
',M
INSTITUTIJL DE MATEMATICA

,,SIMION STOILOW''
AL ACADEMIEI ROMANE

PREPRINT SERIES OF TIM INSTITUTE OF MATHEMATICS
OF TI{E ROMANIAN ACADEMY

I

rssN 02s0 3638

Control problems with mixed constraints and
application to an optimal investment problem

J.F. BONNANS and D. TIBA

Freprint w.712009

by

BUCURESTI



Control problems with mixed constraints and
application to an optimal investment problem

J.F. BONNANS and D. TIBA

Preprint w. 7 ft049

Muy, 2009

INRM-Saclay, Centre de Mathdmatiques Appliquies, Ecole Polytechnique, and Laboratoire de Finance des Marchis,
d'Energie, Fraruce
E-mail : Frederic. B onnans@inria.fr
Dan Tiba, Institute of Mathematics, Romanian Acaderny, P.O.Box 1-764, 014700 Bucharest, ROMANU
E-m ail : dan. tib a@imar. ro

by



Dedicated to Dr. Consta.ntin V6rsan on the occasion of his 70th Birthday

Control problems with mixed constraints and
application to an optimal investment problem

J.F. BONNANS and D. TIBA-

Abbreviated title: Control problems with mixed constraints

Abstract We discuss two optimal control problems of parabolic

equations, with mixed state and control constraints, for which the

standard qualification condition does not hold. Our first example is

a bottleneck problem, and the second one is an optimal investmenl
problem where a utility type function is to be minimized. By an

adapted penalization technique, we derive optimality conditions

from which useful information of the soiution can be derived. In

the case of a control entering linearly in the state equation and

cost function, we obtain generalized bang-bang properties.

AMS 2000 Subject Classi.fi.cati.on: 49K20,49M30, 35K05.

Key words: Parabolic control problems, mixed constraints, bottle-
neck problems, optimal investment, constraint qualifi cation.

1 INrnoDUCTroN

Optimal control problems involving state constraints (and, in particuiar, mixed

constraints) are weli known for their intrinsic difficulty. There is a rich litera

ture devoted to the optimality conditions and the reguiarity of the Lagrange
multipliers for the case of parabolic control problems with mixed constraints:

*The work of the second author was supported by CNCSIS, Romania, grant ID-PCE
1 192-09.



Arada and Raymond [1j, Tloltzsch [17], De los Reyes and tcjltzsch [8], Rosch
and toltzsch [15].

one special case very much discussed in the literature is the so-called "bot-
tleneck problem", introduced by Bellman [3] further studied by Miricd [12],
Bergounioux and Tiba [4], Bergounioux and toltzsch [5, 6J.We study in sec-
tion 2 a variant of the bottleneck problem. we fix a "polynomial" cost func-
tional and a linear parabolic state system, and we investigate the situation
when the state is "dominated" by the control.

section 3 is devoted to an optimal investment problem that in some sense
is the opposite case of the bottleneck problem. Given a distribution of capital
over space) we a.ssume that one cannot invest more than a fraction of the
capital, and that some diffusion of the capital occurs. we study the case of a
small aversion to risk.

Our approach is based on the adapted penalization of the state equation,
while the constraints are kept explicit. Elements of our technique have been
previously used by Lions [11], Barbu and Precupanu [2], Bergounioux and Tiba

[ ]. The form of the optimality conditions that we obtain has the advantage
of a certain symmetry: the controi and the state play a similar role which
is a natural characteristic for mixed constraints. They are also accessible for
further analysis in order to obtain supplementary information like bang-bang
or regularity properties for the unknowns, which is the main aim of this paper.

2 CoNrnol DoMINATED pRoBLEMS

We analyze the following model problem:

Min

{r lr 
-va)2d,,rdt..+ 

!.tB,tcd'd,},
a t  -  L A :  B u  \ n  Q : 0 x ] 0 , 7 [ ,

y ( r , 0 )  : 0  i n  f ) ,  y ( r , t ) : 0  o n  t :  A C I  x  [ 0 , ? ] ,

Iy,u) e D c C(0,7; 14(o)) x u.

Above, [/ is the reflexive Banach space of controls, f,) is a bounded smooth
domain in Rd, d ) 1, w is a measurable subset of f,), and setting Q- : '.,xl},Tl,
B is a linear continuous operator : U - Lq(Q.), with extension by 0 to Q, D
is a closed convex nonvoid subset of C(A,T; HJ(Q)) xU, Q) 2, N ) 0, and
aa e L2(Q) are given.

( 2 . 1 )

t ,  , \

(2.3)

( ,  l \



The cost functional is a direct generalization of the standard quadratic

functional. More complex situations instead of (2.1)-(2.3) may be considered

as well. Here, we concentrate on the treatment of the mixed constraint (2.4),

which is formulated in a very general way.

Notice that the unique solution y of (2.2)-(2.3) belongs ,o 1ry2't 'u(Q). If.

q, +(" + 2), then u e C(Q) by the Sobolev embedding theorem.

If the set of admissible pairs ly,ul e D and satisfying (2.2)-(2.3) is nonvoid

and if .fy' > 0, then it is well known that the problem (2.1)-(2.4) has a unique

optimal pair [g*, u"f e W2,r,t (Q) rU , by the coercivity and strict convexity of

the cost functional, see e.g. Neittaanmd,ki and Tiba [13]. Since U is a reflexive

space) existence may be obtained as well for N : 0 if the set of controls

satisfying (2.4) is bounded in [/. In the sequel, we assume:

Probiem (2.1)-(2.4) has at least one optimal pair [9*, u.] e D. (2.5)

Examples for (2.4), that we have in mind are:

,  t  €  [0 ,?] ,*  [ a@, t )2d r<c (u ) ( t )z  
J  

- \

a

u Q Uo4, with U"a closed convex subset of [/.

(2.6)

l r  7\

Here C(.) is a given operator tJ -- Lr(A,?). For instance, If C : U - R

is a positive constant, then (2.6)-(2.7) is a standard example of separate state

and control constraints. If U : Ls(O,T) and B : U -- Lq(Q.), (Bu)(r,t) :

f  ( r )u( t ) ,  f  e  L-(w) and C(u)( t )  :u( t ) ,  t  €  [0,?] ,  we obta in avar iant  of  the

bottleneck probiem. The inequality (2.6) justifies the title of this section. In

(2.7), under the above notations, one may take

Uoa:  {u € rc(0," ) ;  a( t )  < u(r )  < b( t )  a .e.  in  [0,?] ]

wi th a and b in ,L-(0,?) .  In  th is  case,  (2.5)  holds even when N:0.  The

adapted penalization method applied to problem (2.1)-(2,4) is based on the

following approximation, for E ) 0:

(2.8)
U,l,t {t [r, 

- va)2d'rdt. + {-lBuledrdt+

*lu - u*l2tr . 
i 

!la, 
- La- B,lqd"dt) ,



subject to:

a €w2't 'o1g),  y(r ,0) :  o in o, g(u,t)  :0 in E, [E,u] e D. (2.9)

Due to the presence of the adapted term lu - u.l?u, the minimization prob-
lem (2-8)-(2.9) has a unique minimal pair [9,,a.]. Mor"ov"r, since the [y.,u-l
satisfies (2'9), (2.2) and is feasible for (2.8), we have the inequality:

+ I f, 
- ya)2drdt 

" + | lBu,lrdrdr * lu, - u.llu +
a Q -

t t

*A 
J l@,), - La.- - Bu,lq drdt
a

, f  ^  M r
S i | (a. - sa)zdrdt+ : I lBu*lq drdt.- J  

S  J
a Q '

Therefore [A,,u,J is bounded inW2,r,c(e) x U and

(a') ,-LY..-Bu, '  0 stronglY | I r-La(Q).

Denote re : €*t [(g.)r- Ly..-Buu] e Lq(e). By (2.10), ,b-r)/ar, is
bounded in Lq(Q)- we may assume that (for some subsequence) ue + il,
weakly in u , y, -* f weakly in w2'r's(e), and we get that [9, d] satisfies (2.g)
since D is weakly closed. Passing to the limit in (2.11), obtain

At -  LA - 80.:0 in Q,
i.e., the pair [0,d] is feasib]e for problem (2.1)-(2.4). By (2.10) and the weak
lower semicontinuity of the norm, we have:

, f  ^  N f
i J Q - ya)zdrdt * 

; J lBttlq drdt+ la - ".1?, 3
a Q -

<L [(r .  -ya)2drdt+Y I lBu*lqdrdt .t ,  n t -

Therefore [y,d] is optimal for the problem (2.r)-(2.4) and 0 : u*. clearly,
the weak convergences are in fact strong since lu, - u*lu -- 0. We have proved
Proposition 2.1,. The followi,ng holds:

(2.10)

/ t  1 1 \

ue +'tL* strongly in U,

Ar - U* strongly inW2,r'q(Q),
( s = L  )
t r  

n  
" , i  

is  boundedinLq(Q).

(2.12)

(2.13)

(2.14)



For a given pair [3r,u] satisfying (2.9), let us consider convex variations

denoted [gr,r"l, with gr" : le * s(y - Ur), rts -'tte * s(u - u'), for s in [0, 1].

Obviously [g",u"] satisfies (2.9) and we can write the inequality

- f ^ A I f
I I @" - ya)2d.rdt +: I lBuulo dcdr + lu, - u*llr +4  J  

\ " -  
s  I

a Q -
P

+!  l l ( s , ) r -  Ls , -Bu, lqd , rd t< |  |  fu ,+ r (y -  a ) -aa)2drdr*
q € J  - J

a a
A r f

+:  I  lBu,+s(Bu-  Bur) lq  drdt*  lu ,  +s(u -uu)-u. l :u+
q J

I  f  , .
+ -  |  l (E  ) r+  s (a -a ) t -  Lv . ^ - "A (E  -u , ) -  Bu , -  sB (u -u . ) l qd rd t '

q c J

a 
(2.15)

Let us denote by sgn(.) the sign function, U* the topological dual of [/, and
F- U n U* the duality mapping. Standard computations in (2.15) allow to

obtain the following result:

Propositio n 2.2. The pai,r lAr,url sat'isfies the following necessary and, suffi-

cient first order optimalitg condi.tion: for anA lA,ul for which (2.9) holds, we

haae that

I I

0 S l(u, - aifu - y,)dxdt + Nl lBu.ls-r sgn(Bu.)(8" - Bu,)drdt+- J ' - -  
J '

a Q-,

i (F(2.  -u*) ,u-ur lu-* r+ lun- '  l r . ln- tsgn(r . ) (y1 -  Ly -  Bu)drdt .
J
n

(2.16)

Proof. As already mentioned, the necessity follows from (2.15), by dividing
each side by s ) 0 and taking the limit when s -' 0. The sufficiency of (2.16)
is a consequence of the definition of the subdifferential since the right-hand

' 
side in (2.16) may be upper bounded by

- r  r  ^  A / r
* I ty - ya)zdrdt - | I (s, - ya)zdrdt + - | lBulq drdt-

S J
a a Q -

I I  ?  
'

-: I lBu,lndrdr * l" - "*l?u 
- lu, - ""1?, +

tl J
Q-

1 t , 1 r
1 | ls, - Ly - Bulz drdt - :- | l(c,), - La.- - Bu,lq drdt,
€q J  

' " "  q€ J  
' ' " " ' "



for any [g,a] satisfying (2.g). The conclusion follows. tr

we consider now the main example of this section, the operator B having
the form (Bu)(r,t) : f (x)u(t), u e U : trq(0, ?) and (2.6)_(2.7) becomes

r

L I u@,t)2drdt < u(t), for a,a. , € [0, ?J.
J

c,

u e Lq(0,7);  @(r) < u(t)  !b(t)  a.e.[O,?],

and there exist constants oa ( 0 and a6 > 0 such that

a ( t )  < o o  ( 0 < o 6 < b ( t ) ,  f o r a . a .  t € ( 0 , ? ) .

When.\  >
(2.18) and

(2.20)

Given p e Lq(Q) with lpllclq) ( 1, define 9p as rhe solution of (2.3) and

{ui, - Lyo: p in a. (2.21)

(2.r7)

(2.18)

(2.1e)

Proposition 2.3. If (2.r7)-(2..r9). hold, then {eo-z l".ln-t} is bound,ed. in
lo/k-r)qg1 (or equiualently, {ek-z)/(q-L)lr,} ts bound.ed.ln il@)).

Proof. For A > 0, let g^ be the unique element of W2,r,q(e) satisfying (2.8)
and

y! - Ly^: /(c)) in A.
That is, y) is the solution of (2.2)-(2.8) associated. with u^ : ).
0 is smali enough, say ,\ < ),6, with ,\e ) 0, then u) satisfies
i I at@,t)d" . i. Consequenrly

.  t  ^ f
0 S +  |  y " ( r , t )zdr :  * \ t  I  u l ( r , r )2dc  <  l .-  

J  
2 "  

J  
v  \ * ' v t  v &  \  

r ^ -
f t O

Then, lgrol",ql S K (some positive constant) if lpft"nfel ( 1, In view of (2.20)-
(2.27), for any d e IR, we have that

'  / .  .  r  ^  ^  f  ^  r
i  1 fu"*6y)zdr: i  J(a\ar+|d2 J a la"+6 Ju^aodro h o r l Q . 2 2 )
. *r + *fix' mes(fl) + ldl.\Kme'(o) istlctOl .

Given ,\ € (0,)0), for small enough d > 0, (2.22) shows that the pair (E) +
5Ao,\) belongs to D defined in (2,12)-(2.18). Use this pair in (2.16), we get



the inequality:

f f
0 < l (E, -ya) fu^ 16at-  e , )dcdt+N I  lBu€f- r  sgn (Bz, ) (B) , -  Bu,)

J J
a  Q - ,

drdt* (F(u, -r*) ,)  -  ur)u**u + 5 |  €c-2l"r ln-t  sgnrrp(r, t )drdt.
ta

Since all terms except the last remain uniformly bounded over s > 0 (remem-

ber that here ) ) 0 and 5 > 0 are fixed), the last integral is uniformly lower
bounded. Since p is an arbitrary element of the closed unit ball, and the spaces
Ls(Q) un6 tr(a-t)/t (Q) are dual to each other, the infimum of this integral over
the unit ball is -ra-2llrrll1tq-t)/s(e). The conclusion follows. !

Theorem 2.4. If (2.77)-(2.19) hold, then the pair lA*,u*f e D is opt'imal

for problem (2.1)-(2.4) iff there erists r* € La:I (Q) such that, for any (g,u)
sati,sfyi.ng (2.9):

( O S I@. - ya)fu - y.)drdt + lr / lBu.y-t sgn (Bz*)
) a a_ 

Q.23)
1 tt, - Bu*)d.rdt + [ ,. (a, - Ly - Bu)drdt.
\ J q

Proof. Thanks to proposition 2.3, there exists a sequence Er J 0 such that

{eo-z 1r,y-r} weakly converges in Ua/G-r)19) to r*. Since spaces Lo/@-t)1q1
and lq(Q) are dual to each other, $/e may pass to the limit in (2.16), proving
(2.23). Conversely, the sufficiency is obvious since, on admissible pairs [g,u]
satisfying (2.1)- (2.4), inequality (2.23) becomes

f t
0<  i  (a .  -aa) (a  -y . )d rd t+N I  lBu*y- t  sgn(Bu. ) (Bu-Bu*)drd t ,

J J
A Q -

which immediately gives the optimality of [g*,r.] by the definition of the

subdifferential. D

Remark 2.5. Notice the regularity (integrability) property of the Lagrange

muitiplier r*.

Rernark 2.6. Using (2.2), relation (2.23) may be rewritten as

r f
0 < | fu. -ai(a -s.)d,rdt+ N I lBtr*1q-t sgn (Bu.)(Bu- Bu*)drdt

J J
A Q .r
* 

J 
r-fu, - Ls - 3s - ui * As* * Bu*)drdt.

u



When r* is suficiently smooth and r*(r,?) : O in e, one can integrate by
parts in the ]ast integral. If 16r denotes the indicator function of the convex
set D in 

-L\!O,ft Hd(f))) x U, rhen (2.23) may be rewritten as (B* is rhe
adjoint of B):

I

luo+y- +r l  -  Lr*,  -B*r* -  NB* ( l ; . r .1n-t  sgn (8.r .)) ]  e 0Ip(y*,u*).

We denote by fuIp(g",u*), E2Ip(y*, u*) the two components of }Ip(y* ,u*)that occur above and we can write

r i  *  L r *  e  a*  -go* }Jp(y* ,u* ) ,

-B*r* € NB. (lBu-lo-t ,gr, (r"-)) * 02lp(y*,u*).

This is the usual form of the optimarity system, Barbu and precupanu 
[2].This formal interpretation may be made rigorous since r* is the transposition

solution of the above adjoint equation, Lions and Magenes [g, 10].
we next discuss the case when r/ : 0. In this case one typicairy expects

that (a representative of) the optirnal control u* is piecewise ctntinuous, i.e,,
continuous except for finitely many times (ir,...,i0) whose union is denoted
Td. Reminding that v* e w2,t'n(e) c'i(al uv'*," i"u"i", embedding
theorem, denote the sel of interior timesby

-(r) ]
)

Then 8o :: f,) x 7 is an open subset- since z* is continuous over z, for any
deD(Q), with compact support ineo, and for d e E small enough, by the
weierstrass theorem, the pair [a. + 6d,,u*] satisfies (2.g). using theorem 2.4,
we get

r  . .  I0:  |  , . (d ,  _Ad)drdr  +  |  a@.  _yp)drd t
J . 1
a o

and consequently

{

Note that

r , :  
{ t€  [0 ,? ] \zd ;  t  !n {n . { * , t ) )2dc  

<u

O\Q, :  
{ {" ,  

t )  e Q; t  €Td or i  fn{r . { , , t ) )2dr-  
, . ( r ) }  .

r i  +  A,r*  *  j :y*  -yo in  Dt(e) ,
i e O'191 distribution wirh support in O\g,.

(2.24)



Relation (2.2a) is another well known form of the adjoint equation in the case
when state or mixed constraints are present. Raymond and Arada [1], Rtisch
and Tloltzsch [15], De Los Reyes and ttiltzsch [8], studied the regularity
properties of the multiplier j associated to the mixed constraint (2.4) under
various interiority hypotheses.

Proposition 2.7. Assume that u" is piecewise cont'inuous, the functions a
andb are cont'inuous, (2.17)-(2.19) hold, N:0, andade L*(Q). Then, for
a I I t e T ,  w e h a u e t h a t

(2.25)

Praof. Let to €T be a Lebesgue point of the function t - Iaf (r)r*(r,t)dr,
such that Jaf @)r*(r,to)dr < 0. If u*(to)) a(to), since o and z* are contin-
uous at time fo, define for 4 ) 0 small enough

un(t): { ;(t') 
-'*(to) 

f,lf#= 
n'

For small enough 4, the Oui, [r-, u* +u\Tbelongs to D. By theorem 2.4,we--_
have that

ft"-ln / f \
0 < ( u . ( t o )  - a ( t " ) )  

|  |  |  1 6 1 " . 1 r , t ) d c ) d t .  ( 2 . 2 6 )
J to-n  \J r ,  /

Dividing (2.26) by 4, and since to is a Lebesgue point of ln /(c)r- (r, t)dc, we
obtain that 0 < Inf @)r.(r,to)dr, which is the desired contradiction. The
second reiation is proved in the same way. D

3 Oprrual TNVESTMENT AND sTATE DoMTNATED

PROBLEMS

In this section, we discuss a variant of (2.1)-(2.$ corresponding in some sense
to the "converse" of example (2.6):

|  " . ru  
:  a ( r )  in  

{ t . t , J . f ( " ) r . ( r , r )dc  
<o} ,

I  
, - , r ,  :  b ( r )  in  

{ tu t ,  !  1@)r* ( r , r )d r>o} .

*,, '{  
lrr*,t,8(r,r))drdr + lf ,+truq)drar} , (3.1)

1 6 e t ' )



(3.2)

(3.3)

(3.4)
Here a and c are positive constants and yo € ty,l'-(ft) n Wr,""(f,)), yo ) 0 a.e.
in c) and ao * 0 in o. The measurable function F is, for each (r, t), convex and
of class Cr w.r.t. y, and such that F(r,t,A(",t)) and Fo(r,t,A'@,t)) belong
to Lt(Q) for each continuous function y. A standard exarnple is

A t - L g * a 9 : 4  i n Q ,

A@,0) : Ao(r) in f,) , 9(r, t) : 0 on X,

0 (  u(r ,  t )  < cy(r, t )  a.e. in Q.

F(r , t ,E) :  p( r , t )n( i l , (3.5)

where rr(r,t) > 0 is an actualization coeffi.cient, possibly depending on time,
and z' : IR+ * IR is a desuti,Iity funct'ion (convex nonincreasing), and in that
case the cost function can be interpreted as a compromise between the utility
of y and the effort in resources u. The economic interpretation is as follows:
a@,t) ) 0 is the capital at place r and time t. one cannot invest more than a
fraction of the capital at every (r, r) e Q. In addition there is a depreciation of
the capital with constant rate a. Finally, the evolution of the capital depends
also of what happens at neighbouring points, and this justifies the diffusion
term. The cost function takes into account the preference for a certain type
of evolution of the capital, and ly' can be viewed as a risk aversion coefficient
(the preference for constant investment). obviously there is a lot of freedom in
the definition of the cost function. on the other hand, the problem has severe
restr ic t ions.  I f  u  e Lq(Q),  then A €W2,r ,e1q)  and 9 € C(e)  1t  q> $(n+2),
y > 0 in Q if. u e Lq(Q)+. The maximal state is obtained when takinfi u: cU,
i.e., is solution of

a t - L y * ( o - c ) y : a  i n  A .

Therefore, if c > a, state decrease exponentially to zero, uniformly over the
controls.

Remark 3.1. By the boundary conditions in (3.3), the constraint (3.4) ex-
cludes the standard "interiority" (Slater) assumptions used in the literature
on control problems with state constraints. The interior of the set of feasible
controls is also void, even in the L*(Q) topology- From this point of view,
the constraint (3.4) is rnore difficult than (2.6).

Proposition 3.2. The opti.mal control problern (3.1)-(3.4) has an optirnal pa,ir
[E * ,u * )  €W2 '1 , c (Q)  x  , - (O ) .

Proof. The control uo = 0 in Q, together with the corresponding solution of
(3.i)-(3.3) is feasible. For any feasible pair [y, u] in Wz,r,e(e) x Lo(e), we

10



ha,ve that A < A, and hence 0 ( u ( u:: cg. So we have uniform bound on
y and uinW2,t,"(Q) and L*(Q), resp. The usual passage to the limit in a
minimizing sequence (using the fact that tr-(Q) is the dual of the separable
space ,Ll(Q), and that an bounded sequence in the dual of a separable Banach
space has a weal<ly * converging subsequence, and that the cost is Ls.c. for the
weak * topology) allows to prove the existence of a solution to the problem
(3.1)-(3.4).  n

The approximating problem is

/
I

Min { /r(", t,y(x,t))drdt+ [(ua ryrle)drdt + [ I l t- u*f drdt*
f o a a

I f , 
'l

+- | la, - Ls + aa -ulqdcdt 
Iq € J

a )
for all ly,ul e W2,r,c(Q) x Lq(Q), subject to (3.3)-(3.a).

(3.6)
This strongly convex problem has a unique solution [Ar,u.]. Let r' € Lq(Q)

be defined by
re : €-r ((a€), - La,- * ay, - ur).

In the same way as in Section 2, we infer

Proposition 3.3, The m'inirn'izat'ion problenz (3.6) has a unique opt'imal pa'ir

ly, ,ur)  eW2,r,q(Q) x Ls(Q), l1, ' ,urJ * (g*,  u*) strongly tnWz'r 'q(Q) x Lq(Q),
, (  o - 1  l

and 
le-o 

r,| is bounded i.n Lq(Q).

Moreoaer, (Ar,rr) 'is characterized by the followi,ng relat'ion: for anE (y,u) e
W2,r,s(Q) x Lc(Q) sati.sfyins (3.3)-(3.4), we haue that

r r
0 <  I  F r ( * , t , ! t , ( r , t ) (y -  E , )d rd t+  /  (1+  qNz! - r ) (u -u , )d rd t+

J - J
a a
+ I  1 " , - r *14-1  sgn(u .  -u* ) ( r -u . )d l ld t+

J
a

f

* | sa-z lr.ln-t sgn(r.)(y1 - Ay * ay - u)d,rdt.
J
a

(3.7)

Denote by yoo e Wz,r,q(Q) C C(Q) the solution of (3.2)-(3.3) corresponding
to 'tto : 0 in Q. We assume that yo is non zero and that 0 is connected. It

t l



follows that (see Protter and Weinberger [14J ) that

yo"(r , t )  > 0, V(r, t )  e e.

0 t - L A * a 0 = x r c  i n  a

Theorem 3.4. Under hgpothesi.s (8.8), the pa,ir (y*,u*) e Wz,r,c(e) x L,r(e)
is optimal for problem (9.1)-(9.4) iff there exists r* e Mt."(e) such that

^  f  - .  r0  < |  Fr ( r , t ,a*( r , t ) ) (a_ s . )dcdr  + lG*qN(u*)o- t ) ( "_r . r . . )dudrJ  J ' ,  '  / \
a a

f
+ l r.(At - Ly + ay - u)dxdt,

J

a
(3.e)

for any (a,u) e W2,L,s(e)xLq(e) for which (3.3)_(3.4) hotd, y1_A,y+ay_u e
L*(Q), and there is K: rcy,u C e compact, such that

Ut -  LE * ag -  u:  0 a.e. in e\K.

Remark 3.5. Here, r* e M6"(Q) means that for any K C e compact, r* 6
M(rc), the dual of. L*(K), i.e. It[2".(Q) : n {tr*(K)*, K c e, compact} c
D'(Q)' obviously, any admissible pair [g,z] for (3-1)-(3.4) satisfies alr the
conditions on the test pairs in (3.g) since 91 - Ay+ au -u:0 a.e. in e by
(3.2).

Proof- we show that eq-2lr,lo-t is bounded in Ll"c(e). Let K be a com-
pact subset of Q, and let 16 denote its characteristic function. Take in (3.7)
u: d[sgnru]+X,r and the associated state d.enoted f, for small d > 0. The
weierstrass theorem and hypothesis (3.8) yierds yool, ) a5 ) 0. Then, the
pair (y"o,fr) satisfies (3.3)-(3.4) and may be used in'ls.z;, if d > 0 is small
enough,

By proposition 3.3 all terms except the rast one in (3.7) are bounded inde-
pendently of e ) 0 and we get

r
5 

| 
ee-z V,f-' sgnr, [sgnr.l* drdt < O(1), for al] e > 0. (3.10)

k

Take now 0 e WzJ,o1O) to be the solution of (3.3) and

(3.8)

(3 .11)

and d:0 in Q. Using the pair [f,d] in (3.2), obtain

- 
[  

,o- '  l r , lo-t  sgnr.drdr < O(1),  for al l  E > 0. (3.12)
k
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Multiplying(3,12) by 6 > 0 and adding (3.10) twice to it yields

f
5 | ea-z lr,lo-t lsgnr.ldrdt < O(1), Ve > 0,

J
rc

where the O(1) depend on K. This proves that {ea-2l""ln-t} is bounded in
t  ' - '  )

L!""(Q) - Next, for any compact subset K of. Q, we may define r* | 1-1rc; e M (K)

as the weak limit og ,o-21rr1a-1 restricted to K. Clearly, if K C Q compact

is such that K c K, then the obtained limit extends the previous one as any

element in ,L-(K) may be extended to .L-(K) by 0. In this way, we obtain

r. e M6"(Q).
One can pass to the limit in (3.7) on a,rry test pair [9, u] satisfying the

hypotheses of this theorem. This ends the proof of the necessity of (3.9). The

sufficiency follows as in the previous section. !

Corollary 3.6. Assume that N : 0. Let Qo be the interior of the set of poi'nts

where u* 'is cont'inuous. Then

I  u * ( r , t )  :  cE* ( r , t )  i ' f  r * ( r , , )  >  1 ,  a ' e '  i nQo ,  / e  1? \

I  u . ( r ,  t )  :  0  i l  r * ( x , t )  I  r ,  a ' e .  i ,  Qo '  
\ u ' r u l

In addit'ion, 0..e. on Qo, one of the three followi.ng staternents hold:

(3.14)

Proof . Let d, € D(Q) have compact support in the open set

Q* :  {(*  , t )  e Q" ;  0 (  u* (r ,  t )  < cy. (r , t )}  .

Then for ) close enough to 0, the pair [g* *)d, u*] may be taken in (3.9),
and it follows by standard arguments that

r i  + Ar* -  ar* *  i  :  Fy(t , t ,y.( t , t ))  in D'(Q) (3'15)

where j eD'(Q) is a distribution with support in O\Q.. Since.Q(c,t,g*)
belongs to Lq(Q),it follows that r* e W?;)'o@.) c C(Q-). Take now [y,ule
D with U : y*; since l[ : 0, (3.9) implies

(  u ' ( r , t )  :  ca* ( r , t )  and r * ( r , t )  >  1 ,

\  u * ( r , t )  : 0  a n d  r * ( r , t )  <  1 ,

|  -o  :  Fo( r , t , y . ( r , t ) ) .

r
0 <  l ( r - - 1 ) ( u - - u ) d r d t .. J ' (3 .16)



Let (ro,to) € Qo be such that u"(ro,to) { ca*(ro,to). Then we may take'ttr : ,t.L+ * u, with , nonnegative with small support near (ro,to), over which
r* is positive, and it follows with (3.16) that fof. - i), < o,'.'ii.t gives the
desired contradiction in the first relation oi $.rs;. The second. one can be
proved in the same way.

_ 
We next prove (3.14). By [7, p. 195], and in view of (3.15) we have that

Fn(r,t,a*(",t)) : -o. a.e. over {(r, t) e e"; r* : 1}. Combining with (3.13),
we obtain (3.14), 

n

Remark 3.7. Note that relations (3.13) and (3.1a) contain informations of
different nature, and that neither of them implies the other one.

The previous result shows that, although the properties of r* in rheorem
3.3 are very weak, (3.9) ailows to obtain useful information on the optimal
pair [y*, z*].

consider for instance the case when p(c, t) has the constant varue 1 and
the desutii i ty ftrnction is exponential, i.e. when F(r, t,E) _ s-a. Then
Fo(r , t ,u*)  :  -a i f f  y*( r , t )  :  - loga.  Since a*(r , t )  i ,  por i t iu"  over  e,  th is
never occlirs if a ) 1- If a € (0, 1), since y* e Wf;rt(e), by the srate equa_
tion and [7, p. 195], we obtain the additional infoimatioo trrut u* : _.alola
a.e. on the set

{ ( r , t )  e  Qo ;  U" (x , t ) :  -  l oga } .

Therefore, in view (3.14), when N:0, we have that

u*{r , t )  e  {0,  -a log a,cg*(r , t ) } ,  a .e.  on eo;

(3 .17)

(3.18)

the same property holds on e if. u," is contirruous a.e.

Remark 3-8. Resuits such as the one in corollary 3.6 are called generalized
bang-bang properties, see tcirtzsch [17], Bergounio,x and riba [a]. Note
that the sets where the constraints or relation Fr(r,t,y*(r,t)):0 are active
in Q need not be disjoint. In the work of Roscir and toitzsch [15], Holder
continuity properties are obtained for the optimal control in problems with
mixed constraints, in a different settine.
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