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Abstract

The aim of this paper is to investigate decompositions of elements in upper continuous
modular lattices as intersections of (completely) irreducible elements. Thus, we extend from
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The aim of this paper is two-fold: first, to extend from modules to lattices the results of Fort

[8] concerning modules rich in coirreducibles and to consider a similar setting where irreducible

submodules are replaced by completely irreducible submodules, obtaining so the concept of

lattice rich in completely coirreducibles, and second to extend from ideals to lattices some

results of Fuchs, Heinzer, and Olberding [10] concerning decompositions of ideals in arbitrary

commutative rings as (irredundant) intersections of completely irreducible ideals.

In doing so, we were inspired by the ideal or module theoretical situation, where the concept

of essential ideal or submodule plays a key role. Though (meet) decompositions of elements

in lattices have been extensively studied in the literature (see, e.g., Crawley and Dilworth [6],

Ern6 [7], Walendziak [2i], etc.) it is surprising that the concept of essentbl element was not

yet involved.

The paper consists of 3 sections. Section 0 contains the basic definitions and facts, needed

in the sequel, on subdirectly irreducible posets and completely irreducible elements in lattices.

In Section 1 we first extend from modules to upper continuous modular lattices the main

result of Fort [B] concerning the characterization of modules Mp rich in coirreducibles by

means of irredundant irreducible decompositions of 0 in any submodule of M. Then, we

consider a similar problem by replacing coirreducible submodules with completely coirreducible

elements. It turns out that the lattices having this property, we called lattices rich in completely

coirreducibles, are exactly the atomic lattices. Then, we extend from ideals to lattices some

results of Fuchs, Heinzer, and B. Olberding [10] concerning decompositions of ideals in arbitrary

commutative rings as (irredundant) intersections of completely irreducible ideals.

Section 2 contains applications of the obtained latticial results to Grothendieck categories

and module categories equipped with a hereditary torsion theory.

0 Subdirectly irreducible posets and completely irreducible
elements in lattices

In this section we present the basic terminology and results, needed in the sequel, on subdirectly

irreducible posets and completely irreducible elements in lattices.

All posets considered in this paper are assumed to have a least element denoted by 0 and a

last element denoted by 1. For a poset P and elements a ( b in P we write

b fa  : : l a ,b ] :  {  r  e  P  I  o  (  c  (  b  } ,
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[ a , b [ : : { r e P l a ( r c b } ,

]o,bl  : :  {  r  e P I  a < r  (  b } .

An initial subinterual (resp. a quoti,ent interual) of. bla is any interval c/a (resp. blc) for
s o m e  c e b f a .  I f  r 1 y  a r e e l e m e n t s o f  a p o s e t P a n d t h e r e i s n o z € P s u c h t h a t  r  1 2 1 A ,
thenwesaythat r is couered byg (or y couers r) ,  andwewri te r  <A (ot y > r) .  We say
that the interval b/a is simpleif a < b. An element a € P is said to be an atom of P if the
interval al\ is simple, or equivalently if 0 < a. We denote bv ,a,E) the set, possiblyempty,

o f a l l a t o m s o f P . A c o a t o m o f P i s a n e l e m e n t b e P s u c h t h a t b < l , i . e . , a m a x i m a l e l e m e n t

of P \ {1}. We denote by "40(P) the set, possibly empty, of all coatoms of P.

We denote by ,C (resp. M, C,U) the class of all lattices with 0 and 1 (resp. modular

lattices with 0 and 1, complete lattices, upper continuous lattices). Throughout this paper a

Iattice will always mean a member of ,C, and (tr, (, A, V,0, 1), or more simply, just .L, will

always denote such a lattice. If. L e C, then for every subset S of L we denote AS: A"esu
and !S:Vsesr.  Anelement e ofalatt ice tr  issaidtobeessent ial inLi f  eAr l0 foreach

0 I r e L. It L € C, then the socle Soc(I) of ,t is the join of all atoms of tr. As in Nisi6sescu

and Van Oystaeyen [18], a lattice -t is said to be semi-Artin'ian if for any | # r € tr, the

lattice llr has at least an atom. As in Crawley and Dilworth [6], a poset P is said to be

atomic (resp. sfrongly atom'ic, resp. weakly atomic) if for every 0 * r € P there exists an

atom a e P such that a ( r (resp. for every r 1 y inP the interval ylr contains an atom,

r e s p .  f o r e v e r y  r ( y  t h e r e e x i s t  a , b e  P  s u c h t h a t  r ( a < b ( y ) . A l a t t i c e  L e U O M  i s

strongly atomic if and only if it is semi-Artinian (see, e.g., Nistlsescu and Van Oystaeyen [18,
Proposition 1.9.3]). As in Ndsid,sescu and Van Oystaeyen [18], for a lattice L e C we define

the radical rL : Ab€"4o(r1b of .L as the meet of all coatoms of .L, putting rL : L if L has no

coatoms.

For all undefined notation and terminology on lattices, the reader is referred to Birkhoff [5],
Crawley and Dilworth [6], Griitzer [13], and/or Stenstrom [19].

Throughout this paper .R will denote an associative ring with nonzero identity element, and

Mod-R the category of all unital right R-modules. The notation Mn will be used to designate

a unital right R-module M, and the Iattice of all submodules of Mp will be denoted by L(M).

The notation l[ ( M (resp. N < M) means that N is a submodule (resp. proper submodule)

of M. We denote by N the set {0, 1,2,. ..} of all natural numbers, by Nl. the set N \ i0} of

strictly positive natural numbers, by Z the ring of rational integers, and by R the field of real

numbers; when considered as posets, all of them are assumed to have the usual order.

Clearly, a module M p is cyclic if and only if it satisfies the following condition:

3rs€ M,VN €Mod-R,V/e Homa(l f ,M) wi, thrs e Im(/)  a f  is an epimorphism.
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Dually, a module Mpis said to be cocyclic if it satisfies the following condition:

3116 € M,VN e Mod-R, V9 €Homs(M,N) wi. thxs/.Ker(g) a g is a monomorphism.

To the best of our knowledge, the notion of cocyclic module appears for the first time in the

literature in Fuchs [9, Section 3].

The next result provides various characterizations of cocyclic modules, that will naturally

lead below (see Definition 0.2) to the most general concept of subdirectly irreducible poset. See

Proposition 0.5 for an extension of these characterizations to complete lattices.

Proposition 0.1". The followi,ng statements are equi,ualent for a nonzero module Mp.

(l) M 'i,s cocycli,c.

(2 )  n  x+0 .
0+x<M

(3) The poset L(M) \ {0}, ordered by i,nclusi,on, has a least element.

(4) M has a si,mple essential socle.

(5) M is subdirectlg irreduci,ble.

Proof. See Wisbauer 122,14.81. n

Recall that a module Mn is called subdirectlg irreduci,ble if any representation of M as a

subdirect product of other modules is trivial, i.e., for every family (M)rcr of right -R-modules and

f o r e v e r y m o n o m o r p h i s m e : M - i l . e t M ; s u c h t h a t z r i o e i s a n e p i m o r p h i s m V j € I , l i e I

such that ieo e is an isomorphism, where nj , lI;,etMt * Mi, i € 1, are the canonical

projections.

Obviously, for any module Mp we have

A/t -

where C(M) :: {C < M I C is cyclic }.
Dually, for any module Mp we have the following less obvious fact (see, e.g., Wisbauer 122,

14.9 j or Remarks 0.15 (2))

0 -  n  x
x€s(M)

where S(M) :: {X < M I M lX is cocyclic }.
In the sequel we present some definitions and results on subdirectly posets and lattices from

Albu, Iosif, and Teply [2] along with some new ones.

t
cec(M

C
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Definitions 0.2. (Albu, Iosif, and Teply [2]). (a) A poset P is said to be subdirectly irreducible

(or colocal), abbreui,ated SI, if P I {0} and the set P \ {0} has a least elemenl i,.e., there

er i ,s ts  an  e lement  0* roe  P suchtha t  rs { r  fo r  euery  0 f  re  P .

(b) Anelement s e P i,s saidto be asubdirectlyirreducibleelement of P if theinterual lf s
'is a subdirectly irreducible poset; i,n thi,s case, the 'interual ]s, 1] has a (unique) least element,

denoted by s* and called the cover o/ s.

(c) Dually, a poset P i,s said to belocal (or cosubdirectly irreducible) z/ P + {1} and, the

setP\  {7 }  has  a las t  e lemen\  i .e . ,  there  er i , s ts  an  e lement  1* r t€P suchtha t  r {q  fo r
e u e r g  I l r e  P .  t r

By Proposition 0.1, a module Mpis subdirectly irreducible (resp. local) if and only if the

lattice L(Mil of all submodules of Mp is subdirectly irreducible (resp. local).

For any poset P we denote by S(P) the set of all subdirectly irreducible elements of P;
i o

S(P)  : :  { r  €  P l1 l r  i s  S I } .

For any module Mp we set S(Mp) :: S(L(My)). Notice that this set has been denoted in

Albu and Rizvi [4] by Cj(MR).

Deffnitions 0.3. (a) A lattice L is said to be coftreducible (or uniform) ,f L I {0} and

r Ay * a for any nonzero elements r, y € L.

(b) A lattice L i,s sai,d to be completely coirreducible (or completely uniform) if L I {0}
and llnrrri + 0 for any nonempty fami,Ig (r)a of nonzero elements 14 € L, or shortly, if

A S + 0  f o r e u e r s  a t ' S  E r \ { 0 } .
(c) An element r of a lattice L is sai,d to be meet irreducible, or just irreducible, if r I I

and wheneuer tr :  a Ab for a,  b e L, then r:  a or r  :  b.

(d) ,an ekment r of a lattice L i,s sai,d, fo be completely meet irreducible, or just completely

irreducible, abbrea'iated CI, i,f r I I and wheneuer r : A;et a.; for a nonempty family (o1")rc,

of elements of L, then r: aj for some j e I, or shortly, il r * I and wheneuer s: l1S for

s o n x e  o + S e  L , t h e n n e c e s s a r i l y  r e  S .  n

Notice that sometimes in the literature the last element 1 of a lattice is considered to be

(completely) irreducible. However, in this paper, any (completely) irreducible element of any

lattice is always assumed to be I 1. Clearly, an element r e L is irreducible (resp. completely

irreducible) if and only if the lattice If r is coirreducible (resp. completely coirreducible). For

any lattice .L we denote bV T(L) the set of all irreducible elements of tr, and by Zc(.L) the set

of all completely irreducible elements of ,L. For any module Mp we set I,(Mp) ,: I(L(Mil)

and Tc (M p) :: T! (L(M p)).
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Remarks 0.4. (1) The set T"(L) may be empty; for instance, take as L the interval [0, 1]

of real numbers. However, for any nonzero module Mp we have T"(Mp) I O (see, e.g', Albu

and Rizvi [4, Lemma 0.2]).

(2) ClearlS for any lattice -L we have T"(L) ?L(L).Ingeneral, the inclusion T"Q) gT'@)

may be strict. Indeed,if L is the interval [0,1] of the set lR of real numbers, then Ic(L): g

and T(L):  I ' .

(3) The set T(L) may be also empty (see Albu, Iosif, and Teply [2, Remarks 0.3 (3)]).

However, for any nonzero module Mp wehave T(Mp) * b by (1) and (2).

(4) If L € C, then clearly s €.L is a subdi,rectly element of L if and only if s is completely

,irred,ucible, so 5(I) :T"(L). In the sequel, for the term of subdirectly irreducible element of

any lattice, we will always use the term of completely irreducible element. n

Proposition 0.5. The followi,ng statements are equ'iualent for a lattice L €.C, L + {A).

(l) L i,s subdi,rectly i,rreduci,ble.

( 2 )  A  r * 0 .
cel,\{0}

(3)

(4 )  L  has  an  a tom a  suchtha t  a  ( r ,  Vr  €  r \ {0 } .

(5) L has an atom a that i 's essent'ial' in L.

(6) I zs co'irreduc'ible and Soc(L) 10.

Proof. (1) ==+ (2): If rs is the least element of L \ {0}, then 0l ro ( Acer,\{o} r'

(2) <+ (3) is clear.

( 3 ) = + ( a ) :  I f  o : : A c e r \ { s 1 r , t h e n  o  i s a n a t o m ' a n d  o ( r , V r e  I \ { 0 } '

(4) + (5):  For any r  € r \  {0},  we have o (  n,  so rA a: a* 0, i .e. ,  o is essent ial  in. t .

( 5 )  +  ( 6 ) :  L e t  r , U €  r \ { 0 } . T h e n  o  A r l 0  a n d  a A y # 0  s i n c e a i s e s s e n t i a l i n . L ,

s o  a A r : a  a n d  a A y -  o  s i n c e a i s a n a t o m o f  t r .  I t f o l l o w s t h a t a ( r a n d a ( g , w h i c h

implies that 0 * a {r Ay,i.e., -L is coirreducible. Clearly o ( Soc(tr), so Soc(tr) 10.

(6) + (1): Since Soc(I) + 0, L has at least an atom, say a. We claim that a is the

single atom of .L; indeed, if o' is another atom of tr, then a A at f 0 since .L is coirreducible,

so  aA a t :a :  o ' .  I t  fo l lowstha t  Soc( "L) :  {o } .  Forevery  $  €  r \ {0 }  we have 0  f  rAa{a ,

s o  r A a : a ,  a n d t h e n  o < r .  T h i s s h o w s t h a t  a  i s t h e l e a s t e l e m e n t o f  I \ { 0 } ;  h e n c e t r i s

subdirectly irreducible.
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Corollary 0.6. If L e C is a semi,-Arti,nian lattice, in particular a strongly atom,i,c latti,ce, then
T(L) :  I"(L).

Proof. If r e T(L), then the lattice llr is coirreducible, and Soc(l/r) f 0 since.L is semi-
Artinian lattice, so If r is a subdirectly irreducible lattice by Proposition 0.5, i.e., r €.Ic(L),
as desired. n

Proposition 0.7. The following statements are equ'i,ualent for L eC and, L I c e L.

(1) c i,s completely irreducible in L.

(2) There eri,sts 0 * ro e L such that c i,s mari,mal with respect to 16 { c.

Proof. (1) ==+ (2): Since the lattice .L was assumed. to be complete, we can consider its element
y0 : :  n  r .  Then Uo lc  s incec isC l ,so  Ao{c .  Now,  c  i smax imalw i th respec t  to  yg<c ,

r>c
since for any d > c we have ye ( d by the definition of ys. Thus (2) holds with u0 as y0.

(2) ==+ (1):  I f  weconsideragaintheelement y0::  n r  of  L, thenclearly go2 c.Inorder

to prove that c is CI, i.e., lf c is aSI lattice, Uy erop*ition 0.5, we have to show that ysl c.
We have ro ( r for every r > c by the maximality condition of c in (2). This implies that
ro ( yo. We cannot have 3rs : c since then 116 ( c, which contradicts (2). tr

Observe that if ro # 0 is any compact element of. L eC, then the set tro : { r e Llro { r}
is inductive, so the Zorn's Lemma can be applied to find a maximal element c of Ls, which is
completely irreducible by Proposition 0.7.

The concept of a lattice rich in subdirectly i,rreduc'i,ble, indispensable in the evaluation of
the dual Krull dimension of lattices, has been introduced by Albu, Iosif, and Teply [2]. The
definitions below are slight variations of it.

Definition 0.8. (a) A poset P is said to berich in subdirectly irreducibles, abbreu'iated RSI,
if for euerg a 1b in P, the interual bfa has a subdirectly irreduci,ble quotient i,nterual bf c,
with a ( c < b.

(b) A poset P is said fo 6e weakly rich in subdirectly irreducibles, abbreui,ated WRSI, f
for eaerg a t' I i,n P, the interual lf a has a subd'irectlg ,i,rreducible quoti.ent,i,nterual llc wi,th

0 < c .

(c) A lattice L i,s called rich in completely irreducibles, abbreui,ated RCI (resp. weakly rich

in completely irreducibles, abbreui,afed WRCI) i,f the poset I is RSI (resp. WRSI). n
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Of course, any RSI poset is also WRSI but not conversely: indeed, the subset [0, 1/2] U {1}
of R is WRSI but not RSI. Observe that a poset P is RSI if and only if the poset b/0 is WRSI

for any 0l b e P.

For the concepts of Krull dimension, dual Krull dimension, and Gabriel dimension of a

lattice the reader is referred to Ndstdsescu and Van Oystaeyen [18].

Proposition 0.9. (Albu, Iosif, and Teply [2, Proposition 1.2]). The followi,ng assert'i,ons are

equ'iualent for L eU n M.

(1) I is RCi.

(2) For each a <b i,n L there exist r <y in bf a such that ylris s'imple,'i,n other words,

L is weakly atom'ic.

(3) For each a1b i,n L there ex'i,st r1y i,n bf a suchthat ylr is compact.

(4) For each a{b i,n L there etist r 1y i,n bf a such that yf r i,s compactly generated.

(3) -For each a <b i.n L there erist r < A in bf a such that ylr has (dua[) Krull d'i,mension.

(6) For each a 1b i,n L there erist r <y in bf a such that ylr has Gabriel dimensi,on. J

Corollary 0.L0. (Albu,Iosif, andTeply [2, Corollary 1,3]). Let L e UnM. If L has Gabri,el

d'i,mens'i,on, then L zs RCL In part'icular, i,f L is Art'inian, sem'i,-Art'i,nian, Noetherian, or h,as

(dual) KruII dr,mension, then L zs RCI. n

Corollary 0.11. (Albu, Iosif, and Teply [2, Corollary La]). Any compactly generated latti,ce

L e U n M  z s R C L

Remarks 0.12. (1) The poset reduced to 0 is by definition RSI.

(2) Clearlg we can express equivalently the property of a poset P being RSI as follows:

S ( b l a ) l a f o r e v e r y a ( b i n P . T h u s , i f P + { 0 } i s S I , t h e n S ( P ) * a , b u t n o t c o n v e r s e l y ;

i f  P: l0,r l21u {1} g IR, then S(P) :  {112} * b,but P is not RSI since 5([0,112]):  a.

(3) For any module Mp, the lattice L(M) is RCI by Albu and Rizvi [4, Lemma 0.2] or by

Corollary 0.11.

(4) Clearly, any strongly atomic lattice is RCI, but not conversely. Indeed, if. Mpis a module

that is not semi-Artinian, then the lattice L(M) is RCI by (3) but is not semi-Artinian, or

equivalently not strongly atomic.

(5) Any Noetherian poset P is RSI since for any o < 6 in P, the interval [a, b[ contains a

maximal element c, and so, the interval b/c is simple, in particular SI.

n
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(6) Clearly, any RSI poset is also weakly atomic, but not conversely. Indeed, let

L :  {rn,knln e N{*,  1 (  k",  < 2" }  U {0} U {1}

be the lattice whose Hasse diagram is indicated below:

X . ,

xz,z

\+1 ,2k- l  \+1 ,2k

Figure 1:

Then -L is an Artinian lattice, so also weakly atomic, which has no irreducible element, so no

CI element too; thus, .L is not WRCI, and, a fortiori, not RCI. Observe that L is neither upper

continuous nor semi-modular.

(7) Examples involving torsion theories of lattices that are RCI are provided in Albu, Iosif,

and Teply [2, Section 2].

(B) An example of an RCI upper continuous modular lattice that is not compactly generated

is the following one given in Crawley and Dilworth [6, p. 16]: let N: NU {m} be the chain of

x:,sXr,r X . .
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all natural numbers with a largest element oo adjoined, and let ,L be the set of all functions

/ : N --+ N such that /(n) : oo for all but finitely many n e N. With the partial order in .L

d e f i n e d b V / ( g e l ( r z ) ( g ( n ) , Y n € N , . L b e c o m e s a n u p p e r c o n t i n u o u s m o d u l a r l a t t i c e

having the following two properties: the interval llf of -L is an atomic lattice for all f * o,

and o is the only compact element of .L, where o is the zero function, o(n) : 0 for all n e N.

So, -L is RCI but not compactly generated. It would be interesting fo find such an example

based on lattices of type Sat"(M) for a certain hereditary torsion theory r on the category

Mod-R and a module Mp. A possible candidate for that could be the example in Albu, Iosif,

and Teply [2, Remarks 2.6 (3)].

(9) Examples from general topology of weakly or strongly atomic lattices that are upper

continuous and distributive but not compactly generated are provided in Ern6 [7]. n

Proposition 0.13. (Albu, Iosif, and Teply [2, Lemma

equ'i,ualent for a nonzero latt'i,ce L eU n M.

(\) The latti,ce -t zs RCI.

(2) For eaery a 1b i ,n L, one has a: f \ rE7.1u/a)r.

In parti,cular, i,f L is RCI, then 0 - Arcr.1t1r.

1.6]). The followi,ng statements are

Definition O.LA. A latti,ce L is said to be wi,th completely irreducible decompositiot, abbre-

u ia ted0 lD, i , f  euery  I *ae  L  canbewr i , t tenas  ameeto f  a fami ly  o f  C I  e lements  o f  L ,  o r

equiualently o: f1r67.1r/a)r. n

Remarks 0.15. (1) Consider the subset f : {0} UUl2,1] of R. Then 0 is the only CI

element of the lattice .L, but for every 0 < o < b in L, the interval [o, b] has no CI elements; in

particular, the lattice tr is not RCL This example shows that a lattice L e U O M may satisfy

the property 0 : Acez"(L, r of Proposition 0.13 without being necessarily RCL

(Z) By Remarks 0.12 (3) and Proposition 0.13, any proper submodule of any module Mp is
an intersection of CI submodules of M.

(3) Proposition 0.13 can be expressed by saying that a lattice tr is RCI if and only if, for

every 0 I b e L, the lattice b/0 is with CiD. In particular, any RCI lattice is a lattice with

CID. The converse may be not true. Indeed, consider the following example due to Ern6 [7]:
l e t  L ; : { ( * , y ) l r , y e  [ 0 , 1 ] , r + g < 1 ] U { ( 1 , 1 ) } , w h e r e  [ 0 , 1 ]  i s t h e u n i t i n t e r v a l i n t h e s e t

IR. of all real numbers. Then .L, ordered componentwise by the usual ( relation, is a complete

semimodular lattice. Since the only covering pairs in .t are (r,l - r) < (1,l), r € [0,1], it
follows that .L is not weakly atomic; so it is not RCI too. However, every element of .L can be
written as an irredundant intersection of at most two coatoms, so, -t is a lattice with CID.

tr
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(4) Observe that if .t is a lattice with CID, and a, b e L, then b * a if an4 only if there
ex is tsaCle lement  c€ .L  suchtha t  a (c  and b{c .  Indeed,assumethat fo ranyCle lement
c € , L s u c h t h a t  a ( c  w e a l s o h a v e  b ( c .  s i n c e  - L  i s w i t h c l D , w e c a n w r i t e  a :  A r c r c t
w i thCl i r reduc ib lee lements  c i , ie . I .  Then b(q ,  V ic -  l , so  b (  A ' .Ja :a .  Th isshowsthe
nontrivial implication.

(5) In the next section we will discuss when a decomposition of an element of a Iattice
L e U fi M with CID as a meet of irreducible/completely irreducible elements is irredundant
or unique. !

As in Walendziak [21], a lattice ,L is said to satisfy the condition (P) (resp. (M)) if for
any two elements o I b in,t, the set P(a,b) : { r e Lla : bAr} has a maximal element
(resp. if for every c€Tc(L) and for every o € -L with a ( c one has cAa erc(al@Ac))). of
course' the condition (M) can be expressed equivalently as follows: for every c e L with 1/c
SI and for every o €.L with a ( c, the interval af@Ac) is SI. Clearly, any upper continuous
lattice satisfies the condition (P), and any modular lattice satisfies the conditior-(M).

The existence of completely irreducible decompositions in complete lattices that are more
general than upper continuous modular lattices is given by the following result.

Proposition 0.16. (Walendziak [21, Theorem 1, Theorem 2, Corollary 2]). If L e C satisfies
the conditions (P) and (M), then I I a € L has a decompos,ition i,nto CI elements i,f and, only
i f f o r e u e r E r ) a ' i n L t h e r e a r e L r , t u e . r f a w i t h u l u .  I n p a r t i c u l a r , a c o m p l e t e l a t t i c e s a -
ti'sfyi'ng the conditions (P) and (M) i,s a latti,ce wi,th CID if and, onty if it is weakty atornic. J

We end this section with an extension of Proposition 0.13 to complete lattices satisfying the
condition (P).

Proposition 0.17. The following staternents are equ'i,ualent for a nonzero lattice L eC satis-

fyi.ng the conditi,on (P).

Q) rhe htti,ce.L is RCL

(2) For euery a <b i,n L, one has a: 11rr7"1t1o)r.

Proof.  ( I )+(2):  Observef irst that i falat t ice tr  isRCl, thensoisanyof i ts intervals fr ,y] ,
and Ic(L) I o e L # {0}.Therefore, it is sufficient to prove only that 0: f\,E7.61r if
the lattice z is RCI. Set y : Aret"(L)r, and assume that g I 0. Since -L is RCI, there
exist a I b in yf\, and since.L satisfies ihe condition (P), there exists an element m €
P(a,b) :- {r € Lla: bAr} which is maximal in P(a,b), and then it is necessarily CI by Ern6

[7, Lemma]. So, rn ]- A 2 b, and hence a : rn Ab : b, which is a contradiction. Consequently,

A:0, and we are done.

1 1
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(2) + (1): Since Aa :1, we have T"(bla) f a fot arry

that .L is RCI.

ALBU

o ( b in -L, which says exactlY

D

Observe that condition (2) in Proposition 0.17 expresses the fact that any element a € tr

has a decomposition in CI elements in any interval [a, b] of L, a 1b, and this does not require

the condition (M).

1 Lattices rich in coirreducibles/completely coirreducibles, and

irredundant meet decomPositions

The aim of this section is two-fold. First we extend from modules to upper continuous modular

lattices the main result of Fort [8] concerning the characterization of modules M4 rich in

coirreducibles by means of irredundant irreducible decompositions of 0 in any submodule of

M. Then, we consider a similar problem by replacing coirreducible submodules with subdirectly

irreducible submodules. It turns out that the Iattices having this property, we called lattices

rich in completely coirreducibles) are exactly the atomic lattices. Note that the existence of

irredundant meet decompositions has been explored in the literature, also for lattices that are

not necessarily modular or upper continuous (see, e.g., Crawley and Dilworth [6], Stern [20],

Walendziak [21], eic.), but no connection with essential elements has been so far considered.

As in Fort [8], a module Ma is said to be ri,ch'i,n coi,rreduci,bles, abbreviated RC (or ruch

6,n uni,forrns, abbreviated RU), if M + 0 and every of its nonzero submodules contains a

coirreducible (or uniform) submodule. The next result characterizes RC modules.

Theorem 1.1. (Fort [8, Th6or6me 3)). The followi,ng statements are equ'i,ualent for a nonzero

module Mp.

(1) M is RC.

(2) M 'is an essenti,al ertens'i,on of a direct sum of co,i,rreducible submod,ules of M.

(3) The i,njecti,ue hull Ep(M) of M is an essenti,al ertension of a direct sum of indecomposable

i,njectiue modules.

@) 0 has an ,irredundant irreducible decompos'i,ti,on in eueru nonzero submod'ule of M. n

Our first aim is to extend the characterization above from modules to upper continuous

modular lattices, and then, to consider a similar problem, where irredundant irreducible de-

compositions are replaced by irredundant completely irreducible decompositions.
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For brevity, we say that an element c of. a lattice L is co,irred,ucible (or uni,form) if the
interval clj is coirreducible, that is, if c l0 and r Ay * 0 for all r, a e]0,c]. We denote by
C(L) theset,possiblyemptgofallcoirreducibleelementsof.L. Similarly,wesaythatanelement
s €.L is completelg coi,rred,uci,ble (or cocompletely'irreducible,or cosubd,,irectly i,rreduci,ble)if the
interval s/0 is subdirectly irreducible, that is, if s t' 0 and fiu., ri * 0 for any nonempty
family (r)rcr of elements with r; €]0,s], z e 1. we denote by c"(L) the set, possibly empty,
of all completely coirreducible elements of tr. Clearly A(L) g C"Q) g c&). Observe that if
0 < r ( y are elements in .t and g is coirreducible (resp. completely coirreducible), then so is
also r. There exist nonzero modules Mp having no coirreducible submodules (see, e.g., Fort [8,
Th6or6me 2]), and for such M we have C(L(M)): a.

Definition t.2. A lattice L is sa'id to befich in coirreducibles or rich in uniforms, abbreuiated
RC or RU (resp. rich in completely coirreducibles or rich in completely uniforms, abbreuiated,
R C C o T R C U ) ,  r f  L + { 0 }  a n d f o r a n y  0 l r e  L  t h e r e e r i , s t s  c e C ( L )  ( r e s p .  c € C c ( L ) )
such that c < /. tr

Exarnples 1.3. (1) Since any atom of a lattice is a coirreducible element, it follows that any
atomic lattice is RCC. ConverselS since any subdirectly irreducible interval rl0 ofany lattice

.L contains a (unique) atom, it follows that any RCC lattice is atomic. Consequently, a lattice

is RCC if and only if it is atomic. In particula"r, any Artinian or semi-Artinian lattice is RCC.

(2) Any Noetherian lattice L e M is RC. To show that, observe first that any element
1 * r € -L can be written as a finite intersection of irreducible elements of -t (see, e.g.,
Ndstdsescu and Van Oystaeyen [18, Proposition 1.4.4]). It follows that any element 1l z e L
can be written as a finite irredundant intersection of irreducible elements of ,L. Now, let 0 *
r e L. Then r/0 is a Noetherian lattice, so we can write 0 as a finite irredundant intersection

0 : Aig,;tr,, r; of irreducible elements of r/0. If. n : 1, then 0 : rt is irreducible in r/0, so z is

a coirreducible element. If n ) 2, seL yl:: AztrrE' r;. Since the decomposition 0 : ArE;g' r,;

is i r redundant,  we have y1 10. But 0: 11n 91? so ul \ :  at l@tAgrr)  = (r1vy1)lr1c r f  11,

and since the interval nf 11 is coirreducible, it follows that so is also y1f0, in other words, r

contains the coirreducible element 3r1, as desired.

(3) Let L e U n M. If .L has Gabriel dimension g(L), in particular, if ,L is semi-Artinian or

has (dual) Krull dimension, then tr is RC. Indeed, let 0l n e L. Then, the interval rl0 of. L

has Gabriel dimension g(r l0) ) 0, hence it contains a Gabriel 7-simple interval cf 0, A ( c ( r,

for some ordinal 0 { S@10) (see Ndst5sescu and Van Oystaeyen [18, 3.4]) . We claim that c

is a coirreducible element of .L, i.e., the interval c/0 is coirreducible. If not, then there would

e x i s t  a , b e ] O , c ]  s u c h t h a t  0 : o A b .  S i n c e  c / 0 i s G a b r i e l  7 - s i m p l e , w e h a v e  g ( c l a )  < l

and g(clb) ( . r .  By modular i ty,  we have af\ :  al@Ab) -  ("vb) lb g clb,  which impl ies

13
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that 9(a/0) { g(clb) ( 7, hence skl\) : ma*{g(cla),g(al})} < 7, which is a contradiction'

Consequently, for each 0 f r e-L, there exists a c € L, 0 < c ( r, such that c is coirreducible,

which means exactly that .L is RC, as desired.

(4) Clearly any RCC lattice is RC, but not conversely. Indeed, the lattice L(Z) of all

subgroups of the Abelian group Z is RC by (2), but not RCC bV (t) since the Z-mo&le Z

does not contain any simple submodule' tr

In order to extend Theorem 1.1 from RC modules to RC lattices and also to consider the case

of RCC lattices, we need the next lemmas, which are the latticial versions of the corresponding

results used in its proof in Fori [8]. Note that their statements and proofs are given in a

parallel manner, by replacing the word "irreducible" (resp. "coirreducible") with "completely

irreducible" (resp. "completely coirreducible").

Recall that a subset A of a lattice L e C is said to be join independent, or just i,ndependent,

i f  0 e,4 and an!(A\ {o})  :  0 for al l  o € A. I f  L €U, then A C L is independent i f

and only if every finite subset of .4 is independent. Alternatively, we say that a family (*)"er

o f  e l e m e n t s o f  a l a t t i c e  L e c  i s i n d e p e n d e n t i f  r i  l 0  a n d  r ; A ( V i e i \ { t } r i ) : 0  f o r e v e r y

i e I, and in that case, necessarily ro * ro for each p * q in 11 so, the two definitions of

independence, using subsets or families of elements of .L, are essentially the same.

Lernma L.4. Let L ellflM and let (r6),iE1 be an'i,ndependent fami,Iy of elements of L. If

y € L i,s such that g A (Vrer ri) + 0, then there erist i € 1, 0 * ,l { ri, and' 0 I A' { y such

that rtil0 = A'10.

Proof. Observe that the proof of Fort [8, Proposition 2] works not only for the lattice L(Ma)

of al lsubmodulesof amodule Mp,but alsoforanyuppercont inuousmodular lat t ice.t .  D

Itisknownthatforanyuppercontinuouslatticetrandfor any a + B g L,any independent

subset A of B is contained in a maximal independent subset S of B (see e.g., Crawley and

Dilworth [6, p.46]), and \r/r.sr is called a mari,mal di,rect ioin of elements of B and denoted

bI V,es r .  In part icular,  i f  A: a and B :  C(L) (resp. B :  C"(L),  resp. B:,A(I))  then

one obtains a matimal di,rect joi,n of coirreducibles (resp. a marimal di,rect joi,n of completely

coirreduc'ibles, resp. a mari,mal di,rect joi,n of atoms) of L.

Corollary I.5. Let L e U)M,Iet r e L, andlet m be amarimal direct joi,n of coi,rreduci,bles

(resp. a marimal direct joi.n of completelg coirreducibles) of L. Then m Ar l0 if and only if

there erists y eC(L) (resp. y €Cc(L)) such that U ( r. n

Lemma 1 .6 .  Le t  L  eUnM.  Thenthere  er i , s ts  t  €  L  wh i ,ch ismar i .ma lw i th respec t to

theproper ty tha t theree t is tsno y  eC(L)  ( resp .  A  eCc(L) )  suchtha t  y  (  t .  I f  m i , s  a
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nxarimal direct joi,n of co'irreduci,bles (resp. a marimal direct join of completelg coirred,uci,bles),

then tAm:0 and tYm is an essent ial  element of L.

P r o o f .  L e t  ? , : { ,  e  L l c  ( z , V c e  C ( Z ) }  ( r e s p .  T : : { u e  L l c * u , V c e C ' ( L ) } ) .  f i

a + D e ? is a chain, then u6 :: Vae.a d eT,for otherwise uo2c for some c € C(,t) (resp.

c e C " ( L ) ) , h e n c e , b y u p p e r c o n t i n u i t y ,  c : ' u . l A . : V a . p ( d n c ) : 0 ;  i n d e e d , i f  d n c l 0 f o r

s o m e  d € D , t h e n  d > d A c e C ( L )  ( r e s p .  d ) d A c e C ' ( L ) ) ,  r v h i c h i s a c o n t r a d i c t i o n .  T h i s

shows that T is an inductive set, so, by Zorn's Lemma, it has a maximal element, say t, and

t A m :0 by Corollary 1.5.

We are now going to show that tVrn is an essential element of -L, i.e., if z e L is such that

(tV m) A z : 0, then z : 0. We claim that (z V t) Arn :0. Indeed, by modularity, we have

(z v t) A rn ( (z v t) A (t v rn) : ((z A (t v rn)) V t : 0 Y t : t.

On the other hand, (z V t) A rn ( m, so (z V t) n ra ( f A rn : 0, which proves our claim.

By Corollary I.5, z Vf does not contain any coirreducible (resp. completely coirreducible)

e lemento f  -L ,so  zYt€7 .  S ince  t  i smax imal in  T i t fo l lowstha t  t : zYt .  Then z ( t ,and

s o  0 : ( t V m ) A z : z , a s d e s i r e d .  !

Lemma L .7 .  Le t  L  eU)M,  and le t  r  {y .  Then r  i , s  i , r reduc ib le ( resp .  comple te ly

i,rreduci,ble) in y l0 i,f and only if there eri.sts an irreducible (resp. completely irceducible) element

z  in  L  such tha t  r :  z  Ay .

Proof. ((===+": Consider the set S :: {u e Ll, Ay - r}. Since the lattice .L is upper

continuous, the set ,S is inductive, so, by Zorn's Lemma, it has a maximal element, say z.

Assume that r is irreducible (resp. completely irreducible) in yf\, let I be a set of two

elements (resp. arbitrary set), and let (r;)rct be a family of elements of .L such that z : A;et zt,.

T h e n r - z A A : A t e r ( 4 A y ) . B y h y p o t h e s i s , t h e r e e x i s t s j e l s u c h t h a t r : z j A y . S i n c e z

is maximal in,9, we deduce that z: zj,wlnictr proves that z is an irreducible (resp. completely

irreducible) element in -L.

t( ' " ' Assume that z is an irreducible (resp. completely irreducible) element in .L. By

modu lar i t y ,wehave a l r :y lkA i l=QvA) lzg I lz .  S ince the in te rva l  I l z  i sco i r reduc ib le

(resp. SI), so is also yf r,in other words, r is irreducible (resp. completely irreducible) in yf0,

as desired. n

Definition L.8. Let L eC, and let r € L. ,4n irreducible (meet) decomposition, abbreu'iated

TD (resp. completely irreducible (meet) decomposition, abbreu'i,ated CID) of r in L is a family
(r;)rcr of i,rreducible (resp. completely i,rreduci,ble) elements of L such that

r :  / \ r i .
ie I

15
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We also sag shortly that r : A;et ri i,s anID (resp. CiD) of r. The decompos'i,ti,on {tr : Arcr rt

i,s said to be an irredundant irreducible decomposition, abbreuiated IID (resp. irredundant

completely irreducible decomposition, abbreui,ated ICID) z/ Aier\{,;} ri { r;. for eaery i e I, i'n

other words, none of the r1's can be omi,tted without changi'ng th'e'intersection.

Alternatiuely, usi,ng the notat'i,on l1C for A"ecc,we say that a representation ,: AA

with @ + Ae TQ) Qesp. a + AgT"(L)) zs anirreducible(meet) decomposit ion(resp.

completely irreducible (meet) decomposition) of r in L, whi,ch is called ftredundant 'i.n case

A ( A \ { " } ) # r  f o r e a e r y  a € A .  !

Lemma 1.9. Let r be an essenti,al element of a lattice L eU AM. Then 0: A,;er ri ' is an

IID (resp. ICID) o/ 0 i.n rl0 if and only i,J there eri.sts a familg (y)a of elements of L such

tha t  r . i :TAAi ,V ie I ,  and 0 :  Arc rUt  i s  an I ID ( resp .  IC ID)  o f  0  in  L .

Proof . (+D ' Assume that 0 : Aler r; is an IID (resp. ICID) of 0 in r/0. Then, by Lemma

1.7, there exists a family (At)r.er of irreducible (resp. completely irreducible) elements of -L

such that ri: tr Ay;,Vi, € 1. We claim that 0 : Arergt; is an IID (rgsp. ICID) of 0 in

.L. First ,  Arctut:0 since (A;etye)n r :  Arer r i :0 and r is an essent ial  element of t r .

Second, the decomposition [r.r Ut: g is irredundant, for otherwise, Ut 2 Aierl{ti gi for some

i € -I, hence rt,)- Ajet\{t} rj, which is a contradiction.

((3D ss.11 be proved using similar arguments. n

Lemma L.lO . The f ollowi,ng statements are equ'iualent f or a nonzero latti,ce L e U n M .

(1) L is atom'ic.

(2) I zs RCC.

(3) Soc(I) i,s essential i,n L.

Proof. (1) ev (2) has been shown in Examples 1.3 (1).

(1) + (3): First, we are going to show that Soc(I) coincides with any maximal direct

join s of atoms of tr. Since, by definition, Soc(.L) is the join of all atoms of .L, we clearly have

s ( Soc(I) .  Now,let ae A(L).  Then aAs isei ther 0 or a. Since s isamaximaldirect jo inof

a t o m s ,  a A s l 0 , s o  o A s : a t i . e . t  a ( s f o r e a c h  a € " 4 , a n d t h e n ,  S o c ( , L ) : V o e a ( 2 , ) o ( s , a s

desired. To show that Soc("L) is essential in -t, Iet 0l r e "L, and assume that rASoc(tr) : g.

Le t  o€"4( I )  w i th  o<r .  Then aVSoc( I )  i sad i rec t  jo ino f  a toms,wh ichcont rad ic ts the

fact that Soc(I) is a maximal direct join of atoms of -L.

(3 )  ===+ (1) :  Le t  0*s  € ,L .  Then rASoc( t r )  l0 ,ands ince  Soc( ,L )  i sad i rec tun ion

V;e ta i  o f  a toms,  byLemma 1 .4 ,  thereex is t  z  €  1 ,  0  *  " ! t {  
06  and 0* r ' (  r  suchtha t

"il\- 
r'/0. But o!t:a,i,, so r' is an atom contained in r, as desired. n
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Remarks 1.1-1. (i) For the implication (1) + (3) in Lemma 1.10 we needed the condition

that .L is upper continuous, while for the opposite implication, we required that .L e U n M.

Note that the equivalence (1) aa (2) is valid for any poset.

(2) An atomic lattice is not necessarily strongly atomic. Indeed, if F is any field, -I is any

infinite set, and R is the product ring f'I of 1 copies of -R, then Soc(rR) is essential in /?, but

R is not a semi-Artinian ring, so the lattice L(R) of all ideals of R is atomic but not strongly

atomic. n

Lemma 1.,L2. (Grzeszczuk and Puczilowski [15, Lemma I.a]). Let L eUflM, and let X be

an independent subset of L. Then, (VA)A (VB) :0 for ang di,sjoint subsets A,B of X. J

Lemma 1.L3. Let L e U i M, and let X be an i.ndependent subset of L. Then, for any

n € N, n22, and for any f,ni,te fami,Ig (Ar)r<,;<" of subsets of X, we haue

A (Vao) :V( [l A).
l ( i ( n  l ( i ( n

In part'i,cular, if n At: @, then A (V A;.) : O.
i ( i ( n l ( i ( n

Proof- We proceed by induction on n. Let n : 2. If 1t n A2 : @, then the result is

exactly Lemma 1.12, So, we may assume that ,4'1 nAz* @, and then, we can partition ,A1 as

A1: (A1\ Az) u (A1n A2). By modularity, we have

(va,) n (Va,) : (Va,)  ̂ ((V(Al nA)) v (V(Al \1')) :

: (V(a, n A)) v ((V A,) ̂ (V(A, \ a,))) : !1a, n Az)

s i n c e  ( ! a r )  n ( ! ( a t \ A r ) )  : 0  b y L e m m a  ] . l 2 .  I f .  n ) 2  a n d t h e r e s u l t i s t r u e f o r  n - 1 ,

then by the inductive hypothesis and step n:2, we have

T7

A (V no): (Va')A( A (Va,)) :  (Va')A(V( n e)): V( n A),
l (z(n 2( i (z

which finishes the proof.

The next result shows that Lemma 1.13 also

independent set.

Proposition 1.14. Let L e U n M, and let X be an independent subset of L. Then, for any

fami,Iy (A;)a of subsets of X, we haue

A(VA,) : V(nAi).
iEI  iQ. I

In parti,cular, if )Ai: a, then f\(Vao) : O'
i € I  i e l

2( i (n l ( i (n

tr

holds for infinite families of subsets of an
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Proof.  Set A , :  Urcr Ai,  at  : :  V At,  a : :  Arcr a;  :  Arer(V A),  Bo,:  ,4 \  At,  bt : :  VBi,
and b : :V( f^ l r . rA6) .  S ince  l rc rAogAi  fo reach j  € l ,wehave ! ( f l r . rAr )  ( ! / i ,andso

V(flr.r,4u) ( Au.r(Y At), i.e., b ( o. Thus, it remains to prove only that o ( b.

We have

Va, : V(V so) :V(Vta\4)) : V(U (a\a;)) : V(a\ f la,),
i.el iel iel ie l ie I

Va : (V(a \ fi a';; v (V(n A)) : (V bc) v b.
iel  i4 iel

Denote bV F(I) the poset, ordered by inclusion, of all finite nonempty subsets of .I, and

for every F € F(I) set bp ': V;.. ba. Then V rcr bo: Vrer(r) bp, and so

a : a A ( V a )  : o n ( ( V o ; ) v a )  : a A (  V  ( a p v a ) )  :  V  ( o ^ ( b F v b ) ) ,
iel  F€f (r) F€Fg)

since .L is upper continuous and .f(1) is a directed set.

Let F: {ir, ...,i*} be an arbitrary but fixed nonempty finite subset of f. Then

o :  A a r  (  o ; r  n . . . n  a r n :  ( V  A o , )  A  . . l r  ( V  A i k ) :  ! { , + n ,  n . . . o . 4 , ; * )
i€ I

by Lemma 1.13. On the other hand, we have

b r y b :  ( ( V a o , ) v . . .  v ( V A - ) ) v a :  ( ! ( 8 r , u . . .  u B r o ) ) v b :  ( V ( A \ ( A , ; , n . . . n . A i b ) ) ) v b .

We deduce that

a  A  (bpvb )  <  ! {a , ,  n . . .  n  A t r )  A ( (V (A \  (4 ,  n . . .  n ,4 ie ) ) )  vb ) .

For simplicity, denote Ap :: Ai n . . . fl A,i.^, and then the inequality above becomes

aA(bpvb)  < (Va")  ̂  ( (V(A\ap))  vo) .

We claim that

(V a.) ̂  ((V(A \ er)) v b) : 6.
Indeed b : V(fi;.r /t) < V Ap, so, by modularity and by Lemma 1.12, we obtain

( V A F )  ^ ( ( V ( / \ a r ) )  v b )  : ( ( V a . )  ^ ( V ( A 1 a " ) ) )  V b : 0 y b : b .

This shows that aA (bpVb) < b for all F eF(t), which implies that

a :  V  ( a A ( b p v b ) )  < b ,
FeF(r)

as desired. f1
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rf. (M).ier is an independent family of submodules of a module M6, then clearly frrq Ml :

0, where M! :: Drcr111Mt for all i e f. The next result, needed in the proof of Theorem 1.16,
is a very particular case of Proposition 1.14, and shows that this simple fact on modules can be
extended, with some effort, to any upper continuous modular lattice. We are very indebted to
Patrick F. Smith for very helpful discussions about how this latticial extension can be proved..

Corollary 1.L5. Let L eUfiM, Iet I be an arb,i,trary nonempty set, let (r)rcr be an,inde-
pendent family,in L, and for each'i e I, set rl :: Vleril rlrt. Then A : Arcrr,t. !

As in Grzeszczuk and Puczilowski [14, Proposition 2] a basis of an arbitrary lattice .L is a
maximal independent subset of -t consisting only of coirreducible elements of ,L.

Theorem L.L6. The followi,ng statements are equ'iualent for a nonzero latti,ce L €tl n M.

(I) L is RC (resp. RCC).

(2) There eri,sts a joi.n of an independent fami.ly of co'i.rred,ucible (resp. completely coxrre-
ducible) elements of L that'i,s essenti.al in L.

(3) L has a bas'is (resp. a basis consisti,ng only of comptetely co,irreducible elements).

(4) For euery 0 * r e L there erists a nonempty set lr such that 0 can be wri,tten as an
'irred,un d ant'int er s ect,i, o n

o :  A " o
X t l  r

of i,rreduci,ble elements (resp. completely i,rreduc,ible elements) r; in rf\, i e I*.

Moreoaer, the equ'iualent cond,itions (1)- (4) for anPICC latti,ce can be reformulated as follows:

(1)' .L is an atom'i,c lattice.

(2)' Soc(I) ' i ,s essent' i,al ' in L.

(3)' I has a basi,s consi,st'i,ng only of atoms of L.

( 4 ) ' F o r e u e r y 0 * " e L t h e r e e x i s t s a n o n e m p t y s e t l r s u c h t h a t 0 c a n b e w r i , t t e n a s a n

irredun d ant int er s ect,i, o n

o: A ",;
ie Ib

of coatoms 16 i,n rf\, i e Ir,,in other words, the radical rr/o of rl0 i,s zero and an
'irredundant inters ection o f coatoms.
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Proof. (l) <+ (2) follows immediately from Lemma 1.6.

(1) + (3): Let B be a maximal independent subset otC(L) (resp. Cc(I)), which exists by

Zorrls Lemma. We claim that B is also a maximal independent subset of .L. Indeed, if not,

there exists an element 0 * y e.L\ B such that BU {9} is independent, so 3t A (VB) : 0.

Since ,L is RC (resp. RCC), there exists a coirreducible (resp. completely coirreducible) element

c €.L with c < y.  Then cA (VB) < yA (VB) :0,  so cA (VS) :0,  and then, necessari ly

c e B. This implies that B U {c} is an independent subset of C(I) (resp. C"(L)) strictly

including B, which contradicts the maximality of B.

(3) + (1): Let B be a basis of "L (resp. a basis of -t consisting only of completely

coirreducible elements). Then ! B is a maximal direct join of coirreducibles (resp. completely

coirreducibles) of .L. If .L would not be RC (resp. RCC), then, by Lemma 1.6, there would exist

anonzeroe lement  te  t r  suchtha t  tA(VB)  :0 ,so  BU{ t }  wou ldbean independentsubset

of "L strictly containing B, contradicting the maximality of B.

(1) =+ (4): Let 0l r e tr. Since ,L is RC (resp. RCC), so is also the interval rl0. By

the equivalence (1) ++ (2) applied for the lattice r/0, there exists a direct join m:Vrcr ct

of coirreducible (resp. completely coirreducible) elements cij'i e I,in rf0 that is essential in

r/0.

If 1 : {z} is a singleton then rn - c; is an essential coirreducible (resp. completely

coirreducible) element in rf\, that is, 0:0 is an IID (resp. ICID) of 0 in ml\. By Lemma

1.9, this is also an IID (resp. ICID) of 0 in r/0.

If t has at least two elements, then for every i e I we set Ci ::V 4ty1i1 a.. Since

mf Ct = cif 0, it follows that Ct is an irreducible (resp. completely irreducible) element of mlA

f o r e v e r y j € 1 .

By Corollary 1.15, we have 0 : A;er c!i. We claim that A;er\{i} Co * Ci for all i e I.

Indeed, if not, then, there exists j € 1 such that 7\a.7q13rCn{Ci; hence c3 ( A;er\{j} Ci{Ci,

and so 0: 
"j 

ACj: cr', which is a contradiction.

This shows that 0 : Aler cl is an IID (resp. ICID) of 0 in ml\. Apply now Lemma 1.9

to see that this decomposition can be extended to an iID (resp. ICiD) of 0 in rfA, as desired.

(4) + (1):  Lei  0 *,  € / , ,  and let  0:  Aterr i  be an I ID (resp. ICID) of 0 in r l0.

Assume that the set I has at least two elements. Then, for every i €,I, set ra:: f\ir111a1 ri.

By modularity, we have E6f0 : T,il(rt Afi) = (rivEa)f ri e rlx;. Since 11 is irreducible

(resp. completely irreducible) in rf\, it follows that rf r,; is coirreducible (resp. completely

coirreducible), and hence, so is also its initial subinterval (r,iVE)lri. This implies that the

interval Tal0 is coirreducible (resp. completely coirreducible), i.e., q is coirreducible (resp.

completely coirreducible) and ra ( r, as desired. Observe thai if I : {i} is a singleton, then
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ri : 0t so 0 is irreducible (resp. completely irreducible) in rf\, in other words, r itself is
coirreducible (resp. completely coirreducible).

(1)'<3 (2)/ is exactly (1) -> (3) in Lemma 1.10.

(2)' g (3)' <a (4)': Observe that instead of completely coirreducible elements in (2)
and (3) we may tal<e atoms; indeed, if ("i)H is an independent set of completely coirreducible
elements of -t such that \,/;.7 q is essential in ,L, then a :: Vter o1 is also an essential element
of -L, where, for every i e I, q is the unique essential atom in the subdirectly irreducible
interval ci/0. Then, the corresponding elements o! ::Vr;er\U] a.i are coatoms in al}. n

Remarks 1.17. (1) The equivalence (1) <==+ (3) in Theorem 1.16, but only for coirred.ucibles,
has been also established in Grzeszczuk and Puczilowski [14, Proposition 2] for modular ]attices
.t which are not necessarily upper continuous, using a completely different approach, namely the
embedding of -L into the modular upper continuous lattice Id(L) of all ideals of tr. According

to Grzeszczuk and Puczilowski [14, Theorem 1], any two bases of an RC modular lattice Z
have the same cardinality called the Goldie dimension of L.

(2) One may ask whether condition (3) in Theorem 1.16 can be replaced by the following

weaker one:

The element 0 has an'i,rredund,ant decomposit'i,on 0 : f\ra in irred,ucible elernents (resp.

completelg irreducible elements) ri ,i,n L. 
i€I

The answer is no for the case of completely irreducibles, as the following example, due Fuchs,

Heinzer, and Olberding [10, Example 2.4], shows. Let {p6, pt, ...} be the set of all positive

prime numbersin Z, and consider the direct product ring ?: f l;eNZlp?Z.Let R be the

s u b r i n g o f T  g e n e r a t e d b y  ( 1 , 1 , . . . ) ,  h o ,  p t t p 2 , . . . ) , a n d  ( 0 , . . . , p n , 0 , . . . )  f o r e a c h  n € N .

The ideal 0 of R has an ICID in ft and Soc(rR) : D,e N Rr,, is not an essential submodule of

Rp. So, by Theorem 1.16, the lattice L(R) of all ideals of .R is noi RCC, but 0 has an ICID

in r(-R).

For decompositions in irreducible elements we are looking for a module Mp that is not rich
in coirreducibles such that 0 has an IID in M. This is also an open problem mentioned in Fort

[8, Problbme, p. 383]. According to Fort [8, Th6orbme 1, Proposition 5] (see also Lemmas 1.6
and 1.9), the module M should be a direct sum of a module without anv coimeducibles with
one that is a maximal direct sum of coirreducibles. !

The next results, extending some results of Fuchs, Heinzer, and Olberding [10] from ideals
to lattices, investigate when a CI element in an ICID of a given element is relevant, i.e., cannot
be omitted.

t 1
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Definition 1.L8. Let L be a lattice, and let o < c be elements of L. We say that c i,s a

relevant completely irreducible divisor, abbreai,ated an RCID, of a if a has a decompos'i,tion

as an intersection of completely i,rreduc'i,bles elements of L in whi,ch c appears and 'is relevant,

'i,.e., cannot be omi,tted. !

P ropos i t i on  1 .19 .  Le t  a {c  bee lemen ts  o f  a l a t t i , ce  L€M w i thC ID  such tha t  ceTc (L ) .

Then c zs an RCID of a i,f and only i.f c is not an essent'i,al element'i,n the'i,nteraal 7la.

Proof . *===+)': If c is an RCID of a, then we can write a : cAb where b is a meet of CI elements

and c cannot be omitted in the intersection above, i.e., a: cA b f b, and so c ( cV b. Since

the cover c* of c is by definition the least element of the interval ]c, 1] of -L and c v b e lc, 1],

it follows that c* ( c V b.

Using now the faci ihat -L is a modular lattice, we deduce that

( cV  ( c *  t , b ) ) l c  -  ( c *  Ab ) l@n (c .  Ab ) )  :  ( c *  Ab ) l@nb)  :  ( c *  t  b ) l a .

On the other hand, again by modularity, we have cY (c* A b) : c* A (c V b) : c*. Thus

(c. Ab)la - c*lc, and so, the interval (c. Ab)la is simple, in particular c* Ab f a. Since

c A (c* A b) : c Ab: o, we deduce that c is not essential in 1/a, as desired.

!rg))' If c is not essentialin If a, then there exists d €]o, 1] with c Ad: a. Since tr is a

lat t icewi thClDbyhypothesis ,wecanwr i te d asanintersect ion d:Aie" ld i  o f  Cle lements

d i , i  e  J .  Now,obse rve tha tc i s re levan t i n the in te rsec t i on  o , : cA (A r r ra r l  s i nce  a f  d ,

and we are done. tr

Co ro l l a r y  I . 20 .  Le t  Le  M be  a , l a t t ' i cew i , t hC ID ,  and le t  a { c i , nL .  I f  c€T" (L ) ,  t hen the

couer c* of c i,s an essent'ial element in the i,nteraal lla.

Proof. If c is not an RCID of o, then c is essentialin lla by Proposition 1.19, so c* is also

essential in l/a.

Assume now that c is an RCID of a. Then we can write a : c\b,where b is a meet of CI

e lemen ts  and  cAb{b .

If. a: c, then c* is essential in l/c : lla. So, we may assume that a ( c. In order to

show that c* is essentialin If a we have to prove that r Ac* * a for every n > a.

I f  r ( c , t h e n  r A c * : r * a .  I f  r ( c , t h e n  c l c V t r , s o  c * ( c V z .  I t f o l l o w s t h a t

c * ( c V r ) A c * : c V ( r A c * ) ,

and hence r Ac* f a, as desired. n

C o r o l l a r y  L , 2 L .  L e t  L e U ? M  b e a l a t t i c e w i t h C l D ,  a n d l e t  l l a e  L .  T h e n t h e r e e r i s t s

on RCID of a if and onls if Soc(lla) I a.



C OMP LETELY IRREDU CIBLE MEET D EC OMP Off"IOI\rS

P r o o f .  ( + D '  I f  c )  a  i s a n R C I D o f  a , t h e n w e c a n w r i t e  o : c A b ,  w h e r e b i s a m e e t o f  C I

elements and c Ab + b.

I f  c :  a ,  then Soc( l /o ) :  Soc( l / c )  -c*  >  q .  I f  c  )  a ,  then b)  a ,  andas  in theproof

of the implication cc+" in Proposition 1.19, we have (c* nb)la - 
"*/", 

and so, the interval

(c* rt,b)la is simple. Therefore a <,(c+ Ab) < Soc(l/a), as desired.

( (s " ;  I f  Soc( l /o )  f  a , le t  s  >  a .  S ince  s  (  a ,  the  se t  C, :  { "1  c2  a ,s  {  c }  i s  no t

empty. Nowobservethat ceC<-i  sAc:a because s>a. Usingnowtheuppercont inui ty

of -L, we deduce that the set C is inductive, so it has a maximal element c6 by Zorn's Lemma.

By Proposition 0.7, it follows that c6 is CI in lfa, so also in .L. Since "L is a lattice vrith

CID, we can write s as a meet of CI elements, and c6 is clearly relevant in the intersection

o, : co A s, which finishes the proof. q

Lemma 1 .22 .  Le t  Le  Ut rM,  and le t  r :  A ' '% be an ICID o f  r# I .  For  euerg ' ie I  le t

7z :: Ajer\{4r;. Then, the followi.ng statements hold.

(l) For each 'i € I, the'i,nterual rif r i,s subdi,rectly irreducible w'iih u.;.: r; Ari elr,nl the

unique atom couering r.

(2) In the i,ntersecti,on r : Atet ri no ri can be replaced by a larger element of L and sti,ll

haue the i,ntersect'ion be equal to r.

(3) Thefamily (u;.)rcr is'independ,ent in lf r and, \f or, ui ( Soc(1/r).

Proof. (l) Let i be a fixed element of 1. As in the proof of the implication (4) ===a (1) in

Theorem 1.16, by modular i ty,  we have r i f r :Eel@t,Av6) = (r ;V7,;) l r iCl f  r . i .  Since r;

is CI, it follows that If 16 is SI, and hence, so is also its initial subinterval (riYT)lri. "Ihis

implies that the interval Tif r is SL Flom the proof of the implication (t4" lrr Proposition

1.19 it follows that the unique atom ui of raf r is ri AE;.

( 2 ) L e t  i e  l  a n d  y i e L  w i t h  r ; ( y 6 .  T h e n  r i { a t  s i n c e l f r i  i s S I , s o

t r : t r i A r ; .  1 u t :  r i  A f i  <  A t A r t ,

as desired.

( 3 )  W e h a v e  4 :  n ;  A r a { q  ( 1 7  f o r e v e r y  j  € / \ { ? } '  a n d s o ,

r ( q A (  V  u ) { r ' i A r i : t r ,
i€1\ii)

i.e., r:uiA (Vi.rttrtu3) for every i €,I. This shows that the family (u)ea is independent

ln l f r  and Soc(1/r))-Y. ierut.  n
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Proposit ion 1.23. Let L€UnM. Then L is semi.-Art i ,ni ,ani , f  and only i , f  euery r€L has

anICID i,n L.

Proaf. "1": If L is semlArtinian, then so is the interval Lf r for every 1 I r e L. It follows

tlaat l.f r is a RCC lattice. By Theorem 1.16, r has an ICID r : Aler r; in lf r, with all

ri, i € f, CI in I f r, so also CI in .L.

"i ": If every 1l r e tr has an ICID in .t, then the interval Ilr has at least an atom

by Lemma 7.22, so, by definition, tr is semi-Artinian. !

Note that the condition that .L is modular in Proposition i.23 can be weakened to "-t

sat'i,sfies cond'i,tion (M)", cf. Walendziak [21, Theorem 4].

Corollary 1.24. (Crawley and Dilworth [6, 6.3]). If euery element of a modular compactlg

generated latti,ce L has an ICID i,n L, then L is strongly atomi,c.

Proof. Since any compactly generated lattice is upper continuous (see, e.g., Crawley and Dil-

worth [6, 2.3]), we can apply Proposition 1.23 to conclude that .L is semi-Artinian, i.e., strongly

atomic.

Remarks 1.25. (1) Any Noetherian lattice L € C is a lattice with CID. To show that, we

proceed as in the proof of N5std,sescu and Van Oystaeyen [18, Proposition 1.4.4]. Assume that

"L is not with CID. Then, the set C of all elements I # r € , that cannot be written as

intersections of CI elements of ^L is nonempty, so C has a maximal element, say rn. Clearly rn

is not CI, so we can write rn : Aeer oa with ei > rn for all d e 1. Thus a,; e L \ C for all

i e I, and then, each ai can be written as an intersections of CI elements. This implies that

m can be written as an intersections of CI elements, which is a contradiction.

(2) A Noetherian lattice L €U O M is not necessarily a lattice with ICID, as the foilowing

example shows. Let L be the lattice L(Z) of all subgroups of the Abelian group Z. Then -t

is a Noetherian lattice which is not with ICID since the zero ideal of Z has no ICID in -L bv

Lemma 1.22.

We end this section by mentioning the following two results on the uniqueness and replace-

ment property of completely irreducible decompositions in lattices, that extend the correspond-

ing results of Heinzer and Olberding[16] and Fuchs, Heinzer, and Olberding [10].

Theorem 1.26. (Crawley and Dilworth [6, Theorems 7.1 and 7.2]).

( I )  I f  L is acompletedistr i ,but i ,uelatt ' i ,ce,thenang elernent l laeL has atmostoneICID.

tr

tr
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( 2 ) I f L i , s a c o m p l e t e m o d u l a r l a t t i c e , a n d l l a e L h a s t w o C l D d , e c o m p o s i , t i , o n s a :

AC : f1C', then lhe Kurosh - Ore replacement property holds: for eaerA c € C there

erists C e Ct such that a: C AA(C\ {c}); moreouer th'i,s resulti,ng decomposition'is

irredundant i,f the decomposi,ti,on o: A C is i,rredundant. !

2 Applications to Grothendieck categories and torsion theories

In this section we apply the lattice-theoretical results established in the previous sections to

Grothendieck categories and module categories equipped with a hereditary torsion theory.

Throughout this section I will denote a fixed Grothend'ieck category, that is, an Abelian

category with exact direct limits and with a generator. For any object X € g, ,C(X) will

denote the lattice of all subobjects of X. It is well-known that f,(X) is an upper continuous

modular lattice (see e.g., Stenstrrim [19, Chapter 4, Proposition 5.3, and Chapter 5, Section 1].

For all undefined notation and terminology on Abelian categories the reader is referred to Albu

and NS.stXsescu [3] and/or Stenstrom [19].
We say that an object X e g is subdi,rectly'i,rreduc'ible, abbreviated SI, if the lattice /(X)

is subdirectly irreducible. More generally, if tr is any property on lattices, we say that an object

X € g is/has lF if the lattice L(X) islhas IF. Thus, we obtain the concepts of. co'irreducible

(uni,form) object, completely coirreduci,ble object, irreduc'ible subobject of an object, completely

irreducible (CI) subobjecf of an object, object rich in completelg'irreduc'ibles (RCI), object rich
'i.n coirreduca'bles (RC), etc. Similarly a subobject Y of an object X e g is/has tr if the

element Y of the lattice 4(X) is/has F.

If we specialize Corollary 0.6, Theorems 1.16, and Proposition 1.23 for L: L(X), we obtain

at once.

Proposition 2.1, If X i,s a semi-Artini,an object oJ a Grothendieck category Q, then any

irreduci,ble subobject of X i,s Cl. !

Theorem 2.2. The followi.ng asserti,ons are equi,ualent for a nonzero object X of a Grothen-

dieck categorg Q.

(1) X is RC.

(2) X 'is an essential ertension of a direct sum of co'irreducible subobjects of X.

$) fhe i,njecti,ue hull E(X) of X i,s an essenti,al ertension of a di,rect sum of indecomposable

inject'i,ue objects.

25
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(4) 0 has an i,rredundant irreduci,ble decomposition in eaery nonzero subobiects of X ' D

Theorern 2.3. The followi,ng statements are equ'i,aalent for a nonzero object X of a Grothen-

dieck category 9.

(1) x zs RCC.

(2) Euery subobject of X contains a s'i'mple subobject.

(3) The socle Soc(X) of X is essential 'i,n X '

(4) For eaerA nonzero subobject Y of X there etists a nonempty set Iy such that 0 can be

written as an irredundant 'i,ntersect'i,on

^  n . .u :  
. l _ . 1  

o o
z e t y

of mari,mal subobjects Xt of Y, 'i, e Iy, in other words, the Jacobson rad'ical J(Y) of

Y is zero and an'irredundant i,ntersect'ion of matimal subobjects. tr

As in Ndstd,sescu and Popescu [17], a Grothendieck category I is said to be an L.C.-category

if each nonzero object X of Q contains a coirreducible subobject, in other words, if the lattice.

L (X)  \sRCforeach 0 lXe Q.Thenext resu l t i saverypar t i cu la rcaseof  Theorem2.2 .

Corollary 2.4. The followi,ng statements are equiaalent for a Grothend'ieck category 9.

(l) 8 i.s an L.C.-category.

(2) Euerg nonzero object X of Q i,s an essential ertension oJ a di,rect sum of coirreduc'ible

subobjects of X.

(3) For eaerA nonzero object X of g, the i,njecti,ue huII E(X) of X is an essential ertension

of a di,rect sum of indecomposable i,njecti,ue objects.

(4) For euery nonzero object X of 8, 0 has an 'irredundant 'i,rreduc'i,ble decomposit'i,on in

eaery nonzero subobjects of X. tr

Remark 2.5. The equivalencies (1) <a (2) +==+ (3) in Corollary 2.4 are precisely the contents

of Ndstdsescu and Popescu [17, Proposition 1]. !

Proposition 2.6. An object X object of a Grothendieck categorA I is semi.-Art'i,n'ian if and

only if euery subobject X has an 'i,rredundant completely i,rreduc'i,ble decomposi,ti,on i,n X. !

Proposition 2.7. Let g be a Grothendi,eck category, and let X e g. If X has Gabri,el

di,mensi,on, then X zs RC.
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Proof. Apply Examples 1.3 (3) to the lattice L: L(X).

Recall that the concept of Gabriel dimension of an Abelian category ,4, due to Gabriel [11],
has been originally defined using a transfinite sequence of localizing subcategories of "4. For a

Grothendieck category 0, the fact that I has Gabriel dimension can be equivalently expressed

by saying that I possess a generator G having Gabriel dimension, that is, the lattice ,C(G)

of all subobjects of G has Gabriel dimension.

Corollary 2.8. (NS.stdsescu and Popescu [17, Remarques 1]). Any Grothendi,eck category

hauing Gabri,el di,mens'ion is an L.C.-category.

We end this paper by presenting some applications of our lattice theoretical results to module

categories equipped with a hereditary torsion theory.

Throughout the remainder of the paper r : (T, T) will be a fixed hereditary torsion theory

on Mod--R, and r(M) will denote the r-torsion submodule of a right J?-module M. The set

F",: {/ ( Ra lRlI e 7} is called the Gabr.ieltopology associated with r.

For any Mpwe denote Sat"(M) : {lf lN < M,MIN e F}, and for any N ( M

we denote by .l[ : n{Cllf < C < M, MIC e .F} the r-closure (or r-saturation, or

r-puri,ficati.on) of l{ it M; N is called r-closed (or r-saturated,, or r-pure) if I/ : -|y'. Note that

N1N : r(MlN) and Sat"(M) :  { l f  l l /  < M, -A/:  N}.  I t  is known that Sat"(M) is an

upper continuous modular lattice for any Mp (see Stenstrom [19, Chapter 9, Proposition 4.1]).

Recall that a module Mp is said to be r-si,mple if ihe lattice Sat"(M) has exactly two

elements; i.e., Sat"(M): {r(M), M} and M eT.A r-simple r-torsionfree module is called

r-cocritical Note that the atoms of the lattice Satr(M) are exactly the r-closed r-simple

submodules of M. A right ideal l of R is called r-criti,cal if. the right R-module RII is r-

cocritical. The r-socle of. M is defined by Soc,(M) : ttClC < n4, C is t-cocritit 'aD. Note

that, by Albu [1, Proposition 1.15], Soc,(M) is exactly the socle of the lattice Sat"(M). A

submodule N of. M is said tobe r-maximal if. the module MIN is r-cocritical. The meet of

all r-mari,mol submodules is called the r-Jacobson rad'i,cal of M and denoted by J"(M); if M

fails to have any r-maximal submodules then we set J'(M) : [tt.

For all undefined notation and terminology on torsion theories the reader is referred to Albu

and Ndstdsescu [3], Golan [12], and/or Stenstrtim [19].
As in Albu, Iosif, and Teply [2], a module Mp is said to be r-subdirectlg 'irreduc'i.ble, ab-

breviated r-SI, if the lattice Sat"(M) is subdirectly irreducible. More generally, if JF is any

property on lattices, we say that an a module Mp isfhas r - tr if the lattice Sat"(M) is/has tr.

Since the lattices Sat,(M) and Sat"(M lr@t)) are canonically isomorphic, we deduce that, Mp

is r-lP if and only it Mlr(M) is r-lP. Thus, we obtain the concepts of a r-Arti,nfan module,
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r-Noetheri,an module, r-sem'i-Art'i,nfon module, r-co'irreducible (uni'form) module, r-completely

co,irreduc,i,ble module, module ri,ch i,n r-coirreducibles, abbreviated r-RC, module rich in

r-completelg co,i,rreduci,bles, abbreviated r-RCC, module ri,ch i,n r-completely i,rreduci'bles, ab'

brev iated z-RCI,etc.  Wesaythatasubmodule N of  Mnis/has r -F i f  i tsc losure N,which

is an element of Sat"(M), is/has JF. Thus, we obtain the concepts of a r-irreducible submodule

of a module, r-completely i,rred,uci,ble submodule of a module, abbreviated r-CI, etc. Since

F: l/, it follows that ltr is/has r-F if and only if 1V is/has r-IF.

Before giving specializations of the latticial results from the previous section to the lattice

Satr(M) we will present some intrinsic characterizations, that is, without explicitly referring

to the lattice Sat"(M), of r-irreducible and r-completely irreducible submodules of a module.

Proposition 2.9. The followi,ng assert'i,ons are equi,ualent for a submodule N of a rnodule Mp.

(1) N is r-irreduci,ble.

(2) MIN /T andfor any submodules P and Q

one has  PIN eT or  QIN eT.

(3) MIN #.T and for any submodules P and Q

or QIN e T.

of M wi.th N g PnQ and (PnQ)lN e T

of M wi,th

Proof. (1) + (2): First, note that since.l{ is r-irreducible, N + U, i.e., MIN / T. If

N  g  P f i Q  a n d  ( P n C ) l N  €  7 ,  t h e n  N  : P n Q : P a @ ,  h e n c e  N  : P  o t  l V : 0

because Iy' is r-irreducible, i.e., I[ is an irreducible element of the lattice Satr(M). Thus

PIN gP lN  - -  F / l r  e  T  o r  Q IN  gQ lN :N lN  €  7 ,  and  so ,  P fN  €T  o r  Q IN  eT ,as

desired.

( z ) +  ( 3 ) :  L e t  P , 8 < M  w i t h  N : P r Q .  T h e n  N 1 w : ( P n Q ) l N  € 7 , s o  P I N  e  T

or QIN eT.

(3) ===+ (1):  I f  - l / :  XoY with X,Y e Sat,(M), then X/I /  e T or YIN e Tby

hypothesis, and so l{: X: X or I/ :7: Y. Now observe that N f M since MIN gT.

Consequently l/ is an irreducible element of the lattice Sat"(M), in other words, N is r-

irreducible. !

Corollary 2.LO. The followi,ng assert'i,ons are equiualent for a rnod,ule Mp.

(l) M 'i,s r-coi,rreduc'i,ble.

(2 )  M /T  and fo r  euerg ,4 ,  B  <  M wi , th  AnB €T one has  AeT or  B  e  T .

Inpart'i,cular, i.f M €f , then M 'i,s r-co'i,rred,uci,ble e M i,s coirreduci,ble.
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Proof . M is r-coirreducible if and only if 0 is a r-irreducible submodule of. M, so apply
Proposition 2.9 for N:0. tr

Remark z.LL. A module M e F which is r-completely coirreducible is not necessarily com-
pletely coirreducible. Indeed, consider the torsion theory ro : (To,.Fg) on the ring R : Z

associated with the Gabriel topology Fs on Z consisted of all nonzero ideals of Z. Note that

this is the "localization at 0" Gabriel topology Fs defined by the prime ideal 0 of. Z, ft is the

class of all usual torsion Abelian groups, and .Fo is the class of all usual torsionfree Abelian
groups. Observe that the lattice Sat"o(Z) : {0, Z,} has a unique atom Z, so Z is ze-SI, i.e.,

rg-completely coirreducible, but it is not completely coirreducible because |rzeN. nZ:0 and

n Z * 0 f o r a l l n € N * .

In order to extend the characterization of r-irreducible submodules in Proposition 2.9 to

r-completely irreducible submodules, we introduce below the following definition.

Definition 2.12. Let Mp be a module. We say that a hereditary tors'i,on theory r onMod-R

satisfy the condition (I v) tf the closure operator on the lattice of aII submodules L(M) of M

co mmutes wi,th arb i,trary inter s ecti,o ns, i. e.,

$d fr;e: fl;er & fo, any famity (X;)a of submod,ules of M.

Note that in condition (t17,) only the inclusion " l " is necessary since " e " always holds.

For a module Mp we set

F ( M ) : :  { N  <  M I M I N  e T } .

Observe that for N < M, one has N e F(M) <+ lf : M. Clearly, f'(-Ra) is exactly the

Gabriel topology "F| associated with r.

Lemma 2.L3. If the condi,tion (t y) it sati,sfied for a module Mn, then )*rrgttl N e F(M).

Proof. If we consider the family (N)ner'(u) of all elements of F(M), by condition (tu) *"

have

tt/r- n Fg n .^/,
N€F(M) N3F(M)

so n N: M, i .e., nN€F,(M)N e F(M), as desired.
N€'_F(M)

Rernark 2.14. We do not knovr whether [-)rver1u1N e F(M) implies

but we suspect no.
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Recall that the torsion theory ,: (T,f) is called Jansian (see Golan [12]) if the Gabriel -!

topology fl, associated with r has a basis consisting of an idempotent two-sided ideal, or

equivalently, if ) n e f".
DeF,

Proposition 2.!5. (Golan [12, Proposition 6.6]). A hereditary torsion theory ,: (T,F) on

Mod-R is Jansian if and only if r sati,sf,es the condi,ti,on (tu) fo, ang module Mp.

Proof. For the reader's convenience we include the proof. Assume that r is Jansian. Let Mn

be a module, let (X;)rE1 be a family of submodules of M, and let r € )ter Xa. tr'or each i' e I

there exists D.; € F, such that rDa C Xi. If we set D ,: |1ret D6, then D e F, since r

is Jansian, so rD C Xi for all z e 1. This shows that rD e fl;E' X;, and so, r € n'" X;

Therefore, ffur, & e fl,;erXr, in other words, r satisfies the condition (t,nz).

Conversely,if r satisfiesthecondition (tr) foranymodule Mp,then,inparticula^r (tp)

is satisfied, so [')oe_r,1np1D e F(R1-) by Lemma 2.13, i.e., flp.r', D e F", which means exactly

that r is Jansian.

Proposition 2.1-6. Let N be a submodule of a module Mp, and. consider the following asser-

t'ions:

(1) lr i,s r-Cl.

(2) MIN /. T and, for any fami,Iy (Pt)u of submod,ules of M such that N E n P; and,
i € I

( [ lA) l l r  €T, one has Pif  N eT for some i  e I .
z e t

(3 )  MIN/T  and, fo rany fami , ty  (P)a  o f  submod,u leso f  M suchtha t  l / :nP4,onehas

PilN e T for some 'i e L

Then (2) =+ (3) e (1), and (L) + (2) if the torsion theory r satisfies the condi.tion (ly).

Proof' (2) ===+ (3) =+ (1): Proceed as in the proof of Proposition 2.9.

(1) + (2): Assume that r satisfies the condition (tm), and let N be as in (2). Then

;tr: fl"' : ne'
ie I  iel

so -A/ : 4 for some i € f because F is a CI element of the lattice Sat"(M). Thus P;/l/ C

f l lN :NlN eT, and then . f t /N €T, as desired. !

!
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Definition 2.L7. A submod,ule N of a mod,ule M i,s called strongly r-completely irreducible,
abbreaiated strongly r-CI, i,f MIN eT and for any fami,Iy (P;)u of submodules of M such

t h a t  N  g n e  a n d ,  ( ) P r ) l N € T , o n e h a s  P i l N e T  f o r s o m e i e l .
i e I ie I

Remarks 2.L8. (1) Let rs : (To,Ji) be the torsion theory on the ring R : Z associated
with the Gabriel topology Fs considered in Remark 2.IL. Then it is easy to see that 0 is a
re-CI submodule of M : Z which is not strongly rs-CI.

(2) Any strongly r-CI submodule N of M, with .l[ e Sat"(M) is a CI submodule of M.
Indeed, i f  (x;)rer isafamilyof submodulesof Mwith N:f l ,erXi, then ([} . r&)/ l r :oe

T, so X6f N €T for some'i € 1. On the other hand X;lN < MIN € f, so X6f N :0, i.e.,

N : Xi, which shows that N is a CI submodule of M.

(3) By Proposition 2.6, any z-Cl-submodule of Mp is strongly r-CI in the presence of

condition (tp,). tr

We are now going to specialize the latticial results obtained for an arbitrary upper continuous

modular lattice to the particular case of the lattice SaI"(M). We will present only two such

specializations. Do do that, we need some prepaxatory results.

Lernrna 2.L9. The following assertions hold for a module Mp e F anil a submodule N { M.

(1) # MIN eT, then N is an essential submodule ol M.

(2) lf is an essent'i,al submodule of N.

(3) .(/ N e Satr(M), then N is an essential submodule of M i,s and only i,f N is an essent'ial

element of the latti,ce Sat"(M).

Proof. (1) Let 0lr e M. Since MIN e 7, thereexists 1€ tri such that rI e N. But rI l0
because M e F, so there exists r € -R with 0l rr € ly', which shows that N is essentialin M.

(2) Since NIW eT,we can apply (1) by taking N as M.

(3) See the proof of AIbu [1, Corollary 1.3]. !

As we already have indicated, a module Ma is said to be ri,ch in r-co'i,rreducibles, ab-

breviated r-RC (resp. rich in r-completely coi,rreducibles, abbreviated I-RCC) if the lattice

Sat,(M) is RC (resp. RCC). Also, a module Mp is said to be r-atomic if the lattice Sat""(M)

is atomic. Note that, by Examples 1.3 (1), Mp is r-RCC if and only if it is r-atomic.

Proposition 2.2O. A module Mn e F z's r-RC (resp. r-RCC) if and only it M + 0 and for

euery 0+ X <M there erists C {X which i,s r-coi,rreducible (resp. r-cocriti,cal).

!
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Proof. One implication is clear. For the other one, assume Ihat M is r-RC (resp. r-RCC),

a n d l e t  0 + X  ( M .  T h e n  0 + X  € S a i " ( M ) , s o , b y d e f i n i t i o n , t h e r e e x i s t s  D e  S a t , ( M )

such that D < X and D is a coirreducible element (resp. atom) of the lattice Sat"(M), that

is, D is z-coirreducible (resp. r-cocritical). Now, observe that D fi X is also r-coirreducible

(resp. r-cocritical) because X is an essential submodule of X by Lemma 2.I9 (2)- n

Corollary 2.2'1,. Let Mp€ F. Then M is r-RC e M zs RC.

Proof. Apply Proposition 2.2A and Corolla,ry 2.10' n

Lemma 2.22. Let Mn € F be a module, andlet (14);e I be a family of submodules of M. Then

(N)a 'i,s an'i,nd,epend,ent fami,Iy of submodules of M i'f and onty if (M)a 'is an i,ndependent

fami.Iy of elernents of the lattice Sat"(M).

Proof. The implication s is sls61. Conversely, let (Ali)a6r be an independent family of

submodules of M. In order to prove that (N,;)i67 is an independent family of elements of

the lattice Sat"(M), it is sufficient to assume that l is the finite set {1,...,n} for some

n e N, n )- 2, because the independence is a property of finitary character in any upper

continuous lattice, as Sat"(M) is. Denote by ! and I the join and meet, respectively, in the

lattice Sat"(M). Then, for each 1 ( k < n, we have:

/  \  / - \  / _
(  V  n ; )  A m ; : ( I  r , ) l r ; : ( t  r o , ) n r y ' a + r : o : 0 .
\r<l<* ,/ " \rG* / " \ ,G* / '

This proves that (l[)1gr;(n is an independent family of Sat"(M), as desired. n

Remark 2.23. The results of Lemma 2.19, Coroliary 2.2I, and Lemma 2.22 rr,ay fail in the

absence of the condition "M e F". To see that, let ,R be any ring, let X : (Mod--R, {0}) be the

improper torsion theory on Mod-R, let M be any nonzero module, and let ly' be any submodule

of M which is not essential in M. Then Lemma 2.19 fails in this case. An example of a proper

torsion theory enjoying the same property is provided by Albu [1, Examples 1.16].

For the failure of Corollary 2.21, consider the same torsion theory 1 and a module M which

is not RC. Since Sat"(M) : {M}, M is vacuously X-RC, but it is not RC.

Finally, for the failure of Lemma 2.22, let M be a (direct sum) decomposable module:

M : Nt + N2, Itr1 * 0, Nz * 0, Nt oly'z : 0. Then (lI;),;=r,z is an independent family of

submodules of M, but l/r - 1tr2: M insatr(M): {M}, where X is the torsion theory

considered above. D

Lemma 2.24. The following statements are equ'iualent for a module Mp€ F.

(L) M 'i,s r-coi,rreducible (resp. r-completely coirreducible).
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(2) ER@) is an 'indecomposable module (resp. Ea(M) = Ep(C) Jor some r-cocrit'ical
mod,ule C).

(3) ER@) = Ep(RlI) where I i,s an i,rreduci,ble (resp. r-cri,tical) ri,ght id,eal of R.

Proof. For r-coirreducibles use Corollary 2.10 and a well known characterization of coirreducible
modules via injective hulls, and for r-completely coirreducibles use Albu, Iosif, and Teply [2,
Proposition 2.2]. D

If we specialize Theorem 1 .16 characterizing RC and RCC lattices .L for .L : Sat" (M) , we
obtain at once the following characterizations of r-RC and r-RCC modules M.

Theorem 2.25. The following statements are equiualent for a mod,ule Mn/7.

(L) M fs r-RC (resp. r-RCC).

(2) There eri,sts i,n the lattice Sat"(M) an 'i,ndependent family (At),iel of r-coirreduc,ible

(resp. r-completelg coirred,ucible) submodules Nt. of M, i e I, such that l*, Ni ls a,

essent'i,al element in the lattice Satr(M).

(3) For euery r(M) * N e Sat"(M) there erists a nonempty set Iy such that r(M) can be

written as an irredundant intersect'ion

r(M): |  ru,
i€11'1

of r-'irreduci,ble (resp. r-completely irreducible) submod,ules Ni in ltr, ltri € Sat"(M),

i .  e  Iw .

Moreouer, the equ'i,ualent condit'i,ons (1)-(3) for a r-PICC module can be reformulated, as follows:

(l)' Ang submodule N of M, r(M) * l/ e Sat"(M) conta'i.ns a r-simple submodule in

Sat"(M). '

(2)' The r-socle Soc"(M) of M i,s an essent'ial element in the latti,ce Sat"(M).

(3)' For euery r(M) * N e Sat"(M) there erists a nonemptg set I^r such that r(M) can be

written as an'i,rredundant intersectiort,

r(ttrt1 : [] lr,
2el lv

of r-mar'imal submodules N,; of N , i € Iy, in other words, the r-Jacobson radical J"(N)

of N i,sr(M) and an i,rredundant'intersect'ion of r-mari,mal subrnod,ules of N. !
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In case the given module Mn is r-torsionfree, then characterizations in Theorem 2.25 have

the following more simple form, that involve essentiality and independence in the very familiar

lattice L(M) of all submodules of M instead of the ones in the lattice Sat'(M) of all r-closed

submodules of. M. In this way, one can add, as in the original Fori [8, Th6or6me 3], a new

characterization in terms of injective hulls.

Theorem 2.26. The followi,ng statements are equi,ualent for a nonzero module Mpe F.

(1) M zs r-RC (resp. r-RCC).

(2) There ex,ists a sum of an'i,ndependent family of coi,rreduc'i,ble (resp. r-completely coirre-

duci,ble) submodules of M that i,s essential in M.

(3) The i,njectiue hull Ep(M) of M is an essenti,al ertens'ion of a direct sum of (indecompo-

sable) inject'i,ue rnodules of tgpe En(C) where C are co'i,rreduci,ble (resp. r-completely

co'i,rredu ci.ble) m o dul e s.

{4) For euery 0* N e Satr(M) there eri,sts anonempty set I7,r suchthat 0 can wri,tten as

an irredun dant'i,nt er s ect'i on

0: n n,
i € I  y

of r-irreduci,ble (resp. r-completely i.rreduci.ble) submodules N1. i,n N, Ni e Sat"(M),

i, e 11,7.

Moreouer, the equ'i,ualent condi.t'i.ons (1)-(4) for a r-RCC module canbereformulated as follows:

(l)' Ang nonzero submodule of M contai,ns a r-cocrit'i,cal submodule.

(2)' The r-socle Soc,(M) of M is essential in M.

(3)' The injecti,ue huII Ep(M) of M i,s an essenti,al ertens'ion of a di,rect sum of indecompos-

able injecti,ue modules of tgpe EnQ) where C are r-cocritical modules.

(4)' For euery 0* N e Sat"(M) there esists a nonempty set Iy such that 0 can wri,tten as

an'i,rredundant'i,nter s ect'i, on

o: [^] &
i € I1 i

of r-mari,rnal submodules N6 of N, 'i, e 17,7, in other words, the r-Jacobson radi,cal

J"(N) of N i,s zero and an i,rredundant i,ntersection of r-mari,mal submodules of N.

Proof . Apply Lemma 2.19 (3), Corollary 2.21, Lemma 2.21, Lemma 2.24, andTheorem 2.25. !
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Since M is r-RC (resp. r-RCC) if and only if Mlr(M) is so, we can of course formulate
Theorem 2.25 In terms of essentiality and independence in the lattice L(Mlr(M)) instead of
the ones in the lattice Sat"(M). For instance, condition (2) can be expressed as:

(2)" There er,,ists an independent fami,Iy (X;,)p of r-co,i,rreducibte (resp. r-completely

coirreducible) submodules X6 of Mlr(M), iel,suchthat @orrX; isanessent,ialsubmodule

of M/r(M).

Proposition 2.27. A module Mp be is r-semi,-Artinian if and only if eaery N € Sat"(M)
has anICID in Sat"(M).

Proof. Applv Proposition 1.23 to the lattice L:Sat"(M). tr
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