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Abstract

An Abstract Cogalois Theory for arbitrary profinite groups has been initiated
by T. Albu and S.A. Basarab (J. Pure. Appl. Algebra, 2005, to appear). The aim
of this paper is two-fold: firstly, to present the abstract group theoretic versions of
various types of Kummer field extensions, and secondly, to show how some basic
results of the field theoretic Cogalois Theory, like the Kneser Criterion, the General
Purity Criterion, etc., can be very easily deduced form their abstract versions.
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Introduction

The Class Field Theory of Abelian field extensions of global and local fields can be also
performed for arbitrary profinite groups, and therefore, an Abstract Galots Theory for
such profinite groups was developed within the Abstract Class Field Theory (see e.g.,

[8])-
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A dual theory to the Abstract Galois Theory that also applies to arbitrary profi-
nite groups, called Abstract Cogalois Theory, was initiated in [4]. Roughly speaking,
Cogalois Theory (see [3]) investigates field extensions, finite or not, which possess a
Cogalois correspondence. This theory is somewhat dual to the very classical Galois
Theory dealing with field extensions possessing a Galois correspondence.

The basic concepts of Cogalois Theory, namely that of G-Kneser and G-Cogalois
field extension, as well as their main properties have been generalized in [4] to arbitrary
profinite groups. More precisely, let T' be an arbitrary profinite group, and let A
be any subgroup of the Abelian group Q/Z such that I' acts continuously on the
discrete group A. The concepts of Kneser subgroup and Cogalois subgroup of the
group Z'(I', A) of all continuous l-cocycles of T' with coefficients in A have been
defined and their main properties have been established in [4]. Their proofs, involving
cohomological as well as topological tools, are completely different from that of their
field theoretic correspondents.

The aim of this paper is two-fold: firstly, to present the abstract versions for arbi-
trary profinite groups of various types of Kummer field extensions, and secondly to show
how some basic results of the field theoretic Cogalois Theory, like the Kneser Criterion,
the General Purity Criterion, the uniqueness of the Kneser group of a G-Cogalois field
extension, etc., can be very easily deduced form their abstract versions.

0 Notation and Preliminaries

Throughout this and the next two sections of the paper I" will always denote a fixed
profinite group, and A will be a fixed subgroup of the Abelian group Q/Z such that
[' acts continuously on A endowed with the discrete topology, i.e., A is a discrete
[-module.

For any topological group 17" we denote by IL(7') the lattice of all subgroups of T
and by IL(T") the lattice of all closed subgroups of T'. The notation U < T means that
U is a subgroup of 7. For any U < T we denote by L(T'|U) (resp. L(T|U)) the
lattice of all subgroups (resp. closed subgroups) of T' lying over U. If X C T, then
(X) will denote the subgroup generated by X.

An additive Abelian group D is said to be a group of bounded order if there exists
a positive integer m such that mD = {0}, and the least such m is called the exponent
of D and is denoted by exp(D). -

As usually, we denote by Z!(I', A) the torsion Abelian group of all continuous 1-
cocycles of I' with coefficients in A and by B'(I', A) its subgroup consisted of all
1-coboundaries.

The evaluation map

(=, =):Tx ZYT,A) — A, (o,h) = h(0),
defines for any A <T', G < Z1(T", A), and g € Z'(I', A) the following sets

At i={hec 2/, A)|(o,h) =0,Voec A},
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Gt:={ocel|(o,h) =0, Vhe G},
g i={0seTl[{og)=0}

Then A+ < ZYI, A), ¢t = (g)*t, G+ € L(I'), and the maps

L(ZY(I, 4)) — L(I"), G — G+,

L) — L(ZN(T, A)), A — A,

establish a Galois connection between the lattices L(Z!(T, A)) and L(I), i.e., they are
order-reversing maps and X < X+ for any element X of L(Z(I,A)) or L(I') (see
[4, Proposition 0.1 (1)]).

The following notation from [4], with D an additive Abelian torsion group, will be

used throughout this paper.

N denotes the set {1, 2, ...} of all positive integers;

D[n]:={z € D|nz =0} forany n €N;

Op :={meN|3z e D of order m };

[P denotes the set of all positive prime numbers;

P = (P\ {2}) U {4);

Pp:={peP|p|n} forany n €N;

Pp:=0pNP;

7 denotes for any r € Q its coset in the quotient group Q/Z;

P A) = {peP|l/pe A\ A" };

e, € BYI', A) denotes for any n € N with l//; € A the coboundary
en(0) =0 1/n—1/n o €T,

associated with ﬁ,

If 1//71 € A\ A", then the map &) € Z1(T', A) is defined by

o (o) = /4 if ol/4=-1/4,
0 if ol/a=1/4.
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1 Some basic facts of Abstract Cogalois Theory

An Abstract Cogalois Theory for arbitrary profinite groups has been developed in [4].
We present below some of its basic concepts and results needed in the sequel.

As above, T’ denotes a fixed profinite group and A is a fixed discrete subgroup of
the Abelian group Q/Z such that I' acts continuously on A.

The next two definitions from [4] are the abstract versions of the concepts of Kneser
and Cogalois field extensions.
Definition 1.1. A finite subgroup K of Z1(T', A) is said to a Kneser group of ZYT, A)
if (I': K4 = |K|. An arbitrary subgroup of ZN(I', A) is said to a Kneser group of
ZUD, A) if any of its finite subgroups is a Kneser group of Z1(T, A). O
Definition 1.2. A subgroup G of Z1(T', A) is said to be a Cogalois group of ZYT, A)
if it is a Kneser group of Z'(I', A) and the maps

(—)F  L(G) — L|GY) and G (=) LIGH) — L(G)

O

are lattice anti-isomorphisms, inverse to one another.
The next result is the abstract version of the field theoretic Kneser Criterion [7].

Theorem 1.3. (THr ApsTRACT KNESER CRITERION [4, Theorem 1.20]). The follow-
ing assertions are equivalent for G < Z1 (L, A).

(1) G is a Kneser group of ZH(I', A).
(2) €, ¢ G whenever 4 # p € P(I', A) and e & G whenever 4 € P(I', A). O

As in [4]. a subgroup D of an Abelian group C'is said to be quasi n-pure, where
0o N is a given positive integer, if C[n] € D, or equivalently, if Cln] = D[n]. For
M CN, C'is quasi M-pure if C is quasi n-pure for all n.€ M.

The next result is the abstract version of the field theoretic General Purity Criterion
[1, Theorem 2.3].

Theorem 1.4. (T QUASI-PURITY CRITERION [4, Theorem 2.5]). The following
statements are cquivalent for a subgroup G of Z T, 4).

(1) G is Cogalois.

(2) The subgroup AY of ACY s quasi Pe-pure.

(3) Gt ¢ E]i' for all p € PoNP(I,A). O]

Definitions 1.1 and 1.2 above give the abstract correspondents for subgroups of
211, A) of Kneser and Cogalois field extension. If we move now via the maps (—)*
from subgroups of Z'(I'. A) to subgroups of the given profinite group I', then one
can define as follows the abstract versions for the later ones of the concepts of radical,

simple radical. Kneser, and Cogalois field extension.
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Definition 1.5. A subgroup A of T' is said to be G-radical if A = G+ for some
G < ZNT,A). A radical subgroup of T' is a subgroup which is G-radical for some
G < ZY T, A). A subgroup A of T is called simple radical if there ezists g € Z(T', A)
such that A = g*. ]

Observe that any radical subgroup of I' is necessarily closed, and any simple radical
subgroups of I' is open.
Definition 1.6. ([6]). A subgroup A of T' is said to be G-Kneser if A is G-radical
and G is a Kneser group of Z'(I'; A). A is said to be a Kneser group if A is G-Kneser
for some G < Z\(T', A). O
Definition 1.7. A subgroup A of T' is said to be Cogalois if there ewxists a Cogalois
group G of Z1 (', A) such that A = GL. A is said to be strongly Cogalois if A = A+
and A+ is a Cogalois group of Z1(T', A). O

If A is Cogalois, then the Cogalois group G of Z'(I',A) for which A = -
is uniquely determined by [4, Corollary 2.12], and we say in this case that A is G-

Cogalois.

Lemma 1.8. The following statements are equivalent for a radical subgroup A of T'.
(1) A s strongly Cogalois.
(2) At is a Kneser group of ZYT. A).
Proof. (2) = (1): Since A is a radical subgroup of I, there exists G < Z\(I', A) such
that A = G+, and so A+t = (GL)H = GL = A If G := Al is not a Cogalois group
of Z1(I', A), then we are going to show that G is not Kneser. As G is not Cogalois, it
follows by the Quasi-Purity Criterion (Theorem 1.4) that there exists p € P(I, A)NPq
such that A = G+ < E}J} and hence ff;L < At = G, Consequently, £ € E])' L<aif
p# 4, and ¢ € eft < G if p=4. By the Abstract Kneser Criterion (Theorem 1.3)
we deduce that G is not Kneser.

(1) == (2): This is trivial since any Cogalois group of ZHT, A) is also Kneser. [

2  Kummer groups of cocycles

In this section we introduce four types Kummer groups of cocycles which are the ab-
stract group theoretic correspondents of the various types of Kummer field extensions
studied in Galois Theory and Cogalois Theory (see [3]) and prove that any of them is

a Cogalois group of cocycles.
Definitions 2.1. Let G < ZY(I", A), and let n € N.

(1) G is said to be a classical n-Kummer group if nG = {0} and Afn] C Al



ALBU

(2) G is said to be a generalized n-Kummer group uf nG = {0} and AG* [n] C AT.

(3) G is said to be an n-Kummer group with few cocycles if nG = {0} and ACGT [n] C
Al2].

(4) G is said to be an n-quasi-Kummer group if nG = {0} and Alp] C AV for every
p € Py

We say that G is a classical Kummer group (resp. a generalized Kummer group,
Kummer group with few cocycles, quasi-Kummer group) if G is a classical m-Kummer

group (resp. a generalized m-Kummer group, m-Kummer group with few cocycles, m-
O

quasi-Kummer group) for some m € N.
Observe that A[2] C {0,1/2} C A", and so, any n-Kummer group with few cocycles

is a generalized n-Kummer group. Clearly, any classical n-Kummer group is both a

generalized n-Kummer group and an n-quasi-Kummer group.

Proposition 2.2. Any generalized Kummer group and any quasi-Kummer group is

Cogalois. In particular, any classical Kummer group and any Kummer group with few
cocycles is Cogalots.

Proof. Let G < ZY I, A). If G is a generalized Kummer group, then there exists
n € N such that nG = {0} and A% [n) € AU If p € Pe, then clearly p|n, and hence
Acl[p] C ACGT [n] € AY, which shows that the subgroup AL of A®" is quasi Pe-pure.
By Theorem 1.4 we deduce that G is a Cogalois group of ZNT, A).

If (¢ is a quasi-Kummer group, then there exists n € N such that nG = {0} and
Alp] € A" for every p € P,. Observe that Pg € P,; hence AG* [p] € Alp] C AL for
cvery p € Per, which shows that the subgroup AL of AC" is quasi Pg-pure. Again by
Theorem 1.4 we deduce that G is a Cogalois group of Z(I", A). O

Corollary 2.3. Let G < ZY I, A) be one of any of the four types of Kummer groups
of cocycles introduced in Definition 2.1. Then the maps

(=)' L(G) — LG and G (=)' L{T|GL) — L(G)
are latlice anti-isomorphisms, inverse to one another. U
Proof. By Proposition 2.2, G is a Cogalois group of Z4(I', A), and so, according to
Definition 1.2, we are done. O
Proposition 2.4. Let G < Z1 (I, A) be a Cogalois group of bounded order such thal
Alexp(G)] C ACY . Then G is a quasi- Kummer group.
Proof. Set n = exp(G), and let p € P,. Then Afp] C An] C A 'L, and hence Alp] C
L . . . A v . .
A" [p]. Since G is a Cogalois group of Z1(T", A), Al is a quasi Pg-pure subgroup of
+d m 1 = — Yo - g
AC" by Theorem 1.4; hence AS” [p] € A" for all p € Pg. Since n = exp(G), we have
Per = Oa NP =P,. Consequently. Ap] C AV for every p € P, which shows that &
is an n-quasi-Kummer group. (]
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Proposition 2.5. Any generalized Kummer group G < ZY(I', A) with Alexp(G)] C

p AR i
AC" s a classical Kummer group.

Proof. Let n = exp(G). Since n|m, we have A[n] C A% [n] C A% [m] € AT by
hypotheses. This shows that G is a classical n-Kummer group. O

Remarks 2.6. (1) The result in Proposition 2.4 is the abstract version of the following
field theoretic result: Any Galois n-bounded G-Cogalois extension E/F is an n-quasi-
Kummer extension, cf. [3, Thm. 13.4.3]. The condition A[n] C A" in Proposition
2.4 corresponds to the fact that the primitive n-th of unity ¢, belongs to E, which
in turn, is a consequence of the fact that E/F is a Galois extension. It is not clear
whether or not we can replace it by another condition, e.g., by the following one: G is
a I -submodule of Z'(T', A) (see also Corollary 4.6).

(2) The same question holds for Proposition 2.5, which is the abstract version of
[3, Thm. 13.4.4]: Any Galois generalized Kummer extension is a classical Kummer

OJ

extension.

3 A field theoretic < abstract Cogalois Theory dictionary

In this section we establish a dictionary relating the basic notions of the field theoretic
Cogalois Theory to their correspondents in the group theoretic Abstract Cogalois The-
ory; this will allows us to recover in the next section some main results of the former
theory from the later one.

Throughout this section /7 denotes a fixed Galois extension with the (profinite)
Galois group I' := Gal(Q/F). In particular, we can take as {1 an algebraic separable
closure 5P of the base field F, in which case ' is the absolute Galois group of I.

For anyv nonempty subset S C €0 we denote by p(S) the set of all roots of unity
contained in S, and for n € N, 1,(S) will denote the set of all n-th roots of unity
contained in S. If Q = F*P and the characteristic Char(F) of F' is p, then the
multiplicative torsion group p(§1) is isomorphic in a non-canonical way to the additive
group Q/Z if p =0, respectively to its subgroup @(IG”D\“)}(@/V/A)((]) for p # 0, where
(Q/Z)(q) denotes the g-primary component of the torsion Abelian group Q/%Z. Thus,
in general. the group A := p(§2) is isomorphic to a uniquely determined subgroup of
Q/7%, and the canonical action of I' on € induces a continuous action of the profinite
proup I' on the discrete Abelian torsion group A.

Assigning to the exact sequence of topologically discrete I-modules

{1} — A — Q" — QA — {1}
the corresponding exact sequence of cohomology groups in low dimensions

(1} — A" — " — (/A — HNT, A) — H'(I, "),
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where HYT',Q*) = {1} by the Hilbert’s Theorem 90 (see e.g., [9]), we obtain the
canonical epimorphism of Abelian torsion groups

b TQF) — Z\,A), 2 (0 €D (ox) 2 € A),
whose kernel is I'*, where
TQ/F)={zeQ*|(cx)a '€ A, Voel}={zeQ*|IneN, 2" € I}

The quotient T(S2/F)/F*, which is exactly the torsion subgroup of the quotient group
Q*/F* | is called in Cogalois Theory (see [3]) the Cogalois group of the field extension
(/F and is denoted by Cog(€2/F). Thus, the epimorphism ¢ induces a canonical
isomorphism :

¢ : Cog(Q/F) — Z1(T, A)

(see also [2, Corollary 1.2] or [3, Theorem 15.1.2]), which identifies in a canonical way
the subgroups G < Z(T', A) investigated in the frame of Abstract Cogalois Theory
with the subgroups G/F* := ¢ 1(G) < Cog(QY/F) investigated in the frame of field
theoretic Cogalois Theory. In particular, for every intermediate field E of Q/F, the
restriction of ¢ to T(E/F) = T(/F) N E induces an isomorphism from the torsion
group Cog(E/F) :=T(E/F)/F* of E*/F* onto the subgroup I'h of ZY(T', A), where
[y = Gal(Q/FE).

The lattice I(Q2/F) of all intermediate fields of the extension §2/F', the lattice
L(T(Q))F)|F*) of all subgroups of T'(§2/F) lying over [, the lattice L(T") of all
closed subgroups of I, and the lattice L(Z'(I', A)) of all subgroups of Z!(T', A) are
related as shown in the commutative diagram below

L(T(Q/F)
! !
L(ZYT,A) = L)

Yy = I(QF)

where the left vertical arrow is the lattice isomorphism induced by 1, the right vertical
arrow is the canonical lattice anti-isomorphism F +— ' with inverse A +— E2 given
by the Fundamental Theorem of Infinite Galois Theory, the horizontal top arrows are
the sup-semilattice morphism G ~ F(G) and the inf-semilattice morphism £
T(F/F), while the horizontal bottom arrows are the sup-semilattice anti-morphism
G — Gt and the inf-semilattice anti-morphism A ~— AL defined in Section 0. Note
that the commutativity of the diagram above follows at once from [2, Theorem 1.8] or
[3, Theorem 15.1.7].

The next result is essentially a reformulation of the corresponding results from [2]
or [3] involving the lattices and the maps above.
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Proposition 3.1. Let E be an intermediate field of the given Galois extension Q/F,
let I'p = Gal(QU/E), let A= p(f2), let G € L(T(QY/F)|F*), and let G = (G), where
Y is the canonical group epimorphism

¥ T(QF) — ZYT,A), 2+ (0 € D= (0z) 27! € A),
defined above. Then, the following statements hold.

(1) The extension E/F is G-radical if and only if the subgroup I'p of T is G'-radical.
In particular, E/F is a radical extension (resp. a simple radical extension) if and
only if T'p is a radical subgroup (resp. a simple radical subgroup) of T'.

(2) The estension E/F is G-Kneser if and only if the subgroup I'p of I' is G-
Kneser. In particular, E/F is a Kneser extension if and only if I'p is a Kneser

subgroup of T".

(3) The extension F(G)/F is G-Kneser if and only iof G is a Kneser group of
ZY(T, A).

(4) The extension E/F is G-Cogalois if and only if the subgroup I'p of I' is Cogalois.
In this case, G is the unique Cogalois group of Z1(I', A) for which I'p = G,

(5) The extension F(G)/F is G-Cogalois if and only if G is a Cogalois group of
ZUT. A).

(6) The extension I2)F is Cogalois if and only if the subgroup I'p of T" is strongly
Cogalois.

Proof. (1) is a reformulation of [2, Theorem 1.8] or [3, Theorem 15.1.7].
(2) is a reformulation of [2, Corollary 1.10 (1)] or [3, Corollary 15.1.8 (1)].

(4) is a reformulation of [2, Corollary 1.10 (2)] or [3, Corollary 15.1.8 (2)]. The
uniqueness of G is assured by [4, Corollary 2.12].

(6) Denote H = T(E/F) and H = (H) = I'h. By (2), the extension E/F is
H-Kneser if and only if I'p = H' = F]%J— and FJL is a Kneser group of Z'(I', A). By
Lemma 1.8, this means precisely that I'p is strongly-Cogalois. O

The connection between various types of Kummer field extensions and their abstract
correspondents is given by the next result.

Proposition 3.2. Let E/F be an arbitrary separable algebraic extension, let €1 =
[or T = Gal(Q/F), A= (), and let n € N be relatively prime with the character-
istic exponent of F'.

Then, the extension E/F is a classical n-Kummer extension (resp. a generalized
n-Kummer extension, an n-Kummer extension with few roots of unily, an n-quasi-
Kummer extension) if and only if there exists a unique classical n-Kummer group (resp.
a generalized n-Kummer group, an n-Kummer group with few cocycles, an n-quasi-
Kummer group) G, G < ZYT, A), such that T'p == Gal (2/F) = ¥,
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Proof. We may assume that £ C €. Assume that E/F is a classical n-Kummer
extension. Then there exists a group G € L(T(E/F)|F*) such that £ = F(G), G" C
F* and A[n] = pn(2) C pun(F) C Al Let G = ¢(G). Then nG = {0}, and so G is
a classical n-Kummer group. By Proposition 3.1 (1) we have ' := Gal(Q2/E) = GtL,
Now observe that G is Cogalois by Proposition 2.2, so the uniqueness of G follows
from Proposition 3.1 (4).

Conversely, assume that there exists a classical n-Kummer group G' of Z I, A)
such that Gal (2/E) = G*. If we denote G = ¢~ !(G), then E = F(G) by Proposition
3.1 (1). Since clearly G™ =1 and py,(Q2) = A[n] C Al C F, we deduce that E/F is a
classical n-Kummer extension.

The cases of generalized n-KKummer extensions, n-Kummer extensions with few
roots of unity, and n-quasi-Kummer extensions follow in the same manner as above
from the following simple facts: A[n] = p,(Q) (in particular A[2] = {—1,1}) and
AGIL) = L3 € 4(Q)|ox =z, Vo € Gal(Q/L) } = p(L) for any intermediate field
L of the given Galois extension §/F. O

Remark 3.3. According to Proposition 3.2, all the types of Kummer groups of cocycles
defined in Section 2 are abstract versions of corresponding field extensions from the field
theoretic Kummer Theory. So, the counterexamples from the field theoretic Kummer
Theory provided in [3], converted into Kummer groups of cocycles via Proposition 3.2,
show that. except the obvious inclusions indicated just after Definition 2.1, no other
inclusions between these four types of Kummer groups of cocycles do exist.

4 Field theoretic via Abstract Cogalois Theory

The results of the previous section permit us to retrieve casily most of the results
of field theoretic Cogalois Theory from the basic results of Abstract Cogalois Theory
mentioned in Section 1. We will illustrate this by presenting only three of them.

Theorem 4.1. (THE INFINITE KNESER CRITERION [5, Theorem 2.1} or [3, Theorem
11.1.5]). Let E/F be an arbitrary separable G-radical extension. For any positive
integer n, let ¢, € S := FP denole a primitive n-th root of unity. Then, the following

assertions are equivalent.
(1) E/F is a G-Kneser extension.
(2) ¢, € G = (, € I for every odd prime p, and 1+( € G = (4 € I
Proof. We may assume that £ C §. Set I':= Gal(§2/F) and A := (), and let
P TQJF) — ZYI,A), 2= (0 €T (ox) 2~ € A),
be the canonical group epimorphism defined at the beginning of Section 3. Then

AY = p(F) and P(I', A) = {p|p odd prime or 4 such that (g 1,
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By assumption, £ = F(G), with F* < G < T(Q/F). Setting G := (G) < Z\(T, A)
we have 'y = Gt by Proposition 3.1 (1). Consequently, by Proposition 3.1 (3), the
extension E/F is G-Kneser if and only if G is a Kneser subgroup of ZNT, A).

For every odd prime p # Char(F), e, = 9((,) € Z4I', A) is the coboundary
assigning to any o € I' the p-th root of unity (UCP)Cljl € Alp]. Obviously, €, € G if
and only if ¢, € G. Observe that if p = Char(F') > 2, then () € Alp] = {1} C AL.

Assume that Char(F) # 2. Since 1—(4 € T(2/F), we can consider the continuous
cocycle (1 —¢4) € ZY(T, A), which by definition works as follows:

(1 =)o) =01 =) -(1—C) ' =(1—-0C) - (1-C) ", Voerl.

Since for any ¢ € ', we have either 0¢q = {4 or 0¢4 = —(4, we deduce that

w(1—<4>(0):{ %4 j Zgjzé_f

Thus, 1(1—C4) is nothing else than the multiplicative version of the cocycle ), defined
in Section 0 and appearing in the statement of the Abstract Kneser Criterion (Theorem
1.3). A simple calculation shows that (1 + (1) = (¥(1 — ¢4))"! in the multiplicative
group ZU(I',A), so ¢ € G < 14+ { € G. Observe that if Char(F) = 2, then
(4 € A[4] = {1} C Al

To finish the proof it remains to apply Proposition 3.1 (3) and the Abstract Kneser
O

Criterion (Theorem 1.3).
Corollary 4.2. Let E/F be a separable G-radical extension (i.c., I = F(G) for
some '* < G < T(E/F)), which is not G-Kneser. Assume that the extension E/F
is minimal with respect to the property notl being G-Kneser, that is, for any proper
subgroup G’ of G, the extension IF(G')/F is G'-Kneser Then, the cxtension E/F is
cyclic having cither the form IS = F () with p # Char(I) an odd prime number and

¢ & 1, or the form I'(Cy) with Char(l") # 2 and ¢4 ¢ I

Proof. With Q = F* T and A as above, let [2/F be a subextension of /I satis-
fying the minimality condition from the statement. Using the canonical group epimor-
phism
W T(QF) — ZY T, A), 2 — (0 €' — (o) et e A),

as well as Proposition 3.1. we deduce that G = (G) is a minimal non-Kneser group
of ZU(, A). According to [4, Lemma 1.18], it follows that either G = (e,) = L/pZ
for some odd prime number p # Char(I?) such that ¢, ¢ F, or G = (e}) = L[4,
with Char(F) # 2 and ¢y ¢ F. Consequently, G = F*((y) in the former case and
G = I"*(1 4 ¢;) in the latter one. The result now follows casily. ]

Remark 4.3. The inverse implication in Corollary 3.5 may fail. Indeed, F(¢)/F
is F*((4)-Cogalois, in particular Kneser, whenever Char(F) # 2 and (4 ¢ F. Also,
for every odd prime p. if the characteristic exponent of I is relatively prime with
plp—1), ¢, & I, and (,-1 € F, then there exists 0 € 9= F(¢,) such that I = 1°(0)
and 071 e I, therefore B/F is an [7*(0)-Cogalois extension, in particular Kneser. O
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Theorem 4.4. (THE GENERAL PURITY CRITERION [1, Theorem 2.3] or [3, Theorem
12.1.4]). The following assertions are equivalent for an arbitrary separable G-radical

extension EJF.
(i) E/F is G-Cogalois.
(ii) E/F is Pg-pure, i.e., { € B = ¢, € E for every p € Pg :=PNOg/p«-

Proof. We may assume that E C ) := [P Set I' := Gal(Q/F) and A = p(Q).
Since E/F is a G-radical extension, we have £ = F(G) with F* < G < TQ/F). If
G = (G) < ZY(T, A), then T'p := Gal(2/E) = G+ by Proposition 3.1 (1), so E/F
is G-Cogalois if and only if G is a Cogalois subgroup of Z1(I', A) by Proposition 3.1
(5). Since for any p € Pg we have A'[p] = j4,(F) and AT [p] = pp(E), we deduce
that the Pg-purity of the extension E/F is equivalent to the quasi Pg-purity of the
embedding A" < AG" . The result follows now at once by applying Theorem 1.4. [

Theorem 4.5. ([5, Theorem 3.12] or [3, Theorem 12.1.10}). If B/ is an algebraic se-
parable extension which is simultaneously G-Cogalois and H-Cogalots, then G=H. O

Proof. Apply [4, Corollary 2.12] and Proposition 3.1 (4). 0J

Corollary 4.6. Let Q/F be a Galois extension, I' := Gal(Q/F), A := p(Q2), and
let F* < G < T(Q/F) be such that E := F(G) is a G-Cogalois extension of F. If
G = (G) < ZY I, A), then, the following assertions are equivalent.

(1) G is a I'-submodule of ZNI, A), i.e., it is stable under the action of T'.
(2) E/F is a Galois extension.
(3) ox € B forall c €’ and v € G.
Proof. First, observe that I'p := Gal(Q/FE) = G+ by Proposition 3.1 (4). Now, by

[4, Corollary 2.14], G is a I'-submodule of Z1(, A) if and only if Gt is a normal
subgroup of I'if and only if E/F is a Galois extension. L]
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