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Abstract

In this paper we introduce four multigrid algorithms for the

constrained minimization of non-quadratic functionals. These al-

gorithms are combinations of additive or multiplicative iterations

on levels with additive or multiplicative ones over the levels. The

convex set is decomposed as a sum of convex level subsets, and con-

sequently, the algorithms have an optimal computing complexity.

The methods are described as multigrid V -cycles, but the results

hold for other iteration types, the W -cycle iterations, for instance.

We estimate the global convergence rates of the proposed algo-

rithms as functions of the number of levels, and compare them

with the convergence rates of other existing multigrid methods.

Even if the general convergence theory holds for convex sets which

can be decomposed as a sum of convex level subsets, our algo-

rithms are applied to the one-obstacle problems because, for these

problems, we are able to construct optimal decompositions. But,

in this case, the convergence rates of the methods introduced in

this paper are better than those of the methods we know in the

literature.
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1 Introduction

The multigrid or multilevel methods for the constrained minimization of
functionals have been studied almost exclusively for the complementary
problems. Such a method has been proposed by Mandel in [21], [22] and
[10]. Related methods have been introduced by Brandt and Cryer in [7]
and Hackbush and Mittelmann in [13]. The method has been studied
later by Kornhuber in [15] and extended to variational inequalities of the
second kind in [16] and [17]. A variant of this method using truncated
nodal basis functions has been introduced by Hoppe and Kornhuber in
[14] and analyzed by Kornhuber and Yserentant in [19]. Also, versions
of this method have been applied to Signorini’s problem in elasticity
by Kornhuber and Krause in [18] and Wohlmuth and Krause in [26].
Evidently, the above list of citations is not exhaustive and, for further
information, we recommend the review article [12] written by Gräser and
Kornhuber. For the two-level method, global convergence rates have
been established by Badea, Tai and Wang in [6], and for its additive
variant by Badea in [3]. Also, a global convergence rate has been also
estimated by Tai in [23] for a subset decomposition method.

In [2], a projected multilevel method has been introduced for the
constrained minimization of non quadratic functionals. The convex set
may be a little more general than of one- or two-obstacle type. The
drawback of this method is its sub-optimal computing complexity be-
cause the convex set, which is defined on the finest mesh, is used in
the smoothing steps on the coarse levels. Multigrid methods with op-
timal computing complexity have been introduced in [4] (see also, [5])
for the two-obstacle problems. In these algorithms, the convex level sets
are recursively constructed for each smoothing step of the iterations.
In the present paper, we introduce four multilevel algorithms in which
the convex set is decomposed as a sum of convex level subsets. These
algorithms, like those introduced in [4], have an optimal computing com-
plexity, and are combinations of additive or multiplicative iterations on
levels with additive or multiplicative ones over the levels. Even if the
general convergence theory holds for convex sets which can be decom-
posed as a sum of convex level subsets, these algorithms are applied
for the constrained minimization problems of the one-obstacle type. To
our knowledge, optimal decompositions as sums of convex level sets for
more general convex sets (two-obstacle convex sets, for instance) is an
open problem. The methods are described as multigrid V -cycles, but
the results hold for W -cycle iterations, for instance.

Regarding the convergence study of the classical multigrid method,
an estimate of the asymptotic convergence rate of 1 − 1/(1 + CJ3),
J being the number of levels, has been proved by Kornhuber in [15]
for the complementary problems in the bidimensional space. For these
problems, the same estimate, but for the global convergence rate, is
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obtained for the methods in [4] which are of the multiplicative type over
the levels. The methods in that paper which are of the additive type over
the levels have a global convergence rate of 1− 1/(1+CJ4). The global
convergence rates of the methods introduced in this paper are better
than those of the methods in [4]. We found, for the complementary
problems in R2, that the convergence rate of the methods which are
of the multiplicative type over the levels is of 1 − 1/(1 + CJ2), and of
1 − 1/(1 + CJ3) for the methods of additive type over the levels.

The paper is organized as follows. In Section 2, we state four al-
gorithms in a general framework of reflexive Banach spaces, and prove
their convergence under some assumptions. In Section 3, we show that
these algorithms can be viewed as multilevel methods for the constrained
minimization of non quadratic functionals, if we associate finite element
spaces to the level meshes and consider decompositions of the domain
at each level. We prove that the assumptions made in the previous sec-
tion hold for convex sets of one-obstacle type. If the decompositions of
the domain are made using the supports of the nodal basis functions
we get, in Section 4, the multigrid methods. This particular choice of
the domain decompositions allows us to obtain better estimates for the
convergence rate of the methods.

2 Abstract convergence results

We consider a reflexive Banach space V and V1, . . . , VJ , are some closed
subspaces of V , where VJ = V . Let K ⊂ V be a nonempty closed
convex set, and we assume that there exist some convex sets Kj ⊂ Vj ,
j = 1, . . . , J such that

(2.1) K = K1 + . . . + KJ

The algorithms we introduce will be combinations of additive or multi-
plicative algorithms over levels with additive or multiplicative algorithms
on each level. To this end, we assume that at each level 1 ≤ j ≤ J we
have Ij closed subspaces of Vj , Vji, i = 1, . . . , Ij , and we shall write

I = max
j∈J

Ij

Also, for a fixed σ > 1, we assume that there exists a constant C1 such
that

(2.2) ||
J
∑

j=1

Ij
∑

i=1

wji|| ≤ C1(
J
∑

j=1

Ij
∑

i=1

||wji||
σ)

1
σ

for any wji ∈ Vji, j = J, . . . , 1, i = 1, . . . , Ij . Evidently, we can take, for
instance,

(2.3) C1 = (IJ)
σ−1

σ
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but sharper estimations can be available in certain cases. In the case
when we use multiplicative algorithms on the levels 1 ≤ j ≤ J , we make
the following

Assumption 2.1. We assume that there exist two positive constants C2

and C3, and that any w ∈ K can be written as w =
∑J

j=1 wj, with
wj ∈ Kj, j = 1, . . . , J , such that

- for any v ∈ K,
- and any wji ∈ Vji satisfying wj +

∑i
k=1 wjk ∈ Kj, j = 1, . . . , J ,

i = 1, . . . , Ij,
there exist vji ∈ Vji, j = 1, . . . , J , i = 1, . . . , Ij, which satisfy

wj +
i−1
∑

k=1

wjk + vji ∈ Kj for j = 1, . . . , J, i = 1, . . . , Ij ,

v−w =
J
∑

j=1

Ij
∑

i=1

vji and
J
∑

j=1

Ij
∑

i=1

||vji||
σ ≤ Cσ

2 ||v−w||σ+Cσ
3

J
∑

j=1

Ij
∑

i=1

||wji||
σ.

If we use additive algorithms on the levels 1 ≤ j ≤ J , we assume

Assumption 2.2. We assume that there exists a constant C2 > 0, and
that any w ∈ K can be written as w =

∑J
j=1 wj, with wj ∈ Kj, j =

1, . . . , J , such that for any v ∈ K,
there exist vji ∈ Vji, j = 1, . . . , J , i = 1, . . . , Ij, which satisfy

wj + vji ∈ Kj for j = 1, . . . , J, i = 1, . . . , Ij ,

v − w =

J
∑

j=1

m
∑

i=1

vji and

J
∑

j=1

Ij
∑

i=1

||vji||
σ ≤ Cσ

2 ||v − w||σ.

Remark 2.1. In the proofs, for the writing union, we shall consider in

Assumption 2.2 a constant C3 = 0 and inequality
∑J

j=1

∑Ij

i=1 ||vji||
σ ≤

Cσ
2 ||v−w||σ will be written like in Assumption 2.1,

∑J
j=1

∑Ij

i=1 ||vji||
σ ≤

Cσ
2 ||v − w||σ + Cσ

3

∑J
j=1

∑Ij

i=1 ||wji||
σ, for any wji ∈ Vji.

Now, we consider a Gâteaux differentiable functional F : V →

R, which is assumed to be coercive on K, in the sense that F (v)
||v|| →

∞, as ||v|| → ∞, v ∈ K, if K is not bounded. Also, we assume that
there exist two real numbers p, q > 1 such that

p

p − q + 1
≤ σ ≤ p
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and that, for any real number M > 0 there exist αM , βM > 0 for which

(2.4)
αM ||v − u||p ≤< F ′(v) − F ′(u), v − u > and

||F ′(v) − F ′(u)||V ′ ≤ βM ||v − u||q−1

for any u, v ∈ V with ||u||, ||v|| ≤ M . Above, we have denoted by F ′ the
Gâteaux derivative of F , and we have marked that the constants αM

and βM may depend on M . It is evident that if (2.4) holds, then for any
u, v ∈ V , ||u||, ||v|| ≤ M , we have

αM ||v − u||p ≤< F ′(v) − F ′(u), v − u >≤ βM ||v − u||q.

Following the way in [11], we can prove that for any u, v ∈ V , ||u||, ||v|| ≤
M , we have

(2.5)
< F ′(u), v − u > +αM

p ||v − u||p ≤ F (v) − F (u) ≤

< F ′(u), v − u > +βM

q ||v − u||q.

Also, using the same techniques, we can prove that if F satisfies (2.4),
then

1 < q ≤ 2 ≤ p

We point out that since F is Gâteaux differentiable and satisfies (2.4),
then F is a convex functional (see Proposition 5.5 in [9], pag. 25).

In certain cases, the second equation in (2.4) can be refined, and
we assume that there exist some constants 0 < βjk ≤ 1, βjk = βkj ,
j, k = J, . . . , 1, such that

(2.6) 〈F ′(v + vji) − F ′(v), vkl〉 ≤ βMβjk||vji||
q−1||vkl||

for any v ∈ V , vji ∈ Vji, vkl ∈ Vkl with ||v||, ||v + vji||, ||vkl|| ≤ M ,
i = 1, . . . , Ij and l = 1, . . . , Ik. Evidently, in view of (2.4), the above
inequality holds for

(2.7) βjk = 1, j, k = J, . . . , 1

We consider the variational inequality

(2.8) u ∈ K : < F ′(u), v − u >≥ 0, for any v ∈ K,

and since the functional F is convex and differentiable, it is equivalent
with the minimization problem

(2.9) u ∈ K : F (u) ≤ F (v), for any v ∈ K.

We can use, for instance, Theorem 8.5 in [20], pag. 251, to prove that
problem (2.9) has a unique solution if F has the above properties. In
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view of (2.5), for a given M > 0 such that the solution u ∈ K of (2.9)
satisfies ||u|| ≤ M , we have

(2.10)
αM

p
||v − u||p ≤ F (v) − F (u) for any v ∈ K, ||v|| ≤ M.

To solve problem (2.8), we propose four algorithms which are either
of additive or multiplicative type from a level to another one, in combi-
nation with additive or multiplicative iterations on the levels. We first
define the algorithm which is of the multiplicative type over the levels
as well as on each level.

Algorithm 2.1. We start the algorithm with a u0 ∈ K and decompose
it as in Assumption 2.1 with w = u0, u0 = u0

1 + . . . + u0
J , u0

j ∈ Kj,
j = 1, . . . , J . At iteration n + 1, n ≥ 0, assuming that we have un ∈ K,
we decompose it as in Assumption 2.1 with w = un, un = un

1 + . . . + un
J ,

un
j ∈ Kj, j = 1, . . . , J . Then, for j ∈ J, . . . , 1,

- we successively calculate, the corrections wn+1
j ∈ Vj, un

j + wn+1
j ∈

Kj, by the multiplicative algorithm: we first write wn
j = 0, and for i =

1, . . . , Ij, successively calculate wn+1
ji ∈ Vji, un

j + w
n+ i−1

Ij

j + wn+1
ji ∈ Kj,

the solution of the inequality

(2.11)
〈F ′





J
∑

k=j+1

(un
k + wn+1

k ) + un
j + w

n+ i−1
Ij

j + wn+1
ji +

j−1
∑

k=1

un
k



 ,

vji − wn+1
ji 〉 ≥ 0

for any vji ∈ Vji, un
j + w

n+ i−1
Ij

j + vji ∈ Kj, and write w
n+ i

Ij

j = w
n+ i−1

Ij

j +

wn+1
ji ,

- then, we write, un+J−j+1
J = un+J−j

J + wn+1
j .

The algorithm which is of multiplicative type over the levels and of
the additive type on levels is written as,

Algorithm 2.2. We start the algorithm with an u0 ∈ K and decompose
it as in Assumption 2.2 with w = u0, u0 = u0

1 + . . . + u0
J , u0

j ∈ Kj,
j = 1, . . . , J . At iteration n + 1, n ≥ 0, assuming that we have un ∈ K,
we decompose it as in Assumption 2.2 with w = un, un = un

1 + . . . + un
J ,

un
j ∈ Kj, j = 1, . . . , J . Then, for j = J, . . . , 1,

- we successively calculate, the corrections wn+1
j ∈ Vj, un

j + wn+1
j ∈

Kj, by the additive algorithm: we simultaneously calculate wn+1
ji ∈ Vji,
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un
j + wn+1

ji ∈ Kj, the solution of the inequality

(2.12)
〈F ′





J
∑

k=j+1

(un
k + wn+1

k ) + un
j + wn+1

ji +

j−1
∑

k=1

un
k



 ,

vji − wn+1
ji 〉 ≥ 0

for any vji ∈ Vji, un
j + vji ∈ Kj, and write wn+1

j = r
I

∑Ij

i=1 wn+1
ji , with a

fixed 0 < r ≤ 1.

- then, we write, un+J−j+1
J = un+J−j

J + wn+1
j .

Now, the additive algorithm over levels and which is of multiplicative
type on each level reads,

Algorithm 2.3. We start the algorithm with an u0 ∈ K and decompose
it as in Assumption 2.1 with w = u0, u0 = u0

1 + . . . + u0
J , u0

j ∈ Kj, j =
1, . . . , J . At iteration n + 1, n ≥ 0, assuming that we have un ∈ K, we
decompose it as in Assumption 2.1 with w = un, un = un

1 +. . .+un
J , un

j ∈
Kj, j = 1, . . . , J . Then we simultaneously calculate, for j = 1, . . . , J , the

corrections wn+1
j ∈ Vj, un

j +wn+1
j ∈ Kj, by the multiplicative algorithm:

– we first write wn
j = 0, and for i = 1, . . . , Ij, successively calculate

wn+1
ji ∈ Vji, un

j + w
n+ i−1

Ij

j + wn+1
ji ∈ Kj, the solution of the inequality

(2.13)
〈F ′





j−1
∑

k=1

un
k + un

j + w
n+ i−1

Ij

j + wn+1
ji +

J
∑

k=j+1

un
k



 ,

vji − wn+1
ji 〉 ≥ 0

for any vji ∈ Vji, un
j + w

n+ i−1
Ij

j + vji ∈ Kj, and write w
n+ i

Ij

j = w
n+ i−1

Ij

j +

wn+1
ji ,

Then, we write un+1 = un + s
J

∑J
j=1 wn+1

j , with a fixed 0 < s ≤ 1.

Finally, the algorithm which is of additive type over the levels as well
as on each level is written as,

Algorithm 2.4. We start the algorithm with an u0 ∈ K and decompose
it as in Assumption 2.2 with w = u0, u0 = u0

1 + . . . + u0
J , u0

j ∈ Kj,
j = 1, . . . , J . At iteration n + 1, n ≥ 0, assuming that we have un ∈ K,
we decompose it as in Assumption 2.2 with w = un, un = un

1 + . . . + un
J ,

un
j ∈ Kj, j = 1, . . . , J . Then we simultaneously calculate, for j =

1, . . . , J , the corrections wn+1
j ∈ Vj, un

j + wn+1
j ∈ Kj, by the additive

algorithms:
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– we simultaneously calculate wn+1
ji ∈ Vji, un

j + wn+1
ji ∈ Kj, the

solution of the inequality

(2.14) 〈F ′





j−1
∑

k=1

un
k + un

j + wn+1
ji +

J
∑

k=j+1

un
k



 , vji − wn+1
ji 〉 ≥ 0

for any vji ∈ Vji, un
j + vji ∈ Kj, and write wn+1

j = r
I

∑Ij

i=1 wn+1
ji , with a

fixed 0 < r ≤ 1.
Then, we write un+1 = un + s

J

∑J
j=1 wn+1

j , with a fixed 0 < s ≤ 1.

Evidently, inequalities (2.11)–(2.14) are equivalent with the following
minimization problems:

– find wn+1
ji ∈ Vji, un

j + w
n+ i−1

Ij

j + wn+1
ji ∈ Kj

(2.15)

F



un +
J
∑

k=j+1

wn+1
k + w

n+ i−1
Ij

j + wn+1
ji



 ≤

F



un +
J
∑

k=j+1

wn+1
k + w

n+ i−1
Ij

j + vji





for any vji ∈ Vji, un
j + w

n+ i−1
Ij

j + vji ∈ Kj ,

– find wn+1
ji ∈ Vji, un

j + wn+1
ji ∈ Kj

(2.16)

F



un +
J
∑

k=j+1

wn+1
k + wn+1

ji



 ≤

F



un +
J
∑

k=j+1

wn+1
k + vji





for any vji ∈ Vji, un
j + vji ∈ Kj ,

– find wn+1
ji ∈ Vji, un

j + w
n+ i−1

Ij

j + wn+1
ji ∈ Kj

(2.17) F

(

un + w
n+ i−1

Ij

j + wn+1
ji

)

≤ F

(

un + w
n+ i−1

Ij

j + vji

)

for any vji ∈ Vji, un
j + w

n+ i−1
Ij

j + vji ∈ Kj ,

– find wn+1
ji ∈ Vji, un

j + wn+1
ji ∈ Kj

(2.18) F
(

un + wn+1
ji

)

≤ F (un + vji)
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for any vji ∈ Vji, un
j + vji ∈ Kj ,

respectively.
The convergence result is given by

Theorem 2.1. We consider that V is a reflexive Banach, Vj, j =
1, . . . , J , are closed subspaces of V , and Vji, i = 1, . . . , Ij, are some
closed subspaces of Vj, j = 1, . . . , J . Let K be a non empty closed
convex subset of V decomposed as in (2.1) where Kj are closed convex
subsets of Vj, j = 1, . . . , J , and F be a Gâteaux differentiable functional
on V which is supposed to be coercive if K is not bounded, and satisfies
(2.4). Also, we assume that Assumption 2.1 holds for Algorithms 2.1
and 2.3, and Assumption 2.2 holds for Algorithms 2.2 and 2.4. On these
conditions, if u is the solution of problem (2.8) and un, n ≥ 0, are its
approximations obtained from the above described algorithms, then there
exists M > 0 such that ||u||, ||un|| ≤ M , n ≥ 0, and the following error
estimations hold:

(i) if p = q = 2 we have

(2.19) F (un) − F (u) ≤

(

C̃1

C̃1 + 1

)n
[

F (u0) − F (u)
]

,

(2.20) ||un − u||2 ≤
2

αM

(

C̃1

C̃1 + 1

)n
[

F (u0) − F (u)
]

,

where C̃1 is given in (2.34), and
(ii) if p > q we have

(2.21) F (un) − F (u) ≤
F (u0) − F (u)

[

1 + nC̃2 (F (u0) − F (u))
p−q

q−1

]

q−1
p−q

,

(2.22) ||u − un||p ≤
p

αM

F (u0) − F (u)
[

1 + nC̃2 (F (u0) − F (u))
p−q

q−1

]

q−1
p−q

,

where C̃2 is given in (2.38).

Proof. Step 1. We first prove the boundedness of the approximations
un, n ≥ 0, of u. For Algorithm 2.1, from (2.15), we get

F



un +
J
∑

k=j+1

wn+1
k + wn+1

j



 ≤ F



un +
J
∑

k=j+1

wn+1
k + w

n+ i
Ij

j



 ≤

F



un +

J
∑

k=j+1

wn+1
k




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Also, for Algorithm 2.2, from the convexity of F and (2.16), we have

F



un +
J
∑

k=j+1

wn+1
k + wn+1

j



 =

F



un +
J
∑

k=j+1

wn+1
k +

r

I

Ij
∑

i=1

wn+1
ji



 ≤ (1 −
rIj

I
)F



un +
J
∑

k=j+1

wn+1
k



+

r

I

Ij
∑

i=1

F



un +
J
∑

k=j+1

wn+1
k + wn+1

ji



 ≤ F



un +
J
∑

k=j+1

wn+1
k





Consequently, for Algorithm 2.1 and 2.2, we have

F (un+1) = F



un +
J
∑

j=1

wn+1
j



 ≤ F (un)

By a similar proof, using the convexity of F and equations (2.17) and
(2.18) we find the same equation for Algorithms 2.3 and 2.4,

F (un+1) = F



un +
s

J

J
∑

j=1

wn+1
j



 ≤

(1 − s)F (un) +
s

J

J
∑

j=1

F (un + wn+1
j ) ≤ F (un).

In view of the coerciveness of F , if K is not bounded, it follows that
there exists an M > 0, such that ||un|| ≤ M , n ≥ 0, for all Algorithms
2.1–2.4.

Step 2. Now, we study the boundedness of
∑J

j=1

∑Ij

i=1 ||w
n+1
ji ||p. For

Algorithm 2.1, in view of (2.5) and (2.11), we have

αM

p ||wn+1
ji ||p ≤ F



un +
J
∑

k=j+1

wn+1
k + w

n+ i−1
Ij

j



−

F



un +
J
∑

k=j+1

wn+1
k + w

n+ i
Ij

j





ie.,

(2.23)

αM

p

Ij
∑

i=1

||wn+1
ji ||p ≤ F



un +
J
∑

k=j+1

wn+1
k



−

F



un +

J
∑

k=j

wn+1
k




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Also, for Algorithm 2.2, from (2.12), we get

αM

p
||wn+1

ji ||p ≤ F



un +
J
∑

k=j+1

wn+1
k



− F



un +
J
∑

k=j+1

wn+1
k + wn+1

ji





But,

F



un +

J
∑

k=j+1

wn+1
k + wn+1

j



 = F



un +

J
∑

k=j+1

wn+1
k +

r

I

Ij
∑

i=1

wn+1
ji



 ≤

(1 −
rIj

I
)F



un +
J
∑

k=j+1

wn+1
k



+
r

I

Ij
∑

i=1

F



un +
J
∑

k=j+1

wn+1
k + wn+1

ji





From the above two equations, we get

(2.24)

r

I

αM

p

Ij
∑

i=1

||wn+1
ji ||p ≤ F



un +
J
∑

k=j+1

wn+1
k



−

F



un +
J
∑

k=j

wn+1
k





By a similar proof, for Algorithm 2.3, using (2.13), we get

(2.25)
αM

p

IJ
∑

i=1

||wn+1
ji ||p ≤ F (un) − F

(

un + wn+1
j

)

and, in view of (2.14), for Algorithm 2.4, we have,

(2.26)
r

I

αM

p

Ij
∑

i=1

||wn+1
ji ||p ≤ F (un) − F

(

un + wn+1
j

)

Now, let us write

(2.27) t =























1 for Algorithm 2.1
r
I for Algorithm 2.2
s
J for Algorithm 2.3
s
J

r
I for Algorithm 2.4

For Algorithms 2.1 and 2.2, in view of (2.23) and (2.24), we can write

(2.28) t
αM

p

J
∑

j=1

Ij
∑

i=1

||wn+1
ji ||p ≤ F (un) − F

(

un+1
)

11



With t in (2.27), the same equation holds for Algorithms 2.3 and 2.4.
Indeed,

F
(

un+1
)

= F



un +
s

J

J
∑

j=1

wn+1
j



 ≤ (1 − s)F (un) +
s

J

J
∑

j=1

F
(

un + wn+1
j

)

and (2.28) follows from (2.25) and (2.26).
Step 3. We now estimate F (un+1) − F (u). For a given j ∈ J , we

write wn+1
j =

∑Ij

i=1 wn+1
ji . Evidently, for Algorithm 2.1, we have

F (un+1) = F



un +
J
∑

j=1

wn+1
j





For Algorithm 2.2, we get,

F (un+1) = F



un +
r

I

J
∑

j=1

wn+1
j



 ≤

(1 −
r

I
)F (un) +

r

I
F



un +
J
∑

j=1

wn+1
j





It is clear that for Algorithm 2.3, we have

F (un+1) ≤ (1 −
s

J
)F (un) +

s

J
F



un +

J
∑

j=1

wn+1
j





Finally, for Algorithm 2.4, we get,

F (un+1) = F



un +
s

J

r

I

J
∑

j=1

wn+1
j



 ≤

(1 −
s

J

r

I
)F (un) +

s

J

r

I
F



un +
J
∑

j=1

wn+1
j





From the above four equations we conclude that

(2.29) F (un+1) ≤ (1 − t)F (un) + tF



un +
J
∑

j=1

wn+1
j





where t is given in (2.27). With v = u and w = un, we consider a

decomposition
∑J

j=1

∑Ij

i=1 vn
ji of u − un as in Assumption 2.1, in the

12



case of Algorithms 2.1 and 2.3, or as in Assumption 2.2, in the case
of Algorithms 2.2 and 2.4. In Assumption 2.1, we take wji = wn+1

ji ,
j = J, . . . , 1, i = 1, . . . , Ij , which are obtained from Algorithms 2.1 or
2.3. In view of (2.5), we have

(2.30)

F



un +
J
∑

j=1

wn+1
j



− F (u) +
αM

p
||un +

J
∑

j=1

wn+1
j − u||p ≤

〈F ′



un +
J
∑

j=1

wn+1
j



 , un +
J
∑

j=1

wn+1
j − u〉 =

−
J
∑

k=1

Ik
∑

i=1

〈F ′



un +
J
∑

j=1

wn+1
j



 , vn
ki − wn+1

ki 〉

For Algorithm 2.1, in view of (2.11) and (2.6), we have,

−〈F ′



un +
J
∑

j=1

wn+1
j



 , vn
ki − wn+1

ki 〉 ≤

〈F ′

(

un +

J
∑

l=k+1

wn+1
l + w

n+ i−1
Ik

k + wn+1
ki

)

−

F ′



un +

J
∑

j=1

wn+1
j



 , vn
ki − wn+1

ki 〉 ≤

βM

J
∑

j=1

βkj

Ij
∑

l=1

||wn+1
jl ||q−1||vn

ki − wn+1
ki ||

Above, we have added and subtracted the missing terms between

F ′

(

un +
∑J

l=k+1 wn+1
l + w

n+ i−1
Ij

k + wn+1
ki

)

and F ′
(

un +
∑J

j=1 wn+1
j

)

.

Also, for Algorithm 2.2, from (2.12), we have

−〈F ′



un +
J
∑

j=1

wn+1
j



 , vn
ki − wn+1

ki 〉 ≤

〈F ′



un +
r

I

J
∑

j=k+1

wn+1
j + wn+1

ki



− F ′



un +
J
∑

j=1

wn+1
j



 , vn
ki − wn+1

ki 〉 ≤

2βM

J
∑

j=1

βkj

Ij
∑

l=1

||wn+1
jl ||q−1||vn

ki − wn+1
ki ||

13



Here, we have added and subtracted the missing terms between F ′(un)

and F ′
(

un + r
I

∑J
j=k+1 wn+1

j + wn+1
ki

)

, between F ′(un) and

F ′
(

un +
∑J

j=1 wn+1
j

)

, and used the fact that r
I ≤ 1. Similarly, we get

the above inequality from (2.13) for Algorithm 2.3, and from (2.14) for
Algorithm 2.4. Consequently, in view of (2.30), we can write for all the
four algorithms,

F (un +

J
∑

j=1

wn+1
j ) − F (u) +

αM

p
||un +

J
∑

j=1

wn+1
j − u||p ≤

2βM

J
∑

j=1

J
∑

k=1

βkj

Ij
∑

l=1

||wn+1
jl ||q−1

Ik
∑

i=1

||vn
ki − wn+1

ki || ≤

2βMI
σ−1

σ
+ p−q+1

p

J
∑

j=1

(

J
∑

k=1

βkj(

Ik
∑

i=1

||vn
ki − wn+1

ki ||σ)
1
σ

)





Ij
∑

l=1

||wn+1
jl ||p





q−1
p

≤

2βMI
σ−1

σ
+ p−q+1

p





J
∑

j=1

(

J
∑

k=1

βkj(

Ik
∑

i=1

||vn
ki − wn+1

ki ||σ)
1
σ

)σ




1
σ

·





J
∑

j=1

(

Ij
∑

l=1

||wn+1
jl ||p)

q−1
p

σ
σ−1





σ−1
σ

≤ 2βMI
σ−1

σ
+ p−q+1

p J
σ−1

σ
− q−1

p ( max
k=1,··· ,J

J
∑

j=1

βkj)·

(
J
∑

j=1

Ij
∑

i=1

||vn
ji − wn+1

ji ||σ)
1
σ (

J
∑

j=1

Ij
∑

i=1

||wn+1
ji ||p)

q−1
p

Above, we have used the inequality (see Corollary 4.1 in [24])

(2.31) ||Ax||lσ ≤ (max
i

∑

j

|Aij |)||x||lσ

where A = (Aij)ij is a symmetric matrix. In view of (2.2), Assumptions
2.1 and 2.2 and Remark 2.1, we have

(
J
∑

j=1

Ij
∑

i=1

||vn
ji − wn+1

ji ||σ)
1
σ ≤ (

J
∑

j=1

Ij
∑

i=1

||vji||
σ)

1
σ + (

J
∑

j=1

Ij
∑

i=1

||wn+1
ji ||σ)

1
σ ≤

(Cσ
2 ||u − un||σ + Cσ

3

J
∑

j=1

Ij
∑

i=1

||wn+1
ji ||σ)

1
σ + (

J
∑

j=1

Ij
∑

i=1

||wn+1
ji ||σ)

1
σ ≤

C2||u − un|| + (1 + C3)(
J
∑

j=1

Ij
∑

i=1

||wn+1
ji ||σ)

1
σ ≤

C2||u − un −
J
∑

j=1

wn+1
j || + (1 + C1C2 + C3)(IJ)

p−σ

pσ (
J
∑

j=1

Ij
∑

i=1

||wn+1
ji ||p)

1
p

14



Therefore, we get

F (un +
J
∑

j=1

wn+1
j ) − F (u) +

αM

p
||un +

J
∑

j=1

wn+1
j − u||p ≤

2βMI
σ−1

σ
+ p−q+1

p J
σ−1

σ
− q−1

p ( max
k=1,··· ,J

J
∑

j=1

βkj)·



C2||u − un −

J
∑

j=1

wn+1
j ||(

J
∑

j=1

Ij
∑

i=1

||wn+1
ji ||p)

q−1
p +

(1 + C1C2 + C3)(IJ)
p−σ

pσ (
J
∑

j=1

Ij
∑

i=1

||wn+1
ji ||p)

q

p





But, for any ε > 0, p > 1 and x, y ≥ 0, we have xy ≤ εxp + 1

ε
1

p−1
y

p

p−1 .

Consequently, we have

F (un +

J
∑

j=1

wn+1
j ) − F (u) +

αM

p
||un +

J
∑

j=1

wn+1
j − u||p ≤

2βMI
σ−1

σ
+ p−q+1

p J
σ−1

σ
− q−1

p ( max
k=1,··· ,J

J
∑

j=1

βkj)·



C2ε||u − un −
J
∑

j=1

wn+1
j ||p + C2

1

ε
1

p−1

(
J
∑

j=1

Ij
∑

i=1

||wn+1
ji ||p)

q−1
p−1 +

(1 + C1C2 + C3)(IJ)
p−σ

pσ (
J
∑

j=1

Ij
∑

i=1

||wn+1
ji ||p)

q

p





for any ε > 0. With

(2.32) ε =
αM

p

1

2C2βMI
σ−1

σ
+ p−q+1

p J
σ−1

σ
− q−1

p ( max
k=1,··· ,J

J
∑

j=1

βkj)

the above equation becomes,

F (un +
J
∑

j=1

wn+1
j ) − F (u) ≤

αM

p

C2ε
·





C2

ε
1

p−1

(

J
∑

j=1

Ij
∑

i=1

||wn+1
ji ||p)

q−1
p−1 + (1 + C1C2 + C3)(IJ)

p−σ

pσ (

J
∑

j=1

Ij
∑

i=1

||wn+1
ji ||p)

q

p




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From this equation and (2.28)

F (un +
J
∑

j=1

wn+1
j ) − F (u) ≤

αM

p

C2ε
·





C2

ε
1

p−1 (tαM

p )
q−1
p−1

(F (un) − F (un+1))
q−1
p−1 +

(1 + C1C2 + C3)(IJ)
p−σ

pσ

(tαM

p )
q

p

(F (un) − F (un+1))
q

p





with t in (2.27) and ε in (2.32). In view of the above equation and (2.29),
we have

(2.33)

F (un+1) − F (u) ≤ 1−t
t (F (un) − F (un+1)) +

αM
p

C2ε ·




C2

ε
1

p−1 (tαM

p )
q−1
p−1

(F (un) − F (un+1))
q−1
p−1 +

(1 + C1C2 + C3)(IJ)
p−σ

pσ

(tαM

p )
q

p

(F (un) − F (un+1))
q

p





Step 4. We prove error estimations (2.19)–(2.22). First, using (2.10),
we see that error estimations in (2.20) and (2.22) can be obtained from
(2.19) and (2.21), respectively. Now, if p = q = 2, then σ = 2, and from
the above equation, we easily get equation (2.19), where

(2.34)

C̃1 =
1 − t

t
+

1

C2tε

[

C2

ε
+ 1 + C1C2 + C3

]

with

ε =
αM

2

2C2βMI( max
k=1,··· ,J

J
∑

j=1

βkj)

Finally, if p > q, from (2.33), we have

(2.35) F (un+1) − F (u) ≤ C̃3(F (un) − F (un+1))
q−1
p−1

where

(2.36)

C̃3 =
1 − t

t
(F (u0) − F (u))

p−q

p−1 +

αM

p

C2ε





C2

ε
1

p−1 (tαM

p )
q−1
p−1

+

(1 + C1C2 + C3)(IJ)
p−σ

pσ

(tαM

p )
q

p

(F (u0) − F (u))
p−q

p(p−1)




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with ε in (2.32). From (2.35), we get

F (un+1) − F (u) +
1

C̃
p−1
q−1

3

(F (un+1) − F (u))
p−1
q−1 ≤ F (un) − F (u),

and we know (see Lemma 3.2 in [24]) that for any r > 1 and c > 0, if

x ∈ (0, x0] and y > 0 satisfy y + cyr ≤ x, then y ≤ ( c(r−1)

crxr−1
0 +1

+x1−r)
1

1−r .

Consequently, we have F (un+1)−F (u) ≤ [C̃2 + (F (un)−F (u))
q−p

q−1 ]
q−1
q−p ,

from which,

(2.37) F (un+1) − F (u) ≤ [(n + 1)C̃2 + (F (u0) − F (u))
q−p

q−1 ]
q−1
q−p ,

where

(2.38) C̃2 =
p − q

(p − 1)(F (u0) − F (u))
p−q

q−1 + (q − 1)C̃
p−1
q−1

3

.

Equation (2.37) is another form of equation (2.21).

3 Multilevel Schwarz methods

We consider a family of regular meshes Thj
of mesh sizes hj , j = 1, . . . , J

over the domain Ω ⊂ Rd. We write Ωj = ∪τ∈Thj
τ and assume that Thj+1

is a refinement of Thj
on Ωj , j = 1, . . . , J − 1, and Ω1 ⊂ Ω2 ⊂ . . . ⊂

ΩJ = Ω. Also, we assume that, if a node of Thj
lies on ∂Ωj , then it

lies on ∂Ωj+1, too, that is, it lies on ∂Ω. Besides, we suppose that
distxj+1node of Thj+1

(xj+1, Ωj) ≤ Chj , j = 1, . . . , J − 1. In this section,

C denotes a generic positive constant independent of the mesh sizes,
the number of meshes, as well as of the overlapping parameters and
the number of subdomains in the domain decompositions which will be
considered later. Since the mesh Thj+1 is a refinement of Thj

, we have
hj+1 ≤ hj , and assume that there exists a constant γ, independent of
the number of meshes or their sizes, such that

(3.1) 1 < γ ≤
hj

hj+1
≤ Cγ, j = 1, . . . , J − 1.

At each level j = 1, . . . , J , we consider an overlapping decomposition
{Ωi

j}1≤i≤Ij
of Ωj , and assume that the mesh partition Thj

of Ωj supplies

a mesh partition for each Ωi
j , 1 ≤ i ≤ Ij . Also, we assume that the

overlapping size for the domain decomposition at the level 1 ≤ j ≤ J
is δj . In addition, we suppose that if ωi

j+1 is a connected component of

Ωi
j+1, j = 1, . . . , J − 1, i = 1, . . . , Ij , then

(3.2) diam(ωi
j+1) ≤ Chj
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Since hj+1 ≤ δj+1, from (3.1), we also have

(3.3)
hj

δj+1
≤ Cγ, j = 1, . . . , J − 1.

Finally, we assume that I1 = 1.
At each level j = 1, . . . , J , we introduce the linear finite element

spaces,

(3.4) Vhj
= {v ∈ C(Ω̄j) : v|τ ∈ P1(τ), τ ∈ Thj

, v = 0 on ∂Ωj},

and, for i = 1, . . . , Ij , we write

(3.5) V i
hj

= {v ∈ Vhj
: v = 0 in Ωj\Ω

i
j}.

The functions in Vhj
j = 1, . . . , J −1, will be extended with zero outside

Ωj and the spaces will be considered as subspaces of W 1,σ, 1 ≤ σ ≤ ∞.
We denote by || · ||0,σ the norm in Lσ, and by || · ||1,σ and | · |1,σ the norm
and seminorm in W 1,σ, respectively.

We consider the obstacle problem

(3.6) u ∈ K : < F ′(u), v − u >≥ 0, for any v ∈ K,

where

(3.7) K = {v ∈ VhJ
: ϕ ≤ v},

with ϕ ∈ VhJ
. We shall prove that Assumptions 2.1 and 2.2 hold for this

type of convex set, and explicitly write the constants C2 and C3 as func-
tions of the mesh and overlapping parameters. We can then conclude
from Theorem 2.1 that if the functional F has the asked properties, then
Algorithms 2.1–2.4 are globally convergent.

We first introduce the operators Ihj
: Vhj+1 → Vhj

, j = 1, . . . , J − 1,
defined as follows. Let us denote by xji a node of Thj

, by φji the linear
nodal basis function associated with xji and Thj

, and by ωji the support
of φji. Given a v ∈ Vhj+1 , we write Ijiv = minx∈ωji

v(x). Finally, we
define Ihj

v :=
∑

xjinode of Thj
(Ijiv)φji(x).

Remark 3.1. 1) In [23], similar operators, Ihj
: VhJ

→ Vhj
, are defined.

For a v ∈ VhJ
, we write as above, Ijiv = minx∈ωji

v(x) and Ihj
v :=

∑

xjinode of Thj
(Ijiv)φji(x). These operators have the disadvantage that

Ihj
v can not be computed from Ihj+1v. For this reason, in the case

of the multigrid method, their definition is modified in [12] by taking
Ijiv = minx∈Intωji

v(x) in the place of Ijiv = minx∈ωji
v(x).

2) Since the finite element spaces are linear, for a v ∈ Vhj
, we can

take Ijiv = min
x∈ωji, x node of Thj+1

v(x) in the place of Ijiv = minx∈ωji
v(x)

in our above definition.
3) In [2] some more general operators Ihj

: Vhj+1 → Vhj
have been

introduced. They coincide with those above defined ones for v ≥ 0.
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For a v ∈ VhJ
, we recursively define

(3.8) vJ = v and vj = Ihj
vj+1, j = J − 1, . . . , 1

Writing

(3.9) Cd,σ(H, h) =























1 if d = σ = 1

or 1 ≤ d < σ < ∞

(ln H
h + 1)

d−1
d if 1 < d = σ < ∞

(H
h )

d−σ
σ if 1 ≤ σ < d < ∞,

we have the following result

Lemma 3.1. Let vj , wj ∈ Vhj
, j = J, . . . , 1 defined as in (3.8) for some

v, w ∈ VhJ
, respectively. Then, for j = J, . . . , 1, we have

(3.10) |vj − wj |1,σ ≤ CCd,σ(hj , hJ)|v − w|1,σ

Proof. Equation (3.10) is evident for j = J . For a j = J − 1, . . . , 1, let
ωj(xj) be the support of the nodal basis function in Vhj

corresponding

to the node xj of Thj
. Then there exist two nodes of Thj

, x1
j , x

2
j ∈ ωj(xj),

such that

(3.11) |vj − wj |σ1,σ,ωj(xj)
≤ Chd−σ

j |(vj − wj)(x1
j ) − (vj − wj)(x2

j )|
σ

and let us assume that

(3.12) |(vj − wj)(x1
j ) − (vj − wj)(x1

j )| = (vj − wj)(x1
j ) − (vj − wj)(x2

j )

Now, we have

(vj − wj)(x1
j ) − (vj − wj)(x2

j ) =

(Ihj
vj+1 − Ihj

wj+1)(x1
j ) + (Ihj

wj+1 − Ihj
vj+1)(x2

j )

and let

Ihj
wj+1(x1

j ) = wj+1(x1
j+1) and Ihj

vj+1(x2
j ) = vj+1(x2

j+1)

where x1
j+1 ∈ ωj(x

1
j ) and x2

j+1 ∈ ωj(x
2
j ) are two nodes of Thj+1 , ωj(x

1
j )

and ωj(x
2
j ) being the supports of the nodal basis functions in Vhj

corre-

sponding to the nodes x1
j and x2

j , respectively. Consequently, we get

(vj − wj)(x1
j ) − (vj − wj)(x2

j ) ≤

(vj+1 − wj+1)(x1
j+1) − (vj+1 − wj+1)(x2

j+1)
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Repeating the above reasoning, we get that, for k = j, . . . , J − 1, there
exist xk+1

1 ∈ ωk(x
k
1) and xk+1

2 ∈ ωk(x
k
2) are two nodes of Thk+1

, ωk(x
k
1)

and ωk(x
k
2) being the supports of the nodal basis functions in Vhk

cor-

responding to the nodes xk
1 and xk

2, respectively, such that

(3.13)
(vk − wk)(xk

1) − (vk − wk)(xk
2) ≤

(vk+1 − wk+1)(xk+1
1 ) − (vk+1 − wk+1)(xk+1

2 )

From (3.11), (3.12) and (3.13), we get

(3.14) |vj − wj |σ1,σ,ωj(xj)
≤ Chd−σ

j [(v − w)(x1
J) − (v − w)(x2

J)]σ

Since the radius of ωk is less than hk, and in view of (3.1), it follows
that dist(xj , x

1
J), dist(xj , x

1
J) ≤ hj + (hj + . . . + hJ−1) ≤ (1 + 1 + 1

γ +

. . . + 1
γJ−1−j )hj ≤

2γ−1
γ−1 hj . Therefore, if we write

ω̃j(xj) =
⋃

τ∈Thj
, dist(xj ,τ)≤ γ

γ−1
hj

τ,

then x1
J , x2

J ∈ ω̃j(xj). Subtracting and adding (v−w)(x), x ∈ ω̃j(xj), in
the right hand side of (3.14), integrating over ω̃j(xj), in view of Lemma
4.1 in [2], we have

(2γ−1
γ−1 hj)

d|vj − wj |σ1,σ,ωj(xj)
≤ Chd−σ

j

[

||(v − w)(x1
j ) − (v − w)(x)||σ0,σ,ω̃j(xj)

+

||(v − w)(x2
j ) − (v − w)(x)||σ0,σ,ω̃j(xj)

]

≤

Chd−σ
j (22γ−1

γ−1 hj)
σCd,σ(22γ−1

γ−1 hj , hJ)σ|v − w|σ1,σ,ω̃j(xj)
,

ie.,
|vj − wj |1,σ,ωj(xj) ≤ CCd,σ(hj , hJ)|v − w|1,σ,ω̃j(xj)

Finally, since the mesh Thj
is regular and γ is independent of J and of

the mesh parameters, then ωj(xj) and ω̃j(xj) contain a bounded number
of simplexes of Thj

, which is also independent of J and of the mesh
parameters. Consequently, we get (3.10).

Another result we shall utilize is given by the following lemma.

Lemma 3.2. For any v, w ∈ Vhj+1, j = J − 1, . . . , 1, we have

(3.15) ||v − w − Ihj
v + Ihj

w||0,σ ≤ ChjCd,σ(hj , hj+1)|v − w|1,σ
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Proof. As in the proof of the previous lemma, we denote by ωj(xj) the
support of the nodal basis function φj in Vhj

corresponding to the node
xj of Thj

. For a τ ∈ Thj
, we have

||v − w − Ihj
v + Ihj

w||0,σ,τ =

||
∑

xj node of τ

[v − w − (Ihj
v − Ihj

w)(xj)]φj ||0,σ,τ ≤

∑

xj node of τ

||v − w − (Ihj
v − Ihj

w)(xj)||0,σ,τ

From the definition of Ihj
, there exist two nodes of Thj+1 , x1

j+1, x
2
j+1 ∈

ωj(xj), such that (Ihj
v)(xj) = v(x1

j+1) and (Ihj
w)(xj) = w(x2

j+1).
Therefore,

||v − w − Ihj
v + Ihj

w||0,σ,τ ≤
∑

xj node of τ

||v − w − v(x1
j+1) + w(x2

j+1)||0,σ,ωj(xj)

Now, let ωj(xj)
+ = {x ∈ ωj(xj) : v − w − v(x1

j+1) + w(x2
j+1) ≥ 0} and

ωj(xj)
− = {x ∈ ωj(xj) : v − w − v(x1

j+1) + w(x2
j+1) ≤ 0}. From the

above equation, the definition of Ihj
and Lemma 4.1 in [2], we get

||v − w − Ihj
v + Ihj

w||0,σ,τ ≤
∑

xj node of τ

[

||v − w − v(x1
j+1) + w(x1

j+1)||
σ
0,σ,ωj(xj)+

+

||w − v − w(x2
j+1) + v(x2

j+1)||
σ
0,σ,ωj(xj)−

]1/σ
≤

ChjCd,σ(hj , hj+1)
∑

xj node of τ

[

|v − w|σ1,σ,ωj(xj)+
+ |w − v|σ1,σ,ωj(xj)−

]1/σ
=

ChjCd,σ(hj , hj+1)
∑

xj node of τ

|v − w|1,σ,ωj(xj)

Since the mesh Thj
is regular, ωj(xj) contains a bounded number of

simplexes of Thj
, which is independent of J and of the mesh parame-

ters. Consequently, inequality (3.15) can be obtained from the above
equation.

Now, we consider a decomposition of ϕ = ϕJ +. . .+ϕ1 with ϕj ∈ Vhj
,

j = J, . . . , 1, and define

(3.16) Kj = {v ∈ Vhj
: ϕj ≤ v}, j = J, . . . , 1
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In this way, we get a decomposition of K as in (2.1). For a v ∈ K, with
the notation in 3.8, we write

(3.17)
vj = ϕj + (v − ϕ)j − (v − ϕ)j−1, j = J, . . . , 2

v1 = ϕ1 + (v − ϕ)1

Evidently,

(3.18) vj ∈ Kj , j = J, . . . , 1, and v = vJ + . . . + v1

We have the following

Lemma 3.3. If vj , wj ∈ Kj, j = J, . . . , 1, are defined as in (3.17) for
some v, w ∈ K, respectively, then

(3.19) |vj − wj |1,σ ≤ CCd,σ(hj−1, hJ)|v − w|1,σ

and

(3.20) ||vj − wj ||0,σ ≤ Chj−1Cd,σ(hj , hJ)|v − w|1,σ

where we take h0 = h1 for j = 1.

Proof. For j = J, . . . , 2, in view of (3.10), we have

|vj − wj |1,σ = |(v − ϕ)j − (v − ϕ)j−1 − (w − ϕ)j + (w − ϕ)j−1|1,σ ≤

C[Cd,σ(hj , hJ) + Cd,σ(hj−1, hJ)]|v − w|1,σ

ie., (3.19) holds for j = J, . . . , 2. Also, by a similar proof, we get that
(3.19) for j = 1. Now, using (3.15) and (3.10), for j = J, . . . , 2, we get

||vj − wj ||0,σ =

||(v − ϕ)j − Ihj−1(v − ϕ)j − (w − ϕ)j + Ihj−1(w − ϕ)j ||0,σ ≤

Chj−1Cd,σ(hj−1, hj)|(v − ϕ)j − (w − ϕ)j |1,σ ≤

Chj−1Cd,σ(hj−1, hj)Cd,σ(hj , hJ)|v − w|1,σ

and therefore, (3.20) holds for j = J, . . . , 2. For j = 1, from the classical
Friedrichs-Poincaré inequality and (3.10), we have

||v1 − w1||0,σ = ||(v − ϕ)1 − (w − ϕ)1||0,σ ≤

Ch1|(v − ϕ)1 − (w − ϕ)1|1,σ ≤ Ch1Cd,σ(h1, hJ)|v − w|1,σ,

ie., we obtained (3.20) for j = 1.
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To prove that Assumption 2.1 holds, we associate to the decomposi-
tion {Ωi

j}1≤i≤Ij
of Ωj , some functions θi

j ∈ C(Ω̄j), θi
j |τ ∈ P1(τ) for any

τ ∈ Thj
, i = 1, · · · , Ij , such that

(3.21)
0 ≤ θi

j ≤ 1 on Ωj ,

θi
j = 0 on ∪

Ij

l=i+1 Ωl
j\Ω

i
j , θi

j = 1 on Ωi
j\ ∪

Ij

l=i+1 Ωl
j

Also, for Assumption 2.2, we associate a unity partition to each domain
decomposition {Ωi

j}1≤i≤Ij
, j = J, . . . , 1,

(3.22) 0 ≤ θi
j ≤ 1 and

Ij
∑

i=1

θi
j = 1 on Ωj

with θi
j ∈ C(Ω̄j), θi

j |τ ∈ P1(τ) for any τ ∈ Thj
, i = 1, · · · , Ij . Such

functions θi
j with the above properties exist (see [2] or [25] p. 59, for

instance). Moreover, since the overlapping size of the domain decompo-
sition on a level j = J, . . . , 1 is δj , the above functions θi

j can be chosen
to satisfy

(3.23) |∂xk
θi
j | ≤ C/δj , a.e. in Ωj , for any k = 1, . . . , d

Finally, we recall some interpolation properties. For a v ∈ Vhj
and a

continuous functions θ which is of polynomial form on the elements of
τ ∈ Thj

, we have (see [8] and [27]),

||θv − Lhj
(θv)||0,σ ≤ Chj |θv|1,σ and |Lhj

(θv)|1,σ ≤ C|θv|1,σ

where Lhj
is the P1-Lagrangian interpolation operator which uses the

function values at the nodes of the mesh Thj
. Therefore, we have

(3.24) ||Lhj
(θv)||1,σ ≤ C||θv||1,σ

Now, we can prove

Proposition 3.1. Assumption 2.1 holds with the constants C2 and C3

are given in (3.30) for the convex sets Kj, j = J, . . . , 1, defined in (3.16).

Proof. Let us consider v, w ∈ K and let vj , wj ∈ Kj , j = J, . . . , 1, be
their decompositions defined as in (3.17), respectively. Also, let wji ∈
V i

hj
such that wj +wj1 + . . .+wji ∈ Kj , j = J, . . . , 1, i = 1, . . . , Ij . Now,

for j = J, . . . , 2, we define

vj1 = Lhj
(θ1

j (vj − wj) + (1 − θ1
j )wj1)

vji = Lhj
(θi

j((vj − wj) −
i−1
∑

l=1

vjl) + (1 − θi
j)wji), i = 2, . . . , Ij
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with θi
j in (3.21). Like in Proposition 3.1 in [2], where we take v = vj

and w = wj , we can prove that

(3.25)

vji ∈ V i
hj

, wj + wj1 + . . . + wji−1 + vji ∈ Kj , i = 1, . . . , Ij

vj − wj =

Ij
∑

i=1

vji

We point out that here, the condition wj + wj1 + . . . + wji−1 + vji ∈ Kj

can be proved by verifying that it is satisfied only at the nodes of Thj
.

At the level j = 1, we do not have a domain decomposition, I1 = 1, and
we take

v11 = v1 − w1.

From this equation, (3.18) and (3.25), we get that the first two conditions
of Assumption 2.1 are satisfied.

We estimate now the constants C2 and C3. The above vji, j =
J, . . . , 2, i = 1, . . . , Ij , can be written as

(3.26) vji = Lhj
(θ0

ji(vj − wj) +

i
∑

k=1

θk
jiwjk), i = 1, . . . , Ij

where

θ0
ji = θ1

j , θ1
ji = 1 − θ1

j and

θ0
ji = θi

j(1 − θi−1
j ) · · · (1 − θ1

j ), θi
ji = 1 − θi

j , θk
ji = −θi

j(1 − θi−1
j ) · · · (1 − θk

j ),

for i = 2, . . . , Ij , k = 1, . . . , i − 1

In view of (3.21), we have

|θl
ji| ≤ 1 and |∂xk

θl
ji| ≤ C(Ij − 1)/δj , i = 1, . . . , Ij , l = 0, . . . , i, k = 1, . . . , d.

It follows that

||θl
jiv||0,σ ≤ ||v||0,σ, |θl

jiv|1,σ ≤ C(|v|1,σ +
Ij − 1

δj
||v||0,σ)

and therefore, using (3.24), we get

||Lhj
(θl

jiv)||1,σ ≤ C(|v|1,σ + (1 +
Ij − 1

δj
)||v||0,σ)

for any v ∈ Vhj
, j = J, . . . , 1, i = 1, . . . , Ij and l = 0, 1, . . . i. We use this

inequality to estimate the norm of the terms in (3.26).
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First, since wji have the support included Ωi
j and vanishes at least on

a part of its boundary, in view of (3.3), (3.2) and the classical Friedrichs-
Poincaré inequality, we get

||Lhj
(θk

jiwjk)||
σ
1,σ ≤ C(1 + (Ij − 1)

hj−1

δj
)σ|wjk|

σ
1,σ ≤ CIσ|wjk|

σ
1,σ

for any j = J, . . . , 2, i = 1, . . . , Ij and k = 1, . . . , i. Now we use Lemma
3.3. For j = J, . . . , 2, we have

||Lhj
(θ0

ji(vj − wj))||
σ
1,σ ≤ C(|vj − wj |

σ
1,σ + (1 +

Ij−1
δj

)σ||vj − wj ||
σ
0,σ) ≤

C[Cd,σ(hj−1, hJ)σ + (1 +
Ij − 1

δj
)σhσ

j−1Cd,σ(hj , hJ)σ]|v − w|σ1,σ ≤

C[1 + (Ij − 1)
hj−1

δj
]σCd,σ(hj−1, hJ)σ|u − w|σ1,σ ≤

CIσCd,σ(hj−1, hJ)σ|u − w|σ1,σ

Consequently, from (3.26) and the last two equations, we have

(3.27) ||vji||
σ
1,σ ≤ CIσ







Cd,σ(hj−1, hJ)σ|u − w|σ1,σ +

Ij
∑

k=1

|wjk|
σ
1,σ







for any j = J, . . . , 2 and i = 1, . . . , Ij . At the level j = 1, from Lemma
3.3, we have

(3.28) ||v11||
σ
1,σ ≤ CCd,σ(h1, hJ)σ|v − w|σ1,σ

From (3.27) and (3.28), we get

(3.29)

J
∑

j=1

Ij
∑

i=1

||vji||
σ
1,σ ≤ CIσ+1







J
∑

j=2

Ij
∑

i=1

|wji|
σ
1,σ+





J
∑

j=2

Cd,σ(hj−1, hJ)σ



 |u − w|σ1,σ







Consequently, from (3.29), we get that the constants C2 and C3 can be
written as

(3.30)
C2 = CI

σ+1
σ





J
∑

j=2

Cd,σ(hj−1, hJ)σ





1
σ

C3 = CI
σ+1

σ
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Concerning Assumption 2.2 we have

Proposition 3.2. Assumption 2.2 holds with the constants C2 and C3

are given in (3.33) for the convex sets Kj, j = J, . . . , 1, defined in (3.16).

Proof. Let us consider v, w ∈ K, and let vj , wj ∈ Kj , j = J, . . . , 1, be
their decompositions defined as in (3.17), respectively. Now, we define

(3.31)
vji = Lhj

(θi
j(vj − wj)), i = 1, . . . , Ij , for j = J, . . . , 2,

and v11 = v1 − w1

with θi
j in (3.22). In view of (3.18) and (3.31), we get that the first two

conditions of Assumption 2.2 hold.
We estimate now the constants C2 and C3. For j = J, . . . , 2, from

(3.23) and (3.24), we get

||vji||
σ
1,σ ≤ C(|vj − wj |

σ
1,σ + (1 +

1

δj
)σ||vj − wj ||

σ
0,σ)

Using this equation, the proof is similar with that of the previous propo-
sition. For j = J, . . . , 2, in view of (3.19) and (3.20), we have

||vji||
σ
1,σ ≤ CCd,σ(hj−1, hJ)σ|v − w|σ1,σ

and we use (3.28) for the estimation of ||v11||1,σ. From these equations,
we get

(3.32)
J
∑

j=1

Ij
∑

i=1

||vji||
σ
1,σ ≤ CI





J
∑

j=2

Cd,σ(hj−1, hJ)σ



 |v − w|σ1,σ

Consequently, the constants C2 and C3, can be written as

(3.33)
C2 = CI

1
σ [

J
∑

j=2

Cd,σ(hj−1, hJ)σ]
1
σ

C3 = 0

The constants C1 and βjk, j, k = J, . . . , 1, can be taken as in (2.3)
and (2.7), but better choices are available in the case of the multigrid
methods in the next section. As we see form the above estimations, the
convergence rates given in Theorem 2.1 depend on the functional F , the
maximum number of the subdomains on each level, I, and the number
J of levels. The number of subdomains on levels can be associated with
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the number of colors needed to mark the subdomains such that the sub-
domains with the same color do not intersect with each other. Since this
number of colors depends in general on the dimension of the Euclidean
space where the domain lies, we can conclude that our convergence rate
essentially depends on the number J of levels.

We first estimate the constants C1–C3 as functions of J . To this
end, in the remainder of this section, C will be a generic constant which

does not depend on J . Writing Sd,σ(J) =
[

∑J
j=2 Cd,σ(hj−1, hJ)σ

] 1
σ

from

(3.1) and (3.9), we can consider

(3.34) Sd,σ(J) =























(J − 1)
1
σ if d = σ = 1

or 1 ≤ d < σ < ∞

CJ if 1 < d = σ < ∞

CJ if 1 ≤ σ < d < ∞

in our estimations. In this general framework, we take C1, and βjk,
j, k = J, . . . , 1, as in (2.3) and (2.7),

(3.35) C1 = CJ
σ−1

σ and max
k=1,··· ,J

J
∑

j=1

βkj = J

Also, from (3.30) and (3.33), we get

(3.36) C2 = CSd,σ(J)

(3.37) C3 =

{

C for Algorithms 2.1 and 2.3

0 for Algorithms 2.2 and 2.4

Remark 3.2. 1) The results of this section have referred to problems
in W 1,σ with Dirichlet boundary conditions, and the functions corre-
sponding to the coarse levels have been extended with zero outside the
domains Ωj , j = J − 1, . . . , 1. Let us assume that the problem has
mixed boundary conditions: ∂ΩJ = Γd ∪ Γn, with Dirichlet conditions
on Γd and Neumann conditions on Γn. In this case, if a node of Thj

,
j = J − 1, . . . , 1, lies in Int(Γn), we have to assume that all the sides of
the elements τ ∈ Thj

having that node are included in Γn.
2) Similar convergence results with those ones presented in this sec-

tion can be obtained for problems in (W 1,s)d.

4 Multigrid methods

In the above multilevel methods a mesh is the refinement of that one
on the previous level, but the domain decompositions are almost inde-
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pendent from one level to another. We obtain similar multigrid meth-
ods by decomposing the level domains by the supports of the nodal
basis functions. Consequently, the subspaces V i

hj
, i = 1, . . . , Ij , are one-

dimensional spaces generated by the nodal basis functions associated
with the nodes of Thj

, j = J, . . . , 1. In this case Algorithms 2.1–2.4 are
V-cycle multigrid iterations in which the smoothing steps are performed
by a combination of multiplicative methods with additive ones. Evi-
dently, similar results can be given for the W-cycle multigrid iterations.

In this section, we show that the estimations given in (2.3) and (2.7)
for the constants C1 and βjk, j, k = J, . . . , 1 can be improved in the case
of the multigrid methods. Finally, we summarize the previous results
by writing the convergence rates of the four algorithms as functions of
the number J of the levels, for the varied values of the constants p, q, σ
and d.

Concerning the constants βjk, j, k = J, . . . , 1, in (2.6), we can prove
(see [4] or [5], for instance) that, in the case of the multigrid methods,
there exist such constants such that

max
k=1,...,J

J
∑

j=1

βkj = C

where C is a constant independent of the meshes and their number.
Also, the constant C1 in (2.2) is estimated in Lemma 4.1 in [4] or [5],

C1 = (n!)
1
σ C

n−1
n

(

I
γ

d
n

γ
d
n − 1

)
n−1

σ

where n ∈ N, n − 1 < σ ≤ n, and C is a constant independent of the
meshes and their number.

Now, we shall write the convergence rate of the multigrid Algorithms
2.1–2.4 in function of the number J of levels. To this end, we write the
error estimations in Theorem 2.1 of the four algorithms using the above
estimations of C1 and maxk=J,...,1

∑J
j=1 βkj , and C2 and C3 given in

(3.36) and (3.37), respectively. In order to be more conclusive, we limit
ourselves to a typical example where

(4.1) F (v) =
1

σ
||v||σ1,σ − L(v), v ∈ W 1,σ(Ω)

where L is a linear and continuous functional on W 1,σ(Ω), σ > 1. In
this case (see [1], for instance),

p = 2, q = σ if σ < 2; p = 2, q = 2 if σ = 2; p = σ, q = 2 if σ > 2

Evidently, we can use the same procedure for other problems, too.
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For σ = 2 and p = q = 2, in view of (2.34), (2.27) and (3.36)–(3.37),
we get

(4.2) C̃1(J) =

{

CSd,2(J)2 for Algorithms 2.1 and 2.2

CJSd,2(J)2 for Algorithms 2.3 and 2.4

and, from Theorem 2.1, we have

(4.3) ||un − u||21,2 ≤ C̃0

(

1 −
1

1 + C̃1(J)

)n

where C̃0 is a constant independent of J .
For 1 < q = σ < 2 and p = 2, in view of (2.36), (2.27) and (3.36)–

(3.37), we get

(4.4) C̃3(J) =

{

CJ
(σ−1)(2−σ)

σ Sd,σ(J)2 for Algorithms 2.1 and 2.2

CJ
2(σ−1)

σ Sd,σ(J)2 for Algorithms 2.3 and 2.4

From Theorem 2.1, we get that

(4.5) ||un − u||21,σ ≤ C̃0
1

(

1 + nC̃2(J)
)

σ−1
2−σ

where, in view of (2.38), we can take

(4.6) C̃2(J) =
1

1 + C̃3(J)
1

σ−1

For p = σ > 2 and q = 2, we get

(4.7) C̃3(J) =

{

CJ
σ−2
σ−1 Sd,σ(J)

σ
σ−1 for Algorithms 2.1 and 2.2

CJSd,σ(J)
σ

σ−1 for Algorithms 2.3 and 2.4

Finally, in this case, we have

(4.8) ||un − u||σ1,σ ≤ C̃0
1

(

1 + nC̃2(J)
) 1

σ−2

where

(4.9) C̃2(J) =
1

1 + C̃3(J)σ−1

We make now some remarks on the above error estimations of the
four algorithms. First, we point out that the above convergence results
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give global rate estimations. As we have expected, the multiplicative
(over the levels) Algorithms 2.1 and 2.2 converge better than their addi-
tive variants, Algorithms 2.3 and 2.4. For the complementary problems,
we can compare the convergence rates of the four multigrid algorithms
with the similar ones in the literature. In this case, p = q = σ = d = 2
in the above example, from (4.3) and (4.2), we get that the convergence
rate of Algorithms 2.1 and 2.2 is of 1 − 1

1+CJ2 , and that of Algorithms

2.3 and 2.4 is of 1 − 1
1+CJ3 . These convergence rates are better, with a

factor J , than those of the similar algorithms introduced in [4], which
are of 1 − 1

1+CJ3 and 1 − 1
1+CJ4 , respectively. For the truncated mono-

tone multigrid method, an asymptotic convergence rate of 1 − 1
1+CJ4 ,

and under some conditions, of 1 − 1
1+CJ3 , is found in [15] and [12]. An

estimate of 1 − 1
1+CJ3 is also obtained in [15] for the asymptotic con-

vergence rate of the standard monotone multigrid methods. In [12], it
is mentioned that this asymptotic rate may be of 1 − 1

1+CJ2 , or even of

1 − 1
1+CJ , under some conditions.
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quelques problèmes de frontière libre, C. R. Acad. Sci., 298, Ser. I,
(1984), pp. 469-472.

[23] X. C. Tai Rate of convergence for some constraint decomposition
methods for nonlinear variational inequalities, Numer. Math., 93,
4, 2003, p. 755-786.

[24] X.-C. Tai and J. Xu, Global and uniform convergence of subspace
correction methods for some convex optimization problems, Math.
Comp., 71, 2002, p. 105–124.

[25] A. Toselli and O. Widlund, Domains Decomposition Methods
- Algorithms and Theory. Springer-Verlag, Berlin (2005).

[26] B. Wohlmuth and R. Krause, Monotone multigrid methods
on nonmatching grids for nonlinear multibody contact problems,
SIAM Sci. Comput., 25, 2003, p. 324-347.

[27] J. Xu, Theory of multilevel methods, PhD thesis, Cornell Univer-
sity, 1989

32


