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S - spectral decompositions III
By

I0OAN BACALU

MULTIDIMENSIONAL SPECTRAL PROPERTIES

Through the third chapter we shall try to generalise some spectral theory results
obtained for a single operator, namely decomposable operators (particularly spectral), for
operators systems. Mainly, we shall try to extend for systems of operators some results
obtained during the first two chapters for decomposable and S-decomposable operators.
We shall first obtain several results concerning direct sums of systems, by proving that
the direct sum of two systems verifies condition () [58] if and only if each system
verifies condition (L); moreover we shall obtain the relations between the local spectra.
We shall further study the direct sums of decomposable and spectral systems. In the
second paragraph we prove the uniqueness of the spectral S-capacities for S-
decomposable systems of operators, and we also emphasise the case when dimS=0. We
shall further try the generalisation of the concepts of single residual extension, analytical
residuum, spectral residual localisation etc. defined by F. H. Vasilescu in his degree
paper, and by this we shall obtain a structure theorem for the spectral maximal spaces of
the S-decomposable systems.

§3.1. DIRECT SUMS OF DECOMPOSABLE SYSTEMS

3.1.1. Lemma. If A [0‘, X], A’ [G, Y] are the spaces of all exterior forms with p degree
ins(c= (Sl . T )) having coefficients in X respectively Y, then
Ao, X]|® AN [o,Y]= N[, X @ Y]
Proof. If 9 € A’[5, X] and v € A”[o, Y] then

»= in,iz...il,sil NSy NS,

I<i<.<i,<n

W= Zyiliz...il,sil NSy NS,

I<ij<.<i,<n

(we put the same indexes on the expressions of both ¢ and y because when the monoms

s, AS; A...ns, donot appear, their coefficient is assumed to be 0).

For y e A”[G,XEDY] we have
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Z(x@y)”2 oSy NSy A s, =

1< <. <i,<n

= lellz 5 Sy NSy Al AS @y,.‘,.zmipsil NSy A NS, =

P
I<ij<.<i,<n
Z)c,]l2 LSy NSy Avens;, @ Z:ym2 Sy NSy A AS =
ISi <..<i,<n 1<i <..<i,<n
=@ @y, hence

¥ €N [cr, X ]@ AP [0', Y]. From the equalities above it follows the inverse inclusion.

3.1.2. Remark. If in the preceding lemma we replace the system of undetermined o
with the system cudz = (sl,sz,...,s dz,,dz,,...,dz ) and the spaces X and Y with
C” (G, X ) respectively C* (G, Y ) (G c C" open), using moreover the obvious equality
C*(G,X)®C*(G,Y)=C*(G,X DY) we obtain

Nlsudz, (G, x)@ Ao L dz, (G, Y))=
= N|oudz,Cc*(G, x @)
3.1.3 Lemma. Let A, A", B, B' be modules over an algebra such that A' c A,
B' < B, and h, k two arbitrary maps between arbitrary given sets. Then we have

A/A®B/B'=A®B/A®F,
Kerh @ Kerk = Ker(h ® k),
Imh®Imk =Im(h @ k).
Proof. One easily proves by direct verification.

3.1.4. Proposition. If a = (al,az,...,an) c B(X) and b= (bl,bz, . )c B(Y) are two
systems of operators and H" are the co-homology modules (see [58], [70]) then we have
H'(X,z-a)®H"(Y,z-b)=H"(X®Y,z—(a ®b)),

H7(C*(G, X), 0 ®3)® H" (C*(G,Y),p® D)=
=1 (G, x07)(0®B)®(307))
Jorany ze C" and G = C" open.

Proof. Recall that we denote by o @09, BDJ and (oc @ B)@ (5@5) the cofrontier

operators which act on external forms having undeterminates s and dz with coefficients in
C*(G,X), C*(G,Y) and C*(G, X ®¥) as described in the relations:

030 ])= [(Z “aher, o) e 2. L ,,JM,)(Z),
oa))- [(ZI ot b s v 2 ),
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[(Q@B @@))2) =1z - (@ ®5)s, +..+(z, - (@, ®b,))s, +
”{ai ai)d” +(ajn E]&"}AX(Z)

The assertions in the text follow both from the more general theorems concerning
tensorial external forms and cohomology modules ([87], [93]) and from direct u
verifications using the preceding lemma. Indeed, we can write:

H”(X,z-a)®H" (y,2-b) = [Ker(z-a : A? [0, X] > A?* [0, X])/
/Im(z—a AP o, X] > AP [G,X])](‘B

KerG-5: A7 [6,¥] > A?* o, YV ImG=b : A" [o,¥] > A%~ [, Y])]=

ﬁ(er(z—a : A% o, X] > AP [G,X])@Ker@—b tA? 6, 7] > AP [O‘,Y])]/
NimG-a: a2~ [o,x]> A [o, x o ImE—b : A7~ [5,7] > A7 [5,Y])]=
= KerG-@®b): A% [o, x@Y] > A" [o, x @ Y])
/nG-@®b): A? ' [o,x@Y] > A" |5, x @ Y])=

=H”(X®Y,z-(a®b))

One easily and similarly verifies the second equality.

3.1.15. Lemma. Let a= (al,az,...,an)c B(X) and b= (bl,bz,...,bn)c B(Y) be two
commuting systems of operators. Then a®b=(a, @ b,a,®b,,...a, ®b,)c B(X®Y)
has the property that the corresponding Taylor spectra verify the equality

o(a®b, X ®Y)=0(a, X)Uo(b,7).

Proof. We shall have to verify that z—a=(z,~a,,z, ~a,,...,z,~a,) and z—b=

(z, ~b,,z, —b,,...,z, —b,) are simultancously unsingular on X and Y if and only if

—(a®b)= (Z1 ~ (a] ®b,),z,—(a,®b ) s Z (a @®b,)) is unsingular on X @Y . This
means that the complexes of cochains F (X ,z—a) and F(Y,z-b) with the operators
given by o = (zl =gy )sI e o (zn ~a, )sn respectively 3= (z1 —fl, )sl Frogre (Zn — b, )Sn are
simultaneously exact if and only if the complex of cochains F (X @Y,z- (a ® b)) is
exact; hence the cohomology modules

H"(X,z—a)=0, H"(Y,z-b)=0
if and only if
H'(X®Y,z-(a®b))=0.

By proposition 3.1.4. it follows that
H(X®Y,z—(a®b)=H"(X,z-a)® H"(Y,z-b)
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hence the left member becomes 0 if and only if each term of the right member is null,

g.e.d.
3.1.6. Provosiron. Let a=(a,,a,,..a,)C B(X) and b=(b,b,,...b,) B(r).

Systems a and b verify condition (L) if and only if the system
a®b=(a,®b,..,a, ®b,)c B(X ®Y) verifies condition (L). .

Proof. Suppose that a and b verify condition (L) hence

H(C*(G,X)a®3)=0, H™(C*(G,7)p®3)=0
for any open G < C". From proposition 3.1.4. it results
H™(C*(G, X @) (0 ®B)®(6®3))= H(C*(G, X).a ®3)®
®H"(C*(G,Y)p®3)=0

therefore a @b also verifies condition (L). Conversely, if a @b verifies condition (£)

then
H(C(G,x®7)(w®p)®[E®d))=0
and from the equality above it follows that
H"(C*(G,X),a®3)= H™(C(G,X).p®3)=0
therefore a and b also verify condition (L)
H (G, x®7)(e®p)®[E®d)=0
Conversely, one performs the verification similarly.
3.1.7. Proposition. If a = (al,az,...,an) c B(X) and b= (b, ,bz,...,b")c B(Y), are two

systems of operators that verify condition (L) then we have the equalities:

G G(a@b,x@y)z G(a,x)u G(b,y);
50 spla®b,x® y) = sp(a,x)Usp(a,y);
30 (X DY ), 01(F)= X (F)® Y (F);
40 (X ®@Y),0s (F)=X,(F)®7,(F),

where xe X, yeY and F c C".
Proof. Let z € p(a, x)N p(b, y); then there exists a proximity V of z and 2n analytic
functions on ¥ taking values in X respectively ¥, Jis fosen f, and g, g,,...,g, such that
x= (8, ~a ) Q)+ +(, -a,)f, ()

=6 -b)g(Q)+-+(, -0,)e,()
for C;(Q,,Q,...CJEV. Hence, we have ’
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G -(a @6/ ()@ &)+ +(, (o, ®5,)1,(6)® 2,()) =
= (& -a)A Q)+ +€, -a, ), )@
® (€ -0)e Q)+ + €, -5, C)=x®,

consequently z € p(a Db, x® y) , meaning
G(a Db, xD y) C G(a,x)u G(b,y) .
Conversely, if z € p(a @b, x® y), then there exists a proximity V of z and »n analytic

functions on ¥ taking valuesin X @Y, f,®@g,f,Dg,,...[, g, so that
x®@y=(5,~(a ®5))/,€)® g )+ +(, - (a, ®5,))
(7. ©®2,E)=(& -2/ €)+.+C,~a,)f, 0@
(-5 )i ©)+-+ €, -5, ), €)

3

hence

x= —a)f,)+..+(, -a,)7, &),
y= -b)g©)+..+&,-5,)2.()

whence it results that p(a @® b, x® y) c p(x,a)up(d, y), meaning
G(a,x)u G(a,y) o G(a Db,x® y).
Let us verify the second equality. Let z € r(a, x)m r(b, y); there exists a proximity V of z

and two forms
ge A foudz,C(7,X)| and y e A s udz,C7 (7, Y))

such that
0 . 0 .
xs, Ans, =| € —a s+ €, —a, s, Jra—_dz1 +...+aszn AP
Z 7

1 n

VS ALLAS, :[(Ql -bl)sl +...+(C_m ~bn)€" +idi1 % s T ? dE"J/\w.
0z, 0z,

It follows that ¢ @y e A" [0 udz,C*(V,X®Y )J and moreover
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0

€@ @b+ + € -, ®5,), +((§®?sz ;

Z)

+...+[£—®£_7]d2n)/\((p®w)=(((g Ca

/4

n

+(c,.—a,,>sn+idzl+...+%dz"jw]@(<(cl—bl)sl+
0z, 0z

n

+..+€, b, )k, +i_d2l +...+gd'z‘n)/\wj:
0z, 0z

= (xs, AS, A sn)@ (ys1 ASy A A Sn)=
- (x@y)sl AS, Ans, =(x®y,
hence z e r(a @b, x® y). Conversely, let now z € r(a Db, xD y); then there exists a
proximity ¥ of z and a form 7y, y € A™” lcudZ,C”(V,X@Y)J: A”“[cudZ,C“’(V,X)J@
A" [GudZ,C“’ (V,Y )J (meaning ¥ = ¢ @ vy, where ¢, y belong to the first respectively

the second term of the direct sum) such that
(x@y)/\sI NSy AAS, = (8;1 —(al Db, ))s1 + it

+<cn—<an@b,,>>sn+[~?:@ijdz,+...+[é@ijdznA<m@w)
0z, 0Oz oz, 0z,

From the equalities already written above there follows that
XS A8y Nvts S, = ((Cl —a,)sI +...+(§n —an)sn +

+id2] +...+id2” AQ
0z, oz,

1 n

¥s, ASy A, =8, —b)s, +..+(C, b, )s, +

Z) Zy

+—?~le +...+~(?—d2nj/\\p
)

where ¢ e A" [Gudi, C"’(V,X)J, yeA [G udZ,Cw(V,X)J, hence z € r(a,x)Ur(b, y).
The first two equalities are completely verified. From equality 2° it follows that if
x@yeXo® Y[a®b](F) then sp(a ®Db,xD y) &= sp(a,x)u sp(a,y) c I, hence xe X[a](F)
and ye Y[a](F ), that is x®yeX H(F)@ Y[b](F ). The inverse inclusion is verified
similarly. For equality 4° we proceed as for equality 3°, using this time the first equality.

3.1.8. Prorosition. Let a = (a,,az,...,a”) c B(X ) be a commuting sistem of operators

verifying condition (L) Then X, [a](F ) is a linear ultrainvariant variety for a, meaning it

is invariant to all operators b commuting with each a, (i=12,..,n). If X[a](F) for
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F c C" closed is open and G(a, X [a](F ))c F then X [a](F ) is a spectral maximal space

for a, more exactly, for any subspace Y invariant to a with G(a, Y )c F we have
Y < X, (F).

Proof. From the remark at definition 1.5.2. [58] it results that if be B(X) is an
operator commuting with all a, (i=12,...,n) then sp(a,bx)csp(a,x), hence when
xe X[a](F), we have sp(a,bx) c sp(a,x) c I, meaning bx X[a](F) .

In accordance with the same remark, if Y is a subspace (linear, closed) of X invariant
to a then sp(a,Y )CG(a,Y ) for any yeY, hence the inclusion G(a, Y )CF yields
Yc X[a](F)

3.1.9. ProrosiTioN. 4 system a = (al,az,...,an) c B(X) is decomposable if and only if
there are verified the following conditions: (1) a satisfies condition (L), x [a](F ) is
closed and G(a, X [a](F ))C F for any closed F c C"; (2) for any open finite covering
{Gj}'", of C" we have x=x +x, +...+x, with sp(a,xj.)c G, (j=L12,...m) for all

1

xeX.
Proof. If a is decomposable then conditions (1), (2) are evidently met. We will also

prove reciprocally. Let (l) and (2) satisfied. Then the application E defined by the

equality
E (F) = X[a](F)
for any closed F < C" is a spectral capacity for a. Indeed, according to corollary 1.5.10
[58] we have sp(a, x) = & implies x = 0, hence
E (@)= X1, (@) = {0}, E(C")= X(C") = X

(using the fact that sp(a, x) < o(a, X) = C" forany x € X). Let us verify the equality

E(ﬂEj=ﬂE(E)(E=F2cc">.

iel el

iel el

Let xeE [ﬂ F,] = X[a][ﬂFij, hence sp(a, x)c F, for all iel, meaning
xe)E (F)= ﬂXm(F,). Conversely if x € ﬂX[a](F,), sp(a, x) c F, for all iel and
el el iel

hence er[ﬂE]. Let {Gl}:’:I be an open and finite covering of C" and xe X
iel

arbitrary. From the equality x =x, +x, +... +x,, with sp(a, x‘/.)c: G, (j=12...,m)it

follows
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i = Z::X[a]((—;j ): ﬁE (5, )

In order to prove that E is attached to system a, hence that a is decomposable there
further has to be verified the inclusions

a,E(F)cE(F), o(aE(F)) c F R
for any closed F* < C". This follows by definition of E (F) and by the fact that X, (F)
is invariant to each a,.

3.1.10. Lemma. Let a=(a,a,,...a,)c B(X), b=(b,b,..,b)cBE) be two
systems of operators verifying condition (L) and F c C" closed. Then subspaces
X[a](F) and Y[b](F) are closed and G(a, X[a](F))c F, G(b, Y[b](F))C F if and only if
the subspace (X @ Y)y,,1(F) is closed and ola ® b, (X ® V)pen(F)) < F.

Proof. Let Xp,1(F), Y,;(F) closed and

ola, X[a](F))C F,olb Y[b](F))C F.
In accordance with proposition 3.1.6., a @ b verifies condition (L) and by the equality
(D X[a](F)® X[b](F) =(X® Y)[a@b](F)
and by lemma 3.1.5. it follows that (X @ ¥)(,¢,;(F) is closed and
ola ®b, (X @Y )y, (F))=0la, X, (F)) (b, Xy (F))c F.
Conversely, let (X @ Y),q,(F) be closed and ola @b, (X ® Y)uon(F)) F . If we
denote by P, £ the corresponding projections (meaning P,(X®Y)=X,
P(X®Y)=Y) then according to equality (1)  we evidently have
PA(X @Y )yo(F))= Xy(F),  BAX @) (F)= 1, (F). Let us prove that
X [a](F ), Y[b](F ) are closed. One easily verifies that Py, B, commute with each a, ® b,
and since (X @Y Juos)(F) is ultrainvariant, there follows that it is invariant to the
projections P, F,. Consequently P,, B, are also projections in the Banach space
(X ®Y)p,0,(F), hence the images X,, Y, through Py, P, of this Banach space are
closed subspaces, X, @Y, =(X @ Y)q,(F) and ola X,)c F, o(b, ¥,)c F. There
follows that X, c X,,(F), ¥, € ¥,,(F); but we also have Xa(F)®1,(F)=X &Y,
hence after all X, = X ,(F), ¥, = ¥,;(F) q.e.d.

3.1.11. Tusorem. Let a=(a,,a,,...a,)c B(X), b=(b, b,..., b,)c B(Y) be two

systems of operators. The system a®b=(a, ® b,a,®b,...,a, ®b,)c B(X®Y) is

decomposable if and only if a and b are decomposable.
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Proof. In accordance with proposition 3.1.7. we have
(X ® Y)[aeab][F] = X[a](F) ® Y[b](F)'
By the preceding lemma there follows that a and b satisfy condition (1) from proposition

3.1.9. if and only if a @ b satisfies this condition. From the equalities
(r ®p)+(x,®y,)+... +(x, ®y,)=(x +x,+.. +x,)®

@(yl +i Py Fone +ym)
sp(a ®b, x; @yj)= Sp(a, xj)u sp(b, yj.) (F = 120055 W)
it results that a and b satisfy condition (2) from proposition 3.1.9. if and only if « @b
satisfies this condition. Consequently, in accordance with proposition 3.1.9. a and b are

decomposable if and only if a @ b is decomposable.
3.1.12. CoroLLary. The systems a=(a,,a,,...a,) < B(X) and b=(b, b,,...,b,) < B(Y)

are strongly decomposable if and only if a®b= (¢, ®b, a,®b,,...,a, b,)c
c B(X @Y) is strongly decomposable.
Proof. Let a and b strongly decomposable and Z a spectral maximal space of a @ b.

By the preceding theorem there follows that
Z = (X @Y )04 (F) = X1, (F) ® ¥,y (F)

where F =c(a®b, Z), since a®b is decomposable. But a and b being strongly
decomposable, the restrictions @ Xp,;(F) and # X,;(F) are decomposable and hence

(a®b) Z is decomposable. Let now a®b be strongly decomposable and let
X, =X [a](cs(a, X,)) be a spectral maximal space of @, a and b being decomposable. Then

(@®b) (X ® ) en(cla X,)=d Xy(ola, X,))®H Yy (o(a, X)) is decomposable
and according to the preceding theorem o X [a](G(al, X, )) is decomposable hence a 1s
strongly decomposable.

3.1.13. ProposiTion. Let a= (al,az,...,an)c B(X ) be a decomposable (strongly
decomposable) system and p € B(X) a projection in X that commutes with each a,.
Then the restriction d pX is a decomposable (strongly decomposable) system.

Proof. Since p commutes with all @, (i=12..n), subspaces X, =pX and

X, =(I — p)X are invariant to a and moreover we have
X=X ®X,, a:(ai Xl)@(ai Xz)'
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By theorem 3.1.11. it follows that if a is a decomposable system then 4 pX is
decomposable and by the preceding corollary it results that a strongly decomposable
implies ] pX also strongly decomposable.

3.1.14. CoroLLArY. Let a= (al,az,...,an)c B(X ) a decomposable (strongly
decomposable) system and let ¢ be a separated part of o(a, X). If X = X, ® X, where ”.
o(a, X,)=0 and o(a, X,)=o(a, X\ o is the decomposition corresponding to Taylor’s
theorem 4.9. [71] , then the restrictions a| X,, a| X, are decomposable (respectively
strongly decomposable) systems.

Proof. There follows by the preceding proposition.

3.1.15. Remark. By corollary 3.1.12., proposition 3.1.13 and corollary 3.1.14. there

results for the unidimensional case the following: 1° the operators 7, € B(X | ) ,
T, e B(X 2) are strongly decomposable if and only if the operator 7, ® 7, B(X L ©X 2)
is strongly decomposable; 2° if the operator 7 € B(X) is strongly decomposable and
P e B(X) is a projection in X then the operator 7] PX is strongly decomposable; 3° the
strongly decomposable operator T € B(X) and o a separated part of the spectrum o(7')
implies 7] E(o, T)X strongly decomposable where E(s, T') is the projector associated to
c (1.3.10. [37)]).
3.1.16. Prorosition. Let a = (a,, ay,.ra,)C B(X) be a decomposable system and let
p € B(X)be a projector commuting with a (p* = p, pa, =a,p,i=12,...,n). By putting
Y=pX and b=d Y we have
Y[b](c) = PX[a](G)
for any closed o c C".
Proof. We first verify that
Yn X[a](c) = pX[a](G).
Since o(q, x) = sp(a, x) for any x e X (corollary 2.2.4. [58]) and sp(a, px) < sp(a, x)
(remark to definition 1.5.2. [58]) there follows that for xe X (c) we have
sp(a, px)=o(a, px)c o hence
pXy(o) c X4(0),
pX (o) c ¥ 0 X, (o).

Letnow ye Y n X[a](c) ,thatis y = px, xe X and sp(a, y) © 6. We shall have

10
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pX,(0) =Y N X ,4(0).
Let now ye Y[b](cs), whence o(b, y)=sp(b, y)c o (b is decomposable, according to
proposition 3.1.13.); for z € C"\ ¢ there exists an open neighbourhood 7 of z and n
analytic functions on V taking values in Y, f,, f,..., f, satisfying the identity
Y= (gl "bl)](l(g)"'(Cz _bz)fz(g) T +(;n _bn)fn(C)’
where € = (Cl, A— Cn)e V'. Then we also have
x= (G -a)AQ)+ G - a)fQ)+ +(, - a,)1,)

hence o(a, y) < o(b, y). This yields
(o) c ¥ n Xp(0).

Let y € ¥ N X|,4(0), hence o(a, y) c o and y = px, xe X . Onthe set C"\ ¢ we have
x = (G —a)A©)+(E; ~a)f,G) + + (5, —a,)/,(0)

with f,(§) € X . By applying the projection p to the equality above we obtain

y=py=px=p(& -a) Q)+..+(, -a,)f,()=
=G ~b)pf, ©)+... + €, -b,)pf, () € Y;,,(0)

hence
Y[b](G) = PX[a](G)-

3.1.17. Tueorem. Let a = (al,az,...,an)c B(X), b=(b, by,....b,)c B(Y). a and b are
spectral if and only if the system a®b=(a, ®b, a,®b,,...,a, ®b )c B(XDY) is
spectral.

Proof. Suppose a and b are spectral and let £, E, be their spectral measures. Let us
verify that £ = £, ® E, defined by the relation

(E, ®E,(B)=E,(B)®E,(B)
(B < C" Borelian) is a spectral measure for a @ b. We evidently have
E@)=E,(@)®E,@)=0, E(C")=E,(C")®E,(C")=1

E(QBkj(xCﬁy): Ea(QBk)x@ Eb(QBkjy -

=(§Ea(8k)xj@(gEb(Bk>yj=
_ Z(EG(B,()X@ E,(58,))= ZE(Bk X ® y)

11
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for B, Borelian, B, "B, =@, i # j. Also (a, ®5,)E(B)=(a, ® b E,(B)® E,(B)) =
=a,E,(B)®b,E,(B) = E,(B)a, ® E,(B)b, = E(B)a, ®b,) and o(a®b, E(BYX ®Y))=
=c(a®b (E,(B)®E,(B)X®Y))=0(a®b, E,(B)X ® E,(B)Y)=o(a, E,(B)X)uU

Uolb, E,(B)Y)c BU B =B, whence it results that « ® b is spectral. Conversely, let us

A

suppose that a © b is spectral and let £ be its spectral measure. Then E can be written
like this: £ =FE, ® E, where E, € B(X), E, € B(Y). One easily verifies that E_(-) and

E, () are projectors and then the same as above that E, and E , are spectral measures of
a respectively b. Indeed, we have 0=E(J)=E (J)® E,(J), hence E, (D)=0,
E,(@)=0 and I = E(C")= E,(C")® E,(C"), consequently E,(C")=1,, E,(C")=1,.
Then we can write

H(J£@))e0 )= 556,060 0= 3 6,6, 0 £,6,))-

k=1
©

-(Se.e. »)) (3 €.600)- ,

k
[E j@[Eb[UBkjy,
k:I k=1
whence it results that

Ea[UBk}x = ZEa (Bk)x’ Eb(UBkjy = ZEb(Bk)y
k=1 k=1 k=1 k=1
for B,  C" Borelian, B, N B, =<, i# j.From the inclusion
c(a®b, E(B)X ®Y))=c(a®b, E,(B)X ®E,(B)Y)=
=ola, E,(B)X)uo(E,(B)Y)c B,

it follows that
o(a E,(B)X)c B, o(b E,(B)Y)c B .

Finally we have (a, ®5,)E(B)=(a, ®b )E, (B)® E,(B))=a,E,(B)®b.E,(B) =
=E,(B)a, ® E,(B), = E(B)a, ®b,) (i=12,...,n) and B = C" Borelian q.c.d.

3.1.18. CoroLLaArY. Let a = (a, ; az,...,an) c B(X) be a spectral system and p € B(X)
a projection that commutes with each a,. Then the restriction d pX is a spectral
system.

Proof. There follows by the preceding proposition (a = (d pX)®(d (i- p)X)) or

by proposition 3.1.16. and proposition 3.4.5.
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Chapter 3 — On some Multidimensional Properties

§3.2. MULTIDIMENSIONAL SPECTRAL S-CAPACITIES

The aim of this paragraph is to show that the S-decomposable operators admit a single
spectral S-capacity. The case dimS =0 is also studied. The definitions of the S-

3

decomposable systems and of the spectral S-capacities is given in the preliminaries. If
a=(a,a,,.,a,)c B(X) is an operators system that commute and o(a X) is the

system’s Taylor spectrum reported to X, we shall denote by Ulo(a, X)) the algebra of the
embryos of analytic functions defined in one neighbourhood of o(a, X). One knows that
there exists a homomorphism from U(o(a, X)) to B(X) so that 11, and z, - g

(i=12,...,n) where 1 means the embryo associated to the function z —>1 and z, the

embryo associated to the coordinate function [71]. We shall further make use of the

following result, proved in [71].

3.2.1. PropositioN. Let Y, Z be two Banach spaces, t. Y —>Z a continuous
homomorphism and let b= (b, b,,....b,) B(Y), c=(c, cyyc,) = B(Z) be two
systems of operators that commute such that tb,=ct for any i=12,..,n. If
feU(o(b Y)uole Z)) then we also have tf (b) = f(c)r.

3.2.2. Provostrion. Let a=(a,a,,...,a,)c B(X) and o(a X)=0,00c, with
6,nG, =3, 0, o, closed If X = X, ® X, is the direct sum decomposition according
to Taylor’s theorem ([71], 4.9.), where o(a, X,)=0, ola X,)=o0,, then X,, X, are
spectral maximal spaces of a.

Proof. Let Y be an invariant closed subspace of X to a such that o(a, y)cola X ).
We mark with p, the projection of X on X,, with b, the restriction of a; at ¥,
b =a| Y, with ¢, the restriction of @, at X,, ¢; =a| X,, and with t the restriction of
p, atY, t=p,| Y.Since p, commutes with a, (i =12,...,n) ([71], 4.9.) we have

th, = X,T.
By setting b = (b, by,..., b), c= (¢, cprons cn), we have
o(b, Y)nole X,)=2.
Let now f be the embryo of the analytic function equal with 1 in a neighbourhood of

G(b, Y ), and equal with 0 in a neighbourhood of c(c, X 2). In accordance with

13



$3.2. Multidimensional Spectral S-capacities

proposition 3.2.1. one obtains p,l, =0 (since f(b)=1, f(c)=0) meaning for ¥ < X,;
consequently X, is a spectral maximal space of a. Similarly for X, .

3.2.3. Tusorem. Let a =(a,,a,,....a,) < B(X) be a S-decomposable system and E a

spectral S-capacity of a. Then E (F) is a spectral maximal space of a (F < C"closed).

«

Proof. Let Y be a invariant closed subspace of X to @ with 6(a, Y)c F for a certain
closed set F < C". To choose, let ¥ > S. Then there exists an open S-covering of C "
{G,, G} such that G, 8 and G " F =@, and

X =E (G, )+E (G).
According to an isomorphic theorem, the quotient space X/E (GS) is isomorphic with
E(G) E(G))nE(G)-E(G) E(G,nT).

Taylor’s theorem concerning the inclusion of the spectra ([71], lemma 1.2.) yields

o(aE(G)) E(G; nG)co(4E (G, nT)uo(aE (@) < (G, nG)uG =G,

meaning
c(a, X/ E (@))c G.
By denoting by ¢ the canonical map of X on X/ E (C_?S), by b, the restriction of a, at ¥,
by ¢, the operator induced by @, in Z = X/ E ((73) and by t the restriction of ¢ at Y we
shall put b = (b, b,,..., b,), ¢ =(c,, ¢y0-.., ¢,). It follows
ob,Y)nole Z)c FNG=2.

If fis the embryo of the analytic function equal to 1 on o(b, ¥') and by 0 on o(c, Z) then
f(b)=1, and f(c)=0. By applying proposition 3.2.1. we obtain ¢-l, =0 hence
ek (CTS) Since Gy is arbitrary with the property G, o F we infer that
Y c m{E ((78) Gy D F} =E (F). When F NS =@ one proceeds analogously.

3.2.4. CoroLLARY. Let a = (a, ,a2,...,an) c B(X ) be a S-decomposable system. Then a
admits a single spectral capacity E .

Proof. Let E and E | two spectral S-capacities of a. Then, in accordance with the
preceding theorem E (F) and E,(F) are spectral maximal spaces of a and from the
inclusions

o(aE(F)c F, o(aE ,(F))cF

it follows

E(F)cE (F),E,(F)<E(F),

14



Chapter 3 — On some Multidimensional Properties

hence the two spectral S-capacities coincide.

3.2.5. Remark. If E is the spectral S-capacity of the S-decomposable system
a=(a,a,,..,a,)c B(X) then E(F UF,)=E(F)®E(F,) if F, F, are closed and
disjunct F,F, eF; meaning E is additive disjunct [11]. Indeed we have
E(E)cE(FUE,) (i=12), hence E (F)@E (K, )cE (F, UF,); but E(FUE)=Y, ®Y,
(see  49. [71]), where ofaY,)cF, (i=12), hence ¥, cE(F) and
Y. @Y, =E (F,)@E (FZ). This remark is also made in proposition 2.2.8. [58].

3.2.6. Prorosition. Let a = (al,az,...,an)c B(X) be a S-decomposable system such

that dimS =0. Then a admits the following spectral decomposition: for any open
covering {Gj };" of C" there exists the spectral maximal spaces {Y] };" of a such that

X:in and G(a,Yj)C G, (j=12,.,m).
j=1

Proof. Let {G . }:" an open and finite covering of C". By putting G, =G, N (C" \S )
and by observing that {G ; }:" is also a covering of S, it will follow that there exists an

open covering {Gj”}l"' of S such that G/ cG,, G'NG =D (i# j,i,j=12,.,m);

indeed, this fact is a consequence of lemma 6.2. [13], because S is totally disconnected,

that is dim S = 0. Then there will exist a covering
ol
I I

m

of C" such that ]7}. c Gj’., 17/’. c G}’ (j=12,.,m).Letusset Hg = UH; ; then

J=l

{rfold, )

[

is a S-covering of C". There will exist the spectral maximal spaces
ool

of @ such that
X =Y, +iyj, ola,¥)c Hy, ola,Y,)c H,.

J=1

But ¥, =r"er? ®...® 1" with G(a,YS(’))c H (j=12,..,m) according to theorem

s s
4.9. [71]. It will be enough to show that there exists a spectral maximal space X; of a
such that YS(” cX,, Y cX, and ()'(a,Xj)C G, (j=12,.,m). By setting

FY = H,UH, and EY) :S(\(HI’UHQ U.LUH UH V.Y H,',,) we notice that
FOAFEY =@ and FY U FY < §, hence
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$3.3.Restrictions and Quotients of Decomposable Systems

E (Fl(j) U Fz(f)): Yl(j) ® Yz(f)
(according to proposition 3.2.2. and using theorem 4.9. [71]) and the wanted spectral

maximal space will be X, = Yl(’ ) (j=12,..,m). We will now give a lemma that will

prove to be useful.
3.2.7. Lemma. Let a = (a,, az,...,an) c B(X) a decomposable system. Then

c,, (x)= m,6(a, x)

Jor all 1<i<n and any xe X, where m, is the projection of C" on the plane C

corresponding to the index i.
Proof. Let z € 6(z,x) and let us suppose that n,(z)=z ¢ G (x); then there exists an

analytic function f;:7, — X such that
x=(z, —ar,)fi(z,.):(zl —a1)0+...+( ~a,)f (2)+.. A(z,—a )0
hence zeo(a,x), contradiction, meaning m,0(a,x)c o, (x) Conversely, let
F= G(a x) from x € X (F) Xy and G(a X[ ))c F 1t results
c, ( )CTEO'(a X[](F) (a IX[G](F)) T,f'=n0c a x)

whence follows the equality

o (x)= m,6(a, x).
§3.3. RESTRICTIONS AND QUOTIENTS OF DECOMPOSABLE SYSTEMS

In this paragraph we shall generalise the result obtained in chapter I for decomposable
operators namely we shall prove that the restriction and the quotient of a decomposable
system related to one of its spectral maximal spaces are S-decomposable systems where S

is the intersection of the spectra belonging to the restriction respectively the quotient.
3.3.1. Lemma. Let a= (al Gy 5505500 )c B(X ) be an operators system meeting (L)

condition and {Y . };" a system of & -stabile subspaces for a (meaning aY c¥, 1<i<n,

I<j<m and c(a,Y/)c G(a,X)) such that X =Y, +Y, +..+Y . Then we have the

equality

G(a, X): Qc(a, Y/)

Proof Obviously we have
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Uc(a,Yj)C_c(a,X).
j=l
If y, €Y, then sp(a,ylj)c cr(a, Y/) (j=12,.,m)and x=y, +y, +...+ y, implies

spla,x)c Lszp(a, »,) (58], 1.5.2.)

hence

otw0)-Uoane_U (Urkr)-

xeX x=y+.+y, \J=
m m
=U Usp(a,y,.) CUO’ a,Yj)
JEI\ x=y+.. 4y, Jj=1

meaning what there was to prove.
3.3.2. Lemma. Let a=(a,,a,,....,a,)c B(X) be a decomposable system of operators

and Y a spectral maximal space of a. Then the following equality takes place:
G(a,X/Y):Gia,Xi\cia,Yi

where X /Y is the quotient space of X by Y.

This lemma represents the extent of a result belonging to Apostol. The proof is
contained in [81] where it appears in the following way
o(a,X/Y)c o(a, X )\Into(a,¥).
We shall only verify the equivalence of the two expressions. We emphasise the fact that
in the above inclusion the interior is considered in the topology of o(a, X ) One knows
that by denoting by 1 the total set, we have Int(X)=1 ~1-X for X c1 (see [67],

paragraph 6). Accordingly to Taylor spectra inclusion theorem of [70] we have
G(a,X): O'(Cl,Y)U G(a,X/Y)_

hence
o(a, X /Y)c o(a, X\ Into(a,¥)=

= e, X )\ ola, X )\ o(@, X )\ o(a,7))= ole, X \ol@, Y)< ola, X /7)

3.3.3. DernitioN. Same as for an operator we shall define a set-spectrum for a system

of operators a = (a,, @y ..., a,) as being as compact set 6 C ola, X ) such that there exists

an invariant subspace Y to all a; (i =1,...,n) enjoying the property G(a, Y) =0

17



$3.3.Restrictions and Quotients of Decomposable Systems

3.3.4. ProrosiTioN. Let az(al,az,...,an)c B(X ) be a decomposable system and
ocolaY) such that c=Intc (in the topology of ola,X)). Then o and

o'= W are sets-spectra for a and
G(a, X [a](c)) = G(a, X [a](c')) =
Proof. Since c(a, X [a](s)) c o it will suffice to verify that
G(a, X[a](c)) c Into,
(the interior is considered in the topology of o(a, X)). Let A,  Intc ; then there exists a

polidisk d = {k eC",|A— Xol < r} such that d N G(a, X) c Into. Let us put

d, ={X;X60(a,X)[X—X0’<§},

3
G, :{X;K—XO(<Zr},

G, :{x;)x—xo; >§}

It follows that G, UG, = C" and G, Nd, =D, hence

X =E(G,)+E(G)
and

ola, X)=olak G, ))uolaE )

(according to lemma 3.3.2.). Consequently G(a,E (C_;1 ))m d, =, whence it follows that
d c c(a,E (C_r’o))c dno(a,X)cIntoco, hence X[a](c(a,E ((70 )))zE (G—O)CE (o).
Finally one obtains A, € d, c 6(a,E (c)) and o < o(aE (6)). Since ¢’ =Intc’ (in the
topology of o(a, X)) we also have G(a, X[a](c’)) =0,

3.3.5. CoroLLary. Let a= (al,aZ,...,a”)C B(X) be a decomposable system of
operators and Y one of its spectral maximal spaces. Then there exists another spectral
maximal space Y, of a such that 5(a,¥;)=o(a, X / Y).

Proof. From the equality G(a,X 'Y ): W and by the preceding
proposition there follows that ¢ = o(a, X /Y ) is a set-spectrum for a, hence ¥, =E (G)
and o = G(a,E (G)).

3.3.6. Remarks. (a) We notice that a system a is decomposable if and only if it admits
a spectral capacity such as (O‘, X ) (see definition 2.1.1. [58]), where & = G(a,X ) and
O'(CI,E (G_ ))= G for any open G G(a,X ) in the topology of G(a,X ) There follows by

the fact that G is a set-spectrum for @ and the support of the spectral capacity E is
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precisely o(a, X ) (b) If the system a is S-decomposable, then we can take S G(a, X).
Indeed if S =Snole,X) it will suffice to notice that the map
a=(a,,a,,.a,)c B(X) defined by the equality E '(F)=E (F U S) for F > 5" and
E"(F)=E (Fnol(a,X)) if FNS" =@ is aspectral " -capacity for a.

3.3.7. Provosirion. Let a=(a,,a,,...,a,)C B(X) be a decomposable system of
operators and Y a spectral maximal space of a. The restriction b=(a,|Y,a, |Y s, | V)
of a is a S-decomposable system where S=cla,Y)No(a,X/Y) and the spectral S-
capacity E™ of b is given by the equality E (F) =E (F)m Y, forany F eF ;.

Proof. We put 6 =c(a,Y) and o, = o(a, X /Y); it will suffice to prove that b is c,-
decomposable. We have Y =E (o), E"(@)=E (@)nY={0} and E *(C”):E (C”)m
NE (6)=7. Let {F}., cF, ; then

=[N )-€[Nr e @-NEErEE-E®)

iel iel iel iel

Also it follows that (a,|YE "(F)=aE (Fno)cE(Fno)=E"(F) and O'(CZ,E *(F)):
=o(aE(FNc))c FAnocF forany FeF s - There is only left to be proved that for

any o, -covering {GcI }u {Gj. }:" of C" we have
r-£°(G, ) YE'(G,)
Jj=1

Indeed, we have

x=E(G, ) 2EG)
and since o(a, X) =0 U o, and éj Mo, = it follows that

C_?j. mc(a,X)zgj NoccCo

hence E (C—;j.)zE (ij mc)cE (c)=Y andE *<C_;'/)=E (@) If yeY then

y=x, +x+..+x,
where x, eE ((_}(II ), x; eE (@)c Y, hence x, =y—(x +..4x,)e Y nE (@G] ):
E (C_}GI ), meaning what it was to be proved.

3.3.8. Prorosition. Let a = (al . az,...,an) c B(X ) a decomposable system of operators

and Y a spectral maximal space of a. Then the system a = (c'zl, ;- c'l”) induced by a on

the quotient space X = X /Y is S-decomposable where S = G(a,Y )m c(a,X )
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Proof. We put ¢ = o*(a, Y ) and we have Y = X [a](c(a, Y)). It will suffice to prove that
a is o -decomposable (see remark 3.3.6. (b)) and it will result that ¢ is S-decomposable.
If E is the spectral capacity of @ we will have ¥ =E (G). The proof will consist in

showing that the map induced by E in X defined by the equality
E (F)=9E (F))

(where ¢: X — X is the canonical map and F eF ) is a spectral © -capacity for the
system & . Obviously E (&)= (p(E (@)=o({0})= {()}), E (C")z (pQ/E ( ”)): o(X)= X . Now
let us verify the equality

E'(HE.):HE'(E)-

iel el

Let {F 1 }jEJ cF, where J c I with the property F, > o for any i € J . We will have to

prove that

4e(0)7)J-nee e
ie ieJ

One knows that if a map fis surjective then f(f’I(A))= A forany AcF (f:E—F);

this yields that if the images through the inverse map ¢~ of the canonical map ¢ are

equal, then the two sets are equal (¢ is surjective). We shall use this remark. Since

ccﬂE, YcE(ﬂFI) we shall obtain

ieJ ie

E0))-<l0e}r <l

w(m@e (E)))=ﬂ<9"(cp(5 ©)-

ieJ ieJ

=€ FE)+1)=E F)-E [ﬂF,}

ieJ ieJ ied

We shall proceed as in the case when {F,.},.EJ cF,, JcI with o= for any

(i)l

<p~l[m<pe (zz))]:m@-'(@e EN=NE E)+r).

e ieJ ieJ

ieJ. It follows

We shall use the equality
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E (F, U F,)=E (F,)@E (F,)
for F, " F, =< and hence

{0

ieJ ieJ
-£[)E0)|-NE G uo)-NEEND)
ieJ ieJ ieJ
For the case when H, F €F  with H 5o, Fno = there follows
0 (GEHANF)=E(HNF)+Y=E((HNF)uoc)=
=€ (H)+Y)n € (F)}+y)=E (H)E (F o)
9" (0E (1) o€ (F))=E (1)+7)NE (F)+Y)=E (H)E (F Uo).
Finally let {F,. }ie , cF arbitrary. We put /=17, "1, such that F, oo if iel, and
F,no=0 if i e ,. In accordance with the ones above we can write
E'(ﬂf:] =E'((ﬂﬂ}m[ﬂﬂ]] =E'[ﬂE]mE ’[ﬂf«:} =(E®).
iel iel; iel, iel, iel, iel

One must also verify that E (F) defined above is closed. Indeed, if F >o, then
0 '(F)):E (F)+Y =E (F)+E (c)=E (F) is closed and hence E (F) is also closed;
when Fno=¢ we have (p"'(E'(F))zE (F)+E (c)=E (F Uo), consequently E (F) is
closed in this case also. The subspaces E (F) are evidently invariant to all a, induced by
a, on X (i=12,.,n). Let us prove that for any F €F_ we have G((,'Z,E.(F))C F.If
F oo we have O'(C'Z,E.(F))U 6(@E(c))=c(aE(F))cF and when Fno=@ it
follows that E(F) can be identified with E(F) (since E (F)=¢E (F)),
¢ '(F)):E (F)®Y ) hence we once again have G(C.I,E.(F)) =F,
Let now {G, }u {Gj }:" a o -covering of C". It follows that

X=E(G,)-2E(G)
g
hence

meaning a is ¢ -decomposable.
3.3.9. THeorem. Let a=(a1,a2,...,an)c B(X) a decomposable system and Y a

spectral maximal space of a. Then both the restriction b=a|Y of a to Y and the quotient
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a induced by a in the quotient space X = X /Y are S-decomposable operators, where
S =o(a,¥)nola, X).

Proof:. 1t follows by proposition 3.3.7. and 3.3.8.
3.3.10. THEOREM. Let a = (al,az,...,an)c B(X ) a decomposable system of operators

and Y a spectral maximal space of a such that &im S =0, where S=o(a,Y )mc(c'z,X ) |
Then the restriction a|Y of a to Y is a decomposable system.
Proof. Let E be the spectral capacity of a. Then the application E* defined by the
equality
E (F)=E (F no(a,Y))=E (F)nY

isa (G, Y ) type spectral capacity where o = G(a, Y ) But from proposition 3.2.6. it results

that for any open covering {Gi };" of C" there exists the spectral maximal spaces {Y, }1 5

Y. cY of a|Y such that
Y=>7Y,0(aY)cG,(i=12,.,m).

Consequently
y<SE@)Y=3E'@ )Y
i=l i=l

hence a|Y is decomposable.
3.3.11. CoroLLARY. With the same condition as in the theorem above the system a
admits the following spectral decomposition: for any open covering {G, }l'" of G(d,X )

there exists the spectral maximal spaces {Y, };n of a such that

X=37, oa,?)cG, (i=12..m).

i1

Proof. It follows by theorem 3.3.9. and proposition 3.2.6.

3.3.12. Dermimion. We shall denote by C  the class of the compact sets ¢ € C" with
dimo <1 which enjoy moreover the property that for any subset ¢, = &, closed in o,
we have dimdo, <0 (do, being the frontier of o, in the topology of &), meaning dc,
is totally disconnected. We remind that a decomposable system « = (g,,a, ..., a,) is said

to be strongly decomposable if the restriction a | Y at any spectral maximal space ¥ of a

is a decomposable system.

95



Chapter 3 — On some Multidimensional Properties

3.3.13. Tueorem. If a=(a,,a,,..,a,)C B(X) is a decomposable system and

o(a, X)eC, then a is strongly decomposable.
Proof. From the formula G(d,X ):Gia,X )\o(a,Y) where Y is an arbitrary spectral

maximal space of a and a = (c'zl,c’zz,...,dn) is the system induced by a in X=X/Y, it

results that S = G(a, Y )m G(c'z,X ) is a part of the frontier of cs(a, Y ) relative to c(a, X )

and by theorem 3.3.10., a is a strongly decomposable system.
§3.4. RESTRICTIONS AND QUOTIENTS OF SPECTRAL SYSTEMS

During this paragraph the results obtained in [42], [43] for a single operator will be
extended. There will be shown that a spectral system’s restriction and quotient regarding
an invariant subspace to the system are spectral systems if and only if that subspace is
also invariant to the spectral measure of the system and hence that the restriction to an
invariant subspace is a spectral system if and only if the quotient is a spectral system. We
shall further study the case of the spectral systems having a spectrum of dimension 0

(totally disconnected).
3.4.1. DeriNITION. A (C”,X) type spectral measure is a map: B (C")—) B(X) B (C”)

being the family of all Borelian sets of C") enjoying the following conditions: £ (@) =0,
E(c")=1, E(B ~B,)=E(B)E(B,) for any B, B, B (C"), E(OBka=iE(Bk);c
k=1 k=1

for any sequences (Bk )keN cB (C”) of sets disjunct two by two. A commuting system
a=(a,a,.. a,) is said to be a spectral system if there exists a (C",X ) type spectral
measure £ such that aj.E(B)z E(B)aj and ofa, E(B)X)c B for any BeB (C") and
1<j<n.

3.4.2. Lemma. Let a = (al,az,...,a,,)c B(X) be a spectral system and let E be its
spectral measure. Then each operator a, is spectral and its measure is given by the
equality E, (B): E(n,._'B) where B €B ( ") and w, is the corresponding projection.

Proof. Let us notice that =;'BeB (C") if BeB (C"). Obviously, we have
E(@)= E(n@)= E@)=0, E(C)=E(C")=1 and E(B,~B,)=E(x'(B,"B,))=
:E((n,."B,)m (n;IBz))zE,.(B,)Ei(BZ) for B,,B, B ( ”). If (B,),.y is a sequence of
disjunct sets B, B (C), then (n,."lBk )keN cB (C”) is a sequence of sets disjunct two by
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$3.4.Restrictions and Quotients of Spectral Systems

two hence E}[OBk)sz(n;’[gBkazE(Q@;‘(Bk)))ngE(n;‘Bk)c. There further

part
follows that a,E,(B)= a,E(n;'B)= E,(B)a, and  ofa | E(B)X)=
=mn,0(a, E,(B)X) = nic(a, E(n,."1 (B))X): n,mz n,(n,.‘] (E)): B for any BeB ( ")
(for the inclusion an(m cn (E ) see [68], page 85) hence a, is a spectral operator.
3.4.3. PropoSITION. Let a = (al,az,...,an)c B(x ) be a spectral system and Y be an
invariant subspace to a. If the restriction b=a|Y = (arl |Y,a,|Y,...a,|Y ) is a spectral

system and E is the spectral measure of a, then Y is invariant to E and E |Y is the

spectral measure of b.

Proof. Let E, the spectral measure of b, xe Y and F cF = {FCC",F=F}; then
according to proposition 3.1.3 [58] we have E,(E)xe EY = Y[b](F ), hence
o(a, E, (F)x) = sp(a,Ey (F)x)c sp(b,Ey (F)x)c F whence E,(F)xe X[a](F) = E(F)X

such that
E, (F)x = E(F)z
with  zeX and hence E(F)E,(F)x= E’(F)z=E(F)z= E,(F)x. Let now
F = F, < C"\ F. In accordance with the above we will obtain
0= E(F)E(F)E, (£ )x = B(F)E, (£ )x.
Since C" is a metric space and C" \ F being openitis of F, type, hence C" \ F = UFn

neN

with = F

n?

F, C F,, . We shall have
E(F)E,(C"\ F ) = lim E(F)E, (F )x =0,

n

whence
B(F)x = E(F)E, (C" )= E(F)E, (F)+ £, (C*\ F)} =
= E(F)E, (F)x=E, (F )~
By using now the regularity of measures <E(-)x, x*> (x" € X")and <Ey (), x*> and the

fact that for G = C" open and F cF

n+l o

5,0)- 5[ UF, |- i, (2)=1ime()- £)

F, closed we obtain

hence
(E(B)x,x") = inf(E(G)x,x") = inf (£, (G)x,x") = (E, (B)x,x")

for any Borelian set B = C", hence E |[Y=E,.
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3.4.4. LemmaA. Let a = (al,az,...,an) c B(x ) be a spectral system and let A C" be
Borelian. Then the restriction b=a| E(A)X is a spectral system with the spectral
measure E, given by the relation E,(B)=E, (4 B) for any B < C" Borelian.

Proof. One easily verifies that E, is a spectral measure; the fact that E, is a spectral

measure for b follows by the equality
b,E(B)=b,E(AnB)=E(4nB), = E (B,

(b;=a;|Y,Y= E(A)X) and from the relations
o(b,E,(B)Y)=o(b, E(4n B)X)=o(a, E(An B)X)c B .

3.4.5. ProposiTioN. Let a = (al,az,...,an)c B(X ) be a spectral system, let E be its
spectral measure and Y an invariant subspace to a and E. Then the restriction b=a|Y is
a spectral system and o(a,Y) c o(a, X ).

Proof. Since the restriction of the measure £ to Y, E|Y = E, is a spectral measure
and b.E, (B) =FE, (B)bj (b; =a;|Y),itis only left for us to prove that

o(b, E, (B)cB
for any B Borelian. But for spectral systems, the Taylor spectrum is equal with the

spectrum in bi-commute, from the formula of Cauchy-Weil it easily follows that
o(a,Y)c o(a, X). By replacing a with | E(B)X and Y with E(B)Y and also using the
preceding lemma one obtains

s(b,E,(B)Y)=0(a|Y,E(B)Y)c o(a,E(B)X)c B

(B < C" Borelian), hence b is a spectral system.
3.4.6. THEOREM. Lef a = (a,,az,..‘,an)c B(X) be a spectral system and let Y be an

invariant subspace to a. Then the restriction b= a|Y is a spectral system if and only if Y

is invariant to the spectral measure E of a.

Proof. 1t follows from proposition 3.4.3. and 3.4.6.
3.4.7. ProposiTion. Let a = (a,,az,...,a") c B(X) be a spectral system and let Y be a

subspace of X invariant to a and the spectral measure E of a. Then the system
a=(a,,dy,.., a,) induced by a on the quotient space X =X/Y is spectral.

Proof. Let E the map defined by £ (B)x = m The definition is coherent because
E(B)Y c Y and the left member of the equality does not depend on the choice of the
representative of class x. E is a spectral measure of 4. Indeed, E(@))'c = m:(),
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$3.4.Restrictions and Quotients of Spectral Systems

BC k=EC K =%, E[DBJ:&:E(QB,C]x:ZE(Bk)x, ¢, EB):=a,E(B)x =

-~ a,E(B) =E@),x=E@B)i,% (B,B, Borclian, B,AB=0, i#j, 1<i,j,k<w)
for any x € X , hence ‘
E@)=0, E(C")=1, E(B)i, =a,E(B).
Obviously we also have .
i5(B, N B,)= E(B, )i:(8, ).
The only item left to be verified is the inclusion
G(d, E(B)X)c B,

for any B — C" Borelian. We also have . _

E@BX =EB)X =EB)X +7,
and by a known theorem related to isomorphism we obtain

E(B)X =E(B)X +Y/Y = E(B)X/E(B)X NY.

But £(B)X and E (B)X MY are invariant to @ and E, hence a\ E (B)X is spectral and

o(a, E(B)X nY)c ol(a, E(B)X)

(according to proposition 3.4.5.); whence, by using Taylor’s theorem of spectra inclusion

[70] it follows that
ola, E(B)X )= o(a, E(B)X 1 E(B)X NY)

cola,E(B)X)uc(a, EB)X nY)c B
for any B < C" Borelian, hence a is spectral.

3.4.8. Provosimion. Let a=(a,,a,,...,a,)c B(X ) be a spectral system having the
measure E, let Y be a subspace invariant to a and a = (a'l,c'zz,..., c'z,,) the system induced
by a on the quotient space X =X /Y. If d is a spectral system with the spectral measure
E then Y is also invariant to the spectral measure of a and E is equal with the spectral

measure induced by E on X .
Proof. Since a and & are spectral systems, they are decomposable; therefore
G(a,x) = Sp(a, x) ([58] 1.2.4.). From the equality
x=(6,~a)A©)+..+(, -a,)f,()

it results

i=6 - V0446, -4, Y.0)
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where f() are analytic and(= ¢,,¢,5-C,) hence sp(c'z, x) c sp(a, x). But
E(F)X = X[a](F), E(F)X = X[d](F) for F c C" closed (see proposition 3.1.3. [58]),
consequently from the inclusions
sp(d, x) c sp(a, x) cF
it follows that
X (F)c Xy (F)=EEX
and consequently the equality E(F)i=x (if sp(a,%)c F then x & E(F)X and
conversely) implies _ '
EFEF)=EF )
hence
BB o= BB Y= 0}

for any xe X. Since F'=C"\F is open, there exists a growing sequence {Fn }neN of

closed sets from C" such that F' = UF

n>

B b}

from the continuity of the measures E()x , the limitation of E(F ) and by the relation

F, N F = hence

”x“ < Hx” one obtains
EE)EGF Y= EENmE, )= E@)im B, )=
=lim B(F)E, o=}

H—y9%0

and hence

EFYi= EFEFERTEE ) =EFEX (xe X).

If G is an open set from C", there exists a growing sequence of closed sets H, < C"
such that G = UH ., therefore similarly as above it follows that
m=|
EG)=EG).
Finally, if B c C" is a Borelian set, from the regularity of the measures <E()x,x>

(x" € X"), trough customary methods, one proves that
E(B): = E(B)x
for any x e X . By this last equality it follows that Y is also invariant to the spectral

measure £ of @ and E is precisely the spectral measure induced by E on X .
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3.4.9. THEOREM. Let a =(al,a2,...,an)c B(X ) be a spectral system and let Y be a

subspace of X invariant to a. Then the system a= (dl,dz,...,dn) induced by a on the

quotient space X = X 1Y is spectral if and only if Y is also invariant to the spectral

measure E of a.

Proof. There follows by propositions 3.4.7. and 3.4.8.

3.4.10. TueoreMm. Let a = (al,az,...,an)c B(X) be a spectral system and let Y be a
subspace invariant to a. Then the following three conditions are equivalent:

1° Y is also invariant to the spectral measure E of a;

2° the restriction a|Y = (al | X5 | ¥ yusott, | X ) is a spectral system;

3° the quotient system a = (c'll,c’zz,..., c'zn) induced byaon X = X 1Y is spectral,

Proof. There follows by theorems 3.4.6. and 3.4.9.

3.4.11. Deemimion. Let a =(a,,a,,..,a,)c B(X) be a spectral system, let ¥ be a

subspace invariant to a. By marking with Y, the intersection of all closed subspaces of X

that contain ¥ and moreover are invariant both to @ and to the spectral measure E of a, the
restriction a | Y, will be a spectral system (according to the preceding theorem) which we
shall say to be the minimal spectral extension of the restriction a | Y .

3.4.12. Provosition. Let a =(a,,a,,...,a,)c B(X) be a spectral system, let Y be a
subspace of X invariant to both a and a|Y,, the minimal spectral extension of Y. Then

G(a, Ym)c o(a,Y).
Proof. In accordance with proposition 3.1.3. [58] we have
Yc E(G(a, Y))X = X[a](c(a,Y)):E (G(a,Y))
and since £ ((S(a, Y ))X is a closed subspace invariant to both @ and E, we have
Y c Ec(a,Y )X . By applying proposition 3.4.5. to the system a« | E(cr(a, Y )) and to its
restriction a|Y, one obtains
o(a,Y,)c o(a, E(c,Y))c G(a,Y).

3.4.13. Provosimion. Let a =(a,,a,,...,a,)c B(X) be a system of operators with the
spectrum G(a, X) totally disconnected (dim G(a, X ) =0) and Y a subspace of X invariant

to a. Then
G(a,Y)c G(a,X).
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Proof. We have dim G(al.,X )=0 (i=12,...,n) and hence by proposition 4.11., [41]

we obtain
G(ai,Y)c G(al.,X).

This yields that dimo(a,,¥)=0, hence

dim(c(al,Y)x c(az,Y)x...x G(an,Y)): 0.
But from the inclusion

o(a,¥Y)c o(a,,¥)x U(az,Y)x .xo(a,,Y)
it also results that dimo(a,¥)=0. Let now z € (a,¥) be a point such that z ¢ o(a, X).
Since dimo(a,¥)=0 there exists a decomposition of o(a,¥) in separated parts,

G(a,Y)z G, N0,

such that ze o, and o, No(a,X)=@. By remark 3.3. [81] we obtain that ¥ = {0}
where Y =Y, +7,, 6(a,¥)c 5, (i =1,2) hence o(a,¥)c o(a, X).

Remark. The proof of the preceding theorem belongs to F.-H. Vasilescu.

3.4.14. TureoreM. Let a= (al, a, ,...,an) c B(X) be a spectral system with
dimo(a, X)=0. Then for any closed subspace Y c X invariant to a, the restriction
alY is a spectral system.

Proof. According to theorem 3.4.6. it will be enough to show that Y is also invariant to
the spectral measure E of a. By the preceding proposition it follows that

o(a,¥) c o(a, X) and dimc(a, Y)=0.
Let o be a separated part of (e, X) and F (o) the projector associated to & that results
from Taylor’s theorem 4.9. [75]. Let us verify that F(c)= E(c). We have
o(a, F(G)) =0, G(a,F(c(a,X)\ G)X) = G(a,X)\ c

and

F(o)+ F(o(a, X)\o)=1.
By other means

F(O')X = X[a](cs): E(c)X

F(o(a, X )\o)X c E(o(a, X)\ o)X
see [58], proposition 3.1.3., whence according to lemma 1.12. [41] one obtains
E(o)F(c)= F(s), E(c)F(c(a,X)\c)=0
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hence F(o)=E(c). But o(a,Y)=c'Uc" with ¢'co, ¢" cola,X)\c and hence
6'NG" =@, o'," being separated parts of o(a,Y). Therefore we shall be allowed to
write

Yy=vy'ey" ]
with ¥,Y" C Y being invariant to both a and o(a,¥’)=0", o(a,¥")=0". But E(c)X |
and £ (G(a, X )\ G)X are spectral maximal spaces of a ([58], 3.1.3.), consequently

Y'c E(c)X, Y"c E(o(a,x)\0)X .

Hence if yeY, then y=)y"+y", y,y" €Y and y'= E(G)z' 5 P E(G(a,X)\G)z”

whence
E(c)y = E(c)y' + E(o)y" =

=E’ () +E@)EG(,X)\ok"=E@)X' =y eY
meaning E(G)Y c Y. According to theorem 1, paragraph 21, [67] a compact set o < C"

having dimension 0 can be written as a countable reunion of closed-open sets in the

relative topology (there exists a countable base (G")neN formed out of closed-open sets in

o). Letnow G c C" be open and let (G 1)@4 such that
Grola, X)=| o, .

ieN

By the ones above there follows that for any y € Y we have
EG A ola, X - E(Ucni )x Y G, ke -7,
ieN ieN
hence E(G)Y Y, whence E(B)Y c Y forany B c C" Borelian. Consequently a | Y is

a spectral system.
3.4.15. CoroLLAry. Let a =(a,,a,,...,a,)C B(X) be a spectral system and Y a closed

invariant subspace to a such that G(a, Y ) =0. Then a|Y is a spectral system.

Proof. Let alY, be the minimal spectral extension of a|Y; then, according to

proposition 3.4.12. we have
o(a,7,)c oY),

hence
dimo(a,¥,)=0.

Since the system a|Y, is spectral, by the preceding theorem there follows that a |Y isa

spectral system.
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3.4.16. Remark. (1) If a =(a,,4,,...,a,) C B(X) is a spectral system and Y is an
invariant subspace to a such that dim c(a,Y )= 0 (particularly G(a,Y ) is discreet) then
the quotient system & = (d,, d,,---, a,) induced by a on the space X =X/Y is spectral.
There follows by the preceding corollary and by theorem 3.4.10. (2) If
a= (al,az,...,an)c B(X ) is a spectral system and Y is a spectral maximal space of a,w

then the restricion «|Y and the quotient & are spectral systems, because

Y=X [a](c(a, Y )) is also invariant to the spectral measure E of a.

§3.5. RESIDUAL SPECTRAL PROPERTIES FOR OPERATORS SYSTEMS

Across this paragraph we shall try to generalise for operators systems some of the
results obtained by F.-H. Vasilescu for a single operator: residual single valued extension,
analytic residuum, the prbblem of local spectra etc.

Most of the proofs are adaptations of the ones from [58] with minor changes. We shall
regularly use the equality B (U, X)=C °°(U,X) [81].

3.5.1. DeriTioN. Let a = (al,az,...,an) c B(X) be a commuting operators system and
S C" a compact minimal set having the property that H ""C (G, X), @5)= 0 for
any open G < C" with GNS, = (minimal means that S, is the intersection of all
compact sets having the specified property). We shall denote by d (a, x) the reunion of all
open sets ¥ < C" with the property that there exists a form y € A lcudE,C “v,X )J
satisfying the equality sx = (oc @ 5)\u meaning

X8y A8y, Ko RS, :((Zl —a ), +.+(z, ~a, )k, +5€—i—d21 +...j/\w(z)
Z

1

(we remind that there exist sets ¥ with this property, for example the solving set rla, X ) L

We shall also denote by
gla,x)=C"\ d(a,x),

r(a,x)=d(a,x)n (C” \S, )
sp(a, x)=C" \r(a,x)= gla,x)us,.
The set #(a,x) will be said to be the solvent set of x related to a4, sp(a,x) will be said to

be the spectrum of x related to ¢ and S, will be called the spectral residuum of a.
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We shall call analytic solvent set of x related to a and we shall denote by p(a, x) the

set
p(a,x)=8(a,x)n (C" \Sa)

where S(a,x) is the set of z e C" for which there exists an open neighbourhood ¥ of z )
and n analytic function on ¥ taking values in X, f,, f,,..., f, satisfying the identity
x=G-a)fiQ)+-+(,-a,)1 (). cev.

We  shall understand trough the analytic spectrum of x related to a the set
o(a,x)=C"\p(a,x)=7(a, x)US,
where
v(a,x)=C" \8(a, x).

We shall prove that for an operators system that admit a spectral S-capacity we have
g(a, x) = y(a, x), d(a, x)= S(a,x), p(a, x) = r(a, x), p(a, x) = O'(Cl, x).

3.5.2. ProposimioN. For a commuting operators system a = (al,az,...,an) c B(X ) we
have:

1° x =0 implies g(a,x)=, spla,x)=S, ;

2° g(a,x+y) c g(a, x)u g(a,y), sp(a,x+y) c sp(a, x)u sp(a,y), (\7’)x, yelX,;

3° g(a, by) c g(a,x), spla, by) c sp(a, x) if ba,=ab, be B(X), xe X;

4° g(a,y) c sp(a,y) c G(a,Y)

where Y is a (linear, closed) subspace of X invariant to all a and yeY.

Proof. 1° follows from the fact that for x =0 and any neighbourhood ¥ = C”, the
form y=0e A" [6 vdzC°(V, X )} verifies the relation sx = (OL @ 5)\41 meaning
x5 Asy AnS, =((z,~a))s, +..4(z, —a, )s, +

0 0
+—dz +..+—dz
oz ] 522 2JA W(Z)

Let zed (a, x)m d (a, y) and zeV, such that there exist the forms
y, e A" [G wdz,C °°(VI.,X)J (i =1,2) verifying the equalities
sx:(oc@é)w], sy=(oc695)w2.
Then the form y, +y, e A* [O‘U dzC °°(Vl u V2,X)J verifies the equality
s(e+y)=(a®d)y, +v,),
hence 2° is verified. The inclusions from 3° result from the fact that by considering the
form y e A™ [0 udzC = (V, X )J such that
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sx = (a ® 5)q1
and by applying operator b to the coefficients of w, its commuting with each g,
(i=12,...,n) implies
(a@g)bw:b(a@g)wszs ]
(admitting the equality on components). The last inclusion, 4°, follows by the remark tha{f
on the solvent set r(a, Y ) it is satisfied the equality xs = (a S 5)q/ .

Remark. If n=1, the spectral residuum S, defined above coincides with S, defined

by F.-H. Vasilescu in [76] (a = T'). Indeed, in this case
H'C (G, X)a®d)=

for any open G < C such that GN S, =& ; if for £ €C *(G, X) we have
[(oc@é)flz)z(z—a)f(z)wafa—(_z)di
4
then (a@g)f:O means (z—a)f( ) 0 and 8f( ) =0. The operator oo ® 0 has a null

nucleus on C °°(G, X ) if and only if the only analytic function f on G verifying
(z-a)f (z) =0 is the identical null function.

We shall further use a lemma that we proved in [58].
3.5.3. Lemma. Let V,,V, two open sets in C" such that V, "V, # . Then for any

feC?(V.nV,,X) there exist f,eC “,X) (i=12) such that f=f -f, on
vinv,.

3.5.4. Lemma. Let a = (a, , az,...,a”)c B(X) be an operators system with the spectral
residuum S, and V, (i=12) two open sets in C"\S, such that there exists the forms
v, eA"'llGudZ,C °°(V[,,X)J with the property that sx = (OLGBE)% on V.. Then there
exists a form yeAN [GudE,C (v UVZ,X)J having the following property
5X = ((1@5)\41 on V,UV,.

Proof. When V, "V, =& we can consider y(z)=,(z) for zeV, (i=12) and we
have sx = (0. ®d)y on ¥, UV,.If V, "V, # & we have

(oc@éX\pz —w,): 0onV,nV,.
Since V.nV,=GcC"\S,, it results that there exists a form
peA”’ lO'Udf,C V, "V, X ] such that
Wy — 1y =(0c€r)5)(p.
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Indeed, the nucleus of the co-frontier operator o © 2, 7
Ker(0®3: A" |ocUdzC = (V, 7, X)| > A'[oudzC =V, AV, X)))=

=m0 ®3: A udzC A, X)| > A pudzC e #, A 7,, X))
By applying the preceding lemma to the coefficients of ¢ there follows
¢ =0, —¢, where ¢, € A"‘zlcudE,C °°(VI.,X)J (i=12).
Consequently
(@30, -9,)=(c®3k=0, -0,

whence v, +(oc @5)wl =y, +(0L 695)\1/2 on V,NV,. By putting y; =y, +(OL @5)(91.
(i=1,2) we shall obtain sx = (a® )y’ on ¥, (i=12)and v/ =), on ¥, \V,. Hence
by defining y(z)=y!(z) for ze ¥, (i =1,2) one obtains a form as the one required in the
text of the lemma. The lemma is proved.

3.5.5. CoroLLARY. Let {V, }l”; be a finite family of open sets from C"\ 'S, such that the
equation sx = (OL @ 5)41 has a solution y on each of them. If K c r(a, x) is a compact
set, there exists an open neighbourhood V of K (V < r(a, x) ) on which the equation

sx = (OL @ 5)\4/ has a solution.

Proof. Let {KV }il be a growing sequence of compact sets such that r(a,x)z UK i,

Vol
We shall prove that there exists a corresponding sequence of forms
y, e A [Gudz_:,C °°(r(a, x),X )J that verify the equality sx= (OL @ 5)% on a
neighbourhood of X . Then y = 31_{2 Y, exists and it is a global solution. We shall start
with K. By corollary 3.5.5. there exists a form , defined in an open neighbourhood of
K, and satisfying the equality sx = (oc@é)w,* on this neighbourhood. Since the space
C “(r{a,x), X) is invariant to multiplication with scalar functions of a C ” class ([71],
2.16.1.) we can assume, without limiting the generality, that ; is defined on r(a, x);
indeed, by multiplying , with a suitable scalar function, the new form can be extended
to r(a, x) and we will obtain a form y, on r(a, x) verifying the equality sxs = (a ® 5)%
on a neighbourhood of K,. We will now suppose that the forms Vi, Y,,.., Y, from the
desired sequences were already determined and let us determine V., - According to the
preceding corollary there exists a neighbourhood ¥, of the set K, and a form Wiy
defined on this neighbourhood satisfying the equality sx = (oc@g)\v;l, and we are

allowed to suppose moreover that v, is defined on the whole r(a,x). But

33



Chapter 3 — On some Multidimensional Properties

sx = (oc @5)% on a vicinity ¥, of K,, hence by subtraction we obtain
(0@@5X\y:“ —qj,):O on V.V, ; since V,NnV,, cC"\S,, it will result that there
exists a form ¢’ such that v, —, = (a@g)(p' on ¥V,nV,,, and we may suppose that
¢’ is defined on r(a,x). We will put y,,, =y, —(oc @5)(;)’ and obtain a form defined on
r(a, x) equal with y, on V, NV, and satisfying the equality sx = (()L@é)zpi+l on thé |
neighbourhood 7, of K, . By this the demonstration ends.

3.5.7. Remark. A local version of the Cauchy-Weil formula (1.2.4., [58]) can be
establish on the same way as in [58] formula 1.5.1. Let a= (al,az,...,an)c B(X) be a
commuting operators system with the spectral residuum S, and U an open
neighbourhood of sp(a,x); obviously U o S, . We shall prove that there exists a form
€N [cudZ,CO‘”(C",X )] in the same co-homology class related to a @0 as sx and
such that suport (x) cU. According to theorem 3.5.6. there exists a form
weA”"'[cudE,Cw(r(a,x),X)J such that Sx=(a®5)\u. Let U, and U, two open
neighbourhoods relatively compact of sp(a, x), such that

spla,x)cU, cU, cU,cUcU
and let us consider scalar C “-function # on C”, #=1 outside U, and #=0 on U,. By
using 4 let us define the form ¥ by y = Ay on r(a,x) and =0 on U,. This form has
the coefficients in C ”(C”,X ) and satisfies the condition sx =(0L695)\T/ outside the
relatively compact set U,. Hence by setting y = sx —(oc @5)\? wi will obtain a form
defined on C" with suport (x) c U, c U, that is precisely the form having the specified

properties. Considering formula 1.2.4. [58] and using form y above we can write

1 L(—lYnX Adz, A..ndz,

@niy
which will yield the local version of Cauchy-Weil formula.
3.5.8. Prorosition. Let a = (al,az,...,an) c B(X) be a S-decomposable system, let D

X =

be an open polidisk with DN\S =&, let p be an integer, 0<p<n—1 and let
y e A[o,U (D, X)] such that oy =0 where o is defined by

(o )z)=((z, —a,)s, +(z, —a, )5, +..+(z, —a,)s, ) A w(z).
Then for any polidisk D' c D with D' c D there exists a form € AF [O',U (D’,X)]

such that y =@ on D"
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The proof of proposition 2.1.3. presented in [58] is also true in this case, with a single
comment, that D isn’t any more any polidisk of C”, but a polidisk that doesn’t cross S.

3.5.9. TueoREM. If a = (al,az,...,an) c B(X) is S-decomposable then S > S, .

Proof. With minor differences, the proof is identical with the one for th? i
decomposable systems (S =@) ([58], proposition 2.1.4.) where S, =0 is called
property (L) It will have to show that for any polidisk U c C" such that U NS =& we
have H'U(V,X)a)=0 (0<i<n-1). We note that H'{U (U, X)0)=0 implies
H’(C oo(G,X),oc @5)= 0 (0<i<n-1) where U is any open polidisk from C", G is any
open set G < C" such that UNS =&, GN S = ; the proof is given in [58], theorem

1.5.16. for any U, G = C".
One motivates this through induction on /, beginning with i=0. Let feU (U , X )

such that of =0; according to the preceding proposition we shall have /=0 on any
polidisk D" with D'cU and f =0 on U. Suppose that for any open polidisk D = C"
with DNS= we have H™'U (D,X),0)=0 with i fixed, 0<i<n—1 and let us
prove that H'(U (U, X),a)=0.

Let {Dv} be a sequence of polidisks, D, NS =@, such that D, c D,,, for any v

with UDv =U and yeAN [G,U (U »d )] such that ay = 0. By applying the preceding

vl
proposition for D,, we infer that there exists a form ¢, €N [O',U (D,, X )] such that
Y=o, on D,; analogously we can find a form ¢, on D, with y=ag), on D,. One
obtains OL((pI ~04)=0 on D, whence, by applying the inductive hypothesis, we infer
that there exists a form y e A™*[o,U (D,, X )I, such that ¢, — ¢, = oy . We shall retain

from the Taylor’s decomposition of % on D, a sufficient number of terms, such that y’

. . I e .y
(the retained part) verifies Nocx - ax’“ = 5 on D,. Thinking analogously, we can define a

sequence of forms ¢, ¢, € A”'[o,U (D,,., X )l enjoying the properties: y =ap, on D,,,

and ' < on D. The sequence ¢, obviously converges to a form having the

(p\r+l - (pv

2V+1
analytic coefficients on U and satisfying y = ap on U, g.e.d.

In 3.2. we proved the uniqueness of the spectral S-capacities for S-decomposable

operators systems. We shall now prove this on other ways, émphasising the connection
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between the spectral S-capacity related to an operator and certain linear subspaces,
described using the local spectrum, which is mbst useful.

Let a be a commuting system of operators on the space X, a cC B(X ), with the
spectral residuum S, . If H is an arbitrary set from C" such that H >.S,, we shall put
X[a](H)z {x,x e X,spla,x)c H} and Xa(H): {x,x € X,G(a,x)c H}; X[a](H) and"
X, (H) are linear subspaces of X and X, (H)c X [a](H ).

3.5.10. Tueorem. If a = (a;,ay, a,) is S-decomposable then E (F)= X[a](F) for any

o

closed set F o §'.
Proof. According to theorem 3.5.9., S S, , hence F 5, and X [a](F ) has sense.

The inclusion E (F)c X [a](F ) follows by the fact that sp(a,x)c o(aE (F)) (proposition

3.5.2.). One proves the inverse inclusion exactly as in [58] theorem 2.2.1. with the only

remark that F is no longer arbitrary, but F' > §'.
3.5.11. CoroLLarY. Let a be a S-decomposable system. Then for any closed F > S,

the subspace X, [a](F ) is spectral maximal space of a; more precisely, for any subspace Z
invariant to a such that G(a, Z ) c F, we have Z < X [a](F ); moreover G(a, X [,,](F ))c: F.

Proof. The inclusion c(a, X [a](F ))c F follows by the preceding theorem, since
o(a.E (F)) cF. If Z is invarant to a with ofa, Z)c F then any zeZ,
sp(a,z)c G(a,Z)c F hence z € X[a](F), meaning Z C X[a](F).

3.5.12. Prorosition. If a is S-decomposable then for any xe X, we have
spla,x) = o(a, x).

Proof. Let us prove first that Sp(a, x)c G(a,x) or equivalent with this
o(a,x) c rla, x). Let ze 8(a,x) and according to definition 1 let us consider an open

neighbourhood ¥ of z and n analytic functions defined on ¥ taking values in X,
fis frsees f, that verify the equality x=(¢, ~a,) 1((;)Jr...Jr(Cn—an)fn(Q), CeV. We

consider the n—1 degree form defined on 7, \;/(Q):zn:(—l);l £ Qs ASy A A S, A

i=1
...~ s, . This form can be considered as an element of A lcs udzC (VX )] and it easily
verifies the equality sx = (oc @ 5)\1/ on V. taking into account the analyticity of the
functions f; (8f;, =0); hence it results that V' < d(a, x), that is S(a, x) c d(a,x) or
g(a, x) c y(a, x) whe_nce g(a,x)u S, = Sp(a,x) c y(a,x)u S, = G(a,x). For the inverse

inclusion cr(a, x) c sp(a, x),let z € r(a, x) and let D be an open polidisk with its centre in
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$3.5.Residual Spectral Properties for Systems and Operators

z such that D c r(a,x). Since xe X [a](sp(a,x)zE (sp(a,x))) hence by theorem 1.1.3.

[58] there exist the analytic functions f,, f5,..., f, defined on D and taking values in X,
such that x= Z(C,. ~a,)f,¢), CeD. That means that ze p(a,x), hence
i=l
ra, x) c p(a, x) whence G(a, x) c sp(a, x).
3.5.13. CoroLLary. If a is a S-decomposable system then for any H c C" with
H > S we have X[a](H)z X, (H).

Proof. 1t easily follows by the preceding proposition.

3.5.14. PropositioN. If a is an arbitrary system of operators, then

§(a, X) e Usp(a, x).

xeX

Proof. The inclusion Usp(a,x)c o(a,X) results from proposition 3.5.2.,

xeX

sp(a, x) c G(a, X). Conversely, if ze n r(a, x), then H' x (U (Z,X),OL) =0; since

xeX

ze §,, there exists an open polidisk D, with D NS, =& and for which, according to

theorem 3.5.6., we haveH'(U (D, X),oc): 0 (i=0,L..,n—1). Then by corollary 1.4.3.
[58] there follows that z € r(a,x), hence Usp(a,x): G(a,X).

xeX

3.5.15. DermirioN. The support of the spectral S-capacity is the set-support
E :ﬂ{F;Fclosed,E(F):X}.

3.5.16. Prorosition. If a is a S-decomposable system and E is its spectral S-capacity
then suportE = o(a, X).

Proof. The inclusion G(a,X )C suportE results from the fact that for any closed F
such that E(F) =X, we have G(a,x) = G(a,E (F)) c F', whence G(a,x) c
c ﬂ{F ,FclosedE (F)= X }=suportE . For the inverse inclusion let z, € r(a, X ) and let
us prove that z,esuportE . Let V be an open neighbourhood of z, such that
V crl(a,X) and let F be a closed set such that z, ¢ F, F>S and X =E (F)+E (17);
this is possible because z, € S (S c G(Cl,X)). Let xeE (17); since V r(a,X) it results
that Sx:((l@é)ql in a neighbourhood (C” \V) of the spectrum sp(a,X ), hence by
applying formula 1.2.4. [58] we infer x =0, hence E (17): {0}, that is E (F)= X ; hence

from z, € ¥ it follows z, € suportE , just what there was to prove.

3.5.17. CoroLLAry. If a is a S-decomposable system then for any closed set F we have
o(aE (F))c o(a, X).
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