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S - spectral decompositions III

IOAN BACALTT

MTJLTIDIMENSIONAL SPECTRAL PROPERTIES

Through the third chapter we shall try to generalise some spectral theory results
obtained for a single operator, namely decomposable operators (particularly spectral), for
operators systems. Mainly, we shall try to extend for systems of operators some results
obtained during the first two chapters for decomposable and,S-decomposable operators.
We shall first obtain several results concerning direct sums of systems, by proving that
the direct sum of two systems verifies condition (r) t58l if and only if each system
verifies condition (z); moreover we shall obtain the relations between the local spectra.
We shall further study the direct sums of decomposable and spectral systems. kr the
second paragraph we prove the uniqueness of the spectral S-capacities for ,S-
decomposable systems of operators, and we also emphasise the case when dim^9 = 0. We
shall further try the generalisation of the concepts of single residual extension, analytical
residuum, spectral residual localisation etc. defined by F. H. Vasilescu in his degree
paper, and by this we shall obtain a structure theorem for the spectral maximal spaces of
the,S-decomposable systems.

$3.1. DTRECT SrrMS OF DECOMPOSABLE SYSTEMS

3.1.1. LeH,rH,l e. If Nlo,Xf, tVlo,Yl are the spaces of all exteriorforms with p degree

in s (o = (r, , 
"r,..., 

s,,)) having cofficients in X respectively Y, then

no[o, x]o no[o,r]= A'[o', X @ Y].

Proof. If q e N[o, X]and y = A'[o,I] then

9- Ir, ' ,r . . , ,s, i  n 'str n " 'AJ;, :
l !4< . . .< i  o3n

V = 
\ ! , , , r . . . , ,s4n s i2 n. .J i ,  ,

l< i r< . . .4  r3n

(we put the same indexes on the expressions of both <p and ry because when the monoms

s,, A s,, n... n,s,, do not appear, their coefficient is assumed to be 0).

For 1 e n*lo,X @ I] we have

By
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x- I(to !)aa-,,,s, n,sr2 A...n.t ip =
l3r, <..<ioSn

= 
Z*,ra ,r tnn s6 n " '^sir  @ !44,,osirn sr,  n " '^sro =

141<...<i o3n

= L*n ,,tun st, n "'ns,o @ Zln ...,,trn s,, n "'^' i ,, =
lgr<...<b<u l3'1<...<i,3n

y e ̂ *fo,xlo nr[o, r]. rrom *" "#,r*.J"i::::, rouows rhe inverse incrusion.
3.1.2. Remark. If in the preceding lemma we replace the system of undetermined o

with the system awdZ =(",,rr,...,"n,81,&22,...,d2,) and the spaces X and I with

c-(G,x) respectively c*(G,y) G c cn open), using moreover the obvious equality

c- (G, x)a c- (c,y) = c* (G, x @ y) we obtain
Ao [o r dz, c- (G, xt]o nr [" w dz, c* (G,y)f=

= A'[o wdz,c*(G,x @Y)f

3.1.3 LeNarun. Let A, A', B, B' be modules over an algebra such that A'c.A,

B' c B , and h, k nvo arbitrary maps between arbitrary given sets. Then we have

A I A ' @ B l B ' = A @ B l A ' @ B ' ,

Ker f t@Kert=I (er(Aof) ,

Imh@Imk  = ln (na  r \ .

Proof. One easilyproves by direct verification.

3.1.4. PnoposrrroN. If  a=(a,ar,.. . ,o,)c n(x) and b=(br,br,.. . ,b,). gV) are two

systems of operators and Hp are the co-homology modules (see [58J, [70J) then we have
H'(x , "  -  a)a Ho(y, ,  -  b)= Hn(x @y,z - (a@ b)) ,

u, (c- (c, x), u @6)a n, (c- (c, y),p @ A) =
= u o (c' (c, x @ y)(a o B)o (a o a)

forany zeC'and Gc.Cn open.

Proof, Recall that we denote by a@a, pod and (croB)o(aoa) the cofrontier

operators which act on external forms having undeterminates s and dz withcoefficients in
C-(G,X), C*(G,r) a3a C*(G,X @y) as described in the relations:

[6 * a)ol, )=l (",- o, ], + ... + Q, - o,\, * * u, * ... * ! a ̂ -l ^ *€),
L Ozr dz^ ')

t6t a)ul,)= k', -4), +...+ G, - b,\, * *u, *...* !u) ^ *€),
L dZ, AZn "|
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(("oB)@(Ae A)h(,) =[G,-(o, @4)', +...+(,,-(o^@4))', *
l ' n  ^ \  / ' n  ^ \  I

* l  *o * la ,+. . .+ l  $o * lu ,  |  "xQ)[aa 02, ) \8, E, ) "l

The assertions in the text follow both from the more general theorems concerning

tensorial external forms and cohomology modules ([87], t93l) and from direci

verifications using the preceding lemma. Indeed, we can write:
H  o  (X , r -o )A  H  o  ( J , t -b )  =  [Ku  Q  

-o  t  Ao  [o ,  X l  -  t t o . ' [ c , x l ) t

/  Im Q -  o ,Ao- '  [o ,  Xf  -  A '  [o ,x ] ) ]O

k * €  - b : l v p  [ o , r ] - +  A p . ' [ o , r ] )  w Q - b :  A . p - ' [ o , r ]  - +  A . p - ' [ o , r ) l =

k*€  -a :  A .p  b ,x ] ->  Ap. 'b ,xh  KerQ-b :  A .p  [o , r ]  -+  Ao. ' [o - , r ] ) ]
tE^Q-a :  1 \P- ' [o ,x ] -+  Ap [ " ,xh  mQ-b:  A .p- ' [o , I ]  ->  A .p  [ " , t ] ) ]=

=  Ker  Q-A@b) :  Ao [o ,  x@yf  -+  A .p* ' [o ,x@r]
lwQ-Qab ) :  r \P - ' f o , xo r ]  +  Ao  [ o , xo r ] )=

=  H p ( x a r , r - Q a f i )

One easily and similarly verifies the second equality.

3 .1.15.  LsNar,ae.  Let  a=(o,ar , . . . ,an) .8(X)  and b=(br ,br , . . . ,b , )c f ( r )  be two

commuting systems of operators. Then q.@ b = (a, @ b,a, @ br,...,a, @ b,) c A(X A f)

has the property that the corcesponding Taylor spectra vertfy the equality

o(a @ b, X @ r) = o(a, X)v 
"(n,r).

Proof , ,  We shal l  have to  ver i fy  that  z-o=Qr*at ,zz-a2, . . . ,2n-a, )  and z*b=

Q,-b,,zr-br,.. . ,z,-b,) are simultaneously unsingular on X and I i f  and only i f

z - (a @ b) = Q, - (o, o b,), z, - (a, @ br),..., r, * (o, @ b,)) is unsingular on X @ L This

means that the complexes of cochains F8,, - a) and F(Y,z -b) with the operators

g iven by a=Qr-orbr+. . .+(" , -o , ) r ,  respect ive ly  F=( t r -6 , ) " ,  + . . .+( r , -b , )s ,  are

simultaneously exact if and only if the complex of cochains F(X @Y,z -(o@A)) is

exact; hence the cohomology modules

H o (X, 
" 

- a) = 0, H P (Y, z - b) : g

if and only if

H, (x  @Y,z  - (o@a) )=  o .

By proposition 3.1.4. it follows that

Ho (x @ Y, z* (, o u)) = u' (x,' - o)@ H' (Y,' - b)
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hence the left member becomes 0 if and only if each term of the right member is null,

q.e.d.

3.1 .6. Pnoposnrou . Let o = (o, qz,...,a,) c n(X) and b = (b,br,...,b,). n(y)

Systems q and b verify condition (Z) if and only if the system

a @ b = (a, @ b,,...,a, @ b,). B8 @ Y) verifies conditton (L).

Proof. Suppose thata andbverifycondition (Z) trence

n*' (c* (c, x),o@ A) = 0, H'-' (c- (c,r),Bo a=)= o
for any open G c C' . From proposition 3.1.4. it results

u *' (c * (c, x @ y),(a o p) o (a o a) = n *, (c * (c, X), oo 6) o
@ H'-tk*(c, r) B o AF o

therefore a@b also verifies condition (Z). Conversely, if a@b verifres condition (Z)

then

n*' (c' (c, x @ y),(cr o B)o @ o d) = o
and from the equality above it follows that

u'' (c* (c, x), o@ a) = n *' (c- (c, x),po d) = o
therefore a and b also verify condition (Z).

n''(c* (c, x @ y),(cr o B)o @ o a))= o
Conversely, one performs the verification similarly.

3.1.7. PnoposrrroN. If  a=(a,ar,.. . ,an)c A(X) and b=(br,br,.. . ,bn)c n(f), are two

systems of operators that verify condition (L), then we have the equalities:

1"  o la@b,x@ y)=o(a,x)wo(b,y) ;

Zo sp(a@ b,x@ y)= tp(o,*)v tp(o,y);

3o (x ar)rnur@)= xsrl@)o 4r1(r);
4o (x or),nu(r)= x"(r)ayu(F),

w h e r e  x e X ,  y e  Y  a n d  F c . C ' .

Proof. Let z . p(o,x)n p(a, y); ttren there exists a proximity V of z and 2n analytic
functions on v taking values in xrespectively { -f,, -fr,...,.f , and g, , g2,..., g, such that

x =(C, *o,)f,(q)*.. +((, -o,)f,(E)

y = (E, - b,)g,(q)*.. * (q, - t,)s,(e)
for  (  = (C,,er, . . . ( , )eV .Hence. wehave
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((, - (o, o r, )X"n (q ) o g, (() * ... * (e, - (o, @ o,)Y,f , (q) a s,(e)) =
= (q, - o,)f,G)* ... * (q - o,)f,(q)) a

o (q, - o,)e,(q) * ... + (q, - b,b,(q)) = * @ y,

consequently z e p(o @ b, x @y), meaning

o(a @ b, x @ y). a(o, *)v a(U, y) .

Conversely, if zep(o@b,x@y), then there exists a proximity V of z and n

functions on Ztaking values in X O Y , -fr@ g,,.fr@ gr,...,f,@ gn so that

x @ y = (e, - @, @ b,)Xf,(S) o g, (q)) * ... * (e, - @, @ b,))

U, G) a s, G)) = ((C, - o,) f ,(q ) * . . . * (r., - o,)f , GDa
o (q, -t,b,(C)*...*(e , -u,b,(e))

hence
* : (e, - o,)f,(() *... * (q, - o,)f ,(e)
y = ((, - b,)g,(() *... * ((, - r,)g,(E),

whence it results that p(a@b,x@ y)c p\,o)up(t,y), meaning

o(o, *)v o(o, y) c o(a @ b, x @ y).

Let us veriff the second equality. Let z e r(o,*)ar(U,y); there exists a proximity V of z

and two forms

g € A'-' fc w dz, c* (rt, x)land ry . A" [o v u, c- (rt,r)f

suchthat 
/ ; r \

-trsr n.. .n s, =[,r,  -o,\ ,*. . .*(e,-o,\ ,*+*,* *{u,)"rr

- /sr  n. . .AS, =[C -b, ] ,  + . . . * (e, -b,b,*** ,*  * {ar , l "*

It follows that <p @ V. n'-' [oudz,C* (V, X @f)] *a moreover

analytic
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+ +dz,
\

,J"(*ov)=((q, 
-o,),

...*lu.''|" *lo ((q,
o z n ) )

o9 l ,az, )

*3-ar.
a4

/ ' n

l o
+  + t -

\ozn

+(e , - o,\^

(e,-Q,@4)) ' ,  *. . .*((.  -(o.a4D, * ((***)*,.

-b,) ,  +

*...* ((, - b,b, * *u,*...*$or" I  ̂  rl =
ozr ozn ) )

= Gs, A sz A ...r.. 
"" )@ (1", ̂  sz A ...n s, )=

= ( " o y ! ,  ^ s z  A . . . A S n  = ( " o y ) ' ,

hence ter(o@b,x@y). Conversely, let now t.r(a@b,x@y); then there exists a

proximity V of z and a form X, X elY-' [o u dz,C- (V, X @rI = A" lo v M, C* (fr, X)]O

A'-tb w dz,C- (V,f)] lmean^g X =q @ V, where <p, ry belong to the first respectively

the second term of the direct sum) such that
( x@y)ns ,  n  s2  n . . .AS ,  = (1 , - (o ,@6, ) ) s ,  * . . . *

*(8. *(o. @ b..1)r. .[3o3]*, . .( +r3]*-. ^ (qo v)
\ozr ozt ) \oz, oz, )

From the equalities already written above there follows that
r . r r  n . r2  n . . . n  

" ,  
= ( ( ,  - o rb , * . . . * ( ( ,  *on )s ,+

*!u,* *$*; l^*
ozt oZ, )

yst A szn...n.e, = ((e, - b,)", *.. .  +((, - b,)s, +

* 3-ar,  *  . . .*  o d, ln t
02, a2, " )

where q€n*- ' lovdz,c*(r,x)] ,  Ve A'- ' lowdz,C*(V,X)1, hence ,.r(o,*)vr(t ,y).

The first two equalities are completely verified. From equality 2" it follows that if
x@ y e X @ Y1"eu1(F) trr"n sp(a@ b,x@ y)= tp(o,*)w sp(o,y)c.F, henc e x e x7,1@)

and y.r61(F), that is x@yexrr(r)aYb{F) The inverse inclusion is verified

similarly. For equality 4o we proceed as for equality 3o, using this time the first equality.
3.1.8. PnoposrrroN. Let a=(o,or,...,on). B8) be a commuting sistem of operators

verifying condition (t). nen Xbl(F) is a linear ultrainvariant variety for a, meaning it

is invariant to all operators b commuting with each a, (i=1,2,...,n). If xy,1(F) fo,
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F c. C' closed is open and o(a,xt,,(r)) c F then xrt(r) is a spectral maximal space

for a, more emctly, for any subspace Y invariant to a with o(a,Y) c. F we have

r c x6{F).

Proof. From the remark at definition 1.5.2. t58l it results that if b e ,B(X) is an

operator commuting with all a, (i=I,2,...,n ) then sp(a,bx).tp(o,*), hence when

*. Xp{F), we have sp(a,bx)- sp(o,r)-F, meaning Ux e X1,1(F).

In accordance with the same remarlg if Iis a subspace (linear, closed) of Xinvariant

to a then sp(a,Y)co(a,Y) for any ! eY, hence the inclusion o(a,Y)c F yields

r c xp{F).

3.1.9. PnoposrrroN. A system o=(o,a2,...,a,). B(X) is decomposable if and onty tf

there are verified the following conditior": (t) a satisfies condition (L), X6{F) it

closed and o(a,xp1(r))- F fo, any closed F c.C'; Q) fo, any openfinite covering

{O,Y ,  o f  C '  we  have  x : x t+x2+ . . . t x .  w i th  sp (a ,x , ) cG,  ( i =1 ,2 , . . . ,m)  fo r  a l l

x e X .

Proof. If c is decomposable then conditions (1), (2) are evidently met. We will also

prove reciprocally. I-et (l) u"d (2) satisfied. Then the application E defined by the

equality
E (r) = X7,1(F)

for any closed F c.C' is a spectral capacity for c. Indeed, according to corollary 1.5.10

[58] we have sp(a, x) = A implies r = 0, hence

E(a)= x1"{a)= {o}, r (c') = xt"t(c')= x

(using the fact that sp(a, x) c o(a, X) c" C' for any x e X ). Let us veriff the equality
/ \

Elf lC l= l r  ( r , ) ( r ,  =4 cc") .
\  l€1  )  ie t

/ \ / \
Let  xeEl f ]C l=Xr" t l t ' - lq l ,  hence sp(a,x)cF,  for  a l l  ie I ,  meaning

\  i . r '  /  \ i . r  )

". f^lr (C)= nxr"r(4). conue.sely if r. flx,,1(4), tp(o, x) c F, for all i e I and
1 € l  t e l

/ \
hence r.E[nq ] 

. tet {c,l '-, be an open and finite covering of c' and xex
.  \ i e l  /

arb i t rary .  From the equal i ty  x=xr+x2+. . .  +x,  wi th  tp \o,* , ) .G,  ( i  = \2"" - ,m) i t

follows
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x =txrrk.)=;= (q)

ln order to prove that E is attached to system a, hence that a is decomposable there

further has to be verified the inclusions

a,E(F) cE (F), o'(a,E (ir')) c ln'

for any closed F c C'. This follows by definition of E (f) and by the fact that Xbl(F)

is invariant to each a,.

3 .1.10.  LsNarv{n.  Let  o=(o,or , . . . ,a . , )c  n(X) ,  b=(brbr , . . . ,b , )c  B(y)  be two

systefl$ of operators verifying condition (L) and F c Cn closed. Then subspaces

xbt(F) and \u1(F) are closed and ola, xbt(F))c F, o(b, ytu{F))c F if and onty tf

the subspace (X A Y)v*ul(F) is closed and c(a @ b, (X @ y)t @bt(F)). F .

Proof.I.rut Xd(F), Ybt(F) closed and

o\a, xr,r(F)). r , olb,yrrl(F)). F

ln accordance with proposition 3.1,6., a @ b verifres condition (t) anaby the equality

( l ) xbt(F)@ xrrl(r) = (x @ Y)t"*ut(F)
and by lemma 3.1.5. it follows that (X @ f)t o6t(F) is closed and

o(a @ b, (x @y)v*r{F))= o.(a, xr,r(F))w olt, xru{F)). F .
conversely, let (x @ Y)b@bt(F) be closed and o(a @ b, (x @ y)t *u{F))c F . If we

denote by P, , Py the corresponding projections (meaning p*(x @y) = y ,

&(x @Y)=Y) then according to equality 0) we evidently have
Pr\(x @v)b@bt(F\= xr"r(F), &((x @ Y)t"@b)(F))= \,t(F). Let us prove that

xd(F), \ul(F) are closed. one easily verifies that p* p, commute with each a, @ b,

and since (X@Y)bnur(f) it ultrainvariant, there follows that it is invariant to the

projections P*, 4,. consequently P, p, are also projections in the Banach space
(x@Y)bnb;(F), h"nce the images xt, Yt through px, py of this Banach space are

closed subspaces, Xt @ Yt = (X @ y)bnul(F) and, o(a, X,) c F , 
"(b,y,)c 

F. There

follows that x, c xr"r(F\. Y,, cYtur@); but we also have xt"{F)ortrr(r) = x,@y1,

hence after all X, = X7"1(F), y, = fp1(f) U.e.d.

3.1.11.  Tusonsv.  Let  a=(a,or , . . . ,o , )c  n(X) ,  b=(br ,br , . . . ,b , )c ,  B(y)  be two
systerns of operators. The system a@ b = (a, @ b, a, @ b2,..., a, @ b,) c B(X@ f) rs

decomposable if and only if a and b are decomposable.
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Proof, In accordance with proposition 3.1.7. we have
(x @ y)b@b,[r] = x bt(F)o rr,1(r).

By the preceding lemma there follows that a and b satisff condition (1) from proposition

3.1.9. if and only if a @ b satisfies this condition. From the equalities
( i ,  @y,)+(.r,  @ yr)+.. . .  +(x, @ t)=!,+ *)+.. .  +x,)@

@ (y, + lz *.. .  + y,)

spla@ b, x, @ !)= spla, *,)w sp\b, y) U =\2..., m)

i tresults fhataandb satisffcondit ion (2) fromproposit ion3.I.9. i f  andonlyif a@b

satisfies this condition. Consequently, in accordance with proposition 3.1.9. a and b are

decomposable if and only if a @ b is decomposable.

3.I.12. Conou-nnv. The systems a=(a,or,.. . ,a,)c n(X) and b=(b,,br,.. . ,b,)c B(Y)

are s t rongly  decomposable i f  and only  , f  o@b=(or@b,ar@b2, . . . ,a ,@b,)c

c B(X @

Proof,Leta and b strongly decomposable and Z aspectral maximal space of a@b.

By the preceding theorem there follows that

z = (x @Y)b@bt(F) = xbt(F)@ rr"l(F)

where F =a(a@b,Z), since a@b is decomposable. But a and b being strongly

decomposable, the restrictions 4 Xbt(F) and fl Xb{F) are decomposable and hence

(a @ bl Z is decomposable. Let now a @ b be strongly decomposable and let

X, = X1,1(c(o, Xr)) be a spectral maximal space of a, a and b being decomposable. Then

(a @ b) (x @ Y)r"nu1(o(o, x,)) = d x61(o(o,, x, ))@ g Yp1(o(a,, x, )) is decomposable

and according to the preceding theorem al Xe1@@,,X,)) is decomposable hence a is

strongly decomposable.

3.1.13. PnoposrrroN. Let a=(a,az,...,an)c a(x) be a decomposable (snongly

decomposable) system and p e B(X) a projection in X that commutes with each a,.

Then the restriction d pX is a decomposable (strongly decomposable) system.

Proof. Since p commutes with al l  ui ( i=1,2... ,n), subspaces Xr= PX and

X, = (I - p)X are invariantto a andmoreover we have

x = x t@ x2,  o  =(4 x , )@ @ xr) .
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By theorem 3.1.11. it follows that if a is a decomposable system then Q pX is

decomposable and by the preceding corollary it results that a strongly decomposable

implies d pX also strongly decomposable.

3.1.14. Conor,mny. Let o=(o,az,...,an)c n(X) a decomposable (strongly

decomposable) system and let c be a separated part of o(a, X). If X = Xt @ Xz where

c(a, Xr)= o antd o(o, Xr)= o(o,x) o is the decomposition corresponding to Taylor's

theorem 4.9. [7U , then the restrictions al X,, d X, are decomposable (respectively

s tr ong ly dec omp o s ab I e) sys tems.

Proof. There follows by the preceding proposition.

3.1.15. Remark. By corollary 3.1.12., proposition 3.1.13 and corollary 3.1.14. there

results for the unidimensional case the following: lo the operators T,eB(X,),

f, e A(X r) are strongly decomposable if and only if the operator 4 O T, e B(X, @ X r)

is strongly decomposable; 2" if the operator f e B(X) is strongly decomposable and

P e B(X) is a projection in Xthen the operator 4 PX is strongly decomposable; 3o the

strongly decomposable operator f e B(X) and o a separated part of the spectrum o(Z)

implies 71 E(a, Z)X strongly decomposable where E(o, T) is the projector associated to

o (1.3.10.  [37] ) .
3.1.16. PRoposrrroN. Let a=(a,,or,.. . ,o,)c n(X) be a decomposable system and let

p e B(X)be aprojector commutingwith a (p' = p, par = aip,i=\2... ,n). Byputt ing

Y = p X  a n d b = c 4 Y  w e h a v e

r1r1(o) = pxpl(c)

for any closed o c Cn .

Proof. We first verify that
y a Xp1(o)= pxpl(o).

Since o(a, x)= sp(a, x) for any x e X (corollary 2.2.4. [58]) and sp(a, pr)c. sp(a, x)

(remark to definition 1.5.2. t58l) there follows that for x e xp1(c) we have

sp(a, px)=o(a, px)co hence

pXpl(o) c xp1(o),

pxpl(o) cY r-t xr,1b).

Letnow y eY nX1,1(o) ,  that is  y= px,  xe X and sp(a, -y)co.  Weshal lhave

1 0
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px61@)= Y Axr,(o).

Let now y e Yp1(o), whence 6(b, y) = sp(b, y) c o (b is decomposable, according to

proposition 3.1.13.); for zeC'\ o there exists an open neighbourhood V of z and n

analytic functions on Ztaking values n Y, fu fr,..., f, satisfuing the identity

y = (er - u,)f,(e) * (e, - o,)f,(() *... * (e, - 4)f,(q),
where ( = ((r, Cr,..., C,) e V , Thenwe also have

x = ((, - a)ft(e)+ (e, - or)"f,(Q *... * (q, - o,)f,(C)

hence o(o, y) c o(b, y). rnis yields
rr,(o) c.Y nx1"1(o).

Le t  y  e  I ' nX , , , (o ) ,hence  o (a ,y )co  and  y=  px ,  xeX .On these tC ' \  o  wehave

x =(e, - o,)"f,G)+(q, - o,)"f,(q)+... + (C, - 
",)"f,(q)

with l(() e X .By applying the projectionp to the equality above we obtain

y= py= p2x= p((q, -o, ) f r ( ( )+. . .  +  (C,-o, ) . f , (C))=

= ((, - b,)pf,(4)+... * (r,, - b,)pf,(q) e {,1(o')

hence

r1r1(o) = pX61(o).

3 .1 . l 7 .Tueoreu .  Le t  a= (o , ,o r , . . . , o , ) c .n (x ) ,  b= (b rb r , . . . , b , ) ca ( r ) . aandbare

spectra l  i f  and onty  t f  the system a@b=(a,@b,,ar@br, . . . ,a ,@b,)c  B(X @f)  ,s

spectral.

Proof. Suppose a and b are spectral and let 8", Eu be their spectral measures. Let us

verify that E = Eo @ E, defined by the relation

(n" a n)(n) = E,(B)@ Eb(B)

(B c. C' Borelian) is a spectral measure for a @ b. We evidently have

E(a)= E,(a)@ Eh(a)= 0, E(c')= r ' , (c ')o no(c')= 1
( -  \  / .  \  ( -  \'[Uo )G a i=r[!J,-l' *[f] ur ), =

=(t E.(Bor)'(t u,@)r)=

=t@"@r\o nu@r))= i n(nr\xa y)
k=l l i=l

I 1



$3.LDirect Sums of Decomposable Systems

for  Bo Borel iaq B,nB, =A, i  *7.  Also (a,An,)n(n)=(o,@b,NE"(B)@Er(B))=

= a,E"(B)@ 4Eb(B) = E,(B)a, @ Eb(B)bt = E(B)(a,O b,) and o(a @ b, E(B)(X @ r) =

= o(o a n, (n"(n)a nu(n)\,x @ r)) = o(a @ b, E"(B)x @ Eb(B)Y) = o(o, t"(n)x)v

uo(4 Eb(B)Y)cEw B =E,whenceitresults that a@b is spectral. Conversely, letus,

suppose that a @ 6 is spectral and let E be its spectral measure. Then E can be written
like this: E = Eo @ d where Eo e B(x), Eu e B(Y). one easily verifies that E,O and

EuO are projectors and then the same as above that E" and Eu are spectral measures of

a respectively b. lndeed, we have 0 = E(A) = E"(A)@ Eb(A), hence E"(A) = g ,
Eu(a) = 0 and t = n(C')= n"(c')O ro(C'), consequenrly E"(C')= I*, E6(c,\= t, .

Then we canwrite
( . *  

\  @  @

nl lJ  n(ar) l ( '  e / )= I  n(nrYv @ y)= Z@"(r_) ,  o ru(n)y)=
\ * = r  )  A  k - l

( - - -  . \  ( -  \= 
[] 

(u"(B).))r 
[ I  

(nu(ao)r))= ,

=( u"(uu-l, l u( u,[0 r- ]rl,
\  \ r = t  )  )  \  \ * = t  )  )

whence it results that

-[H ur)*=Eu"@-r,"[;1 ,r),=t u,(,-b
for Br c C' Borelian, B, o Bj = A, i *7. From the inclusion

o(a @ b, E(B)(X @ r)) = o(a @ b, E,(B)X @ Eh(B)y)=

= 6(a, n"(a)x)v a(au1n!r).8,

it follows that

o(a, n"(B)x).8, c(u, nulnyr)- r.
Finally we have (a, A b,)n(n) = (o, @ b,NE,(B)O Er(B) = a,E"(B)@ 4Eb(B) =

= E"(B)a, @ Eb(B)b, = E(B)(a, @ b,) (i = \2..., n) and, B c. C, Borelian q.e.d.

3.1.18. coRor-r-aRv. Let a =(a,ar,...,a,)c n(x) be a spectral system and p e B(x)

a projection that commutes with each a,. Then the restriction Q pX is a spectral

system.

Proof, There follows by the preceding proposition (o = (d px)@ (a Q - flx)1 or

by proposition 3.1.16. and proposition 3.4.5.
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$3.2. MULTIDIMENSIONAL SPECTRAL,S-CAPACITIES

The aim of this paragraphis to show that the S-decomposable operators admit a single

spectral S-capacity. The case dims = 0 is also studied. The definitions of the ,S-

decomposable systems and of the spectral S-capacities is given in the preliminaries. If

o=(o,q2,...,a,).8(X) is an operators system that commute and o(a,X) is the

system's Taylor spectrum reported to X, weshall denote by U(o(a, X)) tfre algebra of the

embryos of analytic functions defined in one neighbourhood of o(a, X). One knows that

there exists a homomorphism from U(o(a, X)) to B(X) so that 1-+ l" and zi -) ai

(i=L\...,n ) where 1 means the embryo associatedto the function z)l and z, the

embryo associated to the coordinate function [71]. We shall further make use of the

following result, proved in [71].

3.2.1. Pnoposnrox. Zel Y, Z be two Banach spQces, r: Y -+ Z a continuous

homomorphism and let b = (b, br,.. . ,  b,) c B(Y),, = (t, ,  c2,.. . ,  cn) c B(Z) be two

systems of operators that commute such that xb,=c,r for any i=L2.",n. I f

7 e U(o(b,I)u o(c, Z)) then we also have rf (b) = f (c)r.

3.2.2. PnoposrrroN. Let o=(o,a2,... ,a,)c n(x) and o(a, X)= or \-/ct2 with

or n 02 =A, 6r, c, closed.If X = Xt@ X2 is thedirectsumdecompositionaccording

to Taylor's theorem ([7U,4.9.), where o(a,X,)=o,, o(a,Xr)=or, then X,, X, are

spectral maximal spaces of a.

Proof. Let Y be an invariant closed subspace of X to a such that o(a, y) c o(a, X ,) .

We mark wrth p, the projection of X on X, with b, the restriction of a, at Y,

b, = a,l I, with c, the restriction of a, at X, c, = a,l X, and with t the restriction of

p, atY, r = pzl ) ' .  Since p, commutes with a, ( i  =LZ.--, n) (1711,4.9.) we have

xb,  = x ,x .

Byse t t i ng  b  = (b , ,b r , . . . ,  b , ) ,  c  =Gr  r , r , . . . ,  
" , ) ,wehave

c(u, r)^ o(", Xr)= Q .

Let now f be the embryo of the analytic function equal with I in a neighbourhood of

o(U, f) , and equal with 0 in a neighbourhood of 6G, X r). In accordance with

I J



$ 3. 2. Multidimensional Spectral S-capacities

proposition 3.2.1. one obtains pzlv = 0 (since .f(b)=lrf(r)= 0) meaning for Y c X,;

consequently X, is a spectral maximal space of a. Similarly for Xr.

3.2.3.Tuuor,tev. Let o=(o,a2,...,an)c n(X) be a S-decomposable system andE a

spectral S-capacity of a. Then E (r) is a spectral maximal space of a (F cC'closed).

Proof. Let Y be a invariant closed subspace of X to a with o(a, Y\c F for a certain

closed set .F c C' . To choose, let F l ,S . Then there exists an open S-covering of C '

{C' C} such that G, : S and G n.F = A, and

x =E(4)+r (a)
According to an isomorphic theorem, the quotient space XIE (Gr) is isomorphic with

E (d) r (c-,)nr @)=E @) r (c, n a)
Taylor's theorem concerning the inclusion of the spectra ([71], lemma 1.2.) yields
o(a E (a) r (o-, ̂ G) - o(o,r (c-" n G), o(a,E(A) - (c, ...' G)wG = G,

meaning

o(o,xt  E(q.)cA.
By denoting by q the canonical map of xon xl E(Gr),by b, therestriction of a, at y,

by c, theoperatorinduced by a, in z = xl e (c-r) andby r therestrictionof rp at rwe

shall  put b = (b, br,.. . ,  b,),,  = ("r, 
"r, . . . ,  ",).  

I t  fol lows

o ( t , f ) ^ o ( " ,  Z ) c F a G = A .

If/is the embryo of the analyic function equal to I on o(b, y) andby 0 on o(c, z) then

"f(b)=1, and f(c)=0. By applying proposit ion 3.2.1. we obtain g.ly=0 hence

r cr (c"). Since Gs is arbitrary with the property Gr. F we infer that

rcn! (Ar)  
" ,  

-F)=f  ( f ) .When Fn,S =A oneproceedsanalogously .

3.2.4. copoLLARy. Let a = (o,,or,...,o,)c n(x) be a s-decomposable system. Then a

admits a single spectral capacity E .

Proof. Let E and E , two spectral S-capacities of c. Then, in accordance with the

preceding theorem E (f) and E ,(F) are spectral maximal spaces of a and from the

inclusions

a(a,E(r)) - F, c(afi,(r))cr

it follows

E (r) cE , (r), E , (r)cr (r),

t 4
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hence the two spechal S-capacities coincide.

3.2.5. Remark. If E is the spectral S-capacity of the S-decomposable system

o=(o,,a2,. ' ,a,)cn(x) then E (r,vrr)=E(q)or (trr) i t  r , ,  F2 are closed and

disjunct F,F, eF , meaning E is additive disjunct [11]. Indeed we have

E (4)cr @,u Fr) (i =L,z), hence r (4)oe (q)-r (r,v r,); but E (4 v Fr)=Y4 @YF,'

(see 4.g. [71]), where o(a,f r)c f,  ( i  =1,2), hence f, cE (4) and

Yr, @ Yr. =r (4 )or (rr ). rrtis remark is also made in proposition 2.2.s.l5sl.

3.2.6. PnoposrrroN. Let a=(o,or,...,a,)c. B(X) be a S-decomposable system such

that dimS=0. Then a admits the following spectral decomposition: for any open

covering {O,Y "f 
C' there exists the spectral maximal spaces {t,Y "f 

a such that

-a
X =LY,  and o\a,Y,) .G,  ( i  =1,2, . . . ,m) .

Proof, Let {G,f un op"n and finite covering of C'. By putting G', = G,., (C' f S)

and by observing that {Q }i is atso a covering of S, it will follow that there exists an

open covering {O;}: of ,S such that Gi c Gi, GlnG' = g ( i  + i  , i ,  i  =1,2,.. . ,m);

indeed, this fact is a consequence of lemma 6.2. U3l, because S is totally disconnected,

that is dim,S = 0. Then there will exist a covering
( , ,  \ ,  ( , , , \ .
\ n i l t v \ n t l r

( j = 1,2,...,m). Let us set 11, =(J H',; then
j= l

( )...
\H,|w lH,|,"

is a S-covering of C'. There will exist the spectral maximal spaces

{r, }u lr;}1
o f  a  s u c h t h a t  

x  = y s * r y ,  , 6 ( a , r r ) c H ,  ,  o ( a , y , ) -  H , .
J = l

But r, :yr(r)grs(2)o....@1r(' ') *nn 
"(o,rj ')). 

H'i ( j =1,2,...,m) accordkrg to theorem

4.9.l7ll.It will be enough to show that there exists a spectral maximal space X, of a

such that Y!) c. X,, Y, c. X, and ob,X,).G, (i =1,2,...,m). By setting

p("') = H,w H', un6 p0)=,Sn (n;ru;w...r)H'1-t\)H'1u\-,...u H',,) we notice that

p(r)n F:n =a and Po), Fli l  .^!, hence

of C' such that H, c G', , H j c Gi
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e (4r,tr4,))- yu) syT
(according to proposition 3.2.2. and using theorem 4.9. LTII) and the wanted spectral :
maximal space will be X, =y0) (j =1,2,...,m). We will now give a lemma that will

prove to be usefrrl
3.2.7.Levruin. Let o = (o,a2,...,a,) c A(X) a decomposable system. Then

o", (") = n,o(o,r)

for all l<i <n and any xex, where n, is theprojection of c' on theplane c

corresponding to the index i.
Proof. Let z eoQ,i and let us suppose that n,(z)= zi 6o,, (r); then there exists an

analytic frurction f,:V,, -+ X such that

x = (2, - o,)-f , (t,) = Q, -a, )0 + ... + (r, - o,) f , (r) * ... * (r, - o,b

hence 
" 

eo(a,x), contradiction, meaning n,o(a,-r)c o, ("). conversely, ret

F = o(a,x); from x e X,(r)= XbXo) and, a(a,xp{r))..F ir results

o", (x) c n,a(a, x 701(F)) 
= 

"(o, I 
x uxrl). n. F = n,a(a, *)

whence follows the equality

o,, (") = n,o(o,*).

$3.3. RESTRICTIONS AND QUOTIENTS OF DECOMPOSABLE SYSTEMS

In this paragraph we shall generalise the result obtained in chapter I for decomposable

operators namely we shall prove that the restriction and the quotient of a decomposable

system related to one of its spectral maximal spaces are ,S-decomposable systems where ,S

is the intersection of the spectra belonging to the restriction respectively the quotient.
3.3.1. Lsvrrrae. Let a=(a,,a2,... ,a,)c a(x) be an operators system meeting (L)

, (-. \,,condition and \Y,1," a systemof o -stabile subspacesfor a (meaning a,y, cy,, lsii- n,

13 j  <m and c(a,Y,)co(a,X\  such that  X =y,*yr* . . .+y, .  Then we have the

equality

o(a,x)=l)"Q,t,)

Proof. Obviously we have
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fi"Q,r,ho(o,x).
If y, eI' then sp(a,ylj). o(o, Y,) U =1,2,...,m) and r = y t !, t ...*y, implies

,p(o, *)-0 roQ, r,) (tssl, r.s.2.)

hence

o(a,x)=l)spQ,x)c..=,1-.,^(u*Q,r,\=reX

, ^ , (  r  |  
\

= 
H [.=,,P.Y Q'' ))',11."Q'r')

meaning what there was to prove.

3.3.2. Lruua. Let a=(a,ar,...,a,)c n(x) be a decomposable system of operators

and Y a spectral mnximal space of a. Then thefollowing equality takes place:

o(a,X /Y)=(",Tf\r@n

where X lY is the quotient space of X by Y.

This lemma represants the extent of a result belonging to Apostol. The proof is

contained in [81] where it appears in the following way

c(a, x I Y) co(a, x) \ rnto(a,Y) .

We shall only verify the equivalence of the two expressions. We emphasise the fact that

in the above inclusion the interior is considered in the topology of o(a,X). One knows

that by denoting by 1 the total set, we have lnt(X) =1-1-y for X cl (see [67],

paragraph 6). Accordingly to Taylor spectra inclusion theorem of [70] we have

o(a, X) = o(o,Y)v o(a, X I Y)

hence
o(a,x /Y)c o(a,x)\ rnto(a,Y)=

=o(o,x)\fu (r,x)t(';)"@-,f ))=;G7)"To,t)co(a,xrr)
3.3.3. DEerNnroN. Same as for an operator we shall define a set-spectrum for a system

of operator 
" 

o = (o, or,..., o,) as being as compact set o c c(a, X) such that there exists

an invariant subspace Ito all a, (i =1,...,n) enjoying the property c(a,Y)= 6 .

l 7
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3.3.4. PnoposrrroN. Let a=(a,ar,...,a,)cn(x) be a decomposable system and

oc.a(a,Y) such that o=lnto (in the topologt of o(a,X)1. Then o and

o'= oG7)\o are sets-spectrafor a and 
:

o(r, xp1(o) = c, o(a,X1,1(o') = o'.

Proof. Since o'(a, Xp1("))- o'it will suffice to veriff that

o(o,Xp{o))c Into,

(the interior is considered in the topology of o(a,X);. fet l"o e Into; then there exists a

polidisk d =b"e C',11.-lol.r) such that d ao(a,X)c Into. Letus put
r \

d, = ),x;t" e o(a, X\l),- r. | . I f ,'  
|  

\ '  ' t  
2 l

f  ? lc, =1),; l)"- l .ol .;r l .
' .  

- r '

c, ={1"; l l " -^, l t ; }

It follows that Go \J G, =C' and G, ad, = Z,hence

x =E(c;)*r @)
and

o(a, x) ="(",r (c, )u "(r,r @ )
(according to lemma 3.3.2.). Consequently IG,E(C,)^ dt=A, whence it follows that

d, co(a,E(q). d ao(a,X)c Into c o, hence xp1(a(a,E(qD=r kr)-E G).
Finally one obtains ).0 e d, c o(a,E (o)) and o'c o(a,E (o)). since o'= Intof (in the

topology of a(a,x)) we also have o(o, X1,1(o'))= o' .

3.3.5. CoRorrany. Let a=(a,,e2,...,An).8(X) be a decomposable system of

operators and Y one of its spectral maximal spacet. Then there exists another spectral

maximal space Y, of a such that o(a,Y,) = o(o, X I Y) .

Proof. From the equality o(a,X/Y)="(-o,7)l-"fo,7) and by the preceding

proposition there follows that o=o(a,x lY) is a set-spectrum for a, hence I! =E(o)

and o=o(a,E(o')).

3.3.6. Remarta. (a) We notice that asystem a is decomposable if and only if it admits
a spectral capacity such as (",x) (see definition2.1.1. [58]), where o=6(a,x) and

"(r,r 
(c)= G for any open G co(a,x) inrhe ropology of o(a,x). There follows by

the fact that G is a set-spectrum for a and, the support of the spectral capacity E is

l 8
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precisely c(a, X). @) If the system a is S-decomposable, then we can take S c o'(a, X).

Indeed if S* = Sn o(a,X) it will zuffice to notice that the map

a = (a,a2s. . . ,o , ) .  a(X)  aennedbytheequal i ty f  
- ( r ' )=E(FuS) 

for  F=, ! -  and

g -(r)=E (rno(a,x)) ir F n s- = a isa spectral s- -capacity for c.

3.3.7. PRoposprou. Let o=(o,or,...,o,)cn(X) be a decomposable system of

operators and Y a spectral maximal space of a. The restriction b =(orlY,orlY,...,a,lY)

of a is a S-decomposable system where S=o(a,I')n o(a,XlY)'and the spectral S-

capaciQt E. of b is given by the equality f 
'(f)=E 

(f)n Y , fo, any F eF , .

Proof. We put o = o(o, f) and o, = o(a, X lY); it will suffice to prove that b is o, -

decomposable.  We have r=E(o) ,  f r (A)=e@)nr={O} and E-(C' )=Ek ' ) . t

nE (o') =Y .Let {F,},. ,  cFo, ; then

/ \ 1 \
E .l 0q I =t I nq lnE (o)=n€ (4)nE (o))=l^p .(q).

\ i . r  /  \ i . r  )  ia  iE!

Also it follows that (o,lfF -(f)= 
a,E (f'no)cE (f no')=f 

-(r) 
and o(a,E 

-(f'))=

=o(a,E (f no))cFnocF for any F 6Fo,. There is only left to be proved that for

any or -covering {C }, {orl "t 
C' we have

r =E -(4, 
)-Ir 

-(d, 
)

Indeed, we have

J  
- l

x =EC, )- i=@,)
and since o(a, X)= o L/ o, and 9. ^ o, = A ftfollows that

G, ac(a,X)=G, no c o

hence E (q )=r (c-, no)-E (")= r and E-(g)== (g) tt  y e r then

! = xo, + "rl + ...* x,

where 
",,  

.E (c",), x, eE@,)-Y , hence xo, = !-(", +...+",)eY aE(o" )=
E 

-(G-", 
), .rreani.rg what it was to be proved.

3.3.g. pnoposrrroN. Let a =(o,,ar,...,a,)c n(x) a decomposable system of operators

and Y a spectral maximal space of a. Then the system o = (o,d2,...,A,,) induced by a on

t)he quotient space X = X lY is S-decomposable where,s = o(a,/)n 
"(a,X).
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Proof. We put o = o(a,r) and we have y = XVI(o(a,r)). It will suffice to prove that

a is o -decomposable (see remark 3.3.6. (b) and it will result that a is S-decomposable. :
If E is the spectral capacity of a we will have f =E(o). The proof will consist in

showing that the map induced by E in ,t defined by the equality

e (r)= ,p€ (r))
(where g : X -+ X is the canonical map and F eF 

") 
is a spectral o' -capacity for the

system ri. obvioustvE @)=,pF@)=e({0})= {o}),r k,)=,pF k,)=,p(x)=,t. Now
let us veriff the equality 

/ \' [n1,J=f= ttl
Let @l,u.F" where J c. I  wi ththeproperty 4:o forany ieJ.wewi l lhaveto

prove that

this yields that if the images through the inverse map q-t of the canonical map q are
equal, then the two sets are equal (q is surjective). We shall use this remark. Since

'  t ' \
o cn F,,  Y-El n4 |  *" shai l  obtain'  

l r  |  ' l
ieJ \1e"r )

. ( ( ( ^  \ ) \  ( -  \  /  \q- ' l  q lE l l l c  l l l=e l0q l+) ,=El0q I ,
\  \  \ ie"r  / / )  \ i . - r  )  \ ' i . j  )

( _  \q 'l f-]q€ (c)l=l^ls-'(q€ (qD=
\i."r ,l 

-iui

= n€ (4 )* r)= {], (+ )=, [n, )
we shall proceed as in the case when {F,1,., cFo, J cI with {no= z for any

i e J . l t f o l l o w s

r(r()o,'Jl=n*e ell
\ \i.", )) ier

Oneknowsthatif  amap/issurjective then f(fa(d))=A forany AcF (-f :E-+1.');

( (  ( ^  \ \ \  /  \q - ' l  q iE l 0c  l l l = r l | q  l n r ,
,  

t  tat t"  ' t ) )  \ i ' ' '  )

e 'lOe€ @)))=0q-'(q€ @))--0€ e).r)
We shall use the equality
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E (r,.., Fr)=E(r,)oE (rr)

for.{ AFz=O andhence

= [nr).E (o)=E [[n.),") 
=

/ \=r I n(4 r")l =nE (4'.ro)= n€ (4)*r)
\ te"/ ./ teJ ieJ

Forthecasewhen H,F eF" with H >o, Fn<r =A there fol lows

q-'(q€ (anr)))=E(n ar)+r =E (anF)uo')=
= € (a)*r).,€ (r)+y)=r (n).'r (ruo)

q-' (qF (s))..r ,pG (r))) = € (a)* r)^ € (r)+ r)=e (n)nE (r u ").
Finally tet {{},.r.F" arbitrary. We put I=I,A,I, such that F,:o if iel, and,

fl n o = O if i e I" .In accordance with the ones above we can write

= [t]')== [[n.)"[n.))== [n')"'[n')=f, r.)
One must also veri$ that E'(f) aenned above is closed. lndeed, if F : o , then

.o-'F'(o))=r(r')+r=E(F)+E(o)=f (.,c) is closed and hence f (r) is also closed;

when ,Fno = a we have <p-rF'("))=e (r)+E (o)=r (ruo'), consequently r'(r) is

closed in this case also. The subspaces E'(f') are evidently invariant to all a, induced by

ai on X 1t=1,2,.. . ,n). Let us prove that for any F eFo we have o(a,E (f)).rq. I f

F = o we have <r(a,f (r))uo'(a,E (o))= o(a,E (F))c r and when F ac = A it

follows that f 
'(r) 

can be identified with f (r) (since f (r) = ,pF (r)),

,p-' F (r))=r (r)o r ) hence we once again have 
"(r;,r 

(r)) c r.
Letnow {C"}., {O,Y u o'-coveringof C'.I t fol lowsthat

x =E(a.Frr k,)
; - l

meaning a is o-decomposable.

3.3.9. THnosnv. Let o = (o,or,.. . ,o,) c A(X) a

spectral maximal space of a. Then both the restriction

decomposable system and Y a

b = alY of a to Y and the quotient

2 l
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a induced by a in the quotient space * = X lY are S-decomposable operators, wltere

s=o(a,r)n 
"(a,*).

Proof.It follows by proposition3.3.7. and 3.3.8.

3.3.10. THsonpu. Let a=(o,or,...,a,)c n(X) a decomposable system of operators

and Y a spectral maximal space of a such that dims =0, wltere S=o(a,I')n o(a,*)t.

Then the restriction alY of a to Y is a decomposable system.

Proof, Let E be the spectral capacity of a. Then the application E 
. 

defined by the

equality

E -(r')=E (F ac(a,Y))=r (r')nr

is a (o, f) tlp" spectral capacity where o = o(o, f). nut from proposition 3.2.6. it results

thatforanyopencovering {G,}i  "f  
C'thereexiststhespectralmaximalspaces {4}i,

Y,  c .Y of  a lY suchthat

a(a,Y,)  c .  G, ,  ( i  = I ,2 , . . . ,m) .

Consequently

, =fr,,
i=l

r .ie(o--)" , =fe.(o--)- t

hence alY is decomposable.

3.3.11. Conolr-anv. With the same condition as in the theorem above the system a
sdmits the following spectral decomposition: for any open covering {C,li of 

"(a, 
X)

there exists the spectral maximnl spaces {t\ "f 
a such that

X =fY,, ob,i',)c. G, (i = t,2,...,m).
l= l

Proof. It follows by theorem 3.3.9. and proposition 3.2.6.

3.3.12. DernuloN. We shall denote by C the class of the compact sets o'e C' with

dim o' < 1 which enjoy moreover the property that for any subset or c cr, closed in o ,

we have dim do, S 0 ( do', being the frontier of o', in the topology of o'), meaning oo,

is totally disconnected. We remind that a decomposable system a = (a,7a2,...0a,) is said

to be strongly decomposable if the restriction alY at any spectral maximal space Y of a

is a decomposable system.
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3.3.13. THsonsna. If a=(a,ar,...,an)cA(X) ,s a decomposable system and

c(a,X)eC , then a is strongly decomposable.

Proof. From the formula o(a,*)=;6-,t)\o@/) where r is an arbitrary spectral

maximal space of a and a=(o,ar,...,ti,) is the system induced by a in X = X lY, it

results that S =a(a,Y)a"(a,*) is a part of the frontier of o'(a,I') retative to c(a,X)

and by theorem 3.3.10., a is a strongly decomposable system.

$3.4. RESTRTCTIONS AllD QUOTIENTS OF SPECTRAL SYSTEMS

During this paragraph the results obtained in 1421, [43] for a single operator will be

extended. There will be shown that a spectral system's restriction and quotient regarding

an invariant subspace to the system are spectral systems if and only if that subspace is

also invariant to the spectral measure of the system and hence that the restriction to an

invariant subspace is a spectral system if and only if the quotient is a spectral system. We

shall further study the case of the spectral systems having a spectrum of dimension 0

(totally disconnected).

3.4.1. DnprNrnoN. A (r',*) trype spectral measure is a map: B k') -+ n(x) G k')

being the family of all Borelian sets of C" ) enjoying the following condition s: E(A) = g ,

n(c')= 7, E@, ̂ Br)= n(n,)a(nr)ror any B,,B,eBk"), u[!J ur)*=Eu(urr

for any sequences (4)*.*.B k') of sets disjunct two bytwo. A commuting system

a=(a,,a2t...to,,) is said to be a spectral system if there exists u (C',X) t51pe spectral

measure E such that a,E(B)=E(B)o, and. o(a,n(n)X)c.B for any BeB (C') and

1 3 j 3 r t .

3.4.2. Lev*tn. Let a=(a,,Q2,...,a,)ca(x) be a spectral system and let E be its

spectral measure. Then each operator a, is spectral and its measure is given by the

equality n,(n)= E("i B) where r e B (C') and n, is the corresponding projection.

Proof, Let us notice that n;'r.A (i') if BeB (C'). obviously, we have

E,(a)= nGia)= n(a)= s , q(c) = E(c')= r and n(n, a n,)= n6;'(r, n r,)):
= E(6,'a,)^ fr, 

'r, 
) = a, (r, )n,(nr) for B, ,8, eB (c'). rr (Bo )0.^ is a sequence of

disjunct sets .B^ e B (C), then G;'go)^.* .B k') tt a sequence of sets disjunct two by
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two hence t,( =t !tr) = 
4"-(Q-)), 

= 
fr,G, rrD, = 

tu(" I 
ur).rhere turther

\t=r / \ \r=r ).

follows that ap,(n)= a,n(niA)= E,(Bh, and a(a,l t,(n)X)=
=n,c(o,n(n)x)=n,o(o,E(" i@)X)=n,f t f f i )=",(n; ' (F)=BforanyB.Bk,)

(for the inclusion C(Blc n;'(a) see [68], page 85) hence a, is aspectral operator. 
n' '

3.4.3. PnoposrrroN. Let a=(o,or,...,o,).n(x) be a spectral system and y be an

invariant subspace to a. I f  the restr ict ion b=aly=(a,ly,arly,.. . ,a, lr) is a spectral

system and E is the spectral measure of a, then Y is invariant to E and EIY is the

spectral measure ofb.

Proof' Let E, the spectral measure of b, xe r and F cF = h. c' ,F = F); th.n
according to proposition 3.1.3 t58l we have rr(n)x e Ery =yp1(F), hence
o(a,Er(r)")= sp(a,z,(r)x). tp(o,n,(r)1. r whence rr(r)x. xp{F)= a(r)x

such that

n,(r)x = E(F),
with zeX and hence n(r)nr(f)r= n'(r)z=E(F)r=nr(r)r. I-et now
F, = F, c C' \ F. In accordance with the above we will obtain

o = n(r)n(4)2, (r,)x = n(r)n, (r,h
Since c" isametr icspace and c '  \F beingopeni t isof  {  type,hence c,  \F=U4,

with { = Fn, Fn C F,*t. We shall have

{r)n,k, r .h = 1yylr(r)r, (F,)x = o,
whence

a(r)x = a(r)E,(c,)" = n(r\n,(r)+ n,k, r 
")" 

=
= n(r)z,(r)"= E,@\.

By using now the regurariry of measures (u}*,r.) {". € x-) *a (a0.r-) and the
fact that for G c C' open and F, - 

1.,, 
d closed we obtain

E, (G) = u, 
[fJ t ) 

= Ilxu,(q, )= I:gE (F.)= r(c)
hence

(n(a)x,x.) = 'pr,(n(c)x,, )= '#,(u,(r).,r-)= (z,(n)r,i)
for any Borelian set B c C,, hence E ly = E".

z)
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3.4.4. Leuux Let a = b, az,...,a,) c n(x) be a spectral system and let A c c" be

Borelian. Then the restriction b=aln(A)X is a spectral system with the spectral

measure En given by the relation E^(B)= En(An B) for any B c C' Borelian.

Proof. One easily verifies that E o is a spectral measure; the fact that E n is a spectral

measure for b follows by the equality

b, E ̂@) = b jE(An B) = t(,t a a)b, = n o(n)t,
(b i = a i lY ,Y = n(l)x ) and from the relations

o(b, E n(r)r) = o(u, n(.t a n)x) = o(a, n(,a a a)x) c E .

3.4.5. PnopostrtoN. Let q=(o,or,-..,a,)cn(x) be a spectral system, let E be its

spectral measure and Y an invariant subspace to a and E. Then the restriction b = alY is

a spectral system and o(a,Y) c o(a,X).

Proof, Since the restriction of the measure E to Y, E lY = E, is a spectral measure

and b,Er(n)= nr(n)Oi (bi = a,lY), it is only left for us to prove that

"@,n,(n))cE
for any ,B Borelian. But for spectral systems, the Taylor spectrum is equal with the

spectrum in bi-commute, from the formula of Cauchy-Weil it easily follows that

c(a,Y). a(o,X). eV replacing c with a1n(A)X andY with A(A)f and also using the

preceding lemma one obtains

o(b, E, (n)v) = o(a I Y, E(B)r) c. o(a, n(a)x) . E

(B c C' Borelian), hence b is a spectral system.

3.4.6.Tneopsrvr. Let a=(a,or,.. . ,o,).88) be a spectral system and let Y be an

invariant subspace to a. Then the restriction b = alY is a spectral system if and only if Y

is invariant to the spectral measure E of a.

Proof.It follows from proposition 3.4.3. and3.4.6.

3.4.7. PnoposrrroN. Let a=(o,,ar,...,a,)c. n(X) be a spectral system and let Y be a

subspace of X invariant to ct and the spectral measure E of a. Then the system

a=(a,,d2,... ,a,) inducecl bya on thequotient space X = X lY is spectral.

proof. Let E the map defined AV E@\ =EireU. The definition is coherent because

A(n)f c Y and the left member of the equality does not depend on the choice of the

- representative of class *. i is a spectral measure of a.Indeed, E(A)*=E@F=O,
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E(r.) =E@T = *, "(!=lo)r 
= 
"[Uo) * 

=fr,n1nry, a,E(n\ = op@F =
= %E(N =E@Tp= E(n\} (B,Bo Borel ian, B,nB =O, i* i ,  l<i , i ,k <m)

for any * e *, hence

E(a)=0, E(c')= t, n(nfo, =o,E(n).

Obviously we also have

E(n, aB,)= E(s,)E(n,).

The only item left to be verified is the inclusion

ala,E(n)*).E,
for any B c C' Borelian. We also have

E(nV =E:pF =EW+y,
and by a known theorem related to isomorphism we obtain

E(n)X = E(a)x +y ty = n(n)x r n(n)x ar .
Yut n(a)X and E(B)X aY areinvariant to a and{ hence al n(n)x is spectral and

c(a, n(a)x n r) c o(a, r(n)x)

(according to proposition 3.4.5.); whence, by using Taylor's theorem of spectra inclusion

[70] it follows that

ala, E(a)x ) c c(a, n(n)x r n(a)x n r) c
c o(a, n(a)x)w o(a, n (n)x n r) c E

for any B c C' Borelian, hence a is spectral.

3.4.8. PnoposrrroN. Let a=(o,or,...,a,)c B(x) be a spectral system having the

measure E, let Y be a subspace invariant to a and a=(ar1a2;...ta,) the system induced

byaon thequotientspace * = X lY.If a isaspectralsystemwiththespectralmeasure

i then Y is also invariant to the spectral measure of a and E is equal with the spectral

measure induced by E on X .

Proof. Since a and a are spectral systems, they are decomposable; therefore
o(o, r) = tp(o, *) (t5sl 1.2.4.). From the equality

x = (C, - o,).f,(q) *... + (q, - o,)-f ,(e)
it results

* = (e, - o,)TB+ ...* (q - o,ff;(q
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where f,0 are analytic andq = ((r,qr,...,q,) hence sp(a,*)c sp(o,*). But

n(r)x = x1,1(F), E(F)X = xrt(r) for F c Cn closed (see proposition 3.1.3. [5s]),

consequently from the inclusions

sp(a,*)c sp(a,x)c F

it follows that 
xKF). xb'')= E(Fv

and consequently the equality E(r)*=* (if sp(a,*)c F then teE(f)X and

E(r)n!r=\=E@j
conversely) implies

hence

E (r )nlFS = E (F )E (F,E-@;) = {o }
for any xeX. Since F'=C" \F is open, there exists a growing sequence {4,},.n of

closed sets from C' such that F' = UC, , Fn A F = A hence
n= l

E(r)n@= {o}'
from the continuity of the measures E}r, the limitation of E(f) ana by the relation

ll*ll. ll'll one obtains

E (F)ET'F = E(rfiEffi = B (p)1ip sffi =
n--r@ n+@

=rnt(rE-@)= f )
and hence

E(e\= E(n)nft\TE@\ =E@F ee x)
If G is an open set from C', there exists a growing sequence of closed sets 11, c C'

6

such that C = U H * therefore similarly as above it follows that

E(c\=E@.
Finally, if B cC' is a Borelian set, from the regularity of the measures (EQ*,x-)

(*. e X. ), trough customary methods, one proves that

E(B\ =E@F
for any x e X. By this last equality it follows that Y is also invariant to the spectral

measure E of a and E is precisely the spectral measure induced by E on X .
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3.4.9. THSoREM. Let o=(o,a2,...,a,)cn(x)te a spectral system and let Y be a

subspace of X invariant to a. Then the system o=(A,Ar,...,a,) induced by a on the

quotient space X = X lY is spectral if and only tf Y is also invariant to the spectral

measure E of a.

Proof, There follows by propositions 3.4.7. and 3.4.8.

3.4.10. Tneonau. Let a=(o,or,...,a,)cA(X) be a spectral system and let Y be a

subspace invariant to a. Then thefollowing three conditions are equivalent:

I" Y is also invariant to the spectral measure E of a;

2" the restr ict ion alY =(arlY,arlY,... ,an l f) 
" 

a spectral system;

3" the quotient system o = (o*dr,..., An) induced by a on X = X I Y is spectral.

Proof. There follows by theorems 3.4.6. and3.4.9.

3.4.11. Dsr.nqnrox. Let a=(o,or,...,on)-B(x) be a spectral system, let ). be a

subspace invariant to a. By marking with Y, the intersection of all closed subspaces of X

that contain I and moreover are invariant both to a and to the spectral measure E of a, the

restriction alY^ wlll be a spectral system (according to the preceding theorem) which we

shall say to be the minimal spectral extetaion of the restriction a I I/ .

3.4.12. PnoposrnoN. Let q=(o,or,.. . ,on).8(X) be a spectral system, let Y be a

subspace of X invariant to both a and alY^, the minimal spectral extension of Y. Then

c(a,Y,) c. o(a,Y).

Proof. In accordance with proposition 3.1.3. [58] we have

Y c E(a(a,Y))x = xp{"(o,Y))=E ("(o,y))

and since E(o(a,Y))X is a closed subspace invariant to both a and. E, we have

Y,, c. Eo(a,f)X . ny applyrng proposition 3.4.5. to the system al E(o(a,I')) and to its

restriction a I I, one obtains

o(a,Y,) c c(a, E(o,Y)) c o(a,Y) .

3.4.13. PnoposrrroN. Let a =(a,,or,...,a,)c B(X) be a system of operators with the

spectrttm o(a,X) btully disconnected (dima(a,X)= O) and Y a subspace of X invariant

to a. Then

a(a,Y) c o(a, X).
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Proof. We have dimo(a,,X) = 0 (i =1,2,...,n) and hence by proposition 4.11., [41]

we obtain

o(a,,Y)c o(a,,X).

This yields that dimo'(a,,Y)= 0, hence

dim(o(a,, I)x o(a,Y)x... x o(a,, r)) = 0 .

But from the inclusion

o (a, Y) c o(a, Y)x a (a,Y)* ...x o(a,,Y)

it also results that dimo(c,I)=0. L,etnow z eo(a,Y) be apoint suchthat z eo(a,X).

Since dimo'(a,f)=0 there exists a decomposition of c(a,Y) in separated parts,

o(a,Y)= or  n  02

such tha t  ze6 t  and  o ,  no (a ,X )=Q.By  remark3 .3 .  I 81 l  weob ta in tha t  {= {0 }

where Y = Yt + Y, o(a,4) . o, (i = 1,2) hence o(a,Y) c o(a, X) .

Remark. The proof of the preceding theorem belongs to F.-H. Vasilescu.

3.4.14. TnsoneNa. Let o =(o,,a2,...,an)c n(x) be a spectral system with

dimo(a, X)=0. Then for any closed subspace Y cX invariant to a, the restriction

a lY is a spectral system.

Proof. According to theorem 3.4.6. it will be enough to show that I is also invariant to

the spectral measure E of a. By the preceding proposition it follows that

o(a,Y) c o(o, X) and, dim o(a, r) = O .

Let o' be a separated part of o(a,X) and f'(o') the projector associated to o that results

from Taylor's theorem 4.9. f751. Let us verifu that ,F(o)= f(o). We have

o(a, r(o)) = c, c(a, F(o(a,x)\ o)X) = o(4, x)\ o

and

.n(o)+r(o(a,x)\o)=r.

By other means
r(a)x - xp1(o)= n(o)x

r'(o(c, x) \ o)x - r(o (a, x)r o)x

see [58], proposition 3.1.3., whence according to lemma 1.12.l41l one obtains

r(o)r(o) = r(o), a(c)r(o(a,x)t o) = o
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hence f(o)=f("). But o(a,I)=o'uoo with o'co, an ca(a,X)\o and hence

o'n on = A , 6',o" being separated parts of o(a,Y). Therefore we shall be allowed to

write

Y  = Y ' @ Y n

with IZ', Y' c Y being invariant to both a and o(a,Y') = o' , o(a,Y')= oo . But n(o)X

and E(o(a,X)t o)X are spectral maximal spaces of a ([58], 3.1.3.), consequently

Y c E(c)x ,  Y 'cr (o(a,x) io)x .

Hence if  y eIZ, then y = y'+ y' ,  y' ,y'eY and y'= E(o)" '  ,  / '= n(o(a,X)lc)" '

whence
n(")y = n(o)y'+ E(o)y' =

,E'(o\' + n(c)n(o(a,x)\o')a' = n(o\' - y' eY

meaning n(o)r c r. According to theorem 1, paragraph 21, [67] a compact set o c c'

having dimension 0 can be written as a countable reunion of closed-open sets in the
relative topology (there exists a countable base (o,),.n formed out of closed-open sets in

o ). Let now G c C' be open and let (o,).n such that

G ao(a,X)= Uo,, .
ieN

By the ones above there follows that for any y e )/ we have

n(c ac(a, x)\ =u[,=q",, 
)" 

= 
; 

u6,,\ e v = y,

hence n(c)r cr, whence n(n)r c)' for any B cc' Borelian. consequently alr is

a spectral system.

3.4.15. CoRoI-I-RRv. Let a =(o,,or,...,on)c n(x) be a spectral system and Y a closed

invariant subspace to a such that o(a,f)= O . Then alY is a spectral system.

Proof. Let alY,, be the minimal spectral extension of all; then, according to

proposition 3.4.12. we have

o(a,Y,)c  c(a,Y) ,

hence

d im o (a ,Y , )=9 .

Since the system alY, is spectral, by the preceding theorem there followsthat a lI is a 
;

spectral system.
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3.4.16. Remark.0) t f  o=(o,a2,. , ,an).8(X) is a specfral  system and I is an

invariant subspace to a such that dimo(c,r)=O @articularly c(a,Y) is discreet) then

the quotient system a=(a,a2,...,4,) inducedbya onthe space X =XlY is spectral.

There follows by the preceding corollary and by theorem 3.4.10. (2) tf .

o=(o,az,...,an).8(X) is a spectral system andY is a spectral maximal space of a,

then the restriction alY and the quotient A are spectral systems, because

y = X p1(o(a, f)) is also invariant to the spectral measure E of a.

s3.s. RESIDUAL SPECTRAL PROPERTIES FOR OPERATORS SYSTEMS

Across this paragraph we shall try to generalise for operators systems some of the

results obtained by F.-H. Vasilescu for a single operator: residual single valued extension,

analytic residuum, the problem of local spectra etc.

Most of the proofs are adaptations of the ones from [58] with minor changes. We shall

regularlyuse the equality B (U,X)=C -(U,X) 
;St1.

3.5.1. DserNrnoN. Let o =(o,or,...,on)c n(X) be a commuting operators system and

,So c C" a compact minimal set having the property that H'ip'(C,X)o@b)=6 got

any open G cC' with GnS, = A (mirumal means that S, is the intersection of all

compact sets having the specified property). We shall denote by d(a,x) ttre reunion of all

open sets V c C' with the property that there exists a form V € ̂ --'b t az,C * (f',X)l

satisflng the equality st = (o @ Ah meaning

r rs r  n ,s2  n . . .n  s t r  = [e ,  -o , ] ,  + . . .+  Q, -o , \ , * * * , * . .  
) " *€ )

(we remind that there exist sets V withthis property, for example the solvin g set r(a, X))'

We shall also denote by

sQ,*)= cn \ d(a,x) '

,(a,x)= d'Q',x)n(C' f  t ,  )

tp@,*)= C' \r(a,x)= g(a,:r)u S,.

The set ,(o,r) will be said to be the solvent set of x related to ct, sp(a,x) will be said to

be the spectrum of x related to a and S, will be called the spectral residuum of a'
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We shall call analytic solvent set of x related to a andwe shall denote Uy p(a,x) the

set

P(o'*)=S(a'x)n (c' \ s' )

where 6(a,"r) is the set of z eC' for which there exists an open neighbourho od V of z, .

and n analytic function on ztaking values inx, f, fr,...,.f, satisSing the identity

x = ((r - or)f,(q)+...+ (C, - o,)-f,(q), e e v .

we shall understand trough the analytic spectrum of -r related to c the set

a(a,x)=C' \ p(a,x)= y(a,x)v S,

where

Y(o' ')= C' \  6(a' x) '

We shall prove that for an operators system that admit a spectral S-capacity we have

s(o, *) = y (a, r), d (a, x) --6(a, x), p(o, *) = r(o, x), p(a, x) = a(a, x) .

3'5.2. PnoposrrroN. For a commuting operators system o=(o,a2,...,a,)c B(x) we

have:

lo  x=0 impl ies S@,*)=A,  sp(a,x)=S, t

2' g(a, x + y). g(o, r)w g(o, y), tp(o, * + y) c sp(o, x)w rp(o, y), (y) x, y e X ;
3' g(a,by) c. g(a,x), sp(a,by)c tp(o,r) y Uo, = a,b, b e a(x), x e X ;

4" g(o, y) c tp(o, y) c. o(a,y)

where Y is a (linear, closed) subspace of x invariant to alr a, and y ey .

Proof. lo follows from the fact that for x=0 and any neighbourhood v cc,, the
form ry -- 0 e A'-rb r az,c * (rr,x)lverifies the relation ,r = (o @ ah meaning

. t rsr  n  s '2  n. . .n ,sn =(Qr-a, )s ,  +. . .+  ( r , -o , ) r ,+

*9-au,*.  a )  '7\
oz, ' "* ur*')nv\z)

Let z e d(a, x) a d(a, y) and z e v, such that there exist the forms

V, . A'-'["raz,C *(fr,,x)f (i =1,2) veriffing the equalities

sr = ("odlu,, s! =GoD)v, .
Thenthe form ry, *Vz €n--t[o,udz S*(V,vfr,X)]verifies the equality

s(x+y)= (uo6f,y, +V,),

hence 2o is verified The inclusions from 3o result from the fact that by considering the
form V e n'-' [o u dz S 

* (V , X)] such that

3 l



Chapter 3 - On some Multidimensional Properties

str=(cr@A),1t

and by applylng operator b to the coefficients of V, its commuting with each a,

( i  =1,2, . . . ,n)  impl ies
/ - \ / - \
(cr@a)by =blutt l^0N =bxs

(admitting the equality on components). The last inclusion, 4o, follows by the remark that

on the solvent set r(a,f) it is satisfied the equality 
"" 

= (o @ A\t.

Remark. If n = l, the spectral residuum S" defined above coincides with S. defined

by F.-H. Vasilescu in176l (a = T).Indeed, in this case

noP*(c,x!oa)=o
foranyopen GcC such that GnS, = O;if  for f  eC*\G,X) wehave

WaaVk)=Q-drQ\*tr!? a,\  / J  \ /  
A Z

then (cr  @6)t=0 means ( , -") fQ)=0 and 
afY-)  =0. Theoperator g@d hasanul l

oz

nucleus on C*(G,X) if and only if the only analytic function f on G verifying

Q - t)fQ)= 0 is the identical null function.

We shall further use a lemma that we proved in [58].

3.5.3. Levrv e. Let V,V, two open sets in C' such that V, nV, * A. Then for any

f  eC*(V,aV,X)  there ex is t  - f , .C*(V, ,X)  ( i=1,2)  such that  f  = f , - . f ,  on

Vr aV,

3.5.4. LEurra t. Let a = (a,,a2,...,a,) c n(X) be an operators system with the spectral

residuttm S" and V, (i=I,2) two open sets in C'\5" such that there exists theforms

V,.N-'["tOz,C 
*(V,,X)] with the property that sx=(cr@6\t, o, V,. Then there

exists a form ry e n*-t [o u dZ g * (V, w V, X)l having the following property

sx  =  (0  @Ah on  V ,vVr .

Proof. When V, nV, = Q we can considen1!)= ty,(r) for z eV, (i =1,2) and we

h a v e  s x = G @ a ) , y  o n  V , w V r . I f  V , a V r * O  w e h a v e

GoDXv,  - \ r ' )=  o  onv ,av , '
Since V, aV, = G cC" \ E , it results that there exists a form

(p € ̂ --' b, az,C * (V, nr, x)lsuch that

vz_v r= (c rob lp .



$3.5.Residual Spectral Properties for Systems and Operators

Indeed, the nucleus of the co-frontier operator cr, @ a,
Ker(cr @ 6: n-'' [o'u az p - (vinr,x\-+ N[awdzp - (V, IV,,X)D=
= tm(a O b : N-' p v dz I - 

V, n rr, x))-+n--' p u dz g - V, arr, x)j
By applying the preceding lemma to the coefficients of rp there follows

g = gr - <p, where .p, . A''[o v dz I 
* (fr,,x)) Q = 1,2).

Consequently

(cr oDle, - q,)= ("oalp = ez -er
whence V,+(o@AIr ,=Vr+(o@AF, on V,nVr.  By put t ing Vl  =V,+(crOdlp,

(i =1,2) we shall obtain , = (o O Ah; on V, (i =1,2) and ryi = yl on l/, nl/r. Hence

by defining ,vQ)= ry',(t) for z ev, (i =r,2) one obtains a form as the one required in the

text of the lemma. The lemma is proved.

3.5.5. conoLLARy. tet {r,Y, b" a finite family of open sets from c' \ ^g, such that the

equation 
"r=(ooA)\, 

has a solution yt on each of the.m. If K cr(a,*) is a compact

set, there exists an open neighbourhood V of K (V.r(o,*)1 on which the equation

," = (0 @ a)V has q solution.

Proof. Let {K"}l=, b. a growing sequence of compact sets such that r(a,r)=L]"" .

we shall prove that there exists a corresponding sequence or Lr*,

\r".,{"[o udz,C*(r(o,r),X)] that verifu the equaliry 
""=(o@Ah" 

on a
neighbourhood of K" . Then V = 

ItgV" exists and it is a global solution. We shall start

with K,. By corollary 3.5.5. there exists a form ry, defined in an open neighbourhood of

K, and satisfying the equality sx=G@A)qrl on this neighbourhood. Since the space

C'(r(a,r),X) is invariant to multiplication with scalar functions of a C' class ([71],

2.16.r.) we can assume, without limiting the generality, that ,yi is defined on ,(o,*);

indeed, by multiplying V; with a suitable scalar function, the new form can be extended

to r(a,x) and we will obtain a form vr on ,(a,x) verifying the equality sxs = (o @ A)\r,

on a neighbourhood of K,. we will now suppose that the forms v'v2,...,vr from the

desired sequences were already determined and let us determine V,*, . According to the

preceding corollary there exists a neighbourhood (*, of the set K,*, and a form qr,*,

defined on this neighbourhood satisfying the equality 
", 

= (o @ A),u;, , and we are

allowed to suppose moreover that v;, is defined on the whole r(a,r\. But

a 1
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Chapter 3 - On some Multidimensional Properties

sr=(o@Ah, on a vicinity Vi of K,, hence by subtraction we obtain

(crOd[ry i . , -V, )=0 on V,aV,* , ;  s ince V,aVu,cC' \S, , i t  w i l l  resul t  that  there

exists a form <p' such that ry j., - Vi = (cr O A-)p' on V, AV,*r, and we may suppose that

<p' is define d on r(a,x). We will put Vi*r = Vl-, -(o@Ah' and obtain a form defined on

,(o,*\ equal with V, on V,AV,^ and satisfying the equality 
"r=(o@bb,., 

on the

neighbourhood V,*, of K,*,. By this the demonshation ends.

3.5.7. Remark. A local version of the Cauchy-Weil formula (1.2.4.,L581) can be

establish on the same way as in [58] formula 1.5.1. Let o=(o,or,.. . ,a,).n(X) Ae a

commuting operators system with the spectral residuum S, and U an open

neighbourhood of sp(a,x); obviously fJ-5,. We shall prove that there exists a form

xeNbrat,Cr'k',X) in the same co-homology class related to cr@O as sx and

such that suport(1)c U . According to theorem 3.5.6. there exists a form

V€A'- 'br*,C'(r(a,x),xl such that ,t=(o@A)r1r. Let U, and U, two open

neighbourhoods relatively compact of sp(a,x), such that

sp(a,x)cU,  cA,  c IJ ,  cU cU

and letus considerscalarC --functionhon C*, h=l outside U, and h=0 onUt.By

usingf t  le tusdef inetheform V bV V =hV onr(a,x)  and f r=0 on U, .This formhas

the coefficients in C-k', X) and satisfies the condition ̂ sr=(cr@d)Q outside the

relatively compact set (Jr. Hence by setting X=sx-("Od)Q wi will obtain a form

defined on C' with suport (X).4, c.U , that is precisely the form having the specified

properties. Considering formula L2.4.l5Sl and using form X, above we can write
1

, = . f =  [ . C t l  x r n d z ,  n . . . n d z n
Qnil u'

which will yreld the local version of Cauchy-Weil formula.

3.5.8. PnoposrroN. Let a=(o,,or,...,a,)c- n(x) be a S-decomposable system, let D

be an open polidisk with Dr-tS=A, kt p be an integer, 0< p<n-l and let

,y e A/[o,U (O,X)] such that oV = 0 where a is defined by

("v X") = ((r, -a, )s, + Q, - o r)t, + ... + (t, - a,)s,) 
"'qt 

(t).

Thenfor any polidisk D'cD with D'c.D there exists aform V€Al- ' [o,U(l ' ,X)]

such that \/ = ct,q on D' .

. A
J +



$3J.Residual Spectral Properties for Systems and Operators

The proof of proposition2.l.3. presented in [5S] is also true in this case, with a single

comment, that D isn't any moro anypolidisk of C', but a polidisk that doesn't cross ,S.
3.5.9. Tneoysu. If a = (o,or,...,a,) c. n(X) is S-decomposable then S = S, .

Proof, With minor differences, the proof is identical with the one for the
decomposable systems (s=o) ([58], proposition 2.r.4.) where so=O is called

property (Z). tt will have to show that for any polidisk (J c. C' such that U n S : A we
have H 'P(V,X)cr )=6  (0<t<n- t ) .We note  rha t  f t ,Q(U,X)a)=9 imp l ies
n'Q*(c,x) '@d)= o (0<t<n -r)  where uis anyopenpol id isk f rom c, ,  G is any

open set Gc.c' suchthat uns =o, Grls= a;theproof is givenin [5g], theorem
1.5.16. for any U, G c C' .

one motivates this through induction on { beginning with i =0. Let f .l) (u,x)
such that af =0; according to the preceding proposition we shall have f =0 on any
polidisk D'with D'c.(J and f =0 on {/. Supposethatforanyopenpolidisk Dc,Cn
with DnS=A we have ll '- '(J (O,X),u\=O with i f ixed, 0<i < n_l and let us
prove that i1'(J (U, X),0) = 0 .

Let {D"} ue a sequence of polidisks, 4 n s=a, such that D,cD"*, for any v

with UD" =(J and ryeN[o.,U (U,X)] such that oV=0. By applyrng the preceding
v= l

proposition for Dr, we infer that there exists a form rp, e.lt'-t[o..,U (n,x)] such that

V = crgr on Dr; analogously we can find a form g; on e with V = oq; on 4. One
obtains o(q, -.p;)=0 on D, whence, by applying the inductive hypothesis, we infer
that there exists a form 1eA-'[o,U (nr,X)], such that gr-e,z=crv.We shall  retain
from the Taylor's decomposition of y on D, a sufficient number of terms, such that 1,
(the retained part) verifies ll"x- "x'll< 

! on D, . rrrint<ing analogously, we can define a

sequenceof forms gu, eu e Nr[o,U @"u,X)fenjoyingtheproperties: V_ocrpu on Du*,
, l  , ,  Iand ll9"*r 

- q"ll < 
?"+r 

on D. The sequence <p" obviously converges to a form having the

analytic coefficients on Uand satisfying V = oq on U, q.e.d.

In 3'2. we proved the uniqueness of the spectral S-capacities for ,S-decomposable
operators systems' We shall now prove this on other ways, emphasising the connection

J )



between the spectral S-capacity related to an operator and

described using the local spectrum, which is most usefiil.

I-et a be a commuting system of operators on the space X,

spectral residuum E . If 11 is an arbitrary set from C' such that

certain linear subspaces,

a c B(X), with the

H = 5,, we shall put

xpl@)= {*,*. x,sp(a,x) c H} and x,(H)= {*,*. X,o(a,x) c. H\; x1"1@) and

x 
"(a) 

are linear subspaces of X and x 
"(n). 

x6{H).

3.5.10. THsonprra. If a=(o,ar,...,o,) it S-decomposable then f (r)= Xbl(F) for any

c losedse tF>5 .

Proof. According to theorem 3.5.g., S = S", hence F t S, and Xp1(F) has sense.

The inclusion E (f) . Xp{F) folows by the fact that sp(o,r)c o(a,E (f)) 6roposition

3.5.2.). One proves the inverse inclusion exactly as in [58] theorem'2.2.1. with the only

remark that Fis no longer arbitrary, but .F : ,S .

3.5.11. Conou-aRy. Let a be a S-decomposable system. Thenfor any closed F:,S,

the subspac, Xpl@) is spectral maximnl space of a; more precisely, for any subspace Z

invariant to a suchthat c(a,Z)c F, we have Z c XSol(F);*oruor", o(o,XSr1(f)). f .

Proof. The inclusion o(a, XSr{f)). f follows by the preceding theorem, since

o(a,E(f)).f ' .  I f  Z is invariant to a with o(a,Z)cF then any zeZ,

sp(o, r) c o(a,Z)c ,F hence t . x1,1(F), meaning z . Xp"1@) .

3.5.12. PnopostrloN. If a ts S-decomposable then for any xeX, we have

sp(a,x)= o(a,x).

proof. Let us prove first that tp(o, *) c o(a, *) or equivalent with this

o(o,r)-r(a,r). I,et ze6(a,x) and according to definition I let us consider an open

neighbourhood V of z and n analytic functions defined on V taking values in {

fr, . fr, . . . , f ,  that verif f  the equali ty *=(e,-o,)f,(q)+'..*(e,-o,)f,(q), (eV '  We

consider the n-l degree form defined on r', v(C)=I(-r)t,C(()b, ^r, n...n s, n '.'
l = l

...A r, . This form can be considered as an element of A--rlo u AeC - 0'' X)l and it easily

verifies the equality ,, = (o @ Ah on V taking into account the anallicity of the

functions .f, (6f,=0); hence it results that V cd(a,x), that is S(a,x) c'd(a,x) or

g(o,*).y(a,*) whence g(o,*)w So = sp(a,x)- y(o,t)uS, = o'(4,'r)' For the inverse

inclusion o(o, r). tp(o,r), let , e ,(o,x) and let D be an open polidisk with its centre in
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z such that Dcr(a,x). Since xexpl\r(a,r)=E(,qp(r,r))) hence by theorem 1.1.3.

[58] there exist the analytic functions 7, fr,...,f, defined on D and taking values in X,
g

such that x=Z(e,-o,)f,(e), €eD. That means that 
".p(a,*), 

hence
i=l

,(o, x) c p(o,x) whence o(o, *) c sp(a, x).

3.5.13. Conollenv. If a is a S-decomposable system then for any H c.Cn with

11:,S we have Xl"l(H)= x"(n).

Proof.It easily follows by the preceding proposition.

3.5.14. PnoeosmoN. ,I/ a is an arbitrary system of operators, then
o(a,X)=l )sp(a,x) .
' xex

Proof, The inclusion l)sp(a,*)c.a(a,X) results from proposition 3.5.2.,

,p(o,r)co(o,X). co.ru..r.tf ir ,e)r(a,x), then /r'.*(J (r,x),a)=g' since

z e So, there exists an open polidisk D, with D a So = A and for which, according to

theorem 3.5.6., we have,Il 'CI (l,X)")= 0 (i = 0,1,..., n-l). Then by corollary 1.4.3.

[58] there follows that z e r(a,x), hence l)sp(a,x)- o(a,X) .

3.5.15. DeprNrrroN. The support 
"r'rn. 

spectral S-capacity is the set-support
E =0{r,Fclosed,E (r)= xl.

3.5.16. PnoposrrtoN. If a is a S-decomposable system and E is its spectral S-capacity

then suporlE = o(o,X).

Proof. The inclusion o(a,X)csuportE results from the fact that for any closed F

such that E(f)= y , we have o(a,*)=o'(a,E (,r'))c f , whence o(a,*).

- f-l {r, Fclosed,E (e)= x}= suportE . For the inverse inclusion let zo e r(a,X) and let

us prove that zo e suportE . Let V be an open neighbourhood of zo such that

Vc r (a ,X )  and le tFbeac losedse tsuch  tha t  zoeF ,  F : ,S  and  X=E( f )+ f  (Z ) ;

th is isposs ib lebecause zoe S (Sca(a,X) ; . I -e t  xeE@);s ince Z cr (a,X)  i t resul ts

that sx=(crOa),y in a neighbourhood k'f n) of the spectrum sp(a,X), hence by

applyng formula 1.2.4. l58l we infer x = 0, hence E(f)={O}, that is E (f')= X; hence

from zo e F it follows zo e suportE , just what there was to prove.

3.5.17 . CoRolr-aRv. If a is a S-decomposable system then for any closed set F we have )

o'(a,E (r))c o(a,x).

1 -
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