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Abstract

We consider a mathematical rnodel which d.escribes the equilibrium of an elastic
beam in contact with two obstacles. The contact is modeled with a normal
compliance type condition in such a way that the penetration is allowed brut
is limited' We state the variational formulation of the problem and prove an
existence and uniqueness result for the weak solution. Then, .,lru p.o,rid" *
alternative approach to the model, based on the control variational method.
Necessary and sufficient optimality conditions are derived, together with an
approximation property' Finally we extend our results to some versions of
the model which describe the contact with a single obstacle, including a time-
dependent case.

Mathematics subject classification: T4Mrs, 4gJ1b, 4gs05, 4gJ40, 74Kr0.

Key words: Euler-Bernoulli beam, normal compliance, Signorini,s condition, aclhe-sion, weak solution, control variationar method, optimai state.

1 Introduction

The control variational method for differential equations was introduced in [1, 15].
A comprehensive presentation for this new variational method, together with various
examples and applications, may be found in the recent monograph [9]. The main
new idea in this method is to perform the minimization of the energy of the system
via the optimal control theory, which represents an extension of the arguments via
the calculus of variations, used in the classical variational method. This 

"new 
general

framework is very flexible and may offer several different solutions for the same prob-
le^m, as shown in [i6]. It is relevant both from the theoretical and the numerical point
of view' In particular, it replaces the solution of nonlinear differential equations of
order four by the solution of iinear equations of lower order and., moveover, it provides
regularity resulbs.

The interest in contact problems involving beams lies in the fact that their math*
ematical analysis may provide insight into 

-the 
possible types of behaviour of the

1 Laboratoire LA M P S, Universit6 de Perpignan, Flance, e-mail: sofonea@univ-perp.frzlnstitute of Mathematics, Romanian Academg Romania, e-mail: dan.tiba@imar.ro



solltions and on occasions leads to decoupling of some of the equations, thus sim-
plifying the approach- Moreover, oire may use such models as tests and benchmarks

for computer schemes meant for simulation of complicated multidimensional contact
problems. Models, analysis and simulations of contact problems for bea'urs can be

found in [3, 7, 8,12] and the references therein.
The aim of this paper is to illustrate the use of the control va^riational method in

the study of various models that describe the equilibrium of an Euler-Bernoulli beam
in possible contact with one or two obstacles. First, we consider a mathematical
model describing the process of contact of a beam in the presence of two obstacles.
We model the contact with normal compliance in such a way that the penetration is
limited, which gives one of the traits of novelty of this paper- The Signorini unilaterai
condition represents a particular case of our contact condition and can be recovered
from it. In the variational formulation, the problem leads to an elliptic variationai
inequaiity whose unique solvability is obtained by arguments of monotone operators.
A second trait of novelty of the paper consists in the fact that, besides the use of
the standard arguments above, we analyse the model by using the control variational
method. During the analysis we develop arguments that can be useful in the study
of various models of contact for beams, both in the elliptic and in the evolutionary
case. We provide examples of such kind of moclels which describe the contact of a
beam with a single obstacle, including a time-dependent model with adhesion.

The rest of the paper is structured as follows. In Section 2 we present the model
of the contact problem with two obstacles- Then, in Section 3 we list the assumptions
on the data, derive the variational formulation and prove an existence and uniqueness
result. In Section 4 we analyze the model via the control variational method; this
analysis leads us to provide existence, characterization and approximation results.
In Section 5 we continue the study with three models describing the contact with
a single obstacle. The first two models are time-independent; for them we present
results related to our approach, including a regularity property. The third model
is time-dependent and describes the adhesive contact problem with a deformable
obstacie.

2 The model

The physical setting and the process are as follows. An elastic beam occupies in the
reference configuration the interval [0, .L] of lhe Or axis, is clamped at its left end and
the right end is free. The beam is acted upon by an applied force of (linear) density

f : f(") where r is the spatial variabie. For r € [0,-L], denote by u: u(z) the
vertical displacement of the beam and, when the meaning is clear, we do not indicate
explicitly the dependence of various variabies on r. The beam may arrive in contact
with two obstacles ,S1 and 52, situated at a distance gr ( 0 *d g, ) 0 on the Or
axis, respectively. The obstacles are deformable and, therefore, the penetrations are
allowed, but are iimited. The physical setting is depicted in Fig. 2.1.



,s1

Fig- 2-1' A beam in potential contact with two obstacles.

We nse the Euler-Bernoulli moclel for the beam and we denote A : El,where 1
is the beam's moment of inertia and E its young modulus. we have

t )  rD

! - ( a o ' u \ : ' * '
dr ' \ ' '  d" , ) :  J  - r< (2 '7)

which is the classical equilibrium equation of the beam, in which { represents the
contact force.

Next' since the penetration is limitecl, the vertical displacement satisfies the uni-
lateral constraint

k t { u { k z , (2.2)
where k1 ancl k2 are functions of r whicrr satisfy k1 ( 91 anci kz ) gz. when
9t < z < 92 then there is no contact between the beam and the obstacles ancl
therefore the contact force vanishes. Thus

f i 1 z t { ! 2  +  { : 0 . (2 3)

When u I gt the beam is in contact with the obstacle ̂ 91. In this case the obstacie
reacts with a normal force { directed upward, € > 0. We assume that the reaction {satisfies

k 1  { u { g  = +  { : - p r . ( g r -  u ) ,

u :  kr  :+  6 > -p{h -  u) ,

(2.4)

(2 5)

where Pr : IR+ ---+ IR is a given nonpositive function. Condition (2.4) shows that when
kt 1u ( 9r, then the reaction ( is uniquely determined by the penetration gt-u.
Also, condition (2.5) implies that when u : kt, then the reaction is not lniqueiy
determined, but is submitted to the restriction € > -pr (u- gr). Such cond,itions show
that the contact follows a normal compliance condition up to the limit k1 and then,



when this limit is reached, the contact follows a Signorini-type unilateral condition
with the gap kr. For this reason we refer to the contact condition (2.4), (2.5) as a
normal compliance contact condition with finite penetration and unilateral constraint,
and we conclude that the obstacle ,91 has an elastic-rigid behavior.

A similar situation arise when u ) !2, r.e. when the beam arrives in contact
with the obstacle Sz. In this case the obstacle reacts with a normal force { directed
downward, ( < 0. The equilibrium equation is still (2.1) and the reactive normal
force ( satisfies

gz 1u  1k2 -  € :  -pz(u  -  gz) , (2.6)

u : k z  +  f  < - p z ( u - g z ) ,  Q . T )

where pz : IR+ --+ IR is a given nonnegative function. Conditions (2.6) and (2.7) show
that the contact with ,Sz follows a normal compliance condition up to the limit kz
and then, when this limit is reached, the contact follows a Signorini-type unilateral
condition with the Eap kz. We conclude that the obstacle ,92 has an elastic-rigid
trehavior, too.

Details on the normal compliance contact condition as well as on the Signorini
contact condition can be found in [5, 11] and the reference therein. Note that a
contact condition similar to that used above, which combine the normal compliance
condition and the Signorini conclition, was used in [6], in the study of a dynamic
frictionless contact problem with elastic-viscoplastic materials.

We restate now conclitions (2.3)-(2.7) in a different way, which will be more conve-
nient for the variational analysis of the problem. To this end, we consider the function
p : IR ---+ lR given by

p { g t - r )  t I r l g . - ,

0  i f 9 r c r l 9 z ,

pz(r - gz) If. 92 .--r.

It is easy to see that conditions (2.3), (2.a) and (2.6) may be written, in an equivalent
form. as follows:

(2.8),0 , :  
{

k1 1u 1k2 ---- t  
6 :  -p(a).

Also, conditions (2.5) and (2.7) may be written as

u : k t  a  { , 1 p ( z ) > 0 ,

zt: kz =a { +p(r) < 0,

(2 e)

(2.10)

(2 .11)

respectively. Finally, since the beam is rigidly attached at its left we impose the
condition

(2.r2)u ( o ) : * ( o )  : o
d r '

and, since no moments act on the free end of the beam, we have

d 'u  ,  - ,  ) 3o '

H;@:ffitr '):o (2.13)



we collect the equations and conditions above to obtain the classical formulationof the contact problem.

Problem P. Find a d:isplacernent fietd, u : 10,tr] * re which satisfi,es conditions (2.I),(2.2)' (2.9)-(2.1r) in (0,L), togetier wi,th ine iouraory conditions (2.r2) and (2.rJ).

The variational analysis of the contact problem P will be providecl in sections3 and 4 by using arguments of variationai inequalities and the control variationalmethod, respectively.

3 Existence and uniqueness

we turn now to derive a weak or variational formulation of problem p. To this enclwe assume in what foilows that

A e  L * ( 0 , L ) ,  3 m >  0  s u c h  t h a t  A ( r ) > m  a . e .  r €  ( 0 , . L ) ,  ( 3 . i )
f  €  L2e,L) ,
9r ( o, 9z ) o, 

(3'2)
(3 3)

h € L2(a,L),  kr(r)  < g,  a.e.  r  € (0,r) ,  (3.4)
k2 e L2(0, L), kz(r) > 9z a_g. r € (0,1). (3.5)

Also, the normal compliance functions ?r : IR+ _--+ IR ancl pz : IR+ _* IR satisfy

[ (a) There exists Lt > 0 such that

)  ln(r) -  p'(s) l  < 1,1 lr  -  sl  y r ,  r  € R+.

I  
(b)  (pr ( r )  -pr (s) )  - ( r  -  s )  <  0 vr ,  s  €  R+.

[  (c)  p ' ( r )  <  0 Vr  ]  0  and pr(Q) :  0 .

[ 
(a) There exisrs Lz > 0 such that

J lrr(r)  -  pz(") l  < L2lr -  sl  yr,  r  € R+.' l  
(b) (pr(r) -pz(s)) -(r  -  s) > 0 vr,  s € R+. (3-7)

I
|  (c) p2(r) > 0 Vr ) 0 and pz(O) : 0.

we remark thar the assumptions (3.6) ancl (3.2) on pi(.) ancr p2(.) are fairrygeneral' The main severe restriction comes from'conditioo ia; v,rri.ir-r"q.,ires thatthe functions are Lipschitz continuous. From mechanical point of view,^ concLition(b) expresses the fact that the magnitucie of the reaction force increases with thepenetration. one stanclard example is provided by the f*nctions

?i(r) :  -LLtr '+, pz(r) :  p,2r*

where trr > 0 and p2 ) 0 are stiffness coefficients and ra clenotes the positive part ofr, i-e- r+: ma:x {0,"}. clearly these functions satisfy assumptions (3.6) and (3,7),respectively.

( J - o ,



It is easy to see that, under assumptions (3-6) and (3.7), the function p defined by

(2,8) is a Lipschitz continuous monotone function which vanishes at the origin, i-e- it

satisfies
[ (u) tit*te exists L > A such that

I b("r) - p(rr) l  <Zlr, - r2l Vr1, 12 € 1R'
)  

w , L t  " : ' . ' .  ( 3 g )

I tul k("t) - p(rz)) ' (" - ',)' 0 vr1' 12 € IR'

[  (b) p(0) : 0.

Here, ihe Lipschitz constant I is given by T,: ^*{Lr,Lr}, where -Li and L2 are

the Lipschitz constants of the functions p1 and p2, respectively.

In what foliows we use stand.ard notation for IP and Soboiev spaces and the

subscripts r and rc will represent the first and the second derivatives with respect

to r, respectively. we introcluce the closed subspace of Ir2(0, tr) given by

V  :  { u  €  H 2 ( 0 , L )  :  u ( 0 ) :  u " ( 0 ) : 0  } , (3.e)

ancl, below, we denote by 0v the zero element of V. We note that there exists c > 0

such that l [ul l1z1o,r,1 < cl lu, l l1,1o,r,;  for ai l  tr € l I t(0,,L) satisfying ?(0):0, thus,

ffzffszlo,i,y < cllu-' l l ; '10,r.; Yu e V'

We consicler now the inner product on V given by

(3.10)

(u, a)v : (u*", a'r) 12 @,r), (3  11 )

and ier ll . llv bu the associatecl norm. Using (3.10) we find that ll ' llszqo,r) and ll ' llv
are equivalent norms on V and, therefore, (% ( '')u) is a real Hilbert space'

In aclclition, we consicler the bilinear form a : V x I/ -* lR, the functional j :

V x V -- R, and the set of admissible displacement fields K, defined by

A L r r r u " r d r  Y u , u € V ,

p(u)udr  Yu,a  e  V ,

:  k1  (  a  {kz  in  (0 , r )  } .

We note rhat by (3.1) and (3.8) it follows that the integrals in (3.12) and (3.13) are

weil-defined; moreover, by conditions (3.4) and (3.5) it follows thai K is nonempty

since, for instance,
0v € K '  (3 '15)

Assume now that z is a regular solution of Problem P. Then (2.2) implies that

u € K. Let u be an arbitrary element in K. It follows from (2.1) that

pL

a (u ,u ) :  I
J O

rL
. /  r  I

J\u,u) --  
Jo

K :  { u  € V

(3.12)

(3.13)

(3.14)

l , '  #?#)@-u)o' :  fo '  t (o-dar+ lo ( (u  -  u)  dr



and' performing two integrations by parts and using the bounclary conditions (2.12),(2.13) yields

. f L 7 L
l "  Au , , ( u , , - u , , ) d r :  

l  f  ( u_u )d , r *  l -  eO_u )dx .Jo Jo Jo

on the other hancl, using (2.g)-(2.rr) and the definition of K wededuce thau

{(, - u) 2 -p(u)(, - 
") 

in (0, L),

rL 1L
I  e @ - u ) d , r r _ -  |  p @ ) ( u _ u ) d r

Jo Jo

(3 .16 )

1 2  1 7 \
\ u . a  r  /

which implies that

we combine now (3.16) ancl (3.17), then we use notation (3.r2) and (3.13) toobtain the following variationar formuration of probrern p.

Problem Py. Find a clisplacement fi,etd, tt such that

t t € K ,  o . ( u , u  - u )  +  j ( u , u _ t l )  >  ( f , r _ r r , ) p p , r , 1  y u € K .  ( 3 . 1 g )

We have the following existence ancl uniqueness result, which provicles the ,niq'eweal< solvability of the contact problem p.

Theorem 1' Assume that (3-7)-(3.7) hotd,. Then there erists a unique solutionu" e. V to the uariational problem py.

Proof. Let P '. V --.7 be the operator given by

( p u , u ) v : a ( u , u ) + j ( z t , u )  y u e V .  ( 3 . 1 9 )

we use assumption (3-1), clefinition (3.11) and the properties (3.g) of the function pto see that P is a strongly monotone Lipschitz continrrorls operator on Z. Moreover,by (3-2) it follows that there exists u.rniq.,. elernent i iv s'ch tliat

( f  , r ) r , :  ( f  ,u )p10, r .1  yu  e  V . (3.20)

Also, from assumptions (3.a) and (3.5) it follows that y'{ is a nonempty closecl convexsubset of V ' We use now a stanclar-d result on elliptic variational ineqlality to seethat there exists a unique element u* € V such thaf

u *  e K ,  ( p u * , u _ u . ) v 2 ( i , o _ u * ) v  y u  e  K .

Theorem 1 is now a consequence of (3.19)_(3.21).

(3  21)

E



Analysis via the control variational method

In this section we indicate an alternative approach to the problem Pv, based on

optimal control arguments. Everywhere below we assume that (3.1)-(3.7) hold. We

denote by I the inverse of A, i.e. I : A-1, and note that, by condition (3.1)' it

follows that I e l,-(0,tr). Also, iet cp: lR. -- iR be a primitive of P,9' : p, and iet

z e H2(0,I) be the solution of the problem

d2z  r  .  / ^  r \  
' l o

d;:  f  in (0, t r) ,  z(L):  f i t t ' )  
:  o.

We start by introducing the following optimal control problem:

e@) d,r\,

(4 .1 )

r,,nr.Plt,,o ,", {t Io' 'n'a' + fo'

t r L p L

:  I  t (h . ) 'd , r+  I  p ( t t
2 J o  J o

=i L 
qh. +)(k - h.))2 dr + lo" 

,ctu

rL rL

o= 
J ,  

Ih- (k-h . )c l r+  
Jo

ut t :  Iz  + lh  in  (0 ,  r ) .

(4.2)

(4.3)

The solvability of the optimal problem (4.2)-(4.3) and its link with the variational

problem Py is given by the following result.

Theorem 2. Assumethat(3.1)-(3.7) hold. Then, problem (4.2)-(4.3) l tas aunique

optimal pair lzf , h) e I( x L2 (A, L) . Moreouer, 'tL* satisfi,es the aariati,onal i,nequality
(3 .18 ) .

Proof. Note that the cost functional in (4.2) is strictly convex (* p' : p and p is

rnonotone, see (3.8)(b)) and coercive in h. Therefore, the existence and the uniqueness

of tlre optimai pair [z*, h-] e K x L2(0,tr) follows from standard arguments.
We consicler now admissible variations of the form tl*+)(T,'-u*) and h + \(k-h.)

in which ,\ is an arbitrary element of [0,1], u is an arbitrary element of K, ancl

k e L2(0,.L) is such that
1)" :  lz  *  Ik  in  (0 '  ' ) '  (4  4)

Since [u*, h.] is t]re optimal pair of the probiem (4.2)-(4.3), it follows that

* \ . / r

- * .\(u - u*)) dr.

We divide this inequality by I > 0 and then we pass to the iimit as ) --- 0 to obtain

p(u.)(u - u*) dr.



Next, we repJ.ace h* and k by using (a.3) and (4.4),respectively, anci operate integra_tions by part in the res'rting ineq'ality, by rrrir,gia.ij. a, aresult we obtain

f L .  r Lo S 
J, 

(Au,i, - ,)(u,, - u:,) dr + | p@)(u _ tf) dz
,  JO

: 
[" Au],(u,, - u:,) a, + [t p@.)(u - rr*. 

- rL
Jo 

r_Lu"-|urt _ um) d,r 
Jo ) d" _ 

J, 
f @ _ u.) d,r

and, using the notation (3.12) and (3.13) it follows that

which concrudes ,- ,r:,. 

7'*) + i(u* 'u - u*) > (f 'o - u")7'p't1'

A simple calculation implies that

ue +'r-L* strongly in V, h, + h* strongly in L2(0, L).

c

7  [ 1 .  "  f L  1  f L  7 L

, J, 
Ih'd'_* 

Jo 
pfu) d't: ; J, 

A(u,, - tr)'* * 
Jr" 

p(u) d,r
7 f L  f L  7 L  t  r L: 
; J, 

A(t6,)2 o, * 
Jo v(u) ctr - 

Jo f 
ud,r * ; Jr" 

rz2 d,r

whlch shows that, tip to a constant (provided by the last term), the cost functionalin (a'2) represents the usuar energy associatecr to problem ,u.' :V,iu-."o-n.iua. rrorrrhere that the classical variational approach is a special 
"*" 

of the controi variationalmethod plesented above.

Next, we approximate the control problem with the optiraizatiol problem

1,,n1.P,1t,10 ,r, {; fo' 
,n' ,t, + 

f," e(u) d,x 
" + l, @," - th - tz)2 crr}, (4 5)

in which e > 0' we have the following existence, 'niqueness and convergence result.

Theorem 3- Assume that (s.r)-(3.7) hord. Then, for eache ) 0, the probtem (4.s)has a nn'ique mzn'irnizerfu,,hul e N i Lze,L). Uil"ourr, as € _-- 0, the followingconuergences hold:

Proof. Let E > 0. The existence of a unique minimizer [u,,h,] for (a.5) follows fromarguments similar to those usecl in Theorem 2. Ciearly lu., hl'is o.i-ir.ib]" for (a.b)ancl, moreover) we have the inequalitv

1  f L  ^ 1 .
L  I  1 , ) ,  l -

,  l  Lh fdr+  |  e fu , )d r-  r u  J o (4 6)

t  r L
' t l1-; I

L C  J O

1 f L 7 L

c  I  
b \ t b  J  u & - 1 -  |o  J o  J o

((r.)," - Ih, - Iz)2 clr < 9 \ 7 1  ) d , T .



(u,),, - lh, -l Iz | 5v,.

Recall also that p is bounded from below by an a^ffine functional. Then, using (4.6)-
(4.8) it follows that

Denote by r, the function defined by

I  , ,, , : | ( ( u , ) , " - l h , - l z )

and note that this equality implies that

1 r L
hm rnf 

; / 
t(t't,)2 ctr >

tigronf 
fo' ,t ,) nr a I,

and, taking into account (4.15), we obtain that

: Ir" 
t(h,)' clr ---,; 

lr" \h.)2 d'r as s --- o

(4.7)

(4.8)

(4.e)

(4 10)

(4 11)

(4.72)

(4.13)

(4.r4)

(4 .15)

{h.i is a bounded sequence in ,2(0, -L),

{rir,} is a bounclecl sequence in -L2(0, tr),

{.r.} is a bounded sequence in V,

er, ---+ 0 in L2(0, L),

asE---+ 0. I t  fol lows from (4.9) and (4.1i) that there exists apair 1lz,t]  e L2(0,L)xV

such that, passing to subsequences, again denoted {h'} and {u.}, we have

-, h weakly in LZ(A,L),

--+ tt weakly in I/.

l L e

a tqE

Inequality (4.6), the convergences (4,13), (4.14) and the weak lower semicontinuity of
convex functions yield

+ 1," r()2 ar * l,' egL) d'r =; L 
qh.)'a, + fo" e(u.) d'r

Moreover, by (4.12) it follows that the pair [d,h] satisfies (4.3). Therefore, [a,D] t
an aclmissible pair for the control problem (4.2), (4.3) and, in acldition, (4.15) shows
that it is optimal. The uniqueness of the optimal control, guaranteed by Theorem 2,

implies that h : h* and i,L:'tL*. Thus, by (a.13) and (a-fa) and lower semicontinuity
arguments we have

t r L

: I t(h.)2 d,r,
z  J o
f

9(u.) dr

10

(4 16)



A well known convergence criterion in Hilbert spaces combinecl with (4.16), (4.13)
and equality h: h* implies that h, --+ h* strongly in L2e, L) * , -_, 0.'Wb use now(4.8), (4.I2) and equality ul": lh. +lz io obtain that that ,r, -rz* strongly in V asE -+ 0 ' Since the limit is unique, we deduce that the strong convergences above arevalid for the whole seqlrences {h.} and {u,}, which concludes the pr-oof. E

A characterization of the optimal pair of the control problem (4.2), (4.3) is pro_
vided by the following result.

Theorem 4- Assume that (J.r)-(3.7) hotd,. Then, the erement lu.,h*l € K xL2(0,L) i,s the opti,mal pair of the'control problem (4'.2), (4.2) ,f and, only if there
erists r* e L2(0, L) such that

^ f L f L p L0 <  I  l h - ( k - h . ) d . r +  |  p @ . ) ( u - u " ) d , r +  
l - r * ( u " , _ I k _ I z ) c t x  ( 4 . r T )Jo Jo Jo

for all k € L2(0, L) and, u e K.

Proof. We take admissible variations of the form a. + )(,u _ u.), h, + ^(k _ h,),
where ) is an arbitrary element of [0, t], u beiongs to K and k € L2'(0,i), u"a obtain

I  [ L ,  1 L  I  f L .

; J, 
th? dr + 

Jo 
p@,) o" * u J, 

((r,)", - th, - tz)2 d.r

=; 
l, 

tfh, +)(,k - h,)12 d.r * 
Ir" e(u, +)(, _ u,)) d.r

1 r b

*; 
J, 

((,,.)", + )(u -,u,) - t(h, +)(,k - h,) - Iz)2 clr.

Then, we divide the previous inequality by ) > 0 and pass to the limit as ) --- 0. As
a resuit we find that

- f L r L r L
0  S  I  l h , ( k -h , ) c t r+  

|  n ( " , ) (u - t t , ) d r+  |  r , ( a , , - ( . , u ) , "  - l k+ Ih , ) cL r .  
@. r8 )J o  J o  J o  

L \  ! r

We nse (4.18), (4.7) and ineq'al i ty -€lr, l2 ( 0 to deduce that

f L  - -  sL  7L
0 < / lh,(k - h,) dr + | p(u,)(u - u,) dr + | r,(1)", - tk - tz) ctx. (4.19)Jo Jo Jo

_ Now, we use (3.15)and test in (a.rg) with z: 0y ancl k: _ z*rr, where u., is an
arbitrary element in tr2(0, tr) which satisfies lrl"rp,r,) ( 1. we infer that

,= 
l r t  

th, (n-z- t t , )d,rn 
l r t  

p(u,)u,a,-  
fot  

r . r tnd,r .

As the first two terms are bounded for I ) 0, Theorem 3 ancl the continuity of p(.)
yield that the sequence {r,} is bounded in tr2(0, tr) as u, is arbitrary in the unit ball

1 1



of L2(0,L). Then, there exists an element r* e L2(A,L) and a subseqrience of the
sequence {r,}, again denoted {r'}, which converge weakly to r* in L2(0,L).

Next, we pass to the limit in (4.19) and use Theorem 3 combined with the
continuity of p(-) in order to obtain the necessity of (4.77). The srifficiency of this
condition follows by choosing [",k] admissible for the optima] control problem (4.2),
(4.3). Then, we have

n L
Io - <  /

J O

and, using the definition of the subdifferential Otp(u.), we conclude the proof. r

The inequality (4.19) gives the first order optimality condition for the approxi-
mating optirnization problem (4.5) and this condition is necessary and sufficient, too.
Note ihat the ftrnction r* € L'(0,1) is the Lagrange multiplier associated to the state
equation (4.3). Similar arguments have been used in [2] in orcler to derive first order
optirnality conclitions in the stucly of abstract control problems for evolution equa-
tions. Note also that conditions (4.f7) or (4.19) express the fact tirat the graclient of
the minimized functional (4.5) (or (a.2)), is zero (or has a certain orientation with
respect to the constraints) at ihe minimizer. This information may be exploited in
gradient algorithms for the corresponcling minimization problems. We conclude that
the control variational method provides new possibilities for constructing approxima-
tion methods for boundary value problems.

5 Versions of the model and related results

In this section we present three versions of the model ancl state results simiiar to those
presented in the previous section, obtained by using the control variational methocl.
The physical setting is similar to that describecl in Section 2. The clifference arise
from the fact that now we have a single obstacle, denoted 5, situatecl at a distance
g < 0 from the Or axis, as shown in Fig. 5.1. Formally, this physical setting can be
recovered from the physical setting depicted in Fig. 2.1 by taking Sr : S, gt: g,

92 -  t ' . t .

O r
t q

L '

q

Fig. 5.1. A beam in potential contact with a single obstacle.

f L
llr," (k - h-) dr + | p(u")(u - u.) dr,

J O

72



The first two models are time-independent. In the first one we assume that thecontact is modeled with the classical normal compiiance condition, i.e. the pene-tration is not limited' Therefore, the classical form'lation of the problem is tirefollowing.

Problem P"". Find. a.d,isplacement fi,eldz : [0, tr] r R such that

d ' ( n r J ' u \ "  _
d"r\" a", )J + e in (0, tr),

r L >  g = = * € : 0 ,  u 1  g : > €  : _ p t ( g _ " )  i n  ( 0 , r ) ,

z (o )  :  * ( o )  : 0 ,
&T

d 'u  r^  cJ3?r  ,  . ,
d * \ L )  

:  
4 r s l L )  

: 0 .

(5 .  1 )

(5.2)

(5.3)

(5.4)

^ fere, Pi : IR+ --+ lft is a given nonpositive function which clescribes the reactionof the obstacle.

In the second model we assume that the penetration is not allowecl and, therefore,the contact is describecl with the Signorini condition. The classical form'lation of theproblem is bhe following.

Problem Psis. Find. a d,isplacement fi,eldzr : [0,I] _-* R such that
S2 ,  )2 " ,

d . r l A w ) : f  + €  i n  ( 0 , t r ) ,

u ) 9 ,  € > 0 ,  € ( g - a ) : g  i n  ( 0 , t r ) ,
dt,

z z ( 0 )  : # ( o ) : 0 ,
AT

c l2z t  ,  . .  d3z  ,  - .
d * t L )  

:  
. r r ( L )  

: 0 .

we turn to the variational formulation to Problems p'. ancl pstg. To this end weassume that A and / satisfy (3.1) and.(3.2), respectively, anci p1 satisfies (3.6). Also,we consider the function p : IR -- IR given by

- / - \ _  ) n r b - r )  i f  r 1 g ,
r t " ' - \  

o  i f r l g .  ( 5 9 )

we use the space y, (3'9), the bilinear form (3.12) ancl the function (3.13) where pis now given by (b.g). Also, we consicler the set

1 ( : 1  a  € V  :  u )  s  i n  ( 0 , r )  ) .  ( 5 . i 0 )

Then, the variational formulation of problem s Pn. ancl psts can be obtainecl byLrsing the arguments presentecl in section 3 and are the following.

\  . ,  - .J, /

(5 6)

(5.7)

(5 8)

l 2
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Problem Pfr". Fi.nd a d'isplacement field u such that

u '  €V, a(u,u) + i (u,u):  ( f  ,a)cQ,r-)  Yu e V'

Problem P$is. Flnd a d'i,splacement f,eld u such that

u €  K ,  a ( u , u - u )  2  ( f , u - u ) y z p , r ;  V a  e  K .

( 5 . i 1 )

(5.12)

Note that Problem ft' can be recovered from Problem Pv by taking 9t : 9,
,k1 : -oo, gz : kz: oo and pz = 0. Also, Problem P|"e can be recovered from

Problem Pv by taking h : kt : g, gz - kz : co and Pz = 0. Therefore, we conclude

that the control variational method in Section 4 works and can^be used to provide

the existence of the solutions of problems Pt" and Problem Pls, respectively. In

particular, in the study of Problem Pff" we introduce the optimal control problem

uro : Iz + lh in (0, tr),

z(0)  : 'u" (0)  :  g '

Here, again, I : A-r and tp : IR * IR. is such that tp'

solution of the problem

(5.13)

(5.14)

(5.15)

- p and z e H2(0,tr) is the

1,,n1.f*i?,,0 ", 
{ ; Io" 

'n' a' + 
lot eQ) dr}'

(b .  rb )

The solvability of the optimal problem (5.13)-(5.15) and its link with the varia-

tional problem Pl" is given by the foilowing result.

Theorem 5. Assurne that (3.1), (3.2) and (3.6) hold and let g < 0. Then, problem

(5.13)-(5.15) has a un'ique optirnal pair lu",h-) e H2(0, tr) t L2(0,L) and, rnoreouer,

u,* satisfi,es (5.1i).

The interest in the optimal control method also arises from the fact that it provicles

regularity results. To illustrate this, we turn again to the optimal control problem

(5.13)-(5.15). We introduce the adjoint system ancl the adjoint state r e H2(0,L)
given by

rr r :  -p(u. )  in  (0 ,  r ) ,

r ( L ) : r , ( L ) : g -

Performing variations arotnd the optimal pair (as in the proof of Theorem 2) and
some integlation by parts, we find that

r * h * : 0  i n  ( 0 , r ) .

(5 .17)

(5.18)

' l A
t =

(5 .1e)



Relation (5'19) eKpresses the fact that the gradient of the cost functional (5.13)(as a function of h alone) is zero in the minimum point h* e t,to, il.^itl't.rt_nurraside of (5'19) represents this gradient and can be used in the iterative procedures(the gradient methods) for thJsolution of (5.t3)-(b 1b) By Theorei, 5 we see thatthe optimai control methocl above provides an alternative sol'tion methocl for theoriginal problem (5.r)-(5 4), involving just the equations (5.14) ancl (b.12), that maybe integrated directly.
we also rue relation (5.19) to note that h* has the same regurarity as r, i.e.h. e r/3(0, -L)- Here, we use the fact that p(.) is a Lipschitz continuous function andthe regularity of Lt*,r from the state utra lh. adjoinf state equation, respectively. IfI is smooth enough, bv (s.r4) we also obtain that z. e nspii1,.,"ii,.i, i*.esents aregularity property for the solution of probiem p#".
we now turn to the analysis of Problem Ptie"^nd, to this encl, we introcl*ce theoptimal control problem

,  f L

,.Eit' t /, 
th2d,r j,

subjected to (5.14), (5.15) ancl to the constraint

(5.20)

(5 .21 )? t l g  i n  ( 0 , I )

The solvability of this optimal problern and its link with the variational proble m pfis
is given by the foilowing resuit. 

-" 'evv:vuar.vrur

Theorem 6. Assume that (3.r) and (2.2) hold, and, ret g < 0. Then, probrem(5.20),
(5-14), (5.15), (5-2r) has aunique opti^oipair[t t , ir1 e"N x L2(a,L) and,, rno,-eoner,tt satisfi,es (5.12).

More details in the stucly of the contact problems P'" ancl psie, inclucling completeproofs of Theorems 5 ancl 6 and can be founcl in [t4].
we end this section with the clescription of a time-clependent moclel for contactr'r'ith a single obstacle' The physical setting is similar to that ciepicted in Fig. 5.1.The difference arises from the fact that now there is no gap between the beam anclthe foundation i'e' I : 0 and, moreover, the adhesion of the contact surfarces is takeninto account and is modellecl by a time-clepenclent variable, the boncli.g field,Let [0,7] be the tirne intervar of interest, ? > 0. For r € l0,r] orr.l-, al0,?1, -edenote by u : u(r,t) the vertical clisplacement of the beam, by F(x,t) the bonciirigfielcl ancl, below, we inclicate the dependence of the variables oo ,'urrj t. Following

[+],^the bonding fielci describes the iractional density of active boncls on the conractsur faceand,  asafract ion,  i tsva l 'esarerest r ic tedto0 < 0(r , t )  <  i .  when 0(r , t ) :1the adhesion is complete ancl aii the boncls are active; when B(r,l) : 0 ail the bondsare inactive, severed, and there is no adhesion; when o < p('r,ti a r the aclhesionis partiai and only a fraction fr(x,t) of'the bonds is active. We refer the reacler tothe extensive bibliography on the modelling and analysis of contact problems withadhesion in [4, 10, il, l3].

The cla,ssical form'lation of the problem is as folows.

15



Problem P". Fi.nd a d;isplacementfield u: [0,I] x [0,?] * IR szch that, for aII

f € [0,TJ,

o2  r  ^ ,  , d ' r r ,  , , '
aAloll #@,r)) f @,t) + {(r, t) ror all r e (0, -L),

u(r, t )  > 0+€(r , t )  :  - t@)02(r , t ) .R(u(x, t ) )  
)  for  a l t  re (0,_L),

u(r;t) ( S =e €(r, t) : -pt(-u(", t)) )

u(o,t)  :#to,t)  :  o,

A2u ,  -  03u ,  -
#(t,t) 

: 
a*t!, t) 

: o'

(5.22)

(5.23)

(5 24)

(5 25)

(5.26)

Condition (5.23) represents the normal compliance conclition with adhesion' Here

p1 is the normal compliance function, 'y is a positive function and R is the truncation

operator given by

","r: {

0  i f  r ( 0 ,

r  i f .  S ( r { l s ,

l s  i f  r > 1 6 .

where lo > 0 is the characteristic length of the bond, beyond which it does not offer

any additional traction (see, e.g., [f 0]). The introcluction of the truncation operator R

is motivated mainly by raathematical reasons, but it is aiso related to the observation

that for some glues when the extension is more than ls, the glue extends plastically

without offering additional tensiie traction. However, by choosing ls very large, we

recover the case where the traction is linear in the extension. We note that when there

is contact (i.e. when u(r,t) { 0), then condition (5.23) is similar to condition (5.2).

Nevertheless, when there is separation (i.e. when u(r,t) > 0), then (5.23) shows that

the aclhesive normal traction in the point r at the mornent t is 1@)p2(r, f)R(u(r, t));

it is tensile ancl proportional, with proportionality coefficient'y(r), to the square of

the adhesion field, and to the vertical displacement, as long as it does not exceed the

bond length 16.
In [4, 10, 11, 13] the evolution of the bonding field is describecl by the equation

ap, , ,  /
#(r,t) 

: - (t@)0@,t)Rz(u(r,t)) - e (r))* for all (r,t) e (0, r) x (0, T)

in which e is a positive coefficient and, again, r.,' denotes the positive part of r.

Nevertheless, an examination of the results in these references shows that the study

of contact problems with adhesion is usually carried out by considering intermediate
problems in which the bonding field is known, followed by a fixed point argument.

For this reason, in Problem Po we consider p as given and note that this restrictive

assumption leacls to a simplifi.ed contact model with adhesion. Its analysis via the

l f )



control variational method has some intert ir its own, since it lies the backgro'ndfor more complicate problems in which the bonding n.ia is unknown.we turn now to derive a weal< or variational formulation of problem p,. To thisend we assume in what folows that A satisfies (3.i), p1 satisfies (3.6) and :

f  e w',*(a,T; L2(0, L)),
7 e L*(0, L), i lr) > 0 a.e. r e (A, L),
13 e w1'*10,7; L2(0, L)),
0  < p( r , r )  <  1  a.e.  re  (0 , t r ) ,  Vre [0 , " ] .

In what follows 
.we use the space (3.9) with the inner product (3.11) and trreassociated 

lorm ll ll" ' In acldition, we consider the bilinear form a : v xz -* lRdefined by (3.12), the function p : R ___+ IR given by

/ ( o-l\
\ r . L  t  )

(b. :28)

(5.2e)
(5.30)

p ( r ) : { n ' ? ' )  i f r ( o '

| .  0  i f r > 0 ,

zt,,(r, t) :  I(r)z(r,t) + t(r)h(r,t) for al l  r e (0, L),

tz(0, t) : r.r"(0, t) : 0.
Here, l(r): A-,(r) ancl tp(r,t,.) : JR ---+ IR is such that

(5.31)

and the frinctional / : [0, T) x V x V -__+ ]R defined by

7L

i ( t ,u,") 
Jo b@@)) + 1@)p2(r, t)R(u(r))) u(r) d,r y u, u e v.

Using (5'26) and (5-31) i! is easy to see that the contact condition (5.23) can bewritten into the equivalent form

€( r , t ) :  - p (u ( r , t ) )  - t@)02(x , t )Re t ( r , t ) )  f o r  a l r  r  e  (0 ,? )  and ,  €  [0 ,? ] .
Therefore, by a stanclarcl proceclure based on two integrations by parts, we obtain thevariational formulation of problem p".

Problem Pfi. Fincl a d,,isplacement f.eld,a: [0,?] * V such that

a ( u ( t ) , u )  +  j ( t , u ( t ) , u ) :  ( f  ( t ) , u ) p 1 o , r 1  y u  € V ,  i  e  [ 0 , ? ] .

For each i e [0,?], let us introduce the optimal control problem

r",o,nr,rtll* L2e,L){; lr" 
I(r)t*(r,t) dr + 

fo' ,tr,t,u"(r,l) ar},

(5.32)

(5 33)

(5 34)

f K  e ( \

# rr, t, r) : p(r) + t@) 92 (x,r)n(r)

1 7



for all r e (0,/,) ancl r € lR. Moreover, z(',t) e H2(0,tr) is the solution of the

problem

022(r,t) - , ,- r,  r^- ^n * c. (n T.\ ,(f .  t \  - 
A-

-- 
ar, 

- f  (*,t) for al l  r € (0, L), z(L,t) :  
;( '1, 

t) :  g' (5'36)

The solvability of the optimal problem (5-33)-(5.35) and its ]ink with the varia-

tional problem Pfi is given by the following result-

Theorem 7. Assume that (3.1), (3.6), (5.27)-(5.30)_hold. Then, for each t € [0,f],
problem(5.33)-(5.35) has aztnique opti.rnalpair l i( t),h(t)] e H'(0,L)xL2(0,L). The

functi,onsi and,i b"tong bW1,*(0,f;V) andWr,*(0,T;L2(A,L)), respecti,uely, and

i sati,sfies (5.32).

The proof of Theorem 7 follows from results similar to those usecl in Section 4

ancl, for this reason, is omitted.
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