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On the differentiability of Sobolev
functions on metric measure spaces
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ABSTRACT. We give applications to the Stepanov differentiability
theorem of [BRZ] in doubling metric measure spaces supporting a
Poincaré inequality. For 1 < p < oo we prove that the differential of
a Sobolev mapping from N'?(X) is an average LP— integral pointwise
differential, at almost every point of X. A differentiability result for
monotone Sobolev functions is established. We study the regularity of
quasiminimizers of the Dirichlet energy integral, by using a Cacciopoli
type estimate, Gehring’s Lemma in doubling metric measure spaces
and a Calderén type theorem.
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1.INTRODUCTION

Geometric function theory has been an important source of inspiration for the
recent developments of analysis on metric measure spaces. The study of Sobolev
spaces and p—harmonic functions on metric measure spaces led to the definition
of a concept of differentiability in this general setting.

In his seminal paper [C] Cheeger proved that every metric space with a dou-
bling measure supporting a Poincaré inequality admits a strong measurable dif-
ferentiable structure, with which Lipschitz functions can be differentiated almost
everywhere. Note that quasiconformal theory and nonlinear potential theory are
currently studied on metric measure spaces with the properties mentioned above.

In their recent paper [BRZ] Balogh, Rogovin and Ziircher used Cheeger’s
extension of Rademacher differentiability theorem to prove a generalization of
this result, the following extension of Stepanov’s differentiability theorem.

Theorem 1.1.[BRZ] Let (X,d, ) be a doubling metric measure space. As-
sume that there ezxists a strong measurable differentiable structure {(Xa, va)} for
(X, d, u) with respect to LIP(X), such that the sets X, are mutually disjoint.



Then each function f : X — R is u—a.e. differentiable in S(f) = {z € X :
Lip f(z) < oo} with respect to the structure {(Xa, Pa)}-

The above theorem has far-reaching consequences. It turns out that the class
of Cheeger differentiable functions is very rich. The applications of Stepanov’s
differentiability theorem given in [BRZ] include a Calderon-type differentiabil-
ity theorem and a theorem on the differentiability almost everywhere of the
post-composition with Lipschitz functions of quasiconformal mappings between
Ahlfors regular spaces.

" The aim of this paper is to give another applications to Theorem 1.1, which
extend to metric measure spaces classical results on the differentiability of some
Sobolev functions on Euclidean domains.

The paper is organized as follows.
In the second section we state the needed definitions and preliminary results

In Section 3 we give alternative proofs for some results of [BRZ], which extend
the Calderon differentiability theorem to metric measure spaces. We establish
a Calderon-Zygmund type theorem, which improves a theorem of Keith [3] and
extends a theorem of Reshetnyak [4] on differentiability of W' functions in the
sense of WL, In Section 4 we prove a result on the differentiability of monotone
functions on doubling metric measure spaces. In Section 5 we investigate the
regularity of some quasiminimizers of the Dirichlet energy integral. Using a Cac-
ciopolli type inequality of [KSh] we prove that the minimal weak upper gradients
of quasiminimizers satisfy a weak reverse Holder inequality, and consequently
they have a higher integrability property, by a Gehring- type lemma of [Z2-G]. In
particular, in the borderline case we obtain the differentiability of quasiminimiz-
ers , with respect to any strong measurable differentiable structure for the metric

measure space.

2.PRELIMINARIES

In what follows we assume that (X, d, u) is a metric measure space, where the
measure 4 is Borel regular, positive and finite on balls. An open ball centered at
z € X ,of radius r > 0 will be denoted by B(z,r). If B := B(z,r) and 0 > 0
then o B stands for B(z,or).

A function between metric spaces f : (X,d) — (Y, p) is called L—Lipschitz
if p(f(z), f(y)) < Ld(z,y) for all 2,y € X and is said to be Lipschitz if it is
L—Lipschitz for some L > 0, respectively locally Lipschitz if it is Lipschitz on
each ball B ¢ X. If f is Lipschitz , let LIPf be the infimum of all L > 0 for
which f is L—Lipschitz. We will denote by LIP(X) the set of all real Lipschitz
functions on (X, d) and by LIP,,.(X) the set of functions u : X — R such that
w is Lipschitz on every ball in X. In order to describe the scaled oscillations of a
function v : X — R which is not necessarily Lipschitz, we use the upper Lipschitz



constant defined by

sugr) lu(z) — u(y)].

y ! g 1
Lipu(z) =limsup —
r—0 r y€B(=,

Note that Lipu(z) =lim sup 1'—‘%(23251” if z is a limit point of X and Lip u(:t) =
y—z

0 if z is isolated (see [C], [Ke], [BRZ]).
- Let 1 < p < oo. The p—modulus of a family of paths I' in X, denoted by
Mod,(T'), is the number ix,),f J pPdp, where the infimum is taken over all non-
b e

negative Borel measurable functions p such that for all rectifiable paths v which
belong to I' we have [ pds > 1.
b/

The basic concept of the ”first-order calculus” on metric measure spaces is
that of upper gradient, which generalizes the norm of the gradient of a real-
valued C!—function on a Euclidean domain. Let u : X — R. A non-negative
Borel measurable function g is said to be an upper gradient of u if for all rectifiable
paths v : [a,b] — X the following inequality holds

fu(y(@)) = u(¥(®)] < / gds. (2.1)

We say that g is a p—weak upper gradient of u if (2.1) holds for Mod,—almost
every compact rectifiable path y .

The Newtonian spaces introduced by Shanmugalingam [Shl]are the Sobolev
type spaces based on the notion of weak upper gradient.Let N'#(X) be the collec-
tion of all real-valued p—integrable functions  on X that possess a p—integrable
p—weak upper gradient. This space can be endowed with the seminorm ||ul| 51, :=
|[ull,, + inf ||g]l,,, where the infimum is taken over all p—integrable p—weak upper

gradients g of u. If u and v are functions in NP, we set u ~ v if |[u — v|| 1, = 0.
Then ~ is an equivalence relation. The quotient space N'P(X) := NY(X),/ ~
equipped with the norm |[u||y1, = ||u||§1», is the Newtonian space correspon-
ding to the index p.

If 1 < p < oo then each function u € N*?(X) has a minimal p—integrable
p—weak upper gradient in X, denoted by g,, in the sense that if ¢ is another
p—weak upper gradient of u, then g, < g p—a.e.in X ([C], Theorem 2.18).

Let Q be an open subset of X. The Newtonian space N'?(f2) is defined
in an obvious way. We say that a function u : & — R belongs to the local
Newtonian space NP(Q) if u € N'P(E) for every measurable set £ CC
([KM]). If w € NF(Q2) with 1 < p < 0o, then u has a minimal p—weak upper
gradient g, in €, in the following sense: whenever D CC ) is an open set and
gu.p is a minimal p—weak upper gradient of u in D we have g, < gu,p p—a.e.in

D .



The p—capacity of a set E C X is defined by C,(E) =inf |luy., , where the
infimum is taken over all functions u € N'?(X) with u = 1 on E. The Newtonian
space with zero boundary values Ny*?(E) is the set of functions u : E — R for
which there exists a function & € N'?(X) such that & = u, p—almost everywhere
in E and Cp({z € X \ E : U(z) # 0}) = 0.

The theory of quasiconformal mappings between two metric spaces, the non-
linear potential theory on metric measure spaces and the theory of Cheeger dif-
ferentiability are relevant if the metric measure spaces we use are doubling and

support Poincaré inequalities.
The metric measure space (X, d, ) is said to be doubling if there is a constant

C; > 1 so that

w(B(,2r)) < Cap(B(z,7)) (2:2)

for every ball B(z,r) in X. By the doubling condition (2.2) there exist some
constants Cp > 0 and @ such that

u(B(z,7)) T ¢
1(B(zo,70)) =L <T0> (23)

whenever z € B(2o,70) and 0 < r < ro. Every such @ will be called a homo-
geneous dimension of the given metric measure space. For instance, (2.3) holds
with @ = log, Cy4 and some Cj, depending only on Cj.

An important advantage of doubling metric measure spaces is the valability
of Lebesgue differentiation theorem. For f € L} (X) we call zo a Lebesgue
point of f if 113(1) mB S/ | |f(z) — f(z0)|f du = 0. When p is doubling, if

xo,T

f e LP (X) then u—a.e. zo € X is a Lebesgue point of f (see [He], Theorem 1.8)

loc

. In particular, 7111% m [ 1f(z)Pdu = |f(zo)| < oo for p—a.e. zo € X.

B($0)T)
If AC X and z¢ € A, the latter equation implies (taking f as the characteristic
function of A N B(zo, R) for some R > 0) lim %%n =1, i.e. zo is a point

of density of A, for y—a.e. o € A.
Remark 2.1. Let p € L} (X) and A > 0. If z is a limit point of X then

1 1

lim sup / dy <limsup —————~ / d 2.4

LS B (e M, ) ply <imsnp gy ) P 29
B(z,\d(z,y)) B(z,r)

Let u € L, (X) and g be a measurable non-negative function on X. Let
p > 0. The pair (u, g) is said to satisfy a weak (1, p)—Poincaré inequality if there
exist some constants Cp > 0 and 7 > 1 such that



i/p

1 / : /
e |- il O | e 7d 2.5
H(B) )I Ben) | du < O W(BG ™) )9 # (2.5)

for every ball B(z,r). Here up(zr) = m [ udp (see [HaKo], page 9).
B(z,r)

We say that the metric measure space (X, d, u) supports a weak (1, p)— Poincaré
inequality (for locally integrable functions) if there exist some constants Cp > 0
and 7 > 1 such that (u, g) satisfy (2.5) whenever u € L}, .(X) and g is an upper
gradient of u.

Note that,when (X, d, 1) supports a weak (1, p)—Poincaré inequality, if u €
L! (X) has a p—integrable p—weak upper gradient g then (2.5) holds, since g is
the limit in LP(X) of a sequence of upper gradients (g») of u and each pair (u, gn)
satisfies (2.5) . If (X, d, u) supports a weak (1, p)—Poincaré inequality for some
p > 0 then (X, d, u) supports a weak (1, g)—Poincaré inequality for every q > p,
by Holder inequality.

One of the self-improving features of Poincaré inequalities, that we will use
as a key tool, consists in the fact that a weak (1, p)—Poincaré inequality implies
a weak (t,p)—Poincaré inequality, for some ¢ > 1. This follows from a result of
Hajtasz and Koskela ([HaKo], Theorem 5.1; see also [KSh],page 406).

Lemma 2.2. Let (X,d, ) be a doubling metric measure space with a homo-
geneous dimension Q. Let p > 0. Assume that the pair (u, g) satisfies the weak
(1, p)— Poincaré inequality (2.5) .

Then for every 0 < t < 5‘%’; if p < @ and for everyt > 0 if p > Q the pair
(u, g) satisfies the weak (t, p)— Poincaré inequality

1/t 1/p

t 1
< AR s —— P
s % O w(B(z,577)) / g ’

B(z,r) B(z,57T)

(2.6)

for every ball B(x,r) in X.
Moreover, if p > @ then u has a locally Holder continuous representative

satisfying

1/p

1
— < Or9/rg -Qp | = / Pd 2.7
@) = )| < CroPd(a, ) |~ [ o (2.7
B(a,57T)
for all z,y € B(a,r), where B(a,r) is an arbitrary ball and C > 0 is a
constant.



The essence of Cheeger’s study on the infinitesimal behavior of Lipschitz func-
tions on doubling metric measure spaces has been synthetized by Keith in the "
following definition.

Definition 2.3. ([Ke],[BRZ]) Let (X, d, 1) be a metric measure space, let C C
LIP(X) be a vector space of functions and let {(Xa, o)} be a finite or countable
collection such that each set X, C X is measurable with positive measure, and -
such that each g, = (L, ..., on @) . X — RN is a function with ¢}, € C for
every 1 < i < N(a), where N(e) is a non-negative integer . (Here ¢ will be
viewed to be the empty function if N(a) = 0). Then {(Xa,o)}is said to be
a strong measurable differentiable structure for (X, d, ) with respect to C if the
following is true:

(i) w(X \UXa) = 0.

(ii) There exists a non-negative integer N such that NV () £ N for every
coordinate patch (X, pa) and

(iii) For every f € C and each coordinate patch (X, ¢a), there exists a unique
(up to a set of measure zero) measurable function d°f : Xo — RV® such that

for almost every z € X,

| fy) = fl2)— <d*f(2), paly) — pal@)] _
lim o) =0, (2.8)

where < -,- > is the usual inner product on RN |

If in the above definition C = LIP(X) we will simply say that {(Xa, pa)}is a
strong measurable differentiable structure for (X, d, u).

Remark 2.4. In [BRZ] the definition of a strong measurable differentiable
structure contains the additional assumption

(iv) The sets X, are mutually disjoint.

Note that to every {(Xa, ¢a)} strong measurable differentiable structure

{(X4,¥a)} We can associate a strong measurable differentiable structure for
which the domains of the coordinate patches are mutually disjoint.

a—1
We may assume that o € N\ {0}. Let ¥; := X; and Y, := Xo\ U Xi
i=1

for o > 2, and let ¢, be the restriction of ¢, to Y,. Then {(Ya,%a) : @ €
N\ {0}, u(Y,) > 0} is a strong measurable differentiable structure such that the
sets Y,, are mutually disjoint.

In order to keep the presentation as simple as possible, we will adopt the point
of view from [BRZ] by using only strong measurable differentiable structures
which satisfy condition (iv), without saying this every time.

A function f : X — R (not necessarily in LI P(X)) is said to be differentiable
at z € X, if there exists d*f(z) € RV(® such that (2.8) holds ([BRZ]). Assume
that a function f : X — R is differentiable u—a.e. on X. Then for each coordi-
nate patch (X,, pa) there exists a function (which is unique up to a set of zero
measure) d*f : X, — RY® g0 that (2.8) holds at p—a.e.point z € X,. Setting

6



df(z) = d*f(z) if € X,, for each o, we get a function df : X — JRN@) |

called the Cheeger differential of f (see [C] page 32 for a more general a;proach,
using sections of an L* vector bundle).

Remark 2.5. The existence of a strong measurable differentiable structure
for X with respect to LIP(X) implies the differentiability u—a.e. on X of every
locally Lipschitz function.

Cheeger proved that every doubling metric measure space (X,d,u), that
supports a weak (1,p)—Poincaré inequality for some 1 < p < oo,admits a
strong measurable differentiable structure with respect to LIP(X). In particu-
lar, Rademacher differentiability theorem can be extended to such metric measure
spaces.

A strong measurable differentiable structure for a doubling metric measure
space (X, d, u) supporting a weak (1, p)—Poincaré inequality gives rise to a non-
trivial D—structure on X (in the sense from [T],[Sh2]) and consequently to a
Sobolev type space H'?(X), to which the differential operator can be uniquely
extended.

Recall that a measurable vector bundle of (real) Banach spaces on X is a
collection F' = {F,} such that to p—a.e. £ € X there corresponds a Banach
space (Fy, |||l,)- A section of the measurable vector bundle F' is a real function
w on X such that for u—a.e. £ € X we have w(z) € F,. The set of all sections
of F will be denoted by I'(F). To every w € I'(F') we associate the non-negative
function |w| defined by |w|(z) = |w(z)||,. Define LP(X;F) = {w € T'(F) :
w| € LP(X)}.We say that w, — 0 in LP(X; F) if |w,| — 0 in LP(X).

Set £ := LIPo.(X). Let F = {F,} a measurable vector bundle of Banach
spaces on X. Assume that a mapping D : £ —I'(F) has the following properties:
D is linear, |D| is a measurable function, |Du|(z) < Lipu(z) for all u € £ and
p—ae. z € X and Du(z) = 0 for p—a.e. z € {u = c}whenever ¢ € R. The triple
(X, F, D) is called a weak D—structure on X ([T], [Sh2]). A D—structure on X is
a weak D—structure (X, F, D) such that D is a derivation, i.e. D(uwv) =v Du+u
Dv for all u,v € L. A weak D—structure (X, F, D) is said to be non-trivial if for
each 1 € L there is an upper gradient p for u which equals |Dula.e.

Example 2.6. Let {(X,, ¢a)} be a strong differentiable structure on (X, d, u),
with respect to LIP(X), such that the sets X, are mutually disjoint. For each
z € |J X, (hence, for a.e. z € X) there is an unique @ = c(z) such that z € Xa()-

Let F, := RN@) be endowed with the norm [|A||, := Lip < A, @a@) > () ([Ke,
Lemma 6.9]). Then F = {F,} is a measurable vector bundle of Banach spaces,

the cotangent bundle 7*X.
For u € L, define du(z) = d*®)(z) whenever u is differentiable at = € |J Xa.

Consider the differentiation operator d : £ — I'(T*X). From (2.8) it follows
that the differentiation operator is linear and is a derivation and that for every
z € X, such that u is differentiable at = we have Lipu(z) = ||d*u(z)||,. This



shows that the function  +— ||du(z)||, is measurable on X , since Lipu is
measurable. Moreover, if the metric measure space is doubling it follows that -
du(z) = Lipu(z) = 0 for y—a.e. = € {u = c}whenever ¢ € R ([BRZ, Proposition
2.9]). If (X, d, p) is doubling and supports a weak (1, p)—Poincaré inequality for
some 1 < p < 0o, then there exists a minimal upper gradient g, of u such that
gu(z) = ||du(z)||, for a.e. z € X ([C], [T, Theorem 2.1.1 (ii)]).

It follows that (X, T*X, d) is a non-trivial D—structure whenever (X, d, ) is
doubling and supports a weak (1, p)—Poincaré inequality for some 1 < p < oo.

Let (X, F, D) be a weak D—structure on X and let 1 < p < co. We define the
space H'P(X, F, D) as the closure of the collection Ly, := {u € L : ||lullpocx) +
| | Dl ”LP(X) < oo} under the norm "ulll,p = “u”LP(X) + || |Dul ”LP(X)‘ We
have f € H'(X,F,D) if and only if there exists a Cauchy sequence (us) in
(L1, ||l ,) such that u, — f in L*(X).

The following theorem is a generalized form of a result of [FHK], which extends
to metric measure spaces a theorem of Semmes [ Se].

Theorem 2.7.([T, Theorem 1.4.2]. Let (X, d, p) be doubling and supporting
a weak (1, p)—Poincaré inequality for some 1 < p < oo. Let (X, F, D) be a non-
trivial weak D—structure on X. Then for every sequence (u,) in L1, such that
un, — 0 in I?(X) and Du, — s in L(X; F) it follows that s = 0.

‘Corollary 2.8. Let (X,d,u) and (X, D, F) be as in Theorem 2.7.

Then the following hold true:

(i) For every f € H'"P(X, F, D) there ezists w; € LP(X; F) such that for every
Cauchy sequence (un) in (L1p ||ll;,) with un — f in LP(X) we have Duy, — wy
in LP(X;F) .

(i) Defining Df := wy for f € H'"?(X,F, D) we obtain an extension of D
from Ly, to H'?(X, F, D) and || f|l,, = fll oy + 1DflllLo(x) i @ norm on
H' (X, F, D).

Proof. Fix f € HY"(X, F, D). Let (u,) be a Cauchy sequence in (L1, ||-[|;,)
such that u, — f in LP(X). Since lim [ |du, — du,|”dp = 0, by standard

W=

arguments (used to prove that LP(X) is a Banach space) it follows that there is
a section w of F' such that Du, — wy in LP(X; F) . The fact that w does not
depend on the choice of the sequence (u,) with the above properties follows from
the preceding theorem. Now (ii) follows easily from (i).

Remark 2.9. Let (X, d, 1) be doubling and supporting a weak (1, p) —Poincaré
inequality for some 1 < p < oco. Let (X, F, D) be the non-trivial D—structure
considered in Example 2.6. The Sobolev-type space H'?(X) := H'"?(X, F, D)
with the norm ||-|, , is isometrically isomorphic to the Newtonian space IV LP(X)
with the norm ||| yip, by [T, Remark 2.2.3] and [Shan, Theorem 4.10].

In [BRZ] is explained in a constructive manner how the differentiation oper-
ator can be extended from LIP,,.(X) N N (X) to N'P(X) .



3.CALDERON DIFFERENTIABILITY THEOREM
AND A CALDERON-ZYGMUND THEOREM

Calderén differentiability theorem shows that every function in the Sobolev
space W'P(Q), where 2 C R" is a domain and p > n, is differentiable a.e. and its
pointwise gradient and distributional gradient agree a.e.This fundamental result
has been extended to in [BRZ], Theorems 4.1 and 4.4. In what follows, we will
give shorter proofs to the results mentioned above and we will prove an extension
of a Calder6n-Zygmund theorem.

Theorem 3.1. ([BRZ], Theorem 4.1) Let (X, d, i) be a doubling metric mea-
sure space, with a homogeneous dimension Q). Assume that u : X — R is a
measurable function and g € L} (X), withp > 1 and p > Q. If the pair (u, g)
satisfies a weak (1, p)— Poincaré inequality then:

(i) u has a locally (1 — Q/p) —Hoélder continuous representative;

(ii) Lipu(z) < oo at every Lebesgue point of g7;

(i) u is u—a.e. differentiable with respect to any strong measurable differen-
tiable structure for (X, d, u), if such a structure exists.

Proof. By Lemma 2.2 there exists a representative of u satisfying (2.7), in
particular (i) holds. Setting a := z and r := 2d(z,y) in (2.7) we get

1/p
lu(z) — u(y)| < 1 gPdp (3.1)

C
d(z,y) ~ | (B(z,Ad(z,y)))
B(z,\d(z,y))

for every y # z, where C' > 0 is a constant and A = 107.
If z € X is not isolated, by (3.1), (2.4) and Lipu(x) =lir;1 Lep '—“—(%_%ﬂ it

follows
1/p

1
Lipu(z) < C limsup | —5— / gPdu )
=l

hence, if z is a Lebesgue point of g? we have Lipu(z) < Cg(z). Since Lipu(z) =0
whenever z is an isolated point, (ii) is proven.

Now (iii) follows from (ii) and Stepanov differentiability theorem, Theorem
1.1.

Remark 3.2. The proof of [BRZ] has the advantage that it still works if we
assume that u and g are given only on a domain 2 C X.

The following lenma is contained in the proofs of Proposition 7.32 from [Ke]
and Theorem 4.4 from [BRZ]. We give the proof for the sake of completness.

Lemma 3.3. Let (X,d, ), p, {(Xa»a)} and D be as in Theorem 3.4. As-
sume that u € HY(X) and w € LIP,,o(X). Define g(z) := || Du(z) — dw(z)||,



for a.e. © € X. Then g € L} (X) and the pair (u — w,g) satisfies a weak
(1, p)— Potncaré inequality. Moreover, if w is @ constant function then g € ’(X).

Proof. Let (u,) be a sequence of functions in LI Pae(X) N H'?(X) such that
(u,) converges to u in LP(X) and du, — Du in LP(X;T*X):

lim | ||dun(z) — Du(z)|? du =0
X

In what follows, B = B(zo, ) is an arbitrary ball and 7B := B(zo, 7).

(i) Set ga(x) := ||dun(z)|, for a.e. z € X, n > 1. We have p, € LP(X) and
llon = P"Lp(x) — 0 as n — 00, hence p € LP(X) and Hpn”Lp(x) = ”P”Lp(x) as
n — 00.

Since pj, is a p—weak upper gradient of u,,

l/p

1 1
m!lun— (un)pldu < Cr mlﬂﬁdﬂ ;

T

for each n > 1. Letting n — oo we obtain the corresponding weak (1, p)—Poincaré
inequality for the pair (u, p).

(ii) Let v, := u, —w for n > 1 and v := u — w. We have v, € LIP,.(X)
and dv,(z) = dun(z) — dw(z) for ae. € X. Forae z € X, set ((z) :=
Du(z) — dw(z), gn(z) = ||dun(z) — dw(2)]|, and g(z) = || Du(z) — dw(z)|,. For
every ball B, we have:

a) up — v in LP(B) ;

b) gn € LP(B) and ||gn — gllpx) — 0 as n» — oo, hence g € LP(B) and
ol o8y = 1Pl Lo(5) 88 1 — 0. If w is a constant, we may take X instead of B
in the preceding argument.

In particular, a) implies (v,)p — vp as n — oo.

Since g, is a p—weak upper gradient of v,,

1/p
1 1 i
5 / o = (v2)al e < COr | - / gdu|

B

for eachn > 1. Letting n — 0o we obtain the corresponding weak (1, p)—Poincaré
inequality for the pair (u — w, g).

Theorem 3.4. Assume that (X,d,u) is a doubling metric measure space,
with a homogeneous dimension Q and supports a weak (1, p)— Poincaré inequality
for some p > 1. Let {(Xa,¢a)} be a strong measurable differentiable structure
for (X,d,p), such that X, are mutually disjoint. Let D be the unique extension

of the differential operator d from Lipj.(X) to H"P(X). Let s > 0 such that

Qs
p > Q+s"

10



Then for every u € H'P(X), for each o and p—a.e. Ty € X, we have |
o 1/s |
1 1

lim —

r—0 T W / I’U(IL') - U(IBQ)- < D'U:(:B()), (Pa(m) - (Pa(xo) >I8 d[.&

B(zo,f')

Moreover, if p > @ then u is differentiable p—a.e. with respect to the given
strong measurable differentiable structure and du(zo) = Du(zo) for p—a.e. To €

X.
Proof. Using, if necessary, Holder inequality we may assume that s > 1.

Fix a coordinate chart (X,,,) and let z, € X, . Denote Du(xo) = A =
L - An@) € RY (@), Consider the function v : X — R defined by v(z) :=

u(z) — u(zo)— < Du(Zo), Pa() — Ya(®o) >. Notice that v(zo) = 0.
Define w(z) := uw(zo)+ < Du(2o), Ya(z) — Ya(xo) > for z € X. Then w €

N(a) ,
LIP(X) and dw(z) = } \idyi (z) for a.e. € X .

i=1

Set ¢(z) := Du(z) — dw(z) and g(z) := ||{(z)]|,, for a.e. z € X.

By Lemma 3.3, we have v,g € L} (X) and the pair (v, g) satisfies a weak
(1,p)—Poincaré inequality . According to Lemma 2.2, the pair (v, g) satisfies a
weak (t, p)—Poincaré inequality, where 1 <t < gf’; ifp<Qandt>1ifp>Q.
In particular, for every r > 0

1/t 1/p
1 / " 1
S — v — VB | @ <Cr| ——— / Pd ,
1(B(zo, ) [v = vBeon)| du u(B(zo, 577)) s
B(zo,r) B(zo,57T)

The above inequality and Minkowski’s inequality imply

1/t 1/p

1 1
/ g dp + |UB(x0,r)

t
= R vl d SCT e
u(B(zo,7)) / s w(B(zo, 577))
B(zo,r) B(z0,57T)

(3.2)

for every r > 0.
Using the weak (1, p)—Poincaré inequality satisfied by (v, g) together with the

doubling property of 1 and assuming that o is a Lebesgue point for v it is proven
in [Ke], Lemma 7.38 that

1/p

1

VB(zary| < C Tsu — / Pd . 3.3

l B(zo, )I hg'r? “(B(mOah))B( . g ap ( )
o,

In the proof of Theorem 4.4 [BRZ] the authors have shown that

11



T_MB(M / Pdp=0, (34)

B(z,r)

provided that = € X, satisfies the following conditions:
a) z is a Lebesgue point of u ;
b) z is a density point of X, and

c) lim —r—; (B(a: 2Bz J ”Du(y)”p du=0.

r—0 ¥
B(z,r)\Xa
Since the function y — || Du(y)||, is in LP(X) and the measure 4 is doubling,
condition c) is satisfied for a.e. = € X Let S, be the set of all z € X, that

satisfy conditions a),b), ¢) and, in addition, are Lebesgue points of u. Then

(X \Sa) =0
Assuming Zo € S, applying (3.2), (3.3) and (3.4) we get
1/t
lim / wide| =0
=0 7 B(zo, 'r)) H e

B(zo,r)

By our assumptions on s we can take ¢ = s in the equation above and the
first claim follows.

If p > Q , applying the second part of Lemma 2.2 and an argument from the
proof of Theorem 3.1, it follows that v has a locally (1 — Q/p) —Hélder continuous

. |v(z)— zo! 1
representative and | e S C | 2BEadmmn f
B(zo,\d(z,z0

v # 0. If 7 € S, (actually, if 29 € X, satisfies conditions a), b) and c) then
applying (3.4) and (2.4) and taking into account that v(zo) = 0, it follows that
()] _

lim sup y

z—zo A(2 o)

We proved that u is differentiable at zo with respect to the strong measurable
differentiable structure {(X,, )} and, by the uniqueness of the differential,
du(zy) = Du(zo).

Corollary 3.5. Let u € W P(Q), where @ C R™ is a domain. If s >0 and
p > 2% then for almost all points a € §) we have

p
gpd,u) whenever
)

, 07”"+s / |u _u <VU()-’E—‘CL>|Sd£L'=0.
B(a,r)

Proof. Let X = R™ with the Euclidean distance and the Lebesgue measure,
endowed with the canonical strong measurable differentiable structure {(X1, ¢1)}

12



where X; = X and ¢; is the identity of X. We may take = n. We have
H'Y(X) = WH(R"). |

Since the claim is local, it suffices to prove it for the restriction of u to an
arbitrary ball B C . Since every Euclidean ball is a smooth domain, extending
u| 3 with zero outside B we get a Sobolev function in W'P(R"), which we denote
by %. Applying Theorem 3.4 to @ the claim follows.

Remark 3.6.

1. For s = 1 the above theorem gives a result of Bjorn [B], proved under more
sencral assumptions by Keith ([Ke], Proposition 7.32). Assuming in addition
that the metric space is complete, Keith proved that Du(x) is an approximate
diferential of u for a.e. z € X.

9. Corollary 3.5 implies the Calderén-Zygmund theorem for mappings f €
WEP(Q,R™) (see [IM], Theorem 4.4.2).

3. Taking s = p in Corollary 3.5 we give an alternative proof to the following
theorem of Reshetnyak (see [Re], Theorem 4.3, page 334): If Q C R” is a domain,
p>1land u € Wl P(Q) is a function, then for almost every point a € () the
distributional gradient Vu(a) is the differential of u at a in the sense of the
convergence in WP, This means that lim ||Rh,a||W1,,,( p) = 0, where B is the unit

ball in R and Ry .(Y) = (u (a+hY) ( )— < Vu(a), hY >). To see this , we
notice that by Corollary 3. 5 for almost every a € () we have hm | Rh.all® Lr(B) —hm

I—hl—,{rp [ |u(z) —u(a)— < Vu(a),z — a >["dz = 0, whlle ’llm(x) ||VRh,a||L,,(B)
B(a lhl) -

Q, hm ,u(B( i [ |Vu(z) — Vu(a)[” dz = 0 for every Lebesgue point a of Vu.

B(a,|R])
(Here €, is the Lebesgue measure of the unit ball in R").

4. DIFFERENTIABILITY OF MONOTONE SOBOLEV FUNCTIONS

Let Q C R” be a domain. A function u : @ — R is said to be monotone
if u is continuous and osc(u, D) = osc(u,dD) for every domain D CC (2. Here
osc(u, A) = sup{|u(z) — u(y)| : z,y € A}.

Using a method of Viisild which is an n—dimensional version of a technique
used by Gehring and Lehto, Rickman [Ri] showed that every monotone Sobolev
function w € WP(Q) with p > n — 1 is differentiable almost everywhere . An
important consequence of this theorem is a proof of the differentiability a.e. of
quasiregular mappings. Recently, Onninen [O] proved a sharp integrability con-
dition on the partial derivatives of a weakly monotone Sobolev functions, that
guarantees the differentiability a.e. of the function. Unfortunately, the meth-
ods from the proofs of Rickman and Onninen are unlikely to be extended to the
setting of metric measure spaces.

Recall that in a metric measure space supporting a Poincaré inequality every
ball whose complement is non-empty has a non-empty boundary, hence small
spheres are non-empty. Denote S(zo,7) = {z € X : d(z,10) =1}, 2o € X, 7 > 0.

13



We will extend Rickman ’s lemma to doubling metric measure spaces support-
ing a Poincaré inequality. The main tool we use is a Sobolev embedding theorem
on spheres proven by Hajlasz and Koskela ([HaKo], Theorem 7.1): .

Lemma 4.1. ([HaKo]) Let (X,d, ) be a doubling metric measure space,
with a homogeneous dimension Q. Assume that the pair (u,g) satisfies a weak
(1, p)— Poincaré inequality for somep > Q—1,p > 0. Let zo € X and ro > 0.
Then:

(i) The restriction of u to S(zo,T) is uniformly (1 - (Q — 1)/p)—Hélder con-
tinuous for almost every 0 < r < ro;

(ii) There ezists a constant C; > 0, depending only on p,Q,Cp,Cy,Cq and a
radius To/2 < r < 1o such that:

1/p

1
- & 1-(Q-1)/p,.(@-1)/p / Pd
|u(x) u(y)l < Cid(z, Y) To 1(B(o, 5770)) g ap

B(z0,5770)
(4.1)
for every z,y € S(zo,7).
In what follows, we say that a function u : X — R is monotone if

osc(u, B(zo, 7)) < 0sc(S(zo,7)),

for every zo € X and every r > 0 such that S(zo,r) is non-empty (see [HaKo],
page 36). Note that this definition of monotone functions is less restrictive than
the definition used in the Euclidean case.

Theorem 4.2. Let (X,d,p) be a doubling metric measure space, with a
homogeneous dimension Q. Assume that for every point To € X there exists
R(zo) > 0 such that S(zo,r) is non-empty for every 0 < r < R(zo). Let u :
X — R be a monotone function. Assume that the pair (u,g) satisfies a weak
(1, p)— Poincaré inequality withp > Q@ —1,p>1land g € Iy (X).

Then Lipu(z) < oo for p— ae. x € X. If X admits a strong measur-
able differentiable structure then u is differentiable u— a.e. with respect to this
structure.

Proof. Let zo € X be fixed. Set R := R(zo). For every z € B(xo, R/2) there
exists a positive integer k = k(z) such that

27%=1R < d(z,19) < 27*R. (4.2)

Apply to u Lemma 4.1 with ro = 27**1R. There exists a radius 27*R < r <
9-*+1R such that (4.1) holds for every z,y € S(zo,r). It follows that

1/p

1

, S(xo, < C P :

osc(u, S(wo, 7)) < Cor N(B($0,5TT0))B( / )9 dp ) (4.3)
0,5TT0
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where Cp = 2(@-V/PC,. Since u is a monotone function, |u(z) — u(zo)| <
osc(u, B(zo,7)) < o0sc(u, S(zo,7)). Using this-inequality, (4.2) , (4.3) and the
doubling property of u we get

1/p

lu(z) — u(zo)| 1
. o e v B Pq ,
d(z, 7o) * | w(B(zo, M(z, 70))) gk
B(z0,M\d(z,z0))

where C3 = 4C4C5 and A = 207.
Assuming that zo is a Lebesgue point of g7, taking limsup in the latter in-

2—TQ
equality we obtain Lipu(zo) < Csg(2o) < 0o.
The second claim follows by Stepanov differentiability theorem, Theorem 1.1.

Corollary 4.3. Assume that (X,d,p) is a doubling metric measure space, with
a homogeneous dimension @ and supports a weak (1, p)— Poincaré inequality for
somep > 1. Ifp> Q — 1 then every monotone function u € N'?(X) is diffe-
rentiable p—a.e. with respect to any strong measurable differentiable structure for

(X,d, ).
5. REGULARITY OF QUASIMINIMIZERS

In what follows 1 < p < oo and 2 C X is an open set .

A function u € NJP(Q) is said to be a quasiminimizer (for the Dirichlet p—
energy integral) on §2 if there exists a constant K > 1 such that for all bounded
open sets (' for which the closure is in © and v € N'?(@') withu—v € Ny ()

we have
/ gudp < / godp,
QN {uztv} N {uztv}
where g, and g, are the minimal p—weak upper gradients of u and v respec-
tively.

Regularity properties of quasiminimizers have been thoroughly studied by
Kinnunen and Shanmugalingam [KSh] by using De Giorgi method. They proved
that quasiminimizers satisfy Harnack inequality, a strong maximum principle
and are locally Holder continuous, if the metric measure space is doubling and
supports a (1, q)—Poincaré inequality for some 1 < g < p. The potential theory
of quasiminimizers has been studied in [KM].

A very important tool in the study of quasiminimizers is the following Cac-
cioppoli type estimate on distribution sets.

Definition 5.1. ([KSh] )We say that a function u € N.?(9) belongs to the
De Giorgi class DG,(f2) if there exists a constant ¢ > 0 such that for all £ € R,
»cQand 0 <r < R < diam(X)/3 so that B(z, R) C 2, we have
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c |
Pdu < [ (u—k)? 5.1)
[ o<zt [ worpa (5.1)
A (k,r) : A, (k,R)

where A,(k, p) := {z € B(z,p) : u(z) > k}.

Kinnunen and Shanmugalingam proved that for every quasiminimizer u €
N1P(Q) in Q the functions +u belong to the De Giorgi class DG,(2) ([KSh],
Proposition 3.3). We derive further consequences of this property.

Let u € N.P(R) be a quasiminimizer. For all £ € R the function u — k is
a quasiminimizer, with a minimal p—weak upper gradient g, = g.. Applying
(5.1) to u — k and (—u + k) and adding the two inequalities we get

C
Pdy < ——— — kP du.
B(z,r) B(z,R)

For k := up(,,r) this implies

1/p 1/p

1 / » c 1 / p
—_— Pd < rR) | ——== U — UB(z, du ,
e R B e ey i

B(z,r) B(z,R)
(5.2)

1/p
where we denoted p,(r, R) = (%(T%‘((ZZL%)T)) _

From now on we assume that the metric measure space (X, d, u) is doubling
and supports a (1, ¢)—Poincaré inequality for some 1 < ¢ < p. We show that the
minimal p— weak upper gradient of a quasiminimizer satisfies a reverse Holder

inequality.
By Lemma 2.2, for every u € N.-P(X) the following (p, ¢)—Poincaré inequality
holds, for all balls B(z, R):
1/p 1/q
1

1 p
i e —upenldu| <CR| = g ,
Z(B(z R) / L e W e70) / Gudp
B(z,R) B(z,5T7R)
(5.3)

whereq<Qandq<p<§Q:qaorp>q2Q.
Combining (5.2) and (5.3), then taking R = 2r we obtain the following weak
reverse Holder inequality:

1/p 1/q

1 / o 1 /

e Pd <b | —————= td , 54

By | e WBGor) | S (5:4)
B(z,r) B(z,01)
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where o = 107 and b is a constant depending only on the data of X, z € X
is an arbitrary point and the radius 0 < r < diam(X)/6.

We proved the following

Proposition 5.2. Let (X,d,u) be a doubling metric measure space , with
a homogeneous dimension @, supporting a (1,q)— Poincaré inequality for some
1<qg<oo. Let 1l < q<psuchthatp < g;“a if ¢ < Q. Then there exist some -
constants ¢ > 1 and C > 0 depending only on the data of X such that, for
every quasiminimizer u € Nllo’f (X) , the minimal p—weak upper gradient g, of u
satisfies the weak reverse Holder inequality (5.4).

In the Euclidean case Gehring’s lemma is a crucial tool which enables us to
derive from reverse Holder inequalities satisfied by a function (in applications, by
the norm of the gradient of a solution to a certain PDE) a degree of integrability
higher than the a priori one (see [IM]). Gehring’s Lemma has been extended to
doubling metric measure spaces by Zatorska-Goldstein, in a generalized and weak
form.

Lemma 5.3.[Z-G] Let (X, d, ) be a doubling metric measure space , with a
homogeneous dimension @ > 1/2. Let g¢o > 1, s € [0,2Q)] and o > 1. Assume
the functions f, g to be nonnegative and such that g € Li (X), f € L;%(X) for
some 1o > s. Assume that there exist constants b > 1 and 0 such that for every

ball B the following inequality holds :

1 s 1 s 1 s
ﬁ(—)/gdﬂ =0 u(UB)algdﬂ +u(03)lf il I

B
1
——x / g°dp
p(oB) )

Then there exist positive constants 6y , €9 and C such that if 0 < 6 < 6y then
for every s <t < s+ ¢&o we have g € Lj,.(X) and

1/t 1/s 1/t

1 1 1
R i - s B td
u(B) / gau) =€ u(UB)aé A u(UB)Ué fhau
(5.6)

Here 6y = 0o(q0, @, Ca, 0), €0 = €0(b, 90, @, C4, o) and C = C(b, o, @, Ca, 7).

Theorem 5.4. Let (X,d,u) be a doubling metric measure space , with a
homogeneous dimension Q > 1/2, supporting a weak (1,q)—Poincaré znequalzty
for some 1 < ¢ < oo . Let p such that ¢ < p < 2Qq and, in addition, p < —i if

q<@.
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Then there ezist positive constants €y and C such that for every quasimin-
imizer u € N2P(X) and for each 0 < € < geo we have g, € LYE(X) and,
moreover :

1/(p+e) 1/p
1

L[ e 1
“(B)B/gu dp <C M(UB)égﬁdu

g

Here €9 and C depend only on Q,Cq, T and on q,p.

Proof. Let u € N2?(X) be a quasiminimizer. According to (5.4), inequality
(5.5) is satisfied for g := g2, f =0 ,s = p/q and 6 = 0,whenever B is a ball in
X. We fix an arbitrary number 1 < g < s < 2Q. Applying Lemma 5.3 it follows
that there exist positive constants g9 and C, depending only on ¢, p and the data
of X, such that for every s <t < s + &y we have g € L, (X) and

1/qt 1/gs

1 i 1 /
- < LY gs
u(B) /g” s sC p(oB) gu

B oB

for every ball B. Setting ¢ := gt — p the proof is completed.

Corollary 5.5. Let (X,d,u) be a doubling metric measure space , with a
homogeneous dimension Q > 1, supporting a weak (1, q)— Poincaré inequality for
somel<q<@Q . Ifue NLO(X) is a quasiminimizer then:

(i) u has a representative which is locally a— Holder continuous for some 0 <
a < 1 not depending on u;

(ii) Lipu(z) < oo for u—a.e. T € X and

(i41) u is differentiable p—a.e. with respect to any strong measurable differen-
tiable structure for (X,d, p) .

Proof. We may assume that Q/2 < q < @, since a (1, ¢)—Poincaré inequality
implies a (1, ¢')—Poincaré inequality for every ¢ < ¢’ < co. Then p := @ satisfies
the conditions ¢ < p < 2()q and p < %.

Let u € NZIO‘CQ(X ) be a quasiminimizer. According to Theorem 5.4, there exists
¢ > 0 (depending only on ¢ and on the data of X) such that g, € L2¥(X). Notice
that the pair (u, g,) satisfies a weak (1, Q4 £)—Poincaré inequality. Then we may
apply Theorem 3.1 (the basic Calderén type result from [BRZ]), whence all the
claims follow. :

Remark 4.1.

1. We cannot weaken the assumptions of Corollary 5.5 so that u € N ?(X)
for some ¢ < p < Q; we get g, € L‘Z::E(X ) for some positive € and we have no
guarantee that p +¢ > Q.

2. It would be interesting to extend the results from this paragraph to the
case when the quasiminimizer is defined only on a domain {2 C X, not on the

entire space X.
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3. By a deep result of Keith and Zhong [KeZ] , if the metric measure space
(X, d, p) is complete,doubling and supports a weak (1, p)—Poincaré inequality for
some 1 < p < oo then there exists € > 0 such that (X,d, u) supports a weak
(1,q)—Poincaré inequality for every ¢ > p — €. It turns out that in the last
corollary it suffices to assume that (X, d, u) supports a weak (1, Q)—Poincaré if
the metric space is complete. :
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