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Abstract

New results about the maximal functions are presented. Using
choice sequence techniques, a directe proof for the form of the max-
imal function is obtained. some properties of the maximal function
are analysed, and some connections with the linear systems theory are
found. It is shown that in the contraction case the spectral factors are
restrictions of the maximal function. AIso, the behaviour of discrete
linear systems is studied with the maximal functions of the main op-
erator 7 and 7*, respectively, which become the observability and the
controllability operators of the system.

AMS Classification: 47A20, 47430.
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1 Preliminaries

The maximal function arised in the context of factorization of operator valuecl
analytic functions. Firstly, in the bounded case ([18], Prop.V.4.2), where the
obtained maximal outer function is a contractive one, and then in the general
setting of a semispectral measure [16], when the maximal outer fnnction is not
a bounded one, but an l2-bounded analytic function. Tfying to illustrate the
maximal function in the particular case of the semispectral measure attached
to a contraction on a Hilbert space, a concrete folm for the maxirnai function
was obtained [20], which latter proved to have interesting properties and
applications, especially in the linear systems theory.

The maximal ftnction of a semispectrai measure was an useftrll tool
in obtaining the linear Wiener filter for prediction in the generalized infi-
nite dimensional case, and in solving various prediction problems (see e.g.
[17]) The maximal function of a contraction, besides the intrinsic proper-
ties, proves to play a more or less explicit role in the study of linear systems
having as the main operator a contraction. Actually, the maximal function



of 7 and 7* generate the observability and controllability operators, and can
be usefull in the study of the behaviour of linear systems.

In the present paper some properties and applications of the maximal
function will be presented, mainly following [2i]-[23].

As usually, fi J{ is a complex separable Hilbert space, and A(}C)-the C*-
algebra of the linear bounded operators on 1{, as usually, for a contraction
r  e LQl,  ( l l7hl l
Dy*: (I -TT.)1/2 are attached. AIso, the corresponcling defect spaces will
be D7 : DrJ{ and D7" : Dr*Jt.

For two suitable Hilbert spaces H1 and jtz, d choi,ce sequence 19] is a
finite or infinite sequence {G"} of contractions such that G1 : Jt1 --+ J{r,
and for k > 2, Gn: Ds^_, - DG;_r. Of course, if {G"}f:, is a finite choice
sequence, then for any contraction G7y1t : DG* --+ DG.N, {G,,}lujrt is a choice
sequence, too,

By an ,0(}t)-valued sem'ispectral measure on the unit torus lf we mean a
map o --+ F(o) from the family ts(1f) of Borel subsets o of lf into f,(}f), such
that for any h € }i the map o -- (F(o)h, h)r, is a positive Radon measure
on lf.

An f,(}t)-valued semi.spectral measure E is spectral, tf E(T') : ,I31 and
E(o1)or) :  E(" r ) )E(o2) .  To each.C(K)-va lued spectra l  measure.E on
'1f, an f,(}f)-valued semispectral measure can be attached, taking for any
bounded operator V e L(3{,K) the map

F ( o ) : V . E ( o ) V '

The converse is assured by the following Naimark spectral dilation theorem.

THsoRuvI 7.r. Let F be an L(3{)-ualued semzspectral measure onT. There
eri,sts a Hi,lbert spaceK and an L(K)-ualued spectraln'Leasure E onT such
that

( 1  1 ) F(o) :  V.  E(o)V (o e r(n)) .
The tri,plet IK,V, E] wltich uerifi,es (1.1) es called a spectral d,i,tati,on of F.

The spectral di,lati,on i,s mi,ni,mal i,.f

( r  2) K - n E@)v:H.
oe 3(lf)

By the representation of the C*-algebra C(1f) into A(K), which maps
the function 1 into the identity operator Iy, we have the unitary operator
U e L(K) corresponding to the ,C(K)-valued spectra.l measure E, defined bv

r2r
I  ; t , - , . ,

u -  
I  e""c lb l t ) .

Jo

L

(1  3)



Also, if we take for any n € Z

(1.4) ft(n) : V*(J*,V,

then R(n) is an f,(5{)-vaiued positive clefinite map on the group z such that

(1 .5 )

In [11], or [6], a structure of the Naimark dilation can be found in terms of
the choice sequences attached to the Fourier coefficients of the semispectral
measure. In the proof was used the foilowing resuit [a] on row-contractions,
i..e., n-tuples of the form

y@) : (7\,...,Tn), 6t* : Jt --+ 6r,* - Jt,,
k:I ,k:1

which are contractions.

THnoRpna 7.2. T@) ,is a contracti,on if and, onlg ,if Gt : T1 ,is a contraction,
a n d f o r k > 2 ,

T n :  D c i  " ' D c ; _ r ,

where Gp : J{p - D"E_, are contractions.

The corcespondence between T@) and, {G1,}ft:, ,is one-to-one, and, the
i,dent'ificati,on of the defect spaces of T@) can be erpli,citly gi,uen by the follow-'ing un'itarg operators:

an : Dy@) ---, DG, g DcrO . . . O D6-

and
pn: Dy@). --+ Dc;,

r2n
^@): 

Jo 
e-i" 'dF1t1.

(1 .6 )

-GiG,
Dc, 'lf Dt.

t -

l 0a n :  I
l :

I o

-GiDc;. .  .  Dc;_,,
-GiDci . .  .  Dc; - ,

Dl"_

and

(1 .7 ) B ,DT@)*  -  Dch . . .  Dq .



This kind of row-contractions was denoted by

( 1  S )  L :  L ( { G r } T ) :  { G r , D c i G r , . . . , D c i . ' .  D c ; _ , G n ) .

Using the duality for a formula depending on the parameters G,,

(1 e) 6il({c*}T:) : form({G[]T:)*,

the column-contractions are defined by

(1 .10)  r  :T11Cr lT: r ) :  {Gr  ,GzDc, , .  .  .  ,GnDGn_r Dc, ) t ,

where"t" is used for matrix transpose.
The results are extended to row-contractions of infinite length

(1 .11 )  L ( {G1)L )  :  {G ,  ,  Dc iGz ,  D6 iDs ;Gr ,  .  .  . ) ,

and the unitary operators between the defect spaces are identified as

a(L) :  Dr *0 r*  :  D(L)

and

0(L) , Dy* --+ D.(L).

Following [6], the structure of the minimal Nairnark dilation of an L(J{)-
valued semispectral measure is given by {K,lr7} where K is a Hilbert space
containing fi, and W is a unitary operator in .C(K) such that

(1.12) S,: PffW"ltt (n e Z),

where {S"}rru are the Fourier coefficients of the semispectral measure F,
and Pff is the orthogonal projection of K onto H. If {G,}n, is the choice
sequence associated with {.9"}, then the dilation space K has the form

(1 i3) K - . .  .e D*(r) o oD.(r) o 1r o 6 rr. .
n: l

2 The maximal function

Let J{ and 5{' be separable Hilbert spaces. An operator valued analytzc i
functi,on on D is a function O()) which admits a Taylor expansion of the
form

o())  : i^ " " ,  ( )eD),
n:0

(2 1)



where the coefficients o,., € L(J{,}f'). The series is supposed to be conver-
gent in norm,weakly, or strongly, which amounts to the same for the power
series. Following the notations from [t8] we shail denote such a function by
the triplet {H,H',O())}

An operator valued analytic function {H,H' ,o())} is a bounded function,
if there exists a positive constant M such that for each ), e D

(2.2) l lo())ll s tvr.
A lot of the nice properties from the scalar case was recovered for the

bounded operator valued analytic functions. To be rnentioneci the very usefull
property of almost everywhere (a.e.) nontangential limits on the boundary,
such that for each bounded operator valued analytic function {H,H',o())}
on D, there exists the bounded operator valued function {H,H,,O(eit)} a.e.
on lf. (For detailles see [18]).

For prediction purposes, the class of bounded analytic functions was en-
Iarged to the class of so called tr2-bounded functions [16]. An L2-bound,ed.
analyt'ic functi,on on D is an operator vaiued analytic function {H,H,,O())}
with the property that there exists a positive constant M such that

(2 3) ,:ll, # lo'" ll't"\hll' dt < M llhnz (h e r{),

or equivalently

(2 4) i tt""ntt' s rw llnll' (h e:H).
n:0

Unfortunately for tr2-bounded functions the nontangential convergence is
no longer valid, but this class of function was able to permit the extension
to the infinite dimensional prediction theory.

The factorization theorems play a crucial role in prediction problems, and
the factorization for operator valued semispectral measures [16] permited the
extension fom the multivariate (matrix) case to the infinite dimensional one.
In [16] was proved the fol]owing generalized Lowdenslager-Sz.-Nagy-Foias
factorization theorem.

Tsponnvi 2.I. Let F be an L(}{)-ualued semi,spectral measure onT, and

lK,V,El its rni,nimal spectral di,lati,on. There etists a unique L2-bound,ed,
outer functi,on {H,Tr,Ot(I)} 

'uith the following propert'ies:
(i') Fs, < F,
(ii) for any L2-bounded analgti,c function {Jt,g, O())} such that Fs I F,

we haue also Fg < .Fo,.



The properti.es (i) and (i,i,) determ'ine the outer function Ot ()) up to a =
left uni,targ constant factor.

The equali,ty i,n (i,) holds i'f and only i'f

(2 5)  )u"x* :  {o} ,
n)o

where U i,s the uni,tarE operator correspondi,ng to the spectral measure E, and

(2.6) K+: if irn,

The unique -L2-bounded outer function {H,Tt,Ot())}, obtained by the
previous factorization theorem, is calied the mari,mal functi,on of the L(J{)-
r,'alued semispectral measure F.

In the particular case of a contraction ? from f,(1i), a semispectral mea-
sure F7 is attached taking

(2.7) Fr(o) : V* E(o)V,

where E is the spectral measure corresponding to the unitary dilation U of
7 on the Hilbert space K.

In [20] was proved t]re following structure theorem for the maximal outer
function of a contraction.

PRoposi:uoN 2.2. The mari,'mal functi.on of a contracti,on T e L(\t) coi.n-
c' ides wtth {3{,Dr", Or())}, where

(2 8) o,())  -  Dr*(/  -  )7.)-1, ()  e D).

Proof. The first proof [20] made a unitary correspondence between the coef-
ficients of the obtained maximal outer function and the coefficients of 01())
given by (2 8) Here, using choice sequences technique, another proof is
given, similar with the proof given in [6] for the generalized Lowdenslager-
Sz.-Nagy-Foias factorization theorem (Theorem 2.1).

If we consider the Fourier coefficients ̂ 9" of the semispectral measure F7
given by the positive definite kernel

,  n )  0

,  f l : 0

l n l  , n { 0 ,

(2.e) ,^:\T-
o



which corresponds to the choice sequence {G"}Pr, where Gt : Z, and
Gk:0 for k ) 2, then the Naimark dilation on K, where

K  -  . . .  @ D r "  @ D r .  O l i O  D r  @ D r . . . ,

is given by the Schd,ffer matrix form of Sz.-Nagy dilation for a contraction

W : 0  0  D r *  T  0 . . . 1 .

Jt is convenient to take into consideration the unitary operator W* from
L(K) , where

:( 2 . 1 0 )  K - . . . @ D . ( L )  o l f  * D c i  @ D G ; o . . . ,

and W* : W({G;}Pr). Defining the subspace

( 2 . 1 1 )  K * - i l  w . " n : H o D c i e  D c ; @ . . . ,
n:0

and the isometry

(2.r2) W_:fr. iK*,

then the Woid decomposition is given by

(2.13) K- - 6w."n-e f i-,
n:0

@ . _

where 9_ : K_ e W_K_., and L_ : n W*nK_. Therefore
n:0

( 2 .14 )  9 -  : f r . 1 . . .  e0e  D . (L )O0xe . . . )  : f r *g ,

and it follows [6] that the form of the maximal outer function is given by

(2.15) O,(I) : r{fr1r - ^fr)-rp{ () e D).



Takinginto account  the fact  that  Gt :T and G:0 for  k)2,  andthe nat-  ;

ural identification between I and D7., lI follows that the maximal function
of ? has the form (2.8), namely

or()) -  Dr*(1 - )?-)-1, ()  e D).

n

Analogously can be proved that the maximal function {H,Dr,O2())} of
the adjoint contraction 7* has the form

(2.16) Or()) :  Dr(I  -  )r ;- t ,  ()  e D).

Between the maximal function Or()), and the characteristic function

{Dr,Dr-, Ot()) i  of the contraction ?,

(2.r7) or()) : l-T + ^D7:-(1 - )7.)-'DrllDr, () e D),

taking into account (2.8), tirere exists the obvious relation

(2.1s) O'()) :  [-T -]- )Or())r" l lD", (.\  e D),

or written into the matrix form

(2.1e) o"(.\) : 11 ̂o1())] h1l ,-  
LUT)

as a factorization into an analytic part and an isometry.
in [20] was found another relation between these two analytic functions,

namely

(2.20) O"(^)D": Or())() I  -T), ()  e D),

which can be also written as

(z2r) lo"(^) o,())l ["lir] : o

In the particular case when 7 is a strict contractio" (ll7ll < 1), the
relation (2.20) can be written as

(2.22) Or())  :  Or(A)(^/  -  T)Di ' ,  ( )  e D).

Taking the characteristic function {Dr-,D7,O7*())} of 7.,

(2.23) Or. ()) : [-?* + ^Dr(I - \r1-r rr"] lDr., () e D),



an analogous calculus leads to the connexion between the maximal function
of. T* and its characteristic function 07. ()) given by

(2.24) O". (.\)D'. : Oz ()) ( ̂ I - T*) , ()  e D),

In some investigations (see e.g. [13]), genera]izing the co. and c.6 case,
an operator 7 on ff is called stable tf T" --> 0, and x-stable if T*" , 0,
strongly as n --+ 0. Actually, in the linear systems theory, a system with the
main operator ? is called stable, if it is stable and *-stable.

PRopostuoN 2.3. If T i.s a x-stable contract,ion, then i,ts marimal funct,ion
{H,D,T;Ot())} 'is bound,ed,, and, the attached, operator 01 d,efined, from Jt
into H2(Dr) ba

(2.25) (o lh ) ( ) )  :  01( ) )h

'is an'isometry. Moreouer, the Sz.-Nagy-Foias functional mod,el [18] red,uces
to a funct'ional representation g'iuen bg o1()) . Namely, the imbediing of Jt'is g'iuen by

(2.26) H :  {u  € H2(Dj . . )1"( f )  :  01( . \ )h ,  h  e J{ } ,

and the contractzon T i,s represented, bg

( )  ) 7 \ ra()) : 
]1",())h 

- o,(o)hl

Proof' The fact that for a stable contraction ? the imbedding of }f into the
Sz.-Nagy-Foias functional model H is given by (2.26) was pro.red in [20], and
is based on the fact that the functionar modet (see [19], ch.vt) is obtainea
by a unitary imbedding O of the dilation space K into a functional space. If
7 is *-stable, then K: M(t*), where t*: (JL*, and o: eDr.-the Fourier
representation on H' (Dr-).

For any contraction 7 and h e t{ we have
q r t r T L

D llnr-r.^nll : A (n2r-r.kn,T.rh): i{llr.rnll ' - llr.n+rnllr) :
,k:0 " k:0 k:0

n . . ^ n * 1: ,t^ ll:r.rhll" - D llr.^hll" : lll?ll' - llr.wn112.k:0 k: l
Since 7 is *-stable, the previous relation becomes

i  l l rr.r *,hl l ' :  l lhl l ' ,
n=0



and taking into account that

n / \ \  S  ^  r= . tx , ' \n
Or(^) :  

)_- D7. '1 ' ' ' ' ' "  A'" ,

it follows that the attachecl 
"o.r.r;; 

1 : H ---+ H'(Dr.) is an isometry' n

A dual representation can be found in the stable case for ?*.

Other relations between the maximal function and the characteristic func-

tion will be given in the context of linear systems, in the next sections-

As a remark, even for the characteristic function we have the dual formula

Or.()) : Or())-, between the maximal functions there exists no such a

duality relation except the case when 7 is a normal operator. Moreover, the

characteristic function is a contractive analytic function, while the maximal

function is generally not a bounded one, but an -L2-bounded analytic function.

A particular remark is the fact that, if the semispectral measure ,F is

Harnack equivalent with the Lebesgue measure on '11, i.e., there exists a

positive constant c such that

c . d t  (  c t F ( t )  <  c - '  ' d t ,

then the attached maximal function is bounded, and has a bounded inverse.

This is the case when a }inear Wiener filter for the prediction of operatorial

processes, in infinite d.imensional setting, can be obtained (see e.g., [fZ])'
Some conditions for the boundedness of the maximal function of a con-

traction can be found in [20]. Such a way, the maximal function is bounded if

and only if the corresponding semispectral measure is boundedly dominated

by the Lebesgue measule on 'lf. Also, a contraction 7 has the semispec-

tral measure Fy of the form dF7(t) : O(eu').O(.0'), with O()) a bounded

analytic function, if and only if T e Co and the spectral radious p(t) <L.

3 Spectral factors

Apptying Theorem 2.1for the f,(}i)-valued semispectral measure of the form

(3 .1 ) dr(r) : rf(r)2dt,

where, for 0 ( t I Ztr, ,nf (t) is a function whose vaiues are self-adjoint
operators on a separable Hilbert space H, and which is measurable (strongly,

or weakly, which amounts to the same for separable 1t), with the property

that 0 < l/(r) ( 1, then the following Sz.-Nagy-Foias factorization theorem
is obtained (see [18], Prop.V.4.2).

10



THnoRpttrt 3.7. There erists a contracti,ue outer function {J{,gr,o1(\)} wi,th
the following properti,es:

(i) @t(.i ')*Or (.n') < N(t), a.e. ;
(i'i') for eaery other contractiue analyt'ic function {Jt,g,o(^)} such that

O(ett).O(e") < l/(t) '  o.r., we haue also

o(ei ' ) .O(ent)  S or le i t ) .or iet t )  a.e.

Moreouer, these propert'ies determ'ine the outer function o,()) up to a
constant uni,tary factor from the left. In order that equali,ty holds i,n (i,) a.e.,
'it'is necessary and suffici,ent that the cond'it,ion

(3 2) )e i" 'Nnz1l t1:  {o}
n)0

be sat'isfied, where the self-adjo'int operator N on L2(Jt) ,is d,efi,ned, by the
equali,tg (1V'u)(t) : ,n/(t)o(t).

In 16] for any contractive analytic function the measurable functions
t{"(t) ': I - o(ett)-o(ei'), ancl Nn(t)'- I - o(eit)o(ett)* ** considered,
and the corresponding contractive maxirnal outer functions was obtained,
using Theorem 2.1. These particuiar maximal functions was called [6] the
left spectral factor and the ri,ght spectral factor, respectively.

PRopostrtoN 3.2. Let {J{1, }t2, o())} be a contracti,ue analyti,c functr,on on
D. The spectral factors haue tlte form

o"( ) )  :P{ ( r - \As- r6

on()) -- Pffc(r - )A)-'19
yheyeK has the forrn (2.10), g , is gi,uen bA Q.I4), A,B,C, and the duals
A, B,C, are obtazned by an appropri,ate cho'ice sequence (Scltur parameters)
associ,ated to O()).

A complete proof can be found in [6].
The spectral factors, as particular cases of maximal functions, play an

interesting role in the study of linear systems.
Let J{,U,,U be separable Hilbert spaces and A € .c(}C), B e L(IJ,tt),

C e L(J( . ,V) , ,  D e ,L(U,  V) .  A l inear  system o :  (A,  B,C,D;J{ ,U,V)  of  the
form

I hn*r: Ah,, + Bun, (t, > 0)
I an : chn + Dun,

1 1

(3 3)

and

(3 4)

( )  e D),

( )  e D),

(3 5)



where {h") cJt, {u"} CU, {A") c }, is called a di.screte-t'ime system.
Usual}y the spaces H, U, N are called, respectively, the state space, the

i,nput space, and the output space, and the operators A,B,C and D are

called, respectively, the ma'in operator, lhe control operator, the obseruati,on
operator, and the feedthrough operator of the system a.

Let us define the bloc operator matrix (coll'igati,on) .9:}f CIU -+ J{@U
by

(3 6)

Then (3.5) can be written into a matrix form as follows

The system o will be called: passiue, isometri,c, co-'isometric, conseruat'iue
if ,S is, respectively, a contraction, an isometry, a co-isometry, a unitary
operator.

The operator valued function O"()) : U --+ l, () e D), attached to a
system o by

(3 7) O"()) :  D + ^C(rH- ^A)-rB () e D),

is the transfer functi,on (or frequency response function) of the system.
The name is justified by the fact that O"()) make a connection between

the transformed input and transformed output of the system. Indeed, appli-
cation of the Z*transform

n(r) : Ln,x"
n)0

to the system (3.5) and elimination of the state variable leads to

(3 8) i()) :  O"())a(.\) (,\  e n).

The transfer function is the basic connection between state-space and
frequency-domain in the linear system theory.

The references of the linear systems are very large, I mention here only ;

a few of them 17,8, 14,3, 15, 1]. In the foliowing only discrete-time linear
systems will be considered. -

If o is a passive system, then O"()) is a contractive holomorphic function
on D, i .e. O"()) belongs to the Schur class S(U,!).

I a 81 l-rcl l-xl' :  L" pl '  Lul * Lvl

[h"*rl - o [h"l
l t - u t t .

L s" I lu"l

12



For a system o, the following subspaces of H are considered:

(3 9) g: 
V A"B"U (the controttable space)
n)0

and

(3 .10) 0: V A",C*U (the obseruable space).
n)0

Generally we have

n : ( € V u )  e ( e . n o ' )
The system o is called controllable if I - J{, obseruable if (J : }f, and
m'in'imal if o is both observable and controliable. The system o is simple rf.
evo  - J { .

Flom(3.9) it follows that (€)r : fl ker(r.A*'), and from (3.10) we
n:o

- - r o o

have (0)t : n ker(CA'). Hence the following characterizations occur: the
n:0

system o is, respeciveiy, controllable ffi fr ker(B*A*n): {0}, observable iff
n:0

oo oo
f-| ker(CA') : {0}, andsimpleffi ( n ker(B*A*"))n( n ker(CA")) : {0}.n:0  n :0  

'  ' n :0

An explicit form for the spectral factors attachecl to o"(,\) was found
in li2], using the maximal unilateral shift containecl in the completelv non-
unitary contraction A, as follows.

PRopostrioN 3-3. The spectral factors o/o"()) haue the form

(3.11) Oa())  :  P#(r  -  \ t1- tu ( )  e D),

and

(3.12) Or()) :  C(r -  ) ,4)-110- () e D),

where {1, and Q* are the generat'i,ng subspaces of th.e marimal uni,laterat shi,ft
conta'ined i,n A, and A*, respectiuelg.

A (1 - l+ DOme applrcatrons

In this section, some applicatiorrs of the maximal function in the linear sys-
tems theory are given, and some characterization in terms of the maximai

1 D
r, f



function are obtained. Firstly we wiil analyse the particular case of a sys-

tem given by the rotation operator of 7, and then how the results can be
generalized, using the maximal function, is presented.

Let us consider the system / given by the following unitary operator (the

rotation operator of 7, or Julia operator)

(4 i) r(r): o": ltr_ ';.1
L * J  

^  
I

In this particular case, the controllable and the observable subspaces of
}f will be, respectively,

( 4 . 2 )  e : V r * D 7 * D 7 . ,  0 : V r * n D 7 D 7 ,
n:O n:O

and the corresponding orthogonals in the state space }f will be

@

(4 3) 81 : [-] ker(Dr.T*n): lker Dy*n : {h e J{; l l"."hll : l lhll},

(4 4) (Ja : [-l ker(DrTn) : ltoet D7n : {h e Jt; llT"hll: llhll}
n:0 rL

Thus 
"l0t 

and ?*l€r are isometric operators and

(4 5) er n Oa : {h € J{; llT"hll: llhll : ll".'hll} : J{o,

where H6 is the subspace of the unitary part from the canonical decomposi-

tion [18] of the contractio n T :"0 @ Tr : 
l? N, I 

t*" its unitary part and

the completely non-unitary (c.n.u.) part on 3{:J{o O }Cr.
Also, let us remark that the transfer function of 6 is just the characteristic

function of 7*

Oa()) : -T* + ^DI-(I - )T'1-r rr. : Or.()).

If we consicler the system /* given by the unitary bloc matrix -I(?*) :

I T. Drl
l;r_ _fl, then the transfer function of 6* will be given by the analytic

function {Dr,Dr-, Or(})}, the characteristic function of 7.
Obviously R7* : Ri, and the corresponding linear systems I and fl* are

dual, namely, if / is observable, then /* is controllable, and conversely.

1 A
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PRoposrrioru 4.1- The system fl giuen by J(T) is conseruati,ue and, s,impre,
i'f and only if the ma'in operator T is a completely non-unitary contraction.
Moreouer, 'if TOL : {Jr, then 3 is obseruobtu, ina ty T*gL: gl, then 6'is a controllable sEstem.

Proof. obviously that the system / is conservative, being governed by the
unitary bloc matrix,o3erator Je) rf 3 is simpie, then }t: evo, ande:nor : {h e x; llTnll: llhil - llT."hll}: Ho: {0}, i.e., the l,rlrpu""
of the unitary pa,rt of T is the null space, and ? is a completely non-unitary
contraction.

Conversely, if ? is c.n.u.? then ffs : {0}, and J{ : g V 0, i.e., the system
/ is simple.

It is obvious that or is invariant to T, and ? restricted to oa is an
isometry. If 7or - ot, then or reduces z to a unitary operator. since
/ is simpie, i'e', ? is c.n.u., it foilows that (Jr : {0}, or o : Jt, and J isobservable.

Analogously, if T.cr: €f, then ga reduces T* to a unitary operator,
which implies that 8a : {0}, i.e., the system / is controilabre. n

From prediction point of view, we are interested in the cases when the
maximal function attached to the distribution of a process is not a null
function, to obtain the best linear predictor ancl the prediction-error in terms
of the coeflftcients of the maximal function. In thl case of discrete linear
systems with the main operator a contraction, the fact that the maximar
functions ot()) or o2()) of the main operator, or its adjoint, are the null
functions, give some informations about the corresponding structure.
PRoposluoN 4'2. Let 3 be the conseruatiue system gi,uen by the Julza oper-
ator J (T) of a completely non-unitarg contraction T .

1)' If the mari,mal functi,on {Jt,Dr.,or())} of the ma,in operatorT ,is
the null function, then the system ff i,s obseratabfe.

2) If the ma,imal function {H,Dr,or())} of r" ,is the nuil function,then the sgstem 3 'is controttabte.

Proof. If the maximal function of the contraction ?

or()) : Dr*(I - r.;-r : i cp\k :i rr.t.*)* : {0},
,b:0 k:0

then the coefficients cr :0, i.e., Dr.T*nh: 0 for any h € }c, and by (a,3) it
follows that ea :H,, i.e., c: {0}. By the previous Froposition, the system
f is simple, thus it follows that o :H, and the system 6 is observabie.

^Analogous, if {T,Or,Or()) = {0}}, then by (4.a) we have Or : H, and
it follows that 8:H, i.e., the system 6 is contro[abre. n
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Conollenv 4.3. If the ma'in operator T of the sgstem 6 i's an i,sometric
(co-i,sometri,c) operator, then 6 i,s controllable (obseruable). If T i,s un'itary,
then the sEstem 0 'is min'irnal.

A stronger characterization for the controllability (observability) of the
system 3 can be done with the maximal functions of the main operator ? as
follows.

PnopostuoN 4.4. The di,screte l'inear sgstem A 'is controllable i,f and only
i,f the operator @1 from 1{ i,nto H'(Dr.) attached to the marimal function

{3 { ,D r - ,O t }  bA  Q.25 ) ' i s  one to  one .

Proof. If the system 6 is controllable, then 85 : H,, where €6 is given by
(4.2), or equivalently, €j- :  f^ ' lker(Dr*T*"): {0}. That is, D7*T*nh:0 for
arry n > 0 if and only if, h :0. Taking into account that

01())h : Dr.*h * Dy.T*),h -t Dr-T*2^2h + " .

it follows that ker Oi : 0.
Conversely ,  i f  kerOr :  0 ,  then @1h:0 i f  and only  i f  h  :  0 ,  i .e . ,

D,r-T*nh,: 0 for any n > 0 if and only tf h,:0, which implies that 8f : {0},
or equivalently 82 - J{, and the systern is controllable. tr

Analogously, for the system 6* car. be proved the following

PnoposluoN 4.5. The d'iscrete l'inear system 6* is controllable i,f and only
i,f the operator @2 from J{ i,nto H'(Dr) attached to the marimal functi,on
{J{ ,Dr ,@r}  ba

(orh)()) :  oz(,\)h

is one to one.

Therefore the operators 01 and Oz corresponding to the maximal func-
tions O1()) and Or()) of 7 and 7*, respectively, contain the information
about the structure of the corresponding systems.

Actually, following [f S], tne observability, and controilability properties of
a system can be introduced with some observable, and controllable operators,
which represent the maximal function of the main operator of the system, as
follows. Let us introduce lhe obseruabi,lity operator Oo from ff into H'(U)
defined by

(4.6) ooh:  c( I  -  ^A)- rh ( ) e D , h e 5 { ) ,

and the controllab'ility operator Qo : J{ -- U, defined by

(4 .7 )  Qoh :  B . ( I  -  ^A* ) - ' h

16
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Now we introduce the observability, and the controllability of a system, as
foliows. The system o is obseruable if. and only if the observability-operator
is one to one, and o is controllabte 1f and only if the controllability operator
is one to one' These definitions are equivalent with the classical one, given
with the observability, and controlabiility subspaces of the system. Inleed.,
if the observability operator oo is one to one, then ooh: 0 if ancl only if
h : 0. By (4.6), this is equivalent with CA^h: 0 for all n ) 0, if and only
r f .  h :0.  That  is

[-l ker(C.4") : {0},
n)0

which it is equivalent with the fact that the linear span of A*,C*V is the
wholle space IC, i.e,, 0o : J{.

I f  o" is one to one, then it  fol lows that B*A*nh:0 for al l  n) 0 i f  and
only if h: o, which it is equivalent with

f-l ker(B-,A.") : {0},
n)0

that is 8o ,: V A" B^11 - J{.
n)1

Let us consider the linear systems

6 :  (7,  Dr",  Dr,  -T* ;H,Dr-,  Dr) ,

6 "  :  (T*  ,  D7,  D7* ,  -T ;H,Dr ,Dr . )

generated, respectively, by the rotation operators lfu - | f Dr.1

n I T. ,.",'uttt' 

Dy tne roratron operators t(4' : 
Lo' -i.l ' and

n'-: 
lDr- -bl

conolr,aRy 4.6. For the system fl g,iuen bg the rotation operator R7, the
controllabi,lity operator i,s g'iuen by the marimal functi.on {j{,Dr., or(,1)} o1
the ma'in operator T by

and

14 R'\

(4 e)

0 a :  o t ,

where 01 : H --- H2(Dr") ,is gi,uen by

(o1h)( ) )  :  or ( ) )h (.\ e D),
and the obseruab,ili,tg operator is

(4 .10)  o3:  @r,

wl'tere {i{,Dr, Or())} i,s the marimal function of T* ,

L7



Remark that the controliability (observability) operator of 6 becorne the
observability (controllability) operator of A*, and conversely.

Many other remarkable tools in systems theory can be formulated with
the maximal function. Such a way, lhe obseruabi,li,ty gram'i,an

G? : O:O",

and the controllabi,lity grami,an

G? :0;0,,

which in the rotation case 3 become

G? : OiO, and G7 : OIO,.

Remark that a system is observable if and only if the observability gramian
is strictly positive, and controllable if and only if the controilability gramian
is strictly positive, respectively.

For a general study of linear systems, we are interested in bloc matrices

operators of the form S : 
lt 3 | "t 

definition, if S is, respectively, con-
L J

traction, isometry, co-isometry, unitary, then the corresponding system is,
respectively, passive, isometric, co-isometric, conservative. In the following,
some explicit relations show the utiiity of the maximal function in the inves-
tigation of passive systems, but the study can be generalized for other type
of systems, too. For the study of passive systems, the following theorem ([5],
Theorem 1.3), which gives a characterization of such a bloc matrix S to be
a contraction, is very helpfull.

Tueonnu 4.7. The formula

(4 .11) X : - l z A * f r * D p ; f D p ,

establi,shes a one-to-one correspondence between all operators X e L(l{z,K2)
| ,q Da"frlsuch that S : 
ffr,^ 

"k'' l i,s a contract'ion, and all f e .C(Dp,,Dri).

Moreouer, D s cl,n be i,dentified with Drr@Dy, and, D s" can be i,denti,f,ed wi,th
Dri e Dr-.

There fo re , i no  l a  R l
ur case,  S:  

l ;  b l  , *h"ru A e L(J{) ,  B e L( t l ,J{) ,
C e L(J{,}), and D e L(U,U), is a contraction if and only if there exist

18



the uniquelly determined contractions f1 e .C(U,Da.), tz e L(D,+,H) and,
I e .C(Dp,Dr;), such that

(4.r2) n I  a Do-I . ,  Io : 
Lrroo -frA.f, a d"rrl.,_l '

If for the passive system governed by the contractive bloc matrix S, having
the main operator the contraction .4, we construct the conservative system
governed by the unitary bloc matrtx R4 : l* 

':..1, 
then s can be

obviously written in the form 
lDe -A 

)

* _ [ /  o l  [ , 4  D o . j l r  o l  [ o  o  I" - fo rrj .LD" -a-j. Lo r,.J * 
Lo Dr;tDr,l'

Ra

(4 .13)

or using corollary 3.5 from [13], ̂ g can be factorized as foilows

These facts suggest that, having a characterization of conservative sys-
tems with the maximai functions, then the stucly can be extended to the
passive systems, too.

Using (4.13), the following relation between the controllable and observ-
able subspaces of a passive system, and the the corresponding conservative
attached system can be proved.

Pnoposl t toN 4 '8 .  Let  o :  (A,B,c,D;Jt ,1r ,u)  b ,  a  pass, iue system corre-
spondi ,ng to  the b loc matr i , r  S,  and 6:  (A,Do- ,Do,-  A* ;H,Da,Da.)  the
conseruat'iue sgstem correspond'ing to Ra, where A i,s the ma,in operator of
o ' The obseruable and the controllable subspaces of o are contai,ned, , respec-
t'iuely, 'into the obseruable and the controilable subspaces of a.

Proof. The system o is passive, hence the bloc matrix ^9 is contraction, and
if we use the structure given by (4.I2), then the proof is a straightforward
verification, starting from the definition of the corresponding subspaces. Let
8o and e6 be the controllable subspaces of o and fl, respectively, and oo,
Og the corresponding observable subspaces. Then, taking into account that
f1  e ,C(U,  Da.)  and t i  e  L( ! ,Da) ,  we have

n  \ /  
o o

e" :  V  AnDA- l rV  g  V  AnDe-De . :ea
n:0 n:O

': [i i ,'.,] l;r:t l] ti i,]
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t " :  V A*" ( l2Da)*H:Y o. "oor i7SV o. " roD,q:CIa.
n:0 n:0 n:O

Therefore 8" e Ea and 0o C 0a. tr

Ftom these inclusions it results the following

CoRol,leRy 4.9. A the pass'iue sEstem o 'is controllable, obseruable, mi,ni-
mal, or s'imple, then the attaced conseraatiue system 6 becomes, respecti,uely,
controllable, obseruable, mi,ni,mal, or s'irnple.

Finally, iet us recall some more results and connections with the maximal
function. One of them is that between the maximai function and the charac-
teristic function there exist the following relation, usefuli in solving interpo-
lation problems (see [13], Cap.IX, Theorem 6.4): if 7 is *-stable, then the op-
erator W7 from the space of the minimal isometric dilation K : Jt@ H'(Dr)
into H2(Dr.) defined by

W r ( h C I l ) : O f t + @ y f ,

or into matricial form

W7-: lO1 Or] '  xe n21nr) - ur(nr-)

is unitary.
As a remark, the stable and *-stable systems, having a contraction as the

main operator, can be analysed aiso in a functional form, taking account by
Proposition 2.3, into a functional model generated by the maximal function
of the main operator.

Usefull in the study of the linear systems can be the fact that the defect
functions of the transfer function of 3 and /* generate positive definite kernels
as foilows

PRopostuoN 4.10. Let {D7,D".,O"(.\)} b" the characteri,sti,c functi,on of
the contract'ion T. There erist the followi,ng relati,ons

1- o"(.\)Or(p).
(4.14)

and

(4.15)

L - A F ,

t  -  @r(p)-Or())

:  Or ( ) )Or (p) -

I - A P
:  Or( l r )Or()) . ,

where or ()) and @z()) are the mari,mal funct'ions of T and T* , respectiuely.



Proof. It is known ([lB], chap.vl, (t 4)) that the defect function of the char_
acteristic function {Dr,,Dr*,Or(^)} is obtained by

( f  , f )  -  (Or()) / ,o"(p) f ) :  (1 _ )p)  ( (1 _ \7.1*tor f  , ( r  _ pT,1- tDrf)
that is

Aa,(), F): r - or(p).or(t) : (1-  ̂ p)Dr(r -w)-'(r - AT*)-1D,r,
and taking into account by (2.16) it foilows that

1 - or(pr).or()) : or(F)or(f)..
7 - ^ t t

An analogous calcuius leads to

Aa* (), F) : I  - o"())o r(t i . :  (1 _ \t iDr.(/ _ )7.)-t( l  _ /T)-1D,r_,
and by (2.8) it follows that

1- or())or(p)- :  01(.\)01(pr).1 - A/-,

tr
A similar result can be obtained for the characteristic function 07.()),

which is the transfer function of the system / given by the rotation operator
Rr.

PRoposruorv 4.11. Let {D7",Dy,@y*())} be the characte,isti,c function of
the contracti,on T* . There e,ist the followi,ng relations

(4 .16)  / -o r - ( r )o r . (p ) . :o2( ) )o2(p) .
1 - ) p

and

(4.rr) 1 - or" (p).or. ()) : o,(1,)o,())-,
7 - ^tj,

where or()) and, o2(\) are the marimal functi,ons of r and,T*, res7tecti,uely.

Flom the above results can be seen that in the contraction case the spec-
tral factors, which are particular cases of maximal functions, can be obtaineci
from (4.14) and (4.15) for fl*, and from (4.16) and (4.f7) for the system /
given by the rotation of 7.

Actually, for a system generatecl by a unitary bloc matrix S given by
(4.I2), a generalized result can be obtained.

o 1
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pnOpOsr lOu 4 .12 .  Le t  o  :  (A ,B,C,D;J { ,U,$)
unitary bloc matri,r operator

be a system giuen by the

I a 81 l-rcl' :  L"  r l  'LuJ *
and O"(\) the transfer funct'ion of o. Then
defini,te kernels onD2

l-]cl
L u  ) '

we haue the followi,ng posi,t'iue

(4.18)

and

(4.1e)

I  -  O"(p).O"()):  B*( I  -F,A.)- t ( I  -  ^A)-rB () ,  p e D),
I - A F ,

/ - O"(,\)O"(rr)-:  c( I  -  ) ,4)- i (1 -  pA.)- 'C* () ,  p € D).
I - A p

Proof. Since ,S is a unitary operator, it follows from ,S*S : ,I and SS* : 1
that

C * C :  I  -  A * 4 ,  B * B :  I  -  D * D ,  D * C :  - B * A ,  B D * :  - A C . .
Taking into account the previous relations we have

t -  @"0.r) .O"())  -  I  -  lD.  +FB.( I  -FA.)- tC- l [D + ^C(I  -  )A)-rB] :

: I - D* D - ^D. C (I - \A1-t 
" 

- ttB. (I -F.A*)-t g*, - ^ pB. (I -pA.)-L C. C
.( I  -  )A)-rB: B*B + ^B.A(I  -  ^A)-rB + t tB.( I  -  t "A.)- tA.B-

-^ttB*(I - t"A.)-rC.C1I - \17-t" : B*(I - ttA.)-t l(I -p.A.)(I - IA)+

+,\( /  -FA.)A+pA-(I  -  ^A) -  Ap,( I  -  A.A))( /  -  ) ,4)-rB:

:  (1 -  ^p)8.( I  -p,A.)- ' ( r  -  ^A)- tB,

and (4.18) is verified.
An analogous calculus leads to (4.19), and the proof is finished. n

Using the previous Proposition, the general form of the spectral factors
can be derived, but in this paper we are mainly interested in the connection
between the spectral factors and the maximal functions or()) and o2()).
Let us remark that in this case the subspaces 0 and f,)* become

fl : 0r e ?0r and 0* : 8r e ?*er.(4.20)

The following result gives another characterization for the behaviour of
the rotation systems, in terms of the maximal functions.
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PRoposrriorrl 4.13. The conseruat'iae simple system 6 attached, to the rota-
ti,on of a completely non-unitary contracti,on T ,is

1) obseruable i,f and only z/ 01())1CI : O,
2) controllable i,f and, onty f Or())|CI* :0,

uhere Ot(I), and O2Q), are the mari,mal functions of T, and, T*, respec_
ti,uely.

Proof. rf 0 is observable, then o : J{, i.e., oa : {0}, and by (4.2a) it foilows
that f i  :  {0} ,  and O1()) |CI:0.

Conversely, if Ol())|CI : 0, then for any g e Dr_, and c..r € f), we have

0:  (Or ( ) ) r ,  g )  :  ( r ,Or ( ) ) -g )  :  (w ,psO1( ) ) .9 )  ,

that is
o :  PoOi ( ) ) -g  :  pn lDr - ( /  -  l f . ) - t ] *g :

= Pa(I -\T-tnr*e:p" 
i YT.Dr-s.
n:0

It foilows that for any n ) 0, and g €Dr., we have psTnDT.g:0, and by
(4.2) it results that

P" fl rnD7.Dy. : po€: {o},
n:O

i'e., f,) c g-r. Bui f,) c oa, and it resurts that f) c gr n ol - irt': {0},where lCs is the space of unitary part of the c.n.u. contraction T. Therefore
! 

:. {0}, and,by (4.20) we have Or eTOr : {0}, or equivaient , TOL: (Ja.
By @'\ Tlot is an isometry, therefore or r.in.., T ro aunitary operator.
7 being c.n'u., it results (Jl : {0}, and it follows that o : }f, i.e. I is
observable.

If A is controilable, then e :J{, i.e., gr: {0}, which implies 0_ : {0},and 02( ) )10*  :0 .
Conversely, if 02())10* : 0, then for any u € f,)*, and any ! e D7 we

have

that is

(O2())o,  g)  :  (u,Or(. \ ) .g)  :  (u,pe.02(. \ ) .9)  :0,

Po.O2()) .9 :  Pa- lDr( I  -  l ) - t l -g :

: Po* (1 - )-".)- , Drg: pe. i)' r." rr9 : o.
n:0
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It follows that for any n ) 0, and g € Dr we have Ps.T*n Dy9 : 0, and by
(4.2) it results that

pn. 
V r*nD7D7: Pe*t] : {o},
n:0

i.e., f,)* c Or. Since 0* C 8r, it follows that 0* c Or o 8r : Hs : {0},
i.e., fl* : {0}, which implies T*er: 84, and the fact that 8r reduces T* to
a unitary operator. But 7 is completely non-unitary, so we have 8r : {0},
or equivalent, 8:}C, and the system / is controllable. n

By duality of. 0 and 3* we also have

PnoposluoN 4.14. If T is a completely non-unitarg contraction, then the
conseruati,ue s'f,mple sqstenx fl* g'iuen by the rotation of T* ,is controllable i.f
and only  i /Ol ( ) ) l f l :0 ,  and obseraable i , f  and only  i , f  Or( ) )10* :  0 ,  where
Or()), and O2(\), are the mari,mal functi,ons of T , and T* , respecti,uely.

Fbom the previous results, it foilows the following corollary for the con-
servative simple systems generated by the rotation of completely non-unitary
contractions.

CoRoLlaRy 4.15. The conseruat'iue s'imple sgstems 6 and fl*, haa'ing the
mai,n operator a completelg non-un'itary contract,ion, are m,inimal i,f and onIE
i,f the corcespondi,ng spectral factors are zero functi,ons, or equiualent, ,if and
onlg i , f  Ot(l) |CI : 0 and 02(\)10* : 0, where Or()), and @2(\), are the
marirnal functi,ons of T, andT*, respecti,uely.

For composing of systems, the Redheffer cascading systems theory, or
Redheffer product, is very helpfull. In fie] a short introduction into the
theory of Redheffer products with applications to the structure of matrix

contractions and linear systems can be found. Such a way, if t : lA il))

generates a system, O^: l: ^ fi;l tr the roration of .4, una .r : [! Illu,q. 
-A 

) L1 Ul
is the identity matrix for the Redheffer products, then, knowing the inves-
tigation with the maximal functions on the rotation operator conservative
system, consequences for passive systems can derive also using the following
form for the Theorem 4-7.

THsonpN4 4.16. The matrir

. . l J  ^ 1 l  .  q J I  ^ 1 1

. J L  \ ] 7 V L _ J L V A

) A

la 81
, \ : l  I

LC D]



'is a contract'ion i,f and only i,f i,t can be represented, as a Red,heffer prod,uct of
the form

where A,x,Y andl are contract'ions acting between approprzate spaces.

To be mentioned also that the rotatio n R'e is obtained by the rotation of
-4* composed to the identity operatr [o 1lt t t : l t  

o l  * f b l l o w s

R t  _ l - ' +  n * 1  _  T D  rn o :  
l r o  , 4 ; l :  J H 4 . J .

A complete proof can be found in [13], cap.XIV, cororlary 2.8.
Another explicit relation betveen the maximal function and the charac-

teristic function of a contraction was obtained in [19], where using Redheffer
products, the composing of the system generated by J R7- : lO:- ;1
with the extended feedback system U, )1) is expressea ur rt 

" ""rl"l;a 
t?#

back system of the maximal fr,rnction Ot()) and the characteristic function
or()). Aiso an extended form for the maximal function or()) to o1(X),
where X e L(3{), is used to obtain a generalized form of the characteristic
function.

AII previous facts and the strong relations between the maximal functions
and transfer functions show up that the maximal functions are used implicitly
in the study of the linear systems, and can become an explicit tools for
investigation.
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