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Abstract

In this paper we introduce four multigrid algorithms for the con-
strained minimization of non-quadratic functionals. The algorithm in-
troduced in [L. Badea, Convergence rate of a Schwarz multilevel method
for the constrained minimization of non-quadratic functionals, SIAM J.
Numer. Anal., 44, 2, 2006, p. 449-477], has a sub-optimal comput-
ing complexity because the convex set, which is defined on the finest
mesh, is used in the smoothing steps on the coarse levels. The first
algorithm we introduce in this paper is a standard V-cycle multigrid it-
eration which improves the algorithm in the above cited paper, having
an optimal computing complexity. This algorithm can be also viewed as
performing a multiplicative iteration on each level and a multiplicative
one over the levels, too. The three other proposed algorithms are com-
binations of additive or multiplicative iterations on levels with additive
or multiplicative ones over the levels. These algorithms are given for the
constrained minimization of non-quadratic functionals where the convex
set is of two-obstacle type and have an optimal computing complexity.
We give estimations of the global convergence rate in function of the
number of levels, and compare our results with the estimations of the
asymptotic convergence rate existing in the literature for complementary
problems.

Keywords: domain decomposition methods, variational inequalities, non-
quadratic minimization, multigrid and multilevel methods, nonlinear obstacle
problems
AMS subject classification: 65N55, 65N30, 65J15

1 Introduction

The multigrid or multilevel methods for the constrained minimization of func-
tionals have been studied almost exclusively for one-obstacle problems. Such
a method has been proposed by Mandel in [19], [20] and [8]. Related methods
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have been introduced by Brandt and Cryer in [5] and Hackbush and Mittel-
mann in [11]. The method has been studied later by Kornhuber in [13] and
extended to variational inequalities of the second kind in [14] and [15]. A vari-
ant of this method using truncated nodal basis functions has been introduced
by Hoppe and Kornhuber in [12] and analyzed by Kornhuber and Yserentant
in [17]. Also, versions of this method have been applied to Signorini’s prob-
lem in elasticity by Kornhuber and Krause in [16] and Wohlmuth and Krause
in [24]. Evidently, the above list of citations is not exhaustive and, for fur-
ther information, we recommend the review article [10] written by Gräser and
Kornhuber.

Regarding the convergence study of the method, an asymptotic conver-
gence rate of 1 − 1/(1 + CJ3), J being the number of levels, has been proved
by Kornhuber in [13] for the complementary problem in the bidimensional
space. For the two-level method, global convergence rates have been estab-
lished by Badea Tai and Wang in [4], and for its additive variant by Badea in
[3]. Also, a global convergence rate has been also estimated by Tai in [21] for
a multilevel subset decomposition method.

In [2], we have introduced a projected multilevel method for constrained
minimization problems where the convex set can be more general than of one-
or two-obstacle type, for instance. The main drawback of this method, is its
sub-optimal computing complexity because the convex set, which is defined on
the finest mesh, is used in the smoothing steps on the coarse levels. Also, the
global convergence rate we found there in R2 for quadratic functionals was of
1 − 1/(1 + CJ5) which is weaker than the asymptotic one given in the above
cited papers. We introduce in the present paper four multilevel algorithms
which have an optimal computing complexity. The first algorithm is a stan-
dard V-cycle multigrid iteration which improves the algorithm in the above
cited paper. This algorithm can be also viewed as performing a multiplica-
tive iteration on each level and a multiplicative one over the levels, too. The
three other proposed algorithms are combinations of additive or multiplica-
tive iterations on levels with additive or multiplicative ones over the levels.
These algorithms are given for the constrained minimization of non-quadratic
functionals where the convex set is of two-obstacle type and have an optimal
computing complexity. We also give estimations of the global convergence rate
in function of the number of levels. We found, for instance, that, in R2, for
the minimization of quadratic functionals, the first algorithm has a global con-
vergence rate of 1−1/(1+CJ3), like the asymptotic convergence rate existing
in the literature for complementary problems. The methods are described as
multigrid V -cycles, but, evidently, the results hold for W -cycle iterations, for
instance.

The paper is organized as follows. In Section 2, we state four algorithms in
a general framework of reflexive Banach spaces, and prove their convergence
under some assumptions. In Section 3 we show that these algorithms can be
viewed as multilevel methods for the constraint minimization of non quadratic
functionals if we associate finite element spaces to several level meshes and
consider decompositions of the domain at each level. We prove that the as-
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sumptions made in the previous section hold for convex sets of two-obstacle
type. If the decompositions of the domain are made using the supports of the
nodal basis functions we get, in Section 4, the multigrid methods. This partic-
ular choice of the domain decomposition allow us to obtain better bounds for
the convergence rate of the methods. Finally, in Appendix, Section 5, we show
that the multilevel method in [2] can be viewed as a particular case of the first
algorithm introduced in this paper. We also correct an error in Proposition
5.1 in that paper.

2 Abstract convergence results

We consider a reflexive Banach space V and let K ⊂ V be a nonempty closed
convex set. Let F : V → R be a Gâteaux differentiable functional, which

is assumed to be coercive on K, in the sense that F (v)
||v|| → ∞, as ||v|| → ∞,

v ∈ K, if K is not bounded. Also, we assume that there exist two real numbers
p, q > 1 such that for any real number M > 0 there exist αM , βM > 0 for
which

(2.1)
αM ||v − u||p ≤< F ′(v) − F ′(u), v − u > and
||F ′(v) − F ′(u)||V ′ ≤ βM ||v − u||q−1

for any u, v ∈ V with ||u||, ||v|| ≤ M . Above, we have denoted by F ′ the
Gâteaux derivative of F , and we have marked that the constants αM and βM

may depend on M . It is evident that if (2.1) holds, then for any u, v ∈ V ,
||u||, ||v|| ≤M , we have

αM ||v − u||p ≤< F ′(v) − F ′(u), v − u >≤ βM ||v − u||q.

Following the way in [9], we can prove that for any u, v ∈ V , ||u||, ||v|| ≤ M ,
we have

(2.2)
< F ′(u), v − u > +αM

p
||v − u||p ≤ F (v) − F (u) ≤

< F ′(u), v − u > +βM

q
||v − u||q.

Also, using the same techniques, we can prove that if F satisfies (2.1), then

1 < q ≤ 2 ≤ p

We point out that since F is Gâteaux differentiable and satisfies (2.1), then F
is a convex functional (see Proposition 5.5 in [7], pag. 25).

Now, let we assume that we have J closed subspaces of V , V1, . . . , VJ , and
let Vji, i = 1, . . . Ij be some closed subspaces of Vj , j = J, . . . , 1. The subspaces
Vj , j = J, . . . , 1, will be associated with the grid levels, and, for each level
j = J, . . . , 1, Vji, i = 1, . . . Ij , are associated with a domain decomposition.
Let us write

I = max
j=J,...,1

Ij

3



In certain cases, the second equation in (2.1) can be refined, and we assume
that there exist some constants 0 < βjk ≤ 1, βjk = βkj , j, k = J, . . . , 1, such
that

(2.3) 〈F ′(v + vji) − F ′(v), vkl〉 ≤ βMβjl||vji||
q−1||vkl||

for any v ∈ V , vji ∈ Vji, vkl ∈ Vkl with ||v||, ||v+vji||, ||vkl|| ≤M , i = 1, . . . , Ij
and l = 1, . . . , Il. Evidently, in view of (2.1), the above inequality holds for

(2.4) βjk = 1, j, k = J, . . . , 1

We consider the variational inequality

(2.5) u ∈ K : < F ′(u), v − u >≥ 0, for any v ∈ K,

and since the functional F is convex and differentiable, it is equivalent with
the minimization problem

(2.6) u ∈ K : F (u) ≤ F (v), for any v ∈ K,

We can use, for instance, Theorem 8.5 in [18], pag. 251, to prove that problem
(2.6) has a unique solution if F has the above properties. In view of (2.2), for
a given M > 0 such that the solution u ∈ K of (2.6) satisfies ||u|| ≤ M , we
have

(2.7)
αM

p
||v − u||p ≤ F (v) − F (u) for any v ∈ K, ||v|| ≤M.

The algorithms we introduce will be a combination of additive or multi-
plicative algorithms over the levels with additive or multiplicative algorithms
on each level. First, to introduce the algorithms, we make an assumption on
choice of the convex sets where we look for the level corrections. The chosen
level convex sets depend on the current approximation in the algorithms.

Assumption 2.1. For a given w ∈ K, we recursively introduce the convex sets
Kj, j = J, J − 1, . . . , 1, as

- at level J : we assume that 0 ∈ KJ , KJ ⊂ {vJ ∈ VJ : w + vJ ∈ K} and
consider a wJ ∈ KJ

- at a level J − 1 ≥ j ≥ 1: we assume that 0 ∈ Kj, Kj ⊂ {vj ∈ Vj : w +
wJ + . . .+ wj+1 + vj ∈ K} and consider a wj ∈ Kj

We can easily check that if we take, for j = J − 1, . . . , 1,

(2.8) Kj ⊂ {vj ∈ Vj : wj+1 + vj ∈ Kj+1}.

then Kj ⊂ {vj ∈ Vj : w + wJ + . . .+ wj+1 + vj ∈ K}. Evidently, the optimal
convergence of the algorithms depends on the effective choice of these level
convex sets Kj .

We first introduce the algorithm which is of the multiplicative type over
the levels as well as on each level.
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Algorithm 2.1. We start the algorithm with an arbitrary u0 ∈ K. Assuming
that at iteration n ≥ 0 we have un ∈ K, we successively perform the following
steps:

- at the level J, as in Assumption 2.1, with w = un, we construct the convex
set KJ . Then, we first write wn

J = 0, and, for i = 1, . . . , IJ , we successively

calculate wn+1
Ji ∈ VJi, w

n+ i−1
IJ

J + wn+1
Ji ∈ KJ , the solution of the inequalities

(2.9) 〈F ′(un + w
n+ i−1

IJ

J + wn+1
Ji ), vJi − wn+1

Ji 〉 ≥ 0

for any vJi ∈ VJi, w
n+ i−1

IJ

J + vJi ∈ KJ , and write w
n+ i

IJ

J = w
n+ i−1

IJ

J + wn+1
Ji .

- at a level J−1 ≥ j ≥ 1, as in Assumption 2.1, we construct the convex set
Kj with w = un and wJ = wn+1

J , . . . , wj+1 = wn+1
j+1 . Then, we write wn

j = 0,

and for i = 1, . . . , Ij, we successively calculate wn+1
ji ∈ Vji, w

n+ i−1
Ij

j + wn+1
ji ∈

Kj, the solution of the inequalities

(2.10) 〈F ′(un +
J
∑

k=j+1

wn+1
k + w

n+ i−1
Ij

j + wn+1
ji ), vji − wn+1

ji 〉 ≥ 0

for any vji ∈ Vji, w
n+ i−1

Ij

j + vji ∈ Kj, and write w
n+ i

Ij

j = w
n+ i−1

Ij

J + wn+1
ji .

- we write un+1 = un +
J
∑

j=1

wn+1
j .

The algorithm which is of the multiplicative type over the levels and of the
additive type on each level is written as

Algorithm 2.2. We start the algorithm with an arbitrary u0 ∈ K. Assuming
that at iteration n ≥ 0 we have un ∈ K, we successively perform the following
steps:

- at the level J, as in Assumption 2.1, we construct the convex set KJ with
w = un. Then, we simultaneously calculate wn+1

Ji ∈ VJi ∩ KJ , i = 1, . . . , IJ ,
the solutions of the inequalities

(2.11) 〈F ′(un + wn+1
Ji ), vJi − wn+1

Ji 〉 ≥ 0

for any vJi ∈ VJi ∩KJ , and write wn+1
J =

r

I

IJ
∑

i=1

wn+1
Ji .

- at a level J−1 ≥ j ≥ 1, as in Assumption 2.1, we construct the convex set
Kj with w = un and wJ = wn+1

J , . . . , wj+1 = wn+1
j+1 . Then, we simultaneously

calculate wn+1
ji ∈ Vji ∩Kj, i = 1, . . . , Ij, the solutions of the inequalities

(2.12) 〈F ′(un +
J
∑

k=j+1

wn+1
k + wn+1

ji ), vji − wn+1
ji 〉 ≥ 0
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for any vji ∈ Vji ∩Kj, and write wn+1
j =

r

I

Ij
∑

i=1

wn+1
ji .

- we write un+1 = un +
J
∑

j=1

wn+1
j .

Above, r is a constant in the interval (0, 1].

The algorithm which is of the additive type over the levels and of the
multiplicative type on each level is written as,

Algorithm 2.3. We start the algorithm with an u0 ∈ K. Assuming that at
iteration n ≥ 0 we have un ∈ K, for j = 1, . . . , J , we simultaneously perform
the following steps

- we construct the convex set Kj as in Assumption 2.1 with w = un and
wJ = . . . = w1 = 0,

- we write wn
j = 0, and for i = 1, . . . , Ij, we successively calculate wn+1

ji ∈

Vji, w
n+ i−1

Ij

j + wn+1
ji ∈ Kj, the solution of the inequalities

(2.13) 〈F ′(un + w
n+ i−1

Ij

j + wn+1
ji ), vji − wn+1

ji 〉 ≥ 0

for any vji ∈ Vji, w
n+ i−1

Ij

j + vji ∈ Kj, and write w
n+ i

Ij

j = w
n+ i−1

Ij

j + wn+1
ji ,

Then, we write un+1 = un +
s

J

J
∑

j=1

wn+1
j , with a fixed 0 < s ≤ 1.

Finally, the algorithm which is of the additive type over the levels as well
as on each level, is written as,

Algorithm 2.4. We start the algorithm with an u0 ∈ K. Assuming that at
iteration n ≥ 0 we have un ∈ K, we simultaneously perform, for j = 1, . . . , J ,
the following steps

- we construct the convex sets Kj as in Assumption 2.1 with w = un and
wJ = . . . = w1 = 0,

- we simultaneously calculate, for i = 1 . . . , Ij, w
n+1
ji ∈ Vji ∩Kj, the solu-

tions of the inequalities

(2.14) 〈F ′(un + wn+1
ji ), vji − wn+1

ji 〉 ≥ 0

for any vji ∈ Vji ∩Kj, and write wn+1
j =

r

I

Ij
∑

i=1

wn+1
ji , with a fixed 0 < r ≤ 1.

Then, we write un+1 = un +
s

J

J
∑

j=1

wn+1
j , with a fixed 0 < s ≤ 1.
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Evidently, inequalities (2.10), (2.12), (2.13) and (2.14) are equivalent, re-
spectively, with the following minimization problems

– find wn+1
ji ∈ Vji, w

n+ i−1
Ij

j + wn+1
ji ∈ Kj ,

(2.15)

F (un +
J
∑

k=j+1

wn+1
k + w

n+ i−1
Ij

j + wn+1
ji ) ≤

F (un +
J
∑

k=j+1

wn+1
k + w

n+ i−1
Ij

j + vji)

for any vji ∈ Vji, w
n+ i−1

Ij

j + vji ∈ Kj ,

– find wn+1
ji ∈ Vji ∩Kj ,

(2.16) F (un +
J
∑

k=j+1

wn+1
k + wn+1

ji ) ≤ F (un +
J
∑

k=j+1

wn+1
k + vji)

for any vji ∈ Vji ∩Kj ,

– find wn+1
ji ∈ Vji, w

n+ i−1
Ij

j + wn+1
ji ∈ Kj ,

(2.17) F (un + w
n+ i−1

Ij

j + wn+1
ji ) ≤ F (un + w

n+ i−1
Ij

j + vji)

for any vji ∈ Vji, w
n+ i−1

Ij

j + vji ∈ Kj ,

– find wn+1
ji ∈ Vji ∩Kj ,

(2.18) F (un + wn+1
ji ) ≤ F (un + vji)

for any vji ∈ Vji ∩Kj .
In order to prove the convergence of the above algorithms, we shall make

new assumptions. First we fix a constant σ satisfying

p

p− q + 1
≤ σ ≤ p

and assume that there exists a constant C1 such that

(2.19) ||
J
∑

j=1

Ij
∑

i=1

wji|| ≤ C1(
J
∑

j=1

Ij
∑

i=1

||wji||
σ)

1
σ

for any wji ∈ Vji, j = J, . . . , 1, i = 1, . . . , Ij . Evidently, we can take, for
instance,

(2.20) C1 = (IJ)
σ−1

σ

but sharper estimations can be available in certain cases. For Algorithms 2.1
and 2.3, we assume

7



Assumption 2.2. There exists two constants C2, C3 > 0 such that for any
w ∈ K, wji ∈ Vji, wj1 + . . .+wji ∈ Kj, j = J, . . . , 1, i = 1, . . . , Ij, and u ∈ K,
there exist uji ∈ Vji, j = J, . . . , 1, i = 1, . . . , Ij, which satisfy

uj1 ∈ Kj and wj1 + . . .+ wji−1 + uji ∈ Kj , i = 2, . . . , Ij , j = J, . . . , 1

u− w =
J
∑

j=1

Ij
∑

i=1

uji

J
∑

j=1

Ij
∑

i=1

||uji||
σ ≤ Cσ

2 ||u− w||σ + Cσ
3

J
∑

j=1

Ij
∑

i=1

||wji||
σ

The convex sets Kj, j = J, . . . , 1, are constructed as in Assumption 2.1 with

the above w and wj =

Ij
∑

i=1

wji, j = J, . . . , 1, for Algorithm 2.1, and with w and

wJ = . . . = w1 = 0, for Algorithm 2.3.

For Algorithms 2.2 and 2.4, we assume

Assumption 2.3. There exists two constants C2, C3 > 0 such that for any
w ∈ K, wji ∈ Vji ∩ Kj, j = J, . . . , 1, i = 1, . . . , Ij, and u ∈ K, there exist
uji ∈ Vji ∩Kj, j = J, . . . , 1, i = 1, . . . , Ij, which satisfy

u− w =
J
∑

j=1

Ij
∑

i=1

uji

J
∑

j=1

Ij
∑

i=1

||uji||
σ ≤ Cσ

2 ||u− w||σ + Cσ
3

J
∑

j=1

Ij
∑

i=1

||wji||
σ

The convex sets Kj, j = J, . . . , 1, are constructed as in Assumption 2.1 with

the above w and wj =
r

I

Ij
∑

i=1

wji, j = J, . . . , 1, for Algorithm 2.2, and with

w ∈ K and wJ = . . . = w1 = 0, for Algorithm 2.4.

The convergence result is given by

Theorem 2.1. We consider that V is a reflexive Banach space, Vj, j =
1, . . . , J , are closed subspaces of V , and Vji, i = 1, . . . , Ij, are closed subspaces
of Vj. Also, let K be a non empty closed convex subset of V , and Kj, j =
1, . . . , J , be non empty closed subsets of Vj given by Assumption 2.1. We
consider a Gâteaux differentiable functional F on V which is supposed to be
coercive if K is not bounded, and which satisfies (2.1). Also, we assume that
Assumption 2.2 or 2.3 holds if we refer to Algorithms 2.1 and 2.3, or to
Algorithms 2.2 and 2.4, respectively. On these conditions, if u is the solution
of problem (2.5) and un, n ≥ 0, are its approximations obtained from one of
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Algorithms 2.1–2.4, then there exists M > 0 such that ||u||, ||un|| ≤M , n ≥ 0,
and the following error estimations hold:

(i) if p = q = 2 we have

(2.21) F (un) − F (u) ≤ (
C̃1

C̃1 + 1
)n[F (u0) − F (u)],

(2.22) ||un − u||2 ≤
2

αM

(
C̃1

C̃1 + 1
)n[F (u0) − F (u)],

where C̃1 is given in (2.45), and
(ii) if p > q we have

(2.23) F (un) − F (u) ≤
F (u0) − F (u)

[1 + nC̃2(F (u0) − F (u))
p−q

q−1 ]
q−1
p−q

,

(2.24) ||u− un||p ≤
p

αM

F (u0) − F (u)

[1 + nC̃2(F (u0) − F (u))
p−q

q−1 ]
q−1
p−q

,

where C̃2 is given in (2.49).

Proof. Step 1. We first prove the boundedness of the approximations un of u
as well as of the corrections wn+1

ji obtained from the above algorithms. For

Algorithm 2.1, from (2.15), we get

F (un +
J
∑

k=j

wn+1
k ) ≤ F (un +

J
∑

k=j+1

wn+1
k + w

n+ i
Ij

j ) ≤

F (un +
J
∑

k=j+1

wn+1
k + w

n+ i−1
Ij

j ) ≤ F (un +
J
∑

k=j+1

wn+1
k )

for any j = J − 1, . . . , 1 and i = 1, . . . , Ij . Also, from (2.9), we have

F (un + w
n+ i

IJ

J ) ≤ F (un + w
n+ i−1

IJ

J ) ≤ F (un)

for any i = 1, . . . , IJ . Since un+1 = un +
J
∑

j=1

wn+1
j , from these inequalities, we

get

(2.25)

F (un+1) ≤ F (un +
J
∑

k=j

wn+1
k ) ≤ F (un +

J
∑

k=j+1

wn+1
k + w

n+ i
Ij

j ) ≤

F (un +
J
∑

k=j+1

wn+1
k ) ≤ F (un) ≤ F (u0)
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for any n ≥ 0, j = J, . . . , 1 and i = 1, . . . , Ij . For the writing simplicity, above,

as well as in the following, we make the convention that the sums
∑J

J+1 are
zero.

For Algorithm 2.2, form the convexity of F and (2.16), we get

F (un +
J
∑

k=j

wn+1
k ) = F (un +

J
∑

k=j+1

wn+1
k +

r

I

Ij
∑

i=1

wn+1
ji ) ≤

(1 −
rIj
I

)F (un +
J
∑

k=j+1

wn+1
k ) +

r

I

Ij
∑

i=1

F (un +
J
∑

k=j+1

wn+1
k + wn+1

ji ) ≤

F (un +
J
∑

k=j+1

wn+1
k )

Consequently, we have

(2.26)

F (un+1) ≤ F (un +
J
∑

k=j

wn+1
k ) ≤ F (un +

J
∑

k=j+1

wn+1
k + wn+1

ji ) ≤

F (un +
J
∑

k=j+1

wn+1
k ) ≤ F (un) ≤ F (u0)

for any n ≥ 0, j = J, . . . , 1 and i = 1, . . . , Ij .
For Algorithm 2.3, form the convexity of F and (2.17), we get

F (un+1) = F (un +
s

J

J
∑

j=1

wn+1
j ) ≤

(1 − s)F (un) +
s

J

J
∑

j=1

F (un + wn+1
j ) ≤ F (un)

Consequently, we have

(2.27) F (un+1) ≤ F (un) ≤ F (u0) and F (un + w
n+ i

Ij

j ) ≤ F (un)

for any n ≥ 0, j = J, . . . , 1 and i = 1, . . . , Ij .
For Algorithm 2.4, form the convexity of F and (2.18), we get

F (un+1) = F (un +
s

J

J
∑

j=1

wn+1
j ) ≤ (1 − s)F (un)+

s

J

J
∑

j=1

F (un + wn+1
j ) = (1 − s)F (un) +

s

J

J
∑

j=1

F (un +
r

I

Ij
∑

i=1

wn+1
ji ) ≤

(1 − s)F (un) + s(1 −
rIj
I

)F (un) +
rs

IJ

J
∑

j=1

Ij
∑

i=1

F (un + wn+1
ji ) ≤ F (un)
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Consequently, we have

(2.28) F (un+1) ≤ F (un) ≤ F (u0) and F (un + wn+1
ji ) ≤ F (un)

for any n ≥ 0, j = J, . . . , 1 and i = 1, . . . , Ij .
If K is not bounded, from (2.25)–(2.28) and the coerciveness of F , it

follows that there exists a M > 0, such that ||u||, ||un||, ||wn+1
ji || ≤M , n ≥ 0,

j = J, . . . , 1, i = 1, . . . , Ij , for the four Algorithms 2.1–2.4.

Step 2. Now, we evaluate
∑J

j=1

∑Ij

i=1 ||w
n+1
ji ||p for the four algorithms. For

Algorithm 2.1, in view of (2.2), (2.9) and (2.10), we have

αM

p
||wn+1

ji ||p ≤ F (un +
J
∑

k=j+1

wn+1
k + w

n+ i−1
Ij

j ) − F (un +
J
∑

k=j+1

wn+1
k + w

n+ i
Ij

j )

for i = 1, . . . , IJ , ie.,

αM

p

IJ
∑

i=1

||wn+1
ji ||p ≤ F (un +

J
∑

k=j+1

wn+1
k ) − F (un +

J
∑

k=j

wn+1
k )

for j = J, . . . , 1, or

(2.29)
αM

p

J
∑

j=1

Ij
∑

i=1

||wn+1
ji ||p ≤ F (un) − F (un+1)

For Algorithm 2.2, in view of (2.2), (2.11) and (2.12), we have

αM

p
||wn+1

ji ||p ≤ F (un +
J
∑

k=j+1

wn+1
k ) − F (un +

J
∑

k=j+1

wn+1
k + wn+1

ji )

But,

F (un +

J
∑

k=j+1

wn+1
k + wn+1

j ) = F (un +

J
∑

k=j+1

wn+1
k +

r

I

Ij
∑

i=1

wn+1
ji ) ≤

(1 −
rIj
I

)F (un +

J
∑

k=j+1

wn+1
k ) +

r

I

Ij
∑

i=1

F (un +

J
∑

k=j+1

wn+1
k + wn+1

ji )

From the above two equations, we get

r

I

αM

p

Ij
∑

i=1

||wn+1
ji ||p ≤ F (un +

J
∑

k=j+1

wn+1
k ) − F (un +

J
∑

k=j

wn+1
k )

11



for j = J, . . . , 1, or

(2.30)
r

I

αM

p

J
∑

j=1

Ij
∑

i=1

||wn+1
ji ||p ≤ F (un) − F (un+1)

Similar equations are obtained for Algorithm 2.3. Using (2.2) and (2.13),
we get

αM

p

IJ
∑

i=1

||wn+1
ji ||p ≤ F (un) − F (un + wn+1

j )

and, in view of the definition of un+1, we have,

F (un+1) = F (un +
s

J

J
∑

j=1

wn+1
j ) ≤ (1 − s)F (un) +

s

J

J
∑

j=1

F (un + wn+1
j )

From the above two equations, we get

(2.31)
s

J

αM

p

J
∑

j=1

Ij
∑

i=1

||wn+1
ji ||p ≤ F (un) − F (un+1)

Finally, using (2.2) and (2.14), we get for Algorithm 2.4,

r

I

αM

p

Ij
∑

i=1

||wn+1
ji ||p ≤ F (un) − F (un + wn+1

j )

and

F (un+1) ≤ (1 − s)F (un) +
s

J

J
∑

j=1

F (un + wn+1
j )

From these two equations, we get

(2.32)
s

J

r

I

αM

p

J
∑

j=1

Ij
∑

i=1

||wn+1
ji ||p ≤ F (un) − F (un+1)

Therefore, the above equations (2.29)–(2.32) can be written as

(2.33) t
αM

p

J
∑

j=1

Ij
∑

i=1

||wn+1
ji ||p ≤ F (un) − F (un+1)

where

(2.34) t =















1 for Algorithm 2.1
r
I

for Algorithm 2.2
s
J

for Algorithm 2.3
s
J

r
I

for Algorithm 2.4

12



Step 3. We now estimate F (un+1) − F (u). First, we evaluate F (un+1) for
each algorithm. Evidently, for Algorithm 2.1, we have

(2.35) F (un+1) = F (un +
J
∑

j=1

Ij
∑

i=1

wn+1
ji )

Using the convexity of F , for Algorithm 2.2, we get

(2.36)

F (un+1) = F (un +
r

I

J
∑

j=1

Ij
∑

i=1

wn+1
ji ) ≤

(1 −
r

I
)F (un) +

r

I
F (un +

J
∑

j=1

Ij
∑

i=1

wn+1
ji )

Also, for Algorithm 2.3, we have

(2.37)

F (un+1) = F (un +
s

J

J
∑

j=J

Ij
∑

i=1

wn+1
ji ) ≤

(1 −
s

J
)F (un) +

s

J
F (un +

J
∑

j=1

Ij
∑

I=1

wn+1
ji )

Finally, for Algorithm 2.4, we have

(2.38)

F (un+1) = F (un +
s

J

r

I

J
∑

j=J

Ij
∑

i=1

wn+1
ji ) ≤

(1 −
s

J

r

I
)F (un) +

s

J

r

I
F (un +

J
∑

j=1

Ij
∑

I=1

wn+1
ji )

From the above four equations we conclude that

(2.39) F (un+1) ≤ (1 − t)F (un) + tF (un +
J
∑

j=1

Ij
∑

I=1

wn+1
ji )

where t is given in (2.34). Therefore, we can write

(2.40)

F (un+1) − F (u) ≤ (1 − t)(F (un) − F (u))+

t(F (un +
J
∑

j=1

Ij
∑

I=1

wn+1
ji ) − F (u))

With u, the solution of problem (2.5), w = un and wji = wn+1
ji , j =

J, . . . , 1, I = 1, . . . , Ij , we consider the decomposition uji, j = J, . . . , 1, I =

13



1, . . . , Ij , of u− un as in Assumption 2.2, if we apply Algorithm 2.1 or 2.3, or
as in Assumption 2.3, if we apply Algorithm 2.2 or 2.4. In view of (2.2), we
have

(2.41)

F (un +
J
∑

j=1

Ij
∑

i=1

wn+1
ji ) − F (u) +

αM

p
||un +

J
∑

j=1

Ij
∑

i=1

wn+1
ji − u||p ≤

〈F ′(un +
J
∑

j=1

Ij
∑

i=1

wn+1
ji ), un +

J
∑

j=1

Ij
∑

i=1

wn+1
ji − u〉 =

J
∑

j=1

Ij
∑

i=1

〈−F ′(un +

J
∑

j=1

Ij
∑

i=1

wn+1
ji ), uji − wn+1

ji 〉

For Algorithm 2.1, in view of (2.3), (2.9) and (2.10), we get

〈−F ′(un +
J
∑

j=1

Ij
∑

i=1

wn+1
ji ), uji − wn+1

ji 〉 ≤ 〈F ′(un +
J
∑

k=j+1

Ik
∑

l=1

wn+1
kl +

i
∑

l=1

wn+1
jl )−

F ′(un +
J
∑

j=1

Ij
∑

i=1

wn+1
ji ), uji − wn+1

ji 〉 ≤ βM

J
∑

k=1

βkj

Ik
∑

l=1

||wn+1
kl ||q−1||uji − wn+1

ji ||

Above, we have added and subtracted the missing terms between F ′(un +
∑J

k=j+1

∑Ik

i=1w
n+1
ki +

∑i
l=1w

n+1
jl ) and F ′(un +

∑J
j=1

∑Ij

i=1w
n+1
ji ).

For Algorithm 2.2, in view of (2.3), (2.11) and (2.12), we get

〈−F ′(un +
J
∑

j=1

Ij
∑

i=1

wn+1
ji ), uji − wn+1

ji 〉 ≤ 〈F ′(un +
r

I

J
∑

k=j+1

Ik
∑

l=1

wn+1
kl + wn+1

ji )−

F ′(un +
J
∑

j=1

Ij
∑

i=1

wn+1
ji ), uji − wn+1

ji 〉 ≤ 2βM

J
∑

k=1

βkj

Ik
∑

l=1

||wn+1
kl ||q−1||uji − wn+1

ji ||

Here, we have added and subtracted the missing terms between F ′(un) and

F ′(un+ r
I

∑J
k=j+1

∑Ik

i=1w
n+1
ki +wn+1

ji ), between F ′(un) and F ′(un+
∑J

j=1

∑Ij

i=1w
n+1
ji ),

and used the fact that r
I
≤ 1.

Similarly, for Algorithm 2.3, using (2.13), we have

〈−F ′(un +
J
∑

j=1

Ij
∑

i=1

wn+1
ji ), uji − wn+1

ji 〉 ≤ 〈F ′(un +
i
∑

l=1

wn+1
jl )−

F ′(un +
J
∑

j=1

Ij
∑

i=1

wn+1
ji ), uji − wn+1

ji 〉 ≤ 2βM

J
∑

k=1

βkj

Ik
∑

l=1

||wn+1
kl ||q−1||uji − wn+1

ji ||
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Finally, using (2.14), we get the same inequality for Algorithm 2.4,

〈−F ′(un +
J
∑

j=1

Ij
∑

i=1

wn+1
ji ), uji − wn+1

ji 〉 ≤ 〈F ′(un + wn+1
ji )−

F ′(un +
J
∑

j=1

Ij
∑

i=1

wn+1
ji ), uji − wn+1

ji 〉 ≤ 2βM

J
∑

k=1

βkj

Ik
∑

l=1

||wn+1
kl ||q−1||uji − wn+1

ji ||

Consequently, in view of (2.41) and Assumptions 2.2 and 2.3, we can write
for all the four algorithms,

F (un +
J
∑

j=1

Ij
∑

i=1

wn+1
ji ) − F (u) +

αM

p
||un +

J
∑

j=1

Ij
∑

i=1

wn+1
ji − u||p ≤

2βM

J
∑

j=1

J
∑

k=1

βjk

Ik
∑

l=1

||wn+1
kl ||q−1

Ij
∑

i=1

||uji − wn+1
ji || ≤

2βMI
σ−1

σ
+ p−q+1

p

J
∑

k=1





J
∑

j=1

βjk(

Ij
∑

i=1

||uji − wn+1
ji ||σ)

1
σ





(

Ik
∑

l=1

||wn+1
kl ||p

)

q−1
p

≤

2βMI
σ−1

σ
+ p−q+1

p





J
∑

k=1





J
∑

j=1

βjk(

Ij
∑

i=1

||uji − wn+1
ji ||σ)

1
σ





σ



1
σ

·

(

J
∑

k=1

(

Ik
∑

l=1

||wn+1
kl ||p)

q−1
p

σ
σ−1

)

σ−1
σ

≤ 2βMI
σ−1

σ
+ p−q+1

p J
σ−1

σ
− q−1

p ( max
k=1,··· ,J

J
∑

j=1

βkj)·

(
J
∑

j=1

Ij
∑

i=1

||uji − wn+1
ji ||σ)

1
σ (

J
∑

j=1

Ij
∑

i=1

||wn+1
ji ||p)

q−1
p

We have used above the inequality (see Corollary 4.1 in [22])

(2.42) ||Ax||lσ ≤ (max
i

∑

j

|Aij |)||x||lσ
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where A = (Aij)ij is a symmetric matrix. In view of (2.19), we have

(
J
∑

j=1

Ij
∑

i=1

||uji − wn+1
ji ||σ)

1
σ ≤ (

J
∑

j=1

Ij
∑

i=1

||uji||
σ)

1
σ + (

J
∑

j=1

Ij
∑

i=1

||wn+1
ji ||σ)

1
σ ≤

(Cσ
2 ||u− un||σ + Cσ

3

J
∑

j=1

Ij
∑

i=1

||wn+1
ji ||σ)

1
σ + (

J
∑

j=1

Ij
∑

i=1

||wn+1
ji ||σ)

1
σ ≤

C2||u− un|| + (1 + C3)(
J
∑

j=1

Ij
∑

i=1

||wn+1
ji ||σ)

1
σ ≤

C2||u− un −
J
∑

j=1

Ij
∑

i=1

wn+1
ji || + (1 + C1C2 + C3)(IJ)

p−σ

pσ (
J
∑

j=1

Ij
∑

i=1

||wn+1
ji ||p)

1
p

Therefore, we get

F (un +
J
∑

j=1

Ij
∑

i=1

wn+1
ji ) − F (u) +

αM

p
||un +

J
∑

j=1

Ij
∑

i=1

wn+1
ji − u||p ≤

2βMI
σ−1

σ
+ p−q+1

p J
σ−1

σ
− q−1

p ( max
k=1,··· ,J

J
∑

j=1

βkj)·



C2||u− un −
J
∑

j=1

Ij
∑

i=1

wn+1
ji ||(

J
∑

j=1

Ij
∑

i=1

||wn+1
ji ||p)

q−1
p +

(1 + C1C2 + C3)(IJ)
p−σ

pσ (
J
∑

j=1

Ij
∑

i=1

||wn+1
ji ||p)

q

p





But, for any ε > 0, p > 1 and x, y ≥ 0, we have xy ≤ εxp + 1

ε
1

p−1
y

p

p−1 .

Consequently, we have

F (un +
J
∑

j=1

Ij
∑

i=1

wn+1
ji ) − F (u) +

αM

p
||un +

J
∑

j=1

Ij
∑

i=1

wn+1
ji − u||p ≤

2βMI
σ−1

σ
+ p−q+1

p J
σ−1

σ
− q−1

p ( max
k=1,··· ,J

J
∑

j=1

βkj)·



C2ε||u− un −
J
∑

j=1

Ij
∑

i=1

wn+1
ji ||p + C2

1

ε
1

p−1

(
J
∑

j=1

Ij
∑

i=1

||wn+1
ji ||p)

q−1
p−1 +

(1 + C1C2 + C3)(IJ)
p−σ

pσ (
J
∑

j=1

Ij
∑

i=1

||wn+1
ji ||p)

q

p




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for any ε > 0. With

(2.43) ε =
αM

p

1

2C2βMI
σ−1

σ
+ p−q+1

p J
σ−1

σ
− q−1

p ( max
k=1,··· ,J

J
∑

j=1

βkj)

the above equation becomes,

F (un +
J
∑

j=1

Ij
∑

i=1

wn+1
ji ) − F (u) ≤

αM

p

C2ε
·





C2

ε
1

p−1

(

J
∑

j=1

Ij
∑

i=1

||wn+1
ji ||p)

q−1
p−1 + (1 + C1C2 + C3)(IJ)

p−σ

pσ (

J
∑

j=1

Ij
∑

i=1

||wn+1
ji ||p)

q

p





From this equation and (2.33)

F (un +
J
∑

j=1

Ij
∑

i=1

wn+1
ji ) − F (u) ≤

αM

p

C2ε
·





C2

ε
1

p−1 (tαM

p
)

q−1
p−1

(F (un) − F (un+1))
q−1
p−1 +

(1 + C1C2 + C3)(IJ)
p−σ

pσ

(tαM

p
)

q

p

(F (un) − F (un+1))
q

p





with t in (2.34) and ε in (2.43). In view of the above equation and (2.40), we
have

(2.44)

F (un+1) − F (u) ≤ 1−t
t

(F (un) − F (un+1)) +
αM

p

C2ε
·





C2

ε
1

p−1 (tαM

p
)

q−1
p−1

(F (un) − F (un+1))
q−1
p−1 +

(1 + C1C2 + C3)(IJ)
p−σ

pσ

(tαM

p
)

q

p

(F (un) − F (un+1))
q

p





Step 4. We prove error estimations (2.21)–(2.24). First, using (2.7), we
see that error estimations in (2.22) and (2.24) can be obtained from (2.21)
and (2.23), respectively. Now, if p = q = 2, then σ = 2, and from the above
equation, we easily get equation (2.21), where

(2.45)

C̃1 =
1 − t

t
+

1

C2tε

[

C2

ε
+ 1 + C1C2 + C3

]

with

ε =
αM

2

2C2βMI( max
k=1,··· ,J

J
∑

j=1

βkj)
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Finally, if p > q, from (2.44), we have

(2.46) F (un+1) − F (u) ≤ C̃3(F (un) − F (un+1))
q−1
p−1

where

(2.47)

C̃3 =
1 − t

t
(F (u0) − F (u))

p−q

p−1 +

αM

p

C2ε





C2

ε
1

p−1 (tαM

p
)

q−1
p−1

+

(1 + C1C2 + C3)(IJ)
p−σ

pσ

(tαM

p
)

q

p

(F (u0) − F (u))
p−q

p(p−1)





with ε in (2.43). From (2.46), we get

F (un+1) − F (u) +
1

C̃
p−1
q−1

3

(F (un+1) − F (u))
p−1
q−1 ≤ F (un) − F (u),

and we know (see Lemma 3.2 in [22]) that for any r > 1 and c > 0, if x ∈ (0, x0]

and y > 0 satisfy y + cyr ≤ x, then y ≤ ( c(r−1)

crxr−1
0 +1

+ x1−r)
1

1−r . Consequently,

we have F (un+1) − F (u) ≤ [C̃2 + (F (un) − F (u))
q−p

q−1 ]
q−1
q−p , from which,

(2.48) F (un+1) − F (u) ≤ [(n+ 1)C̃2 + (F (u0) − F (u))
q−p

q−1 ]
q−1
q−p ,

where

(2.49) C̃2 =
p− q

(p− 1)(F (u0) − F (u))
p−q

q−1 + (q − 1)C̃
p−1
q−1

3

.

Equation (2.48) is another form of equation (2.23).

3 Multilevel Schwarz methods

We consider a family of regular meshes Thj
of mesh sizes hj , j = 1, . . . , J over

the domain Ω ⊂ Rd. We write Ωj = ∪τ∈Thj
τ and we assume that Thj+1 is

a refinement of Thj
on Ωj , j = 1, . . . , J − 1, and Ω1 ⊂ Ω2 ⊂ . . . ⊂ ΩJ = Ω.

Also, we assume that, if a node of Thj
lies on ∂Ωj , then it lies on ∂Ωj+1, too,

that is, it lies on ∂Ω. Besides, we suppose that distxj+1node of Thj+1
(xj+1,Ωj) ≤

Chj , j = 1, . . . , J − 1. In this section, C denotes a generic positive constant
independent of the mesh sizes, the number of meshes, as well as of the overlap-
ping parameters and the number of subdomains in the domain decompositions
which will be considered later. Since the mesh Thj+1 is a refinement of Thj

,
we have hj+1 ≤ hj , and assume that there exists a constant γ, independent of
the number of meshes or their sizes, such that

(3.1) 1 < γ ≤
hj

hj+1
≤ Cγ, j = 1, . . . , J − 1.
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Since hj+1 ≤ δj+1, we also have

(3.2)
hj

δj+1
≤ Cγ, j = 1, . . . , J − 1.

At each level j = 1, . . . , J , we consider an overlapping decomposition
{Ωi

j}1≤i≤Ij
of Ω, and assume that the mesh partition Thj

of Ωj supplies a

mesh partition for each Ωi
j , 1 ≤ i ≤ Ij . Also, we assume that the overlapping

size for the domain decomposition at the level 1 ≤ j ≤ J is δj . In addition,
we suppose that if ωi

j+1 is a connected component of Ωi
j+1, j = 1, . . . , J − 1,

i = 1, . . . , Ij , then

(3.3) diam(ωi
j+1) ≤ Chj

Finally, we assume that I1 = 1.
At each level j = 1, . . . , J , we introduce the linear finite element spaces,

(3.4) Vhj
= {v ∈ C(Ω̄j) : v|τ ∈ P1(τ), τ ∈ Thj

, v = 0 on ∂Ωj},

and, for i = 1, . . . , Ij , we write

(3.5) V i
hj

= {v ∈ Vhj
: v = 0 in Ωj\Ω

i
j}.

The functions in Vhj
j = 1, . . . , J − 1, will be extended with zero outside Ωj

and the spaces will be considered as subspaces of W 1,σ, 1 ≤ σ ≤ ∞. We
denote by || · ||0,σ the norm in Lσ, and by || · ||1,σ and | · |1,σ the norm and
seminorm in W 1,σ, respectively.

We consider the two sided obstacle problem

(3.6) u ∈ K : < F ′(u), v − u >≥ 0, for any v ∈ K,

where

(3.7) K = {v ∈ VhJ
: ϕ ≤ v ≤ ψ},

with ϕ, ψ ∈ VhJ
, ϕ ≤ ψ. We shall prove that Assumptions 2.1–2.3 hold for this

type of convex set, and explicitly write the constants C2 and C3 in function of
the mesh and overlapping parameters. We can then conclude from Theorem
2.1 that if the functional F has the asked properties, then Algorithms 2.1–2.4
are globally convergent.

We first introduce the operators Ihj
: Vhj+1 → Vhj

, j = 1, . . . , J−1, defined
as follows (see [2]). Let us denote by xji a node of Thj

, by φji the linear nodal
basis function associated with xji and Thj

, and by ωji the support of φji. Given

a v ∈ Vhj+1 , we write I−jiv = minx∈ωji
v(x)− and I+

jiv = minx∈ωji
v(x)+, where

v(x)− = max(0,−v(x)) and v(x)+ = max(0, v(x)). We notice that, since v is
piecewise linear, I−jiv or I+

jiv are attained at a node of Thj+1 . Next, we define

I−hj
v :=

∑

xjinode of Thj
(I−jiv)φji(x) and I+

hj
v :=

∑

xji node of Thj
(I+

jiv)φji(x), and
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write Ihj
v = I+

hj
v−I−hj

v. It is simple to check that if v(x) = 0 at a point x ∈ Ω,

then Ihj
v vanishes in a neighborhood of x, composed by the elements τ of Thj

containing that point. Also,

(3.8)
0 ≤ Ihj

v(x) ≤ v(x) if v(x) ≥ 0 and
0 ≥ Ihj

v(x) ≥ v(x) if v(x) ≤ 0

at any point x ∈ Ω. Consequently, the function

θv(x) =

{

Ihj
v(x)

v(x) if v(x) 6= 0

0 if v(x) = 0

is well defined, continuous and satisfies

(3.9) 0 ≤ θv(x) ≤ 1 for any x ∈ Ω

Also, for any v, w ∈ Vhj+1 , we have

(3.10) v ≤ w in Ω implies Ihj
v ≤ Ihj

w in Ω

We shall use these properties of the operator Ihj
in the following. We also

recall the estimations of Lemma 4.2 in [2]: for any v ∈ Vhj+1 , we have

(3.11) ||Ihj
v − v||0,σ ≤ ChjCd,σ(hj , hj+1)|v|1,σ

and

(3.12) ||Ihj
v||0,σ ≤ ||v||0,σ and |Ihj

v|1,σ ≤ CCd,σ(hj , hj+1)|v|1,σ

where

(3.13) Cd,σ(H,h) =



















1 if d = σ = 1
or 1 ≤ d < σ <∞

(ln H
h

+ 1)
d−1

d if 1 < d = σ <∞

(H
h

)
d−σ

σ if 1 ≤ σ < d <∞,

It is proved in Lemma 4.2 in [2] that ||Ihj
v||0,σ ≤ C||v||0,σ, but in view of (3.8),

we can take C = 1.
Now, we define the level convex sets Kj ⊂ Vhj

, j = J, . . . , 1, satisfying
Assumption 2.1. Let K be the convex set defined in (3.7), and a w ∈ K. For
the level J , we define

(3.14)
ϕJ = ϕ− w, ψJ = ψ − w,
KJ = [ϕJ , ψJ ], and consider an arbitrary wJ ∈ KJ

At a level j = J − 1, . . . , 1, we define

(3.15)
ϕj = Ihj

(ϕj+1 − wj+1), ψj = Ihj
(ψj+1 − wj+1),

Kj = [ϕj , ψj ], and consider an arbitrary wj ∈ Kj

We have
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Proposition 3.1. Assumption 2.1 holds for the convex sets Kj, j = J, . . . , 1,
defined in (3.14) and (3.15), for any w ∈ K.

Proof. Evidently, 0 ∈ KJ . Also, in view of (3.8), we recurrently get that
0 ∈ Kj for j = J − 1, . . . , 1. Form the definition of KJ , we have w + vJ ∈ K
for any vJ ∈ KJ . Finally, we prove (2.8) for j = J − 1, . . . , 1. Let vj ∈ Kj .
Using again (3.8), we get

ϕj+1 − wj+1 ≤ Ihj
(ϕj+1 − wj+1) = ϕj ≤ vj ≤

ψj = Ihj
(ψj+1 − wj+1) ≤ ψj+1 − wj+1

ie., wj+1 + vj ∈ Kj+1

Now, in order to prove that Assumptions 2.2 and 2.3 hold for the convex
sets defined in (3.14) and (3.15), we consider u, w ∈ K and some wj ∈ Kj ,
j = J, . . . , 1. First, we define

(3.16) vJ = u− w and vj = Ihj
(vj+1 − wj+1) for j = J − 1, . . . , 1

and then,

(3.17)
uj = vj − vj−1 = vj − Ihj−1(vj − wj) for j = J, . . . , 2
u1 = v1 = Ih1(v2 − w2)

With these notations, we have

Lemma 3.1. If Kj are defined in (3.14) and (3.15), and vj and uj are defined
in (3.16) and (3.17), respectively, then vj , uj ∈ Kj, j = J, . . . , 1, and

(3.18) u− w =
J
∑

j=1

uj

Proof. The writing of u−w as in (3.18) is evident from (3.16) and (3.17). We
prove that vj ∈ Kj , j = J, . . . , 1 by induction. First,

ϕJ = ϕ− w ≤ u− w ≤ ψ − w = ψJ

and therefore, vJ ∈ KJ . For a j = J − 1, . . . , 1, assuming that vj+1 ∈ Kj+1,
from (3.10), we have

ϕj = Ihj
(ϕj+1 − wj+1) ≤ Ihj

(vj+1 − wj+1) ≤ Ihj
(ψj+1 − wj+1) = ψj

or vj ∈ Kj . For j = J, . . . , 2, using (3.9), we have

uj = vj − Ihj−1(vj − wj) = (1 − θvj−wj
)vj + θvj−wj

wj

and therefore, uj ∈ Kj .

Another result we use is given by
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Lemma 3.2. If uj are defined in (3.17), then

(3.19) |uj |
σ
1,σ ≤ C(J − 1)σ−1Cd,σ(hj−1, hJ)σ[

J
∑

k=2

|wk|
σ
1,σ + |u− w|σ1,σ]

for j = J, . . . , 1, where we take h0 = h1 for j = 1, and

(3.20)

||uj ||
σ
0,σ ≤ ||wj ||

σ
0,σ + C(J − 1)σ−1hσ

j−1Cd,σ(hj , hJ)σ·

[
J
∑

k=2

|wk|
σ
1,σ + |u− w|σ1,σ], for j = J, . . . , 2, and

||u1||
σ
0,σ ≤ C(J − 1)σ−1[||u− w||σ0,σ +

J
∑

j=2

||wj ||
σ
0,σ]

Proof. With vj in (3.16), we write

vj − wj = −wj + Ihj
(vj+1 − wj+1), j = J − 1, . . . , 1

and, using Lemma 5.1 in [2] for vj − wj , we get

|vj |
σ
1,σ = |Ihj

(vj+1 − wj+1)|
σ
1,σ ≤ C(J − j)σ−1·

[
J−1
∑

k=j+1

Cd,σ(hj , hk)
σ|wk|

σ
1,σ + Cd,σ(hj , hJ)σ|vJ − wJ |

σ
1,σ]

Consequently, we have

(3.21) |vj |
σ
1,σ ≤ C(J − j)σ−1Cd,σ(hj , hJ)σ(

J
∑

k=j+1

|wk|
σ
1,σ + |u− w|σ1,σ)

for j = J − 1, . . . , 1. Since uj = vj − vj−1, for j = J − 1, . . . , 2, we get

(3.22) |uj |
σ
1,σ ≤ C(J − j + 1)σ−1Cd,σ(hj−1, hJ)σ(

J
∑

k=j

|wk|
σ
1,σ + |u− w|σ1,σ)

Since u1 = v1, we have

(3.23) |u1|
σ
1,σ ≤ C(J − 1)σ−1Cd,σ(h1, hJ)σ(

J
∑

k=2

|wk|
σ
1,σ + |u− w|σ1,σ)

Also, from (3.16), (3.17) and (3.12), we have

|uJ |1,σ = |u− w − IhJ−1
(u− w − wJ)|1,σ ≤

(1 + CCd,σ(hJ−1, hJ))|u− w|1,σ + CCd,σ(hJ−1, hJ)|wJ |1,σ
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ie., we have

(3.24) |uJ |
σ
1,σ ≤ CCd,σ(hJ−1, hJ)σ(|wJ |

σ
1,σ + |u− w|σ1,σ)

From (3.22), (3.23) and (3.24), we get (3.19). Now, for j = J, . . . , 2, from
(3.11) and (3.17), we get

||uj ||0,σ ≤ ||vj − wj − Ihj−1(vj − wj)||0,σ + ||wj ||0,σ ≤
Chj−1Cd,σ(hj−1, hj)|vj − wj |1,σ + ||wj ||0,σ ≤
Chj−1(|vj |1,σ + |wj |1,σ) + ||wj ||0,σ

where we have used (3.1) and the definition of Cd,σ(H,h), (3.13). From this
equation, we get the first equation in (3.20) for j = J . Also, using (3.21),
in view of hj ≤ h1, j = J, . . . , 1, we get the first equation in (3.20) for j =
J − 1, . . . , 2. For j = 1, from (3.12), we have

||u1||0,σ = ||Ih1(v2 − w2)||0,σ ≤ ||v2 − w2||0,σ ≤

||Ih2(v3 − w3)||0,σ + ||w2||0,σ ≤ · · · ≤ ||vJ ||0,σ +
J
∑

j=2

||wj ||0,σ

ie., the second equation in (3.20) holds.

To prove that Assumption 2.2 holds, we associate to the decomposition
{Ωi

j}1≤i≤Ij
of Ωj , some functions θi

j ∈ C(Ω̄j), θ
i
j |τ ∈ P1(τ) for any τ ∈ Thj

,
i = 1, · · · , Ij , such that

(3.25)
0 ≤ θi

j ≤ 1 on Ωj ,

θi
j = 0 on ∪

Ij

l=i+1 Ωl
j\Ω

i
j , θ

i
j = 1 on Ωi

j\ ∪
Ij

l=i+1 Ωl
j

Also, for Assumption 2.3, we consider a unity partition to each domain de-
composition {Ωi

j}1≤i≤Ij
, j = J, . . . , 1,

(3.26) 0 ≤ θi
j ≤ 1 and

Ij
∑

i=1

θi
j = 1 on Ωj

with θi
j ∈ C(Ω̄j), θ

i
j |τ ∈ P1(τ) for any τ ∈ Thj

, i = 1, · · · , Ij . Such functions θi
j

with the above properties exist (see [2] or [23] p. 59, for instance). Moreover,
since the overlapping size of the domain decomposition on a level j = J, . . . , 1
is δj , the above functions θi

j can be chosen to satisfy

(3.27) |∂xk
θi
j | ≤ C/δj , a.e. in Ωj , for any k = 1, . . . , d

Finally, we recall some interpolation properties. For a v ∈ Vhj
and a

continuous functions θ which is of polynomial form on the elements of τ ∈ Thj
,

we have (see [6] and [25]),

||θv − Lhj
(θv)||0,σ ≤ Chj |θv|1,σ and |Lhj

(θv)|1,σ ≤ C|θv|1,σ
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where Lhj
is the P1-Lagrangian interpolation operator which uses the function

values at the nodes of the mesh Thj
. Therefore, we have

(3.28) ||Lhj
(θv)||1,σ ≤ C||θv||1,σ

Now, we can prove

Proposition 3.2. Assumption 2.2 holds for the convex sets Kj, j = J, . . . , 1,
defined in (3.14) and (3.15). The constants C2 and C3 are given in (3.34) for
Algorithm 2.1, and in (3.35) for Algorithm 2.3.

Proof. Let us consider u, w ∈ K and wji ∈ V i
hj

such that wj1 + . . .+wji ∈ Kj ,

j = J, . . . , 1, i = 1, . . . , Ij . In the construction of the convex sets Kj , we take

wj =
∑Ij

i=1wji for Algorithm 2.1, and wJ = . . . = w1 = 0 for Algorithm 2.3.
Then, from Lemma 3.1, there exist uj ∈ Kj , j = J, . . . , 1, defined in (3.17),
such that (3.18) holds. Now, for each uj , j = J, . . . , 1, we define

uj1 = Lhj
(θ1

juj + (1 − θ1
j )wj1)

uji = Lhj
(θi

j(uj −
i−1
∑

l=1

ujl) + (1 − θi
j)wji), i = 2, . . . , Ij

with θi
j in (3.25). Like in Proposition 3.1 in [2], where we take v = uj and

w = 0, we can prove that

(3.29)

uji ∈ V i
hj
, wj1 + . . .+ wji−1 + uji ∈ Kj , i = 1, . . . , Ij

uj =

Ij
∑

i=1

uji

for any j = J, . . . , 1. We point out that here, the condition wj1 + . . .+wji−1 +
uji ∈ Kj can be proved by verifying that it is satisfied only at the nodes of Thj

.
From (3.18) and (3.29), we get that the first two conditions of Assumption 2.2
are satisfied.

We estimate now the constants C2 and C3. The above uji, j = J, . . . , 1,
i = 1, . . . , Ij , can be written as

(3.30) uji = Lhj
(θ0

jiuj +

i
∑

k=1

θk
jiwjk), i = 1, . . . , Ij

where

θ0
ji = θ1

j , θ
1
ji = 1 − θ1

j and

θ0
ji = θi

j(1 − θi−1
j ) · · · (1 − θ1

j ), θ
i
ji = 1 − θi

j , θ
k
ji = −θi

j(1 − θi−1
j ) · · · (1 − θk

j ),

for i = 2, . . . , Ij , k = 1, . . . , i− 1

In view of (3.25), we have

|θl
ji| ≤ 1 and |∂xk

θl
ji| ≤ C(Ij − 1)/δj , i = 1, . . . , Ij , l = 0, . . . , i, k = 1, . . . , d.
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It follows that

||θl
jiv||0,σ ≤ ||v||0,σ, |θl

jiv|1,σ ≤ C(|v|1,σ +
Ij − 1

δj
||v||0,σ)

and therefore, using (3.28), we get

||Lhj
(θl

jiv)||1,σ ≤ C(|v|1,σ + (1 +
Ij − 1

δj
)||v||0,σ)

for any v ∈ Vhj
, j = J, . . . , 1, i = 1, . . . , Ij and l = 0, 1, . . . i. We use this

inequality to estimate the norm of the terms in (3.30).
First, since wji have the support included Ωji and vanishes at least on a

part of its boundary, in view of (3.2), (3.3) and the classical Friedrichs-Poincaré
inequality, we get

||Lhj
(θk

jiwjk)||
σ
1,σ ≤ C(1 + (Ij − 1)

hj−1

δj
)σ|wjk|

σ
1,σ ≤ CIσ|wjk|

σ
1,σ

for any j = J, . . . , 2, i = 1, . . . , Ij and k = 1, . . . , i. Now we use Lemma 3.2.
For j = J, . . . , 2, we have

||Lhj
(θk

jiuj)||
σ
1,σ ≤ C(|uj |

σ
1,σ + (1 +

Ij−1
δj

)σ||uj ||
σ
0,σ) ≤

C(J − 1)σ−1[1 + (Ij − 1)
hj−1

δj
]σCd,σ(hj−1, hJ)σ·

[

J
∑

k=2

|wk|
σ
1,σ + |u− w|σ1,σ] + C(1 +

Ij − 1

δj
)σ||wj ||

σ
0,σ ≤

C(J − 1)σ−1IσCd,σ(hj−1, hJ)σ[
J
∑

k=2

|wk|
σ
1,σ + |u− w|σ1,σ]+

C(1 +
I − 1

δj
)σ||wj ||

σ
0,σ

Consequently, from (3.30) and the last two equations, we have

(3.31)

||uji||
σ
1,σ ≤ C(I + 1)σ−1







Iσ

Ij
∑

k=1

|wjk|
σ
1,σ+

Iσ(J − 1)σ−1Cd,σ(hj−1, hJ)σ[
J
∑

k=2

|wk|
σ
1,σ + |u− w|σ1,σ]+

[1 +
I − 1

δj
]σ||wj ||

σ
0,σ

}

for any j = J, . . . , 2 and i = 1, . . . , Ij . At the level j = 1, we do not have
a domain decomposition, I1 = 1, and we take u11 = u1. In this way, from
Lemma 3.2, we have

(3.32) ||u11||
σ
1,σ ≤ C(J − 1)σ−1Cd,σ(h1, hJ)σ(

J
∑

k=2

||wk||
σ
1,σ + ||u− w||σ1,σ)
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From (3.31) and (3.32), we get

(3.33)

J
∑

j=1

Ij
∑

i=1

||uji||
σ
1,σ ≤ CIσ+1(I + 1)σ−1







J
∑

j=2

Ij
∑

i=1

|wji|
σ
1,σ+

(J − 1)σ−1





J
∑

j=2

Cd,σ(hj−1, hJ)σ









J
∑

j=2

||wj ||
σ
1,σ + ||u− w||σ1,σ











+

CI(I + 1)σ−1
J
∑

j=2

[1 +
I − 1

δj
]σ||wj ||

σ
0,σ

In the case of Algorithm 2.1, the convex sets Kj , j = J, . . . , 1, are con-

structed in Assumption 2.1 with wj =
∑Ij

i=1wji, j = J, . . . , 1. Consequently,
we get from (3.33) that the constants C2 and C3 can be written as

(3.34)

C2 = CI
σ+1

σ (I + 1)
σ−1

σ (J − 1)
σ−1

σ [
J
∑

j=2

Cd,σ(hj−1, hJ)σ]
1
σ

C3 = CI2(I + 1)
σ−1

σ (J − 1)
σ−1

σ [
J
∑

j=2

Cd,σ(hj−1, hJ)σ]
1
σ

For Algorithm 2.3, the convex sets Kj , j = J, . . . , 1, are constructed with
wJ = . . . = w1 = 0. Therefore, it follows from (3.33) that the constants C2

and C3 can be written as

(3.35)
C2 = CI

σ+1
σ (I + 1)

σ−1
σ (J − 1)

σ−1
σ [

J
∑

j=2

Cd,σ(hj−1, hJ)σ]
1
σ

C3 = CI
σ+1

σ (I + 1)
σ−1

σ

Concerning Assumption 2.3 we have

Proposition 3.3. Assumption 2.3 holds for the convex sets Kj, j = J, . . . , 1,
defined in (3.14) and (3.15). The constants C2 and C3 are given in (3.39) for
Algorithm 2.2, and in (3.40) for Algorithm 2.4.

Proof. Let us consider u, w ∈ K and wji ∈ V i
hj
∩Kj , j = J, . . . , 1, i = 1, . . . , Ij .

For Algorithm 2.2 we take wj = r
Ij

∑Ij

i=1wji, and wJ = . . . = w1 = 0 for

Algorithm 2.4, in the construction of the convex sets Kj . Then, from Lemma
3.1, there exist uj ∈ Kj , j = J, . . . , 1, defined in (3.17), such that (3.18) holds.
Now, for each uj , j = J, . . . , 1, we define

(3.36) uji = Lhj
(θi

juj), i = 1, . . . , Ij for j = J, . . . , 2, and u11 = u1
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with θi
j in (3.26). It is clear that

(3.37) uji ∈ V i
hj

∩Kj , i = 1, . . . , Ij , and uj =

Ij
∑

i=1

uji

for any j = J, . . . , 1. From (3.18) and (3.37), we get that the first condition of
Assumption 2.3 holds.

We estimate now the constants C2 and C3. From (3.27) and (3.28), we get

||uji||
σ
1,σ ≤ C(|uj |

σ
1,σ + (1 +

1

δj
)σ||uj ||

σ
0,σ)

Using this equation, the proof is similar with that of the previous proposition.
For j = J, . . . , 2, in view of (3.19) and (3.20), we have

||uji||
σ
1,σ ≤ C(1 +

1

δj
)σ||wj ||

σ
0,σ+

C(J − 1)σ−1Cd,σ(hj−1, hJ)σ[
J
∑

k=2

|wk|
σ
1,σ + |u− w|σ1,σ]

and we use (3.32) for the estimation of ||u11||1,σ. From these equations, we get

(3.38)

J
∑

j=1

Ij
∑

i=1

||uji||
σ
1,σ ≤ CI

J
∑

j=2

(1 +
1

δj
)σ||wj ||

σ
0,σ+

CI(J − 1)σ−1[
J
∑

j=2

Cd,σ(hj−1, hJ)σ][
J
∑

j=2

||wj ||
σ
1,σ + ||u− w||σ1,σ]

The convex sets Kj , j = J, . . . , 1, are constructed with wj = r
I

∑Ij

i=1wji

in the case of Algorithm 2.2. Consequently, the constants C2 and C3, can be
written as

(3.39)

C2 = CI
1
σ (J − 1)

σ−1
σ [

J
∑

j=2

Cd,σ(hj−1, hJ)σ]
1
σ

C3 = C(J − 1)
σ−1

σ [
J
∑

j=2

Cd,σ(hj−1, hJ)σ]
1
σ

For Algorithm 2.4, the convex sets Kj , j = J, . . . , 1, are constructed with
wJ = . . . = w1 = 0. Therefore, we can take

(3.40) C2 = CI
1
σ (J − 1)

σ−1
σ [

J
∑

j=2

Cd,σ(hj−1, hJ)σ]
1
σ and C3 = 0
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The constants C1 and βjk, j, k = J, . . . , 1, can be taken in (2.20) and
(2.4), but better choices are available in the case of the multigrid methods in
the next section. As we see form the above estimations, the convergence rates
given in Theorem 2.1 depend on the functional F , the maximum number of
the subdomains on each level, I, and the number of levels J . The number of
subdomains on levels can be associated with the number of colors needed to
mark the subdomains such that the subdomains with the same color do not
intersect with each other. Since this number of colors depends in general on
the dimension of the Euclidean space where the domain lies, we can conclude
that our convergence rate essentially depends on the number of levels J .

We first estimate the constants C1–C3 as functions of J . To this end, in the
remainder of this section, C will be a generic constant which does not depend

on J . Writing Sd,σ(J) =
[

∑J
j=2Cd,σ(hj−1, hJ)σ

] 1
σ

from (3.1) and (3.13), we

get

(3.41) Sd,σ(J) =















(J − 1)
1
σ if d = σ = 1

or 1 ≤ d < σ <∞
CJ if 1 < d = σ <∞
CJ if 1 ≤ σ < d <∞,

In this general framework, we take C1, and βjk, j, k = J, . . . , 1, as in (2.20)
and (2.4),

(3.42) C1 = CJ
σ−1

σ and max
k=1,··· ,J

J
∑

j=1

βkj = J

Also, from (3.34), (3.35), (3.39) and (3.40), we get

(3.43) C2 = C(J − 1)
σ−1

σ Sd,σ(J)

(3.44) C3 =







C(J − 1)
σ−1

σ Sd,σ(J) for Algorithms 2.1 and 2.2
C for Algorithm 2.3
0 for Algorithm 2.4

Now, we shall write the convergence rate of the multilevel Algorithms 2.1–
2.4 in function of the number of levels J . In order to be more conclusive, we
shall limit ourselves to a typical example where

(3.45) F (v) =
1

σ
||v||σ1,σ − L(v), v ∈W 1,σ(Ω)

where L is a linear and continuous functional on W 1,σ(Ω), σ > 1. In this case
(see [1], for instance),

p = 2, q = σ if σ < 2; p = 2, q = 2 if σ = 2; p = σ, q = 2 if σ > 2
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Evidently, we can use the same procedure for other problems, too.
For σ = 2, p = q = 2 and d = 1, 2, 3, in view of (2.45), (2.34) and

(3.42)–(3.44), we get

(3.46) C̃1(J) =

{

CJ3Sd,2(J)2 for Algorithms 2.1 and 2.2
CJ4Sd,2(J)2 for Algorithms 2.3 and 2.4

and, from Theorem 2.1, we have

(3.47) ||un − u||21,2 ≤ C̃0

(

1 −
1

1 + C̃1(J)

)n

where C̃0 is a constant independent of J .
For 1 < q = σ < 2, p = 2 and d = 1, in view of (2.47), (2.34) and

(3.42)–(3.44), we get

(3.48) C̃3(J) =

{

CJ
4σ−1

σ for Algorithms 2.1 and 2.2

CJ
7σ−2−σ2

σ for Algorithms 2.3 and 2.4

Also, for d = 2, 3, we can take

(3.49) C̃3(J) = CJ for Algorithms 2.1 − 2.4

From Theorem 2.1, we get that

(3.50) ||un − u||21,σ ≤ C̃0
1

(

1 + nC̃2(J)
)

σ−1
2−σ

where, in view of (2.49), we can take

(3.51) C̃2(J) =
1

1 + C̃3(J)
1

σ−1

For p = σ > 2, q = 2, d = 1, 2, 3 and σ ≤ 3, we get

(3.52) C̃3(J) =

{

CJ3Sd,σ(J) for Algorithms 2.1 and 2.2

CJ
3σ−1
σ−1 Sd,σ(J) for Algorithms 2.3 and 2.4

Also, for σ > 3, we have

(3.53) C̃3(J) =

{

CJ
2σ−1

σ for Algorithms 2.1 and 2.2

CJ
2σ+1

σ for Algorithms 2.3 and 2.4

Finally, in this case, we have

(3.54) ||un − u||σ1,σ ≤ C̃0
1

(

1 + nC̃2(J)
) 1

σ−1
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where

(3.55) C̃2(J) =
1

1 + C̃3(J)σ−1

Remark 3.1. 1) The results of this section have referred to problems in
W 1,σ with Dirichlet boundary conditions, and the functions corresponding to
the coarse levels have been extended with zero outside the domains Ωj , j =
J − 1, . . . , 1. Let us assume that the problem has mixed boundary conditions:
∂ΩJ = Γd ∪ Γn, with Dirichlet conditions on Γd and Neumann conditions on
Γn. In this case, if a node of Thj

, j = J − 1, . . . , 1, lies in Int(Γn), we have to
assume that all the sides of the elements τ ∈ Thj

having that node are included
in Γn.

2) Similar convergence results with those ones presented in this section can
be obtained for problems in (W 1,s)d.

4 Multigrid methods

In the above multilevel methods a mesh is the refinement of that on the pre-
vious level, but the domain decompositions are almost independent from one
level to another. We obtain similar multigrid methods by decomposing the
level domains by the supports of the nodal basis functions. Consequently,
the subspaces V i

hj
, i = 1, . . . , Ij , are one-dimensional spaces generated by the

nodal basis functions associated with the nodes of Thj
, j = J, . . . , 1. We point

out that Algorithm 2.1 represents a classical V-cycle multigrid iteration. Algo-
rithms 2.2–2.4 are some variants in which the smoothing steps are performed
by a combination of multiplicative methods with additive ones. Evidently,
similar results can be given for the W-cycle multigrid iterations.

In this section, we derive sharper estimations than those given in (2.20)
and (2.4) for the constants C1 and βjk, j, k = J, . . . , 1. Finally, we summarize
the previous results by writing the convergence rates of the four algorithms as
functions of the number J of the levels, for the varied values of the constants
p, q, σ and d. In this section, we denote by V i

hj
, j = J, . . . , 1, i = 1, . . . , Ij , the

above defined one-dimensional spaces generated by the nodal basis functions
associated with the nodes of the meshes.

The proof of (2.3) can be found in [22] and it essentially stands on the
simple inequalities

||vji||0,σ,supp(vkl) ≤ C(hk

hj
)

d
σ ||vji||0,σ and |vji|1,σ,supp(vkl) ≤ C(hk

hj
)

d
σ |vji|1,σ

for any d ≥ 1, σ ≥ 1, vji ∈ V i
hj

, vkl ∈ V l
hk

with j ≤ k, j, k = J, . . . , 1,

i = 1, . . . , Ij and l = 1, . . . , Ik. Writing

(4.1) γkj =
1

γ|k−j| d
σ
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in view of (3.1), we get

(4.2) ||vji||0,σ,supp(vkl) ≤ Cγkj ||vji||0,σ, |vji|1,σ,supp(vkl) ≤ Cγkj |vji|1,σ

where C is independent of the meshes or their number. In this way, we get
that (2.3) holds for

(4.3) βkj = γq−1
kj , k, j = J, . . . , 1

We point out that

J
∑

j=1

γkj ≤
γ

d
σ

γ
d
σ − 1

and
J
∑

j=1

βkj ≤
γ

1
q−1

d
σ

γ
1

q−1
d
σ − 1

for any k = J, . . . , 1.
The constant C1 in (2.19) is given by the following

Lemma 4.1. Let us consider σ ≥ 1, n ∈ N, n − 1 < σ ≤ n, and wji ∈ V i
hj

,

j = J, . . . , 1, i = 1, . . . , Ij. Then,

C1 = (n!)
1
σC

n−1
n

(

I
γ

d
n

γ
d
n − 1

)
n−1

σ

where C is the constant in (4.2).

Proof. For the writing simplicity, we prove the lemma for the norm ||·||0,σ. The
proof for the derivatives in the seminorm | · |0,σ is identical. With γjk defined
in (4.1), in view of (2.42), for any 1 ≤ m ≤ n − 2, we have the following
recurrent inequality







J
∑

jn−m+1=1





Ijn−m+1
∑

in−m+1=1

(

∫

Ω
|wjn−m+1in−m+1 |

σ)
1
n ·

J
∑

jn−m=1

γ
σ
n

jn−m+1jn−m

Ijn−m
∑

in−m=1

(

∫

Ω
|wjn−min−m

|σ)
1
n · · ·

· · ·
J
∑

j1=1

γ
σ
n

j2j1

Ij1
∑

i1=1

(

∫

Ω
|wj1i1 |

σ)
1
n





n
n−m+1











n−m+1
n

≤







J
∑

jn−m+1=1





Ijn−m+1
∑

in−m+1=1

(

∫

Ω
|wjn−m+1in−m+1 |

σ)
1
n





n





1
n

·







J
∑

jn−m+1=1





J
∑

jn−m=1

γ
σ
n

jn−m+1jn−m

Ijn−m
∑

in−m=1

(

∫

Ω
|wjn−min−m

|σ)
1
n · · ·

· · ·
J
∑

j1=1

γ
σ
n

j2j1

Ij1
∑

i1=1

(

∫

Ω
|wj1i1 |

σ)
1
n





n
n−m











n−m
n

≤
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I
n−1

n





J
∑

j=1

Ij
∑

i=1

||wji||
σ
0,σ





1
n

·







J
∑

jn−m+1=1





J
∑

jn−m=1

γ
σ
n

jn−m+1jn−m

Ijn−m
∑

in−m=1

(

∫

Ω
|wjn−min−m

|σ)
1
n · · ·

· · ·
J
∑

j1=1

γ
σ
n

j2j1

Ij1
∑

i1=1

(

∫

Ω
|wj1i1 |

σ)
1
n





n
n−m











n−m
n

≤

I
n−1

n
γ

d
n

γ
d
n − 1





J
∑

j=1

Ij
∑

i=1

||wji||
σ
0,σ





1
n






J
∑

jn−m=1





Ijn−m
∑

in−m=1

(

∫

Ω
|wjn−min−m

|σ)
1
n ·

J
∑

jn−m−1=1

γ
σ
n

jn−mjn−m−1

Ijn−m−1
∑

in−m−1=1

(

∫

Ω
|wjn−m−1in−m−1 |

σ)
1
n · · ·

· · ·
J
∑

j1=1

γ
σ
n

j2j1

Ij1
∑

i1=1

(

∫

Ω
|wj1i1 |

σ)
1
n





n
n−m











n−m
n

Now, since σ ≤ n, we have

||
J
∑

j=1

Ij
∑

i=1

wji||
σ
0,σ ≤

∫

Ω
(

J
∑

j=1

Ij
∑

i=1

|wji|)
σ =

∫

Ω



(
J
∑

j=1

Ij
∑

i=1

|wji|)
σ
n





n

≤

∫

Ω





J
∑

j=1

Ij
∑

i=1

|wji|
σ
n





n

=
J
∑

kn=1

Ikn
∑

in=1

· · ·
J
∑

k1=1

Ik1
∑

i1=1

∫

Ω
|wknin |

σ
n · · · |wk1i1 |

σ
n

By a permutation, (kn, . . . , k1) can be transformed in (jn, . . . , j1) with jn ≤
. . . ≤ j1. Also, by permutations, we get n! terms (kn, . . . , k1) from each such
a (jn, . . . , j1). Therefore, we can write

||
J
∑

j=1

Ij
∑

i=1

wji||
σ
0,σ ≤ n!

J
∑

jn=1

Ijn
∑

in=1

J
∑

jn−1=jn

Ijn−1
∑

in−1=1

· · ·
J
∑

j1=j2

Ij1
∑

i1=1

∫

Ω
|wjnin |

σ
n · · · |wj1i1 |

σ
n

From here, in view of (4.2) and the recursive inequality from the beginning of
this proof with m = 1, . . . , n− 2, we get

||
J
∑

j=1

Ij
∑

i=1

wji||
σ
0,σ ≤ n!Cσ n−1

n

J
∑

jn=1

Ijn
∑

in=1

J
∑

jn−1=jn

Ijn−1
∑

in−1=1

· · ·
J
∑

j1=j2

Ij1
∑

i1=1
[

γ
σ
n

jnjn−1
(

∫

Ω
|wjnin |

σ)
1
n · · · γ

σ
n

j2j1
(

∫

Ω
|wj2i2 |

σ)
1
n (

∫

Ω
|wj1i1 |

σ)
1
n

]

≤
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n!Cσ n−1
n

J
∑

jn=1





Ijn
∑

in=1

(

∫

Ω
|wjnin |

σ)
1
n ·

J
∑

jn−1=1

γ
σ
n

jnjn−1

Ijn−1
∑

in−1=1

(

∫

Ω
|wjn−1in−1 |

σ)
1
n · · ·

J
∑

j1=1

γ
σ
n

j2j1

Ij1
∑

i1=1

(

∫

Ω
|wj1i1 |

σ)
1
n



 ≤

n!Cσ n−1
n

(

I
n−1

n
γ

d
n

γ
d
n − 1

)n−2




J
∑

j=1

Ij
∑

i=1

||wji||
σ
0,σ





n−2
n

·











J
∑

j2=1





Ij2
∑

i2=1

(

∫

Ω
|wj2i2 |

σ)
1
n

J
∑

j1=1

γ
σ
n

j2j1

Ij1
∑

i1=1

(

∫

Ω
|wj1i1 |

σ)
1
n





n
2











2
n

≤

n!Cσ n−1
n In−1

(

γ
d
n

γ
d
n − 1

)n−1 J
∑

j=1

Ij
∑

i=1

||wji||
σ
0,σ

As in the previous section, we can estimate the convergence rate of the
Algorithms 2.1–2.4 as functions of the number of levels J for the example in
(3.45). From the above proofs, we can conclude that, in the case of the multi-

grid methods, we can consider C1 and maxk=J,...,1
∑J

j=1 βkj as some constants
independent of J and mesh parameters. Also, using the estimations of C2 and
C3 in (3.43) and (3.44), respectively, we can write the error estimations in
Theorem 2.1 of the four algorithms in function of J .

For σ = 2, p = q = 2 and d = 1, 2, 3, in view of (2.45), (2.34) and
(3.42)–(3.44), we get

(4.4) C̃1(J) =

{

CJSd,2(J)2 for Algorithms 2.1 and 2.2
CJ2Sd,2(J)2 for Algorithms 2.3 and 2.4

and the error estimation is given in (3.47).
For 1 < q = σ < 2, p = 2 and d = 1, 2, 3, in view of (2.47), (2.34) and

(3.42)–(3.44), we get

(4.5) C̃3(J) =

{

CJ
(4−σ)(σ−1)

σ Sd,σ(J)2 for Algorithms 2.1 and 2.2

CJ
4(σ−1)

σ Sd,σ(J)2 for Algorithms 2.3 and 2.4

and the error estimation is given in (3.50) with C̃2(J) in (3.51).
For p = σ > 2, q = 2 and d = 1, 2, 3, we get

(4.6) C̃3(J) =

{

CJ
2σ−3
σ−1 Sd,σ(J)

σ
σ−1 for Algorithms 2.1 and 2.2

CJ2Sd,σ(J)
σ

σ−1 for Algorithms 2.3 and 2.4
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and the error estimation is given in (3.54) with C̃2(J) in (3.55).
We make now some remarks on the above error estimations of the four

algorithms.
First, as we have expected, the multiplicative (over the levels) Algorithms

2.1 and 2.2 converge better, with a 1/J factor than their additive variants,
Algorithms 2.3 and 2.4. Since the totally or partly additive Algorithms 2.2–
2.4 are more parallelizable, they can be sometimes used successfully instead of
Algorithm 2.1. Excepting Algorithm 2.1, which is a standard monotone multi-
grid method in the sense of Kornhuber (see [13] and [10]), to our knowledge,
Algorithms 2.2–2.4 are new, at least in point of view of their convergence
analysis. Also, we point out that the above convergence results give global
rate estimations. Moreover, our analysis refer to two sided obstacle problems
which arise from the minimization of non quadratic functionals. Consequently,
only in the case p = q = σ = d = 2, we can compare the convergence rates
we have obtained with similar ones in the literature. In this case, from (3.47)
and (4.4), we get that the global convergence of Algorithm 2.1 is 1 − 1

1+CJ3 .
For the truncated monotone multigrid method, an asymptotic convergence
rate of 1 − 1

1+CJ4 , and under some conditions, of 1 − 1
1+CJ3 , is found for the

complementary problem in [13] and [10]. The same estimate, of 1 − 1
1+CJ3 , is

obtained in [13] for the asymptotic convergence rate of the standard monotone
multigrid methods for the complementary problem. In [10], it is mentioned
that this asymptotic rate may be of 1 − 1

1+CJ2 , or even of 1 − 1
1+CJ

, under
some conditions.

5 Appendix

If we construct the convex sets Kj , j = J, . . . , 1, as in the following definition,

Definition 5.1. For a given w ∈ K, we recursively introduce the convex sets
Kj, j = J, J − 1, . . . , 1, as

- at level J : KJ = {vJ ∈ VJ : w + vJ ∈ K} and consider a wJ ∈ KJ

- at a level J − 1 ≥ j ≥ 1: Kj = {vj ∈ Vj : w+wJ + . . .+wj+1 + vj ∈ K}
and consider a wj ∈ Kj

then, Assumption 2.1 is satisfied. The resulting Algorithm 2.1 with this def-
inition is that one presented in [2]. Since, in this case, we use the convex set
K for the iterates on the coarse levels, the algorithm has a sub-optimal com-
puting complexity. Algorithm 2.1 in the present paper, in which the convex
sets Kj are defined in (3.14) and (3.15), has an optimal computing complexity
and therefore, it improves the algorithm in [2].

In [2], the convex set K is assumed to satisfy a little more general Property
3.1. If K is of two-obstacle type, then it has this property. For the one- and
two-level methods, Propositions 3.1 and 4.1 in [2] shows that the assumption
made to prove the general convergence theorem is verified for such convex sets.
However, this property does not suffice to prove that this assumption hold in
the case of the method with more than two levels, and equations (5.22) and
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(5.26) in the proof of Proposition 5.1 are not true. By the introduction of the
level convex sets in (5.22) and (5.26) in the present paper, we have avoided
this difficulty because the conditions wj1 + . . .+wji−1 + uji ∈ Kj in the proof
of Proposition 3.2, and uji ∈ Kj in the proof of Proposition 3.3, can be proved
by verifying that they are satisfied only at the nodes of Thj

.
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