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An update on the maximal function

llie Valusescu

Abstract

New results about the maximal functions are presented. Using
choice sequence techniques, a directe proof for the form of the max-
imal function is obtained. Some properties of the maximal function
are analysed, and some connections with the linear systems theory are
found. It is shown that in the contraction case the spectral factors are
restrictions of the maximal function. Also, the behaviour of discrete
linear systems is studied with the maximal functions of the main op-
erator 7" and T, respectively, which become the observability and the
controllability operators of the system.

AMS Classification: 47A20, 47A30.
Keywords: Contractions, unitary dilation, choice sequences, maximal
function, spectral factors, linear systems.

1 Preliminaries

The maximal function arised in the context of factorization of operator valued
analytic functions. Firstly, in the bounded case ([18], Prop.V.4.2), where the
obtained maximal outer function is a contractive one, and then in the general
setting of a semispectral measure [16], when the maximal outer function is not
a bounded one, but an L2-bounded analytic function. Trying to illustrate the
maximal function in the particular case of the semispectral measure attached
to a contraction on a Hilbert space, a concrete form for the maximal function
was obtained [20], which latter proved to have interesting properties and
applications, especially in the linear systems theory.

The maximal function of a semispectral measure was an usefull tool
in obtaining the linear Wiener filter for prediction in the generalized infi-
nite dimensional case, and in solving various prediction problems (see e.g.
[17]). The maximal function of a contraction, besides the intrinsic proper-
ties, proves to play a more or less explicit role in the study of linear systems
having as the main operator a contraction. Actually, the maximal function



of T and T™ generate the observability and controllability operators, and can
be usefull in the study of the behaviour of linear systems.

In the present paper some properties and applications of the maximal
function will be presented, mainly following [21]-[23].

As usually, if J{ is a complex separable Hilbert space, and L(H)-the C*-
algebra of the linear bounded operators on H, as usually, for a contraction
T € L(H), (ITh]] < ||h]]) the defect operators Dy = (I — T*T)Y? and
Dr. = (I — TT*)'/? are attached. Also, the corresponding defect spaces will
be Dy = DyH and Dy = Dr-K.

For two suitable Hilbert spaces H; and Hs, a choice sequence [9] is a
finite or infinite sequence {G,} of contractions such that G; : H; — Hs,
and for k > 2, Gy : Dg,_, — Dg:_ . Of course, if {G,}1_, is a finite choice
sequence, then for any contraction Gy1: Dgy — Do, {G,}* ! is a choice
sequence, too.

By an L(J()-valued semispectral measure on the unit torus T we mean a
map 0 — F(o) from the family B(T) of Borel subsets o of T into L (), such

that for any h € 3 the map o — (F'(0)h, h)4 is a positive Radon measure
on T.

An L(J)-valued semispectral measure E is spectral, if E(T) = I and
E(o1 Noy) = E(oy) N E(oy). To each L(X)-valued spectral measure F on
T, an L(J)-valued semispectral measure can be attached, taking for any
bounded operator V' € L(JH, K) the map

F(o) =V*E(0)V.
The converse is assured by the following Naimark spectral dilation theorem.

THEOREM 1.1. Let F' be an L(H)-valued semispectral measure on T. There

exists a Hilbert space I and an L(X)-valued spectral measure £ on T such
that

(1.1) F(o)=V*E(0)V (o € B(T)).

The triplet (X, V, E] which verifies (1.1) is called a spectral dilation of F.
The spectral dilation is minimal if

(1.2) K = E(o)VH.
(1)

By the representation of the C*-algebra C(T) into L(X), which maps
the function 1 into the identity operator Is, we have the unitary operator
U € L(X) corresponding to the L(X)-valued spectral measure E, defined by

(1.3) If = / " e"dE(t).
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Also, if we take for any n € Z
(1.4) E(n) = VU™,

then R(n) is an L(H)-valued positive definite map on the group 7 such that
2m A
(1.5) R(n) = / e ™dF(t).
0

In [11], or [6], a structure of the Naimark dilation can be found in terms of
the choice sequences attached to the Fourier coefficients of the semispectral

measure. In the proof was used the following result [4] on row-contractions,
1..e., n-tuples of the form

T = (IL,... To) P He =3 - P, =90,
k=1 k=1

which are contractions.

THEOREM 1.2. T™ s ¢ contraction if and only if G, =Ty is a contraction,
and for k > 2,
T = Dg; - Dg;_

17
where Gy : Hy, — DGZ_l are contractions.

The correspondence between T™ and {Gy}}{_, is one-to-ome, and the

identification of the defect spaces of T™ can be explicitly given by the follow-
ing unitary operators:

An : Dpmy = D, ® D, -+ @ Dg,

and
Br i Dy — Des,
where
Dq, -GiGy --- —GIDG; "'DG’;_lGn
0 D¢,
and
(1.7) Br Doy = Dgs - - Dgs.



This kind of row-contractions was denoted by
(1.8) L = L({Gr}iz1) = {G1, Dg; Gy, . . . ,Day -+ Dox_ Gr).
Using the duality for a formula depending on the parameters G,
(1.9) form({Ge}i,) = form({GE}io)",
the column-contractions are defined by

)

(1.10) L=L({Gp}2_) = {G1,GaDa,, ...,GuDg,_, -~ Dg, '

where”?” is used for matrix transpose.
The results are extended to row-contractions of infinite length

(111) L({Gk}zozl) = {Gl, DG{GQ, DG’}‘DG’;G& B ),

and the unitary operators between the defect spaces are identified as

a(L) : D — P De, = D(L)

n=1
and
B(L) : D — D,(L).

Following [6], the structure of the minimal Naimark dilation of an £(3()-
valued semispectral measure is given by {J, W} where X is a Hilbert space
containing 3, and W is a unitary operator in £(X) such that

(1.12) G = PEW™ |3 (n € Z),

where {Sp}nez are the Fourier coefficients of the semispectral measure F,
and Pif is the orthogonal projection of X onto H. If {G,}%°, is the choice
sequence associated with {S,}, then the dilation space K has the form

(1.13) JC:---@D*(L)@@D*(L)@J{@éﬂcn.

=
2 The maximal function

Let H and H' be separable Hilbert spaces. An operator valued analytic

Junction on D is a function ©()\) which admits a Taylor expansion of the
form

(o)

(2.1) o)) = > _I\o, (A € D),

n=0



where the coeflicients ©,, € L(J, H’). The series is supposed to be conver-
gent in norm,weakly, or strongly, which amounts to the same for the power
series. Following the notations from [18] we shall denote such a function by
the triplet {3, H',©O(\)}.

An operator valued analytic function {3, H', ©()\)} is a bounded function,
if there exists a positive constant M such that for each A € D

(2.2) lO(MI < M.

A lot of the nice properties from the scalar case was recovered for the
bounded operator valued analytic functions. To be mentioned the very usefull
property of almost everywhere (a.e.) nontangential limits on the boundary,
such that for each bounded operator valued analytic function {3, H’, ©(\)}
on D, there exists the bounded operator valued function {HH, H, O(e™)} a.e.
on T. (For detailles see [18]).

For prediction purposes, the class of bounded analytic functions was en-
larged to the class of so called L?-bounded functions [16]. An L*-bounded
analytic function on I is an operator valued analytic function {3, H’, ©(\)}
with the property that there exists a positive constant M such that

(2.3) sup L i ' H@(reit)hHth < M||h|? (h € H),

0<r<1 2T

or equivalently
(2.4) Y l€anl* < Mn* (b€ 30).
n=0

Unfortunately for L?-bounded functions the nontangential convergence is
no longer valid, but this class of function was able to permit the extension
to the infinite dimensional prediction theory.

The factorization theorems play a crucial role in prediction problems, and
the factorization for operator valued semispectral measures [16] permited the
extension fom the multivariate (matrix) case to the infinite dimensional one.
In [16] was proved the following generalized Lowdenslager-Sz.-Nagy—Foias
factorization theorem.

THEOREM 2.1. Let F' be an L(H)-valued semispectral measure on T, and
(X, V, E] its manimal spectral dilation. There exists a unique L?-bounded
outer function {H, Fy, ©1(\)} with the following properties:

(Z) F@1 < F, )

(i) for any L*-bounded analytic function {3, F, O(N\)} such that Fg < F,
we have also Fg < Fpg,.



The properties (i) and (i) determine the outer function ©1()\) up to a
left unitary constant factor.
The equality in (i) holds if and only if

(2.5) (UK, = {0},

n>0

where U is the unitary operator corresponding to the spectral measure E, and

(2.6) Ky = \/ UV,

n=0

The unique L?bounded outer function {3, JF;,0;(\)}, obtained by the
previous factorization theorem, is called the mazimal function of the L(J)-
valued semispectral measure F'.

In the particular case of a contraction T from L(J), a semispectral mea-
sure Fr is attached taking

(2.7) Fr(o) = V"E(0)V,

where E is the spectral measure corresponding to the unitary dilation U of
T on the Hilbert space X.

In [20] was proved the following structure theorem for the maximal outer
function of a contraction.

PROPOSITION 2.2. The mazimal function of a contraction T € L(H) coin-
cides with {3, Dp~, ©1(N\)}, where

(2.8) ©:()\) = D (I — XTH)7, (A eD).

Proof. The first proof [20] made a unitary correspondence between the coef-
ficients of the obtained maximal outer function and the coefficients of ©;(\)
given by (2.8). Here, using choice sequences technique, another proof is
given, similar with the proof given in [6] for the generalized Lowdenslager—
Sz.-Nagy—Foias factorization theorem (Theorem 2.1).

If we consider the Fourier coefficients S,, of the semispectral measure Fr
given by the positive definite kernel

T , n>0
(2.9) S=4T : =)
T+l n< 0,



which corresponds to the choice sequence {G,}%,, where G; = T, and
Gy = 0 for k > 2, then the Naimark dilation on K, where

K= ®Dr @D ®HD D7+ ® Dp---,

is given by the Schéffer matrix form of Sz.-Nagy dilation for a contraction

. I 0 O 0 0
.01 O 0 0
W = .00 Dp T O
.00 =T" Dr 0
.00 O 0 I

It is convenient to take into consideration the unitary operator W* from
L(X) , where

(2.10) K= 0D(L)oH®Ds; Dy - --

and W* = W({{Gr}22,). Defining the subspace

oo

(2.11) K_:VW*”G{:S{@DG;@@GE@...7
n=0

and the isometry

(2.12) W_ = W*|X_,

then the Wold decomposition is given by

(2.13) K_=Pws_er,

n=0

where §_ =K_oW_K_, and R_ = W*nXK_. Therefore

n=0

(2.14) G =W - ®00D.(L)® 0y D) = WG,
and it follows [6] that the form of the maximal outer function is given by
(2.15) ©1(\) = PXW (I — AW) |5 (A € D).
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Taking into account the fact that G; =T and G = 0 for k > 2, and the nat-
ural identification between G and Dp-, it follows that the maximal function
of T has the form (2.8), namely

©:(\) = D= (I = XT*)7H, (A eD).
O

Analogously can be proved that the maximal function {J, Dy, ©4(A)} of
the adjoint contraction 7™ has the form

(2.16) 8:()) = De(l — XT) Y, (A e D).

Between the maximal function ©;(\), and the characteristic function
{Dz, D+, O1(N)} of the contraction T,

(2.17)  O7(\) = [T 4+ ADp. (I — AT*) "' D7]| D, (A eD),

taking into account (2.8), there exists the obvious relation

(2.18) Or(\) =[-T + A0, (\) Dr)| D, (A e D),
or written into the matrix form

=T
(2.19) Or(\) = [I A0:(N)] {DJ :

as a factorization into an analytic part and an isometry.

In [20] was found another relation between these two analytic functions,
namely

(2.20) O7(\) Dy = ©;(A)(AI = T), (A € D),

which can be also written as

(2.21) ©r(\) €1(N)] {:/ETA I} - 0.

In the particular case when T is a strict contraction (||T|| < 1), the
relation (2.20) can be written as

(2.22) Or(\) = ©;(\) (N - T)D7, (A eD).
Taking the characteristic function {Dp«, Dr, Ops(A)} of T*,

(2.23)  Op(\) = [T + AD¢(I — AXT) "' D]

'.DT*, ()\ G’D),
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an analogous calculus leads to the connexion between the maximal function
of 7" and its characteristic function O~ (A) given by

(2.24) Or-(\) Dy = O5(A)(AT — T™), (A € D).

In some investigations (see e.g. [13]), generalizing the Cy. and C, case,
an operator 1" on J is called stable if T — 0, and *-stable if T** — 0,
strongly as n — 0. Actually, in the linear systems theory, a system with the
main operator 7 is called stable, if it is stable and x-stable.

PROPOSITION 2.3. If T is a *-stable contraction, then its mazimal function

{F(, Dy, ©1(N)} is bounded, and the attached operator ©, defined from H
into H*(Dy-) by

(2.25) (©1h)(A) = ©1(A)h
is an 1sometry. Moreover, the Sz.-Nagy—Foias functional model [18] reduces
to a functional representation given by ©1()). Namely, the imbedding of H

15 grven by

(2.26) H={ue€ H*Dy)

u(X) = ©;(\h, h e K},

and the contraction T is represented by

(2.27) Tu() = %[61(/\)h — 0,(0)A].

Proof. The fact that for a stable contraction 7' the imbedding of H into the
Sz.-Nagy-Foias functional model H is given by (2.26) was proved in [20], and
is based on the fact that the functional model (see [18], Ch.VI) is obtained
by a unitary imbedding ® of the dilation space K into a functional space. If
T'is #-stable, then X = M(£,), where £, = UL*, and ® = ®Pr*_the Fourier
representation on H%(Dq.).

For any contraction 7" and h € H we have
n n

i | Dp-T*n|* = 3 (D3.T**h, T*h) = S (||77*h|)” - |T*+1h)%) =
k=0 k=0 k=0

= 5 e B e < g e

Since T is x-stable, the previous relation becomes

S IDe T B = A7,
n=0



and taking into account that

©:1(\) =Y DpT™™\",

n=0
it follows that the attached operator ©1 : H — H?(Dr») is an isometry. [

A dual representation can be found in the stable case for 7™.

Other relations between the maximal function and the characteristic func-
tion will be given in the context of linear systems, in the next sections.

As a remark, even for the characteristic function we have the dual formula
Or-(\) = Op(\)*, between the maximal functions there exists no such a
duality relation except the case when T is a normal operator. Moreover, the
characteristic function is a contractive analytic function, while the maximal
function is generally not a bounded one, but an L*-bounded analytic function.

A particular remark is the fact that, if the semispectral measure F' is
Harnack equivalent with the Lebesgue measure on T, i.e., there exists a
positive constant ¢ such that

c-dt <dF(t) <c7'-dt,

then the attached maximal function is bounded, and has a bounded inverse.
This is the case when a linear Wiener filter for the prediction of operatorial
processes, in infinite dimensional setting, can be obtained (see e.g., [17]).
Some conditions for the boundedness of the maximal function of a con-
traction can be found in [20]. Such a way, the maximal function is bounded if
and only if the corresponding semispectral measure is boundedly dominated
by the Lebesgue measure on T. Also, a contraction 7" has the semispec-
tral measure Fp of the form dFp(t) = O(e")*O(e), with ©()\) a bounded
analytic function, if and only if ' € Cy and the spectral radious p(t) < 1.

3 Spectral factors

Applying Theorem 2.1 for the L(J{)-valued semispectral measure of the form
(3.1) dF(t) = N(t)*dt,

where, for 0 < ¢t < 2w, N(t) is a function whose values are self-adjoint
operators on a separable Hilbert space 3, and which is measurable (strongly,
or weakly, which amounts to the same for separable ), with the property
that 0 < N(t) < I, then the following Sz.-Nagy-Foias factorization theorem
is obtained (see [18], Prop.V.4.2).
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THEOREM 3.1. There ezists a contractive outer function {3, ¥y, ©1(\)} with
the following properties:

(i) ©:1(e")"©1(e") < N(t)*  ae. ;
(i) for every other contractive analytic function {3, F,O(\)} such that
O(e")*O(e™) < N(t)> a.e., we have also

O(e™)*O(e") < ©,(e%)*O; (%) a.e.

Moreover, these properties determine the outer function ©1(\) up to a
constant unitary factor from the left. In order that equality holds in (i) a.e.,
it 1s necessary and sufficient that the condition

(3.2) () e™NH2(H) = {0}

n>0

be satisfied, where the self-adjoint operator N on L*(J) is defined by the
equality (Nv)(t) = N(t)v(t).

In [6] for any contractive analytic function the measurable functions
NL(t)* = I — ©(e")*O(e"), and Ng(t)? = I — ©(e)O(e™)* was considered,
and the corresponding contractive maximal outer functions was obtained,
using Theorem 2.1. These particular maximal functions was called [6] the
left spectral factor and the right spectral factor, respectively.

PROPOSITION 3.2. Let {J;, Ho, ©(N\)} be a contractive analytic function on
D. The spectral factors have the form

(3.3) Or(\) = PX(I — A\A)*C (A e D),
and
(3.4) Or(\) = PXC(I — AA)™*(G (A e D),

where K has the form (2. 10), G is given by (2.14), A, B,C, and the duals
A, B,C, are obtained by an appropriate choice sequence (Schur parameters)
associated to O(N).

A complete proof can be found in [6].

The spectral factors, as particular cases of maximal functions, play an
interesting role in the study of linear systems.

Let 3(,U,d be separable Hilbert spaces and A € L(H), B
C e L(H,Y), D e L(U,Y). A linear system o = (A, B, C, D; H, U, Y) of the

form

(3 5) { hn+1 = Ahn + Bu'm (TL > O)

Yn = Chy 4+ Duy,

11



where {h,} C H, {u,} CU, {y.} CY,is called a discrete-time system.
Usually the spaces H, U, Y are called, respectively, the state space, the
input space, and the output space, and the operators A, B,C and D are
called, respectively, the main operator, the control operator, the observation
operator, and the feedthrough operator of the system o.
Let us define the bloc operator matrix (colligation) S: HeU — H DY
by

S - N

Then (3.5) can be written into a matrix form as follows

hn+1 _ S hn
yn uTL
The system o will be called: passive, 1sometric, co-isometric, conservative
if S is, respectively, a contraction, an isometry, a co-isometry, a unitary
operator.

The operator valued function ©,(\) : U — Y, (A € D), attached to a
system o by

(3.7) O,A\) =D+ AXC(Is— NA)'B (A eD),

is the transfer function (or frequency response function) of the system.

The name is justified by the fact that ©,(\) make a connection between
the transformed input and transformed output of the system. Indeed, appli-
cation of the Z-transform

R =D R A®

n>0

to the system (3.5) and elimination of the state variable leads to
(3.9) J0) = 0,aN)  (AeD).

The transfer function is the basic connection between state-space and
frequency-domain in the linear system theory.

The references of the linear systems are very large, I mention here only
a few of them [7, 8, 14, 3, 15, 1]. In the following only discrete-time linear
systems will be considered.

If o is a passive system, then ©,()) is a contractive holomorphic function
on D, i.e. ©,()) belongs to the Schur class S(U,Y).

12



For a system o, the following subspaces of H are considered:

(3.9) €= \/ A"BU (the controllable space)
n>0

and

(3.10) 0= \/ A CHY (the observable space).
n>0

Generally we have
3= (e\/o)a (et not)

The system o is called controllable if @ = H, observable if © = H, and

manimal if o is both observable and controllable. The system o is stmple if
Gy U =1L

From(3.9) it follows that ((?)L = ker(B*A*"), and from (3.10) we

0

have ((‘))l = [ ker(C'A™). Hence the following characterizations occur: the
n=0

18

system o is, respecively, controllable iff () ker(B*A4*™) = {0}, observable iff
n=0

FjOker(CA”) = {0}, and simple iff ( Fjoker(B*A*"))ﬂ( F.joker(CA”)) = {0}.

An explicit form for the spectral factors attached to ©,(\) was found
in [12], using the maximal unilateral shift contained in the completely non-
unitary contraction A, as follows.

PROPOSITION 3.3. The spectral factors of ©,(\) have the form

(3.11) Or(N) = P3HI — MA)'B (A e D),
and
(3.12) Or(\) = C(I - A)7HQ, (A e D),

where (), and §2, are the generating subspaces of the mazimal unilateral shift
contained in A, and A*, respectively.

4 Some applications

In this section, some applications of the maximal function in the linear Sys-
tems theory are given, and some characterization in terms of the maximal

13



function are obtained. Firstly we will analyse the particular case of a sys-
tem given by the rotation operator of 7', and then how the results can be
generalized, using the maximal function, is presented.

Let us consider the system J given by the following unitary operator (the
rotation operator of T, or Julia operator)

(4.1) J(T)= R = {T DT*}

Dy =T}

In this particular case, the controllable and the observable subspaces of
H will be, respectively,

(4.2) C= {7 T"DpeDpe, O = (7 T* Dy Dep,

n=0 n=0
and the corresponding orthogonals in the state space H will be

(43) €' = (ker(Dr-T"") = ( \ker Dpn = {h € 3; ||T*"h|| = |IR|},

n=0

(44) 0% = (ker(DrT™) = \ker Dp» = {h € 3(; | T"R|| = ||R||}.

n=0
Thus T|O+ and T*|C* are isometric operators and
(4.5) et N Ot = {h e IG [|T°h] = [|hll = IT*"h[|} = Ho,
where Hy is the subspace of the unitary part from the canonical decomposi-

tion [18] of the contraction T'=To® T} = 7(;0 :?’} into its unitary part and
1

the completely non-unitary (c.n.u.) part on H = Ho @ H;.
Also, let us remark that the transfer function of 7 is just the characteristic
function of T*

If we consider the system J* given by the unitary bloc matrix J(T*) =

T*
{ D ;}, then the transfer function of J* will be given by the analytic
T =

function {Dp, Dp«, O7(A\)}, the characteristic function of T
Obviously Rr» = R, and the corresponding linear systems § and J* are
dual, namely, if J is observable, then J* is controllable, and conversely.

14



PROPOSITION 4.1. The system § given by J(T) is conservative and simple,
of and only if the main operator T' is a completely non-unitary contraction.
Moreover, if TO+ = 0L, then J is observable, and if T*Ct = @L, then J
s a controllable system.

Proof. Obviously that the system § is conservative, being governed by the
unitary bloc matrix operator J (T). If J is simple, then H = €V 0O, and
CtNOt ={h eI |Trh| = [B]] = IT*"h||} = 3o = {0}, i.e., the subspace
of the unitary part of 7" is the null space, and T' is a completely non-unitary
contraction.

Conversely, if 7' is c.n.u., then H, = {0}, and H = €\/ 0, i.e., the system
d is simple.

It is obvious that O is invariant to T, and T restricted to Ot is an
isometry. If TO+ = OL, then OL reduces T to a unitary operator. Since
d is simple, i.e., T is c.n.u., it follows that O+ — {0}, or O = ¥, and J is
observable.

Analogously, if T*C+ = @1, then @' reduces T* to a unitary operator,
which implies that C*+ = {0}, i.e., the system g is controllable. OJ

From prediction point of view, we are interested in the cases when the
maximal function attached to the distribution of a process is not a null
function, to obtain the best linear predictor and the prediction-error in terms
of the coefficients of the maximal function. In the case of discrete linear
systems with the main operator a contraction, the fact that the maximal
functions ©1(A) or ©4()\) of the main operator, or its adjoint, are the null
functions, give some informations about the corresponding structure.

PROPOSITION 4.2. Let J be the conservative system given by the Julia oper-
ator J(T') of a completely non-unitary contraction T .

1). If the mazimal function {30, D+, 01(N)} of the main operator T is
the null function, then the system J is observable.

2). If the mazimal function {H, Dr, ©2(N)} of T* is the null function,
then the system g is controllable.

Proof. If the maximal function of the contraction T
©1(A) = Dpe(I = T*)™ = Z CPAF = Z Dp.T*)\kF = {0},
k=0 k=0

then the coefficients Cy, = 0, i.e., D T*"h = 0 for any h € H, and by (4.3) it
follows that C+ = 7, ie., C = {0}. By the previous Proposition, the system
d is simple, thus it follows that © = H, and the system J is observable.
Analogous, if {3, Dy, ©2(\) = {0}}, then by (4.4) we have 01 = ¥, and
it follows that € = K, i.e., the system g is controllable. [

15



COROLLARY 4.3. If the main operator T of the system J s an 1sometric
(co-isometric) operator, then J is controllable (observable). If T' is unitary,
then the system J is minimal.

A stronger characterization for the controllability (observability) of the
system J can be done with the maximal functions of the main operator 1" as
follows.

PROPOSITION 4.4. The discrete linear system J is controllable if and only
if the operator ©, from 3 into H?(Dr+) attached to the mazimal function
{H,Dr+,01} by (2.25) is one to one.

Proof. If the system J is controllable, then C; = H, where Cj is given by
(4.2), or equivalently, C5 = (ker(Dr-T*") = {0}. That is, Dp-T*"h = 0 for
any n > 0 if and only if h = 0. Taking into account that

S {30 = Dysh & Dpw Tl D252 - o

it follows that ker ©; = 0.

Conversely, if ker©; = 0, then ©;h = 0 if and only if h = 0, i.e,,
Dy T*"h = 0 for any n > 0 if and only if A = 0, which implies that €+ = {0},
or equivalently C5 = 3, and the system is controllable. 0

Analogously, for the system J* can be proved the following

PROPOSITION 4.5. The discrete linear system J* is controllable if and only
if the operator ©y from H into H?*(Dr) attached to the mazimal function
{ﬂ‘(, ‘:DT, @2} by

(©2h)(A) = B2(A)h

1S one to one.

Therefore the operators ©; and ©4 corresponding to the maximal func-
tions ©1(\) and O(A) of T and T*, respectively, contain the information
about the structure of the corresponding systems.

Actually, following [13], the observability, and controllability properties of
a system can be introduced with some observable, and controllable operators,
which represent the maximal function of the main operator of the system, as
follows. Let us introduce the observability operator O, from H into H2(Y)
defined by

(4.6) Osh=C(I — XA)"*h (AeD,h e H),
and the controllability operator 2, : H — U, defined by
(4.7) Qoh = B*(I — XAk (AeD,h € H).
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Now we introduce the observability, and the controllability of a system, as
follows. The system o is observable if and only if the observability operator
is one to one, and o is controllable if and only if the controllability operator
is one to one. These definitions are equivalent with the classical one, given
with the observability, and controlabillity subspaces of the system. Indeed,
if the observability operator O, is one to one, then Ozh = 0 if and only if
h = 0. By (4.6), this is equivalent with CA™h = 0 for all n > 0, if and only

if h=0. That is

ﬂ ker(CA™) = {0},

n>0
which it is equivalent with the fact that the linear span of A*™C*Y is the
wholle space H, i.e., O, = K.

If 2, is one to one, then it follows that B*A**h = 0 for all n > 0 if and
only if h = o, which it is equivalent with

() ker(B*A*™) = {0},

that is €, = \/ A"BU = K.
n>1
Let us consider the linear systems

3 == (T7 DT*yDT) _T*) j{) DT*7 DT))

and
5* = (T*7 DT) DT*) _Ta J-Ca DT) DT*)
. . T Do
generated, respectively, by the rotation operators By = D T+ and
-
T Dy
e[ 22)

COROLLARY 4.6. For the system J given by the rotation operator Rr, the
controllability operator is given by the mazimal function {3, D+, ©1(N)} of
the main operator T' by

(4.8) Qg =0y,

where ©y : H — H*(Dr-) is given by

(4.9) (©1h)(\) = ©;(\)h (\ € D),
and the observability operator is

(4.10) O3 = O,

where {3, Dy, ©2(\)} is the mazimal function of T*.
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Remark that the controllability (observability) operator of J become the
observability (controllability) operator of J*, and conversely.

Many other remarkable tools in systems theory can be formulated with
the maximal function. Such a way, the observability gramian

Gg = 0;0,,
and the controllability gramian
GZ =00,
which in the rotation case J become
G =010, and GY =036,

Remark that a system is observable if and only if the observability gramian
is strictly positive, and controllable if and only if the controllability gramian
is strictly positive, respectively.

For a general study of linear systems, we are interested in bloc matrices
A B s aE B a .

operators of the form S = [ C D} By definition, if S is, respectively, con-
traction, isometry, co-isometry, unitary, then the corresponding system is,
respectively, passive, isometric, co-isometric, conservative. In the following,
some explicit relations show the utility of the maximal function in the inves-
tigation of passive systems, but the study can be generalized for other type
of systems, too. For the study of passive systems, the following theorem ([5],
Theorem 1.3), which gives a characterization of such a bloc matrix S to be
a contraction, is very helpfull.

THEOREM 4.7. The formula
(4.11) X = —I'3A"T'1 + DpyI'Dr,

establishes a one-to-one correspondence between all operators X € L(Hs, Ko)
A Dply . :

such that S = {F2DA P } is a contraction, and all T' € L(Dr,, Dry).

Moreover, Dg can be identified with Dr, ®Dr, and Dg- can be identified with

Dp*{ @ DF* ;

é IB;}, where A € L(JH), B € L(U,H),

C € L(H,Y), and D € L(U,Y), is a contraction if and only if there exist

Therefore, in our case, S =
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the uniquelly determined contractions I € LU, Dyv), Ty € L(Dy, Y) and
I'e L(‘DFI, ‘Dp;), such that

[ 4 Dl
6 B= {FQDA ~TL AT + DFEFDFJ '

If for the passive system governed by the contractive bloc matrix S, having
the main operator the contraction A, we construct the conservative system

4 DA*J, then S can be

governed by the unitary bloc matrix B, = { D Pt
4 —

obviously written in the form

_[1 0][A Dx&T[I 0] [0 o
(a18) | 8= [o I‘?J [DA —A*} [0 FJ B [0 DPEFDPJ’
o

Ra
or using Corollary 3.5 from [13], S can be factorized as follows

A Dy 01T o0
S:[élf) DOJ Ds —4* 0| |0 T,
> 7% lo o r|lo Dp

These facts suggest that, having a characterization of conservative sys-
tems with the maximal functions, then the study can be extended to the
passive systems, too.

Using (4.13), the following relation between the controllable and observ-

able subspaces of a passive system, and the the corresponding conservative
attached system can be proved.

PROPOSITION 4.8. Let o = (A, B,C, D;H,U,Y) be a passive system corre-
sponding to the bloc matriz S, and § = (A,Da», Dy, —A*; K, Da,Da+) the
conservative system corresponding to Ra, where A is the main operator of
o. The observable and the controllable subspaces of o are contained , respec-
twely, into the observable and the controllable subspaces of J.

Proof. The system o is passive, hence the bloc matrix S is contraction, and
if we use the structure given by (4.12), then the proof is a straightforward
verification, starting from the definition of the corresponding subspaces. Let
C, and €4 be the controllable subspaces of ¢ and J, respectively, and ©,,
Oy the corresponding observable subspaces. Then, taking into account that
Iy € L(U,Da-) and T5 € L(Y,D,), we have

e, = (o/ A"D 4Ty C io/ A"D Dy = Cy

=0 n==0
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and

Or = \/ A™(T2Da)"Y = \/ A"DAl3Y C \/ A™"DyDy = 0.

=0 n=0 n=0

Therefore C, C €5 and O, C Oy. O
From these inclusions it results the following

COROLLARY 4.9. If the passive system o is controllable, observable, mini-
mal, or stmple, then the attaced conservative system J becomes, respectively,
controllable, observable, minimal, or simple.

Finally, let us recall some more results and connections with the maximal
function. One of them is that between the maximal function and the charac-
teristic function there exist the following relation, usefull in solving interpo-
lation problems (see [13], Cap.IX, Theorem 6.4): if T' is *-stable, then the op-
erator Wy from the space of the minimal isometric dilation X = H@ H?*(D7)
into H*(Dr-) defined by

Wr(h® f) = ©:1h + Orf,
or into matricial form
WT = [@1 @T] : 3{@ Hz(@T) = H2(®T*)

is unitary.

As a remark, the stable and *-stable systems, having a contraction as the
main operator, can be analysed also in a functional form, taking account by
Proposition 2.3, into a functional model generated by the maximal function
of the main operator.

Usefull in the study of the linear systems can be the fact that the defect

functions of the transfer function of J and J* generate positive definite kernels
as follows

PROPOSITION 4.10. Let {Dr, Dy, O1(N\)} be the characteristic function of
the contraction T'. There exist the following relations

[ = Or(N)Or(p)*

(4.14) T = 01(A)01 (1)
and
(415) L= 0rlw)'Ord) _ o, e,

1—-Xo
where ©1(X) and ©4()) are the mazimal functions of T and T*, respectively.
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Proof. Tt is known ([18], Chap.VT, (1.4)) that the defect function of the char-
acteristic function {Dr, Dy~, O7(\)} is obtained by

o F) = (O (N, 0r(w)f) = (1= Mp) (I = AT*)"'Drf, (I — uT*) ' Drf)
that is
NG (A p)=1- Or(u)*Or(A) = (1 — X\g)Dr(I — 5T) (I — AT*)™' Dy,
and taking into account by (2.16) it follows that

I —Or(u)*07(N)
1— 20

= 02(1)O2(V)*.

An analogous calculus leads to
A () = 1= Or(NOr (k)" = (1 = Xg)Dp- (I — NT*)~Y(I — BT) Dy
and by (2.8) it follows that

I = Or(\)Or(u)*
1z

=01 (M)01(w)"

]

A similar result can be obtained for the characteristic function Or«(A),

which is the transfer function of the system g given by the rotation operator
Rr.

PROPOSITION 4.11. Let {Dr+, Dr, O7.(\)} be the characteristic function of
the contraction T*. There exist the following relations

I — Or-(N)O1- (1)

(4.16) o = 02(X)0a(n)"
and
(4.17) [=Or (W) Or () _ O1(m)0:1(N)",

T2 Xg
where ©1(A) and ©y()\) are the magimal functions of T and T™, respectively.

From the above results can be seen that in the contraction case the spec-
tral factors, which are particular cases of maximal functions, can be obtained
from (4.14) and (4.15) for g*, and from (4.16) and (4.17) for the system J
given by the rotation of 7.

Actually, for a system generated by a unitary bloc matrix S given by
(4.12), a generalized result can be obtained.
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ProprosITION 4.12. Let 0 = (A, B,C,D; H,U,Y) be a system given by the
unitary bloc matriz operator

g A B H . H
C D u Yyl’
and ©4(A) the transfer function of o. Then we have the following positive
definite kernels on D?

(a18) 1= @1"(_“1;9““) — B (I —FAN NI - ))B (A peD),

and

1= 0;(X)Os (k)"

(4.19) -

=C(I - )Y I —gA)'C* (\peD).

Proof. Since S is a unitary operator, it follows from S$*S = [ and SS* = I
that

C*'C=1-A"A,B*B=1—-D*D, D*C = —B*A, BD* = —AC*.
Taking into account the previous relations we have

I—0,(u)*0,(\) =1 [D*+nEB*(I —mA")'C*|[D+ XC(I — MA)™'B] =
= [-D*D-AD*C(I-XA)"'B—uB*(I-pA*)"'C*D-\aB*(I-EA*)"'C*C
(I =MA)™'B = B*B + AB*A(I — MA)—1B + EB*(I — GA*) ' A*B—
—XgB*(I — gA*)7IC*C(I — MA)™'B = B*(I - MA*) (I — @A) (I — XA+
+AMI = BA*) A+ A (I — NA) — Np(I — A*A))(I — NA) B =
= (1-Mg)B*(I —mA") (I - AA)‘lB,

and (4.18) is verified.
An analogous calculus leads to (4.19), and the proof is finished. O

Using the previous Proposition, the general form of the spectral factors
can be derived, but in this paper we are mainly interested in the connection
between the spectral factors and the maximal functions ©;()\) and ©,()\).
Let us remark that in this case the subspaces © and ), become

(4.20) Q=0teTOt and . =CltoT et

The following result gives another characterization for the behaviour of
the rotation systems, in terms of the maximal functions.
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PROPOSITION 4.13. The conservative simple system J attached to the rota-
teon of a completely non-unitary contraction T is

1) observable if and only if ©1(\)|Q = 0,

2) controllable if and only if O(\)|C = 0,
where ©1(A), and ©4()), are the mazimal functions of T', and T*, respec-
twely.

Proof. 1f  is observable, then O = J{, i.e., O = {0}, and by (4.20) it follows
that 2 = {0}, and ©;())|Q = 0.
Conversely, if ©1()\)|Q = 0, then for any g € Dy, and w € 2, we have

0= (©1(Nw, g) = (w, 01 (\)"g) = (w, Pa©®1(\)*g),

that is
0= PaO1(\)"g = Po[Dr- (I — AT*)" " g =

= Po(I =AT)"'Drog = Pa Y X'T"Dy-g.
n=0

It follows that for any n > 0, and g € Dr+, we have PoT"Dp.g = 0, and by
(4.2) it results that '

Po \/ T"Dp-Dr. = Po€ = {0},

n=0

Le,  C € But Q C O, and it results that O C €+ N OL — Hy = {0},
where H, is the space of unitary part of the c.n.u. contraction T. Therefore
{2 = {0}, and by (4.20) we have O* ©TO = {0}, or equivalent, TO+ = OL.
By (4.4) T|O" is an isometry, therefore O+ reduces T to a unitary operator.
T being cn.u., it results O+ = {0}, and it follows that © = H, ie. Jis
observable.

If 3 is controllable, then € = 7, i.e., G+ = {0}, which implies ©, = {0},
and ©5(\)|Q, = 0.

Conversely, if ©3(\)|Q. = 0, then for any v € €, and any g € Dy we
have

(©2(M)v, 9) = (v,02(N)"g) = (v, Pn,©2())*g) = 0,
that is
P0,02(A)"g = Po,[Dr(I — X) g =

= Po,(I = XT") ' Dpg = Po, > X'T*Drg = 0.

n=0
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It follows that for any n > 0, and g € D we have Pq, T*"Drg = 0, and by
(4.2) it results that

Py, \/ T D7Dy = Po,0 = {0},

n=0

ie., 2, C O1. Since Q, C G, it follows that 2, C O+ N Ct = H, = {0},
i.e., Q, = {0}, which implies 7*Ct = €1, and the fact that € reduces T* to
a unitary operator. But T is completely non-unitary, so we have Gt = {0},
or equivalent, € = H, and the system J is controllable. O

By duality of J and J* we also have

PRrOPOSITION 4.14. If T is a completely non-unitary contraction, then the
conservative stmple system J* gwen by the rotation of T* is controllable if
and only if ©1(N)|Q2 = 0, and observable if and only if Ox(N)|2 = 0, where
©1(N), and ©4(N), are the mazimal functions of T', and T*, respectively.

From the previous results, it follows the following corollary for the con-

servative simple systems generated by the rotation of completely non-unitary
contractions.

COROLLARY 4.15. The conservative simple systems § and J*, having the
main operator a completely non-unitary contraction, are minimal if and only
if the corresponding spectral factors are zero functions, or equivalent, if and
only if ©1(N)|Q2 = 0 and O4(N\)|Q = 0, where ©1()\), and Oy()\), are the
mazimal functions of T', and T*, respectively.

For composing of systems, the Redheffer cascading systems theory, or
Redheffer product, is very helpfull. In [13] a short introduction into the
theory of Redheffer products with applications to the structure of matrix

contractions and linear systems can be found. Such a way, if S = é g
| A Dy . |0 T
generates a system, R, = Dy —A*} is the rotation of A, and J = [I O}

is the identity matrix for the Redheffer products, then, knowing the inves-
tigation with the maximal functions on the rotation operator conservative

system, consequences for passive systems can derive also using the following
form for the Theorem 4.7.

THEOREM 4.16. The matriz

A B ,
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s a contraction if and only if it can be represented as a Redheffer product of
the form

S = (J(Ry. o [8 g} °Ry)) o Ry,

where A, XY and I’ are contractions acting belween appropriate spaces.

To be mentioned also that the rotation R, is obtained by the rotation of

A* composed to the identity operator J = {0 !

7 0:, as follows

r_ —A DA* .
RA—[DA A*J—JRA*J.

A complete proof can be found in [13], Cap.XIV, Corollary 2.8.

Another explicit relation betveen the maximal function and the charac-
teristic function of a contraction was obtained in [19], where using Redheffer

Dy —

" DT}
with the extended feedback system {I, A} is expressed as the extended feed-
back system of the maximal function ©1()) and the characteristic function
O©r(A). Also an extended form for the maximal function ©1(X) to ©;(X),
where X € L(J(), is used to obtain a generalized form of the characteristic
function.

All previous facts and the strong relations between the maximal functions
and transfer functions show up that the maximal functions are used implicitly

in the study of the linear systems, and can become an explicit tools for
investigation.

products, the composing of the system generated by JRp« = {
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