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Abstract
In this paper we present an one-and-a-half-line proof, involving Cogalois Theory, of a

folklore result asking when is an irrational number a sum of radicals of positive rational
numbers. Some of the main ingredients of Cogalois Theory like G-Kneser extension, G-
Cogalois extension, etc., used in the proof are briefly explained, so that the paper is self-
contained. We also discuss some older and newer results on transcendental and irrational
numbers.
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Introduction

The aim of this paper is three-fold: firstly, to discuss various aspects related to transcendental

and irrational numbers, including presentation of some open questions on this matter, secondly,

to present in this context a folklore result asking when is a sum of radicals of positive rational

numbers an irrational number, with an one-and-a-half-line proof via Cogalois Theory, and

thirdly, to shortly explain those notions and facts of this theory used in that proof. Finally,

a few applications of Cogalois Theory, including an extension of the folklore result from Q to

any subfield of R, mainly answering some problems discussed in the paper, are presented.

Note that the first two sections are of a very elementary level, being addressed to anybody

wishing to be acquainted with older as well as newer results on transcendental and irrational

numbers. The last two sections require, however, some knowledge of Field Theory, including

the Fundamental Theorem of Galois Theory.

∗The author gratefully acknowledges partial financial support from the grant PN II - IDEI 443, code 1190/2008,
awarded by the CNCSIS - UEFISCSU, Romania.
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1 Transcendental and irrational numbers

In this section we present some more or less known results on transcendental and irrational

numbers, including those related to the irrationality of ζ(n) and of the Euler’s constant.

By N we denote the set {0, 1, 2, . . .} of all natural numbers, and by Z (resp. Q, R, C)

the set of all rational integers, (resp. rational, real, complex) numbers. For any ∅ 6= A ⊆ C
(resp. ∅ 6= X ⊆ R ) we denote A∗ = A \ {0} (resp. X+ = {x ∈ X |x > 0 }. If a ∈ R∗+ and

n ∈ N∗, then the unique positive real root of the equation xn − a = 0 will be denoted by n
√

a.

Definitions 1.1. An algebraic number is any number a ∈ C which is a root of a nonzero

polynomial f ∈ Q[X], and a transcendental number is any number t ∈ C which is not algebraic.

¤

Throughout this paper we will use the following notation:

A := the set of all algebraic numbers,

T := C \ A = the set of all transcendental numbers,

I := R \Q = the set of all irrational numbers.

Examples 1.2. (1) Q ⊆ A since any a ∈ Q is the root of the nonzero polynomial f = X−a ∈
Q[X].

(2) n
√

a ∈ A for any a ∈ Q∗+ and n ∈ N∗ because there exists f = Xn − a ∈ Q[X] such

that f( n
√

a) = 0.

(3) T ∩ R ⊆ I since Q ⊆ A.

(4) e := lim
n→∞

(
1 +

1
n

)n

∈ T, as this has been proved by Charles Hermite (1822-1901) in

1873.

(5) π ∈ T, as this has been proved by Ferdinand von Lindemann (1852-1939) in 1882. ¤

Clearly,

R = Q ∪ I and Q ∩ I = ∅,

therefore any real number defined by certain natural procedures like geometrical constructions,

limits of sequences, etc., can be either rational or irrational. Therefore it is natural to ask the

following

Problem 1.3. Decide whether a given real number is rational or irrational. ¤

As we will see below this problem is in general extremely difficult. However, notice that in

the real life we are dealing only with rational numbers, so the problem makes no sense in this

context.
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Examples 1.4. (1)
√

2 ∈ I. Notice that
√

2 is precisely the length of the diagonal of the

square of side 1. It seems that this number, discovered by Pitagora (∼ 570 - 495 BC) and

Euclid (∼ 300 BC), was the first ever known irrational number.

(2) π ∈ I because we have seen above that π ∈ T. This number appears as the length of

the circle with diameter 1. However, in the real life π = 3.141.

(3) e := lim
n→∞

(
1 +

1
n

)n

∈ I because we have noticed above that e ∈ T. However, in the

real life e = 2.718.

(4) ζ(2k) ∈ I, ∀ k ∈ N∗, where

ζ(s) := lim
n→∞

(
1
1s

+
1
2s

+ · · ·+ 1
ns

)
, s ∈ C, <(s) > 1,

is the famous zeta function of Bernhard Riemann (1826-1866). Let us mention that the well-

known Riemann’s Hypothesis, raised in 1859 and saying that the nontrivial zeroes z of the

function ζ have <(z) = 1/2, is one of the seven Millennium’s Problems.

Indeed, by a well-known result (see, e.g., Borevitch & Shafarevitch [11, Chap. V, §8, Theo-

rem 6], one has

ζ(2k) = (−1)k−1 (2π)2k

2 · (2k)!
·B2k,

where Bm ∈ Q, m ∈ N∗, are the so called Bernoulli’s numbers, introduced by Jakob Bernoulli

(1654-1705), but published posthumously only in 1713. It is known that B1 = −1
2

and B2k+1 =

0, ∀ k ∈ N∗. Thus, ζ(2) =
π2

6
, ζ(4) =

π4

90
, ζ(6) =

π6

945
, etc. Since π ∈ I and B2k ∈ Q one

deduces that ζ(2k) ∈ I, as desired. ¤

In view of Examples 1.4 (4) it is natural to ask the following:

Question 1.5. What about the irrationality of ζ(2k + 1), k ∈ N∗?

Answer : Up to now it is known that ζ(3) ∈ I, as this has been proved by Roger Apéry (1916-

1994) in 1978 (see [6] and [22]). The Apéry’s magnificent proof is a mix of miracle and mystery.

A more simple proof is due to Frits Beukers [10], and an elementary very recent proof has been

done by Yuri V. Nesterenko [21]. In 2000, Tanguy Rivoal [23] proved that ζ(2k + 1) ∈ I for

infinitely many k ∈ N∗ (see also [7]), and, one year later, Vadim Zudilin showed that at least

one of the numbers ζ(5), ζ(7), ζ(9), ζ(11) is irrational. ¤

One of the hardest question of Diophantine Analysis, which has not yet been settled till

now, is about the irrationality of the Euler’s constant

C := lim
n→∞

(
1 +

1
2

+
1
3

+ · · ·+ 1
n
− ln n

)
∼ 0.27721

considered by Leonhard Euler (1707-1783) in 1735, that is:

Question 1.6. Is the Euler’s constant irrational?
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Answer : It is known that in case C ∈ Q then the denominator of C must be > 10242,080.

In 2009 there were known 29, 844, 489, 545 decimals of C according to Wikipedia [25]. Let us

mention that Alexandru Froda (1894-1973), known by an irrationality criterion [13], has claimed

[14] in 1965 that his criterion can be applied to prove the irrationality of C; shortly after that

it appeared that his claim was wrong. A more recent paper in 2003 of Jonathan Sondow [24]

provides irrationality criteria for C. ¤

2 Sums of irrational numbers

In this section we discuss first the irrationality of the sum, product, and power of two irrational

numbers, including e and π. Then we examine when an n-th radical of a positive real number

is irrational, and, after that, we present a nice folklore result asking when a sum of finitely many

such radicals is irrational. We provide an one-and-a-half line proof of this result by invoking an

important property enjoyed by the G-Cogalois extension naturally associated with the radicals

intervening in the folklore result. What are these G-Cogalois extensions will be briefly explained

in the next section.

As it is well-known, one cannot say anything about the irrationality of a sum or product of

two arbitrary irrational numbers α and β, i.e., they can be either rational or irrational; e.g.,

α =
√

2 , β = −
√

2 =⇒ α + β = 0 6∈ I, α · β = −2 6∈ I,

α = 4
√

2 , β = 4
√

2 =⇒ α + β = 2 4
√

2 ∈ I, α · β =
√

2 ∈ I.
We have seen above that e ∈ I and π ∈ I, so the following natural question arises:

Question 2.1. What about the irrationality of e + π and e · π?

Answer : It is known that nothing is known. ¤

However, a more complicated number, namely the Gelfond’s constant eπ ∼ 23.14069 is

known to be irrational in view of the following nice result discovered independently in 1934 by

Aleksandr O. Gelfond and Theodor Schneider . This result gives a positive answer to the 7th

Problem out of the 23 Problems launched by David Hilbert (1862-1943) at the 2nd International

Congress of Mathematicians, Paris, 6 - 12 August 1900.

Theorem 2.2. αβ ∈ T, ∀α, β ∈ A, α 6= 0, 1, β ∈ C \Q. ¤

Indeed, eπ = i−2i, where, for t, α ∈ C, t 6= 0,

tα := eα ln t, ln t := ln |t|+ i arg(z),

so, by Theorem 2.2, we deduce that eπ ∈ T.

Fact 2.3. It is not known whether πe ∈ T. ¤
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We are now going to examine when is an irrational number a radical of a positive real

number.

The Fundamental Theorem of Arithmetic, FTA for short, discovered by Euclid , says that

each natural number a > 2 can be uniquely written up to the order of factors as a = pn1
1 ·. . .·pnk

k ,

with k, n1, . . . , nk ∈ N∗ and p1, . . . , pk distinct positive prime numbers.

As an immediate consequence of the FTA, the following rational form of the FTA, we

abbreviate Q-FTA, holds: every a ∈ Q \ {0, 1,−1} can be uniquely written up to the order of

factors as

a = ε · pn1
1 · . . . · pnk

k ,

with ε ∈ {1,−1}, k ∈ N∗, n1, . . . , nk ∈ Z∗, and p1, . . . , pk distinct positive prime numbers.

Lemma 2.4. Let n ∈ N, n > 2, let a ∈ Q∗+, a 6= 1, and let a = pn1
1 · . . . · pnk

k , with

k ∈ N∗, n1, . . . , nk ∈ Z∗, and p1, . . . , pk distinct positive prime numbers, be the decomposition

of a given by the Q-FTA. Then

n
√

a ∈ Q⇐⇒ n | ni, ∀ i, 1 6 i 6 k.

Proof. “⇐=”: If n | ni, ∀ i, 1 6 i 6 k, there exist mi ∈ N∗ such that ni = nmi, ∀ i, 1 6 i 6 k.

We deduce that

n
√

a = n

√
pn1
1 · . . . · pnk

k = n

√
pnm1
1 · . . . · pnmk

k = pm1
1 · . . . · pmk

k ∈ Q.

“=⇒”: If b := n
√

a ∈ Q, then b > 0 and b 6= 1, so by the Q-FTA, b has a decomposition

in prime factors b = ql1
1 · . . . · qls

s , with s ∈ N∗, l1, . . . , ls ∈ Z∗ and q1, . . . , qs distinct positive

prime numbers. Thus

a = pn1
1 · . . . · pnk

k = ( n
√

a )n = bn = (ql1
1 · . . . · qls

s )n = qnl1
1 · . . . · qnls

s .

By the uniqueness part of the Q-FTA, we deduce that s = k, and by a suitable reordering of

numbers q1, . . . , qs one has pi = qi and ni = nli, in other words, n | ni, ∀ i, 1 6 i 6 k, as

desired.

Proposition 2.5. Let n ∈ N \ {0, 1} and x ∈ R∗+. Then n
√

x ∈ I if and only if one and only

one of the following conditions is satisfied:

(1) x ∈ I.

(2) x ∈ Q \ {0, 1} and there exists i, 1 6 i 6 k, with n - ni, where x = pn1
1 · . . . · pnk

k ,

k ∈ N∗, pi are distinct positive prime numbers, and ni ∈ Z \ {0} for all i, 1 6 i 6 k.

Proof. Assume that n
√

x ∈ I. There are two possibilities about x: either x ∈ I, which is exactly

condition (1), or x 6∈ I. In this last case, we have neither x = 0 nor x = 1 because n
√

0 = 0 ∈ Q
and 1

√
x = 1 ∈ Q, so necessarily x ∈ Q \ {0, 1}. Therefore, by the Q-FTA, one can decompose
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x as x = pn1
1 · . . . ·pnk

k , where k ∈ N∗, pi are distinct positive prime numbers, and ni ∈ Z\{0}
for all i, 1 6 i 6 k. Because n

√
x ∈ I, by Lemma 2.4, we cannot have n | nj , ∀ j, 1 6 j 6 k, so

there exists i, 1 6 i 6 k, with n - ni, as desired.

Assume that the condition (1) is satisfied, i.e., x ∈ I. Then necessarily n
√

x ∈ I, for otherwise

it would follow that x = ( n
√

x )n ∈ Q, which contradicts our assumption. Assume now that the

condition (2) is satisfied. By Lemma 2.4, we deduce that n
√

x ∈ I, which finishes the proof.

Proposition 2.5 provides a large class of irrational numbers. For instance,

4

√
100
1134

=
4

√
22 · 52

2 · 34 · 7 = 4
√

21 · 3−4 · 52 · 7−1 ∈ I

because 4 - 1.

The next examples deal with the irrationality of sums of two or three square or cubic

radicals of positive rational numbers, which naturally lead to ask about the general case of the

irrationality of sums of finitely many n-th radicals of positive rational numbers.

Examples 2.6. (1)
√

2 +
√

3 ∈ I. Indeed, denote u :=
√

2 +
√

3 and suppose that u ∈ Q.

Now, square u − √
2 =

√
3 to obtain u2 − 2u

√
2 + 2 = 3. Since u 6= 0, we deduce that

√
2 =

u2 − 1
2u

∈ Q, which is a contradiction.

(2)
√

2 + 3
√

3 ∈ I. Indeed, as above, denote v :=
√

2 + 3
√

3 and suppose that v ∈ Q. If we

cube v − √2 = 3
√

3, we obtain v3 − 3
√

2 v2 + 6v − 2
√

2 = 3, and so
√

2 =
v3 + 6v − 3

3v2 + 2
∈ Q,

which is a contradiction.

(3) Similarly, with the same procedure, one can prove that for a, b, c ∈ Q∗+ the following

statements hold:

√
a +

√
b ∈ Q⇐⇒ √

a ∈ Q &
√

b ∈ Q,√
a + 3

√
b ∈ Q⇐⇒ √

a ∈ Q & 3
√

b ∈ Q,√
a +

√
b +

√
c ∈ Q⇐⇒ √

a ∈ Q &
√

b ∈ Q &
√

c ∈ Q.

(4) The procedure above of squaring, cubing, etc. does not work for radicals of arbitrary

order, e.g., what about 5
√

11 + 13
√

100 ∈ I ? ¤

So, the following natural problem arises:

Problem 2.7. When is a sum of radicals of form n
√

a , n ∈ N∗, a ∈ Q∗+ , a rational/irrational

number? ¤

More generally, one can ask the following

Problem 2.8. Which nonempty subsets S ⊆ I have the property that any finite sum of elements

of S is again an irrational number? ¤
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The next result shows that

R := { n
√

r | n ∈ N, n > 2, r ∈ Q∗+, r 6∈ Qn },

where Q n = { rn | r ∈ Q }, is such a set.

Theorem 2.9. (Folklore). Let k, n1, . . . , nk ∈ N∗ and a1, . . . , ak ∈ Q∗+. Then

n1
√

a1 + · · ·+ nk
√

ak ∈ Q ⇐⇒ ni
√

ai ∈ Q, ∀ i, 1 6 i 6 k,

or equivalently,

n1
√

a1 + · · ·+ nk
√

ak ∈ I ⇐⇒ ∃ i, 1 6 i 6 k, such that ni
√

ai ∈ I.

The result appears explicitly as a proposed problem in 1980 by Preda Mihăilescu, Zürich

(see [19]), a Romanian mathematician well-known for answering in positive [20] the famous

Catalan’s Conjecture raised in 1844 by Eugène Charles Catalan (1814-1894):

The Diophantine equation xy − zt = 1 in positive integers x, y, z, t > 2 has as solutions

only the numbers x = 3, y = 2, z = 2, t = 3.

Remark 2.10. Notice that the result in Theorem 2.9 fails for ±; indeed
√

12−√3− 4
√

9 = 0 ∈ Q
but

√
12,

√
3, 4
√

9 ∈ I. ¤

The original one-page proof of Mihăilescu [19] uses a variant of the Vahlen-Capelli Criterion

for Q and includes also as reference the classical Besicovitch’s paper [9]. An one-and-a-half-line

proof will be given in a few moments by invoking a basic result concerning primitive elements of

G-Cogalois extensions. What are these extensions will be shortly explained in the next section.

Note that in Section 4 we will present an extension of Theorem 2.9 from Q to any subfield of

R, which, to the best of our knowledge, cannot be proved using the approach in [19], but only

involving the tools of Cogalois Theory.

In order to present the one-and-a-half-line proof in a very elementary manner, that is acces-

sible even at an undergraduate level, we will assign to the numbers n1
√

a1, . . . , nk
√

ak considered

in the statement of Theorem 2.9, the set

Q (n1
√

a1 , . . . , nk
√

ak ).

What is this object? For short, we denote xi := ni
√

ai ∈ R∗+, 1 6 i 6 k, and set

Q∗〈x1 , . . . , xk〉 := { a · xm1
1 · . . . · xmk

k | a ∈ Q∗, mi ∈ N, ∀ i, 1 6 i 6 k }.

Then

Q(x1 , . . . , xk) := {z1 + . . . + zm | m ∈ N∗, zi ∈ Q∗〈x1 , . . . , xk〉, ∀ i, 1 6 i 6 k } ∪ {0}
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is the set of all finite sums of elements (monomials) of Q∗〈x1 , . . . , xk〉 joined with {0}, and is

in fact a subfield of the field R. However, for the moment, the reader is not assumed to have

any idea about what a field is. Observe that Q(x1 , . . . , xk) = Q⇐⇒ {x1 , . . . , xk} ⊆ Q .

To the best of our knowledge, there is no proof of the next result (which is a very particular

case of a more general feature of G-Cogalois extensions), without the involvement of Cogalois

Theory.

Theorem 2.11. (Albu & Nicolae [4]). Let k, n1, . . . , nk ∈ N∗ and a1, . . . , ak ∈ Q∗+. Then

Q (n1
√

a1 , . . . , nk
√

ak ) = Q (n1
√

a1 + · · ·+ nk
√

ak ). ¤

We are now going to present the promised one-and-a-half-line proof of Theorem 2.9:

Proof. If n1
√

a1 + · · · + nr
√

ar ∈ Q then Q (n1
√

a1 , . . . , nr
√

ar ) = Q (n1
√

a1 + · · · + nr
√

ar ) = Q by

Theorem 2.11, so n1
√

a1 , . . . , nr
√

ar ∈ Q . QED

3 Some basic concepts and facts of Cogalois Theory

In this section we will briefly explain those basic concepts and results of Cogalois Theory that

have been used in proving the main result of Section 2. In contrast with the results and facts

presented in the previous two sections, which can be easily understood even by a high school

student, from now on, the reader is assumed to have a certain background of Field Theory,

including the Fundamental Theorem of Galois Theory, at an undergraduate level.

Cogalois Theory , a fairly new area in Field Theory born approximately 25 years ago, inves-

tigates field extensions possessing a so called Cogalois correspondence. The subject is somewhat

dual to the very classical Galois Theory dealing with field extensions possessing a Galois cor-

respondence; this is the reason to use the prefix “co”. In order to explain the meaning of such

extensions we start with some standard notation that will be used in the sequel.

A field extension, for short, extension, is a pair (F,E) of fields, where F is a subfield of

E, and in this case we write E/F . By an intermediate field of an extension E/F we mean any

subfield K of E with F ⊆ K, and the set of all intermediate fields of E/F is a complete lattice

that will be denoted by I(E/F ).

Throughout this section F always denotes a field and Ω a fixed algebraically closed field

containing F as a subfield. Any algebraic extension of F is supposed to be a subfield of Ω.

For an arbitrary nonempty subset S of Ω and a number n ∈ N∗ we denote throughout this

section S∗ := S \ {0} and µn(S) := { x ∈ S | xn = 1 }. By a primitive n-th root of unity we

mean any generator of the cyclic group µn(Ω); ζn will always denote such an element. When

Ω = C, then we can choose a canonical generator of the cyclic group µn(C) of order n, namely

cos(2π/n) + i sin(2π/n).
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For an arbitrary group G, the notation H 6 G means that H is a subgroup of G. The

lattice of all subgroups of G will be denoted by L(G). For any subset M of G, 〈M〉 will denote

the subgroup of G generated by M . For any set S, |S| will denote the cardinal number of S.

For a field extension E/F we denote by [E : F ] the degree, and by Gal (E/F ) the Galois

group of E/F . If E/F is an extension and A ⊆ E, we denote by F (A) the smallest subfield of

E containing both A and F as subsets, called the subfield of E obtained by adjoining to F the

set A. For all other undefined terms and notation concerning basic Field Theory the reader is

referred to Bourbaki [12], Karpilovsky [16], and/or Lang [18].

In general, I(E/F ) is a complicated-to-conceive, potentially infinite set of hard-to-describe-

and-identify objects, so, an interesting but difficult problem in Field Theory naturally arises:

Problem 3.1. Describe in a satisfactory manner the set I(E/F ) of all intermediate fields of

a given extension E/F . ¤

Another important problem in Field Theory is the following one:

Problem 3.2. Effectively calculate the degree of a given extension E/F . ¤

Answers to these two Problems are given for particular field extensions by Galois Theory ,

invented by Évariste Galois (1811-1832), and by Kummer Theory invented by Ernst Kummer

(1810-1873). We briefly recall the solution offered by Galois Theory in answering the two

problems presented above.

The Fundamental Theorem of Galois Theory (FTGT). If E/F is a finite Galois exten-

sion with Galois group Γ, then the canonical map

α : I(E/F ) −→ L(Γ), α(K) = Gal(E/K),

is a lattice anti-isomorphism, i.e., a bijective order-reversing map. Moreover, [E : F ] = |Γ|. ¤

Thus, Galois Theory reduces the investigation of intermediate fields of a finite Galois exten-

sion E/F to the investigation of subgroups of its Galois group Gal(E/F ), which are far more

benign objects than intermediate fields.

But, the Galois group of a given finite Galois extension E/F is in general difficult to be

concretely described. So, it will be desirable to impose additional conditions on the extension

E/F such that the lattice I(E/F ) be isomorphic (or anti-isomorphic) to the lattice L(∆) of all

subgroups of some other group ∆, easily computable and appearing explicitly in the data of

the given Galois extension E/F . A class of such Galois extensions is that of classical Kummer

extensions, for which a so called Kummer Theory , including the Fundamental Theorem of

Kummer Theory (FTKT) has been invented. We will not discuss them here.

On the other hand, there is an abundance of field extensions which are not necessarily

Galois, but enjoy a property similar to that in FTKT or is dual to that in FTGT. These are the

extensions E/F possessing a canonical lattice isomorphism (and not a lattice anti-isomorphism
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as in the Galois case) between I(E/F ) and L(∆), where ∆ is a certain group canonically

associated with the extension E/F . We call them extensions with ∆-Cogalois correspondence.

Their prototype is the field extension

Q (n1
√

a1 , . . . ,nr
√

ar )/Q ,

where r, n1, . . . , nr ∈ N∗, a1, . . . , ar ∈ Q∗+ and ni
√

ai is the positive real ni-th root of ai for

each i, 1 6 i 6 r. For such an extension, the associated group ∆ is the factor group

Q∗〈n1
√

a1 , . . . , nr
√

ar 〉/Q∗.

Roughly speaking, Cogalois Theory investigates finite radical extensions, i.e.,

F (n1
√

a1 , . . . , nr
√

ar )/F

where F is an arbitrary field, r, n1, . . . , nr ∈ N∗, a1, . . . , ar ∈ F ∗ and ni
√

ai ∈ Ω is an ni-th

root of ai, ∀ i, 1 6 i 6 r. In the most cases

∆ = F ∗ 〈n1
√

a1 , . . . , nr
√

ar 〉/F ∗.

In our opinion, this theory was born in 1986 when the fundamental paper of Cornelius Greither

and David K. Harrison [15] has been published. Note that, like in the case of Galois Theory,

where an infinite Galois Theory exists, an infinite Cogalois Theory has been invented in 2001

by Albu and Ţena [5]. Further, the infinite Cogalois Theory has been generalized in 2005 to

arbitrary profinite groups by Albu and Basarab [2], leading to a so called abstract Cogalois

Theory for such groups.

We are now going to present the basic concept of Cogalois Theory, namely that of G-

Cogalois extension we referred after Remark 2.10. To do that, we need first to define the

following notions: Cogalois group, radical extension, Cogalois extension, G-radical extension,

G-Kneser extension, strongly G-Kneser extension, and Kneser group.

For any extension E/F we denote

T (E/F ) := { x ∈ E∗ | xn ∈ F ∗ for some n ∈ N∗ }.

Clearly F ∗ 6 T (E/F ) 6 E∗, so it makes sense to consider the quotient group T (E/F )/F ∗,

which is nothing else than the torsion group t(E∗/F ∗) of the quotient group E∗/F ∗, called

the Cogalois group of the extension E/F and denoted by Cog (E/F ). This group, introduced

by Greither and Harrison [15], plays a major role in Cogalois Theory and is somewhat dual to

the Galois group of E/F , which explains the terminology.

Notice that the Cogalois group of a finite extension could be infinite, but a nice result due to

Greither and Harrison [15] states that the Cogalois group of any extension of algebraic number

fields is finite. Recall that an algebraic number field is any subfield K of C such that K/Q is

a finite extension.
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Observe that for every element x ∈ T (E/F ) there exists an n ∈ N∗ such that xn = a ∈ F ,

and in this case x is usually denoted by n
√

a and is called an n-th radical of a. Thus, T (E/F )

is precisely the set of all “radicals” belonging to E of elements of F ∗. This observation suggests

to define a radical extension as being an extension E/F such that E is obtained by adjoining to

the base field F an arbitrary set R of “radicals” over F , i.e., E = F (R) for some R ⊆ T (E/F ).

Obviously, one can replace R by the subgroup G = F ∗〈R〉 generated by F ∗ and R of the

multiplicative group E∗ of E. Thus, any radical extension E/F has the form E = F (G),

where F ∗ 6 G 6 T (E/F ). Such an extension is called G-radical . A finite extension E/F is

said to be G-Kneser if it is G-radical and |G/F ∗| = [E : F ]. The extension E/F is called

Kneser if it is G-Kneser for some group G.

The next result, due to Kneser [17], is one of the major tools of Cogalois Theory.

Theorem 3.3 (The Kneser Criterion [17]). The following assertions are equivalent for a

finite separable G-radical extension E/F .

(1) E/F is a G-Kneser extension.

(2) For every odd prime p, ζp ∈ G =⇒ ζp ∈ F , and 1± ζ4 ∈ G =⇒ ζ4 ∈ F . ¤

A subextension of a Kneser extension is not necessarily Kneser; so, it makes sense to consider

the extensions that inherit for subextensions the property of being Kneser, which will be called

strongly Kneser . More precisely, an extension E/F is said to be strongly G-Kneser if it is

a finite G-radical extension such that, for every intermediate field K of E/F , the extension

K/F is K∗ ∩G-Kneser. The extension E/F is called strongly Kneser if it is strongly G-Kneser

for some group G. The next result relates these extensions with those possessing a Cogalois

correspondence:

Theorem 3.4. (Albu & Nicolae [3]). The following assertions are equivalent for a finite G-

radical extension E/F.

(1) E/F is strongly G-Kneser.

(2) E/F is G-Kneser with G/F ∗-Cogalois correspondence, i.e., the canonical maps

ϕ : I(E/F ) −→ L(G/F ∗), ϕ(K) = (K ∩G)/F ∗,

ψ : L(G/F ∗) −→ I(E/F ), ψ(H/F ∗) = F (H),

are isomorphisms of lattices, i.e., bijective order preserving maps, inverse to one another.

¤

In the theory of strongly G-Kneser extensions the most interesting are those which addition-

ally are separable. They are called G-Cogalois extensions and are completely and intrinsically

characterized by means of the following very useful criterion.
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Theorem 3.5 (The n-Purity Criterion, Albu & Nicolae [3]). The following assertions are

equivalent for a finite separable G-radical extension E/F with exp(G/F ∗) = n ∈ N∗.

(1) E/F is G-Cogalois.

(2) E/F is a G-Kneser extension with G/F ∗-Cogalois correspondence.

(3) E/F is n-pure, i.e., µp(E) ⊆ F for all p, p odd prime or 4, with p | n. ¤

Recall that the exponent exp(T ) of a multiplicative group T with identity element e is the

least number m ∈ N∗ (if it exists) with the property that tm = e, ∀ t ∈ T .

Theorem 3.6. (Albu & Nicolae [3]) Let E/F be an extension which is simultaneously G-

Cogalois and H-Cogalois. Then G = H. ¤

In view of Theorem 3.6, the group G of any G-Cogalois extension E/F is uniquely de-

termined, so, it makes sense to define the Kneser group of E/F as the factor group G/F ∗,

denoted by Kne(E/F ). Observe that Kne(E/F ) 6 Cog(E/F ).

Examples 3.7. G-Cogalois extensions play in Cogalois Theory the same role as that of Galois

extensions in Galois Theory. The n-Purity Criterion (Theorem 3.5) provides plenty of such

extensions:

(A) Q (n1
√

a1 , . . . , nr
√

ar )/Q , with

Kne (Q (n1
√

a1 , . . . , nr
√

ar )/Q) = Q∗〈n1
√

a1 , . . . , nr
√

ar 〉/Q.

(B) Cogalois extensions (i.e., radical extensions E/F such that |Cog (E/F )| = [ E : F ] , or

equivalently, T (E/F )-Kneser extensions), with

Kne(E/F ) = Cog (E/F ).

(C) Classical Kummer extensions E/F , E = F (n1
√

a1 , . . . , nr
√

ar )/F , and various of its gener-

alizations, including generalized Kummer extensions, Kummer extensions with few roots

of unity, and quasi-Kummer extensions (see Albu [1] for definitions), with

Kne(E/F ) = F ∗ 〈n1
√

a1 , . . . , nr
√

ar 〉/F ∗. ¤
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4 Some applications of Cogalois Theory

Cogalois Theory has nice applications to elementary Field Arithmetic, to Algebraic Number

Theory, to binomial ideals and Gröbner bases, etc. (see [1], [8]). Many of them cannot be

performed without involving the tools of Cogalois Theory.

We present below four of these applications, especially those answering the Problems 3.1

and 3.2 discussed in the previous section. Note that most of these applications hold in a more

general context.

A1. Effective degree computation: For any r, n1, . . . , nr ∈ N∗, a1, . . . , ar ∈ Q∗+, let ni
√

ai

denote the positive real ni-th root of ai, 1 6 i 6 r. Then

[Q (n1
√

a1 , . . . , nr
√

ar ) : Q ] = |Q∗〈n1
√

a1 , . . . , nr
√

ar 〉/Q∗|.

This follows immediately from the Kneser Criterion (Theorem 3.3). Indeed, the extension

Q (n1
√

a1 , . . . , nr
√

ar )/Q is clearly Q∗〈n1
√

a1 , . . . , nr
√

ar 〉 -Kneser because there are no primitive

p-th roots of unity, p > 3, inside Q (n1
√

a1 , . . . , nr
√

ar ) ⊆ R. ¤

A2. Finding effectively all intermediate fields: We are going to describe all the subfields of

E := Q ( 4
√

12 , 6
√

108 ), that is, all the intermediate fields of the extension E/Q. By Example

3.7 (A), the extension E/Q is G-Cogalois, so, by Theorem 3.5, I(E/Q) is easily described by

L(Kne(E/Q)), where Kne(E/Q) = Q∗〈 4̂
√

12 , 6̂
√

108 〉/Q∗ and x̂ denotes for any x ∈ R∗ its

coset xQ∗ in the quotient group R∗/Q∗.
A simple calculations shows that Kne(E/Q) is a cyclic group of order 12 generated by ĉ,

where c = 4
√

12 · 6
√

108 = 12
√

20, 155, 392. Consequently all its subgroups are precisely:

〈 ĉ 〉, 〈 ĉ2 〉, 〈 ĉ3 〉, 〈 ĉ4 〉, 〈 ĉ6 〉, 〈 ĉ12 〉.

Thus, all the subfields of E are exactly

Q, Q(c), Q(c2), Q(c3), Q(c4), Q(c6),

where c = 12
√

20, 155, 392. ¤

A3. Finding effectively a primitive element : Let F be an arbitrary subfield of R, let

k, n1, . . . , nk ∈ N∗, let a1, . . . , ak ∈ F ∗
+ and let ni

√
ai denote the positive real ni-th root of ai,

1 6 i 6 r. Then

F (n1
√

a1 , . . . , nr
√

ar ) = F (n1
√

a1 + · · ·+ nr
√

ar ).

Indeed, by the n-Purity Criterion (Theorem 3.5), the extension F (n1
√

a1 , . . . , nr
√

ar )/F is G-

Cogalois because F (n1
√

a1 , . . . , nr
√

ar ) ⊆ R, and hence there are no primitive p-th roots of unity,

p > 3, inside F (n1
√

a1 , . . . , nr
√

ar ). By Albu [1, Corollary 8.1.4], n1
√

a1 +· · ·+ nr
√

ar is a primitive

element of the extension F (n1
√

a1 , . . . , nr
√

ar )/F . ¤

A4. The generalized Folklore Theorem: With the notation and hypotheses of A3, one has
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n1
√

a1 + · · ·+ nk
√

ak ∈ F ⇐⇒ ni
√

ai ∈ F, ∀ i, 1 6 i 6 k,

Indeed, assume that n1
√

a1 + · · ·+ nk
√

ak ∈ F . Then

F (n1
√

a1 , . . . , nr
√

ar ) = F (n1
√

a1 + · · ·+ nr
√

ar ) = F

by A3, so n1
√

a1 , . . . , nr
√

ar ∈ F , as desired. ¤
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