FINITE ELEMENT DISCRETIZATION
IN SHAPE OPTIMIZATION PROBLEMS
FOR THE STATIONARY NAVIER-STOKES EQUATION
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Abstract. For shape optimization problems associated to stationary
Navier-Stokes equations, we introduce the corresponding finite element
approximation and we prove convergence results.
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1. Introduction. Optimal design and optimal control problems for
partial differential equations are extensively studied in the recent mathe-
matical literature. In the case of stationary Navier-Stokes equations, we
quote the works Casas, Mateos and Raymond [2007], Résch and Vexler
[2006], Los Reyes and Troltzsch [2007] devoted to optimal control prob-
lems or to approximation procedures. Shape optimization problems re-
lated to fluid mechanics have been discussed in Borrvall and Petersson
[2003], Mohammadi and Pironneau [2001], Posta and Roubicek [2007],
Roubicek and Troltzsch [2003], Halanay and Tiba [2009].

This work is concerned with the discretization and the associated
convergence analysis, in the spirit of general shape optimization problems
for linear elliptic systems, as discussed in Chenais and Zuazua [2006] and
in Tiba [2010]. Another approximation procedure for such problems is
due to Neittaaméki, Pennanen and Tiba [2009].

In the next section we formulate the problem and review briefly some
preliminaries, necessary in the subsequent parts. Section 3 investigates
some approximation properties of the stationary Navier-Stokes equation
under our discretization approach. The last section introduces the fully
discretized optimization problem and studies its convergence.
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2. Problem formulation and preliminaries. Let Q C R¢ be an
(unknown) lipschitzian domain, such that £ ¢ Q ¢ D € R? with £ C D
some given bounded domains and d an arbitrary natural number. We
recall from Temam [1979] the definition of the following spaces :

1) V(Q) = {y € DO div y =0},
(2.2) V(Q) = closure of V() in HL(Q).

Then, it is known that V(Q) = {y € H} ()%, div y = 0}, as Q is
assumed lipschitzian. For any y € V(Q), if 7 is its extension by 0 to D,
then y € V(D) and conversely, if Z € V(D) and Z = 0 a.e. in D\ ; then
z = Z|g € V(). Such properties may be partially extended to domains
with the segment property, Wang and Yang [2008].

The weak formulation of the stationary Navier-Stokes equation with
Dirichlet (no-slip) boundary conditions is

4 dy; Ov, . Jy; d
(2.3) [ (v 11 4 yi=—2v;)dr = fividx, Yo € V(Q)
Q/ i;l 3% 83:1 i;l 8x2 J 52/]221 7

where f = (fi, -+, fq) € H (D)% and v > 0 is the viscosity.

By Theorem 1.2 from Temam [1979], the equation (2.3) has at least
one solution y € V(). If d > 4, the supplementary condition y €
[L4(Q)]? should be included in the definition (2.1), (2.2) of V(12).

We associate to (2.3) an integral cost functional of the form
(2.4) / j(@,y(x))dz
A

where A is either £ C Q or 2 and y is one of the weak solutions of (2.3).
The integral j : D x R? — R satisfied measurability and continuity
properties to be precised later.

The shape optimization problem considered in this paper consists in
the minimization of the performance index (2.4) subject to the state
system (2.3) and to the constraints

(2.5) EcQcD,

for any €2 € O, where O is a prescribed family of domains. If the Lipschitz
assumption is valid for any €2 € O with a uniform constant, then O is
compact with respect to the Hausdorff-Pompeiu complementary metric.
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A similar compactness result holds for domains with the uniform segment
property according to Theorem A3.9, Neittaanmaki, Sprekels and Tiba
[2006]. The following existence result is a simplified version of Theorem
1 in Halanay and Tiba [2009].

THEOREM 2.1. Assume that j(x,y,(x)) — j(z,y(x)) weakly in
L*(E) if y, — y strongly in L*(E) and O is compact. Then, the shape
optimization problem (2.3)-(2.5), with A = E has at least one optimal
pair [, y*] € O x V(Q) if it has an admissible pair.

Remark This theorem should be understood in the sense of singular
control problems Lions [1983], Neittaanméki, Sprekels and Tiba [2006,
3.1.3.1]. The state system is ill-posed (nonuniqueness), but the optimiza-
tion problem (2.3)-(2.5) is well defined as minimization over admissible
pairs [€2,y], Q € O satisfying (2.5) and y € V() being one of the weak
solutions of (2.3).

3. Discretization of the state equation. We assume now that
D is a smooth bounded subdomain of R? and we consider a family of
uniformly regular finite element meshes {7, }5~0 in D with h = maxy, e7,
diam(T},).

For any admissible 2 € O, we define its discrete approximation as
follows (Chenais and Zuazua [2006] or Tiba [2010] where other variants
are also discussed) :

(31) Qp, = int U {Th; T, € ,];L,Th C Q}

According, for instance, to Temam [1979], there are many possibilities
to introduce a finite element space V}, in €, approximating (2.2), that is
approximating H}(Q) and the divergence free condition. In particular,
the piecewise linear finite elements are not possible to be used in this set-
ting. One also has to impose null values on 0€2;, in order to take account
the Dirichlet boundary condition and any y; € V}, may be extended by 0
to €, respectively to D. We shall also write V,,(Q2) or V,,(D) in order to
avoid possible confusions.

One example of space V}, (in dimension 2 as assumed here) is the
space of continuous functions, vanishing outside €2, that are polynomials
of degree less or equal two on any simplex T € 7}, and satisfy :

(3.2) /divyhdx =0,VT € T, Yy, € V},
T
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On Vj, we take the scalar product (-,-), induced by Hj(f2). Note
that V}, is an external approximation of V' due to (3.2). The discrete
approximation of (2.3) is

(3.3) V(Yn, vn)n + b (Yn, Yn, vn) = /f - vpdx, Vv, €'V,
QO

Notice that the last integral in (3.3) is over €, in fact, as v, vanishes
outside €2,. We have denoted by “-” the scalar product in R? and by, (-, -, )
is the trilinear form approximating

2
by, v, w) = Z /yiDinwjd%VyaU,w € Hy(Q).

A detailed construction of by (-, -, ) and the proof of
(3.4) by (wp, up, THV) — b(u, u,v), Vo € V(Q)

if u;, — u weakly in H}(€2) can be found in Teman [1979], Ch. II.3.

Here ryv € V}, is given by a term that takes the same values as
v € V() in the interior nodes and edge midpoints of €2, plus a correction
term defined in Temam [1979, p.81]. On 0%, rpv should be zero.

Then, the following convergence property is also valid.

Proposition 3.1 Under the above conditions, there exists at least one
up, € Vi, solution of (3.3), for each h > 0.

The family {u,} in H}(Q) has strong accumulation points, denoted
u, which are solutions of (2.3)

Remark. If the uniqueness property is valid for (2.3), the convergence
is valid without taking subsequences. In Casas, Mateos and Raymond
[2007] and in Girault and Raviart [1989] Ch. II 4, finite element approx-
imations with uniform convergence properties are indicated, including
error estimates.

4. Approximation of the shape optimization problem. We
also discretize the cost functional (2.4) and the constraint (2.5) :

(4.1) Jn(yn) = /j(:v, yn(z))dx

Ep
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where gy, is any of the solutions of (3.3), associated to €, and Fj, is
obtained as in (3.1), starting from E ;

(4.2) B, CcQ, CD.

Notice that for any admissible Q € O, restriction (4.2) is automat-
ically fulfilled by our discretization construction. The collection of all
admissible discretized open sets is denoted by ). The discrete shape
optimization problem is defined by (3.3), (4.1), (4.2). By (3.1), the family
Oy, is always finite, for any given A > 0. Then, the discrete minimization
problem has at least one discrete optimal solution denoted by €2} € O,.
Since (3.3) may have, in principle, an infinity of solutions y}', we remark
that in each T' € 7;,, T C (3, the corresponding coefficients of y; are
bounded, by the construction of the finite elements. This is a consequence
of |yp|y, bounded and it is enough to pass to the limit in (3.3), (4.1) on
a minimizing sequence (with respect to n) of admissible states (h and
)y, are fixed here). The minimization in (4.1) should be understood as
minimization over pairs [y, yn] € Op X V4 (€), similar to the situation
in Theorem 2.1.

We study first some convergence properties of the admissible pairs
[Qh,yh] € Oy X Vh(Qh), when h — 0.

Proposition 4.1 1) If Q € O, then Q, € Oy and Q) — € in the
Hausdorff-Pompeiu complementary topology.

it) If Qp, € Oy, and Qp, — Q in the Hausdorff-Pompeiu complementary
topology, then ) € O.

Remark At point ii), the discrete sets ), are not necessarily con-
structed via (3.1) starting from . Point i) also applies to the discretiza-
tion of £ and Ej) — F in the Hausdorff-Pompeiu complementary topol-
ogy. The proof of this proposition and other related properties may be
found in Chenais and Zuazua [2006] and in Tiba [2010].

In the sequel, a crucial role is played by the following result which is
an extension of Proposition 3.1.

THEOREM 4.1. If Q) € Oy and y, € Vj, is any solution of (3.3)
and if Qp — 2 in the Hausdorff-Pompeiu complementary topology, then

for any subdomain K, compactly included in §) there is hy > 0 such that
K CQp, h < hy and

(4-3) yh\lc - ?ﬂ/c
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weakly in HY(K), on a subsequence, where j € V(Q) is a solution of (2.3)
n Qe 0.

Proof

The fact that 2 € O is a consequence of Pj.1. The inclusion K C
Qp for h < hg is known as the I'-property of the Hausdorff-Pompeiu
complementary convergence, Neittaanméki, Sprekels and Tiba [2006], p.
63.

Extend y,, by 0 to D and denote it by ¢, € Hi(D). By Temam [1979)],
p- 209, we have

(4.4)  bn(un, v, vn) = 0, |bp(up, vn, wi)| < ¢ |unly, [vnlv, |waly,
for any wuy, v, wy, in V,, where ¢ > 0 is an absolute constant.

Fixing v, = yn € Vj in (3.3) we get that {|yx|v, } is bounded, due
o (4.4), and {7} is bounded in H}(D). On a subsequence, we have
Yn — § € Hy(D). A simple distributions argument gives that gl ¢ = 0
almost everywhere. Then §|o € H(Q) as we have assumed that any
admissible domain 0 € O is lipschitzian and the trace theorem may
be applied.We also get 7 € V(Q) by an adaptation of Proposition 4.3,
Temam[1979], p.83. In particular y|x — ¥|x weakly in H'(K), on a
subsequence.

We have to show that g|s is a solution of (2.3). We fix in (3.3)
v, = rpo for any v € V(Q) In particular supp v C Qisa compact subset
and the I'-property gives that supp v C €2, for h < hy. Consequently
rpv € Vj, for h < hg and may be used in (3.3). Moreover, by (3.4) we

have
(45) bh(yh> Yn, Th/U) - b(ﬁ? ga U)> Vo € V(Q)

Relation (4.5) is obtained by applying (3.4) in D as § € H}(D),
v € V(D) by extending it with 0 outside Q and since §, — § weakly in
H(D). The formulas for b(-,-,-) and by(-, -, ) are not affected by these
extensions.

One can pass to the limit in (3.3) by (4.5) and the strong convergence
v — 0 in Hg(D) due to the regularity of v € V(). This ends the proof

N

since V(12) is dense in V(£2) and (2.3) may be obtained.
Remark In fact, we have shown that the extensions

Yn — Y
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weakly in H(D), on a subsequence. If the solution of (2.3) is unique,
the convergence is valid on the whole sequence.

THEOREM 4.2. i) Any accumulation point of any sequence {€; }rn—o
of discrete minimizers of (4.1) is a continuous minimizer Q0* of (2.4).
i) Jn(Q25) — J(Q*) for h — 0, on the initial sequence.

Proof i) Clearly {2}, h > 0 is relatively compact in the Hausdorff-
Pompeiu complementary metric and we may assume that 2} — 2 on a
subsequence; where €2 € O by Proposition 4.1.

By Theorem 4.1, we get §n|g — 9|p strongly in L*(E), where g, is
the extension by 0 of y, and 7 is a solution of (2.3) in 2. The convergence
is valid or a subsequence.

A

We have J,,(92;) — J(€2). This is a consequence of j(z,9n) — j(z, )
weakly in L?(E) (see the assumption on j(-,-) in Theorem 2.1) and of

(4.6) Jn(2) = /j(x,yh)dx:/j(x,gjh)dx— / Jj(x,gp)dx

Ey E\Eh

The last integral in (4.6) converges to 0 as meas(F\E,) — 0, Tiba
2010], and j(x,gp) is bounded in L?(E), which is argued above.

For any Q2 € O, we can construct €, as in (3.1) and again by Theorem
4.1 and Proposition 4.1 we obtain that J,(2,) — J(2). Taking into
account that

Jn() < Jn()

we infer that J(Q) < J(Q) for any Q € O, ie. Q is optimal for the
problem (2.3)-(2.5) and we redenote it by 2*.

ii) This is a consequence of i) as the minimal value J(€2*) is uniquely
associated to O.

Remark The results of this section may be extended to the cost func-
tional corresponding to the choice A = € by using supplementary argu-
ments as in Neittaanméki, Sprekels and Tiba [2006], p. 472.

Remark The approach of this paper is based on a fixed grid given
in the whole domain D, i.e. it is a fixed domain method. It should be
noticed that the finite dimensional optimization problem is nonconvex
and it is not easy to find a global minimum €27 , h > 0.

Starting with some initial guess Q € O, one can define Q), € O, by
(3.1) and use it as initial iteration in some descent algorithm for the finite
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dimensional problem. Denote by €, the obtained finite dimensional “so-
lution” (which is not necessarily a global minimum of .J,). Then, reading
(3.1) in the converse sense, we get at least one Q2 € O, corresponding to

Q. If the descent property for J, “dominates” the approximation error

between (2.3) and (3.3), then J(Q) < J(Q2), i.e. the method may find a
better admissible domain from the point of view of the cost J.
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