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Abstract

The aim of this paper is to investigate decompositions of elements in upper continuous
modular lattices as intersections of (completely) irreducible elements. Thus, we extend from
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Introduction

The aim of this paper is two-fold: first, to extend from modules to lattices the results of Fort
[8] concerning modules rich in coirreducibles and to consider a similar setting where irreducible
submodules are replaced by completely irreducible submodules, obtaining so the concept of
lattice rich in completely coirreducibles, and second to extend from ideals to lattices some
results of Fuchs, Heinzer, and Olberding [10] concerning decompositions of ideals in arbitrary
commutative rings as (irredundant) intersections of completely irreducible ideals.

In doing so, we were inspired by the ideal or module theoretical situation, where the concept
of essential ideal or submodule plays a key role. Though (meet) decompositions of elements
in lattices have been extensively studied in the literature (see, e.g., Crawley and Dilworth [6],
Erné [7], Walendziak [21], etc.) it is surprising that the concept of essent®l element was not

yet involved.

The paper consists of 3 sections. Section 0 contains the basic definitions and facts, needed
in the sequel, on subdirectly irreducible posets and completely irreducible elements in lattices.

In Section 1 we first extend from modules to upper continuous modular lattices the main
result of Fort [8] concerning the characterization of modules Mp rich in coirreducibles by
means of irredundant irreducible decompositions of 0 in any submodule of M. Then, we
consider a similar problem by replacing coirreducible submodules with completely coirreducible
elements. It turns out that the lattices having this property, we called lattices rich in completely
coirreducibles, are exactly the atomic lattices. Then, we extend from ideals to lattices some
results of Fuchs, Heinzer, and B. Olberding [10] concerning decompositions of ideals in arbitrary
commutative rings as (irredundant) intersections of completely irreducible ideals.

Section 2 contains applications of the obtained latticial results to Grothendieck categories

and module categories equipped with a hereditary torsion theory.

0 Subdirectly irreducible posets and completely irreducible
elements in lattices

In this section we present the basic terminology and results, needed in the sequel, on subdirectly

irreducible posets and completely irreducible elements in lattices.

All posets considered in this paper are assumed to have a least element denoted by 0 and a

last element denoted by 1. For a poset P and elements ¢ < b in P we write

bla:=[a,bl={z€P|a<z<b},
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[, b;:={ze€Plagz<b},
la,b) :=={z€Pla<z<b}.

An initial subinterval (resp. a quotient interval) of b/a is any interval c/a (resp. b/c) for
some ¢ € b/a. If <y are elements of a poset P and there is no z € P such that z < z < y,
then we say that z is covered by y (or y covers ), and we write z <y (or y > ). We say
that the interval b/a is simple if a < b. An element a € P is said to be an atom of P if the
interval a/0 is simple, or equivalently, if 0 < a. We denote by A(P) the set, possibly empty,
of all atoms of P. A coatom of P is an element b € P such that b < 1, i.e., a maximal element
of P\ {1}. We denote by A%(P) the set, possibly empty, of all coatoms of P.

We denote by £ (resp. M, C, U) the class of all lattices with 0 and 1 (resp. modular
lattices with 0 and 1, complete lattices, upper continuous lattices). Throughout this paper a
lattice will always mean a member of £, and (L,<,A,V,0,1), or more simply, just L, will
always denote such a lattice. If L € C, then for every subset S of L we denote A S = Nzes®
and \/ § =V, cg. Anelement e of alattice L is said to be essential in L if eAz # 0 for each
0#z € L. If L €C, then the socle Soc(L) of L is the join of all atoms of L. As in Nistisescu
and Van Oystaeyen (18], a lattice L is said to be semi-Artinian if for any 1 # = € L, the
lattice 1/z has at least an atom. As in Crawley and Dilworth [6], a poset P is said to be
atomic (resp. strongly atomic, resp. weakly atomic) if for every 0 # z € P there exists an
atom a € P such that a < z (resp. for every z < y in P the interval y/z contains an atom,
resp. for every <y there exist a, b € P such that z < a <b < y). A lattice LeUUNM is
strongly atomic if and only if it is semi-Artinian (see, e.g., Nédstdsescu and Van Oystaeyen [18,
Proposition 1.9.3]). As in Nastdsescu and Van Oystaeyen [18], for a lattice L € C we define
the radical v, = /\ber(L) b of L as the meet of all coatoms of L, putting r;, =1 if L has no
coatoms.

For all undefined notation and terminology on lattices, the reader is referred to Birkhoff [5],
Crawley and Dilworth [6], Grétzer [13], and/or Stenstrom [19].

Throughout this paper R will denote an associative ring with nonzero identity element, and
Mod-R the category of all unital right R-modules. The notation Mg will be used to designate
a unital right R-module M, and the lattice of all submodules of Mpr will be denoted by L(M).
The notation N < M (resp. N < M) means that N is a submodule (resp. proper submodule)
of M. We denote by N the set {0, 1, 2,...} of all natural numbers, by N* the set N\ {0} of
strictly positive natural numbers, by Z the ring of rational integers, and by R the field of real

numbers; when considered as posets, all of them are assumed to have the usual order.
Clearly, a module My is cyclic if and only if it satisfies the following condition:

dzo € M,V N € Mod-R, Vf € Homg(N, M) with zo € Im(f) = f is an epimorphism.
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Dually, a module Mg is said to be cocyclic if it satisfies the following condition:
dzg € M,V N € Mod-R, Vg € Homg(M, N) with zo & Ker (9) = g 1is a monomorphism.

To the best of our knowledge, the notion of cocyclic module appears for the first time in the
literature in Fuchs [9, Section 3].

The next result provides various characterizations of cocyclic modules, that will naturally
lead below (see Definition 0.2) to the most general concept of subdirectly irreducible poset. See

Proposition 0.5 for an extension of these characterizations to complete lattices.
Proposition 0.1. The following statements are equivalent for a nonzero module Mpg.
(1) M is cocyclic.
2 [] X#o.
0£X LM

(3) The poset L(M)\ {0}, ordered by inclusion, has a least element.
(4) M has a simple essential socle.
(5) M is subdirectly irreducible.
Proof. See Wisbauer [22, 14.8]. O

Recall that a module Mg is called subdirectly irreducible if any representation of M as a
subdirect product of other modules is trivial, i.e., for every family (M;);cr of right R-modules and
for every monomorphism ¢ : M » [[;c; M; such that mjoe is an epimorphism Vj € I, 3i € I
such that m; o ¢ is an isomorphism, where =; : HZ-E] M; —» Mj, j € I, are the canonical
projections.

Obviously, for any module My we have

M= Y ¢

cec(M)

where C(M) :={C < M |C is cyclic}.
Dually, for any module Mg we have the following less obvious fact (see, e.g., Wisbauer [22,
14.9 ] or Remarks 0.15 (2))
0= () X

XeS(M)
where S(M) :={X < M |M/X is cocyclic}.
In the sequel we present some definitions and results on subdirectly posets and lattices from

Albu, Iosif, and Teply [2] along with some new ones.
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Definitions 0.2. (Albu, Iosif, and Teply [2]). (a) 4 poset P is said to be subdirectly irreducible
(or colocal), abbreviated SI, if P # {0} and the set P\ {0} has a least element; i.c., there
ezists an element 0 # xy € P such that zo <  for every 0 £z € P.

(b) An element s € P is said to be a subdirectly irreducible element of P if the interval 1/s
is a subdirectly irreducible poset; in this case, the interval ]s,1] has a (unique) least element,

denoted by s* and called the cover of s.
(¢) Dually, a poset P is said to be local (or cosubdirectly irreducible) if P # {1} and the

set P\ {1} has a last element; i.e., there exists an element 1 # z1 € P such that = < z1 for
every Ll £z € P. O

By Proposition 0.1, a module My is subdirectly irreducible (resp. local) if and only if the
lattice £L(Mpg) of all submodules of Mg is subdirectly irreducible (resp. local).

For any poset P we denote by S(P) the set of all subdirectly irreducible elements of P;
ie.,

S(P):={zeP|l/z is SI}.

For any module Mg we set S(Mg) := S(L(Mpg)). Notice that this set has been denoted in
Albu and Rizvi [4] by C°(Mg).

Definitions 0.3. (a) A lattice L is said to be coirreducible (or uniform) if L # {0} and

z Ay # 0 for any nonzero elements z, y € L.

(b) A lattice L is said to be completely coirreducible (or completely uniform) if L # {0}
and Nieyzi # 0 for any nonempty family (z;)ier of nonzero elements z; € L, or shortly, if
NS #0 for every @ #S C L\ {0}.

(c) An element = of a lattice L is said to be meet irreducible, or just irreducible, if = # 1

and whenever x =aAb for a,b€ L, then  =a or z =0>.

(d) An element = of a lattice L is said to be completely meet irreducible, or just completely
irreducible, abbreviated CI, if = # 1 and whenever x = \,c;a; for a nonempty family (a;)ier
of elements of L, then © = a; for some j € I, or shortly, if x # 1 and whenever x = A\ S for
some @ # S C L, then necessarily = € S. a

Notice that sometimes in the literature the last element 1 of a lattice is considered to be
(completely) irreducible. However, in this paper, any (completely) irreducible element of any
lattice is always assumed to be # 1. Clearly, an element z € L is irreducible (resp. completely
irreducible) if and only if the lattice 1/z is coirreducible (resp. completely coirreducible). For
any lattice I we denote by Z(L) the set of all irreducible elements of L, and by Z¢(L) the set
of all completely irreducible elements of L. For any module Mp we set Z(Mpg) := Z(L(MR))
and Z¢(Mg) := I¢(L(MR)).
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Remarks 0.4. (1) The set Z¢(L) may be empty; for instance, take as L the interval [0, 1]
of real numbers. However, for any nonzero module Mp we have Z¢(MRg) # @ (see, e.g., Albu
and Rizvi [4, Lemma 0.2]).

(2) Clearly, for any lattice L we have Z¢(L) C Z(L). In general, the inclusion Z¢(L) C Z(L)
may be strict. Indeed, if L is the interval [0,1] of the set R of real numbers, then Z°(L) = @
and Z(L) = L.

(3) The set Z(L) may be also empty (see Albu, Iosif, and Teply [2, Remarks 0.3 (3)]).
However, for any nonzero module Mg we have Z(Mpg) # @ by (1) and (2).

(4) If L € C, then clearly s € L is a subdirectly element of L if and only if s is completely
irreducible, so S(L) = Z¢(L). In the sequel, for the term of subdirectly irreducible element of

any lattice, we will always use the term of completely irreducible element. g
Proposition 0.5. The following statements are equivalent for a lattice L € C, L # {0}.

(1) L is subdirectly irreducible.

(2) /\ z # 0.

zeL\{0}

(3) L is completely coirreducible.

(4) L has an atom a such that a < z,Vz € L\ {0}.
(5) L has an atom a that is essential in L.

(6) L is coirreducible and Soc(L) # 0.

Proof. (1) = (2): If xo is the least element of L\ {0}, then 0 # zo < Agepy o 2-
(2) <= (3) is clear.
(3) = (4): If a:= Ayep\(0} &> then a is an atom, and a <z, Vz € L \ {0}.
(4) = (5): For any z € L\ {0}, we have a < z,s0 zAa=a #0,ie., aisessential in L.
(5) = (6): Let z,y € L\ {0}. Then a Az # 0 and a Ay # 0 since a is essential in L,

so aAz =a and a Ay = a since a is an atom of L. It follows that a < « and a < y, which
implies that 0 # a < z Ay, i.e., L is coirreducible. Clearly a < Soc(L), so Soc(L) # 0.

(6) = (1): Since Soc(L) # 0, L has at least an atom, say a. We claim that a is the
single atom of L; indeed, if o' is another atom of L, then a A o’ # 0 since L is coirreducible,
so aAa' =a=d'. It follows that Soc(L) = {a}. For every z € L\ {0} we have 0 # zAa < q,
so £ Aa = a, and then a < z. This shows that a is the least element of L\ {0}; hence L is

subdirectly irreducible. O
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Corollary 0.6. If L € C is a semi-Artinian lattice, in particular a strongly atomic lattice, then

Z(L) = I(L).

Proof. If z € Z(L), then the lattice 1/z is coirreducible, and Soc(1/z) % 0 since L is semi-
Artinian lattice, so 1/z is a subdirectly irreducible lattice by Proposition 0.5, i.e., z € Z¢(L),
as desired. O

Proposition 0.7. The following statements are equivalent for L €C and 1#c€ L.
(1) ¢ is completely irreducible in L.
(2) There exists 0 # xo € L such that c is mazimal with respect to zy £ c.

Proof. (1) = (2): Since the lattice L was assumed to be complete, we can consider its element

Yo = /\ z. Then yo > ¢ since c is CI, so yo £ ¢. Now, ¢ is maximal with respect to 3o £ c,

z>c

since for any d > ¢ we have yo < d by the definition of y. Thus (2) holds with zg as .

(2) = (1): If we consider again the element g := /\ z of L, then clearly yy > c¢. In order
z>c

to prove that c is CI, i.e., 1/c is a SI lattice, by Proposition 0.5, we have to show that y, # c.
We have z¢ < = for every z > ¢ by the maximality condition of ¢ in (2). This implies that

Zo < yo. We cannot have yo = ¢ since then zo < ¢, which contradicts (2). O

Observe that if zo 7 0 is any compact element of L € C, then theset Lo = {z € L|xz € = }
is inductive, so the Zorn’s Lemma can be applied to find a maximal element ¢ of Lg, which is
completely irreducible by Proposition 0.7.

The concept of a lattice rich in subdirectly irreducible, indispensable in the evaluation of
the dual Krull dimension of lattices, has been introduced by Albu, Iosif, and Teply [2]. The

definitions below are slight variations of it.

Definition 0.8. (a) A poset P is said to be rich in subdirectly irreducibles, abbreviated RSI,
if for every a < b in P, the interval b/a has a subdirectly irreducible quotient interval b/c,

with a < c<b.

(b) A poset P is said to be weakly rich in subdirectly irreducibles, abbreviated WRSI, if
for every a # 1 in P, the interval 1/a has a subdirectly irreducible quotient interval 1/c with
(o -

(c) A lattice L is called rich in completely irreducibles, abbreviated RCI (resp. weakly rich
in completely irreducibles, abbreviated WRCI) if the poset L is RSI (resp. WRSI). O
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Of course, any RSI poset is also WRSI but not conversely: indeed, the subset [0,1/2]U {1}
of R is WRSI but not RSI. Observe that a poset P is RSI if and only if the poset 5/0 is WRSI
for any 0# b€ P.

For the concepts of Krull dimension, dual Krull dimension, and Gabriel dimension of a

lattice the reader is referred to Nidstdsescu and Van Oystaeyen [18].

Proposition 0.9. (Albu, Iosif, and Teply [2, Proposition 1.2]). The following assertions are
equivalent for L € U N M.

(1) L is RCL

(2) For each a < b in L there exist z <y in bj/a such that y/z is simple, in other words,

L is weakly atomic.
(3) For each a < b in L there exist £ <y in b/a such that y/x is compact.
(4) For each a <b in L there exist © <y in bj/a such that y/z is compactly generated.
(3) For each a < b in L there exist © <y in b/a such that y/x has (dual) Krull dimension.
(6) For each a < b in L there exist * <y in b/a such that y/x has Gabriel dimension. O

Corollary 0.10. (Albu, Iosif, and Teply [2, Corollary 1.3]). Let L e UN M. If L has Gabriel
dimension, then L is RCL. In particular, if L is Artinian, semi-Artinian, Noetherian, or has
(dual) Krull dimension, then L is RCL. O

Corollary 0.11. (Albu, Iosif, and Teply [2, Corollary 1.4]). Any compactly generated lattice
LeUnM is RCL O

Remarks 0.12. (1) The poset reduced to 0 is by definition RSI.

(2) Clearly, we can express equivalently the property of a poset P being RSI as follows:
S(b/a) # @ for every a < b in P. Thus, if P # {0} is SI, then S(P) # @, but not conversely;
if P=1[0,1/2]U{1} CR, then S(P) = {1/2} # @, but P is not RSI since S([0,1/2]) = @.

(3) For any module Mg, the lattice £(M) is RCI by Albu and Rizvi [4, Lemma 0.2] or by
Corollary 0.11.

(4) Clearly, any strongly atomic lattice is RCI, but not conversely. Indeed, if Mg is a module
that is not semi-Artinian, then the lattice £(M) is RCI by (3) but is not semi-Artinian, or

equivalently, not strongly atomic.

(5) Any Noetherian poset P is RSI since for any a < b in P, the interval [a,b] contains a

maximal element c, and so, the interval b/c is simple, in particular SI.
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(6) Clearly, any RSI poset is also weakly atomic, but not conversely. Indeed, let
L={zp, |neN, 1<k, <2"}U{0}U{1}

be the lattice whose Hasse diagram is indicated below:

Xotl, 2k=1  Xnsl, 2k

N

Ko,k 0

Figure 1:

Then L is an Artinian lattice, so also weakly atomic, which has no irreducible element, so no
CI element too; thus, L is not WRCI, and, a fortiori, not RCI. Observe that L is neither upper
continuous nor semi-modular.

(7) Examples involving torsion theories of lattices that are RCI are provided in Albu, Iosif,

and Teply [2, Section 2].
(8) An example of an RCI upper continuous modular lattice that is not compactly generated
is the following one given in Crawley and Dilworth [6, p. 16]: let N = NU {oo} be the chain of
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all natural numbers with a largest element oo adjoined, and let L be the set of all functions
f:N — N such that f(n) = oco for all but finitely many n € N. With the partial order in L
defined by f < g <= f(n) < g(n),Vn €N, L becomes an upper continuous modular lattice
having the following two properties: the interval 1/f of L is an atomic lattice for all f # o,
and o is the only compact element of L, where o is the zero function, o(n) =0 for all n € N.
So, L is RCI but not compactly generated. It would be interesting fo find such an example
based on lattices of type Sat, (M) for a certain hereditary torsion theory 7 on the category
Mod-R and a module Mpg. A possible candidate for that could be the example in Albu, losif,
and Teply [2, Remarks 2.6 (3)].

(9) Examples from general topology of weakly or strongly atomic lattices that are upper

continuous and distributive but not compactly generated are provided in Erné [7]. O

Proposition 0.13. (Albu, Iosif, and Teply [2, Lemma 1.6]). The following statements are

equivalent for a nonzero lattice L € U N M.
(1) The lattice L is RCL.
(2) For every a <b in L, one has a = A\ c7e(0) 2-
In particular, if L is RCI, then 0 = /\mEIC(L) z. O

Definition 0.14. A lattice L is said to be with completely irreducible decomposition, abbre-
viated CID, if every 1 # a € L can be written as a meet of a family of CI elements of L, or
equivalently a = /\erC(l/a) x. O

Remarks 0.15. (1) Consider the subset L = {0} U[1/2,1] of R. Then 0 is the only CI
element of the lattice L, but for every 0 < a < b in L, the interval [a,b] has no CI elements; in
particular, the lattice L is not RCI. This example shows that a lattice L € U N M may satisfy
the property 0 = /\erC( 0t of Proposition 0.13 without being necessarily RCI.

(2) By Remarks 0.12 (3) and Proposition 0.13, any proper submodule of any module Mg is

an intersection of CI submodules of M.

(3) Proposition 0.13 can be expressed by saying that a lattice L is RCI if and only if, for
every 0 # b € L, the lattice b/0 is with CID. In particular, any RCI lattice is a lattice with
CID. The converse may be not true. Indeed, consider the following example due to Erné [7):
let L:={(z,y)|z,y€(0,1], z+y <1} U{(1,1)}, where [0,1] is the unit interval in the set
R of all real numbers. Then L, ordered componentwise by the usual < relation, is a complete
semimodular lattice. Since the only covering pairs in L are (z,1 —z) < (1,1), =z € [0,1], it
follows that L is not weakly atomic; so it is not RCI too. However, every element of L can be

written as an irredundant intersection of at most two coatoms, so, L is a lattice with CID.
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(4) Observe that if L is a lattice with CID, and a, b € L, then b € a if and only if there
exists a CI element ¢ € L such that a <c and b€ c. Indeed, assume that for any CI element
¢ € L such that a < ¢ we also have b < ¢. Since L is with CID, we can write o = /\iel &
with CI irreducible elements ¢;, s € I. Then b < ¢;, Vie I ,80 b < /\ie 1 ¢ = a. This shows the

nontrivial implication.

(5) In the next section we will discuss when a decomposition of an element of a lattice
L e nM with CID as a meet of irreducible/completely irreducible elements is irredundant

or unique. O

As in Walendziak [21], a lattice L is said to satisfy the condition (P) (resp. (M)) if for
any two elements a < b in L, the set P(a,b) = {z € L|a = b Az} has a maximal element
(resp. if for every ¢ € Z°(L) and for every a € L with a € ¢ one has cAa € Z%a/(anc))). Of
course, the condition (M) can be expressed equivalently as follows: for every ¢ € L with 1 /c
ST and for every a € L with a € ¢, the interval a/(a Ac) is SI. Clearly, any upper continuous
lattice satisfies the condition (P), and any modular lattice satisfies the condition ().

The existence of completely irreducible decompositions in complete lattices that are more

general than upper continuous modular lattices is given by the following result.

Proposition 0.16. (Walendziak [21, Theorem 1, Theorem 2, Corollary 2]). If L € C satisfies
the conditions (P) and (M), then 1# a € L has a decomposition into CI elements if and only
if for every T > a in L there are u,v € z/a with u < v. In particular, a complete lattice sa-
tisfying the conditions (P) and (M) is a lattice with CID if and only if it is weakly atomic. O

We end this section with an extension of Proposition 0.13 to complete lattices satisfying the
condition (P).

Proposition 0.17. The following statements are equivalent for a nonzero lattice L € C satis-
fying the condition (P).

(1) The lattice L is RCI.
(2) For every a <b in L, one has a = /\erC(b/a) .

Proof. (1) = (2): Observe first that if a lattice L is RCI, then so is any of its intervals [z,y],
and Z°(L) # @ <= L # {0}. Therefore, it is sufficient to prove only that 0 = /\zeIc(L) z if
the lattice L is RCL Set y = /\erC(L) z, and assume that y # 0. Since L is RCI, there
exist @ < b in y/0, and since L satisfies the condition (P), there exists an element m €
P(a,b) := {z € L|a = bAz} which is maximal in P(a,b), and then it is necessarily CI by Erné
[7, Lemma)]. So, m >y > b, and hence a = m A b = b, which is a contradiction. Consequently,

y =0, and we are done.
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(2) = (1): Since A@ = 1, we have Z°(b/a) # @ for any a <b in L, which says exactly
that L is RCIL. |

Observe that condition (2) in Proposition 0.17 expresses the fact that any element a € L

has a decomposition in CI elements in any interval [a, b] of L, a < b, and this does not require
the condition (M).

1 Lattices rich in coirreducibles/completely coirreducibles, and
irredundant meet decompositions

The aim of this section is two-fold. First we extend from modules to upper continuous modular
lattices the main result of Fort [8] concerning the characterization of modules Mg rich in
coirreducibles by means of irredundant irreducible decompositions of 0 in any submodule of
M. Then, we consider a similar problem by replacing coirreducible submodules with subdirectly
irreducible submodules. It turns out that the lattices having this property, we called lattices
rich in completely coirreducibles, are exactly the atomic lattices. Note that the existence of
irredundant meet decompositions has been explored in the literature, also for lattices that are
not necessarily modular or upper continuous (see, e.g., Crawley and Dilworth [6], Stern [20],

Walendziak [21], etc.), but no connection with essential elements has been so far considered.

As in Fort [8], a module Mp is said to be rich in coirreducibles, abbreviated RC (or rich
in uniforms, abbreviated RU), if M # 0 and every of its nonzero submodules contains a

coirreducible (or uniform) submodule. The next result characterizes RC modules.

Theorem 1.1. (Fort [8, Théoréme 3]). The following statements are equivalent for a monzero

module Mg.
(1) M is RC.
(2) M is an essential extension of a direct sum of coirreducible submodules of M.

(3) The injective hull Er(M) of M is an essential extension of a direct sum of indecomposable

injective modules.
(4) 0 has an irredundant irreducible decomposition in every nonzero submodule of M. g

Qur first aim is to extend the characterization above from modules to upper continuous
modular lattices, and then, to consider a similar problem, where irredundant irreducible de-

compositions are replaced by irredundant completely irreducible decompositions.
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For brevity, we say that an element c of a lattice L is coirreducible (or uniform) if the
interval ¢/0 is coirreducible, that is, if c# 0 and z Ay #0 forall z, y € 10,¢]. We denote by
C(L) the set, possibly empty, of all coirreducible elements of L. Similarly, we say that an element
s € L is completely coirreducible (or cocompletely irreducible, or cosubdirectly irreducible) if the
interval s/0 is subdirectly irreducible, that is, if s # 0 and Nicr ©i # 0 for any nonempty
family (;)ics of elements with z; €]0,s], i € I. We denote by C°(L) the set, possibly empty,
of all completely coirreducible elements of L. Clearly A(L) C C*(L) C C(L). Observe that if
0 <z <y are elements in L and y is coirreducible (resp. completely coirreducible), then so is
also z. There exist nonzero modules Mg having no coirreducible submodules (see, e.g., Fort [8,
Théoréme 2]), and for such M we have C(L(M)) = @.

Definition 1.2. A lattice L is said to be rich in coirreducibles or rich in uniforms, abbreviated
RC or RU (resp. rich in completely coirreducibles or rich in completely uniforms, abbreviated
RCC or RCU), if L # {0} and for any 0 # = € L there ezists ¢ € C(L) (resp. ¢ € C¢(L))
such that ¢ < z. O

Examples 1.3. (1) Since any atom of a lattice is a coirreducible element, it follows that any
atomic lattice is RCC. Conversely, since any subdirectly irreducible interval z/0 of any lattice
L contains a (unique) atom, it follows that any RCC lattice is atomic. Consequently, a lattice

is RCC if and only if it is atomic. In particular, any Artinian or semi-Artinian lattice is RCC.

(2) Any Noetherian lattice L € M is RC. To show that, observe first that any element
1 # © € L can be written as a finite intersection of irreducible elements of L (see, e.g.,
Nistdsescu and Van Oystaeyen [18, Proposition 1.4.4]). It follows that any element 1 # z € L
can be written as a finite irredundant intersection of irreducible elements of L. Now, let 0 #
xz € L. Then z/0 is a Noetherian lattice, so we can write 0 as a finite irredundant intersection
0 = Aigign @i of irreducible elements of /0. If n = 1, then 0 = z, is irreduciblein z/0, so & is
a coirreducible element. If n > 2, set y; := /\Kién z;. Since the decomposition 0 = A, <ign Ti
is irredundant, we have y; # 0. But 0 =z, Ay, s0 41/0 =y1/(z1 Ay1) ~ (z1Vy1)/z1 C z/z1,
and since the interval z/z, is coirreducible, it follows that so is also y1/0, in other words, z

contains the coirreducible element y;, as desired.

(3) Let L e UNM. If L has Gabriel dimension g(L), in particular, if L is semi-Artinian or
has (dual) Krull dimension, then L is RC. Indeed, let 0 # z € L. Then, the interval z/0 of L
has Gabriel dimension g(z/0) > 0, hence it contains a Gabriel y-simple interval ¢/0, 0 < ¢ < z,
for some ordinal 8 < g(z/0) (see N&stdsescu and Van Oystaeyen [18, 3.4]) . We claim that ¢
is a coirreducible element of L, i.e., the interval ¢/0 is coirreducible. If not, then there would
exist a, b €]0,c] such that 0 = a A b. Since ¢/0 is Gabriel ~y-simple, we have g(c/a) < 7
and g(c/b) < . By modularity, we have a/0 = a/(a Ab) ~ (aV b)/b C c/b, which implies
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that g(a/0) < g(c/b) < 7, hence g(c/0) = max{g(c/a),g(a/0)} < v, which is a contradiction.
Consequently, for each 0 # = € L, there exists a ¢ € L, 0 < ¢ < z, such that ¢ is coirreducible,

which means exactly that L is RC, as desired.

(4) Clearly any RCC lattice is RC, but not conversely. Indeed, the lattice L(Z) of all
subgroups of the Abelian group Z is RC by (2), but not RCC by (1) since the Z-module Z

does not contain any simple submodule. a

In order to extend Theorem 1.1 from RC modules to RC lattices and also to consider the case
of RCC lattices, we need the next lemmas, which are the latticial versions of the corresponding
results used in its proof in Fort [8]. Note that their statements and proofs are given in a
parallel manner, by replacing the word “irreducible” (resp. “coirreducible”) with “completely

irreducible” (resp. “completely coirreducible”).

Recall that a subset A of a lattice I € C is said to be join independent, or just independent,
if0¢ A and a AV(A\{a}) =0 forall a € A. If L € U, then A C L is independent if
and only if every finite subset of A is independent. Alternatively, we say that a family (Z3)ier
of elements of a lattice L € C is independent if z; # 0 and z; A (Ve 3y z;) = 0 for every
i € I, and in that case, necessarily z, # z, for each p # ¢ in I; so, the two definitions of

independence, using subsets or families of elements of L, are essentially the same.

Lemma 1.4. Let L e UN M and let (z;)ic; be an independent family of elements of L. If
y € L is such that y A (\;e; zi) # 0, then there exist i € I, 0 # z; < x4, and 0 # Yy <y such
that /0 ~y'/0.

Proof. Observe that the proof of Fort [8, Proposition 2] works not only for the lattice £L(Mg)

of all submodules of a module Mg, but also for any upper continuous modular lattice L. O

It is known that for any upper continuous lattice L and for any @ # B C L, any independent
subset A of B is contained in a maximal independent subset S of B (see e.g., Crawley and
Dilworth [6, p.46]), and \/ gz is called a mazimal direct join of elements of B and denoted
by VmES’ z. In particular, if A= @ and B = C(L) (resp. B = C¢(L), resp. B = A(L)) then
one obtains a mazimal direct join of coirreducibles (resp. a mazimal direct join of completely

coirreducibles, resp. a mazimal direct join of atoms) of L.

Corollary 1.5. Let L€ UNM, let = € L, and let m be a mazimal direct join of coirreducibles
(resp. a mazimal direct join of completely coirreducibles) of L. Then m Az # 0 if and only if
there exists y € C(L) (resp. y € C°(L)) such that y < z. O

Lemma 1.6. Let L € U N M. Then there exists t € L which is mazimal with respect to
the property that there exists no y € C(L) (resp. y € C°(L)) such that y < t. If m isa
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mazimal direct join of coirreducibles (resp. a mazimal direct join of completely coirreducibles),

then tAm =0 and tVm is an essential element of L.

Proof. Let T := {u € L|c € u,Vc € C(L)} (resp. T :={u € L|c & u, Ve € C¢(L)}). If
@ # D CT is a chain, then ug :=\/;cpd € T, for otherwise ug > ¢ for some ¢ € C(L) (resp.
¢ € C°(L)), hence, by upper continuity, ¢ = ug Ac =\ gep(d Ac) = 0; indeed, if dAc#0 for
some d € D, then d >dAc e C(L) (resp. d > dAc € C%L)), which is a contradiction. This
shows that T is an inductive set, so, by Zorn’s Lemma, it has a maximal element, say ¢, and
t Am =0 by Corollary 1.5.

We are now going to show that ¢V m is an essential element of L, i.e., if z € L is such that
(tvm)Az=0,then z=0. We claim that (zVt¢) Am = 0. Indeed, by modularity, we have

(zVH)Am K (EVHAEVmM)=((zA(EVm)VE=0VE=t.

On the other hand, (zVit)Am <m, so (zVi) Am < tAm =0, which proves our claim.

By Corollary 1.5, z V¢t does not contain any coirreducible (resp. completely coirreducible)
element of L, s0 zVte€T. Since t is maximal in 7' it follows that ¢t = 2V t. Then z < t, and
so 0= (tVm)Az=z as desired. - d

Lemma 1.7. Let L € UN M, and let x < y. Then x is irreducible (resp. completely
irreducible) in y/0 if and only if there exists an irreducible (resp. completely irreducible) element

z in L such that =z Ay.

Proof. “=>": Consider the set S := {u € L|u Ay = z}. Since the lattice L is upper
continuous, the set S is inductive, so, by Zorn’s Lemma, it has a maximal element, say z.
Assume that z is irreducible (resp. completely irreducible) in y/0, let I be a set of two
elements (resp. arbitrary set), and let (z;);cr be a family of elements of L such that z = A;c; 2.
Then z = zAy = N\;c;(z: Ay). By hypothesis, there exists j € I such that = z;Ay. Since z
is maximal in S, we deduce that z = z;, which proves that z is an irreducible (resp. completely

irreducible) element in L.

“e=": Assume that z is an irreducible (resp. completely irreducible) element in L. By
modularity, we have y/z =y/(2 Ay) = (2 Vy)/z C 1/z. Since the interval 1/z is coirreducible
(resp. SI), so is also y/z, in other words, z is irreducible (resp. completely irreducible) in y/0,

as desired. O

Definition 1.8. Let L € C, and let x € L. An irreducible (meet) decomposition, abbreviated
ID (resp. completely irreducible (meet) decomposition, abbreviated CID) of = in L is a family
(zi)ier of irreducible (resp. completely irreducible) elements of L such that

.’IIZ/\.’Ei.

i€l
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We also say shortly that © = \;c; z; is an ID (resp. CID) of z. The decomposition © = M\;c; @;
is said to be an irredundant irreducible decomposition, abbreviated IID (resp. irredundant
completely irreducible decomposition, abbreviated ICID) if /\je \{i} i & z; for every t € I, in
other words, none of the x;’s can be omitted without changing the intersection.

Alternatively, using the notation \C for \.cc, we say that a representation z = A A
with @ # A C I(L) (resp. @ # A C I¢(L)) is an irreducible (meet) decomposition (resp.
completely irreducible (meet) decomposition) of = in L, which is called irredundant in case

N(AN {a}) # z for every a € A. O

Lemma 1.9. Let = be an essential element of a lattice L € UNM. Then 0= N\;c;z; is an
IID (resp. ICID) of 0 in z/0 if and only if there exists a family (y;)icr of elements of L such
that z; =z Ay, Vi€ I, and 0= \;c;y; is an IID (resp. ICID) of 0 in L.

Proof. “==": Assume that 0 = A\;.; ; is an IID (resp. ICID) of 0 in z/0. Then, by Lemma
1.7, there exists a family (y;);es of irreducible (resp. completely irreducible) elements of L
such that z; = z Ay;, Vi € I. We claim that 0 = A;.;%; is an IID (resp. ICID) of 0 in
L. First, Ajeyyi =0 since (A;e;%i) Az = Nigy@i =0 and z is an essential element of L.
Second, the decomposition A;c;y; =0 is irredundant, for otherwise, y; > /\je I\{i} Yi for some

1 € I, hence z; > /\jel\{i} x;, which is a contradiction.

“<=" can be proved using similar arguments. O

Lemma 1.10. The following statements are equivalent for a nonzero lattice L € U N M.
(1) L is atomic.
(2) L is RCC.
(3) Soc(L) is essential in L.

Proof. (1) <= (2) has been shown in Examples 1.3 (1).

(1) = (3): First, we are going to show that Soc(L) coincides with any maximal direct
join ¢ of atoms of L. Since, by definition, Soc(L) is the join of all atoms of L, we clearly have
s < Soc(L). Now, let a € A(L). Then aAs iseither 0 or a. Since s is a maximal direct join of
atoms, aAs# 0,50 aAs=a,le., a<sforeach a € A, and then, Soc(L) = VaEA(L) a<s,as
desired. To show that Soc(L) is essential in L, let 0 # z € L, and assume that z A Soc(L) = 0.
Let a € A(L) with a < z. Then a V Soc(L) is a direct join of atoms, which contradicts the

fact that Soc(L) is a maximal direct join of atoms of L.

(3) = (1): Let 0 # z € L. Then z A Soc(L) # 0, and since Soc(L) is a direct union
Vierai of atoms, by Lemma 1.4, there exist 4 € I, 0 # a; < a; and 0 # &' < z such that

a;/0 >~ z'/0. But a = a;, so ¢’ is an atom contained in z, as desired. O
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Remarks 1.11. (1) For the implication (1) = (3) in Lemma 1.10 we needed the condition
that L is upper continuous, while for the opposite implication, we required that L € U N M.
Note that the equivalence (1) <= (2) is valid for any poset.

(2) An atomic lattice is not necessarily strongly atomic. Indeed, if F' is any field, I is any
infinite set, and R is the product ring F! of I copies of R, then Soc(R) is essential in R, but
R is not a semi-Artinian ring, so the lattice £(R) of all ideals of R is atomic but not strongly

atomic. 0

Lemma 1.12. (Grzeszczuk and Puczitowski [15, Lemma 1.4]). Let L €e U N M, and let X be
an independent subset of L. Then, (V A) A (\/ B) =0 for any disjoint subsets A,B of X. O

Lemma 1.13. Let L € U N M, and let X be an independent subset of L. Then, for any
neN, n>2, and for any finite family (A;)1<ign of subsets of X, we have

A VAa) =\ 4.

1<ign 1<ign
In particular, if ﬂ A; = @, then /\ (\/ A;) =0.

1<ign 1<ign
Proof. We proceed by induction on n. Let n = 2. If A; N A2 = O, then the result is
exactly Lemma, 1.12. So, we may assume that A; N As # &, and then, we can partition A; as
A1 = (A1 \ A2) U (4; N Ay). By modularity, we have

(\/ A1) A (V 4z) = (\/ 42) A (V410 42)) v (V (41 42)) =

= (\/ (41 nA42)) v ((\/ 42) A (\/(Alk \ 42))) = \/ (41 N 4)
since (V A2) A (V(41\ A2)) =0 by Lemma 1.12. If n > 2 and the result is true for n — 1,
then by the inductive hypothesis and step n = 2, we have
A Va)=NVA)ACA (Va))=(Na) ANV 4)=V([] 4,
1<ign 2€ign 2<ign 1<ign

which finishes the proof. O

The next result shows that Lemma 1.13 also holds for infinite families of subsets of an

independent set.

Proposition 1.14. Let L € UNM, and let X be an independent subset of L. Then, for any
family (A;)ier of subsets of X, we have

AV 4) =V (4.

i€l i€l

In particular, if ﬂAi = &, then /\(\/ Ai) = 0.

i€l i€l
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PT‘OOf. Set A := UzEIAi’ Q; ‘= VA“ = Alelai = /\ZEI(VA') B' = A\Ai, b' = VB,;,
and b:=\/(N;c; 4s)- Since ;c; A;i € A; for each j € I, we have \/([N;c; As) <V Aj, and so
V(ﬂiel Ai) < /\zeI(V Az), i.e., b < a. Thus, it remains to prove only that a < b.
We have
Vo= VIV E) =V (V) =V ) =V 4),
iel i€l i€l iel iel
Va=(/@a\v4) v V(N4) = (Vo) ve
iel iel i€l

Denote by F(I) the poset, ordered by inclusion, of all finite nonempty subsets of I, and
for every F € F(I) set bp :=\/;cpbi- Then V;c;bi =V pez() br, and so

ANV A) =an (Vo) ve)=an( \/ (brvd)= \/ (@A (rVvd),

iel FeF(I) FeF(I)

since L is upper continuous and F(I) is a directed set.

Let F = {i1,...,ix} be an arbitrary but fixed nonempty finite subset of I. Then

a—/\az a;; N -/\aik:(\/Ail)/\”-/\(\/Aik):\/(Ailﬂ'--mAik)

i€l
by Lemma 1.13. On the other hand, we have

brvo=((\/Bi)V...V(\/ By))vb = (\/(ByU... UB;))Vb = (\/(A\(4;N...N4;,)))Vb.
We deduce that
Abr VD) <\ (Ag N ndy) A (VAN (4, N N A4y))) VD).
For simplicity, denote Ap := A;; N...N Ay, and then the inequality above becomes
A e V) < (\/Ar) A ((V(A\ AR)) V).
We claim that
(\V Ar) A ((\/(A\ Ap)) V) =b.

Indeed b=\/(N;c; 4i) <V 4F, so, by modularity and by Lemma 1.12, we obtain

(\V Ar) A (VAN 4R) vb) = ((\/ AF) A (V/(A\ AF))) Vb =0Vb=b.

This shows that a A (bp V) < b for all F € F(I), which implies that

a= \/ (an(br V)<,
FeF(I)

as desired. O



COMPLETELY IRREDUCIBLE MEET DECOMPOSITIONS 19

If (M;)ier is an independent family of submodules of a module Mg, then clearly Nicr M =

0, where M/ := Ziel\{j}Mi for all 4 € I. The next fesult, needed in the proof of Theorem 1.16,
is a very particular case of Proposition 1.14, and shows that this simple fact on modules can be
extended, with some effort, to any upper continuous modular lattice. We are very indebted to

Patrick F. Smith for very helpful discussions about how this latticial extension can be proved.

Corollary 1.15. Let L € U N M, let I be an arbitrary nonempty set, let (z)ier be an inde-
pendent family in L, and for each i € I, set i :=V;ep (y@i- Then 0= A;cr ). a

As in Grzeszczuk and Puczilowski [14, Proposition 2] a basis of an arbitrary lattice L is a

maximal independent subset of L consisting only of coirreducible elements of L.
Theorem 1.16. The following statements are equivalent for a nonzero lattice L € U N M.
(1) L is RC (resp. RCC).

(2) There ezists a join of an independent family of coirreducible (resp. completely coirre-

ducible) elements of L that is essential in L.
(3) L has a basis (resp. a basis consisting only of completely coirreducible elements).

(4) For every 0 # z € L there exists a nonempty set I, such that 0 can be written as an

0= /\.’Ei

1€1

irredundant intersection

of irreducible elements (resp. completely irreducible elements) x; in /0, i € I,.
Moreover, the equivalent conditions (1) — (4) for an RCC lattice can be reformulated as follows:
(1) L is an atomic lattice.
(2)’ Soc(L) is essential in L.
(3) L has a basis consisting only of atoms of L.

(4)" For every 0 # x € L there ezists a nonempty set I, such that 0 can be written as an

0= /\l‘i

1€l

irredundant intersection

of coatoms xz; in z/0, i € I, in other words, the radical Tey0 of /0 is zero and an

irredundant intersection of coatoms.
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Proof. (1) <= (2) follows immediately from Lemma 1.6.

(1) => (3): Let B be a maximal independent subset of C(L) (resp. C¢(L)), which exists by
Zorn’s Lemma. We claim that B is also a maximal independent subset of L. Indeed, if not,
there exists an element 0 # y € L'\ B such that BU {y} is independent, so y A (\/ B) = 0.
Since L is RC (resp. RCC), there exists a coirreducible (resp. completely coirreducible) element
c € L with ¢ <y. Then ¢cA (VB) <yA(VB)=0,s0 cA(V B) =0, and then, necessarily
¢ ¢ B. This implies that B U {c} is an independent subset of C(L) (resp. C¢(L)) strictly

including B, which contradicts the maximality of B.

(3) = (1): Let B be a basis of L (resp. a basis of L consisting only of completely
coirreducible elements). Then \/ B is a maximal direct join of coirreducibles (resp. completely
coirreducibles) of L. If L would not be RC (resp. RCC), then, by Lemma 1.6, there would exist
a nonzero element ¢ € L such that tA (\/ B) =0, so BU{t} would be an independent subset

of L strictly containing B, contradicting the maximality of B.

(1) = (4): Let 0 # z € L. Since L is RC (resp. RCC), so is also the interval z/0. By
the equivalence (1) <= (2) applied for the lattice x/0, there exists a direct join m =Vi€ 7 Ci
of coirreducible (resp. completely coirreducible) elements ¢;, 7 € I, in z/0 that is essential in
z/0.

If T = {i} is a singleton then m = ¢; is an essential coirreducible (resp. completely
coirreducible) element in z/0, that is, 0 =0 is an IID (resp. ICID) of 0 in m/0. By Lemma
1.9, this is also an IID (resp. ICID) of 0 in z/0.

If I has at least two elements, then for every j € I we set ¢ =V,enyj) G- Since

j
m/c; = c;/0, it follows that c}- is an irreducible (resp. completely irreducible) element of m/0

for every j € 1.

By Corollary 1.15, we have 0 = A;c;¢;. We claim that Nienvij) c; £ ¢; forall j €I
Indeed, if not, then, there exists j € I such that /\iel\{j} ¢; < ¢j; hence ¢; < Niengj} ¢ < ¢
and so 0 =c¢; A c} = ¢;, which is a contradiction.

This shows that 0 = A;c;¢; is an IID (resp. ICID) of 0 in m/0. Apply now Lemma 1.9
to see that this decomposition can be extended to an IID (resp. ICID) of 0 in z/0, as desired.

(4) = (1): Let 0 #z € L, and let 0 = A;c;z; be an IID (resp. ICID) of 0 in z/0.
Assume that the set I has at least two elements. Then, for every i € I, set T; := /\je n\{i) Ti-
By modularity, we have Z;/0 = Z;/(z; A Z;) ~ (z; V T;)/z; C x/z;. Since =z; is irreducible
(resp. completely irreducible) in z/0, it follows that z/z; is coirreducible (resp. completely
coirreducible), and hence, so is also its initial subinterval (z; V Z;)/z;. This implies that the
interval 7;/0 is coirreducible (resp. completely coirreducible), i.e., Z; is coirreducible (resp.

completely coirreducible) and T; < z, as desired. Observe that if I = {4} is a singleton, then
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z; = 0, so 0 is irreducible (resp. completely irreducible) in /0, in other words, z itself is

coirreducible (resp. completely coirreducible).
(1)) <= (2)" is exactly (1) <= (3) in Lemma 1.10.

(2)) <= (3)' <= (4)": Observe that instead of completely coirreducible elements in (2)
and (3) we may take atoms; indeed, if (¢;)ses is an independent set of completely coirreducible
elements of L such that \/;.;¢; is essential in L, then a := V;er @ is also an essential element
of L, where, for every ¢ € I, a; is the unique essential atom in the subdirectly irreducible

interval ¢;/0. Then, the corresponding elements a;- ::\./Z-E 1\{j} % are coatoms in a/0. |

Remarks 1.17. (1) The equivalence (1) <= (3) in Theorem 1.16, but only for coirreducibles,
has been also established in Grzeszczuk and Puczilowski [14, Proposition 2] for modular lattices
L which are not necessarily upper continuous, using a completely different approach, namely the
embedding of L into the modular upper continuous lattice Jd(L) of all ideals of L. According
to Grzeszczuk and Puczilowski [14, Theorem 1], any two bases of an RC modular lattice L

have the same cardinality, called the Goldie dimension of L.

(2) One may ask whether condition (3) in Theorem 1.16 can be replaced by the following
weaker one:

The element 0 has an irredundant decomposition 0 = /\zi in irreducible elements (resp.
completely irreducible elements) z; in L. !

The answer is no for the case of completely irreducibles, as the following example, due Fuchs,
Heinzer, and Olberding [10, Example 2.4], shows. Let {po, p1, ...} be the set of all positive
prime numbers in Z, and consider the direct product ring T = [Lien Z/pr. Let R be the
subring of T generated by (1, 1, ...), (po, p1, p2, -..),and (0, ..., pn, 0, ...) foreach n € N.
The ideal 0 of R has an ICID in R and Soc(R) =}, .y Rry is not an essential submodule of
RR. So, by Theorem 1.16, the lattice £L(R) of all ideals of R is not RCC, but 0 has an ICID
in L(R).

For decompositions in irreducible elements we are looking for a module My that is not rich
in coirreducibles such that 0 has an IID in M. This is also an open problem mentioned in Fort
[8, Probléme, p. 383]. According to Fort [8, Théoréme 1, Proposition 5] (see also Lemmas 1.6
and 1.9), the module M should be a direct sum of a module without any coirreducibles with

one that is a maximal direct sum of coirreducibles. O

The next results, extending some results of Fuchs, Heinzer, and Olberding [10] from ideals
to lattices, investigate when a CI element in an ICID of a given element is relevant, i.e., cannot

be omitted.
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Definition 1.18. Let L be a lattice, and let a < ¢ be elements of L. We say that c is a
relevant completely irreducible divisor, abbreviated an RCID, of a if a has a decomposition
as an intersection of completely irreducibles elements of L in which ¢ appears and is relevant,

i.e., cannot be omitted. O

Proposition 1.19. Let a < ¢ be elements of a lattice L € M with CID such that ¢ € I¢(L).

Then ¢ is an RCID of a if and only if ¢ is not an essential element in the interval 1/a.

Proof. “==": If ¢ is an RCID of a, then we can write a = cAb where b is a meet of CI elements
and ¢ cannot be omitted in the intersection above, i.e., a =cAb# b, and so ¢ < cV b. Since
the cover ¢* of c¢ is by definition the least element of the interval Je,1] of L and ¢V b €], 1],
it follows that ¢* <cVb.

Using now the fact that L is a modular lattice, we deduce that
(eV(c"AD)) /e (" Ab)/(cA(c* Ab)) = (c"AD)/(cAb) = (c" AD)/a.

On the other hand, again by modularity, we have ¢V (¢* Ab) = ¢* A (c Vb) = ¢*. Thus
(c* Ab)/a ~ c*/c, and so, the interval (c* A b)/a is simple, in particular ¢* Ab # a. Since

c A (c* Ab) =cAb=a, we deduce that ¢ is not essential in 1/a, as desired.

“=": If ¢ is not essential in 1/a, then there exists d €]a,1] with ¢Ad =a. Since L is a
lattice with CID by hypothesis, we can write d as an intersection d = /\je ;d; of CI elements
djr,j € J. Now, observe that c is relevant in the intersection a = ¢ A (/\jeJ dj) since a # d,
and we are done. O

Corollary 1.20. Let L € M be a lattice with CID, and let a < cin L. If ¢ € Z¢(L), then the

cover c¢* of c is an essential element in the interval 1/a.

Proof. If ¢ is not an RCID of a, then ¢ is essential in 1/a by Proposition 1.19, so ¢* is also
essential in 1/a.

Assume now that ¢ is an RCID of a. Then we can write a = ¢ A b, where b is a meet of CI
elements and ¢ A b # b.

If a = c, then ¢* is essential in 1/c = 1/a. So, we may assume that a < c¢. In order to
show that c* is essential in 1/a we have to prove that z A ¢* # a for every z > a.

If z<c then zAc* =2 #a. If 2 £¢, then c<cVuz, s0 c* <cVz It follows that

c# (V)N =cV (zAcY),
and hence z A ¢* # a, as desired. O

Corollary 1.21. Let L e U N M be a lattice with CID, and let 1 # a € L. Then there exists
an RCID of a if and only if Soc(1/a) # a.
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Proof. “=":If ¢ > a is an RCID of a, then we can write a = ¢ A b, where b is a meet of CI
elements and ¢ A b # .

If ¢ = a, then Soc(l/a) = Soc(l/c) = c¢* > a. If ¢ > a, then b > a, and as in the proof
of the implication “==" in Proposition 1.19, we have (c* A b)/a ~ c¢*/c, and so, the interval
(c* Ab)/a is simple. Therefore a < (c* Ab) < Soc(1/a), as desired.

“=": If Soc(1/a) # a, let s > a. Since s £ a, the set C := {c|c > a,s £ ¢} is not
empty. Now observe that ¢ € C <= s Ac = a because s > a. Using now the upper continuity
of L, we deduce that the set C' is inductive, so it has a maximal element ¢y by Zorn’s Lemma.
By Proposition 0.7, it follows that ¢y is CI in 1/a, so also in L. Since L is a lattice with
CID, we can write s as a meet of CI elements, and ¢y is clearly relevant in the intersection

a = ¢y N s, which finishes the proof. Qd

Lemma 1.22. Let LeUNM, and let z = \;c;z; be an ICID of z # 1. For every i € I let
T; i= /\jeI\{i} z;. Then, the following statements hold.

(1) For each i € I, the interval T;/x is subdirectly irreducible with u; == z} AT; €z,%;) the

unique atom covering x.

(2) In the intersection = J\;c;x; no x; can be replaced by a larger element of L and still

have the intersection be equal to x.
(3) The family (u;)ier is independent in 1/z and Viel u; < Soc(1l/x).

Proof. (1) Let i be a fixed element of I. As in the proof of the implication (4) == (1) in
Theorem 1.16, by modularity, we have 7;/z = T;/(z; AT;) =~ (x; VE;)/z; C 1/z;. Since z;
is CI, it follows that 1/z; is SI, and hence, so is also its initial subinterval (z; V Z;)/z;. This
implies that the interval Z;/z is SI. From the proof of the implication “=" in Proposition

1.19 it follows that the unique atom wu; of Z;/z is z} A T;.
(2) Let 1 € I and y; € L with z; < y;. Then z} < y; since 1/z; is SI, so
T=1; AT < u; = xp AT < Yi N T,
as desired.
(3) We have u; = zf AT; < T; < z; for every j € I'\ {i}, and so,

:cgu,-/\( \/ u]-) LT; ANz =z,
JEI\{i}
ie, z=u; A (Vjel\{i} u;) for every ¢ € I. This shows that the family (u;)ie; is independent
in 1/z and Soc(1/z) >Viel Uj. O
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Proposition 1.23. Let L e UN M. Then L is semi-Artinian if and only if every x € L has
an ICID in L.

Proof. “==": If L is semi-Artinian, then so is the interval 1/z for every 1 # z € L. It follows
that 1/z is a RCC lattice. By Theorem 1.16, z has an ICID = = A,c;z; in 1/z, with all
x4 €I, Clin 1/z, so also Cl in L.

“e=": If every 1 # z € L has an ICID in L, then the interval 1/z has at least an atom
by Lemma 1.22, so, by definition, L is semi-Artinian. O

Note that the condition that L is modular in Proposition 1.23 can be weakened to “L
satisfies condition (M)”, cf. Walendziak [21, Theorem 4].

Corollary 1.24. (Crawley and Dilworth [6, 6.3]). If every element of a modular compactly
generated lattice L has an ICID in L, then L is strongly atomic.

Proof. Since any compactly generated lattice is upper continuous (see, e.g., Crawley and Dil-
worth [6, 2.3]), we can apply Proposition 1.23 to conclude that L is semi-Artinian, i.e., strongly
atomic. 0

Remarks 1.25. (1) Any Noetherian lattice L € C is a lattice with CID. To show that, we
proceed as in the proof of Nistisescu and Van Oystaeyen [18, Proposition 1.4.4]. Assume that
L is not with CID. Then, the set C of all elements 1 # z € L that cannot be written as
intersections of CI elements of L is nonempty, so C has a maximal element, say m. Clearly m
is not CI, so we can write m = A\,.;a; with a; > m for all 4 € I. Thus a; € L\ C for all
1 € I, and then, each a; can be written as an intersections of CI elements. This implies that

m can be written as an intersections of CI elements, which is a contradiction.

(2) A Noetherian lattice L € U/ N M is not necessarily a lattice with ICID, as the following
example shows. Let L be the lattice £(Z) of all subgroups of the Abelian group Z. Then L
is a Noetherian lattice which is not with ICID since the zero ideal of Z has no ICID in L by
Lemma 1.22. O

We end this section by mentioning the following two results on the uniqueness and replace-
ment property of completely irreducible decompositions in lattices, that extend the correspond-
ing results of Heinzer and Olberding[16] and Fuchs, Heinzer, and Olberding [10].

Theorem 1.26. (Crawley and Dilworth [6, Theorems 7.1 and 7.2]).

(1) If L is a complete distributive lattice, then any element 1 # a € L has at most one ICID.
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(2) If L is a complete modular lattice, and 1 # a € L has two CID decompositions a =
AC = AC’, then the Kurosh - Ore replacement property holds: for every c € C there
ezists ¢ € C' such that a = ¢ A \(C \ {c}); moreover this resulting decomposition is

irredundant if the decomposition a = A\ C is irredundant. O

2 Applications to Grothendieck categories and torsion theories

In this section we apply the lattice-theoretical results established in the previous sections to

Grothendieck categories and module categories equipped with a hereditary torsion theory.

Throughout this section G will denote a fixed Grothendieck category, that is, an Abelian
category with exact direct limits and with a generator. For any object X € G, L£(X) will
denote the lattice of all subobjects of X. It is well-known that L£(X) is an upper continuous
modular lattice (see e.g., Stenstrom [19, Chapter 4, Proposition 5.3, and Chapter 5, Section 1].
For all undefined notation and terminology on Abelian categories the reader is referred to Albu
and Nistdsescu [3] and/or Stenstrom [19].

We say that an object X € G is subdirectly irreducible, abbreviated SI, if the lattice £(X)
is subdirectly irreducible. More generally, if P is any property on lattices, we say that an object
X € G is/has P if the lattice £(X) is/has P. Thus, we obtain the concepts of coirreducible
(uniform) object, completely coirreducible object, irreducible subobject of an object, completely
irreducible (CI) subobject of an object, object rich in completely irreducibles (RCI), object rich
in coirreducibles (RC), etc. Similarly, a subobject ¥ of an object X € G is/has P if the
element Y of the lattice £(X) is/has P.

If we specialize Corollary 0.6, Theorems 1.16, and Proposition 1.23 for L = £(X), we obtain

at once.

Proposition 2.1. If X is a semi-Artinian object of a Grothendieck category G, then any
irreducible subobject of X is CI. a

Theorem 2.2. The following assertions are equivalent for a nonzero object X of a Grothen-

dieck category G.
(1) X is RC.
(2) X is an essential extension of a direct sum of coirreducible subobjects of X.

(3) The injective hull E(X) of X is an essential extension of a direct sum of indecomposable

injective objects.
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(4) 0 has an irredundant irreducible decomposition in every nonzero subobjects of X. O

Theorem 2.3. The following statements are equivalent for a nonzero object X of a Grothen-

dieck category G.
(1) X is RCC.
(2) Every subobject of X contains a simple subobject.
(3) The socle Soc(X) of X is essential in X.

(4) For every nonzero subobject Y of X there exists a nonempty set Iy such that 0 can be

written as an irredundant intersection
0= X
i€ly
of mazimal subobjects X; of Y, i € Iy, in other words, the Jacobson radical J(Y') of

Y is zero and an irredundant intersection of mazimal subobjects. O

As in Nistdsescu and Popescu [17], a Grothendieck category G is said to be an L. C.-category
if each nonzero object X of G contains a coirreducible subobject, in other words, if the lattice.
L(X) is RC for each 0# X € G. The next result is a very particular case of Theorem 2.2.

Corollary 2.4. The following statements are equivalent for a Grothendieck category G.
(1) G is an L.C.-category.

(2) Ewery nonzero object X of G is an essential extension of a direct sum of coirreducible
subobjects of X.

(3) For every nonzero object X of G, the injective hull E(X) of X is an essential extension

of a direct sum of indecomposable injective objects.

(4) For every nonzero object X of G, 0 has an irredundant irreducible decomposition in

every nonzero subobjects of X. a

Remark 2.5. The equivalencies (1) <= (2) <= (3) in Corollary 2.4 are precisely the contents
of Nistdsescu and Popescu [17, Proposition 1]. O

Proposition 2.6. An object X object of a Grothendieck category G is semi-Artinian if and

only if every subobject X has an irredundant completely irreducible decomposition in X. O

Proposition 2.7. Let G be a Grothendieck category, and let X € G. If X has Gabriel
dimension, then X is RC. '
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Proof. Apply Examples 1.3 (3) to the lattice L = L(X). d

Recall that the concept of Gabriel dimension of an Abelian category A, due to Gabriel [11],
has been originally defined using a transfinite sequence of localizing subcategories of A. For a
Grothendieck category G, the fact that G has Gabriel dimension can be equivalently expressed
by saying that G possess a generator G having Gabriel dimension, that is, the lattice L£(G)
of all subobjects of G has Gabriel dimension.

Corollary 2.8. (Nistdsescu and Popescu [17, Remarques 1]). Any Grothendieck category

having Gabriel dimension is an L.C.-category.

We end this paper by presenting some applications of our lattice theoretical results to module

categories equipped with a hereditary torsion theory.

Throughout the remainder of the paper 7 = (7, F) will be a fixed hereditary torsion theory
on Mod-R, and 7(M) will denote the 7-torsion submodule of a right R-module M. The set
Fr:={I < Rr|R/I €T} is called the Gabriel topology associated with .

For any Mg we denote Sat,(M) = {N|N < M, M/N € F}, and for any N < M
we denote by N = N{C|N < C < M, M/C € F} the 7-closure (or 7-saturation, or
r-purification) of N in M; N is called 7-closed (or T-saturated, or T-pure) if N = N. Note that
N/N = 7(M/N) and Sat,(M) = {N|N < M, N = N}. It is known that Sat,(M) is an
upper continuous modular lattice for any Mg (see Stenstrém [19, Chapter 9, Proposition 4.1]).

Recall that a module My is said to be 7-simple if the lattice Sat,(M) has exactly two
elements; i.e., Sat. (M) = {r(M), M} and M ¢ 7. A 7-simple 7-torsionfree module is called
T-cocritical. Note that the atoms of the lattice Sat,(M) are exactly the 7-closed 7-simple
submodules of M. A right ideal I of R is called 7-critical if the right R-module R/ is 7-
cocritical. The 7-socle of M is defined by Soc.(M) = >.{C|C < M, C is 7-cocritical}. Note
that, by Albu [1, Proposition 1.15], Soc;(M) is exactly the socle of the lattice Sat,(M). A
submodule N of M is said to be 7-mazimal if the module M/N is T-cocritical. The meet of
all 7-mazimal submodules is called the 7-Jacobson radical of M and denoted by J.(M); if M

fails to have any 7-maximal submodules then we set J.(M) = M.

For all undefined notation and terminology on torsion theories the reader is referred to Albu
and Nistdsescu [3], Golan [12], and/or Stenstrom [19].

As in Albu, Tosif, and Teply [2], a module My is said to be 7-subdirectly irreducible, ab-
breviated 7-SI, if the lattice Sat,(M) is subdirectly irreducible. More generally, if P is any
property on lattices, we say that an a module Mp is/has 7-P if the lattice Sat, (M) is/has P.
Since the lattices Sat,(M) and Sat,(M/7(M)) are canonically isomorphic, we deduce that Mg
is 7-P if and only if M/7(M) is 7-P. Thus, we obtain the concepts of a 7-Artinian module,
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7-Noetherian module, 7-semi-Artinian module, T-coirreducible (uniform) module, 7-completely
coirreducible module, module rich in T-coirreducibles, abbreviated 7-RC, module rich in
T-completely coirreducibles, abbreviated 7-RCC, module rich in 7-completely irreducibles, ab-
breviated 7-RCI, etc. We say that a submodule N of Mpg is/has 7-P if its closure N, which
is an element of Sat, (M), is/has P. Thus, we obtain the concepts of a 7-irreducible submodule
of a module, T-completely irreducible submodule of a module, abbreviated 7-CI, etc. Since
N =N, it follows that N is/has 7-P if and only if N is/has 7-P.

Before giving specializations of the latticial results from the previous section to the lattice
Sat,(M) we will present some intrinsic characterizations, that is, without explicitly referring

to the lattice Sat,(M), of 7-irreducible and 7-completely irreducible submodules of a module.
Proposition 2.9. The following assertions are equivalent for a submodule N of a module Mg.
(1) N is T-irreducible.

(2) M/N & T and for any submodules P and Q of M with N C PNQ and (PNQ)/N € T
one has PIN €T or Q/N€T.

(3) M/N ¢ T and for any submodules P and Q of M with N = PNQ one has P/N € T
or Q/N eT.
Proof. (1) => (2): First, note that since N is -irreducible, N # M, ie., M/N ¢ T. If
NCPNQ and (PNQ)/N € T,then N = PNQ = PNQ, hence N =P or N = Q
because N is 7-irreducible, i.e., N is an irreducible element of the lattice Sat,(M). Thus
PINCP/N=N/NeT or Q/NCQ/N=N/N€T,andso, PINeTorQ/NET, as
desired.

(2) = (3): Let P, Q < M with N=PnNQ. Then N/N=(PNQ)/N€T,s0o PINeT
or Q/NeT.

3) = (1): f N = XNY with X,Y € Sat,(M), then X/N € T or Y/N € T by
hypothesis, and so N=X =X or N =Y =Y. Now observe that N # M since M/N ¢ T.
Consequently N is an irreducible element of the lattice Sat,(M), in other words, N is 7-
irreducible. O

Corollary 2.10. The following assertions are equivalent for a module Mg.
(1) M is T-coirreducible.
(2) M & T and for every A, B M with ANB€T onehas A€T orBET.

In particular, if M € F, then M is T-coirreducible <= M 1s coirreducible.
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Proof. M is T-coirreducible if and only if 0 is a 7-irreducible submodule of M, so apply
Proposition 2.9 for N = 0. O

Remark 2.11. A module M € F which is 7-completely coirreducible is not necessarily com-
pletely coirreducible. Indeed, consider the torsion theory 79 = (7p,Fo) on the ring R = Z
associated with the Gabriel topology Fy on Z consisted of all nonzero ideals of Z. Note that
this is the “localization at 0” Gabriel topology Fy defined by the prime ideal 0 of Z, Ty is the
class of all usual torsion Abelian groups, and Fy is the class of all usual torsionfree Abelian
groups. Observe that the lattice Sat,,(Z) = {0, Z} has a unique atom Z, so Z is 75-SI, i.e.,
To-completely coirreducible, but it is not completely coirreducible because (), oy nZ = 0 and
nZ # 0 for all n € N*. O

In order to extend the characterization of 7-irreducible submodules in Proposition 2.9 to

T-completely irreducible submodules, we introduce below the following definition.

Definition 2.12. Let Mpr be a module. We say that a hereditary torsion theory T on Mod-R
satisfy the condition (f,s) if the closure operator on the lattice of all submodules L(M) of M

commutes with arbitrary intersections, i.e.,
(tar) Nier Xi = Nier Xi for any family (X;)ier of submodules of M. a

Note that in condition (},,;) only the inclusion “2D” is necessary since “C” always holds.

For a module Mz we set
F(M):={N<M|M/NeT}

Observe that for N < M, one has N € F(M) <= N = M. Clearly, F(Rg) is exactly the
Gabriel topology F- associated with 7.

Lemma 2.13. If the condition (1) is satisfied for a module Mg, then ﬂNeF(M) N e F(M).

Proof. If we consider the family (N)yep(ary of all elements of F'(M), by condition (f,,) we

have
NEeF(M) NEF(M)
so () N=M,ie, Nyepon N € F(M), as desired. 0
NeF(M)

Remark 2.14. We do not know whether (\ycpy N € F(M) implies the condition (tar),s

but we suspect no. 0O
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Recall that the torsion theory 7 = (7,F) is called Jansian (see Golan [12]) if the Gabriel
topology F, associated with 7 has a basis consisting of an idempotent two-sided ideal, or
equivalently, if ﬂ DeF;,.

DeF;
Proposition 2.15. (Golan [12, Proposition 6.6]). A hereditary torsion theory = (T,F) on
Mod-R is Jansian if and only if T satisfies the condition (fps) for any module Mpg.

Proof. For the reader’s convenience we include the proof. Assume that 7 is Jansian. Let Mg
be a module, let (X;);er be a family of submodules of M, and let = € (;c; X;. For each i € I
there exists D; € F, such that zD; C X;. If we set D := (,.; D;, then D € F, since 7
is Jansian, so zD C X; for all ¢ € I. This shows that zD € [);c; Xy, and so, z € m
Therefore, (;c 171' C m, in other words, 7 satisfies the condition (}j/).

Conversely, if 7 satisfies the condition (f,,) for any module Mg, then, in particular (}z)
is satisfied, so (\pep(ry) D € F(Rg) by Lemma 2.13, i.e., (\pep, D € Fr, which means exactly

that 7 is Jansian. O

Proposition 2.16. Let N be a submodule of a module Mg, and consider the following asser-

tions:
(1) N 4s 7-CIL.

(2) M/N & T and for any family (P;)ier of submodules of M such that N C ﬂB and
el
(ﬂPi)/N €T, one has P;/N € T for some i € I.
1€l
(3) M/N ¢ T and for any family (P,)icr of submodules of M such that N = ﬂPi, one has

i€l
P,/N €T for some i€ I.

Then (2) = (3) = (1), and (1) = (2) if the torsion theory T satisfies the condition ().

Proof. (2) = (3) = (1): Proceed as in the proof of Proposition 2.9.
(1) = (2): Assume that 7 satisfies the condition (},,), and let N be as in (2). Then
N=(P=(5
i€l i€l

so N = P; for some i € I because N is a CI element of the lattice Sat,(M). Thus P;/N C
P;/N =N/N €T, and then P;/N € T, as desired. O
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Definition 2.17. A submodule N of a module M is called strongly T-completely irreducible,

abbreviated strongly 7-CI, if M/N & T and for any family (P;)icr of submodules of M such

that N C (| P: and ((\Pi)/N €T, one has Pi/N € T for some i € I. 0
i€l i€l

Remarks 2.18. (1) Let 79 = (7o,F0) be the torsion theory on the ring R = 7Z associated

with the Gabriel topology Fp considered in Remark 2.11. Then it is easy to see that 0 is a

7p-CI submodule of M = Z which is not strongly 7y-CIL

(2) Any strongly 7-CI submodule N of M, with N € Sat.(M) is a CI submodule of M.
Indeed, if (X;)ier is a family of submodules of M with N = [,c; X, then (N;c; X;)/N =0¢€
T,s0 X;/N € T for some i € I. On the other hand X,;/N < M/N € F, so X;/N =0, i.e,
N = X;, which shows that N is a CI submodule of M.

(3) By Proposition 2.6, any 7-Cl-submodule of Mg is strongly 7-CI in the presence of
condition (f;;). O

We are now going to specialize the latticial results obtained for an arbitrary upper continuous
modular lattice to the particular case of the lattice Sat,(M). We will present only two such

specializations. Do do that, we need some preparatory results.

Lemma 2.19. The following assertions hold for a module Mpr € F and a submodule N < M.
(1) If M/N €T, then N is an essential submodule of M.
(2) N is an essential submodule of N.

(3) If N € Sat. (M), then N is an essential submodule of M is and only if N is an essential
element of the lattice Sat,(M).

Proof. (1) Let 0 # z € M. Since M/N € T, there exists I € F; such that zI C N. But zI #0
because M € F, so there exists r € R with 0 # zr € N, which shows that N is essential in M.
(2) Since N/N € T, we can apply (1) by taking N as M.
(3) See the proof of Albu [1, Corollary 1.3]. O
As we already have indicated, a module Mpg is said to be rich in T-coirreducibles, ab-
breviated 7-RC (resp. rich in 7-completely coirreducibles, abbreviated 7-RCC) if the lattice

Sat, (M) is RC (resp. RCC). Also, a module Mg is said to be 7-atomic if the lattice Sat, (M)
is atomic. Note that, by Examples 1.3 (1), Mg is 7-RCC if and only if it is 7-atomic.

Proposition 2.20. A module Mg € F is 7-RC (resp. 7-RCC) if and only if M # 0 and for
every 0 # X < M there ezists C < X which is T-coirreducible (resp. T-cocritical).
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Proof. One implication is clear. For the other one, assume that M is 7-RC (resp. 7-RCC),
and let 0% X < M. Then 0 # X € Sat,(M), so, by definition, there exists D € Sat, (M)
such that D < X and D is a coirreducible element (resp. atom) of the lattice Sat,(M), that
is, D is 7-coirreducible (resp. T-cocritical). Now, observe that DN X is also 7-coirreducible

(resp. 7-cocritical) because X is an essential submodule of X by Lemma 2.19 (2). O
Corollary 2.21. Let Mg € F. Then M is 7-RC <= M is RC.
Proof. Apply Proposition 2.20 and Corollary 2.10. O

Lemma 2.22. Let Mp € F be a module, and let (N;);er be a family of submodules of M. Then

(N;)ser is an independent family of submodules of M if and only if (N;)icr is an independent
family of elements of the lattice Sat,(M).

Proof. The implication <= is clear. Conversely, let (N;)ic; be an independent family of
submodules of M. In order to prove that (Nj)ie; is an independent family of elements of
the lattice Sat,(M), it is sufficient to assume that I is the finite set {1,...,n} for some
n € N, n > 2, because the independence is a property of finitary character in any upper
continuous lattice, as Sat,(M) is. Denote by \/ and A the join and meet, respectively, in the
lattice Sat,(M). Then, for each 1 < k < n, we have:

(V) A = (5 ) (1 = (3, ) (e =00

1<igk 1<igk 1<igk
This proves that (NV;)igign is an independent family of Sat. (M), as desired. O

Remark 2.23. The results of Lemma 2.19, Corollary 2.21, and Lemma 2.22 may fail in the
absence of the condition “M € F”. To see that, let R be any ring, let x = (Mod-R, {0}) be the
improper torsion theory on Mod-R, let M be any nonzero module, and let N be any submodule
of M which is not essential in M. Then Lemma 2.19 fails in this case. An example of a proper
torsion theory enjoying the same property is provided by Albu [1, Examples 1.16].

For the failure of Corollary 2.21, consider the same torsion theory x and a module M which
is not RC. Since Sat, (M) = {M}, M is vacuously x-RC, but it is not RC.

Finally, for the failure of Lemma 2.22, let M be a (direct sum) decomposable module:
M = Ny + N3, Ny # 0, N3 # 0, Ny NNy = 0. Then (NV;)i=1,2 is an independent family of
submodules of M, but Ny = Ny = M in Saty,(M) = {M}, where x is the torsion theory

considered above. |
Lemma 2.24. The following statements are equivalent for a module Mp € F.

(1) M is T-coirreducible (resp. T-completely coirreducible).
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(2) Er(M) is an indecomposable module (resp. Er(M) =~ Egr(C) for some T-cocritical
module C).

(3) Er(M) ~ Eg(R/I) where I is an irreducible (resp. T-critical) right ideal of R.

Proof. For T-coirreducibles use Corollary 2.10 and a well known characterization of coirreducible
modules via injective hulls, and for 7-completely coirreducibles use Albu, Iosif, and Teply [2,
Proposition 2.2]. O

If we specialize Theorem 1.16 characterizing RC and RCC lattices L for L = Sat, (M), we

obtain at once the following characterizations of 7-RC and 7-RCC modules M.
Theorem 2.25. The following statements are equivalent for a module Mg & T .
(1) M s 7-RC (resp. 7-RCC).

(2) There ezists in the lattice Sat,(M) an independent family (N;)ie; of T-coirreducible

(resp. T-completely coirreducible) submodules N; of M, i € I, such that ), ; Ny is an

essential element in the lattice Sat,(M).

(3) For every 7(M) # N € Sat,(M) there exists a nonempty set Iy such that 7(M) can be

written as an irredundant intersection
(M)= (N
1€lN
of T-irreducible (resp. T-completely irreducible) submodules N; in N, N; € Sat, (M),
1€ Iy.

Moreover, the equivalent conditions (1)—(3) for a T-RCC module can be reformulated as follows:

(1) Any submodule N of M, 17(M) # N € Sat;(M) contains a T-simple submodule in
Sat,(M).

(2) The T-socle Soc. (M) of M is an essential element in the lattice Sat,(M).

(3)’ For every T(M) # N € Sat.(M) there ezxists a nonempty set Iy such that 7(M) can be

written as an irredundant intersection
T(M) = ﬂ N;
iEIN

of T-mazimal submodules N; of N, i € Iy, in other words, the T-Jacobson radical J,(N)

of N is (M) and an irredundant intersection of T-mazimal submodules of N. O
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In case the given module My is T-torsionfree, then characterizations in Theorem 2.25 have

the following more simple form, that involve essentiality and independence in the very familiar
lattice £(M) of all submodules of M instead of the ones in the lattice Sat, (M) of all 7-closed

submodules of M. In this way, one can add, as in the original Fort [8, Théoréme 3], a new

characterization in terms of injective hulls.

Theorem 2.26. The following statements are equivalent for a nonzero module Mg € F.

(1) M is 7-RC (resp. 7-RCC).

(2)

(3)

(4)

There exists a sum of an independent family of coirreducible (resp. T-completely coirre-
ducible) submodules of M that is essential in M.

The injective hull Egr(M) of M is an essential extension of a direct sum of (indecompo-
sable) injective modules of type Er(C) where C are coirreducible (resp. T-completely

cotrreducible) modules.

For every 0 # N € Sat, (M) there exists a nonempty set Iy such that 0 can written as

OzﬂNi

i€lNy

an irredundant intersection

of T-irreducible (resp. T-completely irreducible) submodules N; in N, N; € Sat,(M),
1€ Iy.

Moreover, the equivalent conditions (1)—(4) for a 7-RCC module can be reformulated as follows:

y

Any nonzero submodule of M contains a T-cocritical submodule.

(2)" The T-socle Soc. (M) of M is essential in M.

3y

(4)

The injective hull Er(M) of M is an essential extension of a direct sum of indecompos-

able injective modules of type Er(C) where C are T-cocritical modules.

For every 0 # N € Sat, (M) there erists a nonempty set Iy such that 0 can written as

0=\ M

i€l

an irredundant intersection

of T-maximal submodules N; of N, i € Iy, in other words, the T-Jacobson radical

J-(N) of N is zero and an irredundant intersection of T-mazimal submodules of N.

Proof. Apply Lemma 2.19 (3), Corollary 2.21, Lemma 2.21, Lemma 2.24, and Theorem 2.25. [
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Since M is 7-RC (resp. 7-RCC) if and only if M/7(M) is so, we can of course formulate
Theorem 2.25 in terms of essentiality and independence in the lattice £(M/7(M)) instead of
the ones in the lattice Sat,(M). For instance, condition (2) can be expressed as:

(2)” There exists an independent family (X;)ier of T-coirreducible (resp. T-completely
coirreducible) submodules X; of M/T(M), i € I, such that @,c; X; is an essential submodule

of M/r(M).

Proposition 2.27. A module Mg be is T-semi-Artinian if and only if every N € Sat,(M)
has an ICID in Sat.(M).

Proof. Apply Proposition 1.23 to the lattice L = Sat,(M). O
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