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Introduction

The aim of this paper is to state and prove a latticial version of the renown Osofsky-Smith

Theorem [12, Theorem 1] saying that a cyclic right R-module having all of its subfactors

extending (i.e., CS) is a finite direct sum of uniform submodules. Though the Osofsky-Smith

Theorem is a module-theoretical result, that can be also formulated and proved in a categorical

setting as it is suggested in [12] (see [6] for such a setting), our contention is that it is a result

of a strong latticial nature.

In Section 0 we present the terminology, notation, and basic results on lattices which will

be needed in the sequel.

Section 1 is devoted to CC lattices (acronym for C losed elements are Complements). These

are the latticial counterparts of CS modules (acronym for Complements submodules are direct

Summands).

Section 2 is devoted to prove a key technical result concerning lattices having ACC on

complements, needed in the proof of the latticial Osofsky-Smith Theorem.

In Section 3 we state and prove a version of the module-theoretical Osofsky-Smith Theorem

for compact, compactly generated, modular lattices. Applications to Grothendieck categories

and module categories equipped with a torsion theory will be given in a subsequent paper.

∗The author gratefully acknowledges partial financial support from the grant PN II - IDEI 443, code
1190/2008, awarded by the CNCSIS - UEFISCSU, Romania.
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0 Preliminaries

The aim of this section is to present the terminology, notation, and basic results on lattices

which will be needed in the sequel.

We use N to denote the set {1, 2, . . .} of all positive integers. All lattices considered in this

paper are assumed to have a least element denoted by 0 and a last element denoted by 1. We

denote by L (resp. M, U ) the class of all lattices (resp. modular, upper continuous lattices).

Throughout the paper a lattice will always mean a member of L, and (L , 6 , ∧ , ∨ , 0 , 1), or

more simply, just L, will always denote such a lattice. If the lattices L and L′ are isomorphic,

we denote this by L ' L′. The (uniform) Goldie dimension of L will be denoted by u(L).

For a lattice L and elements a 6 b in L we write

b/a := [a, b] = { x ∈ L | a 6 x 6 b },

[a, b[ := { x ∈ P | a 6 x < b }.

A subfactor of L is any interval b/a of L with a < b. We say that the interval b/a is simple

if a 6= b and b/a = {a, b}. If a < b are elements of L and there is no c ∈ L such that

a < c < b, then we say that a is covered by b, and we write a ≺ b. Thus, the interval b/a is

simple if and only if a ≺ b.

For a lattice L and a, b, c ∈ L, the notation a = b
·∨ c will mean that a = b ∨ c and

b ∧ c = 0, and we say that a is a direct join of b and c. Also, for a nonempty subset B

of L, we use the direct join notation a =
·∨

b∈B b if B is an independent subset of L and

a =
∨

b∈B b. Recall that a subset A of a complete lattice L is said to be join independent , or

just independent , if 0 6∈ A and a ∧∨
x∈A\{a} x = 0 for all a ∈ A.

An element c ∈ L is a complement in L if there exists an element a ∈ L such that

a∧ c = 0 and a∨ c = 1; we say in this case that c is a complement of a in L. One denotes by

D(L) the set of all complements of L. The lattice L is called indecomposable if L 6= {0} and

D(L) = {0, 1}, and a ∈ L is an indecomposable element if a/0 is an indecomposable lattice.

The lattice L is said to be complemented if every element of L has a complement in L.

An element a ∈ L is said to be an atom of L if the interval a/0 is simple, or equivalently,

if 0 ≺ a. We denote by A(L) the set, possibly empty, of all atoms of L. As in [11], the lattice

L is called semi-atomic if 1 is a join of atoms of L. The socle Soc(L) of L is the join of all

atoms of L. If L is a semi-atomic, upper continuous, modular lattice, then L is complemented,

and for every a 6 b in L, the interval b/a of L is also a semi-atomic lattice by [11, Theorem

1.8.2 and Corollary 1.8.4].

An element b ∈ L is a pseudo-complement in L if there exists an element a ∈ L such

that a ∧ b = 0 and b is maximal with this property; we say in this case that b is a pseudo-

complement of a. One denotes by P (L) the set of all pseudo-complement elements of L.

As in [13], L is called pseudo-complemented if every element of L has a pseudo-complement.

Note that in [14], L is called pseudo-complemented if for every a 6 b in L and for every

x ∈ b/a, there exists a pseudo-complement of x in b/a. Every upper continuous modular

lattice is pseudo-complemented.
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An element e ∈ L is essential in L if e∧x 6= 0 for every x 6= 0 in L. One denotes by E(L)

the set of all essential elements of L. The lattice L is called uniform if L 6= {0} and x∧ y 6= 0

for every nonzero elements x, y ∈ L. An element u of L is called uniform if the interval u/0

of L is a uniform lattice. As in [13], L is called E-complemented (“E” for essential) if for each

a ∈ L there exists b ∈ L such that a ∧ b = 0 and a ∨ b ∈ E(L).

An element c ∈ L is said to be closed if c 6∈ E(a/0) for all a ∈ L with c < a. One denotes

by C(L) the set of all closed elements of L. As in [13], the lattice L is called essentially closed

if for all a ∈ L, the set Sa = { e ∈ L | a ∈ E(e/0) } has a maximal element, or equivalently, for

any a ∈ L there exists c ∈ C(L) with a ∈ E(c/0). Note that any modular upper continuous

lattice is essentially closed.

An element c ∈ L is compact in L if whenever c 6
∨

x∈A x for a subset A of L, there is

a finite subset F of A such that c 6
∨

x∈F x. One denotes by K(L) the set of all compact

elements of L. The lattice L is said to be compact if 1 is a compact element in L, and

compactly generated if it is complete and every element of L is a join of compact elements.

Note that an element c of an upper continuous lattice is compact if and only if the lattice c/0

is compact, and any compactly generated lattice is upper continuous.

For all undefined notation and terminology on lattices, the reader is referred to [4], [5], [9],

and/or [14].

We list below two results that will be needed in the sequel.

Lemma 0.1. ([1, Lemma 2.1].) The following statements hold for a lattice L.

(1) If c ∈ K(L) and a ∈ L, then c ∨ a ∈ K(1/a).

(2) If L is compactly generated and a < b are elements of L, then b/a is compactly

generated, and for every k ∈ K(b/a), there exists c ∈ K(L) such that k = c ∨ a. ¤

We do not know whether the last part of Lemma 0.1, i.e.,

∀ a < b in L and ∀ k ∈ K(b/a) =⇒ ∃ c ∈ K(L) such that k = c ∨ a,

does hold without the assumption that L is compactly generated.

Lemma 0.2. (The Latticial Krull’s Lemma [1, Corollary 2.3]). If L is a complete

compact lattice and x < 1 in L, then there exists m ∈ L such that x 6 m and m is maximal

in [0, 1[. ¤

1 CC lattices, compact lattices, and CEK lattices

The purpose of this section is to present the concept of a CC lattice introduced in [2], as well

as its basic properties. We also discuss some properties of compact lattices and introduce the

concept of a CEK (acronym for C losed are E ssentially Compact) lattice and establish its main

properties.
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Recall that for a lattice L we use throughout this paper the following notation.

P (L) = the set of all pseudo-complement elements of L (P for “Pseudo”),

E(L) = the set of all essential elements of L (E for “Essential”),

C(L) = the set of all closed elements of L (C for “Closed”),

D(L) = the set of all complement elements of L (D for “Direct summand”),

K(L) = the set of all compact elements of L (K for “Kompakt”),

Definitions 1.1. ([2].) A lattice L is called CC (or extending) if for every x ∈ L there exists

d ∈ D(L) such that x ∈ E(d/0), and L is called completely CC (or completely extending) if

the interval 1/a is a CC (or extending) lattice for every a ∈ L. ¤

Lemma 1.2. ([2, Lemma 1.3].) The following assertions hold for a lattice L ∈M.

(1) D(L) ⊆ C(L) ∩ P (L).

(2) D(L) ∩ (d/0) = D(d/0) for every d ∈ D(L).

(3) d ∈ D(L) & d 6 a ∈ L =⇒ d ∈ D(a/0). ¤

The next result explain the term of CC lattice, acronym for C losed elements are Comple-

ments.

Proposition 1.3. ([2, Proposition 1.5].) The following statements hold for a lattice L ∈M.

(1) L is uniform =⇒ L is CC, and, if additionally L is indecomposable, then inverse impli-

cation “⇐=” also holds.

(2) If additionally L is essentially closed (in particular, if L is upper continuous) then

L is CC ⇐⇒ C(L) ⊆ D(L) ⇐⇒ C(L) = D(L).

(3) If additionally L is essentially closed and E-complemented (in particular, if L is upper

continuous) then

L is CC ⇐⇒ C(L) ⊆ D(L) ⇐⇒ C(L) = D(L) ⇐⇒ P (L) ⊆ D(L) ⇐⇒ P (L) = D(L). ¤

Proposition 1.4. ([2, Proposition 1.9].) Let L ∈ M be an essentially closed lattice (in

particular an upper continuous lattice). If L is a CC lattice then so is also d/0 for any

d ∈ D(L), in other words, the CC condition is inherited by “complement intervals”. ¤

Corollary 1.5. Let L ∈ M be an essentially closed CC lattice. Then L has finite Goldie

dimension if and only if 1 is a finite direct join of uniform elements of L.

Proof. One implication is clear. For the other one, assume that L has finite Goldie dimension.

Then L contains a uniform element v. Let c ∈ C(L) such that v ∈ E(c/0). Then c ∈ D(L)

because L is CC, so 1 = c
·∨ c′, for some c′ ∈ L. It follows that c′/0 is also CC by Proposition

1.4. Now observe that u(c′/0) < u(L), so the proof proceeds by induction on u(L).



THE OSOFSKY-SMITH THEOREM FOR MODULAR LATTICES (I) 5

Definitions 1.6. Let L be a lattice.

(1) An element a ∈ L is called essentially compact if there exists e 6 a such that e ∈
E(a/0) ∩K(L). We denote by Ek(L) the set of all essentially compact elements of L.

(2) L is called CEK (for Closed are Essentially Compact) if every closed element of L is

essentially compact, i.e., C(L) ⊆ Ek(L). ¤

The next result provides large classes of CEK lattices.

Proposition 1.7. Let L ∈M be a nonzero complete lattice having the following property:

(†) for every 0 6= x ∈ L there exists 0 6= k ∈ K(L) with k 6 x,

in particular, L can be any compactly generated lattice.

Then L has finite Goldie dimension if and only if each element of L is essentially compact,

i.e., L = Ek(L). In particular, any modular lattice with finite Goldie dimension satisfying (†)
is CEK.

Proof. Assume that L has finite Goldie dimension, and let a ∈ L. Then the interval a/0

has also finite Goldie dimension, so there exists an independent family (ui)16i6n of uniform

elements of a/0 such that
∨

16i6n ui ∈ E(a/0). By hypothesis, for every i, 1 6 i 6 n, there

exist 0 6= ki ∈ K(L) such that ki 6 ui. Then, if we set k :=
∨

16i6n ki and u :=
∨

16i6n ui,

we have k ∈ E(u/0) ∩K(L), so k ∈ E(a/0) ∩K(L), as desired.

Conversely, assume that L has infinite Goldie dimension. Then L\{0} contains an infinite

independent set {x1, x2, . . . }. Since L is a complete lattice, we may consider the element x :=∨
i∈N xi. Then x 6∈ Ek(L), for otherwise, it would exist c 6 x such that c ∈ E(x/0) ∩K(L).

There exists m ∈ N with c 6
∨

16i6m xi, and then

c ∧ xm+1 6
( ∨

16i6m

xi

) ∧ xm+1 = 0,

so c 6∈ E(x/0). This means that x 6∈ Ek(L), and we are done.

We do not know whether the condition (†) implies that L is compactly generated, but we

guess no.

Lemma 1.8. The following statements hold for a lattice L.

(1) If L ∈ M is a compact lattice, then so is d/0 for any d ∈ D(L). If additionally L is

upper continuous, then D(L) ⊆ K(L).

(2) If L is a compact lattice, so is also any of its quotient intervals 1/a.

(3) Assume that L ∈ U , and let a 6 b 6 c in L be such that the intervals b/a and c/b are

both compact lattices. Then c/a is also a compact lattice.

(4) If L is a complete compact lattice, then any lattice isomorphic to L is also compact.
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Proof. (1) Let d ∈ D(L). Then, there exists d′ ∈ L such that d ∨ d′ = 1 and d ∧ d′ = 0.

Let A ⊆ L be such that d =
∨

x∈A x. Because 1 is a compact element of L and 1 = d ∨ d′ =∨
x∈A(x ∨ d′), there exists a finite subset F of A such that

1 =
∨

x∈F

(x ∨ d′) =
( ∨

x∈F

x
) ∨ d′ = y ∨ d′,

where y :=
∨

x∈F x 6 d. By modularity, we have

d = (y ∨ d′) ∧ d = y ∨ (d ∧ d′) = y ∨ 0 = y =
∨

x∈F

x,

which shows that d is a compact element of d/0, as desired.

Assume now that additionally L ∈ U and let d ∈ D(L). In order to show that d is a

compact element of L, it is sufficient to show that if A ⊆ L is a directed subset such that

d 6
∨

a∈A a, then d 6 a0 for some a0 ∈ A. By upper continuity, we have d =
∨

a∈A(a ∧ d).

Continue as above, with a∧ d instead of x in d =
∨

x∈A x, to get a finite subset G of A such

that d =
∨

a∈G(a ∧ d). But A has been assumed to be a directed set, so d 6 a0 for some

a0 ∈ A, and we are done.

(2) This is obvious.

(3) Without loss of generality we may assume that a = 0 and c = 1. So, we have to prove

that if b is compact in b/0 and 1 is compact in 1/b, then 1 is compact in 1/0 = L. Let D

be a directed subset of L such that 1 =
∨

x∈D x. By upper continuity, we have

b =
∨

x∈D

(x ∧ b),

so b = y ∧ b, i.e., b 6 y for some y ∈ D because b is compact in b/0.

On the other hand, we have 1 =
∨

x∈D(x ∨ b), so 1 = z ∨ b for some z ∈ D because 1 is

compact in 1/b. There exist now t ∈ D with y 6 t and z 6 t since D is a directed subset.

It follows that b 6 y 6 t and 1 = t∨ b 6 t, so 1 = t ∈ D, which shows that 1 is compact in L.

(4) Observe first that if f : L −→ L′ is a lattice isomorphism of complete lattices, then

clearly

f
(∨

i∈I

xi

)
=

∨

i∈I

f(xi)

for any family (xi)i∈I of elements of L. This easily implies that f(c) ∈ K(L′) for any

c ∈ K(L); in particular 1′ = f(1) ∈ K(L′) if 1 is a compact element of L, that is, L′ is

compact if so is L.

Lemma 1.9. Let {0} 6= L ∈ M ∩ U , and let (xi)i∈I be a nonempty independent family of

elements of L. Assume that for every i ∈ I there exists mi ∈ L such that mi ≺ xi. Denote

m′
i :=

∨
j∈I\{i}mj and ai := xi ∨m′

i for every i ∈ I.

Then (ai)i∈I is an independent family of atoms of the interval
(∨

i∈I xi

)
/
(∨

i∈I mi

)
of L

whose join is
∨

i∈I xi, and so, the interval
(∨

i∈I xi

)
/
(∨

i∈I mi

)
is a semi-atomic lattice.
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Proof. For simplicity, set m :=
∨

i∈I mi and x :=
∨

i∈I xi. Then, for every i ∈ I, we have by

modularity

ai/m = (xi ∨m′
i)/m = (m ∨ xi)/m ' xi/(m ∧ xi) = xi/mi

because m ∧ xi = (mi ∨ m′
i) ∧ xi = mi ∨ (m′

i ∧ xi) and m′
i ∧ xi 6

(∨
j∈I\{i} xj

) ∧ xi = 0.

Thus ai/m ' xi/mi is a simple interval because mi ≺ xi, so ai is an atom of x/m. Clearly,

x =
∨

i∈I ai, so x/m is a semi-atomic lattice.

We are now going to show that (ai)i∈I is an independent family of atoms of the interval

x/m, i.e.,

ai ∧
( ∨

j∈I\{i}
aj

)
= m

for all i ∈ I.

For a fixed i ∈ I we have

ai ∧
( ∨

j∈I\{i}
aj

)
= (xi ∨m′

i) ∧
( ∨

j∈I\{i}
aj

)
= (xi ∨m′

i) ∧ (mi ∨ x′i) = (xi ∨m′
i) ∧ yi,

where

x′i :=
∨

j∈I\{i}
xj and yi := mi ∨ x′i.

Observe that m′
i 6 yi, so, using repeatedly the modularity, we obtain

(xi ∨m′
i) ∧ yi = (xi ∧ yi) ∨m′

i = (xi ∧ (mi ∨ x′i)) ∨m′
i = (mi ∨ (xi ∧ x′i)) ∨m′

i = m,

as desired.

Lemma 1.10. Let {0} 6= L ∈ M ∩ U be a semi-atomic lattice, and let (ai)i∈I be an inde-

pendent family of atoms of L such that 1 =
·∨

i∈I ai. Then, the following statements hold.

(1) L is compact if and only if I is finite.

(2) If I is infinite, then there exists an independent family (ci)i∈I of non compact elements

of L such that 1 =
·∨

i∈I ci and each ci is a direct join of a countable subfamily of the

given family (aj)j∈I of atoms of L.

Proof. (1) If I is finite, then L is compact because 1 is a finite join of atoms, which are all

compact elements.

Conversely, if I is infinite then L has infinite Goldie dimension, so 1 =
·∨

i∈I ai is not a

compact element, i.e., L is not compact.

(2) If I is infinite, then |I| = |I| · ℵ0, where |I| means the cardinal number of the set

I. So, one can partition I as a union I =
⋃

λ∈Λ Iλ of a family (Iλ)λ∈Λ of mutually disjoint

sets indexed by an index set Λ with |Λ| = |I| and such that |Iλ| = ℵ0 for all λ ∈ Λ. Set

cλ :=
·∨

i∈Iλ
ai for every λ ∈ Λ. Then, by (1), all cλ, λ ∈ Λ, are not compact elements of L, and

1 =
·∨

λ∈Λ cλ. To finish the proof, note that one can replace Λ with I because |Λ| = |I|.
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2 Lattices with ACC on complements

In this section we establish a very technical result that is the key point in proving the Latticial

Osofsky-Smith Theorem.

Lemma 2.1. Let L be a compact, compactly generated, modular lattice. Assume that all

compact subfactors b/a of L are CEK, i.e., every c ∈ C(b/a) is an essentially compact

element of b/a. Then D(L) is Noetherian poset.

Proof. First, observe that the given lattice L being compactly generated is also upper continu-

ous. We will adapt the module theoretical proofs of [7, Theorem 7.12] and [10, Theorem 6.44]

to our latticial setting. Note that the adaptation is not always so straightforward because we

have to avoid some module theoretical tools and results used in the module case that do not

work in a latticial frame.

Step 1: Assume that D(L) is not a Noetherian poset. Then, there exists an infinite

ascending chain

a1 < a2 < a3 < . . .

of elements of D(L).

We have 1 = a1
·∨ b1, so a2 = a2∧ (a1∨ b1) = a1∨ (a2∧ b1) = a1

·∨ (a2∧ b1) by modularity.

It follows that a2 ∧ b1 ∈ D(L), and hence a2 ∧ b1 ∈ D(b1/0) by Lemma 1.2 (2). Let b2 ∈ b1/0

be such that b1 = b2
·∨ (a2 ∧ b1). Then b2 ∈ D(L), so 1 = a2

·∨ b2. Repeating this procedure

we obtain an infinite descending chain

b1 > b2 > b3 > . . .

of elements of D(L) such that 1 = aj
·∨ bj for all j > 1. By Lemma 1.2 (2), for each j > 1

there exists cj ∈ D(L) with bj = bj+1
·∨ cj+1 for some 0 6= cj+1 ∈ D(L). If we set c1 = a1,

then, by recurrence, we have

1 = c1
·∨ c2

·∨ . . .
·∨ cn

·∨ bn and
∨

j>n+1

cj 6 bn

for all n > 1. Note that (cn)n>1 is an independent family of elements of L because so is any

of its finite subfamily.

Since L is compact and cj ∈ D(L), we deduce by Lemma 1.8 (1) that the interval cj/0

is also compact for every j > 1. Now, apply the Latticial Krull Lemma (Corollary 0.2) to

deduce that there exists mj ∈ L with mj ≺ cj for all j > 1. For simplicity, set

m :=
∨

j∈N
mj , c :=

∨

j∈N
cj , M := 1/m, C := c/m.

By Lemma 1.9, C is a semi-atomic sublattice of the compact lattice M .

Step 2: We claim that
( ·∨

16i6n

ci

) ∨m ∈ D(M)
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for all n ∈ N. More precisely, we are going to prove that

(( ·∨

16i6n

ci

) ∨m
) ·∨ (bn ∨m) = 1.

To do that, for a fixed n ∈ N, we set for simplicity

x :=
·∨

16i6n

ci, z :=
∨

16i6n

mi, and y := bn ∨m.

Since ∨

i>n+1

mi 6
∨

i>n+1

ci 6 bn, z 6 x, and x ∧ bn = 0,

we have by modularity

x ∧ y = x ∧ (bn ∨m) = x ∧ (
bn ∨ z ∨ ( ∨

i>n+1

mi

))
= x ∧ (bn ∨ z) = (x ∧ bn) ∨ z = 0 ∨ z = z.

Thus, again by modularity, we deduce that

(x ∨m) ∧ y = (x ∧ y) ∨m = z ∨m = m,

which, together with

(x ∨m) ∨ y = (x ∨ bn) ∨m = 1 ∨m = 1,

proves our claim.

Step 3: We are now going to prove that K(C) ⊆ D(M). Let k ∈ K(C). Then, by

compactness, there exists n ∈ N such that

k 6
( ·∨

16i6n

ci

) ∨m ∈ D(M) ∩ (c/m) = D(c/m) = D(C)

by Step 2 and Lemma 1.2. But C is a semi-atomic lattice, and so is also any of its subfac-

tors. Therefore k ∈ D
((( ·∨

16i6n ci

) ∨ m
)
/m

) ⊆ D(M) because any semi-atomic lattice is

complemented by [11, Theorem 1.8.2]. This shows that K(C) ⊆ D(M).

Step 4: Since the lattice M = 1/m is upper continuous, it is essentially closed, so, there

exists e ∈ M such that c ∈ E(e/m) is maximal, and then, e ∈ C(M). By hypothesis, e is

essentially compact in M . This means that there exists f ∈ E(e/m) ∩K(M). We claim that

c 6 f . Indeed, let a ∈ A(C), i.e., a is an atom of the semi-atomic lattice C = c/m. Since

f ∈ E(e/m) and m < a 6 c 6 e, we have f ∧ a 6= m. But m 6 f ∧ a 6 a, so f ∧ a = a

because a is an atom of c/m, and then a 6 f . Consequently,

c := Soc(c/m) =
∨

a∈A(c/m)

a 6 f,

which proves our claim. Now, observe that necessarily c < f , for otherwise, if c = f then the

semi-atomic lattice C = c/m = f/m would be compact, which is a contradiction.
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Step 5: By Lemma 1.10, we can express the top element c of the non compact semi-atomic

lattice C = c/m as

c =
·∨

j∈N
sj ,

where each sj is a non compact element of C. As above, for every j ∈ N there exists

dj ∈ f/m such that sj ∈ E(dj/m) and dj ∈ C(f/m), so, by hypothesis, dj ∈ Ek(f/m). This

implies that there exists fj ∈ E(dj/m)∩K(f/m) for every j ∈ N. Now observe that sj < dj ,

for otherwise, if sj = dj , then fj ∈ E(sj/m)∩K(f/m), and sj/m being a semi-atomic lattice

it would follow that sj = fj ∈ K(f/m), which is a contradiction. Therefore, c < dj ∨ c

for all j ∈ N, for otherwise dj 6 c, in which case sj ∈ E(dj/m) and dj ∈ c/m with c/m a

semi-atomic, hence complemented lattice, would imply that sj = dj , which we just showed

that is not possible.

As (sj)j∈N is an independent family of elements of f/m, it follows that the family (dj)j∈N
of elements of f/m is also independent because sj ∈ E(dj/m).

Step 6: Now, we claim that (dj ∨ c)j∈N is an independent family of elements of f/c. To

do that, it is sufficient to show that

(
(d1 ∨ c) ∨ . . . ∨ (dn ∨ c)

) ∧ (dn+1 ∨ c) 6 c

for every n ∈ N. Since si 6 di for all i ∈ N and c =
∨

i∈N si, we have by modularity

(
(d1 ∨ c) ∨ . . . ∨ (dn ∨ c)

) ∧ (dn+1 ∨ c) =
(
(d1 ∨ . . . ∨ dn) ∨ (sn+1 ∨ sn+2 ∨ . . .)

)∧
∧ (

(s1 ∨ . . . ∨ sn) ∨ (dn+1 ∨ sn+2 ∨ sn+3 ∨ . . .)
)

= (d ∨ a) ∧ (s ∨ b),

where, for simplicity, we have denoted

d := d1 ∨ . . . ∨ dn

s := s1 ∨ . . . ∨ sn

a := sn+1 ∨ sn+2 ∨ . . .

b := dn+1 ∨ sn+2 ∨ sn+3 ∨ . . .

Since a 6 s ∨ b and s 6 d we have by modularity

(d∨a)∧(s∨b) = (d∧(s∨b))∨a = (s∨(d∧b))∨a = (s∨m)∨a = s1∨. . .∨sn∨sn+1∨sn+2∨. . . = c.

Indeed, because (di)i∈N is an independent family of f/m, we have

d∧b = (d1∨ . . .∨dn)∧(dn+1∨sn+2∨sn+3∨ . . .) 6 (d1∨ . . .∨dn)∧(dn+1∨dn+2∨dn+3∨ . . .) = m

by [8, Lemma 1.4]. This proves that (dj ∨ c)j∈N is an independent family of elements of f/c.

Step 7: Set N := f/c. Since f ∈ K(M), it follows that N is a compact lattice. By

hypothesis, N is CEK. Let n ∈ N be such that
∨

i∈N(di∨c) ∈ E(n/c) and n is maximal in the

set {x ∈ N | ∨
i∈N(di∨ c) ∈ E(x/c)}. Then n ∈ C(N), hence there exists g ∈ E(n/c)∩K(N).
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Now, observe that g′i := g ∧ (di ∨ c) > c for all i ∈ N because g ∈ E(n/c), and so, we also

have g > c. If we set gi := g′i ∧ di = g ∧ di, then clearly we have si 6 gi 6 di for all i ∈ N.

We claim that gi 66 c. Indeed, if we assume that gi 6 c, then we have by modularity

g′i = g ∧ (di ∨ c) = (g ∧ di) ∨ c = gi ∨ c 6 c,

which contradicts g′i > c.

Since g ∈ K(N), by Lemma 0.1 (2) we can write g = h ∨ c for some h ∈ K(M), h > m.

Now, fix i ∈ N. Then gi 6 g = h ∨ c = h
·∨ k for some 0 < k 6 c. Indeed, since

C = c/m is a semi-atomic lattice, we have c = (c ∧ h)
·∨ k in C, for some m < k 6 c. So,

(c ∧ h) ∧ k = h ∧ k = m. It follows that

h ∨ c = h ∨ ((c ∧ h) ∨ k) = h ∨ k,

and h ∧ k = m, that is

h ∨ c = h
·∨ k

in M = 1/m.

Assume that gi ∧ h = m. Then, by modularity, we have

gi/m = gi/(gi ∧ h) ' (gi ∨ h)/h ⊆ (h ∨ c)/h = (h
·∨ k)/h ' k/(h ∧ k) = k/m ⊆ c/m.

Thus, gi/m is a semi-atomic lattice, because C = c/m is so. On the other hand, we know

that si ∈ E(di/m), and si 6 gi 6 di, so si ∈ E(gi/m). We deduce that gi = si 6 c, which is

a contradiction. Consequently, we must have gi ∧ h > m.

Step 8: As we have seen in Step 7, si ∈ E(gi/m), and then m 6= si ∧ (gi ∧ h) = si ∧ h.

Since m < si∧h 6 si and si/m is a semi-atomic lattice, we deduce that, for each i ∈ N there

exists an atom ti ∈ (si ∧ h)/m.

If we set t :=
∨

i∈N ti =
·∨

i∈N ti, then t/m is a semi-atomic lattice. Since h/m is essentially

closed, there exists l ∈ C(h/m) with t ∈ E(l/m). But h/m is a compact subfactor of L, so,

by hypothesis, it is CEK. It follows that there exists p ∈ E(l/m) ∩K(h/m).

We claim that t < p. Indeed, for each j ∈ N, p ∧ tj 6 tj , so, because m ≺ tj we have

either p∧ tj = tj , i.e., tj 6 p, or p∧ tj = m, which is not possible because p ∈ E(l/m). Thus

tj 6 p, ∀ j ∈ N, and then t 6 p. Now, t 6= p since p ∈ K(h/m) by its choice and t 6∈ K(h/m)

by Lemma 1.10 (1). This proves that t < p. It follows that c < p∨ c, for otherwise, we would

have t < p 6 c. Then p/m would be a semi-atomic lattice of finite Goldie dimension, and so

would be also t/m, which is a contradiction.

Step 9: We claim that

p ∧ ( ·∨

i∈N
di

)
6 c.

To show this observe that, for every n > 1, we have

(
p ∧ ( ·∨

16i6n

di

)) ∧ c = p ∧
(( ·∨

16i6n

di

) ∧ c

)
= p ∧ ( ·∨

16i6n

si

)
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= t ∧ ( ·∨

16i6n

si

)
=

( ·∨

i∈N
ti

) ∧ ( ·∨

16i6n

si

)
=

·∨

16i6n

ti.

Indeed, let a be an atom of the semi-atomic lattice
(
p ∧ ( ·∨

16i6n si

))
/m. Then m 6= a ∧ t

because t ∈ E(p/m) by Step 8, and so a 6 t. It follows that

p ∧ ( ·∨

16i6n

si

)
6 t.

Thus

p ∧ ( ·∨

16i6n

si

)
= t ∧ ( ·∨

16i6n

si

)
,

which proves that (
p ∧ ( ·∨

16i6n

di

)) ∧ c =
·∨

16i6n

ti.

But
·∨

16i6n ti ∈ K(C) ⊆ D(M) by Step 3, and so,
·∨

16i6n ti ∈ D(f/m) by Lemma

1.2 (3). Since c ∈ E(f/m) and p ∧ ( ·∨
16i6n di

) ∈ E
((

p ∧ ( ·∨
16i6n di

))
/m), we deduce that

(
p ∧ ( ·∨

16i6n

di

)) ∧ c ∈ E
((

p ∧ ( ·∨

16i6n

di

))
/m) ∩D

((
p ∧ ( ·∨

16i6n

di

))
/m).

This shows that (
p ∧ ( ·∨

16i6n

di

)) ∧ c = p ∧ ( ·∨

16i6n

di

)
,

i.e.,

p ∧ ( ·∨

16i6n

di

)
6 c.

Consequently, using the upper continuity of L we deduce that

p ∧ ( ·∨

i∈N
di

)
= p ∧ ( ∨

n∈N

( ·∨

16i6n

di

))
=

∨

n∈N

(
p ∧ ( ·∨

16i6n

di

))
6 c.

Step 10: Since si 6 di for all i ∈ N, we have c =
·∨

i∈N si 6
·∨

i∈N di , and so, by modularity

we obtain

(p ∨ c) ∧ ( ·∨

i∈N
(di ∨ c

))
= (p ∨ c) ∧ ( ·∨

i∈N
di

)
=

(
p ∧ ( ·∨

i∈N
di

)) ∨ c = c,

so

(p ∨ c) ∧ ( ·∨

i∈N
(di ∨ c)

)
= c.

But
·∨

i∈N (di ∨ c) ∈ E(n/c) and p ∨ c > c, so (p ∨ c) ∧ ( ·∨
i∈N (di ∨ c)

)
> c, which is a

contradiction. The proof of the lemma is now complete.
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Remarks 2.2. (1) The condition that the lattice L is compact is necessary in Lemma 2.1.

Indeed, let M be an infinite dimensional vector space over the field F , and let L denote

the lattice LF (M) of all submodules of F M . Then all compact subfactors b/a of L, i.e.,

all the lattices of all F -submodules of all finitely dimensional factor modules V/W , with

W 6 V 6 F M are CEK by Proposition 1.7, but D(L) is not Noetherian.

(2) We do not know whether Lemma 2.1 holds when replacing the condition that L is

compactly generated with the weaker one that L is upper continuous. Note that the compact

generation is used only when invoking once Lemma 0.1 (2) in the proof of Lemma 2.1 (see

Step 7). Actually one uses the following property of any compactly generated lattice L:

(∗) ∀ a < b in L, ∀ k ∈ K(b/a), ∃ c ∈ K(L) with k = c ∨ a,

and nothing else, so it seems that (∗) is actually the only fact from the assumption that L is

compactly generated needed in the proof of Lemma 2.1. Note that the property (∗) is exactly

the condition (P3) in Section 3, right after Corollary 3.5, for the class of all compact, compactly

generated, modular lattices. ¤

3 The Latticial Osofsky-Smith Theorem

In this section, based on Lemma 2.1, we prove the latticial version of the module-theoretical

Osofsky-Smith Theorem. Our contention is that the natural setting for this theorem is Lattice

Theory , being concerned as it is, with latticial concepts like essentiality, uniformity, comple-

mentarity, compactness, direct join in certain lattices.

The technical Lemma 2.1 shows that for compact, compactly generated lattices, modular

lattices L having all subfactors CEK, the poset D(L) is Noetherian i.e., the ACC holds for

complement elements of L. The next result, asserting that for lattices L possessing ACC

or DCC on complement elements, the last element of L is a direct join of finitely many

indecomposable elements of L, is a latticial version of a well known result about modules (see,

e.g., [3, Proposition 10.14]).

Lemma 3.1. Let {0} 6= L ∈M, and assume that the subset D(L) of L is either Noetherian

or Artinian. Then 1 is a direct join of a finitely many indecomposable elements of L.

Proof. Deny. Then L is not indecomposable, so we can write

1 = x1
·∨ y1

with x1, y1 ∈ D(L) \ {0, 1} such that y1 cannot be written as a direct join of finitely many

indecomposable elements of L. Then, we can write

y1 = x2
·∨ y2

with x2, y2 ∈ D(L) \ {0, 1} such that y2 cannot be written as a direct join of finitely many

indecomposable elements of L, and so on.
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Thus, we obtain the following infinite chains of elements of D(L):

x1 < x1
·∨ x2 < . . .

and

1 > y1 > y2 < . . .

which is a contradiction.

Lemma 3.2. Any modular, upper continuous, compact, CC lattice is CEK.

Proof. We have to show that C(L) ⊆ Ek(L). By Proposition 1.3 (2), this means that D(L) ⊆
Ek(L). So, let d ∈ D(L). Then d ∈ E(d/0) ∩K(L) by Lemma 1.8 (1), so L is CEK.

Remark 3.3. More generally, any modular, upper continuous, CC lattice L having an element

k ∈ K(L) ∩ E(L) is CEK.

Indeed, let c ∈ C(L). Then, as in the proof of Lemma 3.2, c ∈ D(L), so there exists

c′ ∈ L such that 1 = c
·∨ c′. Then k ∧ c ∈ E(c/0) because k ∈ E(L) by assumption. Now,

k ∈ K(L), so k/(k ∧ c′) is a compact lattice. By modularity, we have

k/(k ∧ c′) ' (k ∨ c′)/c′ ' ((k ∨ c′) ∧ c)/(c′ ∧ c) ' ((k ∨ c′) ∧ c)/0,

so ((k ∨ c′)∧ c)/0 is a compact lattice, and then m := (k ∨ c′)∧ c ∈ K(L) because L ∈ U . On

the other hand, m ∈ E(c/0) because k∧ c ∈ E(c/0) and k∧ c 6 m. Thus m ∈ E(c/0)∩K(L),

i.e., m ∈ Ek(L). Hence C(L) ⊆ Ek(L), which shows that the lattice L is CEK, as claimed. ¤

Theorem 3.4. (The Latticial Osofsky-Smith Theorem). Let L be a compact, com-

pactly generated, modular lattice. Assume that all compact subfactors of L are CC. Then 1

is a finite direct join of uniform elements of L.

Proof. By assumption, every compact subfactor of L is CC, so CEK by Lemma 3.2. Using

now Lemma 2.1, we deduce that D(L) is a Noetherian poset, so, by Lemma 3.1, 1 =
·∨

16i6n di

is a finite direct join of indecomposable elements of di of L. Since L is CC, so is also any di/0

by Proposition 1.4. Finally, every di is uniform by Proposition 1.3 (1), and we are done.

Corollary 3.5. Let L be a compact, compactly generated, modular lattice such that c/0 is a

completely CC lattice for every c ∈ K(L). Then 1 is a finite direct join of uniform elements

of L.

Proof. This is a reformulation of Theorem 3.4.

As in [10, Theorem 6.44], we are now going to extend the Latticial Osofsky-Smith Theorem

3.4, valid for any compact, compactly generated, modular lattice having all compact subfactors

CC, to more general lattices.

Denote by K the class of all compact lattices, and let P be a nonempty subclass of

K ∩M∩ U satisfying the following three conditions:

(P1) If L ∈ P, L′ ∈ L, and L ' L′ then L′ ∈ P.
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(P2) If L ∈ P then 1/a ∈ P, ∀ a ∈ L.

(P3) If L ∈ P and b/a ∈ P is a subfactor of L, then ∃ c ∈ L such that c/0 ∈ P and

b = a ∨ c.

We call P-compact the members of P. Examples of classes P satisfying the conditions

(P1)− (P3) above are:

• any ∅ ⊆ P ⊆ K ∩M∩ U such that L ∈ P =⇒ 1/a ∈ P & a/0 ∈ P, ∀ a ∈ L;

• the class of all compact, compactly generated, modular lattices (by Lemma 0.1);

• the class of all compact, semi-atomic, upper continuous, modular lattices;

• the class of lattices isomorphic to lattices of all submodules of all cyclic right R-modules.

For any lattice L we denote P(L) := { c ∈ L | c/0 ∈ P }, and call P-compact the elements

of P(L). Recall that for any lattice L we have denoted by K(L) the set of all compact elements

of L. Note that for c ∈ L, we have c ∈ K(L) =⇒ c/0 ∈ K, and c/0 ∈ K =⇒ c ∈ K(L) if

L ∈ U . It follows that ∅ 6= P(L) ⊆ K(L) for any L ∈ U .

Alternatively, instead of starting with a subclass ∅ 6= P ⊆ K ∩M∩ U and then defining

P(L) for any lattice L, we may start with subsets ∅ 6= P(L) ⊆ K(L) for any lattice L,

satisfying easily describable versions of conditions (P1)− (P3) above.

Let L be a lattice, and let ∅ 6= P ⊆ K∩M∩U satisfying the conditions (P1)−(P3) above.

An element a ∈ L is called essentially P if there exists e 6 a such that e ∈ E(a/0) ∩ P(L).

We denote by EP(L) the set of all essentially P elements of L. The lattice L is said to be

CEP (acronym for C losed are E ssentially P) if any closed element of L is essentially P, i.e.,

C(L) ⊆ EP(L).

Lemma 3.6. Let ∅ 6= P ⊆ K ∩M∩ U satisfying the conditions (P1) − (P3) above, and let

L ∈ P. Assume that all subfactors b/a ∈ P of L are CEP, i.e., every c ∈ C(b/a) is an

essentially P element of b/a. Then D(L) is Noetherian poset.

Proof. If we follow thoroughly the proof of Lemma 2.1 and keep the notation there, we observe

that

• ci ∈ P(L), because 1 ∈ P(L) and ci ∈ D(L), in Step 1 ,

• f ∈ E(e/m) ∩ P(M), so f/m ∈ P, in Step 4 ,

• fj ∈ E(sj/m) ∩ P(f/m), so fj/m ∈ P, in Step 5 ,

• N = f/c ∈ P because f/m ∈ P, in Step 7 ,

• g ∈ E(n/c) ∩ P(N), so g/c ∈ P, in Step 7 ,

• h ∈ P(L) in view of condition (P3), in Step 7 ,

• p ∈ E(l/m) ∩ P(h/m), so p/m ∈ P, in Step 8 .
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Consequently, the proof of Lemma 2.1 can be adapted word by word to the more general

hypotheses of Lemma 3.6.

Theorem 3.7. (The Latticial P-Osofsky-Smith Theorem). Let ∅ 6= P ⊆ K∩M∩U
satisfying the conditions (P1)− (P3) above, and let L ∈ P. Assume that all subfactors of L

in P are CC. Then 1 is a finite direct join of uniform elements of L.

Proof. The proof is similar to that of Theorem 3.4 using Lemma 3.6 instead of Lemma 2.1.

Corollary 3.8. Let ∅ 6= P ⊆ K ∩M ∩ U satisfying the conditions (P1) − (P3) above, and

let L ∈ P. Assume that c/0 is a completely CC lattice for every c ∈ P(L). Then 1 is a finite

direct join of uniform elements of L.

Proof. This is a reformulation of Theorem 3.7.

Corollary 3.9. Let ∅ 6= P ⊆ K∩M∩U satisfying the conditions (P1)− (P3) above. Then,

the following statements are equivalent for a compactly generated modular lattice L.

(1) L is semi-atomic.

(2) F is CC and K(F ) ⊆ D(F ) for every subfactor F ∈ P of L.

Proof. (1) =⇒ (2): As already mentioned in Section 0, any subfactor F of L is semi-atomic,

so complemented. If follows that F is CC and K(F ) ⊆ F = D(F ).

(2) =⇒ (1): Let c ∈ K(L) with C := c/0 ∈ P, in other words, c ∈ P(L). Then c is a

finite direct join of uniform elements of L by the Latticial P-Osofsky-Smith Theorem (Theorem

3.7) applied to C. Let d 6 c with d ∈ D(C) and d uniform. Then, for every d′ 6 d with

0 6= d′ ∈ K(L) one has d′ ∈ D(L) by hypothesis, so d′ ∈ D(d/0) by Lemma 1.2 (2). Since

d is uniform, we deduce that d′ = d, so d ∈ K(L). Let 0 6= b 6 d, and let 0 6= b′ 6 b with

b′ ∈ K(L). It follows that b′ ∈ D(d/0) and so, d = b′ 6 b 6 d. Thus, for any 0 6= b 6 d,

one has b = d. Consequently, d ∈ A(L), which implies that C = c/0 is a semi-atomic lattice.

Because L is a compactly generated lattice, 1 is a join of compact elements of L, so 1 is a join

of atoms of L, i.e., L is a semi-atomic lattice, as desired.

Remarks 3.10. (1) It is not clear whether the condition “F is CC” can be removed in

Corollary 3.9.

(2) Corollary 3.9 is a latticial version of the following module-theoretical result: “A right

R-module M is semisimple if and only if every cyclic subfactor of M is M -injective” (see [7,

Corollary 7.14]), which, in turn is a “modularization” of the well-known Osofsky’s Theorem

[?] saying that a ring R is semisimple if and only if every cyclic right R-module is injective.

Because we do not have in hand a good latticial substitute for the notion of an injective

module, the result above seems to be the best latticial version of the Osofsky’s Theorem. ¤

Theorems 3.4 and 3.7 suggest the following
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Definitions 3.11. A lattice L is said to be an Osofsky-Smith lattice if it is a compact, com-

pactly generated, modular lattice such that all compact subfactors of L are CC. A module MR

is said to be an Osofsky-Smith module if the lattice L(MR) of all submodules of M is an

Osofsky-Smith lattice.

For any class ∅ 6= P ⊆ K ∩M∩ U satisfying the conditions (P1)− (P3) above, a lattice

L is said to be a P-Osofsky-Smith lattice if L ∈ P and all subfactors of L in P are CC. ¤

It is clear how can be defined the concept of a D-Osofsky-Smith module, where D is a

nonempty class of modules satisfying the conditions (D1) − (D3) similar to the conditions

(P1) − (P3) defined above. By Theorem 3.4 (resp. Theorem 3.7) any Osofsky-Smith lattice

(resp. P-Osofsky-Smith lattice) L has the property that 1 is a finite direct join of uniform

elements of L, in particular has finite Goldie dimension, but not conversely: indeed, for any

prime number p, the lattice L of all submodules of the Z-module (Z/pZ) ⊕ (Z/p3 Z) is not

CC, so it is not an Osofsky-Smith lattice, but the greatest element (Z/pZ)⊕ (Z/p3 Z) of L is

the direct join of two uniform elements of L.

Remarks 3.12. (1) Clearly, if S denotes the class of all compact, semi-atomic, upper con-

tinuous, modular lattices, a lattice L is an S-Osofsky-Smith lattice if and only if 1 is a finite

direct union of uniform elements of L.

(2) It would be interesting to find other classes ∅ 6= P ⊆ K ∩M∩U of lattices for which

there is an identity between P-Osofsky-Smith lattices and lattices for which 1 a finite direct

union of uniform elements of L. ¤
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