sigma_F \cup \sigma_S$, with $\sigma_F \subset F$, $\sigma_S \subset S$, where $\sigma_F = \sigma(T \mid Y_F)$, $\sigma_S = \sigma(T \mid Y_S)$, $\sigma_F \cap \sigma_S = \emptyset$; obviously, Y_F and Y_S are spectral maximal spaces of $T \mid X_T(F \cup S)$ hence of T also, and $Y_S = X_T(S)$. We shall set $E(F) = Y_F$ if $F \cap S = \emptyset$ and $E(F) = X_T(F)$ if $F \supset S$. Let us verify that E thus defined is a spectral S-capacity of T. First, we have

$$\mathsf{E}(\varnothing) = \{0\}, \mathsf{E}(\mathsf{C}) = X$$

since $\varnothing \cap S = \varnothing$ there follows $\sigma(T \mid Y_{\varnothing}) \subset \varnothing$ and $E(\mathbb{C}) = X_T(\mathbb{C}) = X_T(\sigma(T)) = X$.

Conditions (iii) and (iv) are obviously met, we only have to verify condition (ii). One can easily prove that $F_1, F_2 \in \mathsf{F}_S$ and $F_1 \subset F_2$ implies $\mathsf{E}\left(F_1\right) \subset \mathsf{E}\left(F_2\right)$; for $F_1, F_2 \supset S$ it is evident that $X_T(F_1) \subset X_T(F_2)$, and from the inclusion $Y_{F_1} + X_T(S) = X_T(F_1 \cup S) \subset X_T(F_2 \cup S) = Y_{F_2} \oplus X_T(S)$ it results that $Y_{F_1} \subset Y_{F_2}$ $(F_1, F_2 \in \mathsf{F}_S, F_i \cap S = \emptyset, i = 1, 2)$. Let $F_i \subset \mathsf{F}_S$,

 $F_i \supset S$ (i = 1,2,...); we have $\bigcap_{i=1}^{\infty} F_i \subset S$ and hence from the equality

$$X_T \left(\bigcap_{i=1}^{\infty} F_i\right) = \bigcap_{i=1}^{\infty} X_T \left(F_i\right)$$

we obtain

$$\mathsf{E}\left(\bigcap_{i=1}^{\infty}F_{i}\right)=\bigcap_{i=1}^{\infty}\mathsf{E}\left(F_{i}\right).$$

When $F_i \in F_S$ and $F_i \cap S = \emptyset$ (i = 1, 2, ...), then $\bigcap_{i=1}^{\infty} F_i \subset F_i$ (i = 1, 2, ...) implies

$$Y_{\underset{i=1}{\bigcap}F_i} \subset Y_{F_i}, \ Y_{\underset{i=1}{\bigcap}F_i} \subset \bigcap_{i=1}^{\infty} Y_{F_i};$$

but $Y = \bigcap_{i=1}^{\infty} Y_{F_i}$ is a spectral maximal space of T and $\sigma(T \mid Y) \subset \bigcap_{i=1}^{\infty} F_i$, hence we have

$$Y \subset X_T \left(\left(\bigcap_{i=1}^{\infty} Fi \right) \cup S \right) = Y_{\infty} \oplus X_T \left(S \right)$$

whence $Y \subset Y_{s}$, that is $\mathsf{E}\left(\bigcap_{i=1}^{\infty} F_{i}\right) = \bigcap_{i=1}^{\infty} \mathsf{E}\left(F_{i}\right)$. Let now $F, F_{s} \in \mathsf{F}_{s}$ with $F \cap S = \emptyset$ and

 $F_S\supset S$; then, obviously, $Y_{F\cap F_S}\subset Y_F\cap Y_{F_S}$; from $\sigma(T\mid Y_F\cap Y_{F_S})\subset F\cap F_S$ it results that $Y_F\cap Y_{F_S}\subset X_T((F\cap F_S)\cup S)=Y_{F\cap F_S}\oplus X_T(S)$ and hence $Y_F\cap Y_{F_S}\subset Y_{F\cap F_S}$.

Threrefore

$$\mathsf{E}\left(F \cap F_{S}\right) = \mathsf{E}\left(F\right) \cap \mathsf{E}\left(F_{S}\right).$$

Finally, if $F_i \in F_S$ are arbitrary (i = 1, 2, ...), by putting $F'_i = F_i$ if $F_i \cap S = \emptyset$ and $F''_i = F_i$ if $F_i \supset S$ (i = 1, 2, ...), we obtain

$$\begin{split} \mathsf{E}\!\left(\bigcap_{i=1}^\infty F_i\right) \!=\! \mathsf{E}\!\left(\!\left(\bigcap_{j=1}^\infty F_j'\right) \!\cap\! \left(\bigcap_{i=1}^\infty F_i''\right)\!\right) \!=\! \mathsf{E}\!\left(\bigcap_{j=1}^\infty F_j'\right) \!\cap\! \mathsf{E}\!\left(\bigcap_{i=1}^\infty F_i''\right) \!=\! \\ =\! \left(\bigcap_{j=1}^\infty \!\mathsf{E}\!\left(\!F_j'\right)\!\right) \!\cap\! \left(\bigcap_{i=1}^\infty \!\mathsf{E}\!\left(\!F_i''\right)\!\right) \!=\! \bigcap_{i=1}^\infty \!\mathsf{E}\!\left(\!F_i\right) \end{split}$$

2.5.3. Proposition. If $F \to E(F)$ is a spectral S-capacity for T, then E(F) is a spectral maximal space of T; more exactly, $Y \subset E(S)$, $TY \subset Y$, $\sigma(T \mid Y) \subset F$ implies $Y \subset E(F)$.

The proof will be given in chapter III in a more general case for operators systems (also see [17]).

2.5.4. Theorem. If $T \in B(X)$ admits a spectral S-capacity E, then T is S-decomposable.

Proof. It follows by the preceding proposition and property (iii) of the S-capacity definition.

2.5.5. Theorem. An operator $T \in B(X)$ is S-decomposable if and only if it admits a spectral S-capacity E.

Proof. There follows by theorems 2.5.2. and 2.5.5.

2.5.6. Corollary. If $T \in B(X)$ admits a spectral S-capacity E, then this S-capacity is single-determined, $S \supset S_T$ and for any closed $F \supset \sigma(T)$, $F \supset S$ we have

$$\mathsf{E}(F) = X_T(F).$$

Proof. Let E^* be another capacity of T; then $\sigma(T | E^*(F)) \subset F$ implies $E^*(F) \subset E(F)$ and identically $E(F) \subset E^*(F)$, hence E is single-determined. Since T is S-decomposable $S \supset S_T$. The inclusion $\sigma(T | E(F)) \subset E$ implies $E(F) \subset X_T(F)$. But $X_T(F)$ being closed and $\sigma(T | X_T(F)) \subset F$ we also have $X_T(F) \subset E(F)$, hence $E(F) = X_T(F)$.

2.5.7. Remarks. (a). If $T \in B(X)$ is S-decomposable and $F \subset \mathbb{C}$, $F \cap S = \emptyset$, by proof of theorem 2.5.2. there follows that $\mathsf{E}(F) = Y_F$, where Y_F is the spectral maximal space of T given by the equality $Y_F \oplus X_T(S) = X_T(F \cup S) = \mathsf{E}(F \cup S)$, E being the spectral capacity of T. (b). Let $T \in B(X)$ be a S-decomposable operator; then it will suffice to take $S \subset \sigma(T)$. Indeed, if E is the spectral S-capacity of T and $S^* = S \cap \sigma(T)$, one easily verifies that application E^* defined by the equalities $\mathsf{E}^*(F) = \mathsf{E}(F \cup S)$ for $F \supset S^*$ and $\mathsf{E}^*(F) = \mathsf{E}(F \cap \sigma(T))$ if $F \cap S^* = \emptyset$ is a spectral S-capacity of T.

2.5.8. Definition. We denote by suppE, and call the *support of the spectral S-capacity*, the set

$$\operatorname{supp} \mathsf{E} = \bigcap_{\mathsf{E}(F)=X} F.$$

2.5.9. Proposition. If $T \in B(X)$ is S-decomposable and E is its spectral S-capacity, then

$$supp E = \sigma(T).$$

Proof. By the preceding remark we have $S \subset \sigma(T)$. If $F \supset \sigma(T) \supset S$, then $\mathsf{E}\left(F\right) = X_T(F) = X_T(F \cap \sigma(T)) = X_T(\sigma(T)) = X$, hence $\bigcap_{\mathsf{E}\left(F\right) = X} F \supset \sigma(T)$; but $\mathsf{E}\left(\sigma(T)\right) = X_T(\sigma(T)) = X_T(\sigma(T))$

2.6. RESTRICTIONS AND QUOTIENTS OF THE S-DECOMPOSABLE OPERATORS

The following paragraph is devoted to the study of the restrictions and quotients of the S-decomposable operators and strongly S-decomposable operators. One can notice that the class of the S-decomposable operators is somehow closed regarding restrictions and quotients: the restriction or quotient of an S-decomposable (or strongly S-decomposable operator) is also a S'-decomposable (or strongly S'-decomposable) operator, where S' is generally speaking another compact set than S.

- 2.6.1. Definition. $T \in B(X)$ is said to satisfy *strongly condition* β_S if for any spectral maximal space Y of T, the restriction $T \mid Y$ satisfies condition β_{S_1} (see definition 2.2.1.), where $S_1 = S \cap \sigma(T \mid Y)$, meaning if for any open S_1 -covering of $\sigma(T \mid Y)$, $\{G_{S_1}\} \cup \{G_i\}_1^n$ we have for any $x \in Y$, $x = y_{S_1} + y_1 + ... + y_n$ with $y_{S_1}, y_i \in Y$ (i = 1, 2, ..., n) and $\gamma_{T|Y}(y_{S_1}) \subset G_{S_1}$, $\gamma_{T|Y}(y_i) \subset G_i$.
- 2.6.2. Proposition. An operator $T \in B(X)$ is strongly S-decomposable if and only if it satisfies condition α_s and strongly condition β_s .

Proof. Let T strongly S-decomposable; then obviously T satisfies condition α_S and strongly condition β_S . Conversely, let $T \in B(X)$ and $H = \{H_S\} \cap \{H_i\}_1^n$ be two open S-coverings of $\sigma(T)$ such that $\overline{H}_S \subset G_S$, $\overline{H}_i \subset G_i$ (i=1,2,...,n). If Y is an arbitrary spectral maximal space of T, then G and H are also S_1 coverings of $\sigma(T \mid Y)$; consequently, if $x \in Y$, then $x = y_{S_1} + y_1 + ... + y_n$ with $y_{S_1}, y_i \in Y$ (i=1,2,...,n) and $\gamma_{T|Y}(y_{S_1}) \subset H_S \cap \sigma(T \mid Y)$, $\gamma_{T|Y}(y_i) \subset H_i \cap \sigma(T \mid Y)$ (i=1,2,...,n). Since Y is T-absorbing

we have $\gamma_T(y_{S_1}) = \gamma_{T|Y}(y_{S_1})$, $\gamma_T(y_i) = \gamma_{T|Y}(y_i)$ and hence $y_i \in X_T(\overline{H}_i \cap S) = Y_i \oplus Y_S^i$, where Y_i , Y_S are spectral maximal spaces of T with $\sigma(T|Y_i) \subset \overline{H}_i \subset G_i$ and $Y_S^i \subset Y_S = X_T(\overline{H}_S) \ni Y_{S_i}$; it follows that

$$Y = Y \cap Y_s + Y \cap Y_1 + ... + Y \cap Y_n$$

and hence *T* is strongly *S*-decomposable.

2.6.3. Corollary. An operator $T \in B(X)$ is strongly S-decomposable if and only if $T \mid Y$ is S_1 -decomposable for any spectral maximal space Y of T, where $S_1 = S \cap \sigma(T \mid Y)$.

Proof. If $T \mid Y$ is S_1 -decomposable for any spectral maximal space Y of T, then T satisfies strongly condition β_S and by the preceding proposition it follows that T is strongly S-decomposable. Conversely, it is obvious.

2.6.4. Proposition. If $T \in B(X)$ is strongly S-decomposable, then for any spectral maximal space Y of T, $T \mid Y$ is a strongly S_1 -decomposable operator, where $S_1 = S \cap \sigma(T \mid Y)$.

Proof. If $\{G_{S_1}\} \cup \{G_i\}_1^n$ is an open S_1 -covering of $\sigma(T \mid Y)$ and $H_S = G_{S_1} \cup \rho(T \mid Y)$, $H_i = G_i \cap \mathbb{C}S$, then $\{H_S\} \cup \{H_i\}_1^n$ is a S-coverage of $\sigma(T)$. Let $\{Y_S\} \cup \{Y_i\}_1^n$ be the system of spectral maximal spaces of T and

$$Z_{S_i} = Y_S \cap Y, Z_i = Y_i \cap Y \ (i = 1, 2, ..., n).$$

If Z is another spectral maximal space of $T \mid Y$, then Z is also a spectral maximal space for T and

$$Y \cap Z = (Y \cap Z) \cap Y_S + \sum_{i=1}^n (Y \cap Z) \cap Y_i = Z_{S_1} \cap Z + \sum_{i=1}^n (Z_i \cap Z),$$

and $\sigma(T \mid Z_i) \subset G_i$, $\sigma(T \mid Z_{S_1}) \subset G_{S_1}$; hence $T \mid Y$ is strongly S_1 -decomposable.

2.6.5. Corollary. Let $T \in B(X)$ be a strongly S-decomposable operator and Y a spectral maximal space of T such that $\sigma(T|Y) \cap S = \emptyset$; then T|Y is strongly decomposable.

Proof. By the preceding proposition it follows that $T \mid Y$ is strongly S_1 -decomposable with $S_1 = \sigma(T \mid Y) \cap S = \emptyset$, therefore strongly decomposable.

2.6.6. Lemma. If $T \in B(X)$ is a strongly S-decomposable operator and Y, Z are two spectral maximal spaces of T such that $Y \supset Z$ and $\sigma(T \mid Y) \supset S$ or $\sigma(T \mid Z) \cap S = \emptyset$ then

$$\sigma(\overline{T|Z}) = \overline{\sigma(T|Z) \setminus \sigma(T|Y)},$$

where $\overline{T \mid Z}$ is the operator induced by $T \mid Y$ in $Y \mid Z$.

Proof. It follows by proposition 2.3.6. and the preceding corollary.

2.6.7. Proposition. Let $T \in B(X)$ a S-decomposable operator and Y a spectral maximal space of T. Then $T \mid Y$ is S_1 -decomposable, where $S_1 = (S \cup \sigma(\dot{T})) \cap \sigma(T \mid Y)$ and \dot{T} is the operator induced by T in $\dot{X} = X \mid Y$.

Proof. We have $\sigma(T) = \sigma(\dot{T}) \cup \sigma(T \mid Y)$. Let $\{G_{S_1}\} \cup \{G'_i\}_1^n$ be a S_1 -covering of $\sigma(T \mid Y)$ and $G_i = G'_i \cap \rho(\dot{T})$, $G_S = G_{S_1} \cup \rho(T \mid Y)$; then $\{G_S\} \cup \{G_i\}_1^n$ is a S-coverage of $\sigma(T)$. Let $\{Y_S\} \cup \{Y_i\}_1^n$ be the system of spectral maximal spaces of T such that

$$\sigma(T \mid Y_S) \subset G_S$$
, $\sigma(T \mid Y_i) \subset G_i$ $(i = 1, 2, ..., n)$

and

$$X = Y_S + \sum_{i=1}^n Y_i .$$

Form the inclusions

$$\sigma(T \mid Y_i) \subset G_i \cap (\sigma(\dot{T}) \cup \sigma(T \mid Y)) = G_i \cap \sigma(T \mid Y) \subset \sigma(T \mid Y)$$

we have that $Y_i \subset Y$ (i = 1, 2, ..., n). If $x \in Y$, then

$$x = y_S + y_1 + ... y_n$$

where $y_s \in Y_s$, $y_i \in Y_i \subset Y$, hence

$$y_S = x - (y_1 + y_2 + ... + y_n) \in Y.$$

Consequently

$$Y = Y_{S_1} + Y_1 + ... + Y_n$$

where $Y_{S_1} = Y_S \cap Y$, hence $T \mid Y$ is S_1 -decomposable.

2.6.8. Corollary. Let $T \in B(X)$ a S-decomposable operator and Y a spectral maximal space of T such that $\sigma(T \mid Y) \cap S = \emptyset$ or $\sigma(T \mid Y) \supset S$. Then $T \mid Y$ is S_1 -decomposable, where $S_1 = \sigma(T) \cap \partial \sigma(T \mid Y)$ and $\dim S_1 \leq 1$.

Proof. There follows by the preceding proposition and by lemma 2.6.6.

2.6.9. Corollary. Let $T \in B(X)$ a S-decomposable operator with $S_T = \emptyset$ and Y a spectral maximal space of T. Then \dot{T} is S_1 -decomposable, where $S_1 = \sigma(\dot{T}) \cap (S \cup \sigma(T \mid Y))$; if $S \subset \sigma(T \mid Y)$ or $S \cap \sigma(T \mid Y) = \emptyset$, then $S_1 = \partial \sigma(T \mid Y) \cap \sigma(\dot{T})$ or $S_1 = (\partial \sigma(T \mid Y) \cap \sigma(\dot{T})) \cup S$, where \dot{T} is the operator induced by T in $\dot{X} = X/Y$.

Proof. It will be enough to prove that T is S'_1 -decomposable, where $S'_1 = S \cup \sigma(T \mid Y)$ (see 2.5.7.). Let F be a closed set such that $F \supset S \cup \sigma(T \mid Y)$; then by proposition 1.1.1. it follows that

$$\overrightarrow{X_T(F)} = \dot{X}_{\dot{T}}(F)$$

Indeed, if $x \in X_T(F)$, $\sigma_T(x) \subset F$, $\sigma_{\dot{T}}(\dot{x}) \subset \sigma_T(x) \cup \sigma(T \mid Y) \subset F$ and hence $\dot{x} \in \dot{X}_{\dot{T}}(F)$; conversely, if $\dot{x} \in \dot{X}_{\dot{T}}(F)$, then $\sigma_T(x) \subset \sigma_{\dot{T}}(\dot{x}) \cup \sigma(T \mid Y) \subset F$ and $x \in X_T(F)$, hence $\dot{x} \in \overline{X_T(F)}$. Since $X_T(F) \supset Y$ the subspace $\overline{X_T(F)}$ is closed, therefore $\dot{X}_{\dot{T}}(F)$ is also closed, meaning \dot{T} satisfies condition α_{S_1} . From the inclusion $\gamma_{\dot{T}}(\dot{x}) \subset \gamma_T(x)$ and by the fact that any S_1' -covering of $\sigma(\dot{T})$ is a S-covering of $\sigma(T)$ there follows that \dot{T} is S_1' -decomposable, and therefore also S_1 -decomposable. If $\sigma(T \mid Y) \supset S$, then by proposition 2.3.6. there follows that $S_1 = \partial \sigma(T \mid Y) \cap \sigma(\dot{T})$. When $S \cap \sigma(T \mid Y) = \emptyset$ we obviously have $S_1 = (\partial \sigma(T \mid Y) \cap \sigma(\dot{T})) \cup S$.

2.6.11. Corollary. Let $T \in B(X)$ be a S-decomposable operator with $\sigma(T) \in \mathbb{C}$ and let Y be a spectral maximal space of T such that $\sigma(T \mid Y) \supset S$. Then \dot{T} is strongly decomposable.

Proof. There follows by the preceding proposition and theorem 1.2.13.

2.6.12. Lemma. Let $T \in B(X)$ be a strongly S-decomposable operator and Y a spectral maximal space of T with $\sigma(T \mid Y) \supset S$. If \dot{Z} is spectral maximal space of \dot{T} (\dot{T} being the operator induced by T in $\dot{X} = X \mid Y$), then $Z = \varphi^{-1}(\dot{Z})$ is a spectral maximal space of T, where $\varphi: X \to \dot{X}$ is the canonical map.

Proof. We have $S_T = \emptyset$ (see 1.1.9.). If $Z \supset Y$ and Z is an invariant to T linear (closed) subspace of X, Y is also a spectral maximal space of $T \mid Z$ (see 1.2 [2]) hence $S \subset \sigma(T \mid Y) \subset \sigma(T \mid Z)$, that is $X_T(\sigma(T \mid Z)) \supset Y$ is a spectral maximal space of T. By lemma 2.6.6. there follows

$$\sigma(T \mid X_T(\sigma(T \mid Z))) = \sigma(T \mid X_T(\sigma(T \mid Z))) \setminus \sigma(T \mid Y).$$

But $\sigma(T \mid X_T(\sigma(T \mid Z))) \subset \sigma(T \mid Z)$ and $\sigma(T \mid Z) = \sigma(T \mid Z) \cup \sigma(T \mid Y)$ (Y being a spectral maximal space of $T \mid Z$ hence

$$\sigma(T \mid X_T(Gs(T \mid Z))) = (\sigma(T \mid Z)) \cup \sigma(T \mid Y)) \setminus \sigma(T \mid Y) \subset \sigma(T \mid Z)$$

From the equalities $T \mid X_T(\sigma(T \mid Z)) = \dot{T} \mid X_T(\sigma(T \mid Z))$, $T \mid Z = \dot{T} \mid \dot{Z}$ one obtains $\phi(X_T(T \mid Z)) \subset \phi(Z)$, hence $X_T(\sigma(T \mid Z)) \subset Z$; consequently $Z = X_T(\sigma(T \mid Z))$, meaning Z is a spectral maximal space of T.

2.6.13. THEOREM. Let $T \in B(X)$ be a strongly S-decomposable operator and Y a spectral maximal space of T with $\sigma(T \mid Y) \supset S$. Then \dot{T} is a strongly S_1 -decomposable operator, where $S_1 = S \cap \sigma(\dot{T})$, and \dot{T} is the operator induced by T in $\dot{X} = X / Y$.

Proof. Let $\{G_{S_1}\} \cup \{G_i\}_1^n$ be an open S_1 -covering of $\sigma(\dot{T})$ and $G_S = G_{S_1} \cup \rho(\dot{T})$; we can suppose that $G_i \cap S = \emptyset$ (i = 1, 2, ..., n). Then $\{G_S\} \cup \{G_i\}_1^n$ is a S-covering of $\sigma(T)$. Let $\{Y_S\} \cup \{Y_i\}_1^n$ be the corresponding system of spectral maximal spaces of T such that

$$\sigma(T | Y_S) \subset G_S$$
, $\sigma(T | Y_i) \subset G_i$, $(i = 1, 2, ..., n)$

and

$$X = Y_S + \sum_{i=1}^n Y_i .$$

We shall set $\sigma_S = \sigma(T \mid Y_S) \cup \sigma(T \mid Y)$, $\sigma_i = \sigma(T \mid Y_i) \cup \sigma(T \mid Y)$ (i = 1, 2, ..., n); $Z_S = X_T(\sigma_S)$ (i = 1, 2, ..., n), $Z_i = X_T(\sigma_i)$ (i = 1, 2, ..., n) are spectral maximal spaces of T (we have $\sigma_S \supset S$, $\sigma_i \supset S$, see theorem 2.1.3.) and $Y \subset Z_S$, $Y \subset Y_i$. Consequently \dot{Z}_S , \dot{Z}_i are spectral maximal spaces of \dot{T} ([4], 3.2.) and by lemma 2.6.6. one obtains

$$\frac{\sigma(\dot{T} \mid \dot{Z}_S) = \sigma(T \mid \dot{Z}_S) = \sigma(T \mid Z_S) \setminus \sigma(T \mid Y)}{(\sigma(T \mid Y_S) \cup \sigma(T \mid Y)) \setminus \sigma(T \mid Y) \subset \sigma(T \mid Y_S) \subset G_S,}$$

and analogously

$$\sigma(\dot{T} \mid \dot{Z}_i) = \sigma(\overline{T \mid Z_i}) \subset \sigma(T \mid Y_i) \subset G_i \ (i = 1, 2, ..., n).$$

If \dot{Z} is an arbitrary spectral maximal space of \dot{T} , then $Z = \phi^{-1}(\dot{Z})$ is a spectral maximal space of T (where ϕ is the canonical map; see preceding lemma) hence

$$Y_S \cap Z + Y_1 \cap Z + ... + Y_n \cap Z = Z$$
.

But from the inclusions $\dot{Y}_S \subset \dot{Z}_S$, $\dot{Y}_i \subset \dot{Z}_i$, $\phi(Y_S \cap Z) \subset \dot{Y}_S \cap \dot{Z}$, $\phi(Y_i \cap Z) \subset \dot{Y}_i \cap \dot{Z}$ (i = 1, 2, ..., n) it results

$$\dot{Z} = \varphi(Y_S \cap Z) + \varphi(Y_1 \cap Z) + \dots + \varphi(Y_n \cap Z) \subset$$

$$\subset \dot{Z}_S \cap \dot{Z} + \dot{Z}_1 \cap \dot{Z} + \dots + \dot{Z}_n \cap \dot{Z} \subset \dot{Z},$$

consequently \dot{T} is strongly S_1 -decomposable.

2.6.14. Corollary. Let $T \in B(X)$ be a strongly S-decomposable operator and Y a spectral maximal space of T such that $\sigma(T) \cap S = \emptyset$; then \dot{T} is a strongly composable operator.

Proof. There follows by the preceding theorem, since $S_1 = \emptyset$.

2.7. THE PROPERTIES OF STRONGLY S-DECOMPOSABLE OPERATORS

There will be given some of the most important properties of the strongly *S*-decomposable operators: the demeanour at direct sums, at the Riesz-Dunfort functional calculus, at quasinilpotent equivalence.

2.7.1. Proposition. Let $T_{\alpha} \in B(X_{\alpha})$ two strongly S-decomposable operators ($\alpha = 1,2$); then $T = T_1 \oplus T_2 \in B(X_1 \oplus X_2)$ is a strongly S-decomposable operator, where $S = S_1 \cup S_2$.

Proof. By proposition 2.6.2. and theorem 2.2.3. there follows that it will suffice to show that T satisfies strongly condition β_S (see definition 2.6.1.). Let Y be a spectral maximal space of T and $G = \{G_{S'}\} \cup \{G_i\}_1^n$ an open S'-covering of $\sigma(T \mid Y)$, where $S' = S \cap \sigma(T \mid Y)$. Then, in accordance with proposition 2.1.7., $Y = Y_1 \oplus Y_2$, where Y_α is a spectral maximal space of T_α ($\alpha = 1,2$). If $y \in Y$, then $y = y^1 \oplus y^2$, with $y^\alpha \in Y_\alpha$ ($\alpha = 1,2$); since T_α ($\alpha = 1,2$) are strongly S-decomposable it follows that $T_\alpha \mid Y_\alpha$ verifies condition β_S , where $S'_\alpha = S_\alpha \cap \sigma(T_\alpha \mid Y_\alpha)$ ($\alpha = 1,2$) hence

$$y^{\alpha} = y_{S'}^{\alpha} + y_1^{\alpha} + ... + y_n^{\alpha} (\alpha = 1,2)$$

and

$$\begin{split} \gamma_{T}\left(y_{S'}^{\alpha}\right) &= \gamma_{T_{\alpha}\mid Y_{\alpha}}\left(y_{S'}^{\alpha}\right) \subset G_{S'} \ (\alpha = 1, 2), \\ \gamma_{T_{\alpha}}\left(y_{i}^{\alpha}\right) &= \gamma_{T_{\alpha}\mid Y_{\alpha}}\left(y_{i}^{\alpha}\right) \subset G_{i} \ (\alpha = 1, 2; i = 1, 2, ..., n). \end{split}$$

Consequently

$$y = y^{1} \oplus y^{2} = (y_{S'_{1}}^{1} + y_{1}^{1} + \dots + y_{n}^{1}) + (y_{S'_{2}}^{2} + y_{1}^{2} + \dots + y_{n}^{2}) =$$

$$= (y_{S'_{1}}^{1} \oplus y_{S'_{2}}^{2}) + (y_{1}^{1} \oplus y_{1}^{2}) + \dots + (y_{n}^{1} \oplus y_{n}^{2}) = y_{S'} + y_{1} + \dots + y_{n}$$

and

$$\gamma_{T}(y_{S'}) = \gamma_{T|Y}(y_{S'}) = \gamma_{T_{i}|Y_{i}}(y_{S'_{i}}^{1}) \cup \gamma_{T_{2}|Y_{2}}(y_{S'_{2}}^{2}) \subset G_{S'},$$

$$\gamma_{T}(y_{i}) = \gamma_{T|Y}(y_{i}) = \gamma_{T|Y_{i}}(y_{i}^{1}) \cup \gamma_{T_{2}|Y_{2}}(y_{i}^{2}) \subset G_{i} \quad (1 \le i \le n)$$

hence T satisfies strongly condition β_s .

- 2.7.2. DEFINITION. A S-decomposable operator $T \in B(X)$ is said to be almost strongly S-decomposable if for any spectral maximal space Y of T such that $\sigma(T \mid Y) \cap S = \emptyset$ or $\sigma(T \mid Y) \supset S$, we have that restriction $T \mid Y$ is a decomposable respectively S-decomposable operator.
- 2.7.3. Remark. The necessity of the definition above becomes established by the following: being given a S-decomposable (strongly S-decomposable) operator, we know about the existence of the spectral maximal spaces Y of T, that have the property that $\sigma(T|Y) \cap S = \emptyset$ or $\sigma(T|Y) \supset S$; these are the spaces which result form the relations $Y \oplus X_T(S) = X_T(\sigma(T|Y) \cup S)$ or $Y = X_T(\sigma(T|Y))$. However, we know nothing about the existence of the spectral maximal spaces Y of T that have the property that $\sigma(T|Y) \cap S = S'$ is a separated part of S (open and closed in S). Obviously strongly S-decomposable operators are almost strongly S-decomposable. It seems that strongly S-

decomposability (unlike the strongly decomposability) has not a such a favourable demeanour as the one of the S-decomposability (considering the properties from 2.2.1. and 2.2.17.).

2.7.4. Proposition. Let $T = T_1 \oplus T_2 \in B(X_1 \oplus X_2)$ be a strongly S-decomposable operator; then T_{α} ($\alpha = 1,2$) are almost strongly S_{α} -decomposable, where $S_{\alpha} = S \cap \sigma(T_{\alpha})$ ($\alpha = 1,2$).

Proof. It will suffice to prove that if $F \subset \sigma(T_1)$ and $F \cap S_1 = \emptyset$ or $F \supset S_1$, then we also have $F \cap S = \emptyset$ or, respectively, $(F \cup S) \cap \sigma(T_1) \supset S_1$. If $F \cap S_1 = \emptyset$, we also have $F \cap S = (F \cap S) \cap \sigma(T_1) = F \cap (S \cap \sigma(T_1)) = F \cap \sigma(T_1) = \emptyset$, hence when $\sigma(T_1 \mid Y) \cap S_1 = \emptyset$ we also have $\sigma(T_1 \mid Y) \cap S = \emptyset$ (where Y is a spectral maximal space of T_1).

But it also follows that

$$X_{T_1 \oplus T_2} (\sigma(T_1 \mid Y_1) \cup S) = X_{T_1} (\sigma(T_1 \mid Y_1) \cup S) \oplus X_{T_2} (\sigma(T_1 \mid Y_1) \cup S) =$$

$$= [Y_1 + X_{T_1} (S)] \oplus [Y_2 + X_{T_2} (S)] = X_{T_1 \oplus T_2} (S) + Y$$

and one can easily verify that $Y = Y_1 \oplus Y_2$. $T \in T \mid Y_1 \oplus Y_2$ being decomposable, by proposition 2.2.6. there follows that $T_1 \mid Y_1$ is decomposable. Let now Y_1 be a maximal space of T_1 such that $\sigma(T_1 \mid Y_1) \supset S_1$. Then we have

$$X_{T_1 \oplus T_2} \left(\sigma(T_1 \mid Y_1) \cup S \right) = X_{T_1} \left(\sigma(T_1 \mid Y_1) \cup S \right) \oplus X_{T_2} \left(\sigma(T_1 \mid Y_1) \cup S \right) =$$

$$= X_{T_1} \left(\left[\sigma(T_1 \mid Y_1) \cup S \right] \cap \sigma(T_1) \right) \oplus X_{T_2} \left(\sigma(T_1 \mid Y_1) \cup S \right) =$$

$$= Y_1 \oplus X_{T_2} \left(\sigma(T_1 \mid Y_1) \cup S \right)$$

whence it results $T_1 \mid Y_1$ is S_1 -decomposable. Analogously, one verifies that T_2 is almost strongly S_2 -decomposable.

2.7.5. Theorem. Let $T = T_1 \oplus T_2 \in B(X_1 \oplus X_2)$ be a strongly decomposable operator. Then T_1 and T_2 are strongly decomposable.

Proof. There follows by propositions 2.7.1. and 2.7.4.

2.7.6. Proposition. Let $T \in B(X)$ be a strongly S-decomposable operator and $P \in B(X)$ a projection commuting with T. Then $T \mid PX$ is almost strongly S-decomposable, where $S_1 = \sigma(T \mid PX) \cap S$.

Proof. We have $X = X_1 \oplus X_2$, $T = T_1 \oplus T_2$, where $X_1 = PX$, $X_2 = (I - P)X$, $T_1 = T \mid X_1$, $T_2 = T \mid X_2$ and by proposition 2.7.4. we have that $T \mid PX$ is almost strongly S_1 -decomposable.

2.7.7. Corollary. Let $T \in B(X)$ be a strongly decomposable operator and $P \in B(X)$ a projection. Then $T \mid PX$ is strongly decomposable.

Proof. There follows by the preceding proposition.

2.7.8. Proposition. Let $T \in B(X)$ be a strongly S-decomposable operator and let σ be a separated part of $\sigma(T)$. Then $T \mid E(\sigma,T)X$ is strongly S_1 -decomposable, where $S_1 = S \cap \sigma$ (for $E(\sigma,T)$) see corollary 2.2.8.)

Proof. $X_1 = E(\sigma, T)X$ is a spectral maximal space of T. Let Y_1 be a spectral maximal space of $T \mid X_1$. Then by proposition 1.2. [2] Y_1 is also a spectral maximal space of T_{\bullet} whence $T \mid Y_1$ is S_1' -decomposable, where $S_1' = \sigma(T \mid Y_1) \cap S$. But $\sigma(T \mid Y_1) \cap S_1 = \sigma(T \mid Y_1) \cap (\sigma \cap S) = (\sigma(T \mid Y_1) \cap \sigma) \cap S = S_1'$, hence $(T \mid X_1) \mid Y_1$ is S_1' -decomposable, that is $T \mid E(\sigma, T)X$ is strongly S_1 -decomposable.

2.7.9. PROPOSITION. Let $T \in B(X)$ be a strongly S-decomposable operator and let $f: G \to \mathbb{C}$ $(G \supset \sigma(T))$ open and connected) be an analytic function, injective on $\sigma(T)$. Then f(T) is almost strongly S_1 -decomposable.

Proof. From the equalities $X_{f(T)}(F) = X_T(f^{-1}(F))$ (where $F \supset S_1 = f(S)$) and $X_{f(T)}(F \cup S_1) = X_T(f^{-1}(F) \cup S) = Y_F \oplus X_T(S) = Y_F \oplus X_{f(T)}(S_1)$ (where $F \cap S_1 = \emptyset$) and by proposition 2.2.9. there follows that the spectral maximal spaces Y of f(T) that have the property $\sigma(f(T)|Y) \supset S_1$ or $\sigma(f(T)|Y) \cap S_1 = \emptyset$ are also spectral maximal spaces of T. One further performs the proof as for proposition 2.2.9., since a S_1 -covering of $\sigma(f(T))$ is easily transformed trough f^{-1} into a S-covering of $\sigma(T)$.

2.8. A (1,S)-DECOMPOSABLE OPERATOR IS S-DECOMPOSABLE

During this paragraph we shall prove that a (1,S)-decomposable operator is S-decomposable. This result was inspired from the similar one concerning 2-decomposable operators, which was recently obtained by M. Radjabalipour.

2.8.1. Proposition. Let $T \in B(X)$, and let Y be an invariant, T-absorbing subspace of T (particularly, Y is a spectral maximal space of T) and let \dot{T} be the operator induced by T in the quotient space $\dot{X} = X/Y$. Then we have the inclusion:

$$S_{\dot{T}} \subset S_T \setminus \operatorname{Int}\sigma(T|Y).$$

Proof. By proposition 1.1.1. there follows that

$$S_T \subset S_T \cup \sigma(T \mid Y).$$

But from the definition of the analytic residue S_T it results that $S_T = \overline{\text{Int } S_T}$, hence we have the final inclusion

$$S_{\tau} = S_{T} \cup \overline{\operatorname{Into}(T \mid Y)}.$$

It will suffice to prove that $\operatorname{Int} \sigma(T \mid Y) \subset \mathbb{C} \setminus S_T = \Omega_T$. Let $G \subset \operatorname{Int} \sigma(T \mid Y)$ open and $f(\lambda)$ an analytic function on G taking values in \dot{X} such that

$$(\lambda I - \dot{T}) f(\lambda) = \dot{0} \ (\lambda \in \mathbb{C}).$$

Then there exists an open set $G_1 \subset G$ and an analytic function $f(\lambda)$ on G_1 such that $\dot{f(\lambda)} = \dot{f(\lambda)}$ and

$$(\lambda I - T)f(\lambda) = y(\lambda) \ (\lambda \in G_1)$$

with $y(\lambda) \in Y$ (see [18], lemma 2.1.). Since Y is T-absorbing and $\lambda \in G_1 \subset \sigma(T \mid Y_1)$ one obtains $f(\lambda) \in Y_1$, $\dot{f}(\lambda) \in \dot{Y}$, $\dot{f}(\lambda) = \dot{0}$ on G_1 , hence $\dot{f}(\lambda) \equiv \dot{0}$; consequently $S_{\dot{T}} \subset S_T \setminus \operatorname{Int} \sigma(T \mid Y)$.

2.8.2. Corollary. Having the preceding conditions, if moreover $\sigma(T \mid Y) \cap S_T = \emptyset$, we have

$$S_{\dot{\tau}} = S_T$$
.

Proof. By proposition 1.1.1. we have

$$S_T \subset S_{\dot{T}} \cup \sigma(T \mid Y),$$

$$S_{\dot{T}} \subset S_T \cup \sigma(T \mid Y)$$

hence, by the preceding proposition we have $S_T \subset S_{\dot{T}}$ and $S_{\dot{T}} \subset S_T$ hence $S_{\dot{T}} = S_T$.

- 2.8.3. Remark. By the preceding proposition and corollary there follows, as a particular case, the result obtained by Şt. Frunză in [53] namely that if T has the property of the single-valued extension property and Y is a spectral maximal space, then T also has the property of the single-valued extension; also, if $S_T = \emptyset$, Y is T-absorbing and $\sigma(T \mid Y) \supset S_T$, then $S_{\hat{T}} = \emptyset$.
- 2.8.4. Lemma. Let $T \in B(X)$, Y an invariant subspace of T and \dot{T} the operator induced by T in $\dot{X} = X/Y$. Then for $F \supset S_{\dot{T}}$ closed we have

$$\dot{X}_{T}(F) \subset \dot{X}_{T}(F \cup \sigma(T \mid Y))$$

Proof. Since $S_T \subset S_{\hat{T}} \cup \sigma(T \mid Y)$, the right member of the inclusion has sense, and from the relation

$$\sigma_T(x) \subset \sigma_{\dot{T}}(\dot{x}) \cup \sigma(T \mid Y)$$

(proposition 1.1.1.) it follows that if $\dot{x} \in \dot{X}_{\dot{T}}(F)$, then $\sigma_{\dot{T}}(\dot{x}) \subset F$, $\sigma_{T}(x) \subset \sigma_{\dot{T}}(\dot{x}) \cup \sigma(T \mid Y) \subset F \cup \sigma(T \mid Y)$, meaning $x \in X_{T}(F \cup \sigma(T \mid Y))$; consequently $\dot{x} \in \overline{X_{T}(F \cup \sigma(T \mid Y))}$.

2.8.5. Definition. A S-decomposable operator $T \in B(X)$ is said to have an almost S-found spectrum if for any spectral maximal space of T with $\sigma(T \mid Y) \cap S = \emptyset$ and any

covering $\{G_j\}_{j=1}^m$ of $\sigma(T \mid Y)$ open with $\overline{G}_j \cap S = \emptyset$ (j = 1, 2, ..., m) and $Y \subset Y_1 + Y_2 + ... + Y_m$.

2.8.6. Theorem. Let $T \in B(X)$ a (1,S)-decomposable operator with $S_T = \emptyset$ (particularly dim $S \le 1$). Then T is S-decomposable and its spectrum is almost S-found.

Proof. Since T has the property of the single-valued extension and it is (1,S)-decomposable, we have that $X_T(F)$ is a spectral maximal space for any F having the property $F \cap S = \varnothing$ or $F \supset S$. One easily notices that it will suffice to prove that for any F closed with $F \cap S = \varnothing$ and any open covering of F $\{G_1, G_2\}$, where $(\overline{G_1} \cup \overline{G_2}) \cap S = \varnothing$ we have $X_T(F) \subset X_T(\overline{G_1}) + X_T(\overline{G_2})$ (one verifies that through induction: if $F \subset \bigcup_{j=1}^m G_j$ we take $G_j' \subset \overline{G_j'} \subset G_j$ such that $F \subset \bigcup_{i=1}^m G_j'$ and we obtain $X_T(F) \subset X_T(G_1') + \ldots + X_T(\overline{G_{m-1}} \cup \overline{G_m'}) \subset X_T(\overline{G_1}) + \ldots + X_T(\overline{G_{m-2}}) + X_T(\overline{G_{m-1}}) + X_T(\overline{G_m})$.). Let $H = \overline{G_1 \cap G_2}$ and let us set $Y = X_T(H)$; we shall also put $F_1 = F \setminus G_2$, $F_2 = F \setminus G_1$. Since $G_1 \cup G_2 \supset F$ it results $F_1 \cap F_2 = \varnothing$. By formula $\sigma(T) \subset \sigma(T) \setminus (G_1 \cap G_2)$ (which follows by generalisation of a formula belonging to G. Apostol [2], see proposition 1.4.), where T is the operator induced by T in T

We can choose two rectifiable Jordanian curves systems Γ_1 , Γ_2 surrounding F_1 , respectively F_2 and separating F_1 by F_2 . We shall define now

$$\dot{\xi}_{j} = \frac{1}{2\pi i} \int_{J} \dot{x}(\lambda) d\lambda \quad (j = 1, 2)$$

and

$$\dot{v}_{j}(z) = \frac{1}{2\pi i} \int_{\Gamma} (z - \lambda)^{-1} \dot{x}(\lambda) d\lambda \quad (j = 1, 2)$$

for $z \notin \overline{D}_j$, where D_j is the domain bounded by Γ_j (j = 1,2).

We obviously have $\dot{x} = \dot{\xi}_1 + \dot{\xi}_2$, and

$$(z - \dot{T}) \dot{v}_{j}(z) = \frac{1}{2\pi i} \int_{\gamma} (z - \lambda + \lambda - \dot{T}) (z - \lambda)^{-1} \dot{x}(\lambda) d\lambda =$$

$$= \xi_{j} + \frac{1}{2\pi i} \int_{\gamma} (z - \lambda)^{-1} \dot{x} d\lambda = \xi_{j} \quad (j = 1, 2)$$

since $\lambda \to (z-\lambda)^{-1}$ is analytic in \overline{D}_j . Consequently $\dot{\xi}_j \in \dot{X}_T(\overline{D}_j)$ (j=1,2). We choose $x_j \in \dot{\xi}_j$ and we notice the fact that we have $\dot{x} = \dot{x}_1 + \dot{x}_2$, hence $x = x_1 + x_2 + y$, with. In

accordance with lemma 2.8.4. (where $S_T = S_T = \emptyset$) we obtain $x_1 + y \in X_T(\overline{D_1} \cup H) + X_T(H) \subset X_T(\overline{G_1})$ and $X_T(\overline{G_2}) \ni x_2$ which was to be proved.

2.8.7. Theorem. Let $T \in B(X)$ a (1,S)-decomposable operator with $S_T \neq \emptyset$. Then T is S-decomposable.

Proof. Let Y a spectral maximal space of T such that $\sigma(T \mid Y) \cap S = \emptyset$ and let us note " $F = \sigma(T \mid Y)$. We know that Y has the following form $Y \oplus X_T(S) = X_T(\sigma(T \mid Y) \cup S)$. In order to prove the theorem, it will suffice to verify that for any open covering $\{G_1, G_2\}$ of F such that $(\overline{G_1} \cup \overline{G_2}) \cap S = \emptyset$ and any $x \in Y$, there exists x_1, x_2, x_S such that $\gamma_T(x_1) \subset \overline{G_1}, \gamma_T(x_2) \subset \overline{G_2}, \gamma_T(x_S) \subset \overline{G_S}$ and $x = x_1 + x_2 + x_S$ $(G_S \supset G)$. Thus it results that (1,S)-decomposability implies (2,S)-decomposability; through induction, one can prove (n,S)-decomposability for all n. Let $H = \overline{G_1} \cap \overline{G_2}$ and $Y_{\overline{H}}$ the spectral maximal space of T defined by the equality $Y_H \oplus X_T(S) = X_T(H \cup S)$. If we set by T the operator induced by T in the quotient space $\dot{X} = X/Y_H$, by formula in proposition 2.3.6. we have

 $\sigma(\dot{T})\subset\sigma(T)\setminus(G_1\cap G_2),$

hence

$$\sigma(\dot{T}) \subset (\sigma(T) \setminus G_1) \cup (\sigma(T) \setminus G_2).$$

If $x \in Y$ then $\sigma_T(x) \subset F \cup S$ hence $\gamma_{\dot{T}}(\dot{x}) \subset \gamma_T(x) \subset F \cup S$. On the other hand $\gamma_{\dot{T}}(\dot{x}) \subset \sigma(\dot{T}) \subset (\sigma(T) \setminus G_1) \cup (\sigma(T) \setminus G_2)$.

If we set $F \setminus G_1 = F_2$, $F \setminus G_2 = F_1$, then by the relations above and by the fact that $S_T = S_T$ (see proposition 2.8.2.) we obtain:

$$\sigma_{\dot{T}}(\dot{x}) = \gamma_{\dot{T}}(\dot{x}) \cup \dot{S}_{\dot{T}} \subset (F \cup S) \cap \sigma(\dot{T}) \subset [\sigma(T) \setminus (G_1 \cap G_2)] \cap (F \cup S) \subset (F_1 \cup F_2) \cup S$$

Consequently $\rho_{\dot{T}}(\dot{x}) \supset \mathbb{C}F_1 \cap \mathbb{C}F_2 \cap \mathbb{C}S = G$ and on set G we have the equality $(\lambda I - \dot{T})\dot{x}(\lambda) = \dot{x}$.

One further leads the verification as in the preceding theorem. Let Γ_1 , Γ_2 , Γ_3 three rectifiable Jordanian curves systems surrounding F_1 , F_2 , S and separating them. We shall define then

$$\dot{\xi}_{j} = \frac{1}{2\pi i} \int_{\gamma} \dot{x}(\lambda) d\lambda \quad (j = 1, 2), \dot{\xi}_{s} = \frac{1}{2\pi i} \int_{s} \dot{x}(\lambda) d\lambda$$

and

$$\dot{v}_{j}(z) = \frac{1}{2\pi i} \int_{\gamma} (z - \lambda) \dot{x}(\lambda) d\lambda \quad (j = 1, 2)$$

$$\dot{v}_{s}(z) = \frac{1}{2\pi i} \int_{\gamma} (z - \lambda) \dot{x}(\lambda) d\lambda ,$$

where $z \notin \overline{D}_j$ $(j = 1,2), z \notin \overline{D}_S, \overline{D}_j, \overline{D}_S$ being the domains bounded by Γ_j , Γ_S (j = 1,2). We obviously have

$$\dot{x} = \dot{\xi}_1 + \dot{\xi}_2 + \dot{\xi}_S$$

and

$$(z - \dot{T})\dot{v}_{j}(z) = \frac{1}{2\pi i} \int_{J} (z - \lambda + \lambda - \dot{T})(z - \lambda)^{-1} \dot{x}(\lambda) d\lambda =$$

$$= \dot{\xi}_{j} + \frac{1}{2\pi i} \int_{J} (z - \lambda)^{-1} \dot{x} d\lambda = \dot{\xi}_{j} \quad (j = 1, 2)$$

$$(z - \dot{T})\dot{v}_{s}(z) = \dot{\xi}_{s},$$

since $\lambda \to (z - \lambda)^{-1}$ is analytic in \overline{D}_i , \overline{D}_s .

Hence $\gamma_{\dot{T}}(\dot{\xi}_j) \subset \overline{D}_j$ $(j = 1,2), \gamma_{\dot{T}}(\dot{\xi}_S) \subset \overline{D}_S$ and we can choose $x'_1 \in \dot{\xi}_1, x'_2 \in \dot{\xi}_2, x'_S \in \dot{\xi}_S$, such that

$$x = x'_1 + x'_2 + x'_S + y$$
 (where $y \in Y_H$).

However we have $\gamma_T(x_j) \subset \gamma_{\dot{T}}(\dot{x}_j) \cup H \subset \overline{D}_j \cup H \subset G_j$ (j = 1,2) and $\gamma_T(x_S) \subset \gamma_{\dot{T}}(\dot{x}_S) \cup H \subset \overline{D}_S \cup H$. Form the last inclusion it follows that $x_S' \in X_T(\overline{D}_S \cup H)$ hence $x_S' = x_S + y_1$, where $x_S \in X_T(\overline{D}_S)$ and $y_1 \in Y_H$. We can finally write

$$x = x_1 + x_2 + x_S,$$

where

$$x_1=x_1'+y_1+y\,,\;x_2=x_2'\,,\;\gamma_T\big(x_1\big)\subset\overline{G}_1,\;\gamma_T\big(x_2\big)\subset\overline{G}_2\,,$$

 $\gamma_T(x_S) \subset \overline{G}_S$. By this the proof is over.

By proposition 2.4.1. and in accordance with the ones above we obtain the following result:

2.8.8. Theorem. Let $T \in B(X)$, and let $S \subset \sigma(T)$ be a compact set such that $S_T \subset S$. Then the following conditions are equivalent:

1°. T is S-decomposable;

 2° . T is (1,S)-decomposable;

3°. $X_T(F)$ is closed for any closed $F \supset S$

and

$$\sigma(\dot{T}) = \overline{\sigma(T) \setminus \sigma(T \mid Y_{\overline{G}})},$$

where G is arbitrary open in $\sigma(T)$, $\overline{G} \cap S = \emptyset$, and $Y_{\overline{G}}$ is the spectral maximal space of T defined by the equality

 $X_T(\overline{G} \cup S) = X_T(S) \oplus Y_{\overline{G}}$.

2.9 THE ADJUNCT OF A S-DECOMPOSABLE OPERATOR

This last paragraph contains several remarks concerning the adjunct of a S-decomposable operator when it has the property of the single-valued extension $(S_T = \emptyset)$, particularly when dim $S \le 1$. Denote by T^* the adjunct of an operator T.

2.9.1. Proposition. Let $T \in B(X)$ an S-decomposable operator with $S_T = \emptyset$. Then for any $F \subset \mathbb{C}$ closed such that $F \cap S = \emptyset$ or $F \supset S$, the space $X_T(\mathbb{C} \setminus F)^\perp$ is a spectral maximal space for T^* and $\sigma(T^* \mid X_T(\mathbb{C} \setminus F)^\perp) \subset F$.

The proof is identical with the one given in [59] for decomposable (2-decomposable) operators, since the demeanour of the S-decomposable operator (more exactly of the (1,S)-decomposable operator) is in this case (and for sets having the property mentioned the text of the theorem) the same with the one of a 2-decomposable operator.

2.9.2. THEOREM. If $T \in B(X)$ is a S-decomposable operator with $S_T = \emptyset$ (particularly dim $S \le 1$), then T^* is also S-decomposable.

Proof. We shall prove (as in [59]) that T^* is (1,S)-decomposable. Let G, G_S two open sets covering the set $\sigma(T^*) = \sigma(T)$ and let D, D_S be another two sets covering $\sigma(T^*)$ such that $\overline{D} \subset G$, $\overline{D}_S \subset G_S$ and moreover $\overline{G} \cap S = \emptyset$, $D_S \supset S$. By setting $F = (\mathbb{C} \setminus D_S) \cap \sigma(T)$ and $F_S = (\mathbb{C} \setminus D) \cap \sigma(T)$ we obtain two closed, disjunct sets F, F_S hence $X_T(F \cup F_S) = X_T(F) \oplus X_T(F_S)$.

Let now u be an arbitrary element from X^* and let us define $\widetilde{u}_1: X_T(F \cup F_S) \to \mathbb{C}$ by $\widetilde{u}_1(x_1+x_2)=u(x_2), \ x_1+x_2 \in X_T(F) \oplus X_T(F_S)$. It is obvious that the functional \widetilde{u}_1 can be extended to a linear continuous functional $u_1 \in X^*$ (using theorem Hahn-Banach). But we also have $u_1 \in X_T(F)$ and by setting $u_2=u-u_1$, it follows easily that $x_2 \in X_T(F_S)^\perp$. We notice the fact that $X_T(F)=X_T(\mathbb{C}\setminus D_S)\supset X_T(\mathbb{C}\setminus \overline{D}_S), \ X_T(F_S)=X_T(\mathbb{C}\setminus D)\supset X_T(\mathbb{C}\setminus \overline{D})$, hence $X_T(F)^\perp=X_T(\mathbb{C}\setminus \overline{D}_S)^\perp$, $X_T(F_S)^\perp\subset X_T(\mathbb{C}\setminus \overline{D})^\perp$ and consequently $X^*=X_T(\mathbb{C}\setminus \overline{D}_S)^\perp+X_T(\mathbb{C}\setminus \overline{D})^\perp$.

Applying the preceding proposition one obtains that T^* is S-decomposable, being (1, S)-decomposable.

2.9.3. Corollary. If $T \in B(X)$ is S-decomposable with $S_T = \emptyset$, then $X_T^*(F) = X_T(\mathbb{C} \setminus F)^\perp$ for any closed $F \subset \mathbb{C}$ such that $F \cap S = \emptyset$ or $F \supset S$.

Remark. By theorem 2.9.2., knowing that $S_T = \emptyset$ it doesn't follow that $S_{T^*} = \emptyset$.

BIBLIOGRAPHY

- 1. Apostol, C., Some properties of spectral maximal spaces and decomposable operators, Rev. Roum. Math. Pures et Appl., 12, 607-610 (1965).
- 2. Apostol, C., Restrictions and quotients of decomposable operators in Banach Spaces, Rev. Roum. Math. Pures et Appl., 13, 147-150 (1968).
- 3. Apostol, C., Remarks on the perturbation and a topology of operators, J. Funct. Anal., 2, 395-408 (1968).
- 4. Apostol, C., Spectral decompositions and functional calculus, Rev. Roum. Math. Pures et Appl., 13, 1483-1530 (1968).
- 5. Apostol, C., Spectral theory and functional calculus (Romanian), St. Cerc. Mat., 20, 635-668 (1968).
- 6. Apostol, C., On the roots of spectral operator valued analytic function, Rev. Roum. Math. Pures et Appl., 13, 587-589 (1968).
- 7. Apostol, C., Roots of decomposable operator-valued analytic functions, Rev. Roum. Math. Pures et Appl., 13, 433-438 (1968).
- 8. Apostol, C., On some multiplication operators, Rev. Roum. Math. Pures et Appl., 13 (1968).
- 9. Apostol, C., Decomposable Multiplication Operator, Rev. Roum. Math. Pures et Appl., 17, 323-333 (1972).
- 10. Albrecht, E.J., Funktionalkalküle in mehreren Veründerlichen, Dissertation, Mainz, 1972.
- 11. Albrecht, E.J., Vasilescu, F.H., *On spectral capacities*, Rev. Roum. Math. Pures et Appl., 18, 701-705 (1974).
- 12. Albrecht, E.J., Funktionalkalküle in mehreren Veründerlichen für stetige lineare Operatoren in Banachräumen, Manuscripta Math., 14, 1-40 (1974).
- 13. Andreian-Cazacu, C., Deleanu, A., Jurghescu, M., *Topology, Category, Riemann Surfaces*, Ed. Academiei R.S.R., 1966.
- 14. Bacalu, I., On the factorization of decomposable operators (Romanian), Stud. cerc. mat., 24, 979-984 (1972).
- 15. Bacalu, I., On restrictions and quotients of decomposable operators, Rev. Roum. Math. Pures et Appl., 18, 809-813 (1973).
- 16. Bacalu, I., S-decomposable operators in Banach spaces, Rev. Roum. Math. Pures et Appl., 20, 1101-1107 (1975).
- 17. Bacalu, I., S-spectral capacities (Romanian), St. cerc. mat., 26, 1189-1195 (1974).
- 18. Bacalu, I., Residual spectral measures (Romanian), St. cerc. mat., 27, 377-379 (1975).
- 19. Bacalu, I., The uniqueness of multi-dimensional S-spectral capacities (Romanian), St. cerc. mat., 28, 131-134 (1976).
- 20. Bacalu, I., *On the restrictions and quotients of S-decomposable operators*, Bull. Math. de la Soc. Scl. Math. de la R.S.R., **20**, 9-13 (1976).
- 21. Bacalu, I., Some properties of decomposable operators, Rev. Roum. Math. Pures et Appl., 21, 177-194 (1976).
- 22. Bacalu, I., Vasilescu, F.H., A property of (S,1)-decomposable operators (Romanian), St. cerc. mat., 29, 441-446 (1977).
- 23. Bacalu, I., (S,1)-decomposable operators are S-decomposable, St. cerc. mat., 31, 6 (1980).
- 24. Bacalu, I., Decomposability conditions of operators, St. cerc. mat., 30, 5, 480-484 (1978).
- 25. Bacalu, I., Restrictions and quotients of decomposable systems, St. cerc. mat., 31, 5, 495-502 (1979).
- 26. Bacalu, I., Remarks on the commutator of two operators, Rev. Roum. Math. Pures et Appl., (to appear).
- 27. Bacalu, I., Restrictions and quotients of spectral systems, St. cerc. mat., 32, 113-119 (1980).
- 28. Bacalu, I., Some properties of S-decomposable operators (Romanian), St. cerc. mat. (to appear).
- 29. Bacalu, I., Semi-decomposable operators, Math. Balcanica, 1 (1971), 1-10.
- 30. Bacalu, I., *About residual spectral properties for systems of operators*, Bull. Inst. Polit. Bucharest, XLIV, 1, 182.
- 31. Bacalu, I., Residual spectral decompositions, I (Romanian), St. cerc. Mat (1980), 32, 467-504.
- 32. Bacalu, I., Residual spectral decompositions, II (Romanian), St. cerc. Mat (1980), 32, 587-623.
- 33. Bacalu, I., Residual spectral decompositions, III (Romanian), St. cerc. Mat (1981), 33, 3-39.
- 34. Bishop, E., Spectral theory for operators on a Banach space, Trans. Amer. Math. Soc., 86, 414-445 (1957).
- 35. Bourbaki, N., Topologie Generale, chap. IX, Herman, Paris, 1958.
- 36. Colojoară, I., Generalized spectral operators (Romanian), St. cerc. mat., 4, 499-536 (1964).

- 37. Colojoară, I., Foiaș, C., *Theory of generalized spectral operators*, Gordon Breach, Science Publ., New York-London-Paris, 1968.
- 38. Colojoară, I., Foiaș, C., Quasinilpotent equivalence of not necessarily commuting operators, J. Math. Mech., 15, 521-540 (1965).
- 39. Colojoară, I., Foiaș, C., *The Riesz-Dunfort functional calculus with decomposable operators*, Rev. Roum. Math. Pures et Appl., **12**, 627-641 (1967).
- 40. Colojoară, I., Foiaș, C., Commutators of decomposable operators, Rev. Roum. Math. Pures et Appl., 12, 807-815 (1967).
- 41. Colojoară, I., Spectral theory elements, Editura Academiei R.S.R., Bucharest, 1968.
- 42. Dowson, H.R., Restriction of spectral operator, Proc. London Math. Soc., 15, 437-457 (1965).
- 43. Dowson, H.R., Operators induced on quotient spaces by spectral operators, J. London Math. Soc., 42, 666-671 (1967).
- 44. Dowson, H.R., Restrictions of prespectral operators, J. London Math. Soc. (2) 633-642, I (1969).
- 45. Dunford, N., Schwartz, J.T., *Linear Operators*, part I. (1958), part II (1963), part III (1971), Interscience Publishers, New York.
- 46. Dunford, N., Spectral Operators, Pacific. J. Math., 4, 321-354 (1954).
- 47. Foiaș, C., Une application des distributions vectorielles a la théorie spectrale, Bull. Sci. Math., 84, 147-158 (1960).
- 48. Foiaș, C., Spectral maximal spaces and decomposable operators in Banach spaces, Arkiv der Math., 14, 341-349 (1963).
- 49. Foiaș, C., About a problem of spectral theory, St. cerc. mat., 17, 921-923 (1965).
- 50. Foiaş, C., On the spectral maximal spaces of a decomposable operator, Rev. Roum. Math. Pures et Appl., 15, 10 (1970).
- 51. Foiaș, C., Spectral capacities and decomposable operators, Rev. Roum. Math. Pures et Appl., 13 (1968).
- 52. Foiaș, C., Vasilescu, F.H., On the spectral theory of commutators, J. Math. Anal. Appl., 31, 473-486, (1970).
- 53. Frunză, Şt., *Une caractérisation des espaces maximaux spectraux des operaterus U-scalaires*, Rev. Roum. Math. Pures et Appl., **16** (1607-1609).
- 54. Frunză, Şt., A duality theorem for decomposable operators, Rev. Roum. Math. Pures et Appl., 16, 1055-1058 (1971).
- 55. Frunză, Şt., *Théorie spectrale locale en plusieurs variables*, II, Comptes Rendus A. Sc. Paris, ser. A, 278 (1974), (1351-1354).
- 56. Frunză, Șt., On Taylor functional calculus, Studia Math., 239-242 (1974).
- 57. Frunză, Șt., The Taylor spectrum and spectral decompositions, J. Functional Anal., 19 (1975).
- 58. Frunză, Şt., An axiomatic theory of spectral decompositions for systems of operators (Romanian), I. St. cerc. mat., 27, 656-711 (1975).
- 59. Frunză, Şt., An axiomatic theory of spectral decompositions for systems of operators (Romanian), II, St. cerc. mat., 27, (1977).
- 60. Hille, E., Philips, R., Functional Analysis and semi-groups, Amer. Math. Soc. Colloq. Pub. vol. 31, Providence (1957).
- 61. Kakutani, S., An example concerning uniform boundless of spectral operators, Pacific J. Math., 4, 363-372 (1954).
- 62. Kantorovitz, S., Classification of operators by means of functional calculus, Trans. Amer. Math. Soc., 115, 194-224 (1964).
- 63. Maeda, F.Y., Generalized spectral operators on locally convex spaces, Math. Ann., 143, 59-74 (1961).
- 64. Nagy, B.Sz., Foiaș, C., Harmonic analysis of operators on Hilbert spaces, Budapest-Amsterdam-London, 1970.
- 65. Hurewicz, W., Wallman, H., Dimension theory, Princetown University Press, 1941.
- 66. Kuratowski, C., Introducere în teoria mulțimilor și în topologie, Editura tehnică, 1969.
- 67. Kuratowski, C., Topologie, vol. I (1958), vol. II (1952), Warszawa.
- 68. Kuratowski, C., Mostowski, A., Set theory, (1970), russian edition.
- 69. Plafker, S., Some remarks on theory of decomposable operators (preprint).
- 70. Taylor, J.L., A joint spectrum for several cummuting operators, J. Func. Anal., 6, 172-191 (1970).
- 71. Taylor, J.L., Analytic functional calculus for several commuting operators, Acta. Math., 125 (1970, 1-38).
- 72. Vasilescu, F.H., On an asimptotic behaviour of operators, Rev. Roum. Math. Pures et Appl., 12, 353-358 (1967).

- 73. Vasilescu, F.H., Spectral distance for two operators, Rev. Roum. Math. Pures et Appl., 12, 733-736 (1967).
- 74. Vasilescu, F.H., Some properties of the commutator of two operators, J. Math. Anal. Appl., 23, 440-446 (1968).
- 75. Vasilescu, F.H., On the residual decomposability in dual spaces, Rev. Roum. Math. Pures et Appl., 16, 1573-1578 (1971).
- 76. Vasilescu, F.H., Residually decomposable operators in Banach spaces, Tôhoku Math. Jurn., 21, 509-522 (1969).
- 77. Vasilescu, F.H., Analytic function and some residual spectrla properties, Rev. Roum. Math. Pures et Appl., 15 (1970).
- 78. Vasilescu, F.H., An application of Taylor's functional calculus, Rev. Roum. Math. Pures et Appl., 4 (1974).
- 79. Vasilescu, F.H., Residual properties for closed operators on Fréchet spaces, Illinois J. Math., 15, 377-386 (1971).
- 80. Vasilescu, F. H., Operatori rezidual decompozabili în spații Fréchet, St. cerc. mat., 21, 1181-1248 (1969).
- 81. Vasilescu, F.H., A uniquness result in operator theory, Rev. Roum. Math. Pures et Appl. (to appear).
- 82. Vasilescu, F.H., Calcul functional analitic multidimensional, Edit. Academiei, 1979.
- 83. Vasilescu, F.H., A Martinelli type formula for analytic functional calculus (to appear).
- 84. Vasilescu, F.H., *A characterisation of the joint spectrum in Hilbert spaces*, Rev. Roum. Math. Pures et Appl., 22, 1003-1009 (1977).
- 85. Vasilescu, F.H., A multidimensional spectral theory in C*-algebras.
- 86. Vasilescu, F.H., *Calcul funcțional analitic și formula lui Martinelli*, Communication presented at the complex analysis seminary, Bucharest, 1976.
- 87. S. Mac Lane, *Homologie*, Springer-Verlag, New York/Berlin, 1963.
- 88. J.L. Koszul, *Homologie et Cohomolgie des Algèbres de Lie*, Soc. Math. France 78, 65-127 (1950).
- 89. Balint, S., Reghiş, M., *Characteristic numbers and spectral properties*, I, Rev. Roum. Math. Pures et Appl., **20**, 3-17 (1975).
- 90. Balint, S., Reghiş, M., Characteristic numbers and spectral properties, II, Rev. Roum. Math. Pures et Appl. (to appear).
- 91. Gunning, R.C., Rossi, H., Analytic Functions of Several Complex Variables, Prentice-Hall Inc. Englewood Cliffs, N.J., 1965.
- 92. Hörmander, L., An Introduction to Complex Analysis in Several Variables, Van Nostrand, Princeton, N.J., 1966.
- 93. Mac Lane, S., Birkoff, G., Algebra, Mac Millan, 1967.
- 94. Waelbroek, L., Le calcule symibolique dans les algèbres comutatives, I. Math. Pure Appl., 33 147-186 (1954).
- 95. Weil, A., L'integrale Cauchy et les functions des plusieurs variables, Math. Ann, III, 178-182 (1935).
- 96. Vrbova, P., On local spectral properties of operators in Banach spaces, Czech. Math. J. 23 (98) 1973, Praga.
- 97. Bishop, E., A duality theorem for an arbitrary operator, Pacific J. Math., 9, 379-397 (1959).
- 98. Yosida, K., Functional analysis, Springer-Verlag, Berlin, 1965.
- 99. Riesz, F., Nagy, B., Sz., *Leçon d'analyse functionelle*, Gautier Villars, Paris-Akadémiai Kiadó, Budapest, 1965.
- 100. Albrecht, E., Eschmeier, J., *Analytic functional models and local spectral theory*, Proc. London Math. Soc., 75 (1997), 323-345.
- 101. Eschmeier, J., Putinar, M., Spectral Decomposition and Anayutic Sheaves, Oxford University Press, New York, 1996.
- 102. Dowson, H.R., Spectral Theory of Linear Operators, Academic Press, 1978.
- 103 Kantorovitz, Sh., Spectral Theory of Banach Space Operators, Lecture Notes in Math. 1012, Springer Verlag, 1983.
- 104. Laursen, K.B., Neumann, M., *An Introduction to Local Spectral Theory*, London Math. Soc., Monograph (New Series), Clarendon Press-Oxford, Oxford, 2000.
- 105. Putinar, M., Hyponormal operators are subscalar?, J. Oper. Theory, 12 (1984), 385-395.
- 106. Brown, S., Some invariant subspaces for subnormal operators, Integral Eq. Oper. Theory, 1 (1978), 310-333.
- 107. Brown, S., *Hyponormal operators with thick spectrum have invariant subspaces*, Annals Math. 125 (1987), 93-103.

- 108. Eschmeier, J., Prunaru, B., Invariant subspaces for operators with Bishop's property (β) and thick spectrum, J. Funct. Anal. 94 (1990), 196-222.
- 109. Prunaru, B., Invariant subspaces for bounded operators with large localizable spectrum, Proc. Amer. Math. Soc., 129 (2001), no.8, 2365-2372.
- 110. Nagy, B., *\$-spectral capacities and closed operators*. Studia Sci. Math. Hungar, 12 (1977), no.3-4, 399-406.
- 111. Nagy, B., Operators with the spectral decomposition property are decomposable. Studia Sci. Math. Hungar, 13 (1978), no.3-4, 429-432
- 112. Nagy, B., On S-decomposable operators. J. Operator Theory, 2 (1979), no.2, 277-286.
- 113. Nagy, B., On S-decomposable operators. Ann. Univ. Sci. Budapest. Eotvos Sect. Math., 22/23 ... (1979/80), 143-149.
- 114. Nagy, B., Essential spectra of spectral operators. Period. Math. Hungar, 11 (1980), no.1, 1-6.
- 115. Nagy, B., Residually spectral operators. Acta Math. Acad. Sci. Hungar, 35 (1980), no.1-2, 37-48
- 116. Nagy, B., Restrictions, quotients and S-decomposability of operators. Rev. Roumaine Math. Pures Appl., 25 (1980), no.7, 1085-1090.
- 117. Nagy, B., Local spectral theory. Acta Math. Acad. Sci. Hungar, 37 (1981), no.4, 433-443.
- 118. Nagy, B., A spectral residuum for each closed operator. Topics in modern operator theory (Timişoara/Herculane, 1980). Operator Theory: Adv. Appl., 2 (1981), Birkhauser, Basel-Boston, Mass.
- 119. Nagy, B., Differential operators and spectral decomposition. Functions, series, operators, Vol. I, II. (Budapest, 1980), 891-917, Colloq. Math. Soc. Janos Bolyai, 35, North-Holland, Amsterdam, 1983.
- 120. Nagy, B., A local spectral theorem for closed operators. Acta Sci. Math. (Szeged), 48 (1985), no.1-4, 339-350.