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Functionals associated with gradient stochastic flows

and nonlinear parabolic equations

I. Molnar and C. Varsan

[. T'wo problems for stochastic flows asociated with nonlinear
parabolic equations

1 Introduction

Consider that {Z,(t; M) : t € [0,T]} is the unique solution of SDE driven by complete
vector fields f € (Cy NCE N C?)(R™;R™) and g € (C} NC*)(R™; R™),

) d:,z = o(\) f(Z)dt + g(T) o dw(t), t € [0,T], z € R",
1 30)=rern,
where p € (CL NC?)(R™) and w(t) € R is a scalar Wiener process over a complete filtered

probability space {2, F D {F;}, P}. We recall that Fisk-Stratonovich integral “o” in (1.1)
is computed by

o(w) 0 du(t) = o(s) - dw(t) + 50ug(z) - g(2)ek,

using Ito stochastic integral “.”.

We are going to introduce some nonlinear SPDE or PDE of parabolic type which de-
scribe the evolution of stochastic functionals u(t, z) := h(¥(t, x)), or S(t, z) := Eh(Zy(T;t, x)),
t €[0,T], z € R, for a fixed h € (C} NC?)(R™). Here {\ =(t,z) :t € [0,T],z € R} is

the unique solution satisfying integral equations

(1.2) Z,( ) =z € R, t € [0,T).



The evolution of {S(¢, ) : t € [0,T],z € R"} will be defined by some nonlinear backward
parabolic equation considering that {Zy(s;t,2) : s € [t, T],z € R} is the unique solution
of SDE

dsZ = p(3(t, ) f(T)ds + g(Z) o dw(s), s € [t, T},
{ z(t) =z € R™

2 Some problems and their solutions

Problem (P1). Assume that g and f commute using Lie bracket, ie.

(2.1) g, fl(z) = 0, z € R™,

where [g, f](z) := [0.9(2)]f(2) — [0 f (z)]g9(),
(22) TVK = pe[0,1),

where V = sup{|9;p0(z)| : z € R}" and K = sup{|f(z)|;z € R"}.

Under the hypotheses (2.1) and (2.2), find the nonlinear SPDE of parabolic type sat-
isfied by {u(t,z) = h(¢(t,2)) :€ [0,T],z € R}, h € (C; NC*)(R™), where {A = (t,z) €
R" : ¢ € [0,7],z € R*} is the unique continuous and F;-adapted solution of the integral
equation (1.2).

Problem (P2). Using {\ = ¢(¢,z)} found in (P1), describe the evolution of a functional
S(t,z) := Eh(Ty(T;t,z)) using backward parabolic equations, where {Eslst,) 2 8 €
[t,T]} is the unique solution of SDE

(%”{%3=ﬂwt@ﬁ@mmg@pmuqsg%ﬂ
2(t) =z € R™.

2.1 Solution for the Problem (P1)

Remark 2.1. Under the hypotheses (2.1) and (2.2) of (P1), the unique solution of integral

equations (1.2) will be found as a composition

(2.4) (¢, @) = $(t, 2(t,2)),



where Z(¢, ) := G(—w(¢))[z] and A = e z),t € [0,T], z € R™, is the unique deterministic

solution satisfying integral equations
(2.5) A= F(=0(t; \)[z] =: V(t, 2, A), t € [0,T), z € R™

Here F(0)[z] and G(7)[z], 0,7 € R, are the global flows generated by complete vector fields
f and g correspondingly, and 6(¢; \) = tp(A). The unique solution of (2.5) is constructed

in the following

Lemma 2.1. Assume that (2.2) is fulfilled. Then there exists a unique smooth deter-
ministic mapping {A = J(t,z) :t € [0,T],xz € R"} solving integral equations (2.5) such
that

~

F(0(t;9(t, 2)) (¢, 2)) = z € R™, £ € [0, T,

26) { .
3(6.2) — 2l < R(T,2) = S22,

€ [0,T), where r(T, z) = TK|p(z)],
Oe(t, 2) + 0(t, 2) f(2)p(W(t,2)) = 0, t € [0,T), = € R,
{b\(O,z) =z € R".

Proof. The mapping \7(75, z; A) (see (2.5)) is a contractive application with respect to A €
R”, uniformly of (¢,2) € [0,7] x R™ which allows us to get the unique solution of (2.5)

using a standard procedure (Banach theorem). By a direct computation, we get
(28) 10V (t, 2 V)| = F(V(E, 2 \)0N0(5 )| S TVK = p € [0, 1),

for any t € [0,7], z € R”, A € R"*, where 0,6(t; \) is a row vector. The corresponding
convergent sequence {\(t,z) : t € [0,T],z € R"};>0 is constructed fulfilling

(29) )‘O(ILHZ) =z, /\k+1<t>z) = v(tv <5 Ak(t Z))) t > 07

Ner1(t, 2) = Mt 2)| < ¥t 2) = Xo(t, 2)], b > 0

(2.10) -
(At 2) = dolt, 2)| < V(¢ 2 2) — 2] S TK]p(z)| =:7(T) 2).

Using (2.10) we obtain that {\ (¢, 2) }xk>o is convergent and

R . T
(2.11) (2, 2) = lim Ax(t,2), [9(t,2) — 2 < Tl(:;)

= R(T, 2), t € [0, T).
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Passing k — oo into (2.9) and using (2.11) we get the first conclusion (2.6). On the other
hand, notice that {V(t,z ) : t € [0,T], z € R*} of (2.5) fulfils

(2.12) V(&,5(t, A); A) = A, t € [0,T], where g(t,\) = F(6(t; A))[A]-

This shows that all the components of ‘7(75, z;\) € R" are first integrals associated with
the vector field f1(2) = o(A)f(2), z € R", for each A € R", i.e.

(2.13) 8,V (¢, 5t A); A) + [8.V (&, 5, A); MIf G, A)e(A) =0, t € [0, T

is valid for each A € R™. In particular, for A = w/(t,\z) we get §(t, ¥(t, z)) = z and (2.13)
becomes (H-J)-equation

~

(2.14) V¢, 2 9(t, 2)) + [0:V (¢, 29 (8, 2) f(2)p(P(t, 2) = 0, ¢ € [0,T], z €R™

Combining (2.5) and (2.14), by direct computation, we convince ourselves that A= @(t, z)
fulfils the following nonlinear (H-J)-equation (see (2.7))

~

(215 b(t, 2) + [0.9(t, N f (2)p(¥(t, 2) = 0, ¢ € [0, T), z € R,
. $(0,2) =z € R,

and the proof is complete. O

Remark 2.2. Under the hypothesis (2.1), the stochastic flow {Z,,(t; A) : t € [0,T],\ € R"}
generated by SDE (1.1) can be represented as follows

(2.16) Z,(t;N) = G(w(t)) o F(O(t; M)\ = H(t,w(t); M), t € [0,T], A e R
where 0(t; ) = to(A).

Lemma 2.2. Assume that (2.1) and (2.2) are satisfied and consider {\ = (t,z) i t €
[0,T), z € R*} found in Lemma 2.1. Then the stochastic flow generated by SDE (1.1) fulfils

(2.17) {Z,(t; ) : t € [0,T), A € R*} can be represented as in (2.16),

W(t,x) = W(t, Z(t, ) is the unique solution of integral equations (1.2),
where Z(t, ) = G(—w(t))[x].

(2.18)



Proof. Using the hypothesis (2.1), we see easily that
(2.19) y(0,0)[\] :==G(0) o F(O)[N], 0,0 e R, A\ e R®

is the unique solution of the gradient system

oy (0, 0) A = f(y(0,0)[A]), Osy(0,0)[A] = g(y(0, 5)[A]),
y(0,0)[A] = A

(2.20)

Applying the standard rule of stochastic derivation associated with the smooth mapping
w(0,0) = y(0,0)[A] and the continuous process 6 = 0(t; \) = tp(N), o = w(t), we get that
Up(t; A) = y(0(t; A), w(t)), t € [0,T], fulfils SDE (1.1), i.e.

ot} diip(t; X)) = 0N f ([, (t; 7)) dt + g(F,(; V) 0 dw(t), t € [0,T),
' To(0; 1) = \.

On the other hand, the unicity of the solution satisfying (1.1) lead us to the conclusion
that Z,(t; A) = Yp(t; M), t € [0,77], and (2.17) is proved. The conclusion (2.18) is a direct
consequence of (2.17) combined with {\ = 9(t,z) : t € [0,7],z € R*} is the solution

defined in Lemma 2.1. The proof is complete. O

Lemma 2.3. Under the hypotheses in Lemma 2.2, consider the continuous and Fi-adapted
process Z(t,z) = G(—w(t))[z], t € [0,T], x € R*. Then the following SPDE of parabolic
type is valid

di2(t, x) + 0,2(t, x)g(x)odw(t) = 0, t € [0, T],zz € R",

(2.22)
z2(0,z) =z

>
O

where the Fisk-Stratonovich integral 18 computed by

1
h(t, z)odw(t) = h(t,z) - dw(t) — 581h(t, z)g(z)dt,
using Ito stochastic integral “”.

Proof. The conclusion (2.22) is a direct consequence of applying standard rule of stochas-

tic derivation associated with o = w(t) and smooth deterministic mapping H(o)[z] =



G(—o)[z]. Tn this respect, using H (o) o G(o)[A] = A € R" for any z = G(o)[N], we get
0, {H(0)[z]} = —0:{H(0)[z]} - g(z), 0 € R, z € RY,
(2.23) { B2{H(0)[z]} = 0o{0,{H(0)[z]}} = Oo{—0u{H(0)[]} - 9(2)}
- aﬂf{aﬂ?{H(g)[m]} ’ g(ﬁ)} ’ g(iE), ceR, ze R™.

The standard rule of stochastic derivation lead us to SDE
- 1
(224) d2(t,2) = B, TH(@) el }omuty - du(t) + 5O H(@) el omotts € 0.7

and rewritting the right hand side of (2.24) (see (2.23)) we get SPDE of parabolic type
given in (2.22). The proof is complete. O

Lemma 2.4. Assume the hypotheses (2.1) and (2.2) are fulfilled and consider {\ =
W(t,z) : t € [0,T),z € R"} defined in Lemma (2.2). Then u(t,z) = h(¥(t,z)), t € [0,T],
z € R, h e (C NC?)(R™), satisfies the following nonlinear SPDE of parabolic type

(2.95) dou(t, z) + (Bpult, 7), f(@))p((t, ©))dt + (Bzult, z), g(x))odw(t) = 0
' w(0, ) = h(z), t € [0,T), z € R,

>
[©]

where the Fisk-Stratonovich integral is computed by

h@@ﬁmmw:h@xymuwf%@megwﬁ.

Proof. By definition (see Lemma (2.2)), ¥(t,z) = B(t, 2(t,z)), t € [0,T], where z(,z) =
G(—w(t))[z] and {$(t,z) € R* : t € [0,T),z € R"} satisfies nonlinear (H-J)-equations
(2.7) of Lemma 2.1. In addition {Z(t,z) € R* : t € [0,T],z € R™} fulfils SPDE (2.22) in

Lemma 2.3, i.e.
(2.26) diz(t,x) + 02(t, z)odw(t) =0,t € [0,T], z € R"™.

Applying the standard rule of stochastic derivation associated with the smooth mapping
{\ = ¥(t,2) : t € [0,T],z € R"} and stochastic process z(¢,z) := G(—w(t))[z] =:
H(w(t))[z], t € [0,T), we get the following nonlinear SPDE

(227) dep(t, z) + Opp(t, 2) f () (P (t, x))dt + 0x3) (¢, ) g(x)odw(t) = 0,
' $(0,z) =z, t € [0, T).



In addition, the functional u(t,x) = h(i(t,z)) can be rewritten u(t,z) = u(t, 2(¢, z)),
where u(t, z) := h('g/b\(t, z)) is a smooth deterministic functional satisfying nonlinear (H-J)-

equations (see (2.7) of Lemma 2.1)

(2.28 Ou(t, z) + (0,uUl(t, z), f(2))p(¥(t,2)) =0, t € [0,T], z € R",
u(0, 2) = h(z).

Using (2.26)and (2.28) we obtain SDPE fulfilled by {u(t,z)},

(2.20) dyult, z) + (8:u(t, 2(t, 7)), f (2(t, 2)))p(¥(t, 2))dt + (Opult, z), g(z))odw(t) = 0,
' u(0,z) = h(z), t € [0,T], z € R,
The hypothesis (2.1) allows us to write

(0.u(t, 2(t, ), f(2(t, x))) = B,4(t, 2(t, x))[0:2(¢, )[0:2(t, )] (2L, 2))
= (O,u(t, z), f(z)), t € [0,T), z € R",

(2.30)

and using (2.30) into (2.29) we get the conclusion (2.25),
(231) Ocult, z) + (Gpult, z), f(2))p((t, ))dt + (Ozu(t, z), g(x))3dw(t) = 0,
' u(0,z) = h(z), t € [0,T], z € R",

where the Fisk-Stratonovich integral “6” is computed by
. 1
(2.32) h(t,z)odw(t) = —éazh(t, z)g(z)dt + h(t, z) - dw(t),
using Ito integral “-”. The proof is complete. O

Remark 2.3. The complete solution of Problem (P1) is contained in Lemmas 2.1-2.4. We

shall rewrite them as a theorem.

Theorem 2.1. Assume that the vector fields f € (Cy N CE N C?(R™RY), g € (CE N
C*)(R™R"), and scalar function ¢ € (C} NC2)(R™) fulfil the hypotheses (2.1) and (2.2).
Consider the continuous and Fi-adapted process {\ = ¢(¢t,z € R") : t € [0,T),z € R"}
satisfying integral equations (1.2). Then u(t,z) = h((t,z)), t € [0,T], = € R", fulfils
nonlinear SPDE of parabolic type (2.25) (see Lemma 2.4), for each h € (C} N C*)(R™).



2.2 Solution for the Problem (P2)

Using the same notations as in subsection 2.1, we consider the unique solution {Zy(s;t, ) :
s € [t,T]} satistying SDE (2.3) for each 0 <t <T and z € R™. As far as SDE (2.3) is a
non-markovian system, the evolution of a functional S(t,z) := Eh(Z4(T;t,x)), t € [0,7T7,
z € R*, h € (C} NC?)(RM), will be described using the pathwise representation of the

conditional mean values functional
(2.33) v(t,z) = E{h(@y(T;t, 7)) | Yt o)}, 0<t < T, z € R"

Assuming the hypotheses (2.1) and (2.2) we may and do write the following integral rep-

resentation
(2.34) Zy(T;t,z) = G(w(T) — w(t)) o FI(T —t)p((t,2)z], 0<t < T, z € RY,

for a solution of SDE (2.3), where G(0)[2] and F(7)[z], 0,7 € R, z € R", are the global flows
generated by g, f € (C2NC?)(R™ R™). The right side hand of (2.34) is a continuous mapping
of the two independent random variables, z; = [w(T') — w(t)] € R and 2z, = Y(t,z) € R"
(F-measurable) for each 0 <t < T, z € R™. A direct consequence of this remark is to use

a parameterized random variable

(2.35) ylt, ;) = Gw(T) — w(t)) o FI(T — )p(N)][z}, 0 <t < T,
and to compute the conditional mean values (2.33) by

(2.36) v(t,z) = [Bh(y(t, 7;1)](A = ¥(t, ¥)).

Here the functional

(2.37) ult, ;) == Eh(y(t,z; A)), t € 0,7, z € R",

satisfies a backward parabolic equation (Kolmogorov’s equation) for each A € R™ and

rewrite (2.36) as follows,

(2.38) v(t,x) = u(t, z;9(t,2), 0 <t <T, z € R™.

In conclusion, the functional {S(t,z)} can be written as

(2.39) S(t,z) = E[E{h(Zy(T;t,z)) | ¥(t,2)} = Eu(t,z;v(t,z)),0<t < T, z € R,
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where {u(t,z;\) : t € [0,T],z € R"} satisfies the corresponding backward parabolic equa-

tions with parameter A € R™,

Byu(t,a; \) + (Ooult, 75 X), £(2, X)) + 5 (0%u(t, 7 Ng(a), g(a)) = O

u(T, %) = ha), £z, 3) = o) (z) + 3 [Bhg(a)lg(a).

We conclude these remarks by a theorem.

(2.40)

Theorem 2.2. Assume that the vector fields f, g and the scalar function o of SDE (2.3)
Julfil the hypotheses (2.1) (2.2), where the continuous and F,-adapted process {1)(t,z) €
R™:t € [0,T]} is defined in Theorem 2.1. Then the evolution of the functional

(2.41) S(t,z) == Eh(Zy(T;t,2)), t € [0,T), z € R™, h € (C} NC?)(R")

can be described as in (2.39), where {u(t,z) : t € [0,7],z € R"} satisfies linear backward
parabolic equations (2.40) for each \ € R™.

Remark 2.4. Consider the case of several vector fields defining both the drift and diffusion
of SDE (1.1), i.e.

diT = 0i( M) fi(@)]dt + ) g:(Z) o dwy(¢), t € [0,T],
(2.42) Z Z

z(0) =X e R™

We notice that the analysis presented in Theorems 2.1 and 2.2 can be extended to this

multiple vector fields case (see next section).

3 Multiple vector fields case

We are given two finite sets of vector fields {f1,..., fn} C (Co N CL N C?)(R™;R") and
{gl, -+, 9m} C (CyNC*)(R™ R™) and consider the unique solution {Z,(t,\) : t € [0,T],\ €
} of SDE

thell == sz dtJrz:gZ )odw;(t), t €[0,T), T € R,

( 0)=XeR"”



where © = (p1,...,9m) C (Ci NC?) are fixed and w = (wi(t), ..., wn(t) € R™is a
standard Wiener process over a complete filtered probability space {£2,F D {F:}, P}.

[{9G 1/

Fach Fisk-Stratonovich integral “o” in (3.1) is computed by

(82) ais) 0 dus(t) = (o) - dust) + 500y ()

using Ito integral “”.
Assume that {\ = ¢(t,z) € R* : t € [0,T],z € R"} is the unique continuous and

F,-adapted solution satisfying integral equations
(3.3) Z,(t;\) =z € R", t €[0,T].

For each h € (C} N C?)(R™), associate stochastic functionals {u(t,z) = h(i(t,z) : t €
[0, 7],z € R™)} and deterministic mappings {S(t,z) = Eh(@y(T;t,x)) : t € [0,T),z € R"},
where {Zy(s;t,7) : s € [t,T],z € R} satisfies the following SDE

Az =D eu®(t,2))fi(@ ds+Zgz %) o dwi(t), s € [t, T,

Problem (P1). Assume that

M={fi, s fmi 91y~ , gm} are muttualy commuting using Lie bracket 1.e.
[X1, Xo](z) = 0 for any pair X1, X; € M

1
5) TV,K; = p; € [0, =),
(3.5) pi €0, —)

where V; == sup{|8,:(x)| : = € R"} and K; = {|fs(z)| : z € R*},i=1,...,m

Under the hypotheses (3.4) and (3.5), find the nonlinear SPDE of parabolic type sat-
isfied by {u(t,z) = h(¢(t,)),t € [0,T],z € R"}, h € (Ck N C?)(R™), where {A =(t,z) €
R* : ¢t € [0,T],z € R"} is the unique continuous and Fi-adapted solution of integral
equations (3.3).
Problem (P2). Using {A = 9(t,z) € R" : t € [0,T],z € R"} found in (P1), describe
the evolution of a functional S(¢,z) = Eh(Zy(T';t, x)) using backward parabolic equations,

10



where {Zy(s;t,2) : s € [t,T]} is the unique solution of SDE

©i(Y(t, ) f:(Z)]ds + 9i(Z) o dw;(s), s € [t, T,
(3.6) Z Z

(t) =7 € R™.
3.1 Solution for (P1)

Under the hypotheses (3.4) and (3.5), the unique solution of SPDE (3.1) can be represented
by

(3.7) Zp(A) = G(w(t)) o F(O(t; )N = H(t,w(t); A)

where

G(o)[z] = Gi(o1) 0+ 0 Gp(om)lz], 0 = (01,...,0m) € R™,
F(o)[z] = Fi(o1) 0+ -0 Fr(om)[2], 0(t; A) = (tpi(N), ..., tom(N) € R™ and
{(Fi(o0)[z], Gi(03)[e]) : 0: € R, 2 € R}

are the global flows generated by (f;,¢:), 7 € {1,...,m}.

The arguments for solving (P1) in the case of one pair (f, g) of vector fields (see sub-
section (2.1)) can be used also here and we get the following similar results. Under the
representation (3.7), the unique continuous and Fi-adapted solution {\ = (¢, z) : t €
[0,T],z € R™} solving equations

(3.8) Z,(t; \) =z € R™ t€[0,T)
will be found as a composition
(3.9) 9(t, 2) = ¥(t, 3(t, v), 2(t, ) = G(~w(t))[2].

Here A = 1(t, 2), t € [0,T], z € R™ is the unique solution satisfying deterministic integral

eqations

(3.10) X = F(=0(t; \)[2] = V(t,2;A), t € [0,T), z € R™.

11



Lemma 3.1. Asume that (3.4) and (3.5) is fulfilled. Then there ezisis a unique smooth
mapping {\ = D(t,2) : t €[0,T),z € R*} solving deterministic integral equations (3.10)
such that

F(O(t; (¢, 2)))[(t, 2)] = = € R™, ¢ € [0, T,

(3.11) R ”T )
lp(t, 2) — 2| < R(T,z) = 1(13 p)

where p = p1+ -+ pm € [0,1) and r(T, z) = TS Kilei(2)|-

In addition, the following nonlinear (H-J)-equation is valid

,t€[0,T], z e R,

at{p\(tv Z) + 8212(757 Z)[Z @z(&(t’ Z))fz(z)] = Ov te [O’T]v zZ € Rn7
(3.12) i=1
’IZ(O, g) =z

The proof is based on the arguments of Lemma 2.1 in subsection 2.1.

Lemma 3.2. Assume that (3.4) and (3.5) are satisfied and consider {A= D(t,z) € R™:
t €[0,T),z € R*} found in Lemma (3.1). Then the stochastic flow generated by SDE (3.1)
fulfils
(3.13) {Z,(t; \) :t € [0,T], A € R"} can be represented as in (3.7),
(3.14) P(t, ) = W(t,2(t, x)), is the unique solution of (3.8),

. where 2(t,z) = G(—w(t))[z].

The proof follows the arguments used in Lemma 2.2 of section 2.1.

Lemma 3.3. Under the hypothesis (3.4), consider the continuous and F;-adapted process
2(t,z) = G(—w®)[z], t € [0,T], = € R". Then the following SPDE of parabolic type s
valid

diz(t,z) + Y 8:2(t, z)gi(w)edwi(t) = 0, € [0,T), z €R”
(3.15) i=1
z(0,z) = =,

where the Fisk-Stratonovich integral ‘6”7 is computed by
o 1
hi(t, 2)0dw;(t) = h(t, ) - dwi(t) — §8xhi(t, z)g;(x)dt
using Ito stochastic integral “”.
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Proof. The conclusion (3.15) is a direct consequence of applying standard rule of stochastic
derivation associated with o = w(t) € R™ and smooth deterministic mapping H(o)[z] =
G(—0o)[z]. In this respect, using H(c) o G(0)[A\] = A € R for any z = G(0)[\], we get
05, H (0)[z] = —0,{H(0)[z]}9s(z), o = (01, ...,0m) € R™, z € R,
(3-16) § 05 {H(0)[a]} = 05, {0s, {H (0)[2]}} = O {0 { H(0)[a]}0s(x)}
= 0:{0:{H(0)[z]}gi(2)}9i(z), 0 € R™, & € R"

for each i € {1,...,m}. Recall that the standard rule of stachastic derivation lead us to
SDE

1 m
(3.17) d,z(t, z) Zagl{H (%]} (o=w(ey) - duwi(t) +5 Z (2]} (r=w(ey dt,

for any ¢ € [0,7], = € R™. Rewritting the right hand side of (3.17) (see (3.16)) we get
SPDE of parabolic type given in (3.15). |

Lemma 3.4. Assume the hypotheses (3.4) and (3.5) are fulfilled and consider {A =
»(t,z) ¢t € [0,T],z € R"} defined in Lemma 3.2. Then u(t,z) := h(y(t,x)), t € [0,T],
z € R, h € (Cy NC?)(R™), satisfies the following nonlinear SPDE

[ dyult, o)+ (0,u(t, ), > et ) ()t
(3.18) L i Beult, ), gi(x)ySdwi(t) = 0, ¢ € [0, T]
u(0,z) = h(z)

where the nonstandard Fisk-Stratonovich integral “6” is computed by
1
halt, z)odwi(t) = hi(t, ) - dwi(t) — 50:hi(t, )gs(w)dt.
The proof uses the same arguments as in Lemma 2.4 of section 2.1.

Theorem 3.3. Assume that the vector fields {f1,..., fn} C (Cy N C} N C2)(R™R),
{91, 9m} C (G NC?)(R™RY) and scalar functions {py, ..., @n} C (C} N C?)(R™) fulfil
the hypotheses 3.4 and 8.5
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Consider the continuous and Fi-adapted process A=yt z)eR:t€[0,T |,z € R*}
satisfying integral equations (3.8) (see Lemma 3.2). Then {u(t,z) = h(y(t,z)) = t €
0,7,z € R} fulfils nonlinear SPDE of parabolic type (3.18) (see Lemma 3.4 ) for each
h e (CLNCE)(R™).

3.2 Solution for (P2)

As far as SDE (3.6) is a non-markovian system, the evolution of a functional S(t,z) =
Eh(Zy(T;t, 7)), t € [0,T), z € RY, for each h € (C} NC?)(R™) will be described using the

pathwise representation of the conditioned mean values functional
(3.19) v(t,z) = E{h(Zy(T;t,z)) | ¥(t,2)}, 0<t < T, z € R".

Here 7,4(T';t, ) can be expressed using the following integral representation
(3.20) By(T;t,7) = G(w(T) —w(t)) o FIT — hp((t,z))(@), 0t < T

where G(0)[z] and F(0)[z], o0 = (o1, -+, om) € R™, z € R™, are defined in (P1) (see (3.7))
for ¢ = (¢1,...,Pm). The right hand side of (3.20) is a continuous mapping of the
two independent random variables, z1 = w(T') — w(t) € R™ and zp = 9(t,z) € R" (Fi-
measurable) for each 0 <t < T, z € R™

Using the parameterized random variable
(3.21) y(t,z;\) = G(w(T) —w(t) o FI(T — )p(N](2), 0 s t < T
we may and do compute the functional v(t, ) in (3.19) by
(3.22) w(t,x) = [ER(y(t, z; \)](A = W(t,z),0<t < T, z € R™
Here, the functional
(3.23) u(t,z; A) = Eh(y(t, z; A), t €0,T], z € R",

satisfies a backward parabolic equation (Kolmogorov's equation) for each A € R™ and

rewrite (3.22) as follows,
(3.24) v(t,z) = u(t, z;9(t, ), 0 <t <T, z € R™.
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In conclusion, the functional S(t, ) = Eh(Zy(T; ¢, r)) can be reprezented by
(3.25) 5(t,2) = E[B{h(E(T;t,2)) | $(t,2)}] = Bult, z; p(t, 7))

forany 0 <t < T, z € R", where {u(t, z; A):t€[0,T),z € R"} satisfies the corresponding
backward parabolic equations with parameter )\ € R™,

m

atu(tu Z; /\) + <aﬁru(t’ z; /\)7 f(il?, )‘)> + % Z@ZU(’? Z; A)QZ(:E)> gz(.’l?)> = 07
(3.26) .

u(T,@; ) = hz), Sz, ) = Y eV i) + 3 S .ai@lano)

=1

We conclude these remarks by a theorem.

Theorem 3.4. Assume that the vector fields {fin confm} € (G OG0 E2HBRERD,
{91, .. 9m} C (G} NCH(R™R), and scalar functions o = (@1, m) C (C} NC?(R™)
of SDE (3.6) fulfil the hypotheses (3.4) and (3.5). Then the evolution of the functional

(3:27) S(t,z) = E(Zy(T;t,2)), t € [0,T], z € R*, h € (C} N C2)(R™)

can be described as in (3.25), where {u(t,z; X) : t € [0, T), z € R"} satisfies linear backward
parabolic equations (3.26), for each \ € R™.

Final remark. One may wonder about the meaning of the martingale representation
associated with the non-markovian functionals h(Z,(T';t,z)), h € (C; NCH(R™). In this
respect, we may use the parameterized functional {u(t,z;)) : t € [0, T],z € R"} fulfilling
backward parabolic equations (3.26). Write

(328) A(Zy(Tst,2)) = u(T,Zy(T;t,2); X = (¢, z))

and apply the standard rule of stochastic derivation associated with smooth mapping

{u(s,z;\) 1 s € [0, 7],z € R"} and stochastic process {Z(s;t, %) : s € [t,T]}. We get
~~ T A~
h(zy(T;t, ) =ul(t, z; \) +/ (0s + Ls)(w)(s, Ty(s; t, 2); N)ds
t

(3.29) m .7 .
+Z/t (Ozu(s, Ty (s; ¢, 3); A), g:(2)) dwi(s),
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where Ls(w)(s,2; %) = (Osu(s, ; ), f@ N + L X™ (%uls, 5 N)gi(@), gi(x)) coincides
with parabolic operator in PDE (3.26). Using (3.26) for X = (¢, ), we obtain the following

martingale representation

(3.30) h(Zy(T;t,z)) = u(t, z; 9 (t, ) + Z/t (8xu(s,55¢(3;t,x);//i),gi(a;» - dw;(s),

which shows that the standard constant in the markovian case is replaced by a F¢-
measurable random variable u(t, z; ¥ (t, z)). In addition, the backward evolution of stochas-
tic functional {Q(t,z) = h(Zy(T;t,z)) : t € [0,T],z € R"} given in (3.30) depends
essentially on the forward evolution process {1(t, )} for each t € [0,T] and z € R™.
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[1. Functionals associated with gradient stochastic flows and
nonlinear SPDEs

1 Introduction

The investigation of evolution equations with stochastic perturbations serves a large va-
riety of areas of applicability, among which mathematical finance as well. Pardoux and
Peng (see, e.g., [11]) are dealing with systems of quasilinear backward parabolic stochastic
partial differential equations driven by a stochastic It integral, and they provide a prob-
abilistic representation for its unique classical solution via a system of backward ” doubly
stochastic” differential equations (BDSDE for short). Conversely, the solution of the latter
is completely determined by the solution of the former (see the proof of Theorem 3.1).

It is well known the applicability of backward SDEs (BSDEs) in mathematical finance,
for instance in the analysis of dynamic risk measures, as in Barrieu and El Karoui ([1]), in
contingent claim valuation problems with constraints or in the theory of recursive utilities
(see El Karoui et all [4]), or in term structure problems (as it is mentioned in a series of
lecture by Josef Teichmann). Nonlinear SPDEs have applications in modelling of interest
rates, in stochastic control with partial information (as it is specified in Lions and Sougani-
dis [9]) etc. Other applications of SPDEs (including finance) may be found in Da Prato
and Tubaro ([3]).

In Buckdahn and Ma ([2]) the authors consider a system of nonlinear SPDEs driven
by Fisk-Stratonovich integrals with the diffusion term independent of the gradient of the
solution, for which they prove, under weak conditions on the coefficients, the existence (and
the uniqueness in a latter paper) of the so called stochastic viscosity solution, introduced
by Lions and Souganidis for a general class of SPDEs in [9]. The approach is based on the
previous work of Lions and Souganidis, by transforming the SPDE in a PDE with random
coefficients, via a Doss-Sussman type transformation, which can be solved pathwisely. They
use a perturbation method by considering the stochastic flow -associated with the SDE
(the so called stochastic characteristics, see also [9]) generated by the Stratonovich integral

appearing in the SPDE. Similar techniques were used by Iftimie and Varsan (see [5]) in
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the study of some evolution equations with stochastic perturbations of the same form as in
[2], and where Doss-Sussman transformations given by Langevin’s smooth approximations
of Brownian motion were considered, and not the usual ones obtained by mollification of
the Brownian motion or piecewise linear approximations.

In this paper we are dealing with the initial value problem associated to the nonlinear

SPDE, considered in the classical sense

du(t,z) = (Vult,z), go(z)) ult, z)dt + S (Vul(t, z), gi(z)) © dW;(t),

(1.1)
w0,z) =¢(z),te€0,T],z R,

or equivalently

(1.2) u(t,z) = o(z) + /Ot(Vu(s, ), go(z) u(s,z))ds + Z/o (Vu(s, z), gi(x)) o dWi(s),

where the stochastic integral is understood in the Fisk-Stratonovich sense.

A main assumption is the commuting property of the vector fields ¢;,i = 0,...,m
with respect to the usual Lie bracket (see Assumption (A.4)), which is also known as a
compatibility condition ( [2], Remark 3.3) concerning the mentioned vector fields. This
leads us to a gradient representation for the stochastic flow associated with the stochastic
differential equation obtained by means of the (stochastic) system of characteristics defined
by (1.1) (which is defined in analogy to the deterministic PDEs) and the corresponding
fundamental solution % (¢, z) of the same SPDE. ¥(t, z) will be described as the composition
between the fundamental solution of deterministic nonlinear Hamilton-Jacobi equations
(see Lemma 3.4 below)and the fundamental solution of a reduced SPDE (see equation
(3.8)). We cannot expect that the property of unicity holds for this SPDE, and this is
due to the strong nonlinearity nature of the problem. Notice that the drift function is not
Lipschitz with respect to (u, Vu), as it was the case in [11] and [2]. An example is also
provided, for a model of Navier-Stokes equations with stochastic perturbations for which
constant vector fields, both in the drift and diffusion part, are used in order to derive the
existence of a global classical solution.

We are next interested in computing expectations of functionals involving the solution

of some SDE, which is naturally related with the SDE obtained by writing the system of
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characteristics associated to system (1.1). This is accomplished by considering an appropri-

ate conditional expectation, which satisfies a parameterized backward parabolic equation.

2 Preliminaries

Let {W(t),t > 0} be a m-dimensional Wiener process on a complete filtered probability
space {€2, F,{F}, P}, where the filtration {F;} stands for the augmentation under P of
the natural filtration {F}"} generated by the Brownian motion. 7 is a fixed time horizon.

We shall make use of the following assumptions

(A1) the vector fields g1, ..., gn, belong to C2(R™;R™); go € CL(R™;R") and is bounded.
(A2) the initial condition ¢ € C*(R™) and admitts bounded first order partial derivatives.
(A3) p:=TMK <1, where M := sup{|Vy(z)|,z € R"} and K := sup{|go(z)|, z € R"}.

Throughout this paper we shall use the notations {,) for the inner product and VA for
the gradient with respect to « of some function h(t, z).
IfY'(t) and X () are continuous one-dimensional semimartingales, the Fisk-Stratonovich

integral of Y'(¢) with respect to X (¢) is defined as

(2.1) /0 ¥ (s) 0 dX(s) = /0 Y (s)AX(5) + 5V, X,

where the stochastic integral entering the right hand side is the usual Ito integral and
(Y, X), stands for the quadratic variation of the processes(Y(t)) and (X(t)) If Y(t) is
d-dimensional, we can still define the integral fo )odX(s fo ) 0 dX(s))1<i<a-
We state the It6’s formula involving the Fisk-Stratonovich mtegral (see, e.g., [7], Problem
3.14, page 156 or [12], Theorem 34, page 82).

Proposition 1. Let Y(t) be a d-dimensional continuous semimartingale and f : RY — R*

a vector function with the components belonging to C3(R%). Then

@22) £0r0) = 56O+ 3 [ DL vy oavis)
We shall also need the following result
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Lemma 1. Let X(t),Y(t) be continuous semz’martmgales with decomposz'tions X(t) =
X(0 )+ [y M(s)dW (s) and Y(t) = X(0 )+ I N ), where A(t), B(t)
are adapted, continuous processes with bounded variation and the processes defined by the
stochastic integrals are (local) martingales (this decomposition holds for any continuous
semimartingale, since the filtration (F:) stands for the completion of the natural filtration

generated by W, see [12], Theorem 43, Chapter IV). Then

(2.3) /OtX(s)od</OsY()odW ) /X (5)Y (5) o AW (s).

Proof. The first term of the left hand side of the formula can be written as

/OtX(s)od</ Y (r) o dW(r ) /X od(/ (r)dw<r)+-§-/:N(r)dr>
:/tX d /OY r)dW (r / N(r dr %/;M(S)sts
/X Y (s)dW (s) /X ds+§/0tM(s)Y(s)ds

_ /0 X(s)Y(s)dW(s)+§(XY,W>t,

where the integration by parts formula (for semimartingales) was also used. O

The corresponding system of characteristics (see, e.g., [8], Chapter 6) is given by
() = =t N go@(EN)dE + 2 (—90) (B(E V) 0 dWi(E);
24) { 70, =X
da(t, \) = 0,a(0,X) = p(A); A € R,
Remark 1. Notice that the integrals f(f(—gi)(f(s; \)) o dW;(s) and
— [5 9i(Z(s; X)) o dWi(s) are not equal.

We deduce @(t, A) = ¢()) and Z is the solution of the SDEs

3(6) = A~ 90 [ ao@lsi s+ Y [ (0@ 0) 0 Wil

0

29 == [ [ointee ) - jTae ) o

=Y [ atets mawits)

=1
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According to the formula (2.1) the (local) martingale part of fot(—gi)(ff(s; A)) o dWj(s) is
given by - fg 9:(Z(s; A))dW;(s), which is also the (local) martingale part of the process
Z(t;A) (see (2.4)). Hence, by virtue of Itd’s Lemma, the martingale part of (—g;)(Z(¢; \))
is fOt Vgi(z(s; 7)) g:(Z(s; A))dW;(s) and it implies that

t
(GG W= [ (Vai@(os )a(s; 1) ds,
forj=1,...,n.
The assumptions imposed on the coefficients g;, i = 0, ..., m ensure the existence of a
unique solution Z,(t; A) of the system (2.5). Under the same assumptions, the vector fields
9,1 =0,1,...,m are complete, i.e. they generate globally defined flows Gi(t, z) = G4(t)(z),

satisfying

aaGti (t,z) = ¢:(Gi(t,z)),for all t € R,z € R™; (0, z) = =

It is well known that for each ¢, Gy(t)(-) is a diffeomorphism, the map (¢,z) € R x R™ -
Gi(t,z) is smooth and Gi(t; + tg,2) = Gi(t1)(Gi(te, x)). Last property implies that
(Gi() () = Ga(=t)(-) := Hy(t)(-). We define G(p)(z), p = (t1,... tm) € R™ 2 € R as
the composition of the flows associated to g1, ..., gm, i.6.

(2.6) G(p)(z) = G(p,x) := Gi(tr) o ... Gm(tm)(z).

We assume from now on that the vector fields gy, . . ., g, commute, i.e. the Lie bracket
(Ad) 9, 95](2) == Vgi(w)g;(z) — Vg;(x)gi(z) =0,

and this means G;(t;) 0 Gj(t;) = G;(t;) 0 Gy(t;), for 0 < i,5 < m. As a consequence, G(p, z)
is the solution of the gradient system defined by the original vector fields, i.e.

S 03) = (Gl 2)).

Set also H(p,z) := G(—p,z), for p= (t1,...,ty).

3 Gradient representation of stochastic low and con-

struction of a solution of nonlinear SPDE

Next lemma provides a gradient representation for the stochastic flow Z,(¢; A).
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Lemma 2. The stochastic flow generated by the solution of the SDEs (2.5) can be repre-

sented as
(3.1) Zp(t;A) = G(=W (1)) 0 Go(—tp(N)(A) = H(W () o Ho(tp(M)(A)-

Proof. Set v(t,y) := G(—y) o Go(—tp(A))(A). 1t is obvious that v € CH3(R x R™ R")

and a slightly modified version of Proposition 1 leads us to

Wb, W(E) = A+ /0 %(S,W(s))dSnLZ /0 %(S,W(s))odm(s)

— 3= [ folsWa)ds+ Y [ (oot WLe)) oA

The result follows by uniqueness of solutions of SDEs. O
The next step consists in finding the inverse mapping of the diffeomorphism A —

Z,(t; A), i.e. we solve the equation
(3.2) Ty(t;A) ==

with respect to the unknown A. Taking into account the formula (3.1) and the properties

of flows G; (which are preserved by @), this is equivalent with

Go(—tp(N)(N) = G(W (1))(z) = 2(t, )

Consider first the equation Go(—tw(N))(\) = 2, for arbitrary t € [0,7] and z € R, which

can be rewritten as

(3.3) Golte(M))(2) = A.
Set V(t,2,\) = Go(tp(N))(2)-

Lemma 3. The equation (3.3) admitts a unique solution given by a (deterministic) smooth
mapping Y(t, z) € CY1([0,T] x R™), such that

-~ TK

[9t,2) = 21 < Tl

In addition, '@(t, z) is the unique solution of the Hamilton-Jacobi equation

(3.4) { o é’*? — Vit 2) 90(2) 9Bt 2))

/C:> Q"@)
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Proof. Notice that the mapping A € R™ — V/(¢, 2, \) is a contractive mapping, uniformly
with respect to (¢, 2) € [0,7] x R™, since

(3.5) IVAV(t 2, Ml = [go(V (2, 2, )|tV o(A)] < p.
The sequence (\;)(¢, ) defined by
Ao(t,2) = 2, Mg (8, 2) = V(t, 2, Mt 2))

satisfies
[Mes1(t, 2) — Me(t, 2)] < pF|Ai(E, 2) — Xo(t, 2)]

and

IA1(t, 2) — Xo(t, 2)| = |V (¢, 2, z) — z| < TK|p(2)],

and a standard procedure leads us to the first part of the lemma. Furthermore, using the

properties of flows we get
$(0,2) = V(0,2 $(0,2)) = Go(0,2) = 2

and

V (2, Go(—tp(X), A), A) = Go(te(X), Go(—tp(X), A)) = A.
A straight differentiation with respect to ¢ leads us to

%(ta GO(_t(ﬂ()‘)a )‘)» )‘> - vzv(tv GO(“t@()‘)a )‘)7 A)QO(GO(_tW()‘% A)) (10()‘) = Oa

and in particular, for \ = z/b\(t, z), it yields

(3:8) G2, 9(6,) ~ V.V (1,2, )on(2) 9B, 2) = .

On the other hand, differentiation with respect to ¢, A in the equality V (¢, z,9(t, z)) =

~

Y(t, z) yields

o5
ot

(1:2) = T 6,280 2) + ViV (12 (8, ) 2 1, 2)

and

Vib(t, 2) = V.V (4 2,9(t, 2)) + VaV (£, 2, B(t, 2))Vip(t, 2).
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Taking into account the estimate (3.5), it is easy to see that the matrix I,—V\V(t,z, 1Z (t,2))
is invertible (here I, stands for the (n x n)-identity matrix) and it holds

W (t,9) = [t - DoV 0P 2] G962

and
s ~ -1 ~
Vot 2) = [In _ Y, V(2 0, z))] V(2 9(, 2).
Finally, combining the last two formulas with the equation (3.6) we obtain the PDE (3.4)
satisfied by B(t, 2). O

Next result is straightforward.

Corrolary 1. The flow equation (3.2) allows a unique solution \ = 1(t, ), which can be
represented as (t, ) = D(t, z(t,x)), where recall that 2(t, z) = G(W(t)(x). Moreover, the
mapping b(t, ) is smooth with respect to (t,z) and is (F,)-adapted, for fized x.

Notice now that the composition of flows G(p,) is the solution of the following

Hamilton-Jacobi equations

(3.7) %%(p, 2) = VG(p,2)gi(x), G(0,3) =

For notationally convenience, let us prove this formula only for m = 1. Obviously Gi(t, G1(—t, z)) =

¢ and differentiation with respect to ¢ yields

0G4

T 2 (t,Gi(—t,z)) — VGt Gi(—t,2))g1(G1(t, ) = 0.

Replacing z with G1(¢, ) we get the desired result. Since z(t,z) = G(W(t),z), by virtue

of Proposition 1 and formula (3.7) we obtain

z(t,z) = m—I—Z/ z) o dWi(s)
(3.8) =x+z /O VG(W (s), z)gi(z) o dWi(s)

=+ Z;/O Vz(s, z)gi(x) o dWs(s).
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Recall that go commutes with g;,4 = 1,..., m, which implies
G()(?fo, Z(t, LE)) — Z(Zf, G()(to, LL‘))

Differentiation with respect to ¢, yields

go(Go(to, Z(t, x))) = Vz(t, Go(t, x))go<G0<to, SC)),

and replacing = by Go(—to, ) we get

(3.9) go(z(t,z)) = Vz(t, 2)go(x).
We are now in position to state the main result of this section.

Theorem 1. Assume (A.1)-(A.4) and set u(t,z) := o(4(t,z)). Then u(t, x) is a classical
solution of the nonlinear SPDE (1.1).

Proof. The stochastic rule of derivation stated in proposition 1 applied to u(t,z) =

~

o(Y(t, 2(t,x))) reads

du(t,2) = (Vo((t, =1, 2))), 22

+ (Voo((t, 2(¢, 2))))TV(t, 2(t, ) o dz(t, 7).

(¢, 2(t, z)))dt

Taking into account the system of PDEs (3.4) satisfied by (¢, z) and the formula (3.9),
notice that the first term from the right hand side is equal to

(Vi (t, 2(t, 2))), Vi (t, 2(t, 2))gol(=(t,2))) 9t 2(1,2))) = (Vult, ), go()) u(t, z),

while by virtue of Lemma 1 and formula (3.8), the second term from the r.h.s. is rewritten

as
(Vo((t, 2(t, 2) V(L 2(t, 2)) V2(t, z), g:(z)) 0 dW; (t)
= (Vu(t, z), g;(z)) o dW;(2).

The proof is complete. O

Remark 2. The random smooth vector function (t, ) is a fundamental solution of SPDE
(1.1), beeing constructed via n linearly independent solutions. It is obtained as the composi-

tion between the deterministic smooth mapping {D\(t, z) (which verifies the Hamilton-Jacobs
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equations (3.4)) and z(t, ), the fundamental solution of the reduced SPDE (3.8). It fulfills
the nonlinear SPDE

dp(t,z) = (V(t,2), go(@)) p(®(t 2))dt + 2L Vet 2), gi(x)) o dWi(t),

(3.10)
$(0,z) =uzx,t€ [0,T],z € R"™

Remark 3. The assumption (A.4) may be relazed in the sense that it is sufficient to

assume that the vector fields g1, ..., gm are€ in involution over R, i.e.
m
196, 95)(2) = Y angr(®), Yz € RY,
k=1
with the scalars o depending on gi,g;. In this case a global gradient representation s

valid, of the form

VPG(pa CI?) = (gl(G(pv I))a £ ’gm(G(pv IL'))) A(p),

where A(p) is a nonsingular (m x m)-matriz, for everyp € R™, and does not depend on
the origin x. It yields the existence of the smooth vector fields g; (p), =1,...,m such that
V,G(p, )g;(p) = 9;(G(p, z)), which implies V,H(p, 2)q;(p) = —0,H (p,z)g;(x). Consider

the stochastic differential system
m t
vy =2+ [ () (w(s)) 0 dWils)
j=1

which is obtained by taking only the ”diffusion part” of equation (2.4). When solving the
auxiliary SDE

p)=-3 | aso(e) o (o)

notice that the diffusion fields are not Lipschitz and do nmot have linear growth. Define a

Ce function p(p) which is equal to 1 on the closed ball {p € R™||p| < M}, where M is
an arbitrary positive number. Set §;(p) = p(p)g;(p). The SDE p(t) = — > Jo @G(p(s)) o

dW,(s) satisfies the conditions of ezistence and uniqueness of the solution and let p(t) be
it’s solution. Define now the stopping time 7 := inf{t € [0,7] | 1p(t)| = M}. It follows
that the stopped process p(t) == p(t A T) takes values in By and satisfies

A== [ 6o i)
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If we assume that gy commutes with each 95, 7 = 1,...,m, it is easy to check that the
gradient representation for the stochastic flow Z,(t; \) is given by To(t; A) = G(—p(t)) o
Go(=tp(A))(A), for t € [0,7]. The results stated in lemma 3 and theorem 1 remain valid,

but the differential equations appearing there are satisfied only for t < T and we define now

Y(t,z) = P(t, G(F(t), ), fort € [0,7].

4 An application: pathwise solutions of Navier Stokes

equations with stochastic perturbations

Consider the following system of SPDEs

dui(t,z) = [FAw(t, z) + (Vu(t, @), u(t, z))] dt
(4.1) + 3 ke B (t, )dWi(t), ¢ € [0, ],
u;(0,2) = oz ),xeR”,i:l,...,n

Here (W (t)) is a standard n-dimensional Brownian mQtibn defined on a complete filtered
probabilty space {2, F, {F:}, P}, ¢; € C*(R™) with bounded first order derivatives and the
stochastic integral is the usual It6 integral. We are looking for smooth solutions u(t, x)

which are (7;) adapted for fixed z. Differentiation with respect to z; yields

aui 8@1 1 aguz 82?,%'
B B g Z / 28xlaxk I F Gz & O u(s:2)

auz 8 82“1
+a (5;% )alsx d8+z/0x10xk5$dwk()

where the derivatives with respect to z; have to be understood in the .2 sense, and since

the mapping u(t, -) is smooth, they coincide with the classical ones. We deduce

(Gt WiOh = [

(s,z)ds.
Hence, it is easy to see, via formula (2.1), that the system (4.1) can be rewritten as

dui(t,z) = (Vu(t, z), Y p_, us(t, v)ey)dt
(4.2) + 201 (Vui(t, 2), ex) 0 dWi(8),
UZ(O, 33) = @i(x)7
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where the system {e1, . . ., €, } stands for the canonical basis of R*. Associate the stochastic

system of characteristics

dZ(HN) = — Y opey Ukt Aerdt — S ex o dWi(t), Z(0,A) = A e RY;

(4.3)

admitting the solutions U;(t, \) = ¢;(A) and Tt N) = Tp(t; A) = A—tp(}) — W (t). Assume
that TK = p < 1, where K := sup{|Voi(A\; A e R =1,... ,n}. Hence, the equations
Z,(t;\) = z have a unique solution given by A = ¥(t,z) = B(t, x + W(t)), with D(t, 2)
satisfying the equation z + tp(P(t, 2)) = b(t, 2).

1Z (, z) is the solution of the Hamilton-Jacobi equation

(1 ) = Vit et 2)),

~

P(0,2) ==z

These remarks and computations lead us to

Theorem 2. Under the assumptions from above, u(t,z) := o(Y(t, z)) is a solution of the

Navier-Stokes equations (4.2).

We ommit giving the proof since it follows the same ideas with those in Theorem 1.

5 A filtering problem for SDEs associated with pa-

rameterized backward parabolic equations

In the setting of Section 3, we consider the (slightly modified) stochastic system of char-
acteristics (2.5) (associated to SPDE (1.1)), i.e, we replace g; by —g; and by an abuse of
notation we denote again its solution by Z,(t, A). The goal of this section is to compute

the expectation E(h(Z,(T;¢,x))), which involves the non-Markovian solution of the SDE
(5.1) z(s) = o + @(w(t,w))/ go(@(r))dr + Z/ gi(E(r)) o dWy(r), s € [t, T].
t =1 Ut

Recall that (¢, z) was obtained as the solution of the flow equation Z,(t,A) = x , with

respect to the unknown A. Using a constants variation type formula, by replacing the
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parameter A with the random vector function (¢, z) in the SDE (2.5) we are lead to the
equation (5.1), whose solution is described by the stochastic flow Llmtehtg 65T
These type of expectations are usually computed via the backward Kolmogorov equa-
tion, fact which is no longer possible if we take into account the non-Markovian nature
of the process which is involved. We achieve our goal by obtaining a nice formula for the
conditional expectation E[h(Z,(T};t,z))|Y(¢,z)]. Here b € C2(R™) and has bounded first
order partial derivatives.
It is easily seen that the gradient representation of the stochastic flow BT %, 3} 1s
given by
(52) Zp(Tt, ) = GV (T) = W(t)) o Go((T — t)p((t, 2))) ().
Set v(t,z) = E[MZ,(T;t,2))|¢(t, z)] and y,(s;t,z,)) = G(W(s) — W(t)) o Go((s —
t)p(A))(z), for t < s < T. Since Y(t,z) = &(t,G(—W(t),z)) and 9(t, z) is deterministic
(recall Lemma 3), it follows that the random variables 1)t z) and y,(T;t,x, \) are inde-

pendent. Clearly Z,(T;t,z) = y,(T;t,z,%(t,z)). Therefore, the Independence Lemma
(see [13], Lemma 2.3.4, page 73) leads us to the representation

o(6:2) = BTtz )|

Define u(t, z; A) == E [h(y,(T'; ¢, z, A))]. Obviously, y,(s;t, 2, \) is the solution of the SDE

o) =2 +00) oot + 3 [ atytr)oawitr), s 7]

t

and u(t, z; \) satifies the Kolmogorov backward parabolic equation

But,z; N) +(Vult,z; M), g(z, \)) + 2> (D*ult, ;M) gi(x), gi(2)) = 0,
u(T, ) = h(z),t € [0,T],

where g(z, A) == go(2)(A) + 5 Y10, Vgi(z)gi().

The analysis from above can be summarized in the next statement

(5.3)

Theorem 3. Let the assumptions (A.1), (A.4). Then the conditional expectation u(t, g} =
E[hZ,(T;t,2))|9(t, )] can be represented as v(t,z) = ul(t,z; M =yp(tz), where u(t, z;\)
is the solution of the backward parabolic equation (5.3). In addition, the ezpectation

E(h(Z,(T;t,x))) can be computed as

B(h(3,(T;t,2))) = E(v(t,z)).
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1L Functionals of SDE with jumps associated with nonlinear
parabolic equations

1 Problems

Let {Z,(t;\) : t € [0,T], A € R"} be the stochastic flow generated by the following SDE

with jumps

d
w197 (S s 5(E-)1dt + poN o@Dy + 9(3(E-)) o duld),
7(0)= A eR", t€[0,T], y(0) =0, dy(t) = y(t) — y(t—), Z(t—) = limz(s),

sTt

where {y(t) € [~7,7] : t € [0,T]} is a piecewise constant scalar process defined on a
probability space {$2g, Fa, P2} satisfying y(t,wy) = y(Oi(ws),wr), T € [0 (w2), Oir1(w2)),
i =0,1,...,N—1 Here 0 = Bp < 6 < --- < Oy =T is a partition such that
(ys(ws) = y(0i(we), wn), i(we)) are F,-measurable. In addition, {(w(t),y(t)) : t € [0,7]}
are independent processes on the filtered probability space {0, F D {F'}, P} where
Q= x Oy, F=FixFo, Ft=FixFp, P=POR and {w(t) € R:t € [0,T]}
is a scalar Wiener process over a complete filtered probability space {0, F1 D {F} A}
The vector fields {g, fo,---»fa} C (G NCy N C*)(R™;R™) and smooth scalar functions
0 = (g0, 01, - - -, pa) C (C4 NC*)(R™) fulfil the following hypotheses,

(1.2) {g, fo. f1,-- ., fa} mutually commute using Lie bracket,

1 i}
1.3) YVoKo = po € [0, ——=), TViK; = ps :
(1.3) YWoKo = po [’d 1), Ki=pi €0 T i

where {[y(0)] <+t € 0,71}, V; = sup{|fup(a)| : © € R}, K; = supd ;@) : = € B,
i=01,...,d

Problem (R1). (a) Under the hypotheses (1.2), (1.3), a unique F* := {F} x F2} adapted
solution A = (¢, z) will exist such that

) i=1,...,d,

(14) B, \) =z, t € [0,T], $(0,2) =z € R,

(L5) {ih(t,z) : t € [Bi(wa), biy1(wa)), T € R"} is a continuous mapping for each w € {1y,
‘ satisfying a nonlinear SPDE, 1 =0,1,..., N —1,
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(b) Describe the evolution of a functional u(t, z) = h(1)(t, z)), h € (CyNC?)(R™), t € [0, T],
z € R", including u;(t, z) := ¢;(1(¢,2)), 7 € {0,1,...,d}.
Problem (R2). Using the unique solution {\ = t(t,z)} of (R1), describe the evolution

of the conditioned mean values

(1.6) vi(t, ) == BEx{h(zy(T;t,2)) | ¥(t,2)}, t € [Bi(ws), Oisa(w2)), = € R,

for each wy € {1y, h € (C; NC?*)(R™), i = 0,1,...,N — 1, where {zy(s;t,z) : s € [t,T]} is
the unique solution of SDE with jumps
d
an dyz=[D_ @i (t, 2)) fi(2(s=))lds + po(t(t, ) fo 2(s—))by(s) + g(2(s—)) odus(s),
: i=1
2(t) =z, s € [t,T].
Recall that {w(t),y(t) : t € [0,T]} are independent processes on the complete filtered
probability space {2, F D {F'}, P}, where w = Q1 x Qy, F = F; x Fp, Ft = {FI x F3}
and P= P ® P,.

2  Solutions (hints)

R1 (a): Using (1.2), write the integral representation
(2.1) Tp(t, A) = G(w(t)) 0 Fo(mo(t; X)) 0 Fa(ma(t; N)) o -+ o Fy(ra(t; M),

where G(7)[z] and F;(0)[z] are the global flows generated by the complete vector fields g

and f; respectively. Here we use the notations
(2.2) 10(t; X) = @o(Ny(2), Ti(t; A) = ps(\)t, t € [0, T, e R*, 1 <4< d,

and integral representation (2.1) help us to replace Z,(t;\) = 2 by the following integral

equations
(23) A=V(t,z;\) :== F(—1(t; MING(—w(@®)[z]], T = (10,71, ..., Ta),

where F(0)[z] = Fy(og) o Fi(o1) 0 - - 0 Fy(oq)[2], o = (00,01,...,04). Applying (1.3), we

compute

d
(24) [O\V(t,z; M| < ij =p€0,1), for any z, A e R™, ¢t € [0, T),

=0
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which allow us to use Banach fixed point theorem for solving integral equations (2.3). In

this respect, the unique solution of (2.3) will be found as a composition
(25) va(t7 aj) = w(t’ Zo(t, 33)),

where zo(t, z) = G(~w(t))[z], t € [0,T], z € R", is a continuous and Fi-adapted process.
Here, the piecewise continuous {i(t,2) : t € [0,T]} and Fy-measurable mapping is the

unique solution of the integral equations
(2.6) A= Vit,z\) = F(=7(t;A) o Fo(—mo(t;\)[2l, t € [0,T), 2 € R™ 7= (T1,.--,Tn),

where F(G) = Fi(o1)o- -0 Fy(0a), 0 = (01, 04). Asfaras {\ = D(t,z):t€[0,T)}isa
piecewise continuous mapping, notice that it satisfies integral equations with jumps (2.6)

as follows,

-~

o Bt 2) = V(t, 2 9(t—,2)), t € [0,T], $(0,2) = z € R,
D05, 2) =V (05, 2 90—, 2)) = Fol—po(P(6:—, 2))5y(0:)|($(6:—, 2)), 0 <4 < N1,

where {A = $(0;—,2)} is the unique solution of equations A = V(0;—, 2 )\). In addition,
the corresponding approximating sequence {\e(t, 2) o is constructed with the following

properties
(2.8) Ao(t, 2) = 2, Mega(t, 2) = V(t, 2 \(t—,2)), k>0, €[0,T], 2 € RY,

{J(t,z) — lim M(t,2), P(t—,2) = lim A(t—, 2),
(29) k—o0 k—o0

Aes1(t, 2) — A(t, 2)| < P (t—,z) — Mol(t—, 2)], k20, t € [0,T].
Notice that,

d
gy | MR T E >~ J, HAPrli=s Dl e

lAl(t_ﬂz) - )\0(75—,2)1 = lv(t—vz; Z) - Zl < R(fy’ I, 2)7 te [O,T]a S Rny
d
where R(7,T, z) = vlpo(2)| Ko + T 3 |p;(2)| K;. Using (2.10) into (2.9), we obtain
j=1
~ i
(2.11) |9(t, 2) — 2| < i_——;;R(%T’ z),t€[0,T], z€ R™

34



Here {z/b\(t,z) 1 € [0i(wr), 0511(wn)), 2 € R} is a first order continuously differentiable

mapping satistying a quasilinear (H-J) equations with jumps
(
dp(t, 2) + 8 (2 ZSD; (¢,2))f5(2)] = 0, t € [Bi(w3), i1 (w2))

(2.12) -
P(0:,2) = Fo[—wo(zb(ﬁi—, 2))8y(0:)] (¥ (05—, 2)),

\{/)\(O,z) =2€R*i=0,1,... N—1.

The evolution of functionals u(t,z) = h(y(t,z)), t € [0,T], € R, will be found con-
sidering 9(t, ) = 9(t, z(¢, z)) (see (2.5)) and {(t, 2) : ¢ € [0,T],z € R"} is the unique
solution of (2.6) which fulfils (H-J) equations with jumps (2.12). As a consequence, the evo-

lution of 9 (¢, x) = YZ(t, 2(t, z)) can be obtained by applying the standard rule of stochastic
derivation on each interval ¢ € [0;(ws), 6;11(ws)) associated with Fi-adapted and continuous
process zo(t, ) = G(—w(t))[z]. It leads us to a piecewise continuous and JFt — {Fi x Fa}-
adapted process {(t,z) : t € [0,T]}, z € R, satisfying the following parabolic SPDE

d
0 :dtw(ta .I) S azZZ(ta Zo(t, JI))[Z P (d)(t’ I))f] (Zo(t, ZL’))]dt

(213) + [Oxw(t, x)g(:c)]adw(t), t e [(’7)1'((4}2),92'+1(u)2)), 0 < 7 < N — 1, Wy & Q2,

$(0:, 2) = P05, 20(0:, 7)) = Fo[—p0 (65—, 2))8y(0)]((6i—, 2)), 1 <6 < N — 1,
L ¥(0,7) = z € R"( see (2.12)).

Recall that the Fisk-Stratonovich integral “5” in (2.13) is computed using Ito integral “.”

as follows,
h(t, z)odw(t) = h(t, ) - duw(t) — %@ch(t, B)ola)d

R1 (b): The evolution of a functional u(t, z) = h(¥(t, z)), ¢ € [0:(w2), ;11 (w2)), = € R™ is

governed by a SPDE induced from the fundamental equations (2.13) as follows

( d
0 =dyu(t, ) + 0,a(t, 2(t, x))[z uk(t, @) fi(20(t, ))]dt + (Opu(t, z), g(z))odw(t),
(2.14) t € [0s(ws), Oip1 (w2)), U(t, 2) := h(zZ(t, z)), uk(t, ) :== er(Y(t, 1)), 1 < k < d,

for:=0,1,..., N — 1, where u(0,z) = h(z) and

u(t;, z) = u(f;—, z) +/0 (0:h($(6i—, z) + 009(05, ), 6905, 7)) do
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Remark 2.1. Notice that due to the commutation property (1.2), we may and do replace
the second term in (2.13) and (2.14) using

([ 0.9(t, 20(t, %)) f(20(t, 7)) = 5z1;(757Zo(t,$))[ax20(tam)][axzo(t,w)]_lfﬁ'(zo(tﬁ))
=0t x)fi(z), i=1,...,d

8.4t 2(t, 7)) fe(20(t, ©)) = 0:8(t, 20(t, ©))[0s20(t, ©)][820(, z)] 7 fi(2o(t, )

| — (Bpult, ), fulz)), k=1,...,d.

Inserting (2.15) into (2.13) and (2.14), we get the complete nonlinear SPDE satisfied by
Ft-adapted process ¥(t,z) € R* and u(t,z) € R, L € [0,T], z € R™

(2.15)

R2: Using the unique solution A = 9(t,z), t € [05(w2), Oir1(w2)), © € R, found in (R1),

we compute the evolution of the functionals
(2.16) wi(t,x) = Ex{h(z4(T;1, 7)) | (t, 2)}, t € [Bs(wa), i1 (w2)), & € R:,O0Li€N—1,

for each wy € (. Here E; stands for expectation with respect to Py and {zy(s;1, Z):8 &
[t, T} satisfies SDE with jumps (1.6) and (1.7). We get the following integral representation
(see (1.2)),

(2.17) 2(T;t,@) = G(w(T) —w(t)) o Folwo(¥(t, ) [y(T) ~y(t)]) o F(@(w(t,2))(T - 1)l=l,

where F(0)[z] = Fi(o1)o---oFy(oa)[z], 7 = (01, ...,04) and @ = (p1, . .., pq). Notice that
zy(T;t,z) in (2.17) and h(zy(T;t,z)) in (2.16) are continuous mappings of the following
independent random vectors 2z = w(T) — w(t) (see z1 is independent of F') and 29 :=
P(t,z) € R™ (see 22 is F t_adapted). It suggests to compute the conditioned mean values

in (2.16) using a parameterized functional u;(t, z; A) given by
(218) Ui(t, T )\) = Elh(z,\(T; t, I)), te [ei(WQ),97;+1(WQ)), zeR" Ae R",

where 2(T';t, ) is obtained from (2.17) by replacing the random vector z; = P(t, ) with
A € R™. Using (2.18), we write (2.16) as follows,

(2.19) wi(t, z) = ui(t, z;9(t, 2)), t € [0:(w2), biy1(w2)), © € R,

for each wy € Qp and i = 0,1,..., N —1. In addition, {u(t,z; X) : t € [Os(w2), Oiy1(w2)), x €

R"} fulfils a backward parabolic equation (Kolmogorov’s equation) and for ¢ = N -1 we
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get
(2.20) { un—1(T, z; A) = h(z), z € R,
Oun—1(t, @A) + La(un-1)(t,z;0) = 0, t € [On_1(wy), T), z € R™.
In general, u;(t, z; \) satisfies a similar Kolmogorov equation
Opus(t, @5 A) + L (w;)(t, ;X)) = 0, ¢ € [0i(wa), i1 (ws)), T € R™,
(2:21) § wi(Oip1—, 25 0) := Eyh(aa(T; 0541—, 7))
where 2)(T'; 01—, 2) = Fo(0y(0is1)00(N)[2a(T; 0541, 7)], i = 0,1,..., N — 1.

The corresponding parabolic operator (8,+ L ») acting on each interval ¢ € [f; (wa), Biy1(ws))
1s associated with the following SDE

(2.22) dtz— 2)|dt + g(z) o dw(t).

nM&

This lead us to a standard Ly given by

(228) Ly(u)(a Z AN + 5 {[0:00.(z), g @), o(a).
Remark 2.2. In the case we assume

(2.24) {1, 0a} C(CGNC NCHRM), o € (CF N CH(R™)

is fulfilled, then the hypothesis (1.2) of (R1) and (R2) can be replaced by

(2.25) e(Ci N CQ)(]R";R”) commutes with {fo, f1,..., fa} C (G N Cg N CQ)(R”;RTL)
. and fo commutes with {f, fo, ..., fa} using Lie bracket.

Both problems (R1) and (R2) get a positive answer under the new conditions (2.24), (2.25)

and a detailed analysis of this issue will be given in the next section.

3 Solutions for (R1) and (R2) under relaxed
conditions (2.24), (2.25)

With the same notations as in section 1, consider SDE with jumps (1.1) and its stochastic
flow {Z,,(t,A) : t € [0,T], X € R*}.
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3.1 Problem (R1)

(a) Under the hypotheses (2.24), (2.25) and v, T > 0 are sufficiently small, a unique
Ft = Ft x Fp-adapted solution {\ = 9(t, z) :t € [0,T),z € R"} will exist such that

Z,(t;\) =z, t € [0,T], $(0,z) =z € R",
(3.1) { {w(t,x) : t € [Bi(wa), i1 (w2)), @ € R™} is a continuous mapping
fulfilling a SPDE for each i =0,1,..., N —1, wy € .

(b) Describe the evolution of a functional u(t,z) = h(3(t, ), h € (GGNCHR™), t € [0, 77,
z € R*, using SPDE with jumps (see (2.14) and Remark 2.1).

3.2 Problem (R2)

Under the conditions (2.24) and (2.25), describe the evolution of a functional (conditioned
mean value) v;(t, z) = E1{h(zy(T;1,2)) | ¥(t, )}, t € [Bi(ws), bi41(w2)), z € R™, for each
i€{0,1,...,N—1} and wy € Sy, where h € (CNC?)(R™) and {A = ¢(t,z) : t € [0, ],z €
R"} is found in (R1). Here {zy(s;t,z) : s € [t,T]} satisfies the following SDE with jumps

,

Z% p(t, 7)) fi(2(5—))]ds + po(¥(t, 2)) folz(s—))dy(s)

+9(2(s—)) o dw(s), s € [t, T},

3.3 Solution for (R1) (hints)

(a) Consider the global flows G(1)[z], Fo(o)[z] and F(t; \)[z], 7,0,t € R, 2 € R", generated
d

by the complete vector fields g, fo and {fa(z) = > 0iN) fi(z) 1z € R"} respectively, for
j=1

each A € R™. Using (2.25), we write the first integral representation

(3.3) By(t; A) = G(w(®)) 0 Foly(t)po(N) o F(t; M, t € [0, 1], 2 € RY,

and this help us to replace Z,(t; \) =z € R" by the following integral equations
(3.4) A=V (t,z; ) = Fo(—po(Ny(t)) o F(—t; N)[G(—w(®))[z]], t € [0,T], z € R™.
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A unique solution A = (¢, z) of (3.4) will be found as a composition

(3:8) ¥t 2) = (¢, 20(t,3)), 20(t,z) = G(~w(t))[a)],

~

where {A = 1(t,2) : t € [0,T), 2z € R"} is the unique solution of the following integral

equations
(3.6) A = V(t, z;A) = Fo(—po(N)y(t)) o F(—t; Nz], t € [0,T], z € R™.

Here {V(t,;A) : ¢ € [0, 7]} fulfils ODE with jumps

o &V = ~ (30 eV (=, 25 0))dt + 00(X) fo(P (-, 25 M)y (1)),

(0,2:0) = z € R", dy(t) = y(t) — y(t—).

Notice that fy commutes with {f,..., f;} (see (2.25)) and it implies that Fp(o) commutes
with F'(t; A), 0, € R, A € R”. This allows us to write

(38) V(t,22) = Fo(=po(Ny(t)) o F(~t; A)[e] = F(—t; A) o Fo(—po(M)y(1))[2]

and to get {IA/(t, z;A) : A € R"} as a Lipschitz continuous mapping uniformly with respect
tot € [0,7T] and z € R™ satisfying

(3.9) 1V (t, 2 \") — V(t, 2 M) < p|N — N], X, N € R™,

where p € [0, 1) is a constant, provided 7,1 > 0 are sufficiently small. In this respect, by

a direct computation we get
V(t2:X") = V(1,2 X) = Fo(—po(N)y(0)[F(=; )(2) — F(~t; X)(2)
+ [Fo(=0o(\")y (#)) — Fo(—po(N)y(E)](F(—t; X)(2)) = Ty + To.
Rewrite the two right hand side terms as follows,
—po(M)y(t)
T==(tX) = 2(t. ) + [ Fo(Fo(0) [t X7) — 2(t, X)])do

where 2(t, \) = F(—t, \)[2], and

T = {/O FolEo(=lpo(N)y (£) +0[po(X") = 0o (N)y(B)]) (2(t, X"))) B} ipo(A") — 0o (N)]y (8).
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Notice that |T1| < p/2 and |T3| < p/2for any t € [0,T], ly(t)| < yif T,y > 0are sufficiently
small. A direct consequence of (3.9) is that Banach fixed point theorem can be applied to

integral equations (3.6) using the following convergent sequence
(3.10) Ao(t, 2) = 2, Meg1(t, 2) = V(t, 2 Me(t—, 2)), Ak (t—52) = V(t—, z; M(t—, 2))
for any k > 0, t € [0,T], z € R* such that

lim Ak(t: Z)a {/;(tv Z) = V(tv Zy {b\(t—, Z)), J(t—a Z) = V(t_a 2, @(t—a Z))

k—oc0

(3.11) 9(t,2)
Notice that

l)‘k+1(ta Z) - >‘k<t’ Z)I < pkp‘l(t—vz) - Zl, k>1,

3.12 #

. Ma(t, 2) — 2 = Z[/\j+1<tvz) —Aj(t,2)), k=0

and

(313> M/D\(t?z) - Zi < [Zpk”)‘l(t—vz) - Zl = 1 ipl)‘l(t—vz) - Zl, te [O7T]

Compute A (t,2) = V(t,z2) = H(0y(t), 0t; 2)|p=1, where
H(0y(t), 0t; 2) = Fo(—0o(2)y(t)) o F(=0t;2)[2], 0 € [0,1].
We get
(310) Mt 2) =2~ [ GooelolO(HOE),0520) + D) SO0, 05l

for any t € [0,T], z € R™. The following estimates are valid

where R(v,T,2) = v]po(z)| Ko —l—T}E lpi(2)|K; and K; = sup{|f;(z)|,z € R"}, 0<j<d.
=
Define 9(t, 2) = D(t, 20(t, 1)), 20(t, 2) = G(—w(t))[z], t € [0,T], = € R", and using (H-J)

40



equations (see (2.12)) fulfiled by {(¢, z)},
d
j=1
1;((91,2) = [ (1#(91—%))59( )](J(QZ_’Z))v
\{E(O,z):zeRn,ngéN—l,
we get SPDE satisfied by {y(¢,z) : t € [6;,0;11), z € R™} (see (2.3), (2.15)). More precisely,
applying the stochastic rule of derivation associated with {@(t, 2)} and z = z(t, z),

(3.16)

317 ditp(t, z) + Outh(t, Z% (8, 2)) f;(2)]dt + [0: (¢, ) g(x)odw(t) = 0,

¥(0;,2) = Fo[—po(¥(0:i—, 2))8y(9:)) (% (0=, ), £ € [65,0541), 0 < i < N — 1,
where 9(0,z) = ¢(0—, z) = z € R™ and h(t, z)3dw(t) := —30:h(t, 2)g(z)dt+h(t, z)-dw(t).
(b) The evolution of a functional u(t,z) = h(1(t,z)), ¢t € [6;, Oiy1), h € (CL NCH(RM) is

determined by the fundamental equations (3.17) as follows

( d
0 = dyu(t, &)+0:0(t, 20(t, 2))[)_ (Wt z)) fi(20(t, 2))]dt
k=1

+{Osu(t, z), g(x))odw(t), t € [0, 0:11),

w(6s,7) = u(Bi—,7) + /0 (ONh((6:—, 2) + 06 (6s, 7)), (6, ) do

| u(0,2) =h(z),i=0,1,...,N—1

(3.18)

where 4(t, z) = h(i(t, z)), 20(t,z) = G(—w(t))[z]. Notice that g commutes with {fi,.., fa}
and the second term in (3.18) becomes (see (2.15) of Remark 2.1)

(3.19) 8.t 20(t, ) fulz0(t, 7)) = (Bpu(t, ), fu(x)), t € [0,T], ¢ € R™, 1 < k < d.

Using (3.19) into (3.18) we get the corresponding SPDE satisfied by {u(t,z)},
(
0 = dyu(t, z)+(0yu(t, T) Z(pk (t,z)) fe(z))dt

(3.é0) +{Out, z), g(2))odw(t), t € [6;, 6341),

u(b;, z) = u(f;—, ) +/ (Ozh(¥(0;—, x)))do,

0
L u(0,%) = hlz), i =0,1,...,N -1
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3.4 Solution for (R2) (hints)

With the same notations as in §3.3 (see (R2)), consider the unique Ft-adapted solution
(= tz):t€[0,T],z € R"} found in (R1) (see (3.17)) and define {zy(s;1, z):s €
[t,T]} such that (3.2) is satisfied. Assuming (2.24), (2.25), we are able to describe the

evolution of a functional
(3.21) vi(t, ) = E{h(zy(T';1, 7)) | P(t,z)}, t € [Gi(wg),HiH(wg)), z € R, wy € €y,

where “E,” stands for expectation with respect to P and h € (€ NC?)(R™). Under (2.24)
and (2.25) we may and do represent {2p(T;t,7) 1 t € [0i(w2), ia(w2)), @ € R"} as follows

(3.22) 2y(T;t,2) = Gw(T) — w(t)) o Folpo(¥(t, 2)ly(T) — y(®)]) o F(T — t;9(t, )lal,

where F (0;\)[z], o € R is the global flow generated by ODE

(8.23) Z(pz Vfi(z = f(0;)), 2(0) =z € R™

The integral representation (3.22) help us to see that 2z,(T;t,z) is a continuous mapping
of two independent random vectors z; = w(T) — w(t) € R which is independent of {F*}
and 2, = 1(t, z) € R® which is F*-adapted. Asa direct consequence of (3.22), we compute
v;(t, ) in (3.21) as follows

(3.24) w;(t,z) = ui(t, z;9(t, z)), t € [0:(ws), 41 (w2)), = € R,

where u;(t, z; \) == E1h(zn(T5t,2)), t € [0:(w2), Oi1(w2)), = € R™. Here {zx(s;t,x) : s €
[t,T]} satisfies SDE with jumps

(3.25) S = Z‘pl ) fi(2a(s=)Ids + wo(N) fo(2a(5))dy(s) + g(2a(s—)) o dw(s),
() ==, s € [t,T).

Using (3.22) for the unique solution of (3.25) we write

(3.26) 2\ (Tst,2) = Folo(N (D) — y(®)) 0 F(T = ;1) 0 G(w(T) — w(t)lel,
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for any t € [0;(ws), Oi11(ws)), z € R™ and A € R™. Notice that
{ui(t, Z, )\) = Elh(Z)\(T; t, :C)) it e [Hi(wg), 0i+1(w2)), WS Rn}

is a smooth mapping for each wy € Oy, \ € R® i=0,1,...,N — 1, and the corresponding
backward parabolic equation (Kolmogorov’s equation) can be deduced using a standard

procedure. In this respect, for a fixed ¢ € [0;(ws), Oi+1(ws)) and 6 > 0 sufficiently small,

rewrite u;(¢, z; \) as follows
(327) U,Z(t, T, /\) = Elh(Z)\(T; t+ (5, ,/Z\)\(t + (5, t, x))), t,t +9 € [Qi(wg), 91'4_1((4}2)),

where {zx(s;t,2) : s € [t,t + 6]} fulfils SDE
d
di2y = [ ei(N)fi(3a(s)lds + g(Za(s)) o duw(s),
(3.28) ro
g)\(t) =T, s8¢ [tat+5}
Notice that {w(T) — w(t+ 6)} and {Z)(¢ + 0;t,x)} are independent random vectors and

computation of the mean value in (3.27) can be done using the conditioned mean value

with respect to {Z)(¢ + d;¢,z)}. We obtain
(3.29) ui(t, 3 A) =By [Er{h(en(T; 4 6,33 (t + 6;¢,2))) | 2yt + 6;t, 2))]
| = Buu(t + 0,3t +6;,2); ).

Combining (3.29) with {u;(t+6,z;)) : z € R"} is second order continuously differentiable

of z € R™ we may and do the standard rule of stochastic derivation which lead us to

t+0
wilt, 7 X) =us(t + 6,33 \) + B, / (Butis(t + 8, 2A(s); V), fr(3(5)))ds
(3.30) :

t+0
+E1/t (ot + 8,2(s); 1), 9(3a(3))) o du(s).

d
Here fi(z) := > i(A) fi(2) and the Fisk-Stratonovich integral “o” is computed by

=1

(3:31) (3(5)) 0 du(s) = 3(0uip(2(5)), 930D + (3 (5)) - diu(s)

using Ito stochastic integral “”. A direct computation allows us to write

% y &5 - Ui\h, ?/\
(3:32) O wilt,z;)) = lglrg“(HM Ag whZA) _ g w0 (@)
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1 .
where Ly(v)(z) = (9uv(2), iA(@)) + Q@K%v(fﬁ),g(»”C))],g(w)) for any v € C*(R"). In
addition, using un_1 := E1h(zx(T1, z)), for t € [y—1(w2), T), we get the final condition

(3.33) un—1(T,7;A) = ltiTr%lElh(z,\(T;t,x)) = h(z), z € R".

These remarks allows us to conclude that {us(t, z; A) it € (0i(ws), bir1(w2)), @ € R"} is a

smooth function (see 8yu;(t, 73 X), Or ui(t, ; A) and 82, , ui(t, @; A) are continuous functions)

satisfying the following parabolic equations
(3.34) Byui(t, m; ) + Ia(ui(t, s X)) (@) =0, 1 € (6:(ws), fis1(w2)), z €ER™, 0 i< N —1,
and final conditions

(3.35) un-1(T,7;A) = h(z), z € R™.
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