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Entwined Bicomplexes

by
FLorIN FELIX Niciita AND CALIN POPESCU

Abstract

We associate with each (co)algebra a bicomplex by encoding the
(co)multiplication in one of the differentials, and the (co)unit in the other.
Akin to the (co)bar construction, the construction enables us to encode a
morphism entwining an algebra with a coalgebra as a bicomplex morphism
entwining the associated bicomplexes.

Next, we consider a related simplicial construction which associates a
simplicial module with each (co)algebra. In this case, an entwining struc-
ture yields a simplicial map entwining the associated constructions, on one
hand, and a chain map entwining the chain complexes on the constructions,
on the other. Furthermore, the components of the simplicial entwining com-
bine to yield another chain map between the chain complexes on the en-
twined products of constructions. The two chain maps thus obtained turn
out to be compatible (they commute) up to chain homotopy with any pair
of natural chain transformations for the Eilenberg-Zilber theorem which arc
the respective identities in dimension zero.

Key Words: (co)algebra, entwining structure, (co)bar construction,
simplicial module, bicomlex.

2000 Mathematics Subject Classification: Primary 16W30, Se-
condary 18G30, 18G:35.

1 Introduction

Attemps to construct a unifying theory for algebra and coalgebra structures led
to Yang-Baxter operators derived from (co)algebra structures [9]. Applications
of these constructions occur in Quantum Group Theory [6], [10], Knot Thcory
[8], Theoretical Physics [3] etc.

In this paper, we consider another approach. Thus, we associate with any al-
gebra structure a bicomplex by encoding the multiplication in one of the differen-
tials, and the unit in the other. Dually, we associate with any coalgebra structure
a bicomplex by encoding the comultiplication in one of the differentials, and the
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counit in the other. Akin to the (co)bar construction, the construction enables
us to encode a morphism entwining an algebra with a coalgebra as a bicomplex
morphism entwining the associated bicomplexes.

Next, we consider a related simplicial construction which associates a simpli-
cial module with each (co)algebra. In this case, an entwining structure yields a
simplicial map entwining the associated constructions, on one hand, and a chain
map entwining the chain complexes on the constructions, on the other. Further-
more, the components of the simplicial entwining combine to yield another chain
map between the chain complexes on the entwined products of constructions.
The two chain maps thus obtained turn out to be compatible (they commute)
up to chain homotopy with any pair of natural chain transformations for the
Eilenberg-Zilber theorem which are the respective identities in dimension zero.

The constructions considered in this paper easily lend themselves to extensions
to modules over (co)algebras, (differential) graded objects and the like. Part of
the ingredients have been considered in various setups [1], [2], [4]. Details on
Hopf algebras and entwining structures can be found in [3], [5], [11].

2 Conventions, Notation, Main Results

Fix a commutative ring K once and for all. Unless otherwise stated, throughout,
this paper, modules and tensor products arc over K. We also use the following
standard conventions on identity morphisms and tensor powers: For any module
X, the identity morphism on X is also denoted by X,

0, for integer n < 0,
K, for n =0,
X®.---® X, forinteger n > 0,
————

T

X =

and if f: X — Y is a morphism of modules, then f&™ : X®" — Y®" ig given by
0, for n < 0,

pon = ) 5 for n. =0,

f®---&f, forn>0.
—_——

n

Given an algebra (4, p,n) with associative multiplication p : A®¥2 — A and
unit 7 : K — A, define inductively

ol - A® AB(M=Dand 9Y: ABT AB(ntl)

by
0. =

n

0, for n < 2, (1)
—ARO,_ 1 +pu® A®(M=2) for n > 2,

and

ol 01 for n £ 0,
On = { ~9 QA+ A®"Qn, forn >0, (2)
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respectively. It turns out that
87,7,—1(9:7, =0, 6;,,0;7{4 =0, and 315;15-2, = 3.:,,“8:7{. (3)
We may therefore associate with A a bicomplex A = (Ap,q, dy, s d;,’:q) by setting

Ay g = AP0 &l =0

g and d = (=1)P9,_,.

D54
The rows (respectively, columns) of this bicomplex are shifted copies of one an-
other. In addition, each row is eventually acyclic: for each g,

hpg =1 Q A®P—a) . Ap‘q — A%(—) _, APH = A%+1-q)

Is a contracting homotopy in the range p > g. The construction is easily made
functorial: With every algebra morphism f : A — A’ associate the bicomplex
morphism f: A — A’ given by

Joa t Ava = Apgs frg = f®(p_q)-

The fact that f commutes with the respective differentials is a routine verification.

Dually, given a coalgebra (C,A,€) with coassociative comultiplication A :
C — C%?% and counit ¢ : ¢ — K, define inductively

vV, C% — 0¥ and V7 C8 — OOt

by

;)0 for n < 1, ,
Vi = { —C®VL_ 1 +exC®=1 " forn>1, ()

and

v |0 forn < 1, 5
Vi = { VI 2C+CP"D g A, forn> 1, (&)

respectively. As expected,

V;L—lv’:), = 0: V;: :7/,—1 = 7): and Vg—lv; = viH—le (3/)

We may therefore associate with C' a bicomplex ¢ = (C‘ d! d;fys) by setting

7,5 Y, 8y

Cra=CRO9) g =V

r—s

and d = (-1)"V/

r—s*

The rows (respectively, columns) of this bicomplex are also shifted copies of one
another. In this case, each column is eventually acyclic: for each r,

hes =C®U Ve (G, =C% 5, sp1 = CRr—s=1)
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is a contracting homotopy in the range s < r. Again, the construction is easily
made functorial: With every coalgebra morphism f : ¢ — C’ associate the
bicomplex morphism f: C' — C’ given by

f’l‘,s . C’r,s — O/r,s_s fr,s - f@(r—s)'

The fact that f commutes with the respective differentials is also a routine veri-
fication.

Next, consider an algebra (A, p,n) entwined with a coalgebra (C, A, ¢€) via
¥ C A — ARC; that is, ¥ is a module morphism satisfying the following four
conditions:

(a) ¥(C&p)= (ke C) AP (& A);
(b) ¥(C®n) =n&C;
(@) (A8 A= (w8 C)(CRY)(A®A); and
) AQe)p =c® A.
The entwining morphism 9 gives raise to a doubly indexed collection of module

morphisms
7,1,"’n,'m. . C®n ® Atx-m 3 A(an ® C@n;

entwining the tensor powers of A and C. The 4, ,,, are defined inductively as
follows: If either index is negative, set 1, ,, = 0; set further ¢, o = C®", 4y, =
A®™ 4y 1 =) and define

) i ! i Y s 2l aly S 21y
Yn,m = (1.*',"0,777.—1 Q11D ?#"-71,—1,0)(7,1"'1,777,—1 RYo,1 ® 1,*""n~l,0)(lr’/)1.0 B Un—1,m R U/0,0)a

for m > 1 and n > 1; in a slightly less cumbersome notation,

7/{"17,,771 = (A®(mA1) b 7/{" & C@(n—l)) ('l_r’i)l,m—-l & A & C®(n_l)) (C & 7,”*’7171,717.) '

Recall now the bicomplexes A = (/Alp,q, - d;j,q> and C = (C’T,S, dr. o d/rl,s) asso-

ciated with A and C, respectively, and consider the tensor product bicomplexes
OA = ((a $A) 5m) und Agl = ((A 9C) b (sggm) .
Explicitly,

(¢e4) = I Gusd,

r+p=m, s+qg=n
and the differentials are given by

(xn,n = Z (dlr,s ® AP:Q + (_1)Tér,s & d-,),q) )

r-+p=m, s+q=n

G = X (P At 0B )

r+p=m, s+q=n
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similarly,

(A 2 é)m,n = JI A6,

p+r=m, g+s=n
and the differentials are given by

5:71,71. = Z (d;;1q ® CA('r:,.s + (_1)1)’41),(1 ® d;‘,s) )

p+r=m,g+s=n
S = 2 (U @G+ (1A, pa,).
p+r=m,q+s=n

The ¥, defined above fit together to yield an overall entwining morphism
2/:‘ :C (%9 A— A & 8
of bigraded modules whose componoents

b (O /1) T (A B O)

are given by

'l/bm,n. = 5 (;1)'rp+sq w'r,s,p,q 5
T+p=m, s+q=n

where ) .
Vrspg = Yrsp—g: Crs® Ay = CEr=2) g Alr-a)

Ap.q & ér..s gt A’g’(p_Q) & C@v(r___s)’

We are now in a position to statc our first result.

Theorem A. ¢ is a morphism of bicomplezes:
/ N 7 7 171 n : "
6777.,-77,%777»;” = wmﬁl;n&m,n and 5717,,11,,(#/"7“;71 = w7n,n~]6m)7,,-

We now move in a slightly different direction and consider a related simpli-
cial construction. For standard definitions, notation and results, we refer to [7].
Written explicitly, the 0y, 0);, V;, and V7, have the form

8, =Y (~1ye, 8 = Y (~1ymHig

1EL i€l
’ P "o A, [N
v'n, = § :(hl)tvn7 and vn, - E :(_l)n ’ vn.,’i?
€L IEL

where

5 . ABT A@(n—l)’ o -:A@@/.L@A@(n_i_z),

i ) ) i o : -
Oyl AP — ABHD - gir = A% gy g AB(-),

Vo 1 0% 5 @81, W = (¥ e OFF=+T)  4nq
v/ o®n C®(n+1), v;{!i = (%1 QA C@(nwi—l)_

#:0



166 Florin Felix Nichita and C&lin Popescu

It turns out that we may associate with A a simplicial module SA, by setting
S, A = A®M+2) n =, 1,---, with face operators dn; = 0,5, =0,--- ,n, and
degeneracy operators sy ; = dﬁf i ©=0,---,n. Similarly, we may associate with
C a simplicial module SC, by setting S,C = C®*+) n = 0,1,---, with face
operators dy; = Vi1, i =0,---,n, and degeneracy operators sni = Vi 1,
1=0,---,n. The standard identities

dp—1, dn,j = dn—l,j~1d-n,2' , for i<y,
$niSn—14 = SnjtiSn—1,4, fOri<j, and
dﬂn—}—l,isn,j = 5n—1,j~1dn,i ) for i < ]
= identity, fori=jort=j+1, and

Sn—l,jdn,i—l , fori>j+1,

are readily checked in both cases. As expected, if A and C are entwined via
¥, then the %, 41,42, n = 0,1,--+, are the components of a simplicial map
SC x SA — SA x SC between the product simplicial modules (recall that face
operators and degeneracies in the product are defined componentwise). Consider
further the associated (positive) chain comlexes (KSA,0"), K,SA = S, A, and
(KSC,V"), K,SC = S,C, along with (K(SC x SA),d) and (K(SA x SC),6),

where

Kn(SC x SA) = 8,0 @ Spd, n =3 (—1)'Vii1;®0)y0,, and
1n0
(SAXSC) S A(XS"C 5 Z( 1) C)IL+2L® n,+lL‘
=0

By the Eilenberg-Zilber theorem, there are natural chain cquivalences
K(SCxSA) 2 KSC® KSA and K(SAxSC)= KSA®KSC.

The standard natural chain transformations which do the job are Alexander-
Whitney’s (rightwards) and Eilenberg-Zilber’s (leftwards); both are the identity
in dimension zero. Now, if A and C are entwined via ¢, then the doubly indexed
¥’s combine together to yield two morphisms of graded modules:

K(SC x SA) —» K(SAx SC), %n =%ntin+2, and

¥: KSC® KSA— KSAQKSC, tn= Y. (—1)Pg1pta-
gt+p=n

Theorem B. Both 1.,7') and ¢ are chain transformations compatible up to chain
homotopy with any pair of natural chain transformations for the Eilenberg-Zilber
theorem,

B4 K(SC x SA) 2 KSCR KSA: (Y4 and

94¢ K(SAx SC) = KSA® KSC : CAY
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which are the respective identities in dimension zero: Y4 ~ gACY 5o (A4C4h ~
BCEA as well,

The remainder of the paper is devoted to a detailed proof of Theorems A and
B. Related facts are also considered.

3  Proofs, Formulae, Lemmas

The Morphisms 0;,, )/, V/, and V”

In the previous section we stated without proof relations (3) and (3'). Our
purpose here is to fill in the details.
We begin with an alternative description of the 85 O VT and VU,

1. Lemma.
(@) O, =0, 1 Q@A+ (-1)"AP(=2) &
(b) 0] =A®II_, + (-1)"nx A®"
@)V, =V,_1®C+ (-1)"1C®"-1 g ¢: and
(b) Vi =C® Vi + (-1 1A 830D,
Proof. With reference to the definitions, all relations follow by induction on n.

As an example, we prove (a). Clearly, the statcment holds for n < 2. For n =2
usc (1) and the induction hypothesis to get

O, =—A®0,_, +puo A%-2)
= _A® (6.;]_2 & A+ (—1)" 14803 g /1,) + e ABM-2)
=—AQ0, @A+ (-1)"A%" D g ) 1 4 ABM-D)
= (~A R o+ pu® A@'(”ﬁ"’)) & A+ (—1)"A%(2) g
=0,_1 RA+(-1)"4%0=2) g .
Remark. Lemma 1 actually provides cquivalent definitions for the oy, o, v,
and V7. For instance, had we defined 8, : A®" — A®(n=1) by

{ 0, for n < 2,

/
O = O 1 8 A+ (-1)"A®D g forn > 2,

then (1) would have followed in the same way.

Relations (3) and (3') follow by induction on n from the lemma below.
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2. Lemma.

() Op 10, = ART, 50, 1;

(6) 001 = Bl A

() 8410l — 0104 = —A® (8,041 — i 205-1) 5

(@) Vi,_ Vi =C&V_2Vi_1;

(b VINVI_ =V _ VI _,&C; and

(¢) Via Vi = Vi1V = =C& (Vi Vi1 = ViV ) -

Proof. We prove the first three statements; the last three are established in the
same way.
(a) Use (1) to write both 8”s in the left-hand member and get

d%_lail =A® C)IL Zdn 1~ B& (94172”‘
(u @ Af&(n—B)) (A P 8;_1) +upg A)® A®(n=3)

Finally, use (1) again to write ,_; in the third summand above along with
assoclativity of multiplication, p(A® p) = u(p® A), to obtain the desired result.

b) Use (2) to writc both 8' s in the left-hand member along with cquality of
) 1

the compositions K T A AQK Ady A9Aand K 5 KRK T A A

to get
MO _ =0y 10y o QA8 &1 — 0;{_2®A®77+A®(”_1)®77®7;,

Finally, use (2) again to write 8//_, in the second summand above to obtain the
desired result.

(c) Begin with the left-hand member: Use (1) to write the 0"’s, and Lemma
1(b) to write the 8"’s, to get

10 == AR OL00_ + (1) ® 9+

4
(/l ® A®(n_l)) (A®8_y) +(—-1)"uln& A) ® A®~D, “

n— 18, -A® 6;:—28:1 1t ® 8:{—2‘*’
(1@ A®8, 1 +(-1)" 7 (n® A)ug AS.

In the right-hand member of (4), use again (1) to write 8, in the second summand,
and Lemma 1(b) to write 8_, in the third, along with u(A®n) = A = u(n® A)
to get

(5)

n+1C)H =—A® a:Lax—l + (_1)71,’7 AR a’:L-—l+

6
(-1 e A 4 ued (6)
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Finally, since the compositions A A — K@ A® A ™24 4 ®Aand A® A £

AS K@ A0 A9 A are equal, subtraction of (5) from (6) vields the desired

result.

Remark. In any tensor product in Lemma 2, factors can be swapped. The above
proof works through mutatis mutandis.

The Morphisms ¢,

As stated in the introduction, the definition of the Yn,m may seem far-fetched
and unwieldy. Our purpose here is to make it more tractable by describing an
alternative, but equivalent approach.

To begin with, let ¥, ,, = 0, if either index is negative, 1,0 = C®", and
Po,m = A®™. Set

Wi gm = (A®(m_1) & ?//) (P1,m-1® A4), (7)
for m > 0, and check by induction on m that
b1m = (A9 Yy moa) (1 & 42 D), ®)
for all m > 0 (or vice versa). Finally, set
Ynm = (1.m ® C¥O D) (COYur ), ©)
for all n > 1 and all m, and check by induction on (n,m) that
Ynm = (Gn1m ® ) (CBCD @451 ) (10)
for all n and all m (or vice versa).
We could equally well have started by first filling in the rows in the first

quadrant. More precisely, define nm as before if cither index is non-positive.
Now, sct

'(/L’n,l = (w & Cb’_&;(n—l)) (C & '@b7l.~1,1) > (7/)

for n > 0, and check by induction on n that
'1!,'),"(,1 — (’lr/"77,—~1,1 R C’) (C@(-n—l) @U/’) , (8/)
for n > 0 (or vice versa). Finally, set

'Uf’n_.m = (A®(m_1) & "/C'vz,l) (",L'n,m—l &® A) > (9/)
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for all n and all m > 1, and check by induction on (n,m) that
'L/)n,-m = (A & 'd"n,m—l) (l‘!’)n,l & Ao}(m—l)) » (10,)

for all n and all m (or vice versa).
The two definitions actually agree, as can be checked by a rather lengthy
induction on (n,m). Altogether, they combine to yield

Yo = (42D 4 0 C% D) (Y11 @ A8 O3V (C &1 m)

(d"n Lm (’) (Cg) gl QAR (/ L,m=~ 1) (C®(n_1) & ’(,/1 & A@'(m*l)) .

for all n and all m.
Our next task is to show that the ¥, n, commute with the differentials —
Lemma 3 below , and with face operators and degeneracies — Lemma 4 in the

sequel.

3. Lemma.
(2) (O © Ot m = Y1 (O @ B3
(b) (D & C=) Y = Yms1 (OO D 0%);
(@) (A®™ & V! )y m = y—1.m (Vi @ A®%™); and
(b)) (A" 6 V) hnyn = g m (Vi ® AZ™).
Consequently,

(é) (d;?,q ® Cr,s) "‘/b-r,s,p,q = ‘/ r.s,p—1,q

o

(B) (dg,q %4 é'r.,s) 7#’1-_..5-',1)11 = V/ s,pq—1 (
) q®d' )l,’)», 5,0,q —“7’)7 1,s,p,q (d ,s® D,q

7 17 A
’rsp,q“Urb 1,p,q | dr, ®Ap,q)

Proof. Only the first two statements will be proved. The next two are proved
mutatis mutandis, and the last four are obvious rephrasings of the first four. The
proofs arc by induction on (n,m).

(a) The statement holds trivially if either n < 0 or m < 2, and is easily
checked for any pair of the form (0,m). Consider first a pair (n,m) with n > 1
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and transform the left-hand member successively as follows:

(O ® C®™) ¢ 1m

= (0 ® C®") (u-1,m € C) (CO"D g Y1m)  (by (10)

= ('@07;._1,,,1,1 (C®(”“1) ® 6;,1) ® O) (O@'(”—l) <>j<>-‘z/',-’1:m)
(by the induction hypothesis)

= (Yn-1,m-1 & C) (08'(”*1) ® 8, & c) (c®<“~l> 2 ul)

= (P11 ®C) (C*0 8 (0, @ C) 1)

= Wn-10-1 8 C) (C¥ Vg4, 0y (O 2,))
(by the induction hypothesis)

= Wnrm1 8 C) (C*0D @y ) (C 0 81,)

= Ynm-1 (C¥"®3,).  (by (10))

The case (1,m) is dealt with by induction on m. As remarked at the beginning
of the proof, the statement holds trivially for m < 2. So, let m > 2 and use (1)
and (8) to get

(O 8 C)1n=— (A®8p_1 ® C) (AR Y1 ,m_1) (1,/') ® A®<m—1)) +

(/1, ® A®(m=2) & C) (A® ¥1.m_1) (w ® A@’("”‘”) : =

Now, deal with each summand in (11) separately. The sign left aside, the first
summand transforms successively as follows:

(A ® 8.:”_1 ® C) (A QZ, ’l/':’l’,n_l) (1/] lx‘, A®(m*1))
= (48 (9 1 ®C) b1m1) ($0 )
= (A®¥1,m—2 (C®,_;)) ('(/f ® A®(m~1))
(by the induction hypothesis)
= (A ® 'l#l"l,m—Z) (A ®C& c");n_l) (d) & A®(7n~1))
= (A X wl,m—Z) ('Lllz’ X B:n_l)
= (A8Y1m-) (v ABD) (C 0 A )
=t1ma (CRARD,_,). (by(8))
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Next, transform the second summand in (11) as follows:

(v 43D 2 C) (A Y1m-1) (¥9 Astn-)
= (/t ® AB™2) g C)

(15 000 (v54552)) (00.455) 0 )
= (li % A% @ C) (A% A® Y1 m—2) (A R ® A®<m—2))

(L S A@‘c(m-—l))
= (4 & P1,m—2) (A QY& A®<m—2>) (1/5 ® A@(m—l))

(A8 Yrm2) (1 ®C 0 42 D) (A0 ¢ © A5

(u ® ABm— 1))
= (A8 Y1,m-2 (
= (A& m2) (¥(C 0 ) & AZ™D)

(by condition (a) in the definition of 1)
= (A8 Y1) (¥ © 45" D) (Cope 452)

=11 m—1 (C Q& A®("""2)) . (by (8))

& C A R d')('(r') RA)® A@(m—2))

Finally, plug the outcome of both calculations into (11) to get the desired result
by (1):

(B ® C) 1 = Yrmr (-CO AR 1 +COUR A®<m—2>)
=P1m-1(C8,).

(b) The statement holds trivially if either index is negative, and is easily
checked for any pair of the form (0,m). For a pair (n,m) with n > 1, use (10) to
proceed inductively as in the first step of the proof of (a). For a pair of the form
(1, m) with m > 0, use (2) and (7) to get

(0;;: ® C) 'zr'f"l,m === (07/7/1—1 VAL C) (A{X,(m—‘l) & 1;’)) ('l:":"l.m—l & A) o

(12)
(A®Tn & 7 %) C) ’(j’,ll,.m.
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The sign left aside, transform the first summand in (12) as follows:

(01 © 46 C) (A 9) (1,01 8 4)

= (87/7,7.—1 ‘591.!’) (¥1,m-1 ® A4)

= (A%" 2 P) (Om-18C® A) (P1m-1® A)

= (457 9) (8hs ©0) V1,12 9.4)

= (A®™" Q%) (Yr.m (0, _,®0C) & A)  (by the induction hypothesis)
= (A" 9 9) (h1m ® 4) (CRO,_, ® A)

=U1mt1 (COIy 1 ®A). (by (7))

Next, transform the second summand in (12) as follows:

(A% @0 ® C) Yrm

= (A®*" 2@y (C®n))Y1m (by condition (b) in the definition of W)
= (A% 2 9) (A% 2 C ® 1) Y1m

= (4%™ ®¥) (Y1,m @ 1)

= (A% ®¢) (¥1,m ® 4) (C & A®™ ® 1)

=Y1mi1 (CR AP ®17). (by (7))

173

Finally, plug the outcome of both calculations into (12) to get the desired result

by (2):

(07/7{1 K C) 7/:)l,m = 'l/bl,m+1 (_C K a;;,_l ®RA+C Y A®m & f/)
= P1,m+1 (C®0,,).

Remark. Part (a) of Lemma 3 can cqually well be proved by using Lemma
1(a}, (7) and (9) instead of (1), (8) and (10), respectively. Similarly, part (b) of
Lemma 3 can also be established by resorting to Lemma 1(b), (8) and (9) instead

of (2), (7) and (10), respectively.
4. Lemma.
(a) (8;71,71 & C®n) Pr,m = Pnm—1 (C(gm @ 87/71,1’) ;
(b) (9m.: ® C®™) nim = Y mss (CBP @ L) 5
@) (A% ® V), ) ¥nm = Pn-1,m (V5,: ® A®™); and

() (A3™ & V1) Ynm = Uny1.m (V1 ® AS™)
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The proof is similar to that of Lemma 3 and hence omitted. Recalling that face
operators and degeneracies in the product are defined componentwise, Lemma 4
shows that the ¥, 1442, n = 0,1,---, are the components of a sirnp]icial map
SC x SA — SA x SC between the product simplicial modules, so 9 defined at
the end of Section 2 is a chain transformation.

We now proceed to prove the theorems.

Proof of the Theorem A. Both relations are proved along the same lines, so
only one of them will be dealt with in full detail. As an example, let us show that
O nPmn = @,m,n_](Sm:n. To this ond, recall the definitions and use parts (b)

and (b’) of Lemma 3 to rewrite the left-hand member successively as follows:

Y/} — +1)r4qs [ g1 o A 2
Omm¥mn = E : (_1)(p e (dpyq ® C’f‘,-s') Vst
p+r=m,qg+s=n

Z ('UPOH)H(SH) (Ap,q @ d,r,,s) "‘lijr,s,p,q

p+r=m, qts=n

= Z ( )(p—!—l)'r—f—qsl// r,8,0,q—1 (ér,s ® (’g,q) 4

pt+r=m,gt+s=n

Z (“]-)p(TJFl)+Q(S+1)Qf7"r.s—1,p,q (d;-l,s ® Ap,q) .

pt+r=m,qgts=n

With reference again to the definitions, write the right-hand member explicitly
to get

P18, = Z (—1)PlrHDFas=Dg (d;{,s ® Ap;q) n

pt+r=m, g+s=n

p+r=m, g+s=n

Comparison of the two yields the desired result.

Proof of the Theorem B. We already noticed after Lemma, 4 that 1,Z is a chain
transformation. To show that v is a chain transformation, recall the definitions
and proceed as in the proof of Theorem A we omit the details.

To prove the second part of the theorem, recall [7] that for any simplicial
modules X and Y there exists a natural chain transformation K(X xY) —
KX ® KY which is the identity in dimension zcro, and any two such arc chain
homotopic via a natural chain homotopy. Similarly, there exists a natural chain
transformation KX @ KY — K(X x Y) which is the identity in dimension
sero, and any two such are chain homotopic via a chain homotopy natural in X
and Y. Finally, there is a natural chain homotopy between any two natural chain
transformations K (X xY) = K(X xY') which are the identity in dimension zero.
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The standard chain transformations for the Eilenberg-Zilber chain equivalence
theorem are Alexander-Whitney’s, AWX:Y and Eilenberg-Zilber’s, EZX:Y .

AWXY  K(X xY)2 KX®KY : EZ5Y,

both are the identity in dimension zero. Explicit formulae for AWX:Y and EZX:Y
can be found in [7]. Back to our case, it suffices to show that

W AWSCIA = AWSASC 4

where AW'S4:5C ~ AW SA.5C is an Alexander-Whitney-like natural chain trans-
formatlon Wthh is the identity in dimension zero. To this end, recall the defini-
tions of 1 and ¥, write AW SC.54 explicitly,

SC, SA ’ / ,
AH/ § : vq+2 q+1 vn+1,71, &® p+3,0° "7 an,—i—z,() 3
v , .

g+p=n"" Vv
l’ q

and usc parts (a) and (a’) of Lemma 4 to get

SC,S4 _ E : Pq (o ’ ’ ’ :
Y nAW (_l) ( p+3,0° -0 n+2,0 Y vq+2rq+1 T Vn+1m,) Wn.on
ptg=n

ISASC]
= AW} Uy

where

1ISA.SC _ pq o/ /
AWn - _S_ (_1) p+3,0 " an—l—Z 0® vq+2 g+1"" " Voatin -
ptg=n

Compare

rSA, SC / A4 4 / /
AH Z 0p+3,p+1 o n+2,n®Vq+2,o"‘vn+1,o:
p+g=n

to notice that in each summand in AW, the first tensor factor is (simplic ially) a
back face, and the second a front face, while in each summand in AW, the first
tensor factor is a front face, and the sceond a back face. Back to AW/SA:5C it is
defined by face operators, so it is natural. It reduces to the identity in dlmonslon
zero. And it is a chain map by the standard identities for face operators — the
lengthy verifications are omitted.
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