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On the differentiability of Sobolev
functions on metric measure spaces

MARCELINA MOCANU

Assrnecr. We give applications to the Stepanov differentiability
theorem of [BRZ] in doubling metric measure spaces supporting a
Poincar6 inequality. For 1 I p < oo we prove that the differential of
a Sobolev mapping from /y'l,p(X) is an average Il- rntegral pointwise
differential, at almost every point of X. A differentiability result for
monotone Sobolev functions is established. We study the regularity of
quasiminimizers of the Dirichlet energy integral, by using a Cacciopoli
type estimate, Gehring's Lemma in doubling metric measure spaces
and a Calder6n type theorem.
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l . ImRooucrloN

Geometric function theory has been an important source of inspiration for the
recent developments of analysis on metric measure spaces. The study of Sobolev
spaces and p-harmonic functions on metric measure spaces ied to the definition
of a concept of differentiability in this general setting.

In his seminal paper [C] Cheeger proved that every metric space with a dou-
bling measure supporting a Poincar6 inequality admits a strong measurable dif-
ferentiable structure, with which Lipschitz functions can be differentiated almost
everywhere. Note that quasiconformal theory and nonlinear potential theory are
currently studied on metric measure spaces with the properties mentioned above.

In their recent paper [BRZ] Balogh, Rogovin and Ziircher used Cheeger's
extension of Rademacher differentiability theorem to prove a generalization of
this result, the following extension of Stepanov's differentiability theorem.

Theorem 1.1.[BRZ] Let (X,d, p,) be a doubling metric nleasure space. As-
sume that there eri,sts a strong measurable differentiable structure {(X.,p,)} for
(X,d,p,) with respect to LIP(X), such that the sets Xo are mutually di,sjoi,nt.



Then each function f , X -+ IR is p-a.e. di,fferentiable in S(/) :: {x e X :

Lip f (r) < m) with respect to the structure {(X",rp")}.
The above theorem has far-reaching consequences. It turns out that the class

of Cheeger differentiable functions is very rich. The applications of Stepanov's

differentiability theorem given in [BRZ] include a Calderon-type differentiabil-

ity theorem and a theorem on the differentiability almost everywhere of the

post-composition with Lipschitz functions of quasiconformal mappings between

Ahlfors regular spaces.
The aim of this paper is to give another applications to Theorem 1.1, which

extend to metric measure spaces classical results on the differentiability of some

Sobolev functions on Euclidean domains.
The paper is organized as follows.
In the second section we state the needed definitions and preliminary results

In Section 3 we give alternative proofs for some results of [BRZ]' which extend

the Calderon differentiability theorem to metric measure spaces. We establish

a Calderon-Zygmund type theorem, which improves a theorem of Keith [3] and

extends a theorem of Reshetnyuk [4] on differentiability of Wt'p functions in the

sense of WL,p. In Section 4 we prove a result on the differentiability of monotone

functions on doubling metric measure spaces. In Section 5 we investigate the

regularity of some quasiminimizers of the Dirichlet energy integral. Using a Cac-

ciopolli type inequality of [KSh] we prove that the minimal weak upper gradients

of quasiminimizers satisfy a weak reverse Hcilder inequality, and consequently

they have a higher integrability property, by a Gehring- type lemma of [Z-G]' In

particular, in the borderline case we obtain the differentiability of quasiminimiz-

ers , with respect to any strong measurable differentiable structure for the metric

measure space.

2.PnsLl\4INARIES

In what follows we assume that (X, d, p,) is a metric measure space, where the

measure pl is Borel regular, positive and finite on balls. An open ball centered at

r  €  X ,o f  rad ius  r  )  0  w i l l  bedeno ted  by  B ( r , r ) .  I f  B : :  B ( r , r )  and  o>0

then oB stands f.or B(r,or).
A function between metric spaces f , (X,d) * (Y,p) is called -L-Lipschitz

if  p(f (r), f  @) S Ld(r,y) for alI r,A € X and is said to be Lipschitz i f  i t  is

l-Lipschitz for some .L > 0, respectively locally Lipschitz if it is Lipschitz on

each ball B c X. If / is Lipschitz ,let LIPf be the infimum of all L> 0for

wiriclr f is L-Lipschitz. We will denote by LIP(X) the set of all real Lipschitz

firnctions on (X, d) and by LI P1".(X) the set of functions u : X --+ IR such that

u is Lipschitz on every ball in X. In order to describe the scaled oscillations of a
function u: X --+ R which is not necessarily Lipschitz, we use the upper Lipschitz



constod,dr&od'W

Lipa(a)-$n 1,.'fig", lr(r) - u(v)|.

Note that Lipu(x) =limsuP |sfrf,Jl/-if o is a limit point of X and I'tpu(t) =

0 if c is isolated (t* [Cl, [Ke], [BRZJ).
Let I 1 p < m. The p-modulrr of a fa,mily of paths f in X, denoted by

Mdp(t), is the number 
ry { 

fdp, where the infimum is taken over all non-

negative Borel measurable functions p such that for all rectifiable paths "y which

belong to I we have / Ns > t.

The basic .oorupl of the 'first-order calculus" on metric mea^sure spaces is

that of upper gradient, which generalizes the norm of the gradient of a real-

valud Cl*functiotr on a Euclidean domain. I'et u: X + R. A non-negative
Borel measqrable function g/ is seid to be an upper gmd,ient of. u if for all rectifiable
paths 1 : la,bl + X the following inequality holds

l,(r(r)) -,,(r(a))l = [ gar.
J
,|

(2.1)

We say that 9 is a p-weak upper gradient of u if (2.1) holds fot Modo-almost
every compact rectifiable Path 7 .

The Newtonian spaces introduced by Shanmugalingam Jshl]are the Sobolev

type spaces based on the notion of weak upper gradient.Let NIP(X) be the collec-

tion of all real-valued p-integrable functions u on X that possess a p-integrable

p-weak upper gradient. This space can be endowed with the seminorm llullp',o ::

ll"ll, + inf llgllo, where the infimum is taken over all p-integrable p-weak upper

gradients g of  u. I f  uandu arefunct ionsinl f l ,n,  weset u- ui t l lu-_ul lgr ,o:0.

Then - is an equivalence relation. The quotient space Nt'o(X) ,- Nl'o(X),/ -

equipped with the norm llrll"r," :: llzllp'," , is the Newtoni'an space correspon-

ding to the index p.
If 1 < p < oo then each function u e Nr,p(x) has a minimal p-integrable

p-weak upper gradient in X, denoted by gu, in the sense that if g is another
p-weak upper gradient of u, then gu I I p,-a-e.in X ([C], Theorem 2'LB)'

Let f,l be an open subset of. X. The Newtonian space l[t'o(O) is defined

in an obvious way. We say that a function u : dl -'-i lR' belongs to the local

Newtonian space N#(O) if. u € lfl'o(E) for every measurable set E CC CI

(tKMl). If u € N#(O) with 1 <p < oo, then u has a minimalp-weak upper

gradient g, in O,-in the following sense: whenever D CC Q is an open set and

gu,p is a minimal p-weak upper gradient of u in D we have gu I 7u,D p'-aain

D .



The p,-ca4city of a set E C X is defined by Co@) =inf llullply'," , where the

infimtrm is taken over all functions u e NL'q(X) with u: Lon E. The Newtonian

space with zerc bwndary aalues If;"(E) is the set of functions u : E --+ R' for

which there exists a funciion d e N\'p(Xj such thatd,: u, lr-alnost everywhere

i n E a n d  C o ( { ,  € X \  E : i l ' ( n )  # 0 } ) = 0 .

The theory of quasiconformal mappings between two metric spaces' the non-

linear potential theory on metric mea^sure spaces and the theory of Cheeger dif-

ferentiability are relevant if the metric measure spaces we use are doubling and

support Poincard inequalities.
The metric mea.sure space (X,d,p) is said tobe doublingif. there is a constant

Ca> L so that

p(B (r, 2r)) S C ap'(B (x, r)) (2.2)

for every ball B(r, r) in X. By the doubling condition (2.2) there exist some

constants Cu > 0 and I such that

p,(B(x,r)) (2.3)
p,(B(rs,rs))

whenever r € B(rs,rs) and 0 < r ( ro. Every such Q will be called a homo-
geneous d,,imension of the given metric mea^sure space. For instance, (2.3) holds

with Q - logz Ca and some Ca depending only on Ca.
An important advantage of doubling metric measrre spaces is the valability

of Lebesgue differentiation theorem. For / e Letu6) we call ns a Lebesgue
point of f if.lrS t15d''D ̂ ,1 .l/(") 

- f (rl)lp dp : 0. When p is doubling, if
B(ro,r)

f e L!,."(X) then p-a.e. q € X is a Lebesgue point of / (see [He], Theorem 1'8)
. In particular, l im KE|;C_,/ ,lf 

(")lod,p,:lf (rs)l < * for p,-a.e. ns € x.
B(ro,r)

If A C X and ns € A, the latter equation implies (taking / as the characteristic
f u n c t i o n o f A n B ( * o , , R ) f o r s o m e . R > 0 ) } s f f i : 1 , i . e . r 6 i s a p o i , n t
of density of A, f.or LL-a.e. ro € A.

Remark 2.L. Let p e L!,"(X) and A > 0. If z is a limit point of X then

-  

"  
( ; ) '

p(B(r,  \d(r ,y)))

Let u e Ll,"(X) and g be a measurable non-negative function on X. Let
p > 0. The pair (u,9) is said to sati,sfy a weak (I,p)-Poincar6 'inequali,ty if there

exist some constants Cp ) 0 and r ) L such that

f r f
J 

pdp slims;ro 
rlnlrry J 

pdp (2.4)
B(x,\d(n,y)) B(x,r)

limsup
'Atn



for every ball B(r,r). Here uB@,r) f o"tp (see [HaKo], page 9).- p(B(a,r)) 
a(1,,)

We say that the metric measure space (X, d, 1t) supports o weak (1, p) - P oincard
inequality (for locally iutegrable fuactions) if there exist some constants Cp > 0
and r ) 1 such that (u, g) satisfy (2.5) whenever u e Ll*(X) and g is an upper
gradient of u.

Note that,when (x,d,p) supports a weak (1,p)-Poinca,r6 inequality, if. u e
Ll,.(X) has a p-integrable p-weak upper gradient 9 then (2.5) holds, since g is

the limit in U(X) of a sequence of upper gradients (g") of u and each pair (u, g")

satisfies (2.5) . If. (X,d,p) supports a weak (1,p)-Poincar6 inequality for some
p > 0 then (X, d, pr) supports a weak (1., q)-Poincar6 inequality for every Q ) P,
by Hiilder inequality.

One of the self-improving features of Poincar6 inequalities, that we will use

as a key tool, consists in the fact that a weak (1,p)*Poincar6 inequality implies

a weak (t,p)-Poincar6 inequality, for some f > 1. This follows from a result of

Hajlasz and Koskela ([HaKo], Theorem 5.1; see also [KSh],page 406).

Lemma 2.2. Let (X,d,, p) be a doubling metric nleasure space with a homo-
geneous dimension Q. Let p > A. Assume that the pair (u,g) satisfi'es the weak
(I,p)-Poincard inequality (2.5) .

T h e n f o r e a e r y 0 < r . # i i f  p < Q  a n d f o r e a e r y t > 0  i f  p > - Q  t h e p a i r

(u, g) sati,sfies the weak (t,p)-Poi,ncar6. inequality

\ 
t/o

/ l

J sodpl ,
B(a,lrr) /

(2-6)

1 f
p,(B(r,r)) J

B(r,r)

\ 
llP

I rdpl e5)
B(t,n) /

( * l
\  B(r 'r)

, ' o r )p(B(a,5rr))

lu -ur ( , , , l ld t rSc 
(r"I

l u -uu ( , , , , , ' * )  

t "  

= " (

p,(B(x,rr))

p(B(r,5rr))

for erery ball B(r,r) in X.
Moreouer, if p > Q then u has a locally Hiilder continuous representatiue

satisfying

lu(r) - u(a)l 3 CrQ/od,(r,or-''' 
( I

B(a,5z'.)

(2 7)

for aII r,U € B(a,r), where B(a,r) is an arbitrary ball and C > 0 is a

constant.



The essence of Cheeger's study on the infinitesimal behavior of Lipschitz func-

tions on doubling metric mea^sure spaces has been synthetized by Keith in the'''

following definition.
Definition 2.3. ([Ke],IBRZ]) Let (X, d, p,)be a metric mea.sure space' IetC C

LI P(X) be a vector rp*r of functions and let {(X", p")} be a finite or countable

collection such that each set Xo C X is measurable with positive measure, and

such that eanh go: (pL,...,,py(")) : X + IRN(') is a function with 9L e C fot

every L < i < N(o), *h"r" N(a) is a non-negative integer . (Here 9o will be

viewed to be the empty function if N(o) - 0). Then {(X",p")}is said to be

a strong measumble d,ifferentiable structurefor (X,d,p) with respect to C if the

following is true:
(i) p(x \ U&) : o.

a

(ii) Therelxists a non-negative integer N such that N(o) ( N for every

coordinate patch (X*,g) and
(iii) For every f e C and each coordinate patch (Xo,4o), there g,T$t a unique

(up to a set of mea.sure zero) measurable function d,o f : Xo *'+ R.N(o) such that

for almost every r € Xo

l f  (v)  -  f  (* )*  < df  ( r ) ,p"(Y) -  P-( ' ) l
d(u ' r )

where ( ',. ) is the usual inner product on IRN(') .
If in the above definition C: LIP(X) we witl simply say that {(X",p")}is a

stroug measurabie differentiable structure for (X,d,p).
Remark 2.4. ln [BRZ] the definition of a strong measurable differentiable

structure contains the additional assumption
(iv) The sets Xo are mutually disjoint.

Note that to every {(X,,p.)} strong measurable differentiable structure

{(X.,p.)} we can associate a strong measurable differentiable structure for

which the domains of the coordinate patches are mutually disjoint 
a_r

We may assume that a € N\{0}.  LetY::  Xr and Y'  i :  Xo\ g&

for a ) 2 , and let $* be the restriction of 9o to Yo. Then {(n,rlD : a €

N \ {0}, p,(Y") > 0} is a strong measurable differentiable structure such that the

sets Yo are mutually disjoint.
In order to keep the presentation as simple as possible, we will adopt the point

of view from [BRZ] by using only strong measurable differentiable structures
which satisfy condition (iv), without saying this every time.

A function f , X ---+ R (not necessarily in LIP(X)) is said tobe di'fferentiable
ar r € x, if there exisrs d'f (r) € RN(o) such that (2.8) holds ([BRZj). Assume
that a function f , X -r R is differentiable pt-a.e. on X. Then for each coordi-
nate patch (X,,V) there exists a function (which is unique up to a set of zero
measure) d,"f : Xo --+ RN(o) so that (2.8) hoids at p-a.e.point z € Xo.Setting

lim
Y+r

- 0 , (2.8)



,tf(t),:* df (n) if c € Xo, for each c, we get a function d,f : X + !lR/v(o) ,

called the Cheeger difierential of / (see [C] page 32 for a more gro"r"l tiproach, 
'

using sections of an -L- vector bundle).
Remark 2.5. The existence of a strong measurable differentiable structure

for X with respect to LI P(X) implies the differentiability p-a.e. on X of every
locally Lipschitz function.

Cheeger proved that every doubling metric measure space (X,d,p), that
supports a weak (1,p)*Poincar6 inequality for some 1 1 p < oo,admits a
strong measurable differentiable structure with respect to LIP(X). In particu-

lar, Rademacher differentiability theorem can be extended to such metric mea^sure
spaces.

A strong measurable differentiable structure for a doubling metric measure
space (X,d,p) supporting a weak (1,p)-Poincar6 inequality gives rise to a non-
trivial D-structure on X (in the sense from [T],[Sh2]) and consequently to a
Sobolev type space Hr*(X), to which the differential operator can be uniquely
extended.

Recall that a mu,surable uector bundle of (real) Banach spaces on X is a

collection p : {F,} such that to p'-a.e. r € X there corresponds a Banach
space (F,, ll.ll,). A, sertion of the measurable vector bundle F is a real function
u on X such that for p,-a.e. r € X we have a(r) e trL. The set of al} sections
of F will be denoted by f(F') To every t.., € f(F) we associate the non-negative
function lr,rl defined by lrl (t) : l l"(r)11,. Define I?(X;F):: {,, € f(F') :

lwl e U(X)).rc say that (tn 10 in If (X;F) if lc,r"l -+ 0 in U(X)-
Set 4 :: LIPa.(X). Let F: {4} a measurable vector bundle of Banach

spaces on X. Assume that a mapping D : L --f(l') has the following properties:

D is linear, lDl is a measurable function, lDul(") < Lipu(r) for all u e L and

Lr-a.e. r € x and Du(r):0 for [L-a.e. r e {u: c}whenever c € R.. The triple
(x, F,D) is called a weak D-structure on x ([T], [sh2]). A D-structure on X is

a weak D-structure (X, F, D) such that D is a derivation, i.e. D(uu) : u Du*u

Du f.or aII u,u e L. A weak D-structure (X, F, D) is said to be non-trivial if for

ea.ch rr € f there is an upper gradient p f.or u which equals lDula.e.
Example 2.6. Let {(X,,p,)} be a strong differentiable structure on(X,d, p,),

with respectto LIP(X), such that the sets X, are mutually disjoint. For each

,r € UXo (hence, fora.e. r € X) thereisanuniquea: a(r)such thatr €. Xo@).
d

Let F, '- pN(o(e)) be endowed with the norm ll)ll, ': Lip < \,Po(*) > (r) ([Ke,

Lemma 6.91). Then F : {4} ir a measurable vector bundle of Banach spaces,

the cotangent bundle T* X.
For u € 4, defin e d,u(r) - do(*)(r) whenever u is differentiabie at r e l) x,.

Consider the differentiation operator d,: L --+ f(Z.X). Flom (2.8) it fJtto*,

that the differentiation operator is linear and is a derivation and that for every

r € Xo such that ti is differentiable at r we have Li.pu(r) : lldu(r)11". This



showe'thrt tho, function r *+ llrlu(n)ll, it measurable on X , since lti,ptt is

measurable. Moreover, if the metric measure space is doubling it followa that

d,u(x) * Ltp(r):0 for p-a,.e. x c {u = e}whenever c € lR ([BRZ, Proposition

2.011. tf (X,iI,p) is doubling and supports a weak (1,p)-Poincar6 inequality for

some 1 1p 1oo, then there exists a minimal upper gradient 9a of, u such that

su(r): lldu(r)ll, for a.e. x € X ([C], [T, Theorem 2.1.1 (ii)]).

It follows that (X, T*X d) is a non-trivial D-structure whenever (X, d, p) is

doubling and supports a weak (1,p)-Poincar6 inequality for some L {p < a.

Let (X, F, D) be a weak D-structure on x and let | < p < oo. we define the

space lit,r(X,F,D) as the closure of the collection Lt*:: {u e t : llullu<xl!

lllD"lllr,"rx) < oo) under the norm ll"llt, ': llullroq) + ll lDulllu.x)' We

have / e'HL,r(X,F,D) if and only if there exists a Cauchy sequence (u") in

(4r,o,ll.l[,o) such that un -r / in U(X).
btt" io'fiowing theorem is a generalized form of a result of [FHK], which extends

to metric measure spaces a theorem of Semmes I Se].
Theorem 2.7.(lT, Theorem 1.4.21. Let (x,d,p,) be d,oubling and, supporting

a weak (L,p)- Poincard i,nequality for some | < p < oo. Let (X,, F, D) be a non-

triaiat weak D-stracture on X. Thenfor eaery sequence (u") in L1,o such that

1;n 1 0 in I?(X) and, Dun -, s in U(X; F) it follows that s : 0.
Corollary 2.8. Let (X , d, p,) and' (X , D , F) be as in Theorem 2.7.
Then the following hold true:
(i,) For euery f e Ht'n1X, F, D) there erists uy e U(X; F) such that for eaery

Cauchy sequence (u^) i,n (Lr*,ll'llt,o) with u^ --+ f i,n U(X) we haae Dun -* 1's,

i ,n U(X;F) .
(ii,) Def,ni'ng Df :: urf for f e HL'v(X,F,D) we obtain an ertensi'on of D

from L1,, to Ht'p(X, F, D) and llf llr,pt: llf llt,w + lllDf llln,<xt i's a norm on

HL,n(X,F, D).
Proof. Fix / e Hr'p(X, F, D). Let (u,) be a Cauchy sequence in (L1,r,ll'llr,")

such that un 1 f in U(X). Since 
-l jT* [lau,--dunlpdp:0, by standard

arguments (used to prove that U(X) is a Banach space) it follows that there is

a section u of. F such that DLtn -- wy in U(X;F) . The fact that ar does not
depend on the choice of the sequence (u,) with the above properties follows from
the preceding theorem. Now (ii) follows easily from (i).

Remark 2.9. Let (X, d,p) be doubling and supporting a weak (1, p)-Poincar6
ineqrrality for some I < p < oo. Let (X, F, D) be the non-trivial D-structure
considered in Example 2.6. The Sobolev-type space Hr''(X) ': Hr'e(X,F,D)
with the norm ll.llr., it isometrically isomorphic to the Newbonian space Nt'o(X)
with the norm ll.ll;',,, by [T, Remark 2.2.3] and [Shan, Theorem 4.10].

In [BRZ] is explained in a constructive manner how the differentiation oper-
ator can be extended from LIn""(X) n Nl'p(X) to N1'p(X) .



3. Cer,nnnoN DIFFERENTIABILITY THEoREM
AND A CnloeRox-ZvctrtuNo THEoREM

Calder6n difierentiability theorem shows that every function in the Sobolev
space WL,p(Q), where O c lR" is a domain and p ) fr, is differentiable a.e. and its
pointwise gradient and distributional gradient agree a.e.This fundamental result
has been extended to in [BRZ], Theorems 4.1 and 4.4. In what follows, we will
give shorter proofs to the results mentioned above and we will prove an extension
of a Calder6n-Zygmund theorem.

Theorem 3.1. ([BRZ], Theorem 4.L) Let (X,d.,1t) be a doubling metric mea-

sure space, with a homogeneou,s d,imension Q. Assume that u : X -+ lR, is a
measurable function and g e Ll*(X), with p ) 1 and, p > Q. If the pair (u,g)

satisf,es a weak (l,p)*Poincari, inequality then:
(i) u has a locally (t - Qld -Hiilder continuous representatiue;
(i,i,) Lipu(x) < oo at euery Lebesgue poi,nt of gp;
(iii) u is 1t-a.e. differentiable with respect to any strong measurable differen'

tiable stracture for (X,d,tt), if such a structure erists.
Proof. By Lemma 2.2 therc exists a representative of u satisfying (2.7), in

particular (i) holds. Setting a :: r and r ::2d,(n,y) in (2.7) we get

lu(r) - u(s)l. a (  
L  

,

\da 
@, \d(r,v)))

\ 
t/o

r t
I  g 'dp l  ,

J l
B(r,\d.(t,y)) /

, ' o r )

(3. 1)
d(r,a)

for every A # r, where C > 0 is a constant and ): 10r.
If r € X is not isolated, by (3.1), (2.a) and Li,pu(r):limsup W tt

g+r

follows

( 1 r
Lipu(r )<C l imTt  

Ir+c  

\  B@'r )

hence, if r is a Lebesgue point of. gp wehave Lipu(n) < cg("). since Lipu(r) : Q

whenever r is an isolated point, (ii) is proven.

Now (iii) follows from (ii) and Stepanov differentiability theorem, Theorem

1 . 1 .
Remark 3.2. The proof of [BRZ] has the advantage that it still works if we

assume thal u and g are given only on a domain fl C X.

Tlrc followiug lenuna is contained in the proofs of PropositionT.32 from [Ke]
and Theorem 4.4 from [BRZ]. W. give the proof for the sake of completness'

Lemma 3.3. Let (X,d,p) ,P, {(X',9)} and D be as in Theorem 3' i '  As-

sume that u e Hr'p(X) and u e LI P1o"(X). Define g(r) :: llDu(t) - d.(,)ll-



for a.e. x e. x. Then g e Lpt*(X) and the pair (u* r,g) sotisfies a weak-(1,p)-Poincar|ineryality. 
Morwaer, if u is a mnstantfunctiontheng Q. I](X).' ''irvof. 

Let (u,.) b. u ,rqo"ore of functions in LIP.".(X) n Ht'o(X) such that
(u,") converges to u in I?(X) *d d,un -> Du in U(X;T*X):

f
Iim I lldu"(n) - Du(r)ll! dp : 0

n-co J
x

In what follows, B : B(ro,r) is an arbitrary ball and rB :: B(xs,rr)'
(i) Set g,(r) = lldu,(r)ll, for a.e. tr € X, n > 1. We have pn e U(X) and

llp* * gllutxt --r 0 as n -> oQ, hence p e U(X) and llp"l[,o(x) -r' llPl614 as
n --+ oo.

Since pn is a p-weak upper gradient of u,n,,

r  r  (  1  r - , \ " 0

M I 1""  -  (u^)ald 'p '  < cr  
\*6 ! ,nor ) '

for each n ) !. Letting n *+ oo we obtain the corresponding weak (1,p)-Poincar6

inequality for the pair (u,p).
(ii) Let 1)n :: un - a f.or n ) 1 and n :: 1r - u). We have a, e LIk."(X)

and,d,u.(r): d,u*(x)*ar@) for a.e. r € X- For a.e. r € X, set ((r) ::

Du(r) - dr(r), g*(r) : lldu"(x) - dr(r)ll. and e(z) : llDu(r) - dr(")|11,. For
every ball B, we have:

a) 'un -, u in U(B) ;
b) g. e U(B) and llg, - glluql --+ 0 as n ---+ aa, hence g e U(B) and

llp,llrrel - llOllr,p) as n -+ oo. If r.r is a constant, we may take X instead of B
in the preceding argument.

In particular, a) implies (r")B '-+'uB as n ---+ oo.
Since gn is a p-weak upper gradient of un,

L  f  /  1  r  \ t ' o

n@) I w" _ @,)std,p, < cr 
\r Ln"dr) 

,

for each n ) L. Letting n -+ @ we obtain the corresponding weak (1,p)-Poincar6
inequality for the pair (u - a,g).

Theorem 3.4. Assume that (X,,d,p) is a doubling metric n'Leasure space,
wi,th a homogeneous di,mens'ion Q and supports a weak (L,p)-Poincard i'nequali,ty

for some p > L. Let {(X",p")} be a strong measurable differenti,able structure

for (X, d, trt), such that X. are mutually disjoint. Let D be the unique ertension
o f t h e d i f f e r e n t i a I o p e r a t o r d f r o m L i ' p 1 ' . ( X ) t o H | , o ( X ) . L e t s > 0 s u c h t h a t
r)> 3*

l 0



lsi(^-

Then'for,*ery u e HLP(X), for m,ch q and, p'*a.e. ao Q Xo we haae

r  \ ' u
I l"@) - u(ro)- < Du(rs),p,(r) - p.(ro) >1" dp I

s(!o,r) )

Moreouer, if p > Q then u is differvntiable p-e.e. with rcspect to the giuen
strong mmsuroble differcntiable structure and, du(rs) : Du(to) for p,-a.e. na e
X .

Proof. Using, if necessary, Holder inequality we may assume that s ) I'
Fix a coordinate chart (Xo,go) and let ns € X.. Denote Du(ns) : I :

(lr,...lrv(ol) e Rivt'1. Consider the functiorl n : X + lR. defined by u(r) ::
u(r) - u(no)- < Du(rs),p"(x) - p"(ro) >. Notice that o(16) : Q.

Define w(r) :: u(rs)+ < Du(us),p"(n) * p"@o) > for x e X. Then a.r €
IV(o)

LIP(X) afi du(x): 
,!, 

Ai'pL@) for a.e. r e X .

Set ((o) :: Du(x) - tu(r) and 9(r) :: ll((r)11,, for a.e. t €. X.
By Lemma 3.3, we have u, g e I4*(X) and the pair (u,9) satisfies a weak

(1,p)-Poincar6 inequality . According to Lemma, 2.2, the pair (u,g) satisfies a
* .uk  1 t ,p ) -Po inca r6  i nequa l i t y  where  1< ,  <  f f i t t p  <Q and  t  >  1 i f  p>Q.
In particular, for every r ) 0

The above inequality and Minkowski's inequality imply

( =;_= t l, - ou(*o,tl 'dt'
I  p,(B(rs,r)) I
\  

B(c6' r )

rlt 
/ 

r l/P

1cr ( * ;^  I  s ,d , t l  l
\ B(ns,1rr) /

(** 
|

\  B(rs,r)

t f  o r ) - :  v '  
I  p(B(ro, l r r ) )

r/p

*l'"t".,' l i

(3.2)

, 'o r )I
B(x6,5rr)

f o r e v e r y r > 0 .
Using the weak (1, p)-Poincar6 inequality satisfied by (r,9) together with the

doubling property of p and assuming that ro is a Lebesgue point for u it is proven

in [Ke], Lemma 7.38 that

(  1  r  \ " o
laB@o,)l < c;ry [ KE66 J 

godp I
\ B(rs,h) I

In the proof of Theorem 4.4lBRZi the authors have shown that

1 1

(3.3)



list(FmI I rdP:o' (3.4)

B(r,r)

provided that r € Xo satisfies the following conditions:

a) r is a Lebesgue Point of u ;
b) r is a density Point of X" and
.) ls ffi ,r,,lrr*.llrr(ill\ap: 

s.
Since the functiorLg F + llD"(illluis in ̂ Lp(X) and the measure p is doubling,

condition c) is satisfied for a.e. r €" xo. Let So be the set of all o € x. that

satisfy .ooditio* a),b), c) and, in addition, are Lebesgue points of u' Then

P(X"\ S") : o'
Assuming 16 € ,So, applying (3.2)' (3.3) and (3.a) we get

ls i (^-r  
" , ln, , r) ' " :o

By our assumptions on s we can take t : s in the equation above and the

first claim follows.
If p > Q , applying the second part of Lemma 2.2 and an argument from the

proof of Theorem 3.1, it follows that u has a locally (1 - Q ld -HAlder continuous

/  \ " o
representative and l4##d < c 

[aa;;*rc;ol "6o,J01,,,o)rf 

or 
) 

whlnever

r # ro. If. ro € S. (actually, if re'€ Xo satisfies conditions a), b) and c) then

applying (3.4) and (2.4) and taking into account that u(ro): 0, it follows that

r i 3 s ; e  f f i : o
We proved that u is differentiable at 16 with respect to the strong measurable

differentiable structute {(X,, rp.)} and, by the uniqueness of the differential,

du(ns) : Du(ro).
corollary 3.5. Letu ewry(n), where 0 c R' is a doma'in. If s ) 0 and

p > # then for almost all poi,nts a € Q we haue

1- -1-  f  fu@) -  u(a)-  <yu(a),n -  o,  >1" d,r  :0.
,-o ,n*" 

,1,r,

Proof. Let X : lR' with the Euclidean distance and the Lebesgue measure,,
r,lrlou'r'rl f ith thc c'anonical strong measurable differentiable structure {(Xr, pr)}

L2



where X1,*;;|fi'and,gr is the identity af X. We may take Q: n. We have
ntp(x) = I4ll'e(Rn).

Since the claim is local, it suffices, to prove it for the restriction of u to an
arbitrary balt B C O. Since every Euclidean ball is a smooth domain, extending
ul" with zero outside B we get a Sobolev function in I4ll'p(R'), which we denote
by fr. Applying Theorem 3.4 to il the claim follows.

Remark 3.6.
1. For s : 1 the above theorem gives a result of Bjtirn [B], proved under more

gt,rrcrtrl assuutptious by Keith ([Ke], Proposition 7.32). Assuming in addition
that the metric space is complete, Keith proved that Du(x) is an approximate
diferential of u for a.e. a € X.

2. Corollary 3.5 implies the Calder6n-Zygmund theorem for mappings "f €
W,!!(A,IR') (see [IM], Theorem 4.4.2).

3. Taking s : p in Corollary 3.5 we give an alternative proof to the following
theorern of Reshetnyak (see [Re], Theorem 4.3, page 334): If O C lR" is a domain,
p> | and u eW.Y(Q) is afunction, then for almost every point o € O the

distributional gradient Vu(o) is the differential of. u at a in the sense of the

convergence inWLe. This means that 
it+ llnn,"llwr,p(B): 0, where B is the unit

ball in iR' and Rn,"(Y) : f(u(a+hY) 
-u(a)- < Vu(a), hY >).To se-e this , we

notice that by Corollary 3.5, for almost every a € O we have 
|r+ llna,"ll?"r"1 :FS

#, t l"@) - u(a)- <vu(a),,r - a >lo dr: 0, while |t11 llvnn, ollou@) :
B(a,lhl)

o ri 'n I,.,. f lvu(r) -Vu(a)le dr : }forevery Lebesguepoint aof.Vu.
""n f:o P,@(a,lhl) ufj,Wn
(Here 0, is the Lub"sgue measure of the unit ball in R").

4. DIpppnENTIABILITY oF MoNoroNE SoBoLEV FUNCTIoNS

Le t  O  C  R"  beadoma in .  A  func t i on  u : { l  -+  R  i ssa id tobe  mono tone

if z is continuous and' osc(u, D) : osc(u,lD) fot every domain D cc 0' Here

osc(u,A)  :  suP{1"(" )  -  u(A) l  t  t ,Y € A} .

Using a method of Vd,isiilii which is an n-dimensional version of a technique

used by Gehring and Lehto, Rickman [Ri] showed that every monotone Sobolev

function u e WL'p(Cl) with p > n- 1 is differentiable almost everywhere . An

important consequence of this theorem is a proof of the differentiability a.e. of

quasiregular mappings. Recently, Onninen [O] proved a sharp integrability con-

dition on the partial derivatives of a weakly monotone Sobolev functions, that

guarantees the differentiability a.e. of the function. Unfortunately, the meth-

ods from the proofs of Rickman and Onninen are unlikeiy to be extended to the

setting of metric measure spaces.
Recall that in a metric measure space supporting a Poincar6 inequality every

ball whose complement is non-empty has a non-empty boundary, hence small

sphe resa renon-empty .  Deno te ,5 (16 ,  r ) :  { r  €  X :d ( r , r s ) : r } , r se  X ' ,  r  >  0 '

13



we will,etdeud;Eicknan 's lemsra to doubling metric mea.sure spaces,support-
ins 

" 
il[g;, i;dilitt iue main tool we * ir a Sobolev embedding thpmem ,'

on-spheres proven by',Hajhsz,andlltixkela, ({I{aKo], Theorem'7.1): .

Lemma 4.1. (Farol) Let (X,d,,p,\ be a doabling metric rne1sune nw;,ce'

with a homogeneorn'di,mension Q. Assa"mn that the poir (u,g) satisfies a wwk

(I,p)-Potiniard inquatity for somep> Q -L, p> 0' Letto € X andro> 0'

Then:
(i) The restri,ction of u to s("0, r) is uniforrnly (L - @ - L)1fl-Ht;lder con'

tinuow for almost euery 0 < r < rs;
(ll) There exists a mnstant Ct ) 0, d,epending only on ?,Q,Cp,Cu,Ca and a

radius ,of 2 < r 1re such that:

lu(r) -  u( i l ]s c1d,(r,y)L-Q-tt /pr[o-1)/e (
,"r)

p(B(ro,5rrs)) I
B(os,lrrs)

for every fr,U € 5(16, r).
In what follows, we say that a function u: x + lR, is monotone if

osc(u, B(ro,r)) S osc(S(r6, r)),

for every ro € X and every r > 0 such that S(ro, r) is non-empty (see [HaKo],
page 36). Note that this definition of monotone functions is less restrictive than

the definition used in the Euclidean case.
Theorem 4.2. Let (X,d,,p,) be a doubling metric nxeasure space' wi'th a

homogeneous d,imension Q. Assume that for euery point fro e X there erists

n@of > 0 suchthat 5(16,r) is non-empty for euery 0 < r < R(ro)' Letu:

X --+ lR. be a monotone functi,on. Assume that the pa'ir (u, g) satisf'es a weak

(1,p)-Poincar|' inequali ' ty withp> Q -I,P) l and g € Ll,"(X)'

Then Li,pu(r) < x for p- a.e. r € X. If X admits a strong nxe1'sur-

able d,ifferenti,able stnr,cture then u 'is di,fferenti'able p,- a.e. with respect to this

str"uct'ure.
Proof. Lel ro € X be fixed. Sei R :: r?(ro). For every z € B(rs, Rl2) therc

exists a positive integer k: k(z) such that

z-k-LR<d(r,ro) < 2-kR.

Apply to u Lemma 4.1 with rs: l-k+rp' There exists a radius 2-kR < r <

2-tc+rft such that (4.1) holds for every r,a € S(ro,r). It follows that

(4.1)

(4-2)

(4.3)
p(B(ro,5116))

L4

,oI^,"0 ' ) '  
'osc(u,S(r6, r)) I Czr



where Cz * 2(Q-t)/egr. Since u is a monotone function, l"(r) - ?r(r0)l S
osc(u,B(ro,r)) < osc(u,,S(re,r)). Using this'inequalitg (4.2) , (4.3) a^Bd the
doubling property of p we get

l"(r) - u(ro)l
d(2, rs)

where Cs = 4CaCz and ) :20r.

Assuming that 16 is a Lebesgue point of gp, taking limsup in the latter in-

equality we obtain Lipu(rs) S Csg(ro) < oo. 
z+ao

The second claim follows by Stepanov differentiability theorem, Theorem 1..1.

Corollary 4.3. Assume that (X,d,p,) i,s a doubling metric n'Leasure space, with
a homogeneou,s di,mension Q and supports a weak (l,p)-Poincard inequality for
sonxep> L. If p> Q -L then eaery monotonefunctionu € Nr'p(X) is diffe-
renti,able p-a.e. with rvspect to any strong measurable differentiable structure for
(X,d,  P).

5. Rpcul,ARITY oF eUASIMINIMIZERS

In what follows L < p < oo and O c X is an open set .
A function u e NII($ is said to be a quasiminimizer (for the Dirichlet p-

energy integral) on O if there exists a constant K > I such that for ail bounded

open sets C/ foi which the closure is in 0 and u € Nl'o(O') with u -a € Not'o(O')
we have 

f f

J 
gf"dLl< 

J 
g!,dp,

Qtn{ufu} Qtn{ufu}

where gu and gu are the minimal p-weak upper gradients of u and u respec-

tively.
Regularity properties of quasiminimizers have been thoroughly studied by

Kinnunen and Shanmugalingam [KSh] by using De Giorgi method. They proved

that quasiminimizers satisfy Harnack inequality, a strong maximum principle

and are locally Holder continuous, if the metric measure space is doubling and

supports a (1, q)-Poincar6 inequality for some L < q < p. The potential theory

of quasiminimizers has been studied in [KM]'
A very important tool in the study of quasiminimizers is the following Cac-

cioppoli type estimate on distribution sets.
Definition 5.1. ([KSh] )We say that a function u e NII($ belongs to the

De Giorgi class DG,(O) if there exists a constant c ) 0 such that for all k € R.,

: € Q and 0 <r < R< di 'am(X)/3 so that B(z,R) C f), we have

t "( f f i "oo,I ,*otno')
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Ar(k,r) A,(k,Rl

where A,(k, p) :: {r e B(2, P) : u(x) > kI.
Kinnunen and Shanmugalingam proved that for every quasiminimizer u €

N,Y(O) in O the functions *u belong to the De Giorgi class DG,(O) ([KSh]'

Pioposition 3.3). We derive further consequences of this property'

Let u € N#(o) be a quasiminimizer. For all ,t e IR the function u - & is

a quasiminimizer, with a minimal p-weak upper gradient lu-k : g"' Applying

(5.1) to u - k and (-u * k) and adding the two inequalities we get

f c f -

J 
gldP's@=ry I lu-kledP"

B(z,r) B(z,R)

For fr t: uB(z,R) this imPlies

I 
grdt,3dry | @-k)Pd'1'r',

(t-atr 
"!,,n'or) 

"' = ffi^' *t (dm 
",1,.,

\ " o

lu - u"(,,*rl' dr 
I

/

(5.1)

(5.2)

where we denoted pr(r, R) : (#8)'''

Froni row on we assume that the metric measure space (X,d,p) is doubling

and supports a (1, q)-Poincar6 inequality for some I < q ( p' We show that the

minimal p- weak upper gradient of a quasiminimizer satisfies a reverse Holder

inequality.
By Lemma 2.2, f.or every u e wIS@) the followittg (p, q)-Poincar6 inequality

holds, for all balls B(2,,R):

(** I
\  B(z,R)

\  
l lo

/ l

J 
gi"dp 

I '
B(z,lrR) /

(5.3)

lu  *  u"( , , r , , ' * )  

t ' '  

= 'o(
rt(B(z,5rR))

w h e r e  q < Q  a n d q  < p < & o r p > q > Q .
combining (5.2) and (5.3), then taking R:2r we obtain the following weak

reverse Holder inequaiity:

(*,!,,n 0,)"' =,(**,,/".,,r,r) (54)
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where o = L}r and 6'is a constant depending only on the data of X, z e X
is an a,rbitrery point and the radius 0 < r < d'iam(X)/6.

We proved the following
Proposition 5.2. Let (X,d,p,) be a d,oubling metri,c rnawrutv sryce , with

a homogeneous dimewion Q, supporting a (l,q)*Poincard inquality for some
| < q < oo. LetI < q <p suchthate < # if q <Q. Thenthere edst some
constantso ) ! andC > 0 d,epend,ing oily'onthe data of X suchthat, for
eaery quasi,mi,n'imizer u e Wl;!(X) , the minimal p-weak upper gradient 9u af u
satisfi,es the weak reaerse Hrilder inequality (5.0'

In the Euclidean case Gehring's lenrna is a crucial tool which enables us to
derive from reverse H<ilder inequalities satisfied by a function (in applications, by
the norm of the gradient of a solution to a certain PDE) a degree of integrability
higher than the a priori one (see tIMl). Gehring's Lemma has been extended to
doubling metric mea.sure spaces by Zatorska-Goldstein, in a generalized and weak
form.

Lemma 6.3.[Z-Gl Let (X,d,p,) be a doubling metric rnensure spl'ce , wi,th a

homogeneous dimensionQ > U2.Let qo ) 1, s € [go,2Qlando ) L. Assume
the functions f ,g to be nonnegati,ue and such that g e Ll*(X), f e Lii$) for
sonla rs > s. Assume that there esist constants b > I and 0 such that for euery
ball B the followi,ng inequality holds :

1 f

n@ J o"du
B

' 
[(* *") 

. #q l' 
"'r]. (5 5)

thlo"au
oB

Then there erist posttiue constants 0s , €s a,nd C such that i.f 0 < 0 1 06 then

f o r e u e r y  s ( f  ( s * e o  w e h a u e g e L i " . ( X )  a n d ,

Theorem 5.4. Let (X,d.,p,) be a doubling metric n"Leasure space , wi,th a

homogeneous d'imens'ion Q > If2, supporti,ng a weak (L,q)-Poi,ncar6' i'nequali'ty

f o r s o m e L < q <  o o .  L e t p  s u , c h t h a t q < p < 2 Q q  a n d , ,  i n  a d , d , i , t i o n , n <  f f i  t 7

q  <  Q .

/  1  r  \ t r '  l r  1  r  \ t / "  /  1  r  \ t " l

[# ln',) scllou!"n"0,) .(,#D J",'or) ]
(5.6)

Here d6 :00(qo,Q,Ca,o),  €o:  eo(b,Qo,Q,Ca,o) and C :  C(b,Qo,Q,Ca,o) '

T7



Then therc extst positiue mnstants es and C such that for eaery. qtasimin-

imizer u e NH(X) and for each 0 ( e ( geo we haue g" c LX(X) a'nd,

nl,orwaer

(* !,r, 
o,)'l/(P+e) =' (#, !no,)'''

Here eo and C depend only on Q,Ca,r and on Q,,P.
Proof. Let u e ttl!1x) be a quasiminimizer. According to (5.4), inequality

(5.5) is satisfied for g:: g!,, f :0,8: plq and d:0,whenever B is a ball in

X. We fix an arbitrary number 1 . qo ( s ( 2Q. Applying Lemma 5.3 it follows

that there exist positive constants €o and C, depending only on Q,P and the data

of X, such that forevery s ( f ( s*eo we have gle L!*(X) and

/  <  o  \ l / o t  /  1  r  \ t / 0 "

f  #  [o tau ]  s r l i ; ^ lo f fau l
\ r . - , 6  /  \ P \ o b ) J B - -  /

for every ball B. Setting e :: Qt - p the proof is completed.
corollary 5.5. Let (X,d,p,) be a doubli,ng metric nl,easure space , wi,th a

homogeneous dimens'ion Q > !, supporting a weak (l,q)-Poincard inequal'ity for
somel < q <Q . If 

"€ 
Ni;?6) i,s a quasiminim'izer then:

(i,) u has a representati,ue which i,s locally a-Htilder cont'inuous for some 0 <
a ( 1 not depending on u;

(i,i) Lipu(r) < oo for pt-a.e. r e X and
(i,i,i) u is differentiable p,-a.e. wi,th respect to any strong measurable differen-

tiable structure for (X,d, p) .
Proof. we may assume that Q12 1 q 1Q, since a (t, q)-Poincar6 inequality

implies a (1, q')-Poincar6 inequality for every q I q' < oo. Then p:: Q satisfies
the conditions q < p < 2Qq and, e < 3+.

Let u e Ni;! 1Xl be a quasiminimizer. According to Theorem 5.4, there exists
e > 0 (depe"di"s only on q and on the data of X) such that g, € L?:' (X). Notice
that the pair (2,9,) satisfies a weak (l,Q+e)-Poincar6 inequality. Then we may
apply Theorem 3.1 (the basic Caider6n type result from [BRZ]), whence all the
claims follow.

Remark 4.1.
1. We cannot weaken the assumptions of Corollary 5.5 so that u e Ni;i"@)

for some q < p < Q; we Eet gu e IftJ'(X) for some positive e and we have no
guarantee thatp*e> Q.

2. It would be interesting to extend the results from this paragraph to the
case when the quasiminimizer is defined only on a domain 0 c X, not on the
entire space X.
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3. By a deep result of Keith and Zhong [KeZ], if the metric mea.sure space
(x,d, p,) is complete,doubling and supports a weak (l,p)-poincar6 inequality for
some 1 < p < m then there CIrists e > 0 such that (x,d,p) supports a weak
(1, g)-Poincar6 inequality for every q > p - €. It turns out that in the last
corollary it suffices to assume that (X,d, p) supports a weak (1, Q)-poincar6 if
the metric space is complete.
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