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Open discrete mappings having local AC'L"™ inverses

Mihai Cristea™

Abstract. We consider open, discrete mappings between domains from R™ satisfying condition
(N), having local ACL™ inverses on D\ By, so that pn(By) = 0, H*(-, f) < co on By and K(f) €
L},.(D). For this class of mappings (or even for larger classes of open, discrete mappings) we generalize
the important modular inequality of Poleckii. Using also the modular estimates of the spherical rings
from [5], we continue the work from [5] of generalizing some basic facts from the theory of quasiregular
mappings. We give equicontinuity results, Picard, Montel and Liouville type theorems, estimates of the
modulus of continuity, analogues of Schwarz’s lemma, eliminability results and boundary extensions
theorems. Together with the multiple extensions of Zoric’s theorem from [5], we establish strong
generalizations of one of the most important theorems from the theory of quasiregular mappings. We
also extend similar results given in some recent classes of functions larger than the class of quasiregular
functions, as the class of mappings of finite distortion and satisfying condition (A), or the class of
mappings of finite dilatation with dilatation in the BMO class.

AMS 2000 Classification NO: 30C65.

Keywords: Mappings of finite distortion, Poleckii’s modular inequality, equicontinuity results,
boundary extension results.

1. Introduction

Throughout this paper we shall work with domains D from R” and mappings f: D — R"
and we denote by By = {z € D|f is not a local homeomorphism in z}. Such a map is said to
be of finite distortion (dilatation) if f € Woi(D,R™) (f € WL (D,R™), Jy € Li,(D), and
there exists K : D — [0,00] measurable and finite a.e. so that |f (z)|" < K(z)Js(z) a.e. in D.
If K € L? (D) for some p > n— 1, we see from [16] that f is open, discrete and if K € L*°(D),
then we obtain the known class of quasiregular mappings. If f: D — R" is a.e. differentiable

with J;(z) # 0 a.e. we define the outer dilatation Ko(f), the inner dilatation K;(f) and the

dilatation K (f) by Ko(f)(z) = %}Eglﬁ, Ki(f)(z) = %}{ff(%?—n, K¢(z) = ll(’}(é)') for z € D so that
J¢(z) # 0. Here, we put |A| = supjy— |A(R)|, l(A) = infjp—1 |A(R)| if A € L(R™ R™).

If f : D — R™ is of finite dilatation and there exists @ € BMO(D) so that maz{K:(f)(z),
Ko(f)(z)} < Q(z) a.e. in D, we say as in [19] that f is a @-map. If f: D — R™ is of finite
distortion and there exists A : [0,00) — [0,00) smooth, strictly increasing, with A(0) = 0,

limy o0 A(t) = 00, exp(A o Ko(f)) € Lip(D), [ i‘%ldt = 0o, and there exists to > 0 so that
the function ¢ — t.A'(t) increases to infinity for ¢ = to, we say as in [14] that f is a map of finite
distortion and satisfying condition A.

Two modular inequalities are important tools in the well known theory of quasiregular
mappings:

(8) M(f(I)) < Mg, ()(T) for every path family I from D (Poleckii’s inequality).

(b) MKO(f)n~1(A—(_B($, r),CB(z, R), (B(z, R)\ B(z,r)))) — 0 when r — 0 and R > 0 is kept
fixed if z € D and B(z,R) C D.

Here, if T is a path family in D we define F(IY)={p: R" — [0, 00} Borel maps lfq pds >1
for every v € I locally rectifiable} and if p > O and w : D — [0, 00] is measurable and finite a.e.,
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we put ME(I') = inf e pr) [gn PP (@)w(z)dz. If p = n, we put MJ(T) = M,(T), and for w = 1,
we obtain the usual modulus M(I"). If T';, Ty are path families in R", we say that I'; > T 1f
every path from I'y has a subpath i m ['5,and as in the classical case, we prove that if I'y > I's,

then M, (I'1) < M, (T'2). Also, M., (U I;) £ Z M, (T;) and if wy < ws, then M, (T) < M,,(T).

We say that £ = (A,C) is a condenser if C’ C A C R", with C compact and A open, and
we define cap? E = inf [ |Vu|P(z)w(z)dz, the w-capacity of E, where u € C§°(A) and u > 1
RrR”

on Cand p > 1. If p=n, we set cap,F = cap’(F) and if p = n and w = 1 we obtain
the usual capacity capE. If u is a test function for capf E, then p = |Vu| € F(I'g), hence
MP(Tg) < caph(E). Here, if ¢ : [0,1) — R™ is a path and z € R", we say that z is a limit
point of ¢ if there exists t, — 1 so that ¢(t,) — z and if E = (A,C) is a condenser, we set
g ={vy:[0,1) — A path |y(0) € C and ~y has a limit point in 0A}. We see from Prop. 10.2,
page 54 in [23] that capE = M (I'g) for every condenser £ = (A, C). If C C R" is compact, we
say that capC = 0 if cap(A, C) = 0 for some open set C C A C R", and from Lemma 2.2, page
64 in [24], we see that the definition is independent on the open set A so that C C A C R™
If C c R™ is arbitrary, we say that capC = 0 if capK = 0 for every K C C compact. If
w: D — [0,00] is measurable and finite a.e. and A C D, we say that A is of zero w-modulus
(we write M,,(A) = 0) if the w-modulus of all path having some limit points in A is zero. If
w > 1, then M(T") < M, ("), hence, if M,,(A) =0, then capA = 0.

The modular inequalities (a) and (b) are first systematically used in [19], [20], [25], [26],
[27] for Q-homeomorphisms, but in a non explicit form. In [10], [25], [26] are considered some
classes of non-injective Q-mappings for which the modular inequality (a) holds (the so called
FLD - mappings), basically open, discrete mappings f : D — R" and path families I' from D
so that my(Ima N By) =0 for a.e. paths f = foa witha € I.

The methods and the techniques of the modular inequalities (a) and (b) were also later
considered in [12], [13], [14], [3], [4] for mappings of finite distortion and satisfying condition
(A), and in [14] is shown that (a) and (b) hold in this class of mappings.

The basic result from this paper is Theorem 3. We show that if f : D — R™ is continuous,
open, discrete so that there exists K C D closed in D so that p,(K) =0 and

(a1) un(Bys) = 0, f satisfies condition (V) and has local ACL™ inverses on D \ (K U By).

(a2) Ki1(f) € Lloc(D)'

(a3) There exists E C K U By so that f(E) is of o - finite (n — 1) - dimensional measure,
F C K U By so that m;(F) = 0 and for every € (K U By) \ (E'U F) there exists o, > 0,

. d(U(z, f,ozT))™

Then f satisfies the modular inequality of Poleckii (a) for every path family I' from D.

Here we say that f satisfies condition (V) if p,(f(A)) = 0 for every A C D with p,(A) =0
(we denote by u, the Lebesgue measure in R™). We say that f is open if f(Q) is open for
every Q C D open, we say that f is discrete if f™!(y) is empty or discrete, and we say that f
is light if for every z € D and every V' € V(z) there exists U € V(z) so that UsubsetV and
oU N f~Y(f(z)) = ¢. If f is continuous, open, discrete, then dimBy < n—2, dimf(Bf) < n—2
and let U(z, f,r) be the component of f~!(B(f(z),r)) containing z. Then, for every z € D,
there exists 7, > 0 so that f|U(z, f,r) : U(z, f,r) — B(f(z),r) lifts the paths, f(0U(z, f,7)) =
S(f(z),r) and d(f,U(z, f,r), f(z)) = i(f,z). We used here the notations and the notions from
the topological degree theory from the book of Lloyd [15]. Also, if U C D is a domain so that
V = f(U), 8V = f(0U) (such a domain is called a normal domain), m = d(f,U, V), the map



fv 1V — R™ defined by fy(y) = > ﬂ%‘?—) for y € V is called a quasiinverse of f, and
zef~1(y)NU
we know from [24] that fy is continuous on V.

If E, F are Hansdorff spaces, f : E — F is a map, we say that f lifts the paths if for every
path p : [0,1] — F and every z € E so that p(0) = f(x), there exists a path ¢ : [0,1] — E so
that ¢(0) =z and foq=p. Ifp:[0,1] — F is a path, z € E is so that f(z) = p(0),0 <a <1,
we say that the path ¢ : [0,a) — E is a maximal lifting of p from z by the map f, if ¢(0) =
z, f o g = p|[0, a) and ¢ is maximal with this property.

We say that f : E — F locally lifts the paths if for every x € E, there exits U € V(z),V €
V(f(z)) so that f|U : U — V lifts the paths. If f: D C R® — R" is continuous, open and
light. then f locally lifts the paths and for such a map, if 3 : [0,1] — R™is amap and z € D
is so that f(z) = B(0), we can always find a maximal lifting of 8 starting from z.

[ee]
If Ac R pt >0, weset mi(A) = inf ) d(A4;)P, where the infimum is taken over all
i=1
coverings A C |J A; so that d(4;) < t for every i € N and we put my(A) = %ir% mi(A). Then
m,, is an outer measure on R™ and we obtain the class of p - Hansdorff measurable sets, which
contains all Borel sets from R"™. We say that a set A C R™ is of o - finite p - dimensional
measure if A= |J A; and m}(4;) < oo for every ¢ € N.
i=1
We see from Prop. 1 in [5] that condition (a1) implies that f is a.e. differentiable and
Ji(z) # 0 ae. in D. An important condition which ensures that a continuous, open, discrete
map has ACL™ inverses on D \ By is that f € Wi™(D\ By, R™) and Ko(f) € Ly (D \ By)
(see Theorem 6.1 in [8]).

We denote by L*(z, f,r) = sup |y —zl|, I*(z,f,r) = inf ly — z| and we define
. yedU(z.fir) yeoU(z.f,r)
the inverse linear dilatation of f in z by H*(z, f) = limsup 1?*((;]{:)) . IV, = p,(B"), then
7"-+() W

limsgp% € %H*(x, f) for every z € D. Here B* = {z € R"||z| <1} and 5" = {z €
Bz = 1k

We conjecture that condition (a) (the modular inequality of Poleckii) holds only if conditions
(a;) and (a,) are satisfied. However, condition (as), with K = ¢, can hold in some important
cases:

3.1) f(By) is of (n — 1) - dimensional measure.

32) ml(Bf) = (.

3.3) H*(z, f) < oo on By.

If f is quasiregular, then f is either constant, or open, discrete and H*(z, f) is locally
bounded in D (see Theorem 4.4, page 37 in [24] or [18]), hence our class of mappings extends
the known class of quasiregular mappings. We also see from Theorem 3 in [6] that a noncon-

stant map f is quasiregular if and only if is open, discrete and there exist a, 8 > 0 so that
. d(U(z,f,or))"
11111_8}(1)1}) RUEAT) < B for every z € D.

If f is a @Q-map or a map of finite distortion and satisfying condition (A), then f satisfies
conditions (ay) and (az) (in fact Kr(f) € Li,.(D) for every p > 0). It results that at least in.
the class of open, discrete mappings satisfying conditions (a1), (a2), (a3), we can strictly extend
the similar results established in the class of (-mappings or in the class of mappings of finite
distortion, and satisfying condition (A). An example showing that our extension is sharp even

in the class of homeomorphisms was given ini [5]. Since our class of mappings is a large enough



class of continuous, open, discrete mappings satisfying condition (a;) and (az), it results that
many of the assumptions from the theory of @ - maps, or from the theory of mappings of finite
distortion and satisfying condition (A) are redundant in order to extend some basic properties
of quasiregular mappings. The classes of @ mappings and of mappings of finite distortion and
satisfying condition (A) were intensively studied in the last 10 years.

We denote for E, F subsets from D by A(E, F, D) = {v:[0,1] — D path |y(0) € E,7(1) €
F}, and we set for z € D and 0 < 7 < a Typap = A(B(z,7) N D,CB(z,a) N D, (B(z,a) \
B(z,7))N D) and if D is unbounded and 0 < 7 < s we set I'co,rs,0 = A(B(0,7)ND,CB(0,s)N
D, (B(0,s)\ B(0,7)) N D). We see from Lemma 7 that if K;(f) € Li,.(D), then Mg, (s)(z) =0

if and only if lin&(I‘wma, p=0for z € D and a > 0 kept fixed. We also see from Lemma 10 that
Mg, (f)(00) = 0 if and only if lim Mg, (5)(Too, 7,8, D) = 0 for x = co and 7 > 0 kept fixed. We
shall use a more general form of (b), namely we say that f satisfies condition (c) in a point
z €D if : ~

(c) lin’(l) Mg, (5)(Cayrap) =0if 2 € D, 0 <7 < a and a is kept fixed.

lim M, (5)(Dooyrs,p) = 0if £ =100, 0 <7 < s and 7> 0 is kept fixed.

The condition (c) in z = co (i.e. the condition Mg, s)(co0) = 0) was systematically used
in [5] for proving Zoric’s type theorems and eliminability results. We see from Lemma 2 and
Lemma 3 in [5] that condition (¢) in co holds if

(¢*) D is unbounded and there exists 0 < o <n — 1 so that

lim s(;lp(r"/(ln 7)%) / Ellg(j];)—ffy)dy < 0.
- CB(0,7)ND

(c*) D is unbounded and there exists 0 < a < n — 1 so that

/ K1 (f)(z)

d )
r(lnr)e e e

lim sup
r—0

B(0,r)ND

Theorem 2 in [5] shows that condition (c) holds in some point © € D C R™ if one of the
following conditions holds:

(1) There exists @ > 0 and an Orlicz map A so that [ exp(A o K;(f))dz < oo for
B(z,r)ND
0<r<a.

(c) There exists a > 0,0 < o <n—1and M > 0sothat [ Ki(f)(z)dz < M -
B(z,r)ND
pn(B(z,7))(In(2))* for every 0 < r < a.
(cs) n > 3 and there exists a > 0,M > 0,0 < o <n—2 and Q € L'(D N B(g,a)) with

Ki(f) <@ and fB(x,r)nD |Q(2) — QBznnpldz < M(In2)* for every 0 <r < a, where z € D is

a w-point in D, with ¢ : (0,%) — (0,00) decreasing and so that I = ‘,‘c’—,(f-":e;? < 0.
k=1
(cs) n = 2 and there exists @ € L'(D N B(z,a)) with K;(f) < @ and M > 0 so that

f 1Q(z) — Qpzr)npldz < M for every 0 <1 < a, and z is p-point of D, with ¢ = c.
B(z,r)ND

If f € L'(A) for every bounded set A C D, we set fa = [ ’;(:()jf and we write fq =
A

f f(z)dz. We say as in [9] and [10] that f is of finite mean oscillation in a point z € D if
A
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ﬁms(;lp f 1f(2) = fB@mnpldz < oo, and we say that f is of bounded mean oscillation
=0 B(z,r)ND

(we write f € BMO(D)), if there exists M > 0 so that f|f(z) — fg|dz < M for every ball
B

Bcc D IlfzeD,a>0,and p:(0,2) — (0,00) is a map, we say that z is a ¢-point of
D if pn(B(z,er) N D) < o(r)pa(B(z,r) N D) for every 0 < r < &. If (t) = ¢ for t > 0 small
enough, we say as in [10] that D satisfies a doubling condition in z. If z € IntD, then z is a
p-point of D, with ¢ = e™.

We remark that if £ C D is at most countable and in each point of F is satisfied the
condition M, (s)(z) = 0 (and this happens if one of the conditions (¢1), (c2), (c3), (cs), (c*),
(c**) holds in z), then Mg, (s)(E) = 0, and this thing can be elementary proved. We shall need
the condition ” Mg, (s)(E) = 0” for some ”singular” sets E C D in some theorems from this
paper.

We could have used the method from [5] and [22] to extend the definition of continuous,
open, discrete mappings satisfying conditions (a;), (a2), (a3) to R™ valued mappings. This
means that such a map f : D — R™ would have the property that for every € D would have
existed U € V(z) and a Mobius map g : R® — R" so that go (f|U) : U — R™ would have been
continuous, open, discrete and satisfying conditions (a;), (a2), (az) and also the set f~!(c0)
would have been closed and discrete in D. We prefer not to impose any condition around the
points x € D so that il_r’ri f(y) = oo. A motivation is that if Ty = {7 : [0,1) — D path |y has

some limit point in f~!(c0)}, then M(f(Ty)) = 0, and (a) holds for every path family I' from
D if and only if it holds for every path family I' in D so that ' NI’y = ¢. In fact, if & C D
is so that capf(E) = 0 and T' = {y : [0,1) — D path |y has some limit point in F} then
M(f(I)) = 0 and (a) holds for every path family in D if and only if it holds for every path
family I" in D so that T NT = ¢.

If D C R” is a domain, we shall say that a map f : D — R™ is continuous, open, (light)
discrete if there exists a closed, discrete set M C D so that fID\ M : D\ M — R" is
continuous, open, (light) discrete and 211/1_1}1; fly) = oo for every z € M. If we consider the

chordal metric on R”, we see immediately that f : D — R™ is continuous, open, (light)
discrete and the construction is similar to the extension of the class of analytic functions to the
class of meromorphic functions. It results that if f : D — R™ is continuous, open, discrete and
satisfies conditions (a1), (a2), (as) on D\ f~'(c0), then M(f(I")) < Mg, s)(I") for every path
family I in D, i.e. f satisfies condition (a) on D.

If D ¢ R"is a domain, f|D\ {z} : D\ {z} — R" is continuous, open, (light) discrete
we say that z is an essential singularity of f if the limit 11/1_13 f(y) does not exists in R*. We

shall say that a closed set E C D with u,(E) = 0 is eliminable for a continuous, open, discrete
mapping f : D\ E — R™ satisfying conditions (a1), (a2), (az) on D\ (E U f~'(00)) if there
exists a continuous, open, discrete mapping F : D — R™ satisfying conditions (a1), (a2), (a3)
on D\ F~*(o0).

We continue in this paper the work from [5], where we proved (a) for local homeomorphisms
f : D — R satisfying condition () and having local ACL" inverses (the case By = ¢, K = ¢
in conditions (a;) and (a3)) and we gave multiple extensions to the known theorem of Zoric from
the theory of quasiregular mappings. In the light of our new improvements of the hypothesis
for which the modular inequality of Poleckii (a) holds, we see that the theorems from [5]
concerning the extensions given to Zoric’s theorem, or ragarding the eliminability of the sets
of null K;(f)-modulus for local homeomorphisms, can hold now for some larger classes of



local homeomorphisms f : D € R® — R"™ satisfying condition (V). Indeed, we can have a

"singular” closed set K C D with p,(K) = 0 so that f has local ACL™ inverses only on D\ K
and so that condition (a3) holds for the set K and By = ¢. Also, we don’t need in the points
z € f~(co) the existence of a neighborhood U € V(z) and of a Mobius map g : R® — R™ so
that go (f|U) : U — R™ is a local homeomorphisms having local ACL™ inverses.

We give now in the class of continuous, open, discrete mappings f : D — R™ satisfying con-
ditions (a1), (a2), (az) on D\ f~1(c0), equicontinuity results, Picard, Montel and Liouville type
theorems, analogous of Schwarz’s lemma, estimates of the modulus of continuity, eliminability
results, boundary extension results.

We shall, in fact, enounce the results for continuous, open, light, mappings f : D — R"
for which conditions (a) (and sometimes (c)) hold. Also, in Theorem 14, 17 and 18, we shall
need the condition My, n(T') = Mg, (I'") (which is satisﬁed if Ki(f) € L}OC(D)), and we
shall presume that f is a.e. differentiable with J¢(z) # 0 a.e. in D, in order to define the inner
dilatation K7(f) a.e. in D, even if this dilatation can be defined for mappings from Wwrl(D,R")
with the distributional jacobian J¢(z) #) a.e. in D.

Here, if T is a path family in D, we denote by I'" = {7y € I'|y is rectifiable }.

We shall have in mind that all these theorems are given for continuous, open, discrete
mappings f : D — R satisfying conditions (a1), (as), (asz) on D\ f~'(co0), if f satisfies
condition (a) on D and that one of the conditions (1), (c2), (¢c3), (cs) or (¢*), (¢™*) holds in
some points b from D where the condition M, s)(b) = 0 is satisfied.

2. Preliminaries

We denote by VVZ P(D,R™) the Sobolev space of all functions f : D — R™ which are
locally in LP together with their first order derivatives. We say that f is ACL if for every
cube Q C D with the sides parallel to coordinate axes and every face S of @, it results that
fIPs'(y) N Q : P3*(y) N Q — R™ is absolutely continuous for a.e. y € S, where Ps : R — .S
is the projection on S. An ACL map has a.e. partial derivatives and if p > 0, we say that f
is ACLP if the partial derivatives are locally on L?. We see from Prop 1.2, page 6 in [24] that
if p>1and f € C(D,R"), then f is ACL? if and only if f € WLP(D,R™). If A C D and

loc

y € R™, we put N(y, f,A) = Cardf~*(y) N A and N(f,A) = sup N(y, f,A). If E C R™ and
yeRM

w € R, we set M(E,w) = {z € R"| there exists y € E and t > 0 so that z = w + t(y — w)}.

If o : [a,b] — R™ is a rectifiable path, we denote by s, : [a,b] — [0,[(c)] its length function,
and if o® is the normal representation of a (see [30], page 5), we have a = a® o s,. If f is
continuous and light, « : [a,b] — D is a path and 8 = f o « is rectifiable, we define the path
a* = oo sg and the definition is correct due to the lightness of f. We also have 8 = foo*
(@) =a®

Ifbe (9D we set C(f,b) = {w € R"| there exists b, € D, b, # b, b, — b so that f(b,) — w}
and for B C 8D, we put C(f,b) = |J C(f,b).

—_— ¢ bEB -— o
If KcDandbe K, wedefine F': D — P(R") by F(z) = f(z)if x € D, F(z) = C(f,z)
if z € 0D, and if (Uy,)men is a fundamental system of neighborhoods of b so that U,y C U,

for every m € N, we put C(f,b, K) = ﬁ F({U,N (K \ {b})).

If D C R" is a domain and b € BDW,L vzfe say that D is locally connected in b if there exists
U, a fundamental system of neighborhoods of b so that U N D is connected for every U € U.
Following [30], page 54, we say that D has property P, in b if for every by # b, by € 0D, there
exists 0 > 0 and F' C D compact so that M(A(E, F, D)) > ¢ for every E C D connected so




that be B, b, € E. Ifb e 0D, v :[0,1) — D is a path, lltirrllfy(t) =band w € R” is so that
T = %11111 f(7(t)), we say that w is an asymptotic value of fin b, and we set A(f,b) = {w € R™|w

1s an asymptotic value of f in b}.

We denote by ¢ the chordal metric in R™ given by qla,b) = |a — b|(1 + |a|?)~2(1 + b?)~2
if a #0, a,b € R™, q(a,00) = (1+ |a?)"% ifa € R", where |a — b] is the euclidian distance
between a and b if a,b € R™. We denote by By(z,7) (Sq(x, 7)) the ball of center z and radius r
(the sphere of center z and radius 7) for z € R and 7 > 0 and we consider the chordal metric
on R™. If A C R", we consider q(A) the diameter of A in the chordal metric.

If X is a separable metric space and A = (4;);e; is a collection of sets, we define limsup 4; =
{z € X| every neighborhood of z contains points from infinitely many sets A;} and liminf A; =
{z € X| every neighborhood of z contains points of all but a finite number of sets A}l It
lim inf A; = limsup 4; = A, we say that the sequence of sets (A;)ser is convergent and we put
A =1lim A;.

If W is a family of mappings f : D — R™, we say that W is bounded if for every K ¢ D
compact there exists M(K) > 0 so that |f(z)] < M(K) for every z € K and every f € W.
If X,Y are metric spaces and W is a family of mappings f : X — Y, we say that W is
equicontinuous in a point z € X if for every € > 0, there exists §, > 0 such that d(f(z), f(y)) <
e if d(z,y) < 6, for every f € W. We say that the family W is equicontinuous if it is
equicontinuous in every point z € X.

If DC R"isopen, w:D — [0,00] is measurable and finite a.e., w > 0 a.e. and p >0, we
set LY, = {f : R" = R| [ w(z)|f(z)Pdz < co}.

Rr

Lemma 1. L? is a Banach space.
Proof. The proof is standard, and the norm is ||f|P, = (f w(:r)]f(x)|pd$)il?.

R_n
Lemma 2. (Ziemer’s lemma) Let p > 2, D C R" be open, w : D — [0, 0o] be measurable
and finite a.e. so that w > 0 a.e., and let I",, be path families in R" so that Fon T Lopri for

every m&€ N and let I' = |J T',. Then MZ(T) = lim MP(T,,).

m=1
Proof. We follow the classical proof from [36]. We see that ME(Ty) < ME(Trny1) < MP(T)
for every m € IV, hence there exists | = lim MP(T,,) and < ME(T"). We show that MP(T") < I,

m—0o0

and we can suppose that [ < co. Let p, : R* — [0, 0] be Borel mappings so that pm € F(T))
and [ w(z)pm(z)Pdz < M2(T,,) + 5= for every m € N.
Rn

Using Clarkson’s inequality, we have:
i + pi = Ps -
(P2 + WE 212 < 2(UedE) + oyl 1)
Also, if 7 > j, then &% € F(I';). Using (1), we have

M) + [o@IE TP < [w@IEE2 @ + [ @2 s <

R™ B R
%( / w(z)p(z)Pdz + jf w(z)p;(z)Pdz) < %(Mg(l}) - 21 +205(T5) + %)
Rn Rn

for i > j.



Since MP(T';) <1 < 0o, we have

[llos — ps1EJF < 2771 (ME(T:) — ME(T) + ;+ —) (2)

for z > 3.

Since ME([;) / 1 < oo, we see from (2) that (p;)ien is a Cauchy sequence from the
Banach space LP, hence there exists p € L so that ||p; — p|[f, — 0. As in [30], page 94,
we can find (plk)keN a subsequence of (,Dz)leN and a path family I' C T with MP(T) =0
and so that f|p1,c — plds — 0 for every v € '\ [. Let v € T\ T. There exists me € N

so that f|p,k — plds < € for k > m.. Let k. > m. be so that v € I';, for K > k.. Then
fpds > fplkds f |p—pi,|ds > 1—¢, and letting e — 0, we see that fpds > 1. Sincey € I'\T

was chosen arbltrarﬂy, we proved that p € F(I'\ T). Then ME(T) < ME(T\ I‘) + M2(T) =
M3(T\T) SRLW(I)P”(J?)dﬂ?: (lol2)? < (lod2 o= pil[2)? < (ME(T:)+%)7 +lo—pil[2)7.

Letting ¢ — 0o, we obtain that MZ(I") < l. We therefore proved that MH(T') = [.

Lemma 3. Let D C R" be open, p > 2,w € L} (D) and T' a path family in D. Then
ME(T) = ME(T").

Proof. Let D,, CC D be open, D, /' D and T, = {y € T|Imy C Dp} form € N.
We fix m € N and let € > 0 and p € F(I'"). Let p : R* — [0,00), pm = &p,, and

— (P + ) form e N. Iy eI, then 1 < fpds < fpmds and if y € T \ I, i
locally rectifiable, then 1 < co = ¢ f Pmds < f Pe, mds This shows that pem € F(I'm), hence

MP(T,,) < fw(m)pem(:t)Pdm = | w( )p(z )”dac+e” [ w(z)dz. Letting e — 0 and using the fact
Rn Drm
that f :E)dac < oo and p € F(I'")) was choosed arbitrarily, we see that MZ(T',) < ME(TT,).

We also have that MZ(I7.) < ME(Ty,), hence ME(T'y,) = ME(TT,) for every m € N.

Since Ty /' T, "/ I" and using Ziemer’s lemma, we have that MP(I') = lim M§(I'n) =
lim MP(LT ) = MP(TT).

Lemma 4. Let D C R™ be open, w € Li(D),p > 1 and I a path family in D Then for

every € > 0 and every p € F(T'), there exists p < n lower semicontinuous so that [ w(z)nP(z) <
RTl

[ w(z)p(z)Pdz + €.

Rn

Proof. We write p? = Z 6 XE , where ¢c; > 0 and Ej are measurable and bounded for
j=
every j € N, and the sets Es, ..., F;, ... are not necessary disjoint.

Since the sets E; are bounded and w € Lj,.(D), we can find E; C V; open sets so that 0 <
Jw(@)dz — [ w(z)dz < 5 for every j € N. Let nP = Z c;Xy,. Then p < n and 7 is lower

Vi E;
semicontinuous and 0 < [ w(z)n(z)Pdz— [ w(z)p(z)Pds =3 ¢; [w(z)dz—3" ¢; [ w(z)dz =
R» R =1 V; =1 Ej;

gL

&([w(z)dz — [ w(z)dz) < ;}ch—ﬁ il

Vj E;



Remark 1. The proof of the preceding lemma follows the classical proof of Vitali -
Caratheodory theorem (see [28], Theorem 2.24, page 57).

Lemma 5. Let D C R" be open, p > 1,p>0,G cc D, G open, I' a path family in @
80 that I(y) > ¢ for every y € T and let w : D — [0, 0] measurable and finite a.e. so that
Jw(z)dz < co. Then ME(T) < % [w(z)dz < co.
a G

Proof. Let p: R® — [0,00), p(z) = Lt for z € G, p(zr) =0if z ¢ G. Then p € F(T'), hence
MET) < [ w(z)pP(z)dz = ;)1; Jw(z)dz < co.
R~ 5

G

Lemma 6. Let C,,C; be closed, disjoint sets in R” so that d(Co,C1) = r > 0 and the
set G = R™\ (Co U () is bounded, D C @ open, w € Lj, (D), p > 2 T = A(Cy, Cy, D),
Fs = A(Co+ 6B, Cy + 8B, D) for 0 < § < £ Then Mp(T") = lim M(T).

Proof. Let G,, = {z ¢ Gld(z,Cou Cy) > %} for m € N. Then G,, are compact sets
and G, /" G. Let T, = {8 path| there exists Y:[0,1] - D,yerT locally rectifiable,
0 <ay <pB <1so0that B = Ve, 8], ¥(e,) € OGm,v(B,) € 8G,, and Imy C Gy} for
m &€ N. ThenT' > T',,.; > T,, for every m € N, hence MP(T") < ME(Lmy) < MP(T,,)

W

for every m € N, and it results that there exists lim M?(Ty,) > MP(T). Let ¢ > 0. Using
Lemma 4, we can find 7 € F(I') lower semicontinuous so that [ w(z)n(z)Pdz < MP(T') + -2
R”

Let Ay, = sup{\ > 0| [nds > X for every v € I';,} for m € N. Then Amt1 > Ay, for very

Y
m € N, hence there exists A = lim Am. We show that A > 1.
m—0o0

Indeed, suppose that \ < L,andlet 0 < A < X" < 1. We can find paths v,, € I',,, so that

[ nds < X for every m € N. Let Om € T',0m = 02, be so that v,, — Om|[ctm, Br] for every
Ym

m & N. Let O, : [0,00] — G4 be defined in the following way: Let 0 < Um < Sgm < tgm <
B < U(0m) be the greatest, respectively the least t € [0,{(6,,)] for which Om(t) € 0G,, for
g=1..,m, méeN. Weset 8, = Oml[Sqm; tem] and O,y is constant on [0, Sgm] and on [tym, o0]
forg=1,...,m, m € N. We see that Okm is a subpath of 6, for 1 <k <l<mand b, is a
subpath of v, for k = 1, ey, M E N

The family (61,,)men is a I-lipschitzian family, hence it is an equicontinuous family, and
since it is also an uniformly bounded family, we use Ascoli’s theorem to obtain a sequence
(61m,)jen converging to a path g : [0,00] — G;. Taking a subsequence, we can presume that
S1m; — Q1,t1m; — by and B is constant outside [a1,b1]. We set J, = {mq, my, ;My, ..., }. The
family (05;)c,, is equicontinuous and uniformly bounded and using again Ascoli’s theorem, we
obtain a set J, C J; of increasing natural numbers so that the family (0y);c J, converges to
a path 8% : [0,c0] — G,. We can suppose that the first number from J, is the first number
from J;, that sy — az,ty — by for | — o0, [ € Jo, with ay < a; < by < by and that (52
is constant outside [ay,by]. We continue the process at infinite. At Step k, we find a set
Jy CJp1 C...CJpC J1 of increasing natural numbers so that the first ¥ — 1 numbers from
Ji are the first ¥ — 1 numbers from Jk—1 and so that the family (0x)1e J, converges to a path
Bk [0, 00] — G}. We can also suppose that s — ay, ty — by for [ — 00, | € Ji, that B* is
constant outside [ag, by] and that a; < -1 = ... a1 < by << by < By

Let Ix be the k** term from Jr and J = {l1, 12, ..., 1k, ...}. Then J C Jy for every k € IV,
Or — B* uniformly on every compact interval I [ak, by] for | — 00, I € J and BE = g,
k € N. We can correctly define now g - [0,00] — D, Bllag, bs] = B*|lax, by for k € N.
Then B is 1 - lipschitzian, hence IB()] <1 ae and g8 is absolutely continuous and hence



[ nds = fn(ﬁ(t))[,@ (t)|dt for every compact interval I C [0,c0]. We see that ax — a,bx — b
Bl

and let ¢ < @' < b < b. We can also suppose that a; < a < b < by for every k € N. Then
O lla’, 0] = O, lla’,b] — B[a’,b] = Bl[a’, b] and since every path O, is the restriction on Gy,

of a path 7, we see that f nds < [ nds < )\ for every k € N. Using Fatou’s lemma and the
Orly Vi
lower semicontinuity of the maps 7, we obtain:

b b b b
[news @i < [n(eeha = [ ntim ou)ie < pint [ 200, @)t =
5
lilgn inf/n(églk(t))dt < 1i1£n inf / nds <1 < 1.

a' Orlk

b
Letting a© — a,b — b, and using the fact that 8 € I' we see that 1 < [nds = [n

B
(B(1)|6'(t)|dt < X < 1, and we reached a contradiction.

We showed that A > 1.
Let now compact sets D, C D so that Dy /' D, Dgm = DgNGin, Tgm = {7 € I‘m|Imfy C Dy}
for m,q € N. Let pgm € F(qu) be so that f pqm(a;)Pdcc < MP(Tym) + 2m for every

m,q € N. Since - € F(I'y), we see that e € F(qu), hence (5% + pgm) € F(T'qm) for every
qg,m € N. We suppose that # < 7 for every m € N and using Clarkson’s inequality, we have:

[o@aGL + pmP@ds + [ @l il (@) < (s [ wlehP(eins

m =325
Rn Rn R"
1.1 € 1
w(2)pgm(@)7dz) < (55 (MET) + 5) + ME(Tam) + 27)
R" "
for m € N.
Then

M) + [wl@GE ~ pnlP @i < [ @G+ pam)P )it

R RrRn
1.1, . € p 1
[S@GE ~ pumlP )i < 5 M) + )+ ME Tan) + 52
Rn
for m € N.
We see from Lemma 5 that M2(Tp,) < (2)P [ w(z)dz < oo, hence 0 < [ w(z) (3L —
D, R~

pqml]p($ )z < %(X};—(MS(F) + £) — ME(Tgm) + ) for every m,q € N. Let m. € N be so that
57 < 5y for m > me. Then A7 P MP(Tym) < MP(I‘) ¢ for every m > m, and every ¢ € N.

We fix m > m. and we let ¢ — oo. Since Ty, / I'm, we see from Lemma 2 that
AP MP(T,,) < ME(T) + € for every m = me.
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Letting now m — oo, we see that lim ME(I'm) < ME(T) + ¢, and letting € — 0, we see
m—00
that lim M?(T,,) < M2(T).
We therefore proved that lim M2 (T,,) = M2(T).
m—o0

Remark 2. The preceding lemma generalizes Theorem 37.1, page 123 in [30] and Lemma
6 from [3]. If A5 = A(Co, (Cy +6B™) N D, D), then we also have that MP(I") = ‘lsixr(l) ME(As).

Lemma 7. Let D C R™ be open, w € Lj(D),p>2,2€ D and 0 < a. Then MP(z) =0
if and only if lin% ME(Lyp0p) = 0.

Proof. We take Cy = {z}, Ci = CB(z,a) and we apply Lemma 6 and Remark 2.

Lemma 8. Let D, D’ be open in R" g : D — D' conformal, T a path of family in D,
w: D" — [0, c0] measurable and finite a.e., I' = g(T"). Then M,(I') = M,oq(T).

Proof. Let p € F(I') and p : R® — [0,00], p(z) = p(9(x))|g' ()| if z € D, p(z) = 0 if
z & D. Then p € F(T), hence M, (I") < Rf w(g(z))p™(z)dz = gp‘”(g(x))w(g(m))[Jg(x)|d$ =

[ W)w(y)dy < [ wy)p™y)dy. Since p € F(I) was choosed arbitrary, it results that
D' Rn

Moog(I') < M, (I"). Since g7 : D* — D is also conformal, we have My(T') = Myogog-1(T) <
Mosog(97H(I")) = Miusog(T'). We proved that M, (I') = M yoq(T).

Lemma 9. Let Cy, C; be closed and disjoint sets in R™ so that IntCy # ¢, D C R™\(CoUC,)
be open, w € L} (D), ' = A(Cy, C4, D), Ts = A((Co+6B™)N D, (Cy +dB™)N D, D) for § > 0.
Then M, (T) = (15{21(1) M, (Ts). ‘

Proof. Let G = R™\ (Cy U C)). If G is bounded, we use Lemma 6. If G is unbounded,
we take z € IntCyp and 7 > 0 so that B(z,r) C Cy and let g:R"=>R", g(2) =z +r2 ==

5 |z—z|2>
z€R". Then g is conformal, g(Cp) and g(C}) are closed, disjoint, G N B(z,r) = ¢ and hence
G = g(G) is bounded. We use now Lemma 6 and Lemma 8.

Lemma 10. Let D C R™ be open and unbounded, w € L} (D) and 0 < r < s < co. Then

loc

M,,(00) = 0 if and only if lim (T'o,sp) = 0 for r > 0 kept fixed.

Using Theorem 6.3, page 107 in [11] and Vitali’s covering theorem, we have the following
change of variable formulae, which is valid in our class of mappings:

Proposition 1. Let n > 2, D C R™ be open, f : D — R™ be continuous and satis-
fying condition (N), E C D closed ni D so that pn(E) = 0 and let f € WD\ E, R™).
Then, if g : R™ — [0,00] is measurable and finite a.e., it results that [ g(f(@)|Jf(z)|dz =

A

f 9(y)N(y, f, A)dy for every A C D measurable.
R'n

3. Poleckii’s modular inequality

Theorem 1. Let f : D — R™ be continuous, open, discrete and satisfying conditions
(a1),(a2),(as), U CC D a normal domain and V = f(U). Then the map fy : V — R" is
ACL™.

Proof. We can suppose that the set K from conditions (a;) and (as) is so that K = @.
Let ey, ...,e, be the canonic base from R™ and let () CC V be an open cube with the sides
parallel to the coordinate axes and of side ry. We fix a face Qq of the cube @ and suppose that
Qo is perpendicular on e;. We define for y € @, the path By : [0,1] = Q by B,(t) =y + troe;
for t € [0,1] and let J, = ImB,. Let P be the projection on Qoand let E4 = P7HA)NQ
for A € B(Qo). We define a set function ¢ : B(Qy) — R, by p(A) = pn(fHEL) NU)
for A € B(Qo). Then there exists Ko C Qo with m,_;(Ky) = 0 so that ¢ (y) < oo for every
Yy € Qo\Ko. Since f(E) is of o-finite (n—1)-dimensional measure, we use a theorem of Gross (see
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Theorem 30.14, page 103 in [30]) to see that J, N f(E) is at most countable with the possible
exception of a set K; C Qo with m, (K1) = 0. Let ¢ = |d(f,U,V)|. Using Besicowitch’s
theorem, we can cover Q \ f(By N U) with domains V; so that every point z € @ \ f(Bs N U)

q
belongs to at most N(n) sets V; and f~1(Vi) = U Uy with U;; CC U disjoint domains so that
j=1

f(0U;) = 0V; and f|Uy; : Uy — Vi is a homeomorphism for every ¢ € N and j = 1,...,q. Let

hi; : Vi — U; be their inverses fort € N, 7 = 1,...,q, A;; = {z € Vi|h;; is not differentiable

in z}, Z; = {z € Vi \ Agj|Jn;(2) = 0} fori € N, j =1,..,q. We see from [23], page 110

that n(Ai;;) = 0, and from [1] we see that p,(hij(Z;)) = 0,4 € N, 7 = 1,..,q. Since f
o g —

satisfies condition (N), we see that pa(U U (A5 U Zy U f(By NU))) = 0. Let A = {89 -
i=1j=1

q

0,1(8,)] — Qly € Qo and ma({t € [0,1(BNIE) € (U

“ 1ZUUA,,JUf(BfﬂU))}) >0} We
i=1 j=
see from Theorem 33.1, page 111 in [30] that M(A) = 0, hence we can find a set K3 C Qo with
oo g -
mn_1(Kz) = 0 and so that mi({t € [0,1(B))IBy(t) € (U U Ai; U Zy; U f(BgnU))}) = 0 for
i=1j=1

every y € Qo \ Ka. We also see that my(f(By N U)N Jy) =0 for every y € Q, \ Ka.
q
We define now a Borel map p : R™ — [0,00] by p(y) = sup |hy;(y)| for y € Vi\ U (45UZ;),
. P

i=1q
i € N, p(y) = 0 otherwise and the definition is correct and does not depends on the domains
V. so that y € V;, since p(y) = sup |f (@)™} ify € Q\ f(ByNU). Since hy; are ACL"
e f~Hy)NU

homeomorphisms, are a.e. differentiable mappings satisfying condition (N) and we see from
the change of variable formulae in Theorem 5.23, page 132 in [7] that

[raa<3 [rwa <Yy [ora=>3 [ K -0l =
=1 ‘/Z

B =1 {, i=1 j=1%, =1 j=1¢,

i

ZZ/Kz(f)(x)dx < N(n) /Kf(f)(:v)dz < 0.

i=1 j=1g,
Let Ay = {B,ly € Qo and [ pds = oo}. Then § € F(Ao) for every k € N, hence
By

M(Ap) < klan p"(y)dy for k € N. Letting k — oo, we see that M(Ao) = 0, hence we can find

a set Ky C Qp with mn_1(K3) = 0 and so that [ pds < oo for every y € Qo \ K.
By
Let now I'y; = {Byly € QolJy N Vi # ¢ and there exists j € {1,...,¢} and an interval
J C JyNV; so that hijep is not absolutely continuous on J} for i € N,j = 1,...,q. Using
Fuglede’s theorem (see Theorem 28.2, page 95 in [30]) and the fact that hs; are ACL™ maps,
we see that M([;;) =0fori € N and j=1,...,¢. It results that there exists a set Ky C Qo
with m,_1(K4) = 0 and so that h;; o ﬁg is absolutely continuous on every interval J C J, N'V;

4
for every i € N,j =1,...,q and every y € Qo \ Ka. Let K5 = J Ki.
=0

We fix y € Qo \ K5 and let « : [0,1] — U be a path so that:f oa = . We show that o™ is
absolutely continuous. Let Fy = J, N f(By N Ima*) and Ey = (By) ™ (£o). Then Fp is compact

and my(Fy) = 0 and also Ejy is compact and my(Eg) = 0, hence (0,1(8,)) \ Eo = U L1, with
=1
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Iy C (0,1(B,)) open intervals for I € N. Let [ € N and I C I; be a maximal open interval so
that B)(I) C V;. Since foa* = ) we can find j € {1,...,q} so that o*|] = hij o B|1, hence o
1s absolutely continuous on I and this implies that o* is absolutely continuous on every interval
I forle N.
By) © g
We show that [ |o* (t)|dt < co. Let B = {t e 0, 1(BNIBS®) € (U U AU Z;Uf(BsN

0 i=1j=1
U))}and C = {t € |0, 1(8,)]185 and o are not differentiable in t}. Them m;(BUC) = 0 and let
t € [0,1(8y)] \ (BUC). Since Ey C B, we can find t,l e N,j€{l,...,q} and an interval I C J,
so that ¢ € I and o*|] = hij o 58. Then [a*((t)l = ]hw(ﬁg(t))llﬁg(t)[ < h;j(ﬁg(t)) & p(ﬂg(t)),
and this implies that |o* (t)] < p(By(t)) a.e. in [0,1(8,)]. We see now that

U(By) 1(By)
/ o (8)]dt < / p(By(t))dt = /pds < B9
0 0 ,By

We show now that m;(a*(A)) = 0if A C [0,1(8,)] is so that my(A) = 0. We denote by
Finp = {z € Ima*|limsup d(U(z, f, I pn(Ulz, f,7) <m}, by Fymp = {z € Ima*|d(U(z, f,
r—0

%))” < mpn(U(z, f,r) for 0 < r < %} and by Fh,=1{z € Ima*|d(U(z, f, g))” < mpu,
(U(z, f,r))} for k,m,pe N and r > 0. '

Let r > 0 be fixed and take z € Ima*, 1y > zand 0 < r < p. There exists Iy € N so
that B(f(z:),r) C B(f(z),p) for I > ly, hence Ulzi, f,r) € Uz, f,p) for I > Iy and hence
hm sup pn(U(zy, f,7)) < pn(U(z, f, p)). Letting p \, r we see that limsup p, (U (x, f,7)) <

l—o00 l—0o0

pn(U(z, f,7)) = pn(U(z, f,7)), hence the map = — pn(U(z, f,7)) is upper semicontinuous on
Imao*. Also, if 2, € Imo*, z; — z and 0 < p < 1, we see that there exists [; € N so that
Uz, f,p) C Uz, f,r) for I > I, and hence d(U(z, f,p))» < lilminfd(U(xl,f, r))". Letting
p /" r, we see that d(U(z, f, )" < lilminf d(U(zi, f,))", hence the map = — d{li iz, F,7))" is
lower semicontinuous on Ima*. Since the sum of two lower semicontinuous mappings is a lower
semicontinuous mapping, it results that the map z — d(U(z, f, :—)))n —mun(U(z, f,7)) is lower

semicontinuous on I'ma*, and hence the sets Fy, , are compact on Ima* for every m,p € N
and every 7 > 0. Since Femp = T F. ,, it results that Fimp are compact in Ima* for
O<r<d

k,m,p € N. Now Fyomp /" Frnp, and th’is implies that F;, , are Borel subsets of Ima* for every
m,p € N.

Let Egmp = (@) (Femp N By), Brp = (&) Fnp N By) for k,m,p € N. Then
& (Emjip) = Frmps Ermp /" Emp- Eymp C Ey are compact for k,m,p € N and hence
m1(Ermp) = 0 for k,m,p € N. Let us fix k,m,p € N. Let ¢,t > 0. We show that
mi(a*(Egmp)) = 0. We denote by B™1(y, \) the ball of center y and radius A from Qo if
Y € Qo. Using Lemma 31.1 page 106 in [30], we find 0 < § < % so that for every 0 < r < 6, the
subset f(F}mp N By) of J, is covered by open intervals A; C J, of length %r_ and centered in
some points y; = f(z;) € J,, with z; € Fymp N By, so that every point from J, belongs to at
most two intervals A4 =1,...,] and % S my(f(FempN By)) +e. Let B; = B(y;, g),i =1 .0

!
Then f(FympN By) C |J B; and we choose 0 < 7 < § so that lo*(t) — o (t")] < ¢ for every

=1
t,¢" € [0,1(8,)] so that |B)(r') — BO(t")] < Z.
Let W; = U(zi,f,g) NIma*, Qs = U(z;, f,r) for i =1,....1. Then dW;) <tfori=1,..,1

13



l
and we show that Fim, N By C |J W;. Indeed, let z € Fymp N By. Then z € Ima* and
11

f(z) =w € f(FempN By) C Jy m(UB) Let i € {1,...,,I} be so that w € B; N f(FimpN By)

and let J; C [0,1(8,)] be an 1nterval so that 89(J;) = B; N ImfB). Take now t; € J; so that
= BY(t;). Since B) = foa*, f is injective on Ima and y; = f(:m) yi = By(ts) = f(a*(t:)), we
see that o= (i ) and since f(o*(J;)) = B(J;) = B;NImpy, and o*(J;) is connected so that
z; € o*(J;), it results that o*(J;) C W;. Smce w € BiNImpBY = BY(J;) = f(a*(J)), we can find
a; € J; sothat w = f(a*(a;)). Now z € Ima*, f(2) =w = f(a (az)) and f is injective on Ima
!
hence z = o*(a;) € o*(J;) C W; C U W We proved that o*(Exmp) = Femp N By C U W.

=1
Since the balls 1 5B; are disjoint for i=1,...,1, we see that every point from Epn-1(y ) belongs

to at most 6p balls pB;,i =1,...,1. Now, every value w € V is taken by f|[U : U — V by at
most ¢ times, hence every pomt from R™ belongs to at most 6pg sets @;,7 = 1,...,[. Then

l l
;un(Qi) < 6pq/in(L_Jl Qi) < 6pqpn(fH(Egr-1¢yr) NU) = 6pgp(B™*(y,r)). We have

(my (e (Ermp)))" < (Z d(Wy))" < l"_l(z d(Wi)") <

gl (m(f(Frmp N By)) "1 (Z 1 (@) <

Tn—l

S Ll
6p" qmVy_1(ma(f(Fimp) N Byf)) +¢€) NI}
Letting first 7 — 0, then ¢ — 0 and then t — O, we find that (mi(a*(Exmp)))" <
g am Vg () (raf (Fimp 1 B))"™ < 697qmVo 1 (g)ma (Fo)™? = 0.
We found that m¥(a*(Exmp)) = 0 for every k,m,p € N and since Exmp /' Emp, We see
that mi(a*(Emp)) = 0 for every m,p € N.
Let G = Ima* N By NE, H = ()"}(G). Since J, N f(F) is at most countable, the sets

oo
G and H are at most countable and we have that By N Ima* = |J FnpUG U F), hence
m,p=1

EyC U EnpUHU (@) (F).

m,p=1
From what we have proved before, we see that m;(a*(Ep)) = 0. Since o is absolutely
continuous on each interval I;, we see that m;(a*(A)) = 0 for every A C I; with m;(A) = 0 and
every [ € N, and this implies that m;(a*(A)) = 0 for every A C [0,1(8,)] so that m,(A) = 0.
Let o, ..., o be the components of . We proved that the components o5 : [0,1(6,)] = R®
L(By)

satisfy condition (N) and [ lax (t)|dt < oo for every 4 = 1, ...,n, and using a theorem of Bary
0

(see [29], page 285) we see that of,,cf are absolutely continuous, and hence a* is absolutely
continuous.

We proved that if y € Qo \ K5 and o : [0,1] — U is a path so that foa = f,, it results
that o* is absolutely continuous. Let now y € Qo \ K5 and oy, ..., oy be all the paths so that

foa,=pB,i=1,..,q Then fyo BO i Z af is absolutely continuous. Since the face Qo of
@ was arbitrarily chosen, we proved that fV is ACL.
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Let us show now that the map fy is ACL™. Let Q and Vi, € N as before. Then fvly) =
q q
iZhij(y) for every y € V;,i € NV, hence ) < %Z Ihi()|" for y € Vii € N. Let €
Jj=1 j=1

trveon. Then [0SR < [ @raz < 5 1 oras < 1525 [ Ihig(2)rdz =

i=15=1V;

;gévjK,(f)(f—l(z))uf_l(z)gdz - ;é ‘iUI Ki()@)do < Nn) [ Ki(f)(e)ds < oo

We therefore proved that the map fy is AC’}/" on V.
Theorem 2. Let f: D — R” be continuous and light, satisfying conditions (a1) and (ay)
and let I" be a path family in D. Then

1) There exists ' ¢ T so that M(f(T°)) = 0 and for every oo € I'\ T it results that the
e
path 8= foais rectifiable, o* is a.e. differentiable and lo* (t)]dt < oo.
0

2)IfT = {a € T8 = foa is rectifiable and my(Ima* N (B; U K)) = 0}, it results that
M(f(I")) < M, sy(T), where K is the set from condition (a,).

Proof. We can suppose that K — ¢. Let Dy C D be domains so that D, 7~ D and let
Ir ={a€T|[Imac Dy} for ke N. Let us fix k € N. Using Vitali’s covering theorem, we can

_ o
find disjoint balls V; and a set I,  R™ so that 11,(L) = 0 and f(De)\ (LUf(BfNDy)) = UV
’ i1
3(@)
i) = U Uy, U5 : Uy — V; are homeomorphisms having ACL" inverses hij Vi — Uy
=1
forie N, j = Ly J(7). Lt Ay =z € Vilhij is not differentiable in z} and Ziy ={z €
I/i \ Aijl‘]hij(z) = O} for 4 € N,] = 1, ,_](Z) and let A= Uzl Ujg)l hij(Aij U Zz]) Since hij are
ACL™ mappings, they are a.e. differentiable and satisfy condition (N), and using Sard’s lemma,
from [1], we see that pn(A) = 0. Since f satisfies condition (N), we see that kn(f(A)) =0,
oo j(%) _
hence, if B = J | AU Zy; and C = BU F(By N Dy) UL, it results that trn(C) = 0. Let
i=1j=1

It = I NI We set FZJ = {a € Tx|lB = f o a is rectifiable and there exists an interval
J C [0,{(B)] so that B°(J) € V; and hi; o B° is not absolutely continuous on J} for i € N,
J =1,...,5(¢). Using Fuglede’s theorem, we see that M(f(T?) =0forie N,j=1,..,5(). Let
I} = {@ € T4|B = f o is rectifiable and mi({t € [0,1(B)]|B°(t) € C}>0)and Tf = {a T,
and 8 = f o« is not rectifiable } for k € N. Then also M(f(T3)) =0 and M(f(T$) =o0.

J=1,.,5(%

3@
We define now a Borel map 7 : R™ — [0, o0], n(y) = sup  |h,;(y)| fory € Vi\ U (4;;uZ),
O] J=1
t € N, n(y) = 0 otherwise. Using the change of variable formulae from Theorem 5.23, page
132, in [7], we have
7(3)
=1

00 o0 oo (1)
[ sy [ra<3S [ PPy =35~ [ Kt iy iy =

R» J =1 j=1y,
oo j(7)
ZZ/KI(f)(I)dx < /K[(f)(x)dx < o0.
i=1 =1y, 3,
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Let I = {a € T};|8 = f o« is locally rectifiable and [nds = co}. As in Theorem 1, we see
B

oo J(&)
that M(f(I%)) =0 and let T =T U T} uriu |J S T¥. Then M(f(T})) =0.
i=1j=1
Let now o € I';\I'? and let 8 = foc. Then f is rectifiable and let By = {t € [0,1(8)]8°(t) €
f(Bf n Ima*)}, Co = {t € [0, 1(B)]|B°(t) € C} and By = {t € [0,1(8)]|B° or a* is not

differentiable in t}. Then Eo C Co, m1(BoUCo) = 0 and (0,1(B)\Eo = U I, with I, C (0,(8))
=1
open intervals so that [(8) = Y I(I;). We denote for i,l € N by I;, j € J; all open maximal
=1

intervals I; from I so that 8°(I;;) C V; for j € Ji. Then I, = U U L and for each such
i=1j€J;
interval I;; we can find k € {1, ..., j(¢)} so that o*|I;; = hio 0| 11;.

This implies that o* is a.e. differentiable on each interval [j;, hence is a.e. differentiable
on each interval I;, | € N and hence is a.e. differentiable on [0,(B)]- It e [0,(B)]\ (BoU
Cp), we can find i,l € N, j € J,k € {1,...,5(9)} so that t € I; and o|Ii; = hix o B°1};.
Differentiating in ¢, we see that o (£)] = |y (8°(£)) 0 B ()] < |hap (B°()] < (BO(t)). It results

g 18)
that o (t)] < n(8°(t)) a.e. in [0,1(B)] and hence [ e @)ldt < [ n(B°(t))dt = [nds < co.
0 0 Y
We also have that o* (£) = A% (°(0)(8° (8)) = [F (& (D) (8 (), hence |a” (OIS (a" (1)) <
|f (e (8))(e* ()] = |8° (t)] = 1. We proved also that

(f (e @®)ler (1) <1 (1)

a.e. in [0,1(B)].

Suppose now in addition that o € I'L\T9 Since a*(Ey) C By N Ima*, we see that
my (a*(Ep)) = 0 and since o* is absolutely continuous on each interval I}, [ € N, we see that
mi(a*(G)) = 0 for every G C [0,1(8)] with mi(G) = 0. Let af, ..., o5, be the components of .
Using Bary’s theorem again, we see that af, ..., oy, are absolutely continuous. We proved that
ifa cTL\T9, then 8= foais rectifiable and o* is absolutely continuous.

Let now p € F(IL\ I?). We define p' : R* — [0,00], p(y) =  sup L if y €

cef1()nDy 1(f (=)
f(D)\C, p (y) =0 otherwise. Then p(y)= sup plhii(y))|hi;()| for every y € V;\ C and
J=1,...,3(%)

every i € N. Since V; and C are Borel sets, h;; and hy; are Borel maps on V; \C forie N,
j =1,..,j(1), we see that p is a Borel map, and let us show that p' € F(f(Tr\I'?)). Let
o€ TI\T% and B = foa. Since " is absolutely continuous, we see that also su» is absolutely
continuous and using (1) and a change of variable formulae for absolutely continuous and
increasing real functions, we see that

1(B) i(B) 1(B)
/ﬁ@=/mwww=/ﬁumwmﬁz/mwwwvmwmﬁz
B 0 0 0

Up) 0

[ oo @pler @l = [ (oo @7 5er) )5 (1 =
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us) la)

/(p 0 a0 5,0 )(t)s,. ()dt = /p(ao(t))dt = /pds > 1.

0 0 a
We proved that p' € F(f(I', \ I'?)). We have now that

M(F(TL\T9)) < / RO / p(y)dy <

B =1
J(3) ‘ oo j(%)
3 /p”(hz-j(y))lhij(y)l”dy=ZZ/p”(f“l(y))Kz(f)(f‘l(y))lJf—l(y)ldy=
Vi

i=1 j=17, i=1 j=1y
]

/U P@ENE < [ @) )
17 R"

Since p € F(I'; \ I')) was arbitrary chosen, we see that M(f(TE\TR) < Mp,n(TL\T?)) <
Mp,(5)(T). We take now I'® = |J 9. Then M(f(I)) = 0 and since T \T? TP\ I we use
k=1

Ziemer’s lemma to see that M(f(I'!\ ) = Jim M(f(TR\TR)) < My, 5(T). We have now

that M(f(I")) < M(f(T"\T%) + M(F(I%) = M(f(" \ T) < My, (7).

Corollary 1. Let D C R? be open, f : D — R2 continuous and light so that f satisfies
condition (NV), K;(f) € L},.(D) and f has local ACL" inverses on D \ Bf. Then M(f(I") <
Mp,(5)(T) for every path family I" from D.

Remark 3. If f : D — R" is continuous and light and [ satisfies conditions (a;) and (ay)
(with K = ¢) and m,(By) = 0, then m1(Bs N Ima) = 0 for every path family T from D.

Remark 4. Let S be a surface in R™ or S* and let I" — {1 [0,00) = R |y, (t) =
Ytien,t >0,y €StorI" = {v,:[0,00) — R, (t) = (1 +t)y,t > 0,y € S*}. Then T" is a
line family and let f : D — R™ be continuous and light and satisfying conditions (a1 ), (as), (as).
As in Theorem 1, we show that for a.e. paths § € I'', every path a in D so that B=foaisso
that o* is absolutely continuous. If in addition J is open, then f locally lifts the paths, hence
if #:[0,1] — R™is a path and z € D is so that f(z) = B(0), then there exists a maximal
lifting of B starting from z. This implies that if I" is the same line family as before and T is
the family of all maximal liftings of the path from I" starting from some points a,, € D so that
flay) =y,y € S, then T" > f(I') and if I* = {8,:[0,]] >Ry € S}, T = {ay : [0,¢,) = D
path [0 < ¢, < 1,04(0) = ay, fo o, = Byll0,¢,),y € S}, then a,, is absolutely continuous
for a.e. y € S. Then mi(By N Ima*) = 0 for a.e. y € S and from Theorem 2 we see that
M(T') < M, (5)(T). L

It results that for some special line families I and paths families I" of maximal liftings of the
paths from I, the modular inequality of Poleckii ” M (T") < Mg, (5(T)” holds for continuous,
open, light mappings satisfying conditions (a;), (ay), (as). Note that a result of Wilson [35]
shows that there exist continuous, open, light mappings f : D — R™ so that By = D, hence
the class of continuous, open, discrete mappings f : D — R" is strictly included in the class of
continuous, open, light mappings f : D — R".

Theorem 3. (Modular inequality of Poleckii) Let f : D — R™ be continuous, open,
discrete, satisfying conditions (a;), (a3), (ag) on D. Then M(f(T)) < Mg, (;(T) for every path
family T" from D.
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Proof. We can take K = ¢ in conditions (a;) and (a3) and we can suppose that f is sense
preserving on D. Let By = {z € Byli(f,z) > k} for ke Nk >2. Ifz € Bpand U CC D
is a normal domain so that U N f~1(f(z)) = {z} and V = f(U), then d(f,U,V) = k, hence
UNBy = f~Y(f(UNBy)) and this implies that f is injective on U N By. We cover now each set
By with normal domains Ug; so that Uk; N Bx # ¢, and let Vi; = f(Ug;) for k> 2,5 € Ji. Let
I be a path family in D. Let Ty = {a € I'|8 = f o« is not rectifiable LhTi={ael|f=foa
is rectifiable and mq ({t € [0,1(8)]|8°(t) € f(By)}) > 0}, I = {o € T|B = f o« is rectifiable
and there exists an interval J C [0,1(8)] so that 8°(J) C Vi; and fy,; o B° is not absolutely

continuous on J} for k > 2,5 € Ji. Let T = F}) uhhbuy U I";j. Using Theorem 1 and
k=2 j€eJk

Fuglede’s theorem, we see that M(f (T)) = 0.

Let a € I\I', 3 = foa and let us fix k > 2. Then (a*)"Y(BxNIma* NU;) C (B (f(BxN
Ima* NU)) C (6°)7(f(By)), and since m1((8°)7*(f(By))) = 0, we see that my((a*) Bk N
Ima* NUy;)) =0 for j € J. Now, the map fy; o (° is absolutely continuous on each interval
J C [0,1(B)] so that B°(J) C Vij, so that if A is a subset of such an interval J and my(A) =0,
it results that mi((fu, © B°)(A)) = 0. Since By N Ima* N Uy = (fu; © f)(Br 0 Ime” N
U]cj) = (kaj o f e} a*)((a*)'l(Bk N Ima* N Ukj)) = (ka]_ O ﬁo)((a*)—l(Bk N Ima™* N Uk])) for
j € Jg, this implies that my(Bx N Ima™ N Uij) = 0 for every k > 2 and every j € Ji. Since
Bf C U BxC U U (U N By), we proved that my(Bs N Ima*) = 0 for every path a € \T.

k=2 k=2 jEJx
Using Theorem 2, we see that

M(f(T)) < M(FIC\T)) + M(F()) = M(f(C\ D)) < My (D).

Proposition 2. Let D C R™ be open, p > 1, w € Ll (D) and E = (A, C) be a condenser
in R". Then MP(Tg) = caph,(E).
Proof. If v is admissible for cap?(E), then p = |Vu| € F(T'g), hence MEZ(T'g) < [

RTL
w(z)|VulP(z)dz, and this implies that MF(I's) < cap? (E).

We show now that capf,(E) < MP(T'g). We can presume that ME(I's) < oo and let € > 0.
Using Lemma 4, we can find p € F('g) lower semicontinuous so that llpllPJP < ME(TE) + €.
We take Ay CC A open sets so that C C Ay for every k € N and Ay / A and we set
pr = min{pxa,, k} for k € N. We define uy : A — R by ug(z) = inf [ pxds, where the infimum

is taken over all rectifiable paths o : [0,1) — A so that «(0) = z and o has at least a limit point
in OA, for z € A and k € N. We see from Proposition 10.2, page 54 in [24] that |Vug| < pk
a.e.

Let d, = ing u(z) for k € N. We see from the proof of Proposition 10.2, page 54, in [24]
TE
that 1iI£n inf dy > 1. Then v, = g is admissible for cap? (E) for every k € N, hence capf,(E) <
h;ninf [ w(z)| VP (z)dz < lillcrninf% [ w(z)pk(z)Pdz < [ w(z)pP(z)dz < ME(TE) + €. Let-
o0 TR R”

-
ting € — 0, we find that cap?(E) < ME(Tg).

Corollary 2. Let f: D — R™ be continuous, open, light, satisfying condition (a) and let
E = (A,C) be a condenser in D. Then capf(E) < capx,s)(E)-

Proof. Since f is an open map, we see that f(E) = (f(A), f(C)) is a condenser and since
f locally lifts the maps, we see that sz > f(Tg). Then capf(E) = MTg) < M(f(Tg)) <
My, (5)(TE) = capx; (7) (B)-
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4. Geometric properties of open, discrete mappings having local ACL” inverses

Theorem 4. (Schwarz’s lemma) Let n > 2, f: B" — B™ with f(0) =0, f continuous,
open, light, a.e differentiable with J;(x) # 0 a.e. and satisfying condition (a). Suppose that

1) There exists 0 < & < n— 1 and M > 0 so that f Ki(f)(z)dz < M (In(2))* for every
B(0,r)
0<r<l.

Then there exists ¢ : (0,1) — (0,1) continuous, increasing, so that yr% ©(t) =0, %mrll o(t) =1
and |f(z)| < ¢(|z|) for every z € B™.

Proof. Let v, : (0,1) — (0,1) be defined by v,(r) = cap(B™, [0,7€1]) for 0 < r < 1. We see
from Lemma 1.2, page 60 in [24] that v, is strictly increasing and IiII(l) Un () =10, lirri valr) = oe,

Let z € B*, E = (B, [0,z]) and E' = f(E) = (f(B™), f([0,2])). Since f is an open map, E'
is also a condenser, and let I = {y : [0,1] — f(B") path |7(0) € f([0,z]) and 7 has at least
a limit point in 0 f(B™)}. Then M(I'") = capE’ and let T be the family of all maximal liftings
of the paths from I' starting from the points of [0,z]. Then I > f(T') and every path v € T
has at least a limit point in S”. Using condition (a) and Theorem 2 from [5], we have that

va(lf(2)]) < capE" = M(I') < M(f(T)) < My, pn(T) < (ﬁ;%;_ﬁ)", where C(n) is a constant

depending only on n. We take now ¢ : (0,1) — (0,1) defined by ¢(t) = ygl((l—n%(%#) for
te (0,1). t

Remark 1. Condition 1) from Theorem 4 is just condition cg) forz =0 and a = 1. We
can replace this condition by one of the conditions ¢ ), c3),¢q) for £ = 0 and a = 1, obtaining
a different function ¢ : (0,1) — (0,1) with the properties from Theorem 4.

Theorem 5. (Modulus of continuity) Let n > 2,2 € D, ry > 0 so that B(z,r) C D,
[+ D — R™ be continuous, open, light a.e. differentiable with Ji(x) # 0 ae. in D, satisfying
condition (a) and suppose that one of the conditions c1),¢2), ¢3),¢q) hold in z for a = ry. Then
If(y) = f(z)] < d(f(B(:c,rO))gp(h’;—oIl) for every y € B(z,r,), where ¢ is the function from
Theorem 4.

Proof. We apply Theorem 4 to the function g : B™ — B™ defined by g(z) = %%
for z € B™.

Theorem 6. (Liouville’s theorem) Let n > 2, f : R™ — R” be continuous, open, light, a.e.
differentiable with J¢(z) # 0 a.e. in D, satisfying condition (a) and suppose that one of the

conditions ¢;), ), c3), ¢4) holds for z = 0 and every a > 0. Let M(r) = sup |f(z)— f(0)],
z€B(0,r)
A2 (0,00) — (0,00) be so that 7 < A(r) for every 7 > 0 and lim 3y = 0 and suppose that

r—00

TIEEO M()\(r))cp(ﬁ) = 0. Then f is constant on R™, hence, if f is bounded on R™, it results
that f is constant on R™.

Proof. Let z € R™ be fixed and r > 0 so that |z| < r < A(r). Then |f(z) — f(0)] <
M(/\(r))ga(%) Z M(A(r))go(ﬁ) — 0if 7 — co. It results that f(z) = f(0) for every z € R™.
If f is bounded on R™, we take A(r) = r2.

Theorem 7. (Picard’s theorem) Let n > 2, E C R™ be closed, f : R® \E — R" be
continuous, open, light a.e. differentiable with Ji(z) # 0 a.e. in D, satisfying condition (a)
and so that M, (s)(E U {c0}) = 0. Then cap(Cf(R"\ E)) = 0.

Proof. Suppose that cap(Cf(R" \ E)) > 0 and let K c R» \ E be compact so that
CardK > 1. Then A = (f(R™\ E), f(K)) is a condenser and we see from Lemma, 2.6, page 65
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in [24] that there exists 6 > 0 so that § < capA. Let I'" = A(f(K), (f(R*\ E),R") and let let
I" be the family of all maximal liftings of the path from I starting from K. Then I > f(I),
M(I") = capA and every path 7y € I has at least a limit point in EU{co}. Then Mg, ) (T) =0
and since f satisfies condition (a), we have § < capA = M(I'") < M(f(T')) < Mg, 5(T) = 0,
and we reached a contradiction.

Theorem 8. (Equicontinuity result) Let n > 2, M C R™ with capM > 0 and let W
be a family of continuous, open, light mappings f : D — R" \ M, a.e. differentiable with
Ji(z) # 0 a.e. on D and satisfying condition (a). Suppose that there exists w € LL (D) so
that K;(f) < w for every f € W and let z € D be so that M, (z) = 0. Then the family W is
equicontinuous in z, and we take the Euclidian distance on D and the chordal distance on R".

Proof. Let € > 0 be so that B(z,e) C D. Suppose that there exists p > 0, T, — 0 and
fp € W so that q(f,(B(z,7p))) > p for every p € N. Since Imfy,N M = ¢ and Imf, are
open sets, we see that Imf, N M = ¢ for every p € N, hence fo(B(z,m5)) N M = ¢ for every
p€ N. Let T, = A(fp(B(z,p), 0f,(B (r €)), [o(B(z, e)) \ fo(B(z,7p))) and T, the family of
all maximal hftlngs of the paths from I‘ starting from the points of B(z, Tis) for every p € N.
Then F > f(I'p) and we see from Lemma 2.6, page 65 in [24] that there exists § > 0 so that
6 < cap(CM fp(B(z,rp)) for every p € N. Let A, = A(B(z, 7p),S(z,€), (B(z,€)\ B(z,r,)) for
p € N. Since every path v € A, has at least a hrmt point outside B(z, €), we see that I', > A,

for every p € N, and since M,, (x) = 0, we see from Lemma 7 that lim M, (A,) = 0. We have
P‘—}

5 S Cap(CMv fP(B(xwrp))) S cap(fp(B(J:,e)), fP(B(a:)rP))) =
M(T,) < M(f(Tp)) < Micy(n(Tp) < My (D) < Moy(Ap) — 0

for p — co.

We reached a contradiction, hence the family W is equicontinuous in z.

Remark 6. The preceding theorem extends a classical result from the theory of quasiregular
mappings (see Corollary 2.7, page 66 in [24]), and brings something new even in the case when
all the mappings from the family W are quasiregular mappings, since the exceptional set M
which is avoided by every map f € W can be chosen at most countable and so that capM > 0.

Theorem 9. (Montel) Let n > 2, W be a bounded family of continuous, open, light
mappings f : D — R™, a.e. d1ﬁerent1able with J¢(z) # 0 a.e. on D, satisfying condition (a)
and so that there exists w € Ly,.(D) so that K;(f) < w for every f € W. Then, if M, () =10
for every « € D, it results that W is a normal family.

The followmg eliminability result extends a classical one from the theory of quasiregular
mappings (see Theorem 2.9, page 66 in [24]) and a result from (3] established for mappings of
finite distortion and satisfying condition (A).

Theorem 10. (Eliminability result) Let n > 2, E C D be closed in D, z € E, f : D \E —
R" be continuous, open, light, a.e. differentiable with J¢(z) # 0 a.e. on D\ E, satisfying
condition (a), so that K;(f) € L}, (D \ f~*(c0)) and Mg, (r)(E) = 0. Suppose that there exists
Tz > 0 so that B(z,r,) C D and cap(C(f(B(z,r.) \ E))) > 0. Then we can extend f by
continuity in z.

Proof. Suppose that f is not continuous in . Then z ¢ f7}(c0) and we can find T; —
T,Y; — T, by # by so that f(z;) — by, f(y;) — b, 25,y; € D\ E for j € N, and let
rj = max{2|z — z;|,2ly — z;|} for j € N. Since capE = 0, it results that F is nowhere
disconnecting and let C; be compact and connected joining z; with y; in B(z,r;) \ E for
j € V. Let B, = (B(z,r.) \ B,Cy), By = (E,) = ((Blz, ) \ B), F(C), T = {7 [0.1) s

f(B(z, T,;)\E) path |v(0) € f(C)) and 7 has at least a limit point in 8f(B(z, rr)\E)} and let
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I'; be the family of all maximal liftings of the paths from F;- starting from the points from C;,
forj € N. Let [y = {7 € T}| has at least a limjt point in B} and I'y; = { ¢ ['jly has at least
a limit point outside S(z,75)} for j € N. Then capE; = M(T), I‘;- > f(Ty), I = ['1; Uy,
Mg, (5)(T1;) = 0 and we see from Lemma 2.6, page 65 in [24] that there exists § > 0 so that
0 < capF; for every j € N. Let Aj = A(B(z,r;), S(z, 72), (B(z, ;)\ Bz, r;)) for j € N. Then
[y; > Aj for j € N and since M, ()(z) = 0, we see from Lemma 7 that My, (A;) — 0 for
J — 00. We have

§ < capE; = M(T';) < M(f(Ty)) < Myg,((T;) = M, (5)(T1; UTyy) <

Micy(n(T13) + Miey(5)(Taj) = My (D)) < M (5 (85) — 0
if j — oo.
We reached a contradiction, hence we can extend f continuously in z.
Theorem 11. Let n > 2, E C D closed in D,z eE, f:D \E - R" be continuous,
open, light, a.e. differentiable with Ji(z) # 0 ae. on D \ E, satisfying condition (a), so that
Ki(f) € L1 (D \ f7(c0)) and M, (5)(E) = 0. Suppose that Iin; J(y) does not exists in R"

y
(ie. z is an essential singularity of f). Then cap(C(f(B(z,r) \ E)) = 0 for every r > (.

Theorem 12. Let > 2, E C D closed in D, f:D \E — R" be continuous, open,
discrete, a.e. differentiable with Ji(z) # 0, ae. on D \ E, satisfying condition (a) and so
that Mrc,(5)(E) = 0. Suppose that for every z € L there exists r, > 0 so that B(z,r,) C D,
Ki(f) € Li,(B(z,75) \ f71(o0)) and cap(Cf(B(z,r,) \ E)) > 0. Then [ extends continuously
toamap FF: D - R" and if pn(F(E)) =0, then F is open, discrete on D, _ ‘

Proof. We see from Theorem 10 that f extends to a continuous map F : D — R". Since
capEl = 0 and (D \ E) N F~1(00) is at most countable, we see that F is a light map, that
D\ (EU F(c0)) is a domain and i(F}-) is constant on D \ (BU F1(c0)). We use now
Theorem 1 from [2] to see that F is open and discrete on D,

Theorem 13. Let n > 2, By C D be closed in D, f:D\Ey, - R" be continuous, open,
discrete, satisfying conditions (a1), (a2), (a3) on D\ (EyU f=}(00)) and so that My, (5 (Ep) = 0.
Suppose that for every z ¢ Ey, there exists r, > 050 that B(z,r,) C D, Ki(f) € L} .(B(x, P}
f71(c0)) and cap(Cf(B(z, ;)\ Ey)) > 0. Then [ extends continuously to g map fo: D — R",
and if p,(fo(Ep)) = 0, then Jo is open, discrete and the set Ey is eliminable for f.

Proof. We see from Theorem 12 that there exists Jfo: D — R" continuous so that
JolD\ Ey = f, and if pn(fo(Eo)) = 0, then f, is open and discrete on D. If K and F are
the sets from conditions (a1) and (as) for the map f, then, since m, (Ep) = 0, we can replace
them by the sets K U Ey, respectively F U Ey, and we see that the map fy satisfies conditions
(a1), (az), (as) on D\ f7!(00) with these replaced sets.

Remark 7. The eliminability of the "singular” set F, implies that fy, the continuous
extension of f on D, satisfies the modular inequality pf Poleckii ” M (f () < Mg, (5y(T)” for
every path family " from D.

proved by M. Vuorinen in [32] for closed quasiregular mappings and by M. Cristea in (3] for
mappings of finite distortion and satisfying condition (A).

Theorem 14. Let n > 2, D, D' be domains in R* f:D— D' be continuous, open, light,
a.e. differentiable with J;(z) # 0 a.e. on D, satisfying condition (a) and so that K (f) €
Li,(D). Let b € 8D be so that D is locally connected in b, Mg,y (b) = 0, C(f,b) ¢ D' and
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C(f,b) has property P in at least one of his points, and suppose that there exists p > 0so
that A(f,z) C D' for every = € B(b, p) N OD. Then f extends Contmuously in b.
Proof. Suppose that there exists by, b2 € C(f,b), by # by, and D" has property P, in b;. Let
r; — 0, U; € V(b) be so that U;;y C U; C B(b,r;) and U; N D is connected for every j € N.
Let F' C D be compact. Since C(f, b) C 8D', we can suppose that f YF)N B(b,p) # ¢
and we can suppose that f(U;ND)NF = ¢ for every j € N. Let I‘ ={y:[0,1) - D
path |y(0) € f(U; N D) and v has at least a limit point in F} and let I'; be the family of
all maximal liftings of the paths from F starting from the points of U; N D for 3 € N. Let
I'1; = {7 € T'j|y has at least a limit point i 1n B(0,p)NOD} and T'y; = {y € T;|{ImyNS(b, p) # ¢}
for j € N. Then T'; =T, UTy;, F > f(T';) and since D" has property P; in b; and f(U; N D)
is connected, we can find § > 0 so that 6 < M(T) for j € N. Let now y: [0,1) —» D,y € 'y
Since +y is rectifiable, there exists x = hm v(t) € B(b,p) N 0D, and let | € A(f, z). Slnce

A(f,z) C D" for every z € B(b,p) N 8D, we see that [ € AD". On the other side, f o is
a subpath of a path from I“ hence | € D' and we reached a contradiction. It results that
I; = ¢for j € N, and from Lemma 3 we see that Mg, (5)(I'1;) = 0 for every 7 € N. Let
A; = A(B(b,r; )ﬂD S(b,p)ND,(B(b,p)\ (B(b,r;))N D) for j € N. Then I'; > Ajfor j € N
and since MKI(f)(b) = 0, we see from Lemma 7 that ]_ILIg) Mg, (5)(A;) = 0. We have

§ < M(T3) < M(f(Ty)) < M ()(Ty) =

M (5)(T15 U Taj) < Miy(n(Trz) + My (1) (Tog) = Mrey()(T25) < Miey()(85) = 0
if j — oo.

We reached a contradiction. It results that f extends continuously in z.

The following result was proved for plane meromorphic functions by K. Noshiro [21], for
quasiregular mappings by O. Martio and S. Rickman in [17], and for mappings of finite distortion
and satisfying condition (A) by M. Cristea in [3].

Theorem 15. Let n > 2, E C D, f : D — R" be continuous, open, light, a.e. differ-
entiable with Jy(z) # 0 a.e. on D, satisfying condition (a) and so that Mg, (s)(E) = 0. Let
z € (0D\ E) and z € (C(f,z) \ (C(f,z,6D\ E)U () f(B(z,r) N D))). Then either z € E

r>0

and z € A(f, ), or there exists z € E, z; — x so that z € A(f,z) for every k € N.
Proof. We can suppose that z € R™ and let r ™\, 0 be so that S(z,7,) N E = ¢ for every
ke N. Let Fy = C(f,B(z,7%) N ((0D \ E)\ {z})) for k € N. Then Fy,, C F for every

k€ N and C(f,z,0D\ E) = () Fy. Since 2a = d(z,C(f,z,0D \ E)) > 0, we can suppose
keN

that o < d(z, Fy) for every k € N. Let py = d(z, f(S(z,7:) N D) for k € N. Let k € N be fixed
and suppose that p, = 0. We can find ay; € S(z,r) N D so that f (ag; — z and extracting if
necessary a subsequence, we can presume that there exists aj € S(z, ) so that ar; — ag. If
a € S(z,mx) N D, then a € S(z,7) N (0D \ E), hence z € C(f, az) C Fy, which contradicts
the fact that d(z, Fk) > a > 0. It results that ax € S(z,7:) N D) and hence f(ay) = z. Since

z £ () f(B(z,r) N D) and ar — , we see that there exists kg € N so that p, > 0 for every
>0

k > ko, and we can suppose that py > 0 for every £k € N. Since z € C(f, ), there exists
ar € B(z,m) N D so that f(ax) — z, and since f is an open map, we can find 0 < Ty < pk,

Cx C S(z,7;) a cap of the sphere S(z, Tk) and Qx C B(z,7)N.D connected so that f(Qx) = Cj
for k € N.

Let us fix £ € N. We denote for y € Cy and i € N by 7, : [0,1— 3] — B(z,7,) the path
defined by v,:(t) = (1 —t)y +tz for t € [0,1 — 1]. Let A; = {y € Ci|y,: cannot be lifted from

22



every point from Q}, I', = {Vily € A} and let I; be the family of all maximal liftings of the
paths from T, starting from the points of @k, for i € N. We see that a path v € T; cannot have
any limit point in (D N S(z,m) U B(z, ) N (0D \ E)), hence Imy C B(z,7) N D and hence
7 has at least a limit point in E. Since M, (5)(E) = 0, this implies that Mre,(5)(T;) = 0, and
since T'; > £(T;), we see that M(T;) < M(f(Iy) < M, (5(T;) = 0. Then Mn—1(A;) = 0 for

t € N and let A, = U A..
=1

Let y. € C; \ Ay and Yo [0,1) — Bz, Te)s Yo () = A=ty +t-2fort e [0,1). Since

Yr LAk, there exists  : [0,1) — B, 7%) N D a path so that 7(0) € Q1 and fo Gk = Yy,. Let

By, be the set of all limit points of g;. We see that if Wy € By N B(z, ) N D, then Flwp) =z,

hence, since z £ N f(B(z,7) N D), there exists ko € N so that B, C 8D N B(z, %) for every
>0

k > ky. If there ex>ists k > ko so that CardBy, > 1, then, since B, is connected and capF = 0,
we can find a point b, € (B, \ E)NdD N B(z, %), hence z € C(f, br) C Fy. On the other side,
o < d(z, Fy), and we reached & contradiction. It results that CardBy, = 1 for k > ko, hence
there exists z;, —= %1_:(3 q(t) € B(a:, Te)NE for k > ko. If there exists k > ko, so that z, = z, then
z€ Fand z ¢ A(f,z), and if z, # z for every k > ko, then =, — z, 2, € F and » € A(f, zx)
for every k > ko.

Remark 8. Using Remark 4, we see that condition (@) can hold in Theorem 15 if con-
ditions (a,), (a2), (a3) are satisfied and f is only a light map, since the modular inequality
"M(f(T) < M K1(5)(I%)” from Theorem 15 remains valid for light mappings which are not
necessarily discrete.

We extend now a result which for plane meromorphic functions is known as Iversen’s theorem
and Cartwright’s theorem. Our result also extends some theorems from [17] and [24], page 170,
established for quasiregular mappings and some results from [3] established for mappings of
finite distortion and satisfying condition (A).

Theorem 16. Let n > 2, E C D closed in D, f:D\E - R" be continuous, open,
light, a.e. differentiable with Ji(x) # 0 a.e. on D, satisfying condition (a) on D\ E, so that
Ki(f) € L} (D \ F7H(00)), M, (1)(E) = 0, and let = € E be ap essential singularity of f.
Then, if z is an isolated point of E| it results that En\ N f(B(z,7) \E) C A(Y, z) and in the

r>0

general case, there exists z;, € B,z # z, 1 — 2 and so that R"™\ M f(B(z,7) \E) C A(Yf, Bp)
>0

for every k € N.

Proof. Since z ¢ IntD, we see that B(z,r) N 0D = ¢ for r > 0 small enough, hence
C(f,z,0D \ E) = ¢. Since z is an essential singularity of f, we see that cap(Cf(B(z,r) \
E)) = 0 for every r > 0, hence C(f,z) = R". Let » € R"\ N f(B(z,r) \ E). Then

>0

z2e€ C(f,z)\ (C(f, z,8D \E)u Do f(B(z,7)\ E)) and we apply now Theorem 15.

The next theorem extends s, result of O. Martio and S. Rickman from [17] concerning the
density of the points b € S™ at which a quasiregular map f : B® — R™ with cap(Cf(B™) > 0
has some asymptotic values. A version for mappings of finite distortion and satisfying condition
(A) was given in [3] by M. Cristea,

Theorem 17. Let n > 2, B = {b € OD| there exists 7 :[0,1) — D a path so that
}irrll Y(#) =b}, let f: D — R” be continuous, open, light, a.e. differentiable with J #x) £ 0
a.e. on D, satisfying condition (a), and let E = {b € B| there exists 7 :[0,1) — D a path
so that %1_1}117(75) = b and there exists %2111 fOr®) =1 e R™). Suppose that Ki(f) € LL (D)

loc
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and M, (5)(b) = O for every b € B\ E, that capCf(D n B(b, €)) > 0 for every b € B\ E
and every € > 0 and that Mg, (B N B(b,€)) > 0 for every b € B and every € > 0. Then
M, (5)(E N B(b, €)) > 0 for every b € B and every € > 0, hence E is densely in B.

Proof. Suppose that there exists b € B and ¢ > 0 so that Mg, (ry(E'N B(b,€)) = 0. Since
Mg (5 (BNB(b,£)) > 0, we can find a point y € (B\E)NDB(b,£). Let 8:[0,1) — B(y, 5 b
be a path so that %1_rf11,3(t) =y and %1_1}11 J(B(t)) does not exists. Let u # v and s,, / 1 be so

that T&l_r’rgo f(B(sam)) = u, nlggo f(B(s2m+1)) = v and let Fy, = f(B([s2m, Soms1])) for m € N.

Let 7, — 0 be so that 6([som, Somt1]) C B(Y, ) for every m € N. We can suppose that there
exists r > 0 so that ¢(F,) >rand 0 <, < s for every m € NV.

Let T',, = {v:[0,1) — R" path [v(0) € F,.,v(1) € Cf(B(y,£) N D)} and let T',,, be the
family of all maximal liftings of the paths from [ starting from the points of B([sam, Sam1])
for m € N. We see that I',, > f(I';,) and from Lemma 2.6, page 65 in [24], we can find § > 0
so that 6 < M(T,,) for every m € N. Let T, —= {v : 0,1) = DN B(y,£)|y € T, and
7 has at least a limit point in D N B(y, 5)h T2 = {y € Tp|Imyn S(y,5) # ¢} and let
A = A(B(y, )N D, S(y, 5)ND, (B(y,5)\ B(y,7))ND) for m € N. Then I',, = T,y UT o,
e > A, for m € N and since My, (5)(y) = 0, we see from Lemma 7 that 'rrlbl—l;réo My, (5 (Ar) =
0.

Let now v : [0,1) — DN B(y, £), v € T7,,. Then there exists i, == 111r11 v(t) € 8D and since
%inrll f(7(t)) obviously exists, it results that By € E. We see that EN B(y, 5) C EN B(b,¢) and

My, (ENB(b,¢€)) = 0, hence My, (5 (ENB(y, £)) = 0 and this implies that Mesepy(IT 4 ) = 0.
We use now Lemma 3 to see that My, (5)(T'm1) = 0 for every m € N. We have

0 <M(T,) < M(f(Tm)) < M,y (Tm) =

M, (5)(Toma U Tma) < My () (Tot) + My () (Do) = My () (Do) < Mg, (5)(Am) — 0

if m — co. :

We reached a contradiction. We therefore proved that M k:(5)(E N B(b,€)) > 0 for every
b€ B and every € > 0.

We say that a domain D ¢ R" has the continuum property if for every two compact,
disjoint subsets K and M so that K is connected, CardK > 1 and capM > 0, it results that
M(A(K,M, D)) > 0.

Theorem 18. Let n > 2, E C D so that D \ E is open, f: D\ E — R" be continuous,
open, light, a.e. differentiable with J;(z) # 0 a.e. on D\ E, satisfying condition (a) on D\ E, so
that My, (s)(E) = 0 and K;(f) € LL,(D\ E). Let b € 0DN(OD\ E) be so that M, 5y (b) = 0,
M =C () f(B(b,r)\ E)N D) and suppose that there exists a closed set C so that R" \ C has

r>0

the continuous property and C(f,b,0D\ E) C C. Then either cap(M\C) =0, or C(f,b) C C.

Proof. Suppose that cap(M \ C) > 0 and that C(f,b) ¢ C. Let y; € C(f,b) \ C. Since

M= | Cf(B(b,r)\ E)N D), we can find My C M compact so that y; & My, My N C = ¢,
>0

capM; > 0 and there exists p > 0 so that My Cc Cf(B(b,p)\ BE)N D). Now either y; € R",
or y; = oo and C is compact and in both cases we see that r — q(y1,M; UC) > 0. Let
D, =B(b, )N D, K,, = B(b, )N 8D for m € N, and let z, € Ko\ (EU{b}) and z,, € D,,
be so that f(z,,) — y1. Since capE = 0, we see that ma(E) = 0 for every a > 0 and from
Lemma 7 in [3], we see that mp(M(E,2,,) U M(E, 2,,)) = 0 for every p > 1 and every m € N.
We can find a point w,, € B(b, IN\(M(E, z,))UM(E, zm)) and a path g, : [0,1] — B(b, INE
50 that ¢, (0) = Zpm, gm(l) = 2, and Img,, = [T, Wn] U [, 2] for m € N. We take now

24



tm = sup{t € [0, 1lgm(t) € D}, Ay, = @ml[0, tm] for every m e N Let now F': 8D — PR",
F(z) =C(f,z) for z € 6D. Then C(f, b, OD\E)= N F(K,, \ (EU{b})) and let my € N be
m=1

so that F'(K,, \ (E U {6})) c B,(C, g) for every m > m,.

Since C(f, Am(tm), ImA,) C F(K,\ (Eu {6})) c B,(C, £) for m > my and f(Zm) — 3
we see that there exists m; > Mo so that Imf o \,, N By(C,%) # ¢ and f(zm) € B,(u, £) for
m > m;.

We can therefore find closed subpaths O of A, so that T mam C Dy \ B, Imf o Qpy C
By (y1, %) \ B,(y1, £), Imfoaq,, NS, (y1, £)# ¢, Imfo m NS, (y1, 253) # ¢ for every m = Wy
Let H, =T My, Qm = Imf o a,, for m 2> my. Then Q,, are compact, connected subgets
from R*n (B, (v, %) \ B, (y1, £)),9(Qnm) > 7 and 7(Qnm, CUB,(M;, £) > 251 for every m > m,.
Using Theorem 7.1 page 11 in [34], we can suppose that there exists Q = lim @m- Then Q is
compact and connected in R™ N (Bq(yl, %) \ B,(y1, =0, q(Q) > r and 7(Q, C’UBq(Ml, %)) > %

Let A = A(Q, M, R™\ ©), A, = A(Q, M, R"\ B,(C, =) for m € N. Since R” \ C
has the continuum property, we can find § > 0 so that 46 < M(A). Since A,, A, we use
Ziemer’s lemma from [36] to see that M (An) / M(A), hence we cand find my > m; so that
26 < M(A,,,) and = <p- Let U= By(C, = T = Al 15, B \U) for m > m,. Using
Lemma 6 in [3], we see that nPHéo M(T, ) = M(A,,,), and let my > may be so that § < M(T;)
and F(K, \ (EU{b}) C U for m = ms. Let A,, = A(B(p, 1N D,CB(b, A=) N D, (B(b, ==}
B(b, £))ND) for m> ms and let T',, be the family of all maximal liftings by the map g = fID\E
of the paths from r, starting from some points of H,, for m > m3. Let I',,; = {y e 7y
has at least a limit point in E}, Tra = {y e I7. 1y has at least a limit point in K., \ E},
s ={ye 7 [ Imyn S, m%) # @} for m > m;. Since 0D,,, C EU (Kms \ E) U S(b, mia) and
M, C Cf(B(», ZI\E)ND) for m = ms, we see that [, =T, | Ulm2 Ul s for m > my, and also
r > f(T'1) for m > my. Let now 7:0,1] = K., \ (EU {8})), ¥ € Thna. Since 7 1s rectifiable,
there exists w = %1_1;11 Y(t) and w € K, \ (EU{b}). Since J oy is asubpath of a path from I,
there exists | = 11_1)111 JF(v(t)) € CU. On the other side, l € C(f,w, Ima) F(Kn \(EU{b})) c U

and we reached a contradiction. It results that 2 = ¢, hence Iy, =T, uU Iz for m > ms.
Also, T3 > A, and from Lemma 3, we see that My (5 (Tr) = My, (T ) for m > ms. Using

m

Lemma 7 and the fact that M, (5)(b) = 0, we see that lim My, 5 (Ar) = 0. Since Imisa
m—00
path family from D \ E, and f satisfies condition (a) on D \ E, we have for m > mg that

0 SM(T,,) < M(f(T\)) < Mp,(5)(Tm) = My, (5)(T7,) =

M, () Ty UTs) < M, (1) (To1) + Mgy y(Tom) = Mrci(5)(Tma) < Mig(5y(Am) — 0

IS m — co.

We obtained a contradiction. We proved that if cap(M \ C) > 0, then C(f,b) c C.

Remark 9. We see from Lemma 2.6, page 65 in [24] that R” has the continuum property.
We also see from [31] that if 7 ¢ R" is closed and Mp_1(F) =0, then M(A(A,B,R™\ FY) =
M(A(A,B,W)) for every A B ¢ R” \ £ disjoint sets, and this implies that if F ¢ R" is
closed and m,,_,(F ) = 0, then R" \ F' has the continuum property. Using Lemma 4 in [3],
we see that R \ B has the continuum property for every ball B ¢ R, Also, if D, /' D are
domains having the continuum property for every p € N, then D has the continuum property.
Now, if BCc R” is a ball, G = R"\ B and f:D—Gisa homeomorphism which is locally
quasiconformal, it results that D has the continuum property and such an important case holds
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when f is a C* diffeomorphism. In this way we see that if H C R" is a half space, then R™ \ H
has the continuum property. Let now C C R™ be a Jordan domain so that there exists a
C! diffeomorphism f : C — S™ and C is starlike with respect to a point a € C, and let
D =R"\C. Taking F: R* —» R", F((1 —t)a +tz) = & fort > 0 and z € C, we see that
F:R™ — R" is a diffeomorphism which maps D ono R™\ B, and this implies that D has the
continuum property.

We see now that we can take the set C from Theorem 18 a ball, or a half space, so that

ma-1(C) = 0 or so that C = [ D,, where D, are starlike Jordan domains so that dD, is
pEN

diffeomorphic to S™ for p € N. An important case holds if m,_1(C(f,b,0D \ E)) = 0, and
in this case we extend a result from [3] given for mappings of finite distortion and satisfying
condition (\A). When C is a ball from R™ in Theorem 18, we obtain a ”maximum principle”
which extends a similar one from [3] given for mappings of finite distortion and satisfying
condition (A).

If mn, 1 (C(f,b,0D\ E)) = 0 and the set M from Theorem 18 is so that m,,_1(M) > 0, then
the condition ”cap(M \ C(f,b,0D \ E)) > 0” obviously holds, and we obtain that C(f,b,0D \
E) = C(f,b). Essentially, the result says that if the cluster set C(f,b,0D \ E) is small enough
and the set M is great enough, then we have the equality "C(f,b,0D \ E) = C(f,b)”. An
important case when the condition "cap(M \ C(f,b,0D \ E)) > 0” holds is when f is bounded
near b and m,,—1(C(f,b,0D \ E)) = 0.

In the case n = 2, we obtain a special case of Theorem 18.

Theorem 19. Let n =2, E C D be so that D\ E is open, b € D, f : D\ E — R
continuous, open, light, a.e. differentiable with J;(z) # 0 a.e. on D \ E, satisfying condition
(@) on D\ E , so that Mg, (E) = 0, My, (n(b) = 0, K;(f) € LL(D\ E). Let G C D
be a Jordan domain so that there exists 7 : [0,1] — D arcs, k = 1,2,3 so that Imy; C D,
1%([0,1)) € D, %1_1}117’“@) = b, C(f,b,Imy) = {c}, k = 1,2 and 8G = Im(y1 \V 75 \VV 73), let
M =C () f(B(b,7)\ E)NG) and suppose that capM > 0. Then £1ni flzei=e

r>0

2

z€EG\E

Proof. Since capM > 0 and C(f,b,0G\ E) = {c}, it results that cap(M \ C(f,b,0G\ E)) >
0. We see now from Theorem 18 that C(f,b,G\ E) = C(f,b,0G \ E) = {c}.

A theorem of Lindeldf says that if f : B2 — C is meromorphic and admits two distinct
asymptotic values at some point b € S?, then f assumes infinitely often in any neighborhood of
b all values of the extended plane, with at most two possible exceptions. We use now Theorem
18 to extend Lindelof’s theorem and a result from|3].

Theorem 20. Let n = 2, E C D so that D\ E is open, b € 8D, f : D\FE — R
continuous, open, light, a.e. differentiable with Js(z) # 0 a.e. on D \ E, satisfying condition
(a) on D\ E so that M, (5)(E) =0, Mg, (5)(b) = 0 and K(f) € L}, (D \ E). Suppose that f
admits two distinct asymptotic values in b. Then there exists M C R? with capM = 0 and so
that R*\ M C f((U \ E) N D) for every U € V(b).

Proof. We know that the locus of a path is also the locus of an arc, hence we can suppose
that there exists arcs v : [0,1] — D with 7([0,1)) C D, v(1) = b, %E%f(?k(t)) = By,
k = 1,2, with by # by, and we can suppose that Imy; N Imy, = {b}. We can also find
an arc 73 : [0,1] — D and a Jordan domain G C D so that G = Im(y;\/ 75 \/ 7s). Let
M =C () f(B(b,r)\ E)NG). Since capE = 0, we see that b € G N (dG \ E)' and suppose

>0
that capM > 0. Since C(f,b, 0G\E) = {b1, ba}, it results that cap(M\C(f,b,0G\ E)) > 0, and
from Theorem 18 we see that C(f,b, G\E) = C(f,b,0G\E) = {b1,by}. On the other side, since
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G is a Jordan domain, is locally connected in b, Since F is nowhere disconnecting, we see that

also G'\ E is locally connected in b and this implies that C(f,b, G \ E) is connected. We reached

a contradiction. It results that capM = 0 and we see that R*\ M = N f (B(o,m\E)YNG) c
r>0

F(U\ E)N D) for every U e V(b).

We extend now another theorem of Lindeldf given for bounded analytic functions and gen-
eralized by M. Vuorinen in [33] for quasimeromorphic functions.

Theorem 21. Let n>2, E C D be so that D\ F is open, f: D \ E — R" be continuous
on D\ E, open, light, a.e. differentiable with Jf(z) # 0 ae. on D \ E satisfying condition
(a) on D\ E, so that My (5)(E) = 0 and K;(f) € L} (D\E). Let b € EN (8D \ EY,

loc

M =C ) f(B(b,r)\ E)N D) and suppose that capM > 0 and there exists lirrll) fz) = o
>0 :cEzB—D)\E

Then there exists lirri f(z) and equals .
z€D\E

Proof. We see that C(f,b,6D \ E) = {a}, hence cap(M \ C(f,,6D\ E)) > 0. We use

now Theorem 18 to see that C(f,b) = C(f,5,0D\ E) = {a}, hence lirri f(z) = a.
z€D\E

We remarked that if the set C' from Theorem 18 is a ball we obtain & ”maximum principle”.
We use now this maximum principle to extend a similar one established in [17] for quasiregular
mappings and in [3] for mappings of finite distortion and satisfying condition (A):

Theorem 22. Let n > 2 E ¢ D so that D \ E is open and 9D \ (E N dD) is densely
in 0D, f : D — R continuous and open on D, light, a.e. differentiable with J #(z) # 0 ae.
on D\ E, satisfying condition (@) on D\ E, so that My, (5)(E) = 0 and K;(f) € L} (D\E).

loc

Suppose that there exists I > 0 so that lim sup [f(y)] < L for every z € 9D \ E and let
y—e
Mz =C () f(B(z,r)\ E)N D) for z € E. Then, if cap(M, \ B(0, L)) > 0 for every z € F, it

>0
results that | f(z)| < L for every z € D.

Proof. We see that ENOD ¢ (OD\E), that C(f,, D\E) c B(0, L) for every z € OD\ E
and hence C(f,z,0D \ E) c B(0, L) for every z € E N 8D. Taking the set C = B(0, L) in
Theorem 18, we see that C(f,z, D\ E) C B(0, L) for every z € ENAD. Since D\ E is densely
in D and f is continuous on D, we see that C(f,z) C B(o, L) for every ¢ € 0D. We use
now the openness of the map f on D and the fact that f takes finite values on D to see that
|f(z)| < L for every z € D.

We extend now a theorem which is known for plane meromorphic functions as Iversen-
Tsuji’s theorem. A version for quasimeromorphic mappings can be found in [17] and [33] and
a version for mappings of finite distortion and satisfying condition (A) was given in [3].

Theorem 23. Let n > 2, E C D be so that D\ E is open, b € (OD\E), f: D\E — R" be
continuous, open, light, a.e. differentiable with J f(z) # 0a.e. on D\ E, satisfying condition (a)
on D\ E, so that Mg, 5(E) = 0 and Ki(f) € Li,(D\E). Let M =C ) f(B(b,7)\ E)ND) and

>0

>
suppose that cap(M \ B(0,r)) > 0 for every r > 0. Then lim sup |f(z)| = Iirrg (limsup | f(z)|).
z—b zezég\E —z

Proof. Let a = limsup | f(z)| and let 4 : 0D\ E — Ry be defined by (z) = lim sup | f(z)|
z—b T—2z
for 2 € OD\ E. Let 8 = lirrll) $(z). Then 8 < o and we show that o < B. We can

zEOD\E
suppose that § < co and let € > 0. We can find 0 > 0 so that C(f,z) C B(0,8 + €) for
every z € (0D \ E) N B(b,4), hence C(f,b,0D \E) C B(0,8+¢). Ifbc 0D \ E, then
C(f,b) € B(0,B+¢), and if b € E, we see from Theorem 18 that C(f,b) C B(0,8+¢€). It

ar



results that C(f,b) C B(0,8 + ¢) and letting € — 0, we see that C(f, b) C B(0,8) and hence
that o < .

Remark 10. We don’t need the ”singular” set E from Theorems 15-17, 20-23 to be
compact as in [17], [24], [33]. Also, if we can continuously extend the map f on DN E to a
map F: D —» R" in Theorems 18, 19, 20, 21, 23, the conclusions of these theorems will hold
for the new cluster set C(F,b) instead of C (f,b). We can use for instance the conditions from
Theorem 13 to extend f continuously ono DN E.
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