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Asymptotic behaviour and gradient representation for

cad-lag Solutions of SDE

B. Iftimie! I. Molnar* C. Varsan*

Abstract

Piecewise continuous cad-lag solutions of SDE driven by nonlinear vector fields
and containing switchings and jumps are studied involving Lyapunov exponents, .
weak asymptotic behaviour (in probability), self-financing (admissible) strategies and
gradient representation of cad-lag solutions.

In the first part (Sectibns 1-3), the analysis reveals a strong connection between
the existence of Lyapunov exponents and solving second order differential inequal-
ities when weak asymptotic behaviour and admissible strategies are concerned. In
addition, as far as the cad-lag solution is a sum of two components, one continuous
and the second a piecewise constant one (including jumps), sufficient conditions for
asymptotic stability in L?(£2; P) for the continuous component are given. All these
results are presented into the three theorems as solutions for the problems (P1), {P2)
and (P3).

The second part of this paper (see Section 4) is meaningful by itself and con-
tains a detailed investigation of cad-lag solutions when admitting nonlinear vector
fields in the jump (impulsive) part of SDE and a separation into two components
(one continuous and another piecewise constant) is possible. Here, the analysis is fo-
cused on getting gradient representation of cad-lag solutions which can be viewed as

differential-integral representation of the solution using generalized processes valued
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in a dual space [Cg(Rd; Z)]* of second order differentiable functions (see Definition
4.1). The second view (see Definition 4.2) is necessary and restricting the class of
functions G € Cg(Rd; 7Z) to the finite composition of the global flows generated by
the nonlinear vector fields in the impulsive part, we may present the results in a more

attractive way (see Lemmas 4.1, 4.2 and Theorems 4.1, 4.2).

1 Introduction

The piecewise continuous and F;-adapted process {z(t,z) € R™ : ¢ > 0,z € R"} under
consideration is the unique solution of a stochastic integral equation containing switchings
and jumps. The analysis relies on the decomposition z(t,z) = 2(t, z) + y(t), t > 0, where
the continuous and F;-adapted process {Z(¢,z) : ¢ > 0} is the unique solution of the
following SDE containing switchings,
dZ = fo B+ y(t); u(t))dt + > fi(Z+y(t); u(t))dW;(t), t >0, 2(0) = z.

=1
Here, the vector fields fij(z;u) € R™ (z,u) € R™ x RY are nonlinear, w(t) =
(wa(t),...,wn(t)) € R™ t >0, is a standard Wiener process over (Q,{F,} C F,P) and
At) = (y(t), u(t)) € A, A = R™ x R?, is a piecewise continuous and F-adapted process.
We associate the following problems with direct implications in the describing asymptotic
behaviour and constructing admissible (self-financing) strategies.
Problem (P1). Find a constant v < 0 such that the scalar process U,(t,z) :=
exp(t)p(2(t,x)), t > 0, is bounded from above by a continuous martingale

M, (¢, z) = ||z||* + Cyt

(A1) o
+ 35 [ exp19)(0.0(E5, ) f(als, )il )W), £ 2 0,

where C, is a constant and ¢(z) = ||z||%.
A constant v < 0 solving the problem (P1) is called a Lyapunov exponent and it

implies an exponential stability in L*(€2, P) of the piecewise continuous process {z,(t, ) =

exp(vt)z(t,z) : t > 0}.



Problem (P2). Find a constant ¥ < 0 such that the scalar process U,(t,z) =

exp(vt)p(z(t, z)), t € [0,T], is bounded from above by a continuous semi-martingale
t

(A2) S,(t,x) = ||z||* + Cy —l—/ exp(vs){(0,(2(s, 7)), ds2(s, z)), t € [0,T],
0

where C,, is a constant, ¢(z) = ||z]|* and “ d;2(t,z)” stands for the stochastic differ-
ential of the continuous process {2(t,z) : t > 0} (see z(t,z) = 2(t,z) + y(t)). A con-
stant v < 0 solving the problem (P2) lead us to the construction of admissible strate-
gies (self-financing strategies) associated with “option problems” corresponding to a func-
tional 9 (z) < exp(yT)||2)|> + b, b > 0, and using the given piecewise continuous process
{z(t,z) : t € [0,T]}. A stability (weak stability) property of the process {2(t,z) : t > 0},
without involving a Lyapunov exponent, gets a solution if the following problem is solved.

Problem (P3). Assume

(A3) ([Ao(Z,t) + AT (2, 1)]2,2) < 26|21, Z € R™ ¢

WV

0,
where 8 < 0 and A;(Z, 1) fo (8,02 + y(t); p(t))]dd, j € {0,1,...,m};
(B3) tlim y(t) = Yoo exists in L* (€2, P);

(C3) f;(M8) =0, t 0,5 €{0,1,...,m}.

Find sufficient conditions on 8 < 0 such that lim; .. 2(t,Z) = Yoo in L*(2,P) (see
lim;_,e0 2(t, ) = 0) for each z € R™
The answer for the problems P1-P3 relies on the possibility of solving the following

second order differential inequalities,

[ye + Li(p))(%:1) 2Z||fa (I, Z€R™, £ >0 (see P1),

[y + La(p)l(z31) < 22“& A@)I?, Z€ R, t >0 (see P2),

[1Ble + Li(9)(Z5t) < OzER” > 0 (see P3).



Here, the second order differential operators Ly and Lo are coming from the stochastic rule

of derivation
Li()(Z: 1) :=(8:(2), fo(Z + y(t); p(1)))
52 2) i (E+y(); p), fEZ +y@); ut)),

m

La()(3:) == 5 D (O f5(E +y(0); ple). S5(E+ y (25 ).

j=1
The main results (see Theorems 3.1, 3.2 and 3.3) are dealing with the construction of
solutions corresponding to the problems P1-P3 where the special structure z(t,z) =
2(t,z) + y(t), t = 0, of the piecewise continuous process has been used. It may oc-
curs that a piecewise constant and bounded process y(t) € B(0,p) C RY, y(t) = y(tx),
t € [te, tenr), k > 0, is acting in a multiplicative form z(t, :c) = G(y(t);Z(t,x)), where
G(y; 2) : B(0,p) x R* — R™ is a diffeomorphism and {2(t,z) : t > 0} stands for a con-
tinuous process satisfying an Ito SDE. The analysis can be extended to this new situation
provided the corresponding gradient representation (see Section 4) of cad-lag solutions is
used. As far as a reduced process h(t,z) = QTz(t,z), t = 0, is observed, we need to
replace the original integral equation by a corresponding one driving {h(t,z) : t > 0}.
Assuming @ := (b1, ..., bk), b € R, <k, and QTA;(Z,t) = Bi(Z,H)QT, 0 <i < m,
we define g;(h; a(t)) = Bi(/z\(t,a:),t)h + QTfi()\(t)), a(t) = (t,2(t, z), A(t)). Replace the

original equation by the following one
t m t
h(t,z) = QTz+Q%y(t) +/ go(h(s,z); a(s))ds+§:/ gi(h(s,z); a(s))dW;(s), t = 0.
0 P

Using the decomposition A(t,z) = h(t z) + QTy(t), t > 0, where the continuous process

{h(t,x) .t > 0} is the unique solutions of the corresponding SDE, we can rewrite the

problems P1-P3.



9 Statement of the problems P1-P3; some auxiliary

results

Let {Q, {F:}; C F,P} be a complete filtered probability space and w(t) : [0,00) — R™
is the standard F;-adapted Wiener process. Consider an F;-adapted piecewise continuous
process A(t) == (y(t), u(t)) : [0,00) — R™ X R? and let {z(t,z) : t > 0} be the piecewise
continuous process satisfying the following integral equation containing switchings and

jumps,
) a2 =2+ o)+ [ folels2)inlo) >d5+2/f](zsx (5))aW; (s), > 0.

The nonlinear vector fields f;(z;u) € R*, 0 < j < m, are continuous functions of (z, 1) €

R™ x R4, f;(z; ) are continuously differentiable of z € R" and fulfill
2) 0.z mll < Cj, (z, 1) € R™ x R¢, (C; > 0 constant).

The piecewise continuous process A(t) = (y(t), u(t)), t > 0, satisfies

3)  lwOIL LA < Kexp(vt), t20,0<5sm,

where K > 0 and v > 0 are some constants. Assuming (2) and (3) we get a unique global

solution {z(t,z) : t > 0,z € R} fulfilling (1) and it can be decomposed as follows,
(4)  z(t,z) =2 7) +y(t), 120,

where the continuous and Fi-adapted process {Z(t,z) : t > 0,z € R"} is the unique
solution of SDE

m
(5) &7 = fo(Z+y(t); p®)dt+ ) fiE+y(); p(t))dw;(t), t > 0, 2(0) = =.

j=1
Both the asymptotic behaviour (see Lyapunov exponents) and self-financing (admissible)
strategies corresponding to a piecewise continuous process are analyzed using the functional
0i(2) == exp(yt)llzl|®, t = 0. The conclusions will be the same for any other functional
satisfying ¥(z) < exp(yT )|2||2 + b, for some b = 0, provided that admissible strategies
{(6o(t),0(t)) : t € [0, T} are involved.



Definition 2.1. A constant v < 0 s a Lyapunov exponent for the piecewise coNLINUOUS
process {z(t,z) 1t 2 0,7 € R™} if the scalar process {U,(t, ) = exp(vt)p(z(t, z)):t > 0}
is bounded from above by a martingale M, (t, ),

Uy(t,z) < My(t,z) == |z||> + Cy + Zexp(vs)(@ch(/z\(s, z)), f;(2(s, 2); u(s)))dW;(s),

j=1

for anyt >0, z € R", where C, > 0 is a constant.

Remark 2.1. Notice that v < 0 is a Liyapunov exponent for {z(t,z) = Z(t,z) +y(t) : t 2 0},
if v < 0 is a Lyapunov exponent for its continuous component {Z(t,z) : t = 0} and,
in addition, |y| > v, where v > 0 is given in (3). On the other hand, an admissible
strategy {(0o(t),0(t)) eR™ L € [0, 7]} involving {2(¢,z) : t € [0, 7]} and the functional
W(z) = exp(yt)||z||* is found using the value function V,(t, z) = exp(—pt)V,(t, z),t>0

(6)  V,(t,z) = exp(pt)fo(t) + (0(t), 2(t, 7)), V,(t, ) = Bo(t) + (0(2), z(t, %)),
where 2,(t,z) = exp(—pt)z(t, z), and imposing

(1) Vo(T,2) = (2(T, z)) = exp(yD ) (=(T, %)),

or

V,(t,z) > exp(—pT)(2(T, z)) = exp(nT)e(z(T, 7)),
for p(z) == ||z||% m = v+ p- By definition, z,(t,z) = Z,(t,z) + y,(t), and mno-
ﬁtht%@J)='%@m%+<UyAm where T(ta) = Bolt) + (008),5,(t,2),
7,(t, ) = exp(—pt)z(t, 1) and y,(t)) = exp(—pt)y(t). The so called self-financing equation

involves the continuous process {‘7( z) : t € [0,7)} and it is expressed as an integral

equation
(®) @@@=@&®+A@@ﬂ@@@%%NfL

where V,(0,z) = 60(0) + (6(0), z) is a constant. The constant V,(0,z) and the main part
{6(t) : t € [0, T]} of the admissible strategy must be determined such that

9) Vit z) = Vb, 3) + (0(2), 1,(0)) > exp(nt)e(z(t, ), t € [0, T),

6



where (z) = ||2||%, 71 = v+ p and v < 0 must be determined to accomplish the following
task. Notice that the integral inequality (9) for ¢ = T" shows that (7) is satisfied. Using
o(2,(t, ) = 0(Z(t, ) + 2(Z,(t,2),y,(1))) + lw,(®I1?, t € [0,T], we need to represent
the continuous scalar process {Usy, (t,z) = exp(nit)p(Z(t, 7)) : T € [0,T]} such that the

following integral inequality

(10) Ut ) < [zl + Ky + /0 exp(8)(0:0(Z,(s, 7)), dsZp (s, 7))

is fulfilled for any t € [0,T), where K, > 0 is a constant. Inserting (10) into (9) we get
necessary 0(t) = exp(71t)8,0(2,(t, 2)), t € [0,T7], provided that (8) is used and the constant
7,(0,z) = 6o(0) + 2||z||> has to be taken such that V,(0,2) > |lz|® + Ky + llyo(t)* for
any t € [0,T]. It completes the description of an admissible strategy (6o(t),0(t)) € R™,
¢ € [0,T], mentioning that {0o(t) : ¢ € [0, 77} is given by the self-financing equation (8).
On the other hand, the scalar process ﬁy(t, z) = exp(vt)p(z(t,z)), t > 0, must be upper

bounded by a continuous martingale
mo ot
(11) Uyt ) < ljzll* + Gy + 2/0 exp(15) (9x0(2(s, 7)), f;(2(s, 2); (5))) AW (s),
. j:l

for any t > 0, where C, > 0 is a constant, when a Lyapunov exponent v < 0 is involved.

The integral inequalities (10) and (11) will be analyzed in the next two lemmas. In this
respect, rewrite the nonlinear vector fields fi(z+y;p) ER™, 0 € {0,1,...,m}, defining the

basic equation (1), as follows

(12) FiE (e 60) = FO®) + AGDE MO = W), 4(2) ER" x REZER”
where the matrix A; is given by

13) A0 = [ O:hOR+ y(tuE)S

and satisfies ||4;(Z;1)| < G, V(Z, t) € R* xRy, 7 € {0,1,...,m}, provided that the

hypothesis (2) is assumed. Using A;(Z;t) define a symmetric bounded matrix A(Z;t) and



a bounded vector field F(z;t) € R as follows

AZt) =) AT (BA;(E ), ZER, 20,

(14) "

F(zt) =Y AT(Z1)f;(M1), Z€ Rt >0,
j=1

where {\(t) = (y(t), p(t)) : t > 0} fulfils the hypothesis (3).

Lemma 2.1. Assume the hypotheses (2) and (3) are satisfied and let -y < 0 be a constant
such that

(15) i >y c2,

where C;, j € {1,...,m}, are given in (2). Define A(Z;t), F(Z;t) as in (14). Then the
matrices Q4(Z;t) = (7|l — A(Z:1)], P(5t) = [@,(Z8)]? and R,(3;t) = [Py(Z;t)] " are
strictly positive definite and bounded for any (Z,t) € R® x R,. In addition, we get

exp(yt)||2(t, 2)|1> = llz||* + 2 /Ot exp(7s)(z(s, z), ds2(s, z))
(16) + /Ot exp(ys)[| Ry (2(s, ); ) F(2(s, z); 8)[|* + i 1£5(A(8)1I*)ds
_ /0 " exp(y5) N, (5, 2)ds, £ > 0
where {3(6,2) £ 20} folfils (5) and
(A7) Ny(t,z) = | Py(2(t, 2); 8)2(t, 2) — R, (2(¢, 2); ) F(2(t, 2); )| > 0, t > 0.

Proof. Denote U, (t,z) = exp(vt)e(2(t, z)), ¢(2) = ||z]|?, and applying the standard rule

of stochastic derivation we get

(4,0, (t, z) = exp(yt)lye + L(g)] (2(t, ); £)dt
(18) + 3 exp(1)(0.p(3(t,9)), 5(2(t,2); w(E)) AW (1), ¢ >0
| U,(0,2) = Jlal”.




Here, the second order differential operator L(y) is computed as in

(19) L(p)(Zt) = (0:0(2), fo(Z + y(t), u(t))) +Zl|f; Z+y(t); ()™

With the same notations as in (14), we rewrite (19) as follows

(20) illlfj(?Jr y(8); k)N = (AE D)7, 2) + 2(F(Z51),2) +Zl|f; O
=

Using (19) and (20) we get [yo + L(p)](Z,t) used in (18)
[yp + L())(Z,t) = — ([IVln — A(Z 1)]2, 2) + 2(F(2;1), %)

21)
| +Z||f] NI + (8.0(Z), folZ + y(t); u(t)))-

If |y > 370, C7 then the matrices Q(Z;t) := [|7|]n — A(Z;1)] and

Ml'—‘

(22) Py(3t) = [Q,(F O], Ry(B0) = (BB 0], ZeR,E >0,

are strictly positive definite and bounded. This claim is proved using an orthogonal matrix

H(zt) (H' = HT) which implies the diagonal form of the symmetric matrix A(Z;?),
(23) A1) = H(Z Dlding(n (3, 1), -, m(E DN H(3:8),

where H(Z;t) = [e1(Z;1), . .., en(Z;t)] and

(24) AZt)er(zt) = v Der(Z51), 7(2,8) 20

and bounded for any (2,t) CR"* xRy, k=1,...,n. A direct computation shows that
IAGZ; ez D) = v(Et) < AG )|, ke {l,...,n},

JAE 8] < Zc?, Z,t) € R x Ry

Using (23) write

(26) Qy(5t) = [[7|In — AB D) = H(Z 1) D,(Z,0) H ' (Z:1),

9



where the diagonal matrix D.,(z;t) := diag(|v|—7(2,t), - - -, |v|=" (%, 1)) is strictly positive
definite and bounded for any (z,t) € R” x Ry, provided that |y| > 77, C? (see 0 <
Ye(Z,t) < Z;’;l C’]Z) In addition, the square root of the matrices Q., @y ™! exist and are
defined as bounded matrices by

Py(2,t) = [Qy(551)]/? = H(Zt) DY/ (7, ) H (%),

Ry(21) = [ 0] 72 = H(Et) D (Z ) H (%),

(27)

where the diagonal matrices DA, and DAy ? are strictly positive defined and bounded. It
completes the proof of the first conclusion in Lemma 2.1. To get the second conclusion

(see (16)) we rewrite (21) as
e + L(p)l(Z:t) = — [(Qy(21)7,2) — 2(F(21),2)]

28
(28) +Z”ff N2 + (8,0(2), foZ + y(t); u(t)))

and using (27) we represent the first term in (28) as

(29) (@,(B1)2,2) - 2{F(51),2) = |1 (Z,)2 - R,EOF G )I° - IR,z ) F(Z o)™

Insert (28) and (29) into (18) and we get

) deUs(t, ) = exp(v)[| R, (2(t, 2); ) F (2(t, 2); O)|1” + Z 1F(A@))II)d

+ exp(7t)(0.p(2(t, x)), d:2(t, x)) — exp(vt) Ny (t, ), t > 0,

where N,(t,z) > 0 is given in (17). Integrating (30) with U,(0,z) = ||z||* we get the

second conclusion of Lemma 2.1 and the proof is complete. L]

Remark 2.2. As far as Lyapunov exponent for the piecewise continuous process {z(t,z) :

t > 0} is concerned we need to represent
(31) Uy(t,z) = exp(t)|2(t, 2%, t >0,
as a semimartingale

(32) TUy(t,3) = Dy(t,) + My(t,3),

10



where the drift part D,(t,z) is bounded from above using a positive bounded process
(33) Dy(t,7) < by(t,z), 0 < by(t, z) < K. (z),t=0

for some constant K, (z) = [|z]|* + 6,7, 6’\7 > 0. The martingale part M, (t,z) is defined
explicitely in Lemma 2.2 (see (39))

(38) My(t,2)=2) / exp(ys) (3(5, 3), fi(2(s, @); p(s)))dW;, £ > 0
where
(35) z(t,z) = 2(t, x) +y(t), t =0

It will analyzed in the next Lemma using the bounded matrices A4;(Z;t), 2 € {0,1,... ,m}.
Write

AFt) = [Ao(Zt) + A5 (B )] + A t), A1) —ZAT 2 1) A;(Z1),
(36)

m

F&t) = ATGEH) f(AR) + F(Z 1), ZAT (Z51) (A1)

Consider the following matrices (they will exist as symmetric matrices)

(37) O,(5:) = [ — A1), BE) = Q@Y By(E t) = Bz ).

Lemma 2.2. Assume that the hypotheses (2) and (3) are satisfied and let v < 0 be a
constant such that
(38) Il >2Co+) CF, hl>v,

j=1
where C; > 0, 0 < i < m, are gwen in (2) and v > 0 in (3). Then the matrices Q. (% 1),
PV(E; t) and Ry(z, t) are strictly positive definite and bounded for any (Z;t) € R* xR In
addition, the following SDE is valid,

exp(y G, )P = bt )+ 2 [ explra) Elo, o), Sy x(o, 2 mDNAV3(6)
(39) j=1"°

t
—/ exp(y8)N,(s,z)ds, t =0,
0

11



where {by(t,x) : t > 0} 1s a bounded process verifying

0 < by(t, ) =|jz|* + / exp(ys)[| B, (35, 2); 8) (35, 2); )|
(40)
+lef] NIPIAW; (s) < lla]> + Cyy £ 0(C, > 0),

and {N,(t,z) : t > 0} is a positive process fulfilling

(41) N, (t,z) = | B3t o) )3t @) — R, (Bt o), ) F (2, 2); 1)1 2 0, £ >0, z € R™.

Proof. The hypotheses and computations given in Lemma 2.1 are valid and applying the
standard rule of stochastic derivation we deduce the stochastic differential equations sat-
isfied by the scalar continuous process {lzj\}(t,x) = exp(yt)p(Z(t,z)) : t > 0}, where
p(2) = ||2]*, we get
d.U,(t, ) = exp(yt)[ye + L(9))(Z(¢, )3 t)dt
(42) R N
+2 Z exp(t) (2(t, 7), f5(2(t, z) + y(1); u(t)))dW;(s), t > 0,

J=1

where ¢(z) = ||z||>. Notice fi(Z + y(t); u(t)) = fi(Mt)) + Ai(Z; )2, i € {0,1,...,m}, and
rewrite the drift of (42)

e+ L)E(E, z);t) = — (@ (38, 2); £)2(t, 7), 2(t, 7)) + 2 F(3(¢, 2); 1), 2(8, 7))
(&) +Z|1fj N|? t=0,zeR,

where the bounded matrix @7(3; t) and the vector F(3:t) € R™ are defined in (36) and (37).
Using an orthogonal matrix H(Z;t) (HT(%;t) = H-Y(2:t)) we get the diagonal matrix

associated with @7,
(44) Q,(B1) = HE D& H T (B1), Q&) = (Il — AZ 1),
where D,(z;t) = diag(]y| — n1(Z,1), - -, |7 = Wm(2: 1)), Hz:t) = [e1(Z,1), ..., en(Z;t)] and

45) Az er(zt) = (@ Der@b), lex@ DI =1, k € {1,...,n}.

12



By a direct computation, we get

IA(Z; t)er(® 8)l| = (1),

(46) ~ -
1AEZ DI = max Az t)ell > In(z 8)], k€ {1,...,n}

where
47) |AE DI <20+ C?
i=1

(see (36) and assumption (2)) for any z € R", ¢ > 0. Using the hypothesis (38) we notice
7l > 2Co + 3°72, CF > (2, )| for any k € {1,...,n} and Z € R*, ¢ > 0. Therefore, the

diagonal matrix D.,(Z,t) has a bounded strictly positive inverse

(48) Dy (%t) = diag{(7l =@ )., (Wl —m(Z )7},

and it allows to take square root of the positive definite and bounded matrices
Py(3it) = [y & 0] = HEO[D,(B O] H N (35),

R,(Zt) = P7Y(5t) = H(E)[Dy(5 )] V2H (Z ).

Using (49) we rewrite (43) as follows,

(49)

e + L)) (E(, 2);t) = — | Py(3(t, 2);1)2(E @) — By(2(, @) ) F (2t 2); 1) |12
(50)
+ 1R, (B8, 2); 8) H2+Z!ifg t)I*, ¢ >
Inserting (50) into (42) we get the integral equation (39) and the proof is complet. O

Remark 2.3. The conclusions of the Lemma (2.2) lead us to a positive answer for the

following problem:

Find a constant v < 0 such that (/J\fy(t,:c) = exp(yt)p(Z(t, x)), t > 0, is bounded from

above by a martingale
(51) ]/\J\V(t,x) = K, (z) + Z/o (0,0(Z(s, %)), fi(Z(s, ) + y(s); u(s)))dW;j(s), t = 0,

where ¢(z) = ||2||? and 0 < K,(z) = ||z||> + C, is a constant.

13



Answer: If |y > 2Co + Y1~ C7| and |y > p| (see (38)) then the conclusion (39) is
valid, where the continuous and bounded process {b,(t,z) - t > 0} satisfies (40). It implies

directly

(52) exp(1t)p(2(t,x)) < M, (t, ),

for any ¢ > 0 and each = € R”, where the martingale {M,(t,z) : t > 0} is defined In (51).

Remark 2.4. There is a particular situation when the asymptotic behaviour of the continu-
ous process {2(t,z) : t > 0,z € R"} can be described without using a Lyapunov exponent

~ < 0. In this respect, assume the hypothesis (2) and, in addition,

(53) fi@®) =0, i€{0,1,...,m}, £ =0,
([Ao(Z:t) + AT (5 1)]2,2) < 282, t 2 0, Z€ R”

With the same notations as in Lemmas 2.1 and 2.2 we state

Lemma 2.3. Assume the conditions (2) and (53) are fulfilled, where the constant g <0

satisfies
(54) 181> CF
j=1

and C; >0, j € {1,...,m}, are given in (2). Then the continuous process {Z(t,z) : t > 0}

verifies the following scalar integral equation

12, D) = 1ol + B / (s, 2)ds — [ Vol 2)ds
(55) . 3
+2Y [ {5(6,0), el 2 MO (5), 13 0,
where

(56) Np(t, @) := ({Qp(t, z) + 28I — (AT + Ao)(t, Z(t, 2))]}2(t, ), Z(t, 2)) > 0,

and Qg(t, z) := |B|I, — A(t; 2(t,x)) > 0 for any t >0 and z € R™.

14



Proof. We apply the standard rule of stochastic derivation associated with the continuous

process {Z(t, ) : t > 0} and using the functional ¢(z) = l|z]|?, z € R™. It implies
(57) delp(2(t,2))] = La(#) (2(¢, ) dt+z (0:p(2(t, 2)), f(2(t, z); () AW;(E), ¢ >0
where the second order differential operator Ly(y)(Z;t) satisfies

(58) Li(9)(Ft) = (A 1)55) + 2AF(Z1),2) +lefg NI

Here, the symmetric matrix A(zt) and vector field F(Z\(t)) € R™ are defined in (36).

Using conditions (53) we rewrite the drift in (57) as follows,
(59) Li(p)(@:t) = (AE:1)E2) = B(2) — (Qe(t:2)2,2) — (281 — (Ag + Ao (& 1)]Z,2),
where Qg(t, 2) = |81, — A(Z;t) and the symmetric matrix A(Z;t) is defined by
(60) A(Z;t): ZAth 7).
Using an orthogonal matrix H(z;t) (HT = H™') we get the diagonal form of A(z;t)
satisfying

A(zit) = HZH)DEHH T (Z 1),

D(z;t) = diag(m(%;t), - -, m(Z1)),

where 0 < % (2t) < 200 14;(% B2 < > C? for any t > 0 and Z € R” provided the

(61)

hypothesis (2) is assumed. Using (61) into (59) we rewrite (57) as the scalar equation

;

dili(2(t, 7)) = Bp(2(¢, z))dt — Np(t, z)d

(62) 4 + > (8up(2(t, ), fi(2(t, z); p(8)))dW;(2),

j=1

| (20, 2)) = llal”
where Nj(t,z) > 0 is defined in (56) and the matrix Qp(t, ) = |81, — A(Z;t) = 0 for any
t >0, Z € R*, provided |8] > Z;.n:l C?. We notice that integrating (62) we get the integral

equation (55) and the proof is complete. O
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3 Main results (Problems P1-P3)

Here we shall present those conclusions which are more or less direct implications of Lem-
mas 2.1, 2.2 and 2.3 regarding Lyapunov exponents, admissible strategies and convergence

in Ly(Q, P) of {2(t,z) : t /" oo} satisfying the integral equation (1).

Theorem 3.1. Assume that the vector fields f;(z;u), i € {0,1,...,m}, and the piecewise
continuous process {\(t) = (y(t), u(t)) : t > 0} fulfill conditions (2) and (3). Lety <0 be

a constant such that

(63) vl >2Co+ > C} >,

=1
where {Co, C1, . .., Cm} are given in (2) and v > 0 in (3). Then |y| <0 satisfying (63) is
a Lyapunov exponent for the piecewise continuous solution {2(t,z) : t > 0} verifying (1)

and the following estimate s valid,
(64) (Ellzy(t,2) )2 < exp(t)(Ell2(t, 2)[|*)'/ < exp(at) Ly(z), ¢ >0,
where o = max(2,% — |v]) < 0 and Ly(z) > 0 is a constant.
Proof. By definition, z,(t, z) = exp(yt)2(t, z), t > 0, satisfies
2,(t,z) = exp(yt)Z(t, ©) + exp(11)y(t)
and
(65) [Ellz(t, 2)I1V? < exp(vt)[EIIZ(, o)1 + \/_fg[exp(g —Dt], ¢ =0,

where K > 0 and v > 0 are given in the hypothesis (3). Assuming (63), the conditions of

Lemma 2.2 are fulfilled and from the conclusion (39) we obtain

Elexp(t)||2(t, z)|I”] < Ky (x), £ 20,

~ v
[BlIZ, (&, o)1 < exp(51)y/ Kr(2), £ >0,
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provided || > v (see (39)), where K,(z) > 0 is a constant and z,(t, ) := exp(vt)z(t, z),
t > 0. Using (66), write (65) as follows,

(67) [Ellzy(t, 2)IIP)? < Ly(z) explat), ¢ =0,
where Ly(z) = VK + /Ky(z) >0 and o= max(Z, % — |]). The proof is complete. O

As is mentioned in Remark 2.1, the construction of an admissible strategy (6o(1),0(1)) €

R uses the value function \Z,(t, z) and the piecewise continuous process 2,(t, z),

Volt, z) 1= 0g(t) + At), 2t )}y T € [0, 71, (Vo(t,z) = exp(—pt)V,(t,z)),

2,(t, x) == exp(—pt)2(t, ) = Z,(t,z) +y,(t), t €[0,T], p >0,

(68)

where {z(t, ) : t > 0} is the solution of the integral equation (1). Write V,(t,z) = V,(t, )+
(6(t),y,(t)), where the continuous scalar process {V,(t,2) == 6o(t) + (B(t),Z(¢,2)) - t €
[0,7]} must satisfy the so called ” self-finnancing equation”

(69) V,(t,z) = V(0,3) + /0 0(5),d;5,(s, 7)), t € [0,T],

where the constant V,(0, z) = 6o(0)+(#(0), z) and the continuous process {0(t): t€[0,T]}
are determined such that (using \A/p(t, ) as in (69))

(10) V,(t,2) == Vy(t, 2) + (0(£), up(t)) = exp(nt)p(z,(t ), t € 0,77,

where (z) = ||z|>, 1 =7 +pand vy <0 (see 11 < 0) is not fixed. An admissible strategy
{6o(t),0(t) : t € [0, T]} must satisfy (69) and (70).

Theorem 3.2. Assume that fi(z,p), © € {0,1,...,m}, and the process i) =

(y(t), u(t)) : t = O} fulfill the hypothesis (2) and (3). Let v = v+ p < 0 (seey < 0)
be fized such that

(1) il > S 02 (seer <0, 7l > p+ 3 C)),

=1 j=1
where C; > 0 are given in (2). Then {6(t) = 2exp(1t)2(t,z) 1 t € [0, T} and {Bo(t) : t €
(0,71} fulfilling the integral equation

(72) Bolt) + (B(8), Zp(t, 2)) = Bo(0) + 2]|z]* + / (0(s), dsZ, (s, 7)), t € [0,T],
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is an admissible strateqy satisfying (69) and (70) provided the constant «9/\0(0) € R is taken
such that

(73) 8(0) + ||z||*> = K + C,, (K > 0 is given in (3)),

where the constant C, > a,, and

ay, :z/0 exp(118)[[| By (Bo (8, ) ) F (Zo(t, ) I + Y IF(A@) ]kt

Jj=1

is defined in Lemma 2.1 corresponding to v1 < 0 and {Z,(t,z) : t > 0}.

Proof. By hypothesis, the conclusions of Lemma, 1 are valid and write the conclusion (16)

as follows,

(74) exp(nt)Z,(t o) < ll=l* + @, () +/0 2 exp(m15)(Zp(s, 2), dsZp(s, 7)), ¢ 2 0,

where

(75) a5, () 12/0 exp(715)[| By, (Zo(s, 2); 8) F (2o, 2); )P+ ) 15 (A(s)P)ds, & € [0, T

j=1
is increasing and bounded for any z € R™. Notice that the right hand side of (70) fulfils

(76) exp(1it)p(2,(t, ©)) = exp(nt){IZ(t, 2)|* + 2(Z,(t, 2), 5,(8)) + g (OI], ¢ € [0, T,

and using (74) and (69) we replace (70) by the following inequality

Bo(0) + (0(0), z) + / (0(s), dsZ,(s, ) + (B(2), yp(t)) = V,(t,z)
(77) > llzll? + @, (2) + /0 2exp(118) (5,5, 2), dsBy(5, 7))

+ 2exp(mt)(Z(t, 2), 3,(1)) + exp(nt)llyo (I, ¢ € [0, 7).

Choosing 0(t) = 2 exp(71t)Z,(t, ) = 2exp(yt)2(t, ), t > 0, from (77) we get the condition
for 0(0) € R,

(78) Bo(0) +2l|z||” = llzl|* + @7, (2) + exp((y — PDly @I, ¢ € [0, T]

which is satisfied provided (73) is fulfilled. Using the constant 9,(0) and {6(t) =
2exp(vt)z(t,z) : t € [0,T]} we get the continuous scalar process {@\O(t) :t € [0,T)}

o

S

the solution of the integral equation (72) and the proof is complete. O
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Theorem 3.3. Assume the hypothesis (2) and conditions (53) are satisfied for some con-

stant 8 < 0 verifying
(79) 181> C3,
j=1
where C; >0, j € {1,...,m}, are given in (2). Then
(80) E||z(t,2)|* < ||z||” exp(Bt), V¢ > 0, z € R™,

where {Z(t,x) : t > 0} is the continuous process fulfilling (5).

In addition, assume limy_e Y(t) = Yoo in La(3;P). Then

lim z(t,z) = tlim Y(t) = Yoo € La(Q2, P),

t—00

lim | 4(2)P(t,z;dz) = . $(2) Poo(dz), ¥ € Co(R™),

t—o00 Rn

(81)

where P(t,z;+) and Py(-) are the probability measures on R™ generated by {2(t,z)} and
corresponding {Yoo -

Proof. By hypothesis, the conclusions of Lemma 2.3 are valid and usig (55), (56) we get
the corresponding integral deterministic equation satisfied by h(t, z) = E||z(¢, z)||%, ¢t > 0.
A standard representation formula lead us to (80) and (81). O

4 Gradient representation of cad-lag

solutions for SDE

The main part of the SDE under consideration is driven by a standard Wiener process
w(t) = (wi(t), ..., wn(t)) € R™, t > 0, over a filtered probability space {Q,{F} C F,P}
The switchings and jumps of the SDE are determined by a piecewise constant, bounded

and F;-adapted process

M) = (D), b)) € RY X RU(A) - A1) = Alt;), £ € [t5,8531), 80 = 0,5 > 0}.
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We are looking for piecewise continuous processes which are right continuous and possessing
left hand limits in L2(£2; R™) at each ¢t = t;, § > 0 (cad-lag solutions) such that the following

system of SDE is satisfied,
(

() = ol(2)s D)t + Y a0 plt))AWA()

+ ) gr(2(t); mlt;—)lwe(ts) — ve(t;-)), VE € [t5,8511), 5 >0,

where v(t—) := lim, ~v(s). Here, the vector fields h(z;u) = fi(zn), ge(z; 1) € R,
i €{0,1,...,m}, k € {1,...,d}, are continuous functions of (z, u) € R* x R and Lipschitz

continuous of z € R", i.e.
(2)  |h(Z5 () = A" u(t)] < Cild = 27|, V2, 2" €R™, £ > 0,

for some constant C; > 0. Under the assumption (2), a unique (cad-lag) solution of (1)

exists and the first integral representation of it can be described as
{Z(t) = Zj(t) 11 & [tj,tj_H),j 2 O}

where {2;(t) : t € [t;,tj4+1)} is a continuous process for each j > 0 fulfilling the following

integral equations,

@ ) =o+ [ fual@inONds+ Y [ Hlaols) mOMS), ¢ € [,

7(t) = z1(t;=) + b(Ay(ty), 21 (=), w(t;=)) + /t fo(z;(s); u(t;))ds
(4) m t;
+Z/t fi(z;(8); u(t;))dWi(s), Vt € [t;,tj41), 7 > 1.

Here, v(t;—) = limy ~; v(t) in L*(Q;R™), Ay(¢;) = y(t;) — y(t;—) and

d
b(Y, 2 1) = > (2w, y ER? 2 €R™, p € R,

k=1
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4.1 A stochastic rule of derivation and the corresponding

decomposition formula

A ¢ € CL*([0,00) X R™) means a continuous function ¢(t,z) : [0,00) x R® — R which is
continuously differentiable of first order with respect to ¢t and second order with respect to
z € R" satisfying a polinomial growth condition for z € R™, i.e. Vz € R™, ¢ € [O, T),T >0,
i,7 €{1,...,n},

(5) lo(t 2)l, 0wp(t, 2)1, 18:p(t, 2), 1050(t, 2)] < Cr(1+|2]™),
where the natural number N > 1 and the constant (depending on T) Cr > 0 are fixed.

Proposition 4.1. Let {2(t) = 2;(t) : ¢t € [t;,tj41),J = 0} be the (cad-lag) solution verifying
SDE (1) where the vector fields h = f;, gr fulfill the hypothesis (2). Consider a ¢ €
Cy?([0,00) x R™ and define {(t, 2(t)) = @(t, 2(t) : t € [tj,t41),5 = 0)}. The following

integral equation is valid,

(6) w(t, 2(2)) :gp(O,:E)+/() (L) (s, 2(8); pl(8))ds+M )+ Y [iolts, 2(8)) —p(ts, 2(t;=)],

0<t; <t

for any t > 0, where the parabolic operator L is defined by

m

(7)) (Lo)(t, 2, 1) = 0x(t, 2) + (D:0(t, 2), folz 1)) + %Z([afw(t, 2)) fi(z 1), fi(# 1))

=1

and the continuous martingale M (t), t > 0 is given by

) M) =Y [ (Ol (6)), flelo), )WL),
fulfilling EM(t) =0 for any t > 0.

Proof. We apply the standard rule of stochastic derivation on each t € [¢;,%;11) and get

ot,20) =l 2(6) + [ (L), 2(5) )
©) oy
+ Z/ (0x0(s,2(8)), fi(2(s); u(s)))dWi(s), Vit € [t;,t41),

i=1 J

21



where the parabolic operator L is given in (7). Using (9), we obtain

t}%tln l,O(t, Z(t)) = Qo(tj-i-l’ Z(tj-i-l—)) € L2(Q7P)> Jz 0.
41

In particular, rewrite

(10) o(t, 2(t;)) = @t 2(t-)) + [(ts, 2(t5)) — @(ts, 2(E )],

and

ottty = i o, 200) =l 2ty) + [ (B)los2leh o)

(11) .
30 [ (Bl 9 Aol

Insert (10) and (11) into (9) and we obtain

ot 2(0) =plty1, 26 + [ (), (6); ()

(12) +Y / " (Bupls, 2(9), F(o(); waN)AWi(S)

+ [(‘D(t], Z(t])) - (1D(tj7 z(tj_))]a t e [tj—17tj+1>‘
Using the induction argument we see easily that (12) can be extended to t € [0,%;41) by

adding the corresponding piecewise constant components and we get
¢
ot (0) = 0(0, 20) + | (To)(s,2(e) w(s))ds + M)
(13) .
+ ) [ty 2(8) — lty, 2(4-))]

which stands for the conclusion (6) of Proposition 4.1 where 2(0) = z is used. The property
EM(t) =0, Vt > 0, mentioned in (8) is a direct consequence of (5) and

(2 p(t)] < Ca(1+2]), VE 20, z € R™ (h = fi, gr),
which lead us to the conclusion that the integrands
(14) {Ri(t) == (Bop(t, 2(£)), Fi(z(2); u(®)), t € [0, TT}, 4 € {1,...,m},

under stochastic integration in the martingale part {M(t) : t > 0} are in L2([0, T')oow),
fOT E|hs(t)[2dt < oo, and it implies EM(t) = 0 for any ¢ > 0. The proof is complete. O
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Remark 4.1. Using the stochastic rule of derivation given in Proposition 4.1 we obtain the
first decomposition formula of the (cad-lag) solution {z(¢) = z(t;) : t € [tj,t541),5 = 0}
satisfying (1) into a continuous process and piecewise constant process. In this respect,
take @;(t, z) = 2, i € {1,...,n}, and the conclusion (6) written for all 7 € {1,... ,n} lead

us to the following expression,

z(t)=x+/ folz(s); (s)) ds+2/ Fi(2(s), w(s))AWi(s)
(15) i
+ > lalty) — 2t £ 2 0.

0<t; <t

Using the integral equations in (3) and (9) we can write
2(t5) — 2(t—) = 2(t;) — z—1(t;—) = b(Ay(t5), 251 (=), p(t5—))
(19 = 3 ulza b)) — vt 5> 1

1<k<d

which allow to define the piecewise constant component as follows,

za(t) == [ D gulzimalty=); plts =) (wr(ts) — vx(ts—)]-

1<k<d 0<t;<t
In the case that the vector fields gx(z; 1) do not depend on z € R", for any k € {1,...,d},
then the equations (15) stand for the decomposition z(t) = z(t) + za(t), t = 0, where the

continuous component {z.(t) : t > 0} is the unique solution of an integral equation,

Z:(t) -:E+/ fo(ze(8) + za(s); 1(s)) ds+2/ filzo(s) + za(s); u(s))dW;(s).

Remark 4.2. We shall focus on the gradient representation of (cad-lag) solutions in (1) as
a source for getting a decomposition of the solution when gi, k € {1,...,d}, depend only

on z € R".

4.2 Definition of the gradient representation for (cad-lag) solu-

tions

Denote by Z = C?(R™;R™) the space of second order differentiable functions f(z) : R" —
R™ and let CZ(R%Z) C C?(R";R™) be the subspace of functions G(y;z) : RT x R* — R”
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fulfilling
(a) G(0;2) = z and there exists H(y;) := [G(y;")]”" for each y € B(0, R) C R%.
Consider a pair of piecewise constant and bounded processes

{(p(2),B0)) = (p(t;), B(t,)) € B(O, B) x B0, B) :t € [t;, 541),5 > 0}

and let {Z(t,z) : t > 0,2(0,z) = z € R"} be a continuous process, where {t;};>0 is used in
SDE (1). Here an abuse is done by not mentioning the explicit dependence on parameter
w € 2 of the above given process. Associate a new piecewise continuous process valued in

the dual space [CZ(R% Z)]*, for each w € 2, satisfying

(b)
[P0, 26 2) = B'(5), (1, 2)] € [CREDY - L€ [y, t500),5 3 O,
[p'(t), 2! (£, 2)/(G(y; 2)) = G(B(t;~); 2(t, 2)) + 8,G(B(t;—); 2(t;, ) [p(t;) — p(t;—)],
for any t € [tj,¢41), j 2 0 and G € CZ(R% Z).
Denote {;(t) = Z(t,z) : ¢ € [t;,t;41]} for each j > 0, where {(t,z) : ¢ > 0} is the

fixed continuous process.

Definition 4.1. We say that G € CQ(Rd;Z), a pair of piecewise constant processes

{(p(t),ﬁ(t)) = (p(4;),0(t;)) : t € [tj,t541),5 = 0} and a continuous process {2(t,z) :
> 0, z(O z) =z € R"} define a gradient representation for (cad-lag) solution {z(t,z) =
5(0) £ € tpn), > 0 satisfying (1) if 2,(2) = [PA(2), (6, D)) (Clw; 2), ¢ € [y, ty21),

J 20, where the distribution valued process [p*(t), z}(t, z)] is defined in (b).

The above given definition is too abstarct for constructing the unknown entering the
gradient representation and we need to mention the real constraints which are contained in

it. First of all we notice that in the analysis which follows only the particular Ge Cg (R4 7),
(C) @(y) Z) = Gl(yl) ©---0 Gd(yd)(z); y= (yI) .. '7yd) € Rd) S Rn:

is used, where G;(v:)(2), ¥ € R, z € R", stands for the global flow generated by the vector
field g; € C*(R™;R"). In addition, the basic equation in Definition 4.1 can be separated
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into two parts more suitable to compair the (cad-lag) solution defined in (3) and (4) with

the general definition adopted here in (b).

Definition 4.2. We say that G € Cg (R4 Z) (see (c)), a pair of piecewise constant processes
{(p(t),p(t)) = (p(t;),P(t;)) € B(O,R) x B(0,R) : t € [tj,t;41),7 = 0} and a continuous
process {Z(t,z) = Z;(t) : t € [t;,t541),7 = 0} define a gradient representation for the
(cad-lag) solution {z(t,x) = z;(t) : t € [t;,t541),J = 0} satisfying (1) if

25(8) = GEE-)50) + S e G- 5 6) welty) — velts ),
k=1
A7\ 8,860-): % )b() - plt; Zma (=052 () (e (t) — wa(t,—)),
s [tj,tj+1), J = 0.

Commment on the gradient representation. (see Definition 4.2). There are several
constraints which must be satisfied by the piecewise constant processes (p(t),p(t)) €
B(0, R) x B(0, R) and the continuous process {Z(¢t,z) € R™ : ¢ > 0} fulfilling the equa-
tions (17). The second equations of (17) writen for 5 = 0 will make sense if we assume
that the given piecewise constant process {y(t) = y(¢t;),t € [tj,tj11),5 = 0} (see (1))
and {(p(t),p(t)) = (o(t;),D(t;)),t € [tj,ti41),7 = 0} we are looking for verify y(t) = 0,
t € (—t1,t1), and (p(¢),p(t)) = (0,0) € R? x R4, for any t € (—ty,%;). In addition,
the second equations (17) will lead us to the solution [p(¢;) — p(t;—)] € R? provided
p(t;i—) € R% and z;(t;) € R™ are known and the smooth mapping Ge C2(R% Z) (see (c))
has the property (A1): there exist smooth vector fields {qr(p) € R? : p € R}, g, (0) = ex,
k= {1,...,d}, such that Q,@(p; 2)qr(p) = gk(@(p; z)), for any p € R4, z € R"® and
ke{l,...,d}, q1(p) = e; € R% Assuming (A1), we may and do construct [p(t;) — p(t;—)]
as follows,

d

(B1) p(t;) —p(t;=) = D ar(Blt;—))lyn(ts) — wat;—)), 52 0.

k=1

On the other hand, recalling the definition of a (cad-lag) solution (see (3) and (4)) we
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rewrite the first equations in (17) at t = ¢; and get

d
Za(ti=)+ Y ge(zi-1 (=) (we(ty) —we(t—)) =
(E2) k=t ]
= Gt —); 2(t)) + Y ae(GBE—) % (85)) (wet;) — ya(t;—))-
k=1

These equations are solved provided Zj(t;) is known and find p(t;—) = p(t;—1) € R such
that

(E3) GB—); 25(t)) = za(t;—), 5> 1.

This algorithm requires a precise order in solving equations and on the first place is situated
the construction of the continuous process {z(t) : ¢ € [0,¢,)} satisfying (17) for j = 0 and
we get 20(t) = 2(t), t € [0,1) (see H(0—) = 0, G(0;2) = z and y(0) = y(0—) = 0). Then
find {Z1(t) : t € [t1,t2),Z1(t1) = Zo(t1)} such that

d

(B4) 21(t) = 21(t) + ) gr(B(t2))yk(ts), t € [t1,t2) ( see (4) for § = 1).

Actualy, (E4) is the first equation we must solve in order to get a solution of (E3) for
J =2, p(te—) = p(t1), and then find [p(ts) — p(t1)] from (E1) for j = 2 (where p(¢;) € R¢

is known).

4.3 {g1,...,94} CZ commute and the gradient representation

of (cad-lag) solutions

Assume that the piecewise constant process {y(t) = y(t;) : t € [tj,t541),5 > 0} and the
vector fields g, € CZ2(R™;R"), k € {1,...,d}, satisfy
lgx(2)], |0sgx(2)], [ijgk(zﬂ <0y, V2eRY 4,5€{1,...,n}, ke{l,...,d},

18 ©
( ) V;l = Z ’y(tj—{-l - y(tj))| <P, y<t) =0,t¢ (_t1>t1)7
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where Cy > 0, p > 0 are some constants, and ;g9 = 89 , 059 m% In addition, for the

time being consider that
(19) {g1,...,94} C C;(R™;R") are commuting, i.e. Lie brackets [g;, g;] =0, 1 <%,7 < d.

Associate the reduced jumping system

z k —de
20) h(t;2) = Zg (t—;2))dyx(t), t >

h(0,2) =z € R™
The (cad-lag) solution of (20) is constructed as a piecewise constant process satisfying
h(t,g) = h(t],?&'\), RS [tj;tj—i-l) and
d

an) h(t;; 2) = h(t;—2) + Y gx(hlt;— ) (yk(t;) — ye(t;—)), 3 >0,

h(0;7) =7 € R™

Using (19) we prove easily that a gradient representation is valid for the piecewise constant

process in (21) and in this respect associate G e C2(R%Z) (see Definition (4.2))
(22) G(y;2) == Gi(n) o0 Ga(ya)(2), ¥y = (31, - -, Ya) € R? G(0,2) = z € R”,

where Gi(yx)(2) for yx € R, z € R™, is the global flow generated by the vector field
gr € CZ(R™R™) (see (18)). Using definition, H(y;-) = [@(y, = @(—y; -) and

(23) 8,G(y; 2) = (901(C(y;2)), - - -, 9a(G(y; 2))), Yy € RY, z € R™.

The assumption (A1) associated with Definition 4.2 of a gradient representation is satisfied
when (19) is assumed and using (23) we get gx(y) = ex, k € {1,...,d}, where {e1,...,e4} C
R is the canonical basis. It implies that the piecewise constant process {p(t) = p(t;) €

R? : ¢ € [t;,tj=1),7 > 0} which solves the equations (E1) must satisfy

(24) p(t;) —p(t;—) = y(t;) — y(t;—), p(t) = y(@), t € (—t1,11), 5 20
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It shows that p(t) = y(t), for any ¢ > 0, and taking z € R™ as a continuous process
{2(t,z) = 2 : t > 0}, we need to define a piecewise constant process {7(t) = 7(t;) € R% :
t € [tj,ti41),7 = 0}, g(t) =0, ¢t € (—t1,t1), such that

(25) At;;2) = G@(t;—)2) + > oe(GHE—); 2) (e (ts) — we(t;—)), § >0,

where h(t;;2) € R defined in (21) replaces the continuous process {z;(t) : t € [t;,;41)}
in the first equations of (17) from Definition 4.2. The unique solution y(¢;—) = y(t;_1) of

(25) is given by solving the corresponding equations
(26) GF(tj1);2) = h(t;-1:2), § > 1,

which imply 5(0) = 0 and G(7(t;); Z) = h(t;; 2) for any 5 > 1. As far as

h(t1;2) =2+ ng(g)yk(tl)

k=1

and

BH(t);2) = @(%é@é@mmaw=z+2ﬁmnﬂgmﬂ@mxmw

we need to assume that each g € CZ(R™;R™) has the following structure which agree with

(18) and (19),
(27) gk(z) = Olk(Z)bk, k€ {1, s .,d},

where {by,...,bs} C R? are fixed and a4(-) € C3(R™; R) satisfying 0 < § < ar(2) < M,
z € R", agree with the commuting property in (19), i.e

;(2)(0:i(2), bs) — a;(2)(B,t5(2), bi) =0, z€ R™, i,5 € {1,...,d}.

If the hypothesis (27) is assumed, then the expression in (26) for j = 1 and h(t1;2) =
24 ((2)y(t1))be will allow to solve the equation

(28) G(7(t1); 2) = h(t1;2), V2 € R™
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using a nonlinear contractive mapping. In this respect, rewrite G (7;2) as follows

d

d
(29) G(y;%) Z o (2) Y ) br + Zak yk[z Br; (U3 2)Y5)bx

k=1 k=1 7j=1

where

Bus(5:7) = — /m/%/X%G@@,ﬁMMm&@ﬂ)Mwl
is a continuous bounded function of (7,2) € R* x R fulfilling

18;(@:2)] < C, TR, Z€R",
1Bk (73 2) = By (") < Ly -7"], v7,9' e R, Z e R™

k,je{l,...,d}, and C >0, L > 0 are some constants. Write L = max(L,C), p = p4
(for p > 0 see (18) and for & see (27)) and define Ly, := (1+2p1)L. Take p > 0 sufficiently

small such that

—

d
S 184@ 2| < 5, Vi€ BO,20) CRLZERY, ke (L d}

w|»—a

(31> 4p1 L =

Jj=1

Define a mapping T'(@) : B(0,2p1) — CRYR?), T = (T, . - ,T4), by

(32) Tw(@)(z —1+ZB@ U 2)95, ke {l,...,d}

j=1

and associate the following nonlinear operator U(y) : B(0, 2p) € R — C(B(0,p) x
RQn;Rd), U = (Ul, ey Ud),

m>m@w@:mm@mwfﬁjzzm@mm%

Using (30) and the second inequality in (31) we notice that

I[Tk(5) (22)] ] < 2, V5 € B(0,201) CR?, 2 € R,

(34) { |[T(@) (2] ™" = [TR@)) 7 < 4T(@) (22) — Te(@") (22)]
<41+ 20) LT — 7| = AL, [T — "], V7,7 € B(0,2p1),
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for each k € {1,...,d}, where L, := (1 + 2p;)L. Using (34) and (31) we get that
the continuous nonlinear operator {U (%) : ¥ € B(0,2p1)} is Lipschitz continuous with a
constant 4p;L,, =7, (o1 = p%) and

Ux(@)(, 2) — Ue(@")(y, 2)| < lykI%HTk@')(Zz)]_l — [T(@")(22)] ']

< L)Y =71 = -7,

(35)

V7,7 € B(0,2p1) € RY, y € B(0,p), 2= (21,22) € R>™ ke {1,...,d}, where 0 <y < 3
(see (31)). In addition, the equation (28) for the unknown 7(t;) € B(0, p1) € R?, will be

replaced by functional nonlinear equations
(36) G = Us(@), k{1,...,d}, for G ¥ := C(B(0, p) x R*; B(0,2p1)).

The unique solution for (36) is constructed as the limit of a Cauchy sequence {77}is0 C 1%

in the complete metric space 37,

i = {0}, * = U(0) = {(ylgl%%, " ,ydadézlb Ly € B0, p), (2, ) € R,
(37) 1(%2 Qg\ 22

; g ; s - M 1 2M
P =U@), 17T I <IFOIA+y+--+7Y) <y T L < le|7

for any y € B(0,p) C R¢, where ||5(y)]| := sup,egzn [U(¥; z)|. Using the metric &Y ) =

SUP(y, es,pxr 19 (¥, 2) =¥, z)| and the induction argument we prove that
7+ (Y, 2) — (v, 2)| < 17", )1, ¥5 = 0.

AS a consequence the following estimate is valid

PO < PN+ +07) < Sl < 5l

Denote f(y,2) = lim; .o 97 (y, 2), ¥ C B(0,p) € RY, z = (21, 23) € R?™, the corresponding
continuous and bounded function f(y,2) : B(0,p) x R* — B(0,2p;) C R% The above

given computations are restated as

Lemma 4.1. Consider the mapping (A?(y, z) : R x R® — R"™ defined in (22) where the
vector fields gy € C2(R%R™), k € {1,...,d} fulfill (19) and (27). Associate the following
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equations

(B) C@z)=2n+)Y  glz)u

k=1
fory=(y1,...,yq) € B(0,p) CRY, 2,20 € R* and § € B(0,2p;) C R4, p; = —]‘54,0 where p
verifies (31).
Then there exists d unique continuous and bounded function ¥ = f(y, 21, 22) : B(0, p) X
R™ x R™ — B(0,2p1) satisfying (E) and
1@l = sup 17202 < oyl < 201, € BO,p)
z1,22€R™ v
Proof. By hypothesis, the equations (E) of Lemma 4.1 coincide with the functional equa-
tions (36) for which a unique solution f(y, z1, 22) = lim; 00 77 (¥, 21, 22) is constructed using

the Cauchy sequence {4’ }j>0 C Y described in (37). The proof is complete. O
The equation (28) is a particular case of the equation (E) in Lemma 4.1 and define
(38) Y(t1) = f(y(t1), z1,22), y(t1) € B(0,p),

(see V, < pin (18)) and p is sufficiently small such that the inequality (31) are fulfilled.
Using an induction argument we prove that (26) are solved and in this respect, assume

that @\(tj—l) = @\(t_y—) fulfils
(39) G(7(t;—); %) = h(t;—;2), VZ € R",

where [7(ty) — 9(ts—)| < B |y(te) — y(te—)| for any 1 < k< j—1, and j > 2 is fixed. It

implies that

(40) G(F(t;):?) = h(t;;?)

can be solved (see y(t;) = y(t;—) + Ay(t;)) and
(@) 1AT()] = [itt) — 91 < 218wl
In this respect, rewrite (40) as follows

(42)
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d

G@(t;);2) = Gt~ )]s hlts—1:2)) = hlt—1; )+ ) g(Alti—1; 2)lye(ts)—ve(ti-1))

k=1
Now replace the equation (42) for the unknown § = y(t;) —y(t;—) and h(t;_1;2) = heR"
by the following one

d

(43) C@R) =h+ Y ge(M)yelts) — wlt;), h e R,

k=1
where Ay(t;) := y(t;) — y(t;—) € B(0,p) C R% Using hypothesis (27) we construct the

unique solution of (43)
(44) §= f(Dy(t;), b ),

where the continuous and bounded function f(y, 21, 22) : B(0, p) x R* x R* — B(0,2p,) C
R¢ is the unique solution of the functional equation (36) (see (E) of Lemma 4.1). Write
9(t;) = Y(tji—1) + F(Ay(t;), h(tj—1;2), h(t;-1; 2)) and it satisfies the equationl (40) and the
inequalities (41). The above given computations for the reduced jumping system (20) will

be reviewed as

Theorem 4.1. Assume that the piecewise constant process {y(t) = y(t;) € R* :
[t,t541),7 = 0} and the vector fields gx € CZ2(R™R™), k € {1,...,d}, fulfill the hypothesis
(18), (19) and (27).

Then there exists a piecewise constant and bounded process {Y(t) = y(t;) € R? :
[t5,t511), 7 = 0,5(0)} such that the piecewise constant solution of (20) {h(t,2) = h(tj,%\) €
R™ : t € [tj,tj+1),J = 0,R(0,2) = 2} defined in (21) can be written as follows,

d

h(t;;2) = @) 2) + > ge(GEE=) D)lus(ty) — ve(t;)), 5 >0,

k=1
(the gradient representation in Definition 4.2 of (cad-lag) solution (21) is valid by taking
p(t) = y(t) and p(t) = Y(t), t = 0) where Ge CZ(R% Z) is defined in (22) and

- _ 2M 2M
Z 9(t;) — (=)l < — S 5 P=2m
(see (18) and (27)).
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Proof. (Sketch) By hypothesis, the conditions of the fixed point theorem proved in Lemma

4.1 are fulfilled. As a consequence, the equations
(45) G(y(t;—);2) = h(t;—%), 5 >0

for the unknown piecewise constant process {y(t) = y(t;) € B(0,p1) : t € [t5,t541),7 = 0}
will be solved using the induction argument (see (39) and (40)) and the solution § =

f(y,21,22) : B(0,p) x R® x R* — B(0,2p;) C R? of the functional equation

d
(46> G(/y\i 2'2) — 32 + ng(zl)yka Y= (yh cee )yd) € B(Oa p)) 21,22 = R™
k=1

given in Lemma 4.1 such that

@0 5@l = swp 17 =)l < Sl

(21,22)ER2™

Define 3(t;) = y(tj-1) + Ay(¢;), where AyY(¢;) = y(t;) — y(t;—) is given by
(48) AY(t;) = f(Ay(ts), h(t;—; %), h(t;—2)), 7 2 1
and it implies (40), (41) are satisfied for any j > 2. The proof is complete. O

Our goal is to show that, under the hypothesis (18), (19) and (27), the gradient repre-
sentation of the (cad-lag) solution in (1) is valid when Definition 4.2 (see equations (17)) is

used. The commuting property assumed in (19) lead us directly to the following equations
(49) 9,8y;2) = [0(C(5;2), -, 9a(Cly; D)), Yy R, z € R,

which allow to take the piecewise constant process p(t) € R? verifying

(50) p(t) =y(t), t =0,

where {y(t) = y(t;) € R? : t € [t;,tj41),7 > 0} is given in (1). It reduces the unknowns of

the equations (17) and we must find a piecewise constant and bounded process

(51) {g(t) =9(t;) € BO,R) € R 1t € [t5,£541),5 > 0;(t) = 0, € (—t1, 1)}
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and a continuous process
(52) {,/Z'\<t,.’L') == /Z\j(t) it e [tj,tj+1>,j > 0,%\(0, 33) =z € Rn}

such that
d

(53) 2z(t) = G- 5®) + D g GEE):Z ) us() — vkt ¢ € [ty ti=1),

k=1

for any j > 0, where {z(t,z) = z;(t) : t € [tj,1j41),J > 0} is the (cad-lag) solution (see
(3), (4) satisfying (1)). The pair (7(t),2(t)), t > 0, of a piecewise constant process and a,
continuous one fulfilling (53) are verified for any j > 0.

Step 1. Asfar as y(t) =0, ¢t € (—ty,11), and G(0;2) = z, using (53) for j € {0,1}, we find

/Z\o(t) = Zo(t), t e [O,tl], /Z\l(tl) = Z()(tl—)
(54) i
Aty =20 + > ge(Ei(tr))ye(t), t € [, ba).

Step 2. The first significant equation for unknown g(t;—) € R in (53) appears for j = 2,
J(ta—) = 7(t1), and using 2»(t2) = 21 (ta—) (see Z1(t), t € [t1,12) defined in (54)), we write

for j =2 and t = t, as follows

(55) 2a(ta) = G((t1); a(t2)) + D gu(C@(t1); Za(t2))) e (t2) — w2,
k=1
where (see (4) for j = 2)
(56) 22(t2) = z1(ta—) + Y, ge(z1(ta=))[n(t2) — yu(ta—)].
k=1

Both equations (55) and (56) are fulfilled provided y(t;) € R? is found such that

Gij(t1); 2(t2)) = z1(t2—) where (see (54) fort € [t1,t5))
(57) 4

a(te) = 21(t2) + Y gx(Bi(0))we(tr) = Za(ta) + Y 9(Z(02))wa(t2)-

k=1 k=1

One may notice that (57) are solved if we get the solution of the following equation

d
(58) G(@z) =2+ Y gr(21)ue(t), y(ta) € B(0,p) CR, 21,2, €R™,

k=1
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for the unknown y/ﬁd. By hypothesis, the equation (58) fulfils the conditions assumed
in Lemma 4.1 (see (E)) and let ¥ = f(y,21,22) : B(0,p) x R* x R®* — R% the unique

continuous and bounded solution for (58) such that

M
f(y,21,22) € B(0,2p1) CR?, Vy € B(0,p), 21,2 € R, p; = 5P
(59) 2M g
If @l = D £y, 21,22)| < =—lul, v € B(0,p) CR?.

Using (59), define the solution for (57) by
(60) F(t1) == f(y(t), Z1(tr), 22(t2)) € B(0,2p1) C R

which satisfies [7(¢1)] < 2|y (t1)] for y(t1) € B(0, p).

Step 3. With 7(t;) € B(0,2p1) C R? found in (60) and solving the equations (57) we
return to the main equation (53), for j = 2, and find {Z3(¢) : t € [ta, t3), 22(t2) = Z1(t2—)}
as a continuous process fulfilling (53) for 7 = 2, i.e.

d

(61) k=1
%(t) = G(—3(t1); 22(t)), t € [ta, ta),

where G(—y; ) = [G(y; )] and 2(2) = 22(t) — Xy 0 (G(G(11); 21.(82))) [y (t2) — i (£2-)],
for t € [tq,t3) are used.

Step 4. We are in position to stipulate what is necessary for getting (53) proved, using
an induction argument. A verification of (53) for j = 2 was done into Step 2 and for
some j = 2 the algorithm requires as known the following items: a continuous process
{Z(t,z) = Zi(t) : t € [tr,tk+1),0 < k < j} and a piecewise constant process {g(t) = y(tx) :
t € [tk tht1), 0 < k < j — 1} fulfilling

2 2M :
(62) 1A7()| < Z-1Ay(t)), 0< b <j— 1,

where Av(tg) := v(tx) — v(tx—), such that (53) are valid for ¢ € [t, tk1), 1 < k < J.

In particular, the following equations are fulfilled

(63) G(G(ts—); Zhn(tn) = 2x-1(tx—), 0 < k < 4.
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Assuming (62) and (63), we must find Ay(¢;) := y(t;) — Y(¢t;—) and a continuous process

{z341(8) -t € L1, tj42), Zia (ti1) = 25(tj41)} such that
(64) 189(5)] < 25" |8(t,)],

and

(65) G@(t);7(t511)) = 2(tjsa—), see Glt;) = Gltjaa—)).

Using the equality y(t;+1—) = ¥(t;) = y(t;—) + Ay(t;) found in (65), define {Zj1(t) : t €
[tj+1,tj+2)} as the solution of the following equation

(66) 241(t) = G@(t;); 1 (1) + D ge(G@(t;): 2t we(tie1) — weltioa—)),

k=1

for any t € [tj11,t542), (see (53) for j +1). We restate the above given remarks as

Lemma 4.2. Let the piecewise constant process {y(t) = y(t;) : t € [tj,tj41),5 = 0} and
the vector fields {g1, ga, - - -, g4} € CZ(R™R™) are given such that (18), (19) and (27) are
Julfilled. Consider the piecewise constant process {y(t) = y(tx) : t € [tr, tes1),0 < k < j—1}
and the continuous process {2(t,x) = Zx(t) : ¢t € [t,te41) : 0 < k < 5} are constructed
such that they satisfy (53), (62) and (63). Then there exist §(t;) = Y(t;1—) € R® such
that the equations (64) and (65) are satisfied (see |Ay(t;)| < p) and the continuous process
{Z41(t) - L € [tj4a,t542)} defined in the formula (66) which fulfils Ziviltseil) = Z(tia).

In addition, the solution given in (65) and (66) agrees with the basic equations (53)

written fort € [tj11,tj19), and
2 2M :
67 18501 < 218yt for any 531,
which lead us to the conclusion Vg := 3722 |Ag(t;)| < 2LV, < 24 p,

Proof. Using the group property of @(y; ), y € R? we get

(68) G@(ty);2) = GlAT(E:); CH(t;—); 2)], Yz € R™
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On the other hand, using (53), we obtain, for t € [¢;,%;41),

(69) 2(ts1—) = GEHE—) Zi(t+1) +ng(G (£=): 25 (1)) Ay (t;)-

In order to solve (65), we use (68) and (69) and rewrite (65) as
(70) Gy y(t;); 22) ng 21) Ay (t;

where %, := G(§(t;—); 2;(tj+1)) and 21 == G(G(t;—); 2 ().

By hypothesis, the functional equations (70) fulfill the conditions of Lemma 4.1 (see
(E)) and let 7 = f(y, 21,22) : B(0, p) x R® x R® — B(0,2p1) be the unique continuous and
bounded solution of (E), i.e.

d
(71) G(¥yi22) = 22+ ng(zl)ylm V21,2, € R™, y € B(0,p) C R?.
k=1

Define AG(t;) == f(Ay(t;), 71, %) and Ay(t;) = y(t;) —y(t;—) € B(0, p). In addition,

(72) |Ay(t) < I (Bylt)ll = Szuan|f(Ay(t i) 21, 22)| < %lﬁy(tj)l
and (64) is verified.

Define a continuous process {zj41(t);t € [tjr1,%j42)} such that (66) is satisfied. For

t =141 we get

d
2 (i) = 2i(ti—) + > 96(2 (G =)Wk (ts41) — Ye(tin—)]
(73) b=l ]
— G@(t); B (tian) + O 9z (=) wr(tir) — ve(tira—)]-

Therefore, z;j(tj41—) = G(§(t;); Zj11(tj41) holds and this combined with (65) gives
Zi(tj+1) = Zia(tin)- 0
Step 5. The continuous process {Z(t,z) = Z(t) : t € [tj,tj41),J = 0} was constructed

such that the equations (53) are fulfilled, for any j > 0, where §(t;—) = y(tj-1), 7 = 1, is
known and {z(t, 1) = z;(t) : t € [t;,t541),5 = 0} is the (cad-lag) solution of the SDE (1).
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Using (63) for k = j and Z;(t;) = Z;j_1(t;) we rewrite (53) as

(74) 2(t) = Gt %) + D gk(z-1(t;)we(t) — vt =), t € [t,ty40)-
Set
(75) 2(t) = 2(t) — b(Ay(t;), 2j-1(t; =) t € [, 1),

where b(y, z) = Zizl 9e(2)uk, ¥ = (Y1, Y2,---,Ya), 2 € R*. Using the inverse mapping
[G(y; )] = G(~y; ) and the formula (75), we rewrite (74) as follows

(76) %(t) = G(=9(t;-1); % (1)), t € [tj, L),

where {Z;(t) : t € [t;,t;+1)} is a continuous process fulfilling the following system of SDEs
(see equation (4) for z;(t))

diz;(t) =fo(Z; + b(Ay(t;), zj-1(t—)); pu(t;))dt

(77) + Z £i(Z +b(Ay(L)), zi-1(t;—)); pt;))AWi(L), t € [y, tiv1),

zj(t;) = z-1(t;—)-

\

Applying the standard rule of stochastic derivation for the test function (y, z) = G (—y, 2),
y € R?, 2 € R", and the continuous process {(y(t), Z;(t)) = (—y(t;-1), Z;(t)) : t € [t;,tj41)},
we get the corresponding SDE fulfilled by {Z;(¢) : t € [t;,t541)}

~

| diZ;(t) = ho(Z; Nt 2))dt + > hu(Z5; Xy (8, 2))AWA (B), t € [t 541),
(78 i=1

Here /)\\j (t,z) == (G(t;—), A1), 2(t, z)) € RExAxR™ agrees with the given piecewise constant
process {\(t) = A(t;) : t € [¢j,tj41)} given in (1).
In addition, the vector fields h;(Z;; Aj(t, z)) € R, Z; € R*, i =0,1,...,m, are obtained

by a direct inspection of the applied stochastic rule, when the system (77) is used. We
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thus get

([ (3 2(t ) =0.8(—(t;-1); 2 () £ (G E-1); 5)
) | ) +3<Ay< i) 21 (=) ult)), 1< i< m,
ho(Z; Xi(t, ) =0,G(~(tj1); (1)) fo(G(0(t5-1); 55)
\ + b(AY(t;), 25-1(t;=)); 1(t5)) + ho( (¢, ).
Here TLO — (ﬁé,...,/ﬁg) is obtained as
(80) By i= 5 Y (0=t B (a0 m(8), il 0 (1),

forye {1,...,n} and G = (G*,...,GM).

Theorem 4.2. Consider the SDE (1) where the vector fields {f;(z; u(t)) : z € R*,t > 0},
i =1,...,m fulfill the hypothesis (2) and the vector fields {gr(z) : z € R*}, k= 1,...,d,
satisfy (18), (19) and (27), where V;, := 3772 [Ay(t;)| < p and p is a sufficient small
positive constant such that (31) are satisﬁed (see Lemma (4.1)). |

Then there exists a piecewise constant process {y(t) = y(t;) : t € [t;,tj41)} such that
y(t;) is Fy;,,-measurable and a continuous process {Z(t,z) = Z;(t) : ¢ € [t;,tj41)} such that

the (cad-lag) solution of SDFEs has the gradient representation

(81) 2(t,z) = G(§(t;1); 2(t, 2)) + ng 2855 2)) lye () — ve(t;—)],
for any t € [t;,tj41), 7 =0,
(82) Vy w;IAy 2MZ|Ay Mv <—2—]5——W—p.

In addition, {Z(t,z)} fulfil the SDE (78), for any j > 1 and Z(t) = 2(t,z) = 2(t), for
t €10,t1).

Proof. One may easily see that (81) stands for the gradient representation associated with
the cad-lag solution {z(¢,z)} of system (1). By hypothesis, the conditions of Lemma 4.2
stand in force and one may recognize that the conclusions (81) and (82) are obtained via
this lemma. The last statement of the theorem describes the dynamical system satisfied

by each component {Z;(¢,z)} of the continuous process {Z(¢, z)}. O

39



References

[1] Oksendal, B., Sulem, A., Applied stochastic control of jump diffusions, Universitext,

Springer, Berlin, 2007

[2] Iftimie, B., Varsan, C., Asymptotic behaviour and admissible strategies associated with

Jump solutions of SDE, Int. Conf. AMAMEF, Vienna, sept. 2007

[3] Varsan, C., Applications of Lie algebras to hyperbolic and stochastic differential equa-
tions, Kluwer Academic Publisher, 1999

40



