# On generalized quasiregular mappings 

Mihai Cristea


#### Abstract

We study classes of continuous, open, discrete mappings satisfying some modular inequalities and we show that this thing ensures important geometric properties, extending partially known results from the theory of quasiregular mappings, like Liouville, Picard, Montel theorems or equicontinuity results. Most of the theorems are obtained in dimension $n=2$.


Keywords: mappings satisfying generalized modular inequalities.
AMS 2000 Subject Classification: 30C65.

## 1 Introduction.

If $D \subset \mathbf{R}^{n}$ is a domain, we say that a map $f: D \rightarrow \mathbf{R}^{n}$ is of finite distortion if $f \in$ $W_{l o c}^{1,1}\left(D, \mathbf{R}^{n}\right), J_{f} \in L_{l o c}^{1}(D)$ and there exists $K: D \rightarrow[0, \infty]$ measurable and finite a.e. so that $\left|f^{*}(x)\right|^{n} \leq K(x) \cdot J_{f}(x)$ a.e. If $f \in W_{\text {loc }}^{1, n}\left(D, \mathbf{R}^{n}\right)$ and $K \in L^{\infty}(D)$, we obtain the known class of quasiregular mappings. If the homeomorphism $f: D \rightarrow D^{\text {© }}$ between two domains from $\mathbf{R}^{n}$ is quasiregular, we say that $f$ is quasiconformal. For more information about the theory of quasiregular mappings, we send the reader to [22,23], [30-32].

If $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{R}^{n}$, we set $|x|=\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{\frac{1}{2}}$ and if $A \in \mathcal{L}\left(\mathbf{R}^{n}, \mathbf{R}^{n}\right) \operatorname{det} A \neq 0, p>0$, we set $|A|=\sup _{|h|=1}|A(h)|, l(A)=\inf _{|h|=1}|A(h)|, H(A)=|A| / l(A), K_{0, p}(A)=|A|^{p} /|\operatorname{det} A|, K_{I, p}(A)=$ $|\operatorname{det} A| / l(A)^{p}$, and we put $K_{0}(A)=K_{0, n}(A), K_{I}(A)=K_{I, n}(A)$. If $D \subset \mathbf{R}^{n}$ is a domain, $f: D \rightarrow \mathbf{R}^{n}$ is a.e. differentiable on $D$ and $J_{f}(x) \neq 0$ a.e. on $D$, we can define a.e. the mappings $K_{0, p}(f): D \rightarrow[0, \infty]$ by $K_{0, p}(f)(x)=K_{0, p}\left(f^{\prime}(x)\right)$ a.e. in $D$ and $K_{I, p}(f): D \rightarrow[0, \infty]$ by $K_{I, p}(f)(x)=K_{I, p}\left(f^{4}(x)\right)$ a.e. in $D$ and we set $K_{0}(f)=K_{0, n}(f), K_{I}(f)=K_{I, n}(f)$. If $D \subset \mathbf{R}^{n}$ is a domain, we define the map $H_{I, p}(f): D \rightarrow \mathbf{R}, H_{I, p}(f)(x)=K_{I, p}\left(f^{4}(x)\right)$ if $f$ is differentiable in $x$ and $J_{f}(x) \neq 0, H_{I, p}(f)(x)=0$ otherwise.

If $\Gamma$ is a path family from $\mathbf{R}^{n}$, we set $F(\Gamma)=\left\{\rho: \mathbf{R}^{n} \rightarrow[0, \infty]\right.$ Borel maps $\mid \int_{\gamma} \rho d s \geq 1$ for every $\gamma \in \Gamma$ locally rectifiable $\}$ and for $p>1$ we have the usual $p$-modulus $M_{p}(\Gamma)=$ $\inf _{\rho \in F(\Gamma)} \int_{\mathbf{R}^{n}} \rho^{p}(x) d x$. If $\omega: D \rightarrow[0, \infty]$ is measurable and finite a.e., $\omega>0$ a.e., we define the weight $p$-modulus of weight $\omega$ by $M_{\omega}^{p}(\Gamma)=\inf _{\rho \in F(\Gamma)} \int_{\mathbf{R}^{n}} \omega(x) \rho^{p}(x) d x$.

A quasiregular mapping is open and discrete and the known modular inequality of Poleckii says that if $f: D \rightarrow \mathbf{R}^{n}$ is quasiregular and $K_{I}(f) \leq K$, then $M_{n}(f(\Gamma)) \leq K M_{n}(\Gamma)$ for every path family $\Gamma$ from $D$. This modular inequality is the key for proving most of the important geometric properties of quasiregular mappings. If $f$ is a map of finite distortion and either $K_{I}(f) \in B M O(D)$ or $\exp \left(\mathcal{A} \circ K_{0}(f)\right) \in L_{l o c}^{1}(D)$ for some Orlicz function $\mathcal{A}$, then, using some weight modular inequalities, in [5-6], [12-15], [18-21], [24-25] are established a lot of geometric properties in this classes of functions. If $f: D \rightarrow D^{\star}$ is a ring homeomorphism, or if $f: D \rightarrow \mathbf{R}^{n}$
is a map of finite length distortion, recent results concerning equicontinuity and boundary extension are established in [16-17], [19], [26-29]. In [7] and [8] we give further extensions of this type using a generalized Poleckii's modular inequality of type ${ }^{\prime} M_{n}(f(\Gamma)) \leq M_{K_{I}(f)}^{n}(\Gamma)$ for every path family $\Gamma$ from $D$ " which is established in the new introduced class of mappings.

On the other side, in [9] and Chapter 12 from [19] are established for some classes of homeomorphisms $f: D \rightarrow D^{\star}$ (called homeomorphisms with finite mean dilatations), which are not necessarily quasiregular, modular inequalities of type ${ }^{\prime} M_{q}(f(\Gamma)) \leq \gamma\left(M_{p}(\Gamma)\right)$ for every path family $\Gamma$ from $D$, some $1<q<p$ and a continuous increasing function $\gamma:[0 . \infty) \rightarrow[0, \infty)$ with $\lim _{t \rightarrow 0} \gamma(t)=0$, namely $\gamma(t)=K t^{q / p}$ for $t \geq 0^{\prime \prime}$. This thing raises the question if for such mappings (or even for more general mappings) are valid some of the basic properties of quasiregular mappings. Anyway, for $p=q=n$ we remain in the class of quasiconformal mappings since in [4] it is proved that if $f: D \rightarrow D^{6}$ is a homeomorphism between two domains from $\mathbf{R}^{n}$ so that there exists a continuous, increasing function $\gamma:[0, \infty) \rightarrow[0, \infty)$ with $\lim _{t \rightarrow 0} \gamma(t)=0$ and so that $M_{n}(f(\Gamma)) \leq \gamma\left(M_{n}(\Gamma)\right)$ for every path family $\Gamma$ from $D$, then it results that $f$ is quasiconformal.

We shall show that the answer is positive, especially ini the case $n=2$. We show that if $D \subset \mathbf{R}^{n}$ is a domain, $n-1<q<p \leq n$ and $f: D \rightarrow \mathbf{R}^{n}$ is continuous, open, discrete so that there exists $\gamma:[0, \infty) \rightarrow[0, \infty)$ continuous, increasing with $\lim _{t \rightarrow 0} \gamma(t)=0$ and so that $M_{q}(f(\Gamma)) \leq \gamma\left(M_{p}(\Gamma)\right)$ for every path family $\Gamma$ from $\mathbf{R}^{n}$, then a lot of the classical results from the geometric theory of quasiregular mappings remain valid in this class of mappings.

In fact we establish more general results and we show that for some mappings satisfying modular inequalities, which are not necessary quasiregular and which are not a priori in some of the above mentioned classes of mappings studied in [5-9], [11-21], [24-29], we can prove equicontinuity, eliminability results, Picard, Montel theorems and we give estimates of the modulus of continuity.

We denote by $\mu_{n}$ the Lebesgue measure from $\mathbf{R}^{n}$, by $V_{n}$ the volume of the unit ball from $\mathbf{R}^{n}$ and by $\omega_{n-1}$ the area of the unit sphere from $\mathbf{R}^{n}$. If $a, b \in \overline{\mathbf{R}}^{n}$, we denote by $q(a, b)$ the chordal distance between $a$ and $b$ and $q(a, b)=|a-b| /\left(1+|a|^{2}\right)^{\frac{1}{2}} \cdot\left(1+|b|^{2}\right)^{\frac{1}{2}}$ if $a, b \in \mathbf{R}^{n}$, $q(a, \infty)=1 /\left(1+|a|^{2}\right)^{\frac{1}{2}}$ if $a \in \mathbf{R}^{n}$ and if $A \subset \overline{\mathbf{R}}^{n}$, we set $q(A)$ the diameter of $A$ considering the chordal metric on $\overline{\mathbf{R}}^{n}$.

If $E, F$ are Hausdorff spaces and $f: E \rightarrow F$ is a map, we say that $f$ is open if $f$-carries open sets into open sets and we say that $f$ is discrete if $f^{-1}(y)$ is discrete or empty for every $y \in F$. If $p:[0,1] \rightarrow F$ is a path and $x \in E$ is so that $f(x)=p(0)$, we say that $q:[0,1] \rightarrow E$ is a lifting of $p$ from $x$ if $q$ is a path, $q(0)=x, f \circ q=p$, and we say that $q:[0, a) \rightarrow E$ is a maximal lifting of $p$ from the point $x \in E$ so that $f(x)=p(0)$ if $q(0)=x, q$ is a path, $0<a \leq 1, f \circ q=p \mid[0, a)$ and $a$ is maximal with this property. If $D \subset \mathbf{R}^{n}$ is a domain, $f: D \rightarrow \mathbf{R}^{n}$ is continuous, open, discrete, $x \in D, p:[0,1] \rightarrow f(D)$ is a path so that $f(x)=p(0)$, there exists always a maximal lifting of $p$ from $x$.

If $D \subset \mathbf{R}^{n}$ is a domain, $b \in \partial D$ and $f: D \rightarrow \mathbf{R}^{n}$ is a map, we put $\mathbf{C}(f, b)=\{z \in$ $\overline{\mathbf{R}}^{n} \mid$ there exists $b_{p} \in D, b_{p} \rightarrow b$ so that $\left.f\left(b_{p}\right) \rightarrow z\right\}$ and if $A \subset D, y \in \mathbf{R}^{n}$, we put $N(y, f, A)=\operatorname{Cardf}^{-1}(y) \bigcap A$ and $N(f, A)=\sup _{y \in \mathbf{R}^{n}} N(y, f, A)$. Also, if $x \in D$, we set $L(x, f)=$ $\limsup _{h \rightarrow 0} \frac{|f(x+h)-f(x)|}{|h|}$.

If $D \subset \mathbf{R}^{n}$ is a domain, $E, F \subset \bar{D}$, we denote by $\Delta(E, F, D)=\{\gamma:[a, b] \rightarrow \bar{D}$ path $\mid \gamma(a) \in E, \gamma(b) \in F$ and $\gamma((a, b)) \subset D\}$ and if $x \in \bar{D}, 0<a<b$, we denote by $\Gamma_{x, a, b, D}=$ $\Delta(\bar{B}(x, a) \bigcap D, S(x, b) \bigcap D,(B(x, b) \backslash \bar{B}(x, a)) \bigcap D)$ and we set $\Gamma_{x, a, b}=\Gamma_{x, a, b, \mathbf{R}^{n}}$. If $D \subset \mathbf{R}^{n}$ is
a domain and $f: D \rightarrow \mathbf{R}$ is a map so that $f \in L_{l o c}^{1}(D)$, we set $\underset{A}{f} f(x) d x=\int_{A} f(x) d x / \mu_{n}(A)$ for every $A \subset D$ bounded.

If $p>1$, we denote by $W_{l o c}^{1, p}\left(D, \mathbf{R}^{m}\right)$ the Sobolev space of all functions $f: D \rightarrow \mathbf{R}^{m}$ which are locally in $L^{p}$ together with their first order weak derivatives. We say that $f$ is ACL if $f$ is continuous and for every cube $Q \subset D$ with the sides parallel to coordinate axes and every face $S$ of $Q$ it results that $f \mid P_{S}^{-1}(y) \bigcap Q: P_{S}^{-1}(y) \bigcap Q \rightarrow \mathbf{R}^{m}$ is absolutely continuous for a.e. $y \in S$, where $P_{S}: \mathbf{R}^{n} \rightarrow S$ is the projection on $S$. An ACL map has a.e. partial derivatives and if $p \geq 1$ we say that $f$ is $A C L^{p}$ if $f$ is $A C L$ and the partial derivatives are locally in $L^{p}$. We see from Prop. 1.2, page 66 from [23] that if $p \geq 1$ and $f \in C\left(D, \mathbf{R}^{m}\right)$, then $f$ is $A C L^{p}$ if and only if $f \in W_{l o c}^{1, p}\left(D, \mathbf{R}^{m}\right)$.

If $D \subset \mathbf{R}^{n}$ is a domain, $f: D \rightarrow \mathbf{R}^{n}$ is continuous, open, discrete, $x \in D$ and $r>0$ is so that $\bar{B}(x, r) \subset D$, we set $L(x, f, r)=\sup _{|y-x|=r}|f(y)-f(x)|, l(x, f, r)=\inf _{|y-x|=r}|f(y)-f(x)|$, $H(x, f)=\limsup _{r \rightarrow 0} \frac{L(x, f, r)}{l(x, f, r)}$, and we know that if $f$ is differentiable in $x$ and $J_{f}(x) \neq 0$, then $H(x, f)=H\left(f^{\prime}(x)\right)=\frac{\left|f^{f}(x)\right|}{l\left(f^{\prime}(x)\right)}$. It is known that a homeomorphism $f: D \rightarrow D^{*}$ between two domains from $\mathbf{R}^{n}$ is quasiconformal if and only if there exists $H \geq 1$ so that $H(x, f) \leq H$ for every $x \in D$.

If $X, Y$ are metric spaces and $W$ is a family of mappings $f: X \rightarrow Y$, we say that the family $W$ is equicontinuous at a point $x \in D$ if for every $\epsilon>0$, there exists $\delta_{\epsilon}>0$ so that $d(f(y), f(x)) \leq \epsilon$ if $d(x, y) \leq \delta_{\epsilon}$ for every $f \in W$, and we say that the family $W$ is equicontinuous if it is equicontinuous at every point $x \in X$. If $D \subset \mathbf{R}^{n}$ is a domain and $W$ is a family of mappings $f: D \rightarrow \mathbf{R}^{n}$, we say that the family $W$ is bounded if for every $K \subset D$ compact there exists $M(K)>0$ so that $|f(z)| \leq M(K)$ for every $z \in K$ and every $f \in W$.

We say that $\Phi:[0, \infty) \rightarrow[0, \infty)$ is a Young function if there exists $\varphi:[0, \infty) \rightarrow[0, \infty)$ continuous, increasing so that there exists $K>0$ so that $\varphi(2 t) \leq K \varphi(t)$ for every $t \geq 0$, $\Phi(t)=\int_{0}^{t} \varphi(s) d s$ for $t \geq 0$ and $\lim _{t \rightarrow \infty} \Phi(t)=\infty$.

Letting $B_{\Phi}=\left\{p>0 \left\lvert\, \frac{\Phi(t)}{t^{p}}\right.\right.$ is increasing $\}$ and $C_{\Phi}=\left\{p>0 \left\lvert\, \frac{\Phi(t)}{t^{p}}\right.\right.$ is deacreasing $\}$, we see that $B_{\Phi} \neq \phi, C_{\Phi} \neq \phi$ and if $p(\Phi)=\sup B_{\Phi}, q(\Phi)=\inf C_{\Phi}$, then $1 \leq p(\Phi) \leq q(\Phi)<\infty$. We also have that $\Phi(1) \lambda^{p(\Phi)} \leq \Phi(\lambda) \leq \Phi(1) \lambda^{q(\Phi)}$ if $\lambda \geq 1$, $\Phi(1) \lambda^{q(\Phi)} \leq \Phi(\lambda) \leq \Phi(1) \lambda^{p(\Phi)}$ if $\lambda<1$, and there exists $C>0$ so that $\Phi(\lambda) \leq C \lambda^{q(\Phi)}$ for every $\lambda \geq 0$ and $\Phi(\lambda t) \leq \Phi(t) \max \left\{\lambda^{p(\Phi)}, \lambda^{q(\Phi)}\right\}$ for $\lambda, t>0$.

## 2 The $M_{N}$ modulus.

We present the modulus used in this paper in the general setting of metric measure spaces, although we shall use it only on euclidian spaces.

We say that $(X, \mu, d)$ is a metric measure space if the Borel sets are measurable, $\mu$ is a regular measure and $d$ is a metric on $X$. If $\gamma:[a, b] \rightarrow X$ is a path and $\Delta=(a=$ $\left.t_{0}<t_{1}<, \ldots,<t_{n}=b\right) \in \mathcal{D}([a, b])$, we set $V_{\Delta}(\gamma)=\sum_{i=0}^{n-1} d\left(\gamma\left(t_{i}\right), \gamma\left(t_{i+1}\right)\right)$ and if there exists $M>0$ such that $V_{\Delta}(\gamma) \leq M$ for every $\Delta \in \mathcal{D}([a, b])$, we say that $\gamma$ is rectifiable and we put $l(\gamma)=\sup _{\Delta \in \mathcal{D}([a, b])} V_{\Delta}(\gamma)$. If $\gamma:[a . b] \rightarrow X$ is rectifiable, we set $s_{\gamma}(t)=l(\gamma \mid[a, t])$ for $t \in[a, b]$ and we define a reparametrisation $\gamma^{\circ}:[0, l(\gamma)] \rightarrow X$ of the path $\gamma$ given by $\gamma(t)=\gamma^{\circ}\left(s_{\gamma}(t)\right)$ for $t \in[a, b]$.

If $\gamma:[a, b] \rightarrow X$ is rectifiable and $\rho: X \rightarrow[0, \infty]$ is a Borel map, we set $\int_{\gamma} \rho d s=\int_{0}^{l(\gamma)} \rho\left(\gamma^{\circ}(t)\right) d t$ and if $\gamma:[a, b] \rightarrow X$ is locally rectifiable, we set $\int_{\gamma} \rho d s=\sup \int_{\alpha} \rho d s$, where the supremum is taken over all closed subpaths $\alpha$ for $\gamma$. We set $\mathcal{M}(\underset{\gamma}{\gamma})=\{u: X \xrightarrow{\alpha}[0, \infty] \mid u$ is measurable $\}$ and we set $\mathcal{A}(X)$ the set of all path families $\Gamma$ from $X$. If $\Gamma \in \mathcal{A}(X)$, we set $F(\Gamma)=\{\rho: X \rightarrow[0, \infty]$ Borel maps $\mid \int_{\gamma} \rho d s \geq 1$ for every $\gamma \in \Gamma$ locally rectifiable $\}$.

We say that $M: \mathcal{A}(X) \rightarrow[0, \infty]$ is a modulus on $X$ if
a) $M(\Phi)=0$.
b) If $\Gamma_{1} \subset \Gamma_{2}, \Gamma_{1}, \Gamma_{2} \in \mathcal{A}(X)$, then $M\left(\Gamma_{1}\right) \leq M\left(\Gamma_{2}\right)$.
c) If $\Gamma_{1}, \ldots, \Gamma_{n}, \ldots$, are from $\mathcal{A}(X)$, then $M\left(\bigcup_{n=1}^{\infty} \Gamma_{n}\right) \leq \sum_{n=1}^{\infty} M\left(\Gamma_{n}\right)$.

Theorem 1. Let $(X, \mu, d)$ be a metric measure space, $p: X \rightarrow[0, \infty]$ measurable and finite a.e., $\omega: X \rightarrow[0, \infty]$ measurable and finite a.e., $\omega>0$ a.e., $\Phi:[0, \infty) \rightarrow[0, \infty)$ a homeomorphism, $\Psi:[0, \infty) \times[1, \infty) \rightarrow[0, \infty)$ a Borel map such that all the maps $\Psi_{s}$ : $[0, \infty) \rightarrow[0, \infty)$ given by $\Psi_{s}(t)=\Psi(t, s)$ for $t \geq 0, s \geq 1$ are homeomorphisms for every fixed $s \geq 1$ and let $N: \mathcal{M}(X) \rightarrow[0, \infty]$ be defined by $N(u)=\int_{X} \omega(x) \psi_{p(x)}(\Phi(|u|(x))) d x$ for $u \in \mathcal{M}(X)$. Let $M_{N}: \mathcal{A}(X) \rightarrow[0, \infty]$ be given by $M_{N}(\Gamma)=\inf _{\rho \in F(\Gamma)} N(\rho)$ for every $\Gamma \in \mathcal{A}(X)$. Then $M_{N}$ is a modulus on $X$.

Proof: Using Lusin's theorem, we can find a Borel function $q: X \rightarrow[0, \infty]$ so that $q=p$ a.e. in $X$. We have to show that if $\Gamma_{1}, \ldots, \Gamma_{n}, \ldots$, are from $\mathcal{A}(X)$ and $\Gamma=\bigcup_{n=1}^{\infty} \Gamma_{n}$, then $M_{N}(\Gamma) \leq \sum_{n=1}^{\infty} M_{N}\left(\Gamma_{n}\right)$. We can suppose that $\sum_{n=1}^{\infty} M_{N}\left(\Gamma_{n}\right)<\infty$ and let $\epsilon>0$. We can find $\rho_{n} \in F\left(\Gamma_{n}\right)$ so that $N\left(\rho_{n}\right) \leq M_{N}\left(\Gamma_{n}\right)+\frac{\epsilon}{2^{n+1}}$ for every $n \in N$. Let $\rho: X \rightarrow[0, \infty]$ be given by $\rho(x)=\left(\Psi_{q(x)} \circ \Phi\right)^{-1}\left(\sum_{n=1}^{\infty}\left(\Psi_{q(x)} \circ \Phi\right)\left(\rho_{n}(x)\right)\right)$ for $x \in X$. Then $\rho$ is a Borel map and let $i \in N$ be fixed. We see that $\left(\Psi_{q(x)} \circ \Phi\right)(\rho(x))=\left(\Psi_{q(x)} \circ \Phi\right)\left(\Psi_{q(x)} \circ \Phi\right)^{-1}\left(\sum_{n=1}^{\infty}\left(\Psi_{q(x)} \circ \Phi\right)\left(\rho_{n}(x)\right)\right)=$ $\sum_{n=1}^{\infty}\left(\Psi_{q(x)} \circ \Phi\right)\left(\rho_{n}(x)\right) \geq\left(\Psi_{q(x)} \circ \Phi\right)\left(\rho_{i}(x)\right)$ for every $x \in X$. Since the maps $\Psi_{q(x)}$ and $\Phi$ are increasing for every $x \in X$, we see that $\rho(x) \geq \rho_{i}(x)$ for every $x \in X$.

We proved that $\rho \geq \rho_{i}$ for $i \in N$ and this shows that $\rho \in F(\Gamma)$. Then
$M_{N}(\Gamma) \leq N(\rho)=\int_{X} \omega(x)\left(\Psi_{p(x)} \circ \Phi\right)(\rho(x)) d x=\int_{X} \omega(x)\left(\Psi_{q(x)} \circ \Phi\right)(\rho(x)) d x=\int_{X} \omega(x)\left(\Psi_{q(x)} \circ\right.$ $\Phi)\left(\Psi_{q(x)} \circ \Phi\right)^{-1}\left(\sum_{n=1}^{\infty}\left(\Psi_{q(x)} \circ \Phi\right)\left(\rho_{n}(x)\right)\right) d x=\int_{X} \omega(x) \sum_{n=1}^{\infty}\left(\Psi_{q(x)} \circ \Phi\right)\left(\rho_{n}(x)\right) d x=\sum_{n=1}^{\infty} \int_{X} \omega(x)\left(\Psi_{q(x)} \circ\right.$ $\Phi)\left(\rho_{n}(x)\right) d x=\sum_{n=1}^{\infty} \int_{X} \omega(x)\left(\Psi_{p(x)} \circ \Phi\right)\left(\rho_{n}(x)\right) d x=\sum_{n=1}^{\infty} N\left(\rho_{n}\right) \leq \sum_{n=1}^{\infty}\left(M_{N}\left(\Gamma_{n}\right)+\frac{\epsilon}{2^{n+1}}\right)=$ $=\sum_{n=1}^{\infty} M_{N}\left(\Gamma_{n}\right)+\epsilon$.

Letting $\epsilon \rightarrow 0$, we find that $M_{N}(\Gamma) \leq \sum_{n=1}^{\infty} M_{N}\left(\Gamma_{n}\right)$.
If $X=\mathbf{R}^{n}$ and $\omega=1, \Psi(t, s)=t, \Phi(t)=t^{p}$ for $t \geq 0, s \geq 1$ and some $p>1$, we obtain the usual $p$ modulus $M_{p}$ given by $M_{p}(\Gamma)=\inf _{\rho \in F(\Gamma)} \int_{\mathbf{R}^{n}} \rho^{p}(x) d x$ for every $\Gamma \in \mathcal{A}(X)$. If $X=\mathbf{R}^{n}$, $\Psi(t, s)=t, \Phi(t)=t^{p}$ for $t \geq 0, s \geq 1$ and some $p>1$, we obtain the usual $p$ modulus of weight
$\omega, M_{\omega}^{p}(\Gamma)=\inf _{\rho \in F(\Gamma)} \int_{\mathbf{R}^{n}} \omega(x) \rho^{p}(x) d x$ for $\Gamma \in \mathcal{A}(X)$, which is essentially due to Cabiria Andreian (see for instance [2]).

If $\omega=1, \Phi(t)=t, \Psi(t, s)=t^{s}$ for $t \geq 0, s \geq 1$, then $N(u)=\int_{\mathbf{R}^{n}}|u(x)|^{p(x)} d x$ for $u \in \mathcal{M}\left(\mathbf{R}^{n}\right)$ and for the modulus $M_{N}$ given by $M_{N}(\Gamma)=\inf _{\rho \in F(\Gamma)} \int_{\mathbf{R}^{n}}|\rho(x)|^{p(x)} d x$ for $\Gamma \in \mathcal{A}\left(\mathbf{R}^{n}\right)$ we can use a result from [10] to prove a Fuglede type theorem.

An important particular case we shall have in mind is obtained for $\omega=1, \Psi(t, s)=t^{s}$ for $t \geq 0, s \geq 1$, for which $N(u)=\int_{\mathbf{R}^{n}} \Phi(|u|(x))^{p(x)} d x$ for $u \in \mathcal{M}\left(\mathbf{R}^{n}\right)$ and for which we have the modulus $M_{N}$ given by $M_{N}(\Gamma)=\inf _{\rho \in F(\Gamma)} \int_{\mathbf{R}^{n}} \Phi(\rho(x))^{p(x)} d x$ for $\Gamma \in \mathcal{A}\left(\mathbf{R}^{n}\right)$.

## 3 Estimates of the modulus $M_{N}$.

From now on the space $X$ will be a domain $D$ from $\mathbf{R}^{n}, \mu$ will be the Lebesgue measure from $\mathbf{R}^{n}$ and $d$ the euclidian metric on $D$. We shall work with a particular operator $N: \mathcal{M}(D) \rightarrow$ $[0, \infty]$ of type $N(u)=\int_{D} \Psi_{p(x)}(\Phi(|u|(x))) d x$ for $u \in \mathcal{M}(D)$. The map $\omega: D \rightarrow[0, \infty]$ is measurable and finite a.e., $\omega>0$ a.e., $p: D \rightarrow[1, \infty]$ is measurable and finite a.e., $\Phi:[0, \infty) \rightarrow$ $[0, \infty)$ is a Young function and $\Psi:[0, \infty) \times[1, \infty) \rightarrow[0, \infty)$ is a Borel map so that all the maps $\Psi_{c}:[0, \infty) \rightarrow[0, \infty)$ given by $\Psi_{c}(t)=\Psi(t, c)$ for $t \geq 0, c \geq 1$ are Young functions for every fixed $c \geq 1$ and there exists $q, r, s>0$ so that $q \leq \Psi_{p(x)}(1), 1 \leq r \leq p\left(\Psi_{p(x)}\right) \leq q\left(\Psi_{p(x)}\right) \leq s<\infty$ for every $x \in D$. We shall always keep in mind that the operator $N$ is defined by the functions $\omega, p, \Phi, \Psi$ and the constants $q, r, s$. We also denote by $g:[0, \infty) \rightarrow[0, \infty)$ the function given by $g(t)=t^{s / r}$ if $0 \leq t<1, g(t)=t$ for $t \geq 1$.

Theorem 2. Let $n \geq 2, D \subset \mathbf{R}^{n}$ a domain, $x \in \bar{D}, 0<a<b, N: \mathcal{M}(D) \rightarrow[0, \infty]$ given by $N(u)=\int_{D} \Psi_{p(z)}(\Phi(|u|(z))) d z$ for $u \in \mathcal{M}(D)$, let $C, m>0$ so that $\Phi(\lambda t) \leq C \lambda^{m} \Phi(t)$ for every $\lambda, t>0$, let $B_{k}=B\left(x, b e^{-k}\right)$ for $k \geq 0$ and let $A=\sum_{k=0}^{\infty} \int_{B_{k} \cap D} \omega(z) \Psi_{p(z)}\left(\Phi\left(e^{k+1} / b(k+1)\right)\right) d z$. Then there exists $\alpha \in\{r, s\}$ so that $M_{N}\left(\Gamma_{x, a, b, D}\right) \leq A C^{\alpha} /(\ln \ln (b e / a))^{m \alpha}$ and $\alpha=s$ if $1 \leq$ $C /(\ln \ln (b e / a))^{m}$ and $\alpha=r$ if $C /(\ln \ln (b e / a))^{m}<1$.

Proof: Let $t_{k}=b e^{-k}, A_{k}=B_{k} \backslash B_{k+1}$ for $k \geq 0$ and let $l \in N$ be so that $t_{l+1} \leq a<t_{l}$. Then $A_{k} \subset B_{k}, k+1 \leq \ln (b e /|z-x|)$ for $z \in B_{k}, b e^{-(k+1)} \leq|z-x|$ for $z \in A_{k}, k \geq 0$, hence $1 /(|z-x| \ln (b e /|z-x|)) \leq e^{k+1} / b(k+1)$ for $z \in A_{k}, k \geq 0$. Let $\rho: \mathbf{R}^{n} \rightarrow[0, \infty)$ be defined by $\rho(z)=(1 / \ln \ln (b e / a))(1 /(|z-x| \ln (b e /|z-x|)))$ for $z \in B(x, b) \backslash \bar{B}(x, a), \rho(z)=0$ otherwise. We see that $\rho X_{D} \in F\left(\Gamma_{x, a, b, D}\right)$ and let $\alpha(z)=q\left(\Psi_{p(z)}\right)$ if $1 \leq C /(\ln \ln (b e / a))^{m}, \alpha(z)=p\left(\Psi_{p(z)}\right)$ if $C /(\ln \ln (b e / a))^{m}<1$ for $z \in D$. Then

$$
\begin{gathered}
M_{N}\left(\Gamma_{x, a, b, D}\right) \leq N\left(\rho X_{D}\right)=\int_{D} \omega(z) \Psi_{p(z)}(\Phi(\rho(z))) d z \leq \\
\int_{(B(x, b) \backslash \bar{B}(x, a)) \cap D} \omega(z) \Psi_{p(z)}(\Phi((1 / \ln \ln (b e / a)))(1 /(|z-x| \ln (b e /|z-x|))) d z \leq \\
\sum_{k=0}^{l} \int_{A_{k} \cap D} \omega(z) \Psi_{p(z)}\left(\left(C /(\ln \ln (b e / a))^{m}\right) \Phi(1 /(|z-x| \ln (b e /|z-x|))) d z \leq\right.
\end{gathered}
$$

$$
\sum_{k=0}^{l} \int_{B_{k} \cap D} \omega(z)\left(C /(\ln \ln (b e / a))^{m}\right)^{\alpha(z)} \Psi_{p(z)}\left(\Phi\left(e^{k+1} / b(k+1)\right)\right) d z \leq A C^{\alpha} /(\ln \ln (b e / a))^{m \alpha}
$$

The theorem is now proved.
Remark 1. Suppose that in the preceding theorem $\Psi(t, c)=t^{c}$ for $t \geq 0, c \geq 1$. Then $p\left(\Psi_{c}\right)=q\left(\Psi_{c}\right)=c$ for $c \geq 1$ and in this case we see that $A=\sum_{k=0}^{\infty} \int_{B_{k} \cap D} \omega(z) \Phi^{p(z)}\left(e^{k+1} / b(k+\right.$ 1) ) $d z, N(u)=\int_{D} \omega(z) \Phi(|u|(z))^{p(z)} d z$ for $u \in \mathcal{M}(D)$ and we have the inequality $M_{N}\left(\Gamma_{x, a, b, D}\right) \leq$ $A C^{\alpha} /(\ln \ln (b e / a))^{m \alpha}$ with $\alpha \in\{r, s\}$ and $1 \leq r \leq p(z) \leq s<\infty$ for $z \in D$.

If in addition $p(z)=p$ for $z \in D$, then $A=\sum_{k=0}^{\infty} \int_{B_{k} \cap D} \omega(z) \Phi^{p}\left(e^{k+1} / b(k+1)\right) d z, N(u)=$ $\int_{D} \omega(z) \Phi^{p}(|u|(z)) d z$ for $u \in \mathcal{M}(D)$ and $M_{N}\left(\Gamma_{x, a, b, D}\right) \leq A C^{p} /(\ln \ln (b e / a))^{m p}$.

An important particular case is obtained when $p(z)=1$ for $z \in D, \Psi(t, c)=t, \Phi(t)=t^{p}$ for $t \geq 0, c \geq 1$. Then $N(u)=\int_{D} \omega(z)|u|(z)^{p} d z$ if $u \in \mathcal{M}(D), A=\sum_{k=0}^{\infty} \int_{B_{k} \cap D} \omega(z)\left(e^{k+1} / b(k+1)\right)^{p} d z$ and we have the inequality $M_{N}\left(\Gamma_{x, a, b, D}\right) \leq A /(\ln \ln (b e / a))^{p}$.

We obtain in this way some modular estimates from [18] and [7].
Theorem 3. Let $n \geq 2, D \subset \mathbf{R}^{n}$ a domain, $x \in \bar{D}, 0<a<b, m>1, \alpha, l>0, \omega$ : $D \rightarrow[0, \infty]$ measurable and finite a.e., $\omega>0$ a.e. so that $\int_{B(x, \delta) \cap D} \omega(z) d z \leq M(b) \delta^{l}(\ln (b e / \delta))^{\alpha}$ for $0<\delta<b$ and suppose that either $m<l$, or $l=m$ and $0 \leq \alpha<m-1$, and let $C(b)=M(b) b^{l-m} e^{m} \sum_{k=0}^{\infty} e^{k(m-l)} \frac{1}{(k+1)^{m-\alpha}}$. Then $C(b)<\infty$ and if $N: \mathcal{M}(D) \rightarrow[0, \infty]$ is defined by $N(u)=\int_{D} \omega(z)|u|^{m}(z) d z$ for $u \in \mathcal{M}(D)$, we have that $M_{N}\left(\Gamma_{x, a, b, D}\right) \leq C(b) /(\ln \ln (b e / a))^{m}$.

Proof: We see that $\int_{B\left(x, b e^{-k}\right)} \omega(z) d z \leq M(b) b^{l} e^{-k l}\left(\ln \left(b e / b e^{-k}\right)\right)^{\alpha} \leq M(b) b^{l} e^{-k l}(k+1)^{\alpha}$ for every $k \geq 0$. Then $A=\sum_{k=0}^{\infty} \int_{B\left(x, b e^{-k}\right) \cap D} \omega(z)\left(e^{k+1} / b(k+1)\right)^{m} d z \leq M(b) b^{l-m} e^{m} \sum_{k=0}^{\infty} e^{k(m-l)} \frac{1}{(k+1)^{m-\alpha}}<$ $\infty$ if $m<l$ or if $m=l$ and $0 \leq \alpha<m-1$. Taking $C(b)=A$, we see that $M_{N}\left(\Gamma_{x, a, b, D}\right) \leq$ $C(b) /(\ln \ln (b e / a))^{m}$.

Another important case is obtained for $\omega=1, \Psi(t, c)=t^{c}, \Phi(t)=t$ for $t \geq 0, c \geq 1$.
Corollary 1. Let $n \geq 2, D \subset \mathbf{R}^{n}$ a domain, $x \in \bar{D}, 0<a<b<e, p: D \rightarrow[1, \infty]$ measurable and finite a.e. so that there exists $r, s \geq 1$ so that $1 \leq r \leq p(z) \leq s \leq n$ for every $z \in D$ and let $C(b)=V_{n} e^{s} b^{n-s} \sum_{k=0}^{\infty} e^{-k(n-s)} \frac{1}{(k+1)^{s}}$. Then $C(b)<\infty$ and if $N: \mathcal{M}(D) \rightarrow[0, \infty]$ is defined by $N(u)=\int_{D}|u(z)|^{p(z)} d z$ for $u \in \mathcal{M}(D)$, it results that $M_{N}\left(\Gamma_{x, a, b, D}\right) \leq C(b) /(\ln \ln (b e / a))^{\alpha}$, where $\alpha \in\{r, s\}$, and we can take $\alpha=s$ if $b \leq e^{e-1} a$ and we can take $\alpha=r$ if $e^{e-1} a<b$.

Proof: We see that $e^{k+1} / b(k+1)=\frac{e}{b} \frac{e^{k}}{(k+1)} \geq 1$ for $k \geq 0$, hence $A=\sum_{k=0}^{\infty} \int_{B\left(x, b e^{-k}\right) \cap D}\left(e^{k+1} / b(k+\right.$ 1) $)^{p(z)} d z \leq \sum_{k=0}^{\infty} \int_{B\left(x, b e^{-k}\right) \cap D}\left(e^{k+1} / b(k+1)\right)^{s} d z \leq V_{n} e^{s} b^{n-s} \sum_{k=0}^{\infty} e^{-k(n-s)} \frac{1}{(k+1)^{s}}<\infty$. We take now $C(b)=A$ and we apply Theorem 2.

Remark 2. We showed in the preceding theorems that $M_{N}\left(\Gamma_{x, a, b, D}\right) \leq C(b) /(\ln \ln (b e / a))^{m}$ for some fixed $m \geq 1$, some fixed $b>0$ and every $0<a<b$. This implies the important fact
that $\lim _{a \rightarrow 0} M_{N}\left(\Gamma_{x, a, b, D}\right)=0$. In particular, $\lim _{a \rightarrow 0} M_{p}\left(\Gamma_{x, a, b, D}\right)=0$ for $b>0$ fixed and $p \leq n$ and it can be shown that $M_{p}\left(\Gamma_{x, a, b, D}\right) \nrightarrow 0$ if $a \rightarrow 0$ and $p>n$.

Following the ideas from [19], Chapter 6, we can find some other cases when $\lim _{a \rightarrow 0} M_{\omega}^{p}\left(\Gamma_{x, a, b, D}\right)=$ 0 , for some weight $\omega$ and $p \leq n$.

Theorem 4. Let $n \geq 2, D \subset \mathbf{R}^{n}$ a domain, $x \in \bar{D}, 0<b, \omega: D \rightarrow[0, \infty]$ measurable and finite a.e., $\eta:(0, b) \rightarrow[0, \infty]$ measurable and finite a.e. so that $\int_{0}^{b} \eta(t) d t=\infty$ and $I(a)=\int_{a}^{b} \eta(t) d t<\infty$ for every $0<a<b$, let $A_{x, a, b, D}=\{z \in D|a<|z-x|<b\}$ for $0<a<b$ and suppose that $\lim _{a \rightarrow 0} \int_{A_{x, a, b, D}} \omega(z) \eta(|z-x|)^{p} d z / I(a)^{p}=0$. Then $\lim _{a \rightarrow 0} M_{\omega}^{p}\left(\Gamma_{x, a, b, D}\right)=0$.

Proof. Let $\beta:(0, b) \rightarrow[0, \infty]$ be a Borel map so that $\beta=\eta$ a.e. and let $0<a<b$. Let $\rho_{a}: \mathbf{R}^{n} \rightarrow[0, \infty]$ be defined by $\rho_{a}(z)=\beta(|z-x|) / I(a)$ for $z \in A_{x, a, b, D}, \rho_{a}(z)=0$ otherwise. Then $\rho_{a} \in F\left(\Gamma_{x, a, b, D}\right)$ and $M_{\omega}^{p}\left(\Gamma_{x, a, b, D}\right) \leq \int_{\mathbf{R}^{n}} \omega(z) \rho_{a}(z)^{p} d z=\int_{A_{x, a, b, D}} \omega(z) \eta(|z-x|)^{p} d z / I(a)^{p} \rightarrow 0$ if $a \rightarrow 0$.

As in [19], Chapter 6, we can take $\eta(t)=\frac{1}{t}$ for $t \in(0, b)$ and then $I(a)=\int_{a}^{b} \frac{d t}{t}=\ln (b / a)$ for $0<a<b$, and we can take $\eta(t)=\frac{1}{t \ln t}$ for $t \in(0, b)$ and then $I(a)=\int_{a}^{b} \frac{d t}{t \ln t}=\ln \ln (b / a)$ for $0<a<b$. If we let $\tilde{\omega}: \mathbf{R}^{n} \rightarrow[0, \infty], \tilde{\omega}(z)=\omega(z)$ if $z \in D, \tilde{\omega}(z)=0$ otherwise and we set $w_{x}(t)=\underset{S(x, t)}{f} \tilde{\omega}(z) d_{S(x, t)}$ for $0<t<b$, then $J(a)=\int_{A_{x, a, b, D}} \omega(z) \eta(|z-x|)^{p} d z=$ $\omega_{n-1} \int_{a}^{b} \omega_{x}(t) t^{n-1} \eta^{p}(t) d t$ for $a<t<b$.

We find now some lower bounds for the modulus $M_{N}(\Delta(E, F, D))$ in some particular cases.
Lemma 1. Let $\rho: \mathbf{R}^{n} \rightarrow[0, \infty]$ be a Borel map, let $D \subset \mathbf{R}^{n}$ be a bounded domain, let the functions $p, \Psi, \Phi$ and the constants $q, r, s$ be as in the definition of the operator $N$ and let $d>0$ be so that $d \leq f_{D} \rho(z) d z$. Then $N(p) \geq \min \left\{q, q 2^{(r-s) / r} \Phi^{s}(d) g\left(\mu_{n}(D)\right)\right\}$.

Proof: Let $M=\min \left\{1, \mu_{n}(D)^{(r-s) / r}\right\}, D_{1}=\{x \in D \mid \Phi(\rho(x)) \geq 1\}, D_{2}=\{x \in D \mid \Phi(\rho(x))<$ $1\}$. Then $\Phi^{r}(d) \leq \Phi^{r}(\underset{D}{f} \rho(z) d z) \leq f_{D} \Phi^{r}(\rho(z)) d z$, hence $\int_{D} \Phi^{r}(\rho(z)) d z \geq \Phi^{r}(d) \mu_{n}(D)$.

Using Hölder's inequality, we have $\int_{D_{2}} \Phi^{s}(\rho(z)) d z \geq\left(\int_{D_{2}} \Phi^{r}(\rho(z)) d z\right)^{s / r} \mu_{n}(D)^{(r-s) / r}$. We see that $N(\rho)=\int_{D} \Psi_{p(z)}(\Phi(\rho(z))) d z=\int_{D_{1}}^{D_{2}} \Psi_{p(z)}(\Phi(\rho(z))) d z+\int_{D_{2}} \Psi_{p(z)}(\Phi(\rho(z))) d z \geq \int_{D_{1}} \psi_{p(z)}(1)$ $\Phi(\rho(z))^{p\left(\Psi_{p(z)}\right)} d z+\int_{D_{2}} \Psi_{p(z)}(1) \Phi(\rho(z))^{q\left(\Psi_{p(z)}\right)} d z \geq q\left(\int_{D_{1}} \Phi^{r}(\rho(z)) d z+\int_{D_{2}} \Phi^{s}(\rho(z)) d z\right)$.

It results that $N(\rho) \geq q$ if $\int_{D_{1}} \Phi^{r}(\rho(z)) d z \geq 1$.
If $\int_{D_{1}} \Phi^{r}(\rho(z)) d z<1$, then $N(\rho) \geq q\left(\left(\int_{D_{1}} \Phi^{r}(\rho(z)) d z\right)^{s / r}+\left(\int_{D_{2}} \Phi^{r}(\rho(z)) d z\right)^{s / r} \mu_{n}(D)^{(r-s) / r}\right) \geq$ $q M\left(\left(\int_{D_{1}} \Phi^{r}(\rho(z)) d z\right)^{s / r}+\left(\int_{D_{2}} \Phi^{r}(\rho(z)) d z\right)^{s / r}\right) \geq q M 2^{(r-s) / r}\left(\int_{D_{1}} \Phi^{r}(\rho(z)) d z+\int_{D_{2}} \Phi^{r}(\rho(z)) d z\right)^{s / r}=$ $q M 2^{(r-s) / r}\left(\int_{D} \Phi^{r}(\rho(z)) d z\right)^{s / r} \geq q M 2^{(r-s) / r} \Phi^{s}(d) \mu_{n}(D)^{s / r}=q 2^{(r-s) / r} \Phi^{s}(d) g\left(\mu_{n}(D)\right)$.

Remark 3. If $\Psi(t, c)=t^{c}$ for $t \geq 0, c \geq 1$, then $\Psi_{c}(1)=1$ for $c \geq 1$ and if also $p=1$, then $N(\rho)=\int_{D} \Phi(\rho(z)) d z \geq \Phi(d) \mu_{n}(D)$.

Theorem 5. Let $n \geq 2, x \in \mathbf{R}^{n}, 0<a<b, D=B(x, b) \backslash \bar{B}(x, a)$ and let $N: \mathcal{M}(D) \rightarrow$ $[0, \infty], N(u)=\int_{D} \Psi_{p(z)}(\Phi(|u|(z))) d z$ for $u \in \mathcal{M}(D)$. Then $M_{N}\left(\Gamma_{x, a, b, D}\right) \geq \min \left\{q, q 2^{(r-s) / r}\right.$ - $\left.\Phi^{s}\left(\frac{a^{n-1} \omega_{n-1}}{V_{n}\left(b^{n}-a^{n}\right)}\right) g\left(V_{n}\left(b^{n}-a^{n}\right)\right)\right\}$.

Proof: Let $Q=[0, \pi]^{n-2} \times[0,2 \pi]$ and let $\theta:(0, \infty) \times Q \rightarrow \mathbf{R}^{n}$ be the polar coordinates. We know that if $t>0$ and $f: S(0, t) \rightarrow \mathbf{R}$ is continuous, then $\int_{S(0, t)} f(z) d_{S(0, t)}=$ $\int_{Q} f(\theta(t, y)) J_{\theta}(t, y) d y$. We can suppose that $x=0$ and let $\rho \in F\left(\Gamma_{x, a, b, D}\right)$. We define $f:$ $S(0,1) \rightarrow \mathbf{R}$ by $f(y)=\int_{a}^{b} t^{n-1} \rho(t y) d t$ for $y \in S(0,1)$ and let $\gamma_{y}:[0,1] \rightarrow \mathbf{R}^{n}$ be defined by $\gamma_{y}(t)=t y$ for $t \in[a, b]$ and $y \in S(0,1)$. Then $\gamma_{y}^{\circ}=\gamma_{y}$ for every $y \in S(0,1)$ and $1 \leq \int_{\gamma_{y}} \rho d s=\int_{a}^{b} \rho(t y) d t$, hence $a^{n-1} \leq \int_{a}^{b} t^{n-1} \rho(t y) d t=f(y)$ for every $y \in S(0,1)$.

Integrating over $y \in S(0,1)$, we have $a^{n-1} \omega_{n-1} \leq \int_{S(0,1)} f(y) d y=\int_{Q} f(\theta(1, y)) J_{\theta}(1, y) d y=$ $\int_{Q}\left(\int_{a}^{b} t^{n-1} \rho(\theta(1, y) t d t) J_{\theta}(1, y) d y=\int_{Q} \int_{a}^{b} \rho(\theta(t, y)) J_{\theta}(t, y) d t d y=\int_{D} \rho(z) d z\right.$, hence $\frac{a^{n-1} \omega_{n-1}}{V_{n}\left(b^{n}-a^{n}\right)} \leq$ $\leq f_{D} \rho(z) d z$.

We use now the preceding theorem to see that $M_{N}\left(\Gamma_{x, a, b, D}\right) \geq N(\rho) \geq \min \left\{q, q \cdot 2^{(r-s) / r} \Phi^{s}\right.$ $\left.\left(\frac{a^{n-1} \omega_{n-1}}{V_{n}\left(b^{n}-a^{n}\right)}\right) g\left(\mu_{n}(D)\right)\right\}$.

Remark 4. Using Remark 3, we see that if $\Psi(t, c)=t^{c}$ for $t \geq 0, c \geq 1$ and $p=1$, then $M_{N}\left(\Gamma_{x, a, b}\right) \geq \Phi\left(\frac{a^{n-1} \omega_{n-1}}{V_{n}\left(b^{n}-a^{n}\right)}\right) V_{n}\left(b^{n}-a^{n}\right)$.

Theorem 6. Let $n \geq 2, H_{1}$ and $H_{2}$ be parallel hiperplanes from $\mathbf{R}^{n}$ with $d\left(H_{1}, H_{2}\right)=h>0$, $P: \mathbf{R}^{n} \rightarrow H_{1}$ be the projection on $H_{1}$, let $E_{1} \subset H_{1}$ with $\mu_{n-1}\left(E_{1}\right)>0, E_{2}=H_{2} \cap P^{-1}\left(E_{1}\right)$, let $D$ be the set of all points from $P^{-1}\left(E_{1}\right)$ between the hiperplanes $H_{1}$ and $H_{2}$ and let $\Gamma=$ $\Delta\left(E_{1}, E_{2}, D\right)$. Then, if $N: \mathcal{M}(D) \rightarrow[0, \infty]$ is given by $N(u)=\int_{D} \Psi_{p(z)}(\Phi(|u|(z))) d z$ for $u \in \mathcal{M}(D)$, it results that $M_{N}(\Gamma)>0$.

Proof: We can suppose that $E_{1} \subset \mathbf{R}^{n-1}, E_{2}=E_{1}+h e_{n}, D=\left\{x \in \mathbf{R}^{n} \mid 0 \leq x_{n} \leq h\right.$ and $\left.\left(x_{1}, \ldots, x_{n-1}\right) \in E_{1}\right\}$. Let $\rho \in F(\Gamma)$ and let $\gamma_{y}:[0, h] \rightarrow D, \gamma_{y}(t)=\rho\left(y+t e_{n}\right)$ for $t \in[0, h]$, $y \in E_{1}$. Then $\gamma_{y} \in \Gamma$ and $1 \leq \int_{\gamma_{y}} \rho d s=\int_{o}^{h} \rho\left(y+t e_{n}\right) d t$ for $y \in E_{1}$. Integrating over $y \in E_{1}$ we obtain that $\mu_{n-1}\left(E_{1}\right) \leq \int_{E_{1}} \int_{0}^{h} \rho\left(y+t e_{n}\right) d t d y=\int_{D} \rho(z) d z$, hence $\frac{1}{h} \leq f_{D} \rho(z) d z$.

Using Lemma 1 we see that $M_{n}(\Gamma) \geq N(\rho) \geq \min \left\{q, q 2^{(r-s) / r} \Phi^{s}\left(\frac{1}{h}\right) g\left(\mu_{n-1}\left(E_{1}\right) \cdot h\right)\right\}>0$.
Theorem 7. Let $n \geq 2, E, F$ be disjoint sets from $\mathbf{R}^{n}$ so that $E$ contains a ball $B_{1}=$ $B\left(x_{1}, r_{1}\right)$ and $\mu_{n}(F)>0$, and let $\Gamma=\Delta\left(E, F, \mathbf{R}^{n}\right)$. Then $M_{N}(\Gamma)>0$.

Proof: Since $\mu_{n}(F)>0$, there exists $x_{2} \in F \backslash E$ so that $\mu_{n}\left(F \cap B\left(x_{2}, r\right)\right)>0$ for every $r>0$. Let $d$ be the line which joins $x_{1}$ and $x_{2}$, let $r>0$ be such that $d\left(x_{1}, x_{2}\right) \geq 6 r, 3 r \leq r_{1}$ and let $D=\left\{z \in \mathbf{R}^{n} \mid d(z, d)<r\right\}$. We can find hyperplanes $H_{1}$ and $H_{2}$ perpendicular on $d$ so that $x_{1} \in H_{1}, d\left(x_{2}, H_{2}\right) \leq r$ and $\mu_{n-1}\left(H_{2} \cap F \cap D\right)>0$. Let $E_{1}=H_{1} \cap D, E_{2}=H_{2} \cap D \cap F$. Then $E_{1} \subset E, E_{2} \subset F, \mu_{n-1}\left(E_{2}\right)>0$ and let $\Gamma_{1}=\Delta\left(E_{1}, E_{2}, D\right)$. We see from Theorem 6 that $M_{N}\left(\Gamma_{1}\right)>0$ and since $\Gamma_{1} \subset \Gamma$, we find that $M_{N}(\Gamma) \geq M_{N}\left(\Gamma_{1}\right)>0$.

Theorem 8. Let $E, F$ be disjoint sets from $\mathbf{R}^{n}, x \in \mathbf{R}^{n}, 0<a<b, D=B(x, b) \backslash \bar{B}(x, a)$
so that $S(x, t) \cap E \neq \phi, S(x, t) \cap F \neq \phi$ for $a<t<b$, let $\Gamma=\Delta(E, F, D)$ and let $N: \mathcal{M}(D) \rightarrow$ $[0, \infty]$ be defined by $N(u)=\int_{D} \Psi_{p(z)}(\Phi(|u|(z))) d z$ for $u \in \mathcal{M}(D)$. Then, if $n=2$, it results that $M_{N}(\Gamma) \geq C(q, r, s, a, b)>0$ and if $n \geq 2$ and $M_{N}=M_{p}$, then $M_{N}(\Gamma)>C(n, p)\left(b^{n-p}-a^{n-p}\right)$ if $n-1<p$ and $p \neq n$ and $M_{N}(\Gamma) \geq C(n) \ln \frac{b}{a}$ if $p=n$.

Proof: We know from Theorem 10.12, page 31 from [30] that $M_{N}(\Gamma) \geq C(n) \ln \frac{b}{a}$ and we see from [3] that if $n-1<p<n$ or if $p>n$, then $M_{p}(\Gamma) \geq C(n, p)\left(b^{n-p}-a^{n-p}\right)$.

Suppose now that $n=2$. We can suppose that $x=0$ and let $\theta:[0, \pi] \times[0,2 \pi] \rightarrow \mathbf{R}^{2}$ be the plane polar coordinates. Let $\rho \in F(\Gamma)$ and $a<t<b$. We can find a path $\gamma_{t}:\left[a_{t}, b_{t}\right] \rightarrow \mathbf{R}^{2}$ so that $\operatorname{Im} \gamma_{t} \subset S(0, t), \gamma_{t} \in \Gamma$, and $\gamma_{t}^{\circ}(u)=\theta\left(t, a_{t}+\frac{u}{t}\right)$ for $u \in\left[0, t\left(b_{t}-a_{t}\right)\right]$. We have $1 \leq \int_{\gamma_{t}} \rho d s=\int_{0}^{l\left(\gamma_{t}\right)} \rho\left(\gamma_{t}^{\circ}(u)\right) d u=\int_{0}^{t\left(b_{t}-a_{t}\right)} \rho\left(\theta\left(t, a_{t}+\frac{u}{t}\right)\right) d u=t \int_{a_{t}}^{b_{t}} \rho(\theta(t, \varphi)) d \varphi \leq \int_{0}^{2 \pi} t \rho(\theta(t, \varphi)) d \varphi$. Integrating over $t \in(a, b)$ we obtain that $b-a \leq \int_{a}^{b} \int_{0}^{2 \pi} \rho(\theta(t, \varphi)) J_{\theta}(t, \varphi) d t d \varphi=\int_{D} \rho(z) d z$, hence $1 / \pi(a+b) \leq f_{D} \rho(z) d z$. Using Lemma 1 we see that $M_{N}(\Gamma) \geq \int_{D} \Psi_{p(z)}(\Phi(\rho(z))) d z \geq$ $\min \left\{q, q 2^{(r-s) / r} \Phi^{s}(1 / \pi(a+b)) g\left(\pi\left(b^{2}-a^{2}\right)\right)\right\}$.

Remark 5. If $\Psi(t, c)=t^{c}$ for $t \geq 0, c \geq 1$ and $p=1$, then $M_{N}(\Gamma) \geq \pi\left(b^{2}-a^{2}\right) \Phi(1 / \pi(a+b))$.

## 4 Generalized quasiregular mappings.

Let $n \geq 2, D \subset \mathbf{R}^{n}$ a domain and $f: D \rightarrow \mathbf{R}^{n}$ be continuous, open, discrete. We say that $f$ is a generalized quasiregular mapping if there exists $M_{1}, M_{2}$ modulus on $D$ and $\gamma:[0, \infty) \rightarrow[0, \infty)$ with $\lim _{t \rightarrow 0} \gamma(t)=0$ so that $M_{1}(f(\Gamma)) \leq \gamma\left(M_{2}(\Gamma)\right)$ for every path family $\Gamma$ from $D$.

We give now an example of a mapping satisfying a modular inequality:
Proposition 1. Let $n \geq 2, D \subset \mathbf{R}^{n}$ a domain, $1<q<p, f \in A C L^{q}\left(D, \mathbf{R}^{n}\right)$, $f$ a.e. differentiable so that there exists $K: D \rightarrow[0, \infty]$ measurable and finite a.e. so that $\left|f^{c}(x)\right|^{p} \leq$ $K(x)\left|J_{f}(x)\right|$ a.e., $K \in L^{q /(p-q)}(D), N(f, D)<\infty$ and let $C=N(f, D)^{q / p}\left(\int_{D} K(x)^{q /(p-q)} d x\right)^{(p-q) / p}$. Then $M_{q}(\Gamma) \leq C\left(M_{p}(f(\Gamma))\right)^{q / p}$ for every path family $\Gamma$ from $D$.

Proof: Let $\Gamma$ be a path family from $D$ and let $\rho^{\prime} \in F(f(\Gamma))$. Let $\rho: \mathbf{R}^{n} \rightarrow[0, \infty]$, $\rho(x)=\rho^{\prime}(f(x)) \cdot L(x, f)$ if $x \in D, \rho(x)=0$ otherwise and let $\Gamma_{0}=\left\{\gamma \in \Gamma \mid f \circ \gamma^{\circ}\right.$ is absolutely continuous $\}$. Using Fuglede's theorem (see [30] Theorem 28.2, page 93), we have $M_{q}(\Gamma)=$ $M_{q}\left(\Gamma_{0}\right)$ and from Theorem 3.3, page 93 from [30], we see that $\rho \in F\left(\Gamma_{0}\right)$. Using the change of variable formulae (3) from [11] and Hölder's inequality, we have

$$
\begin{aligned}
& \int_{D} \rho^{q}(x) d x= \int_{D} \rho^{\iota q}(f(x)) L(x, f)^{q} d x=\int_{D} \rho^{\iota q}(f(x))\left|f^{\iota}(x)\right|^{q} d x \leq \int_{D} \rho^{\iota q}(f(x)) K^{q / p}(x)\left|J_{f}(x)\right|^{q / p} d x \leq \\
& \leq\left(\int_{D} \rho^{s p}(f(x))\left|J_{f}(x)\right| d x\right)^{q / p}\left(\int_{D} K(x)^{q /(p-q)} d x\right)^{(p-q) / p} \leq \\
& \leq\left(\int_{\mathbf{R}^{n}} N(y, f, D) \rho^{s p}(y) d y\right)^{q / p}\left(\int_{D} K(x)^{q /(p-q)} d x\right)^{(p-q) / p} \leq C\left(\int_{\mathbf{R}^{n}} \rho^{s p}(y) d y\right)^{q / p} .
\end{aligned}
$$

It results that $M_{q}(\Gamma)=M_{q}\left(\Gamma_{0}\right) \leq \int_{D} \rho^{q}(x) d x \leq C\left(\int_{\mathbf{R}^{n}} \rho^{s p}(y) d y\right)^{q / p}$ and hence that $M_{q}(\Gamma) \leq$ $C\left(M_{p}(f(\Gamma))\right)^{q / p}$.

Proposition 2. Let $n \geq 2,1<q<p, D, D^{\star}$ domains from $\mathbf{R}^{n}, h: D^{\star} \rightarrow D$ a homeomorphism, $f=h^{-1}$ so that $f \in A C L^{q}\left(D, D^{\prime}\right), f$ is a.e. differentiable and $J_{f}(x) \neq 0$ a.e., in $D, H_{I, q}(h) \in L^{p /(p-q)}\left(D^{*}\right)$ and let $C=\left(\int_{D^{*}} H_{I, q}(h)(y)^{p /(p-q)} d y\right)^{(p-q) / p}$. Then $M_{q}\left(h\left(\Gamma^{*}\right)\right) \leq$ $C\left(M_{p}\left(\Gamma^{\prime}\right)\right)^{q / p}$ for every path family $\Gamma^{c}$ from $D^{c}$.

Proof: Let $A=\left\{x \in D \mid f\right.$ is differentiable in $x$ and $\left.J_{f}(x) \neq 0\right\}$ and $B=\left\{y \in D^{d} \mid h\right.$ is differentiable in $y$ and $\left.J_{h}(y) \neq 0\right\}$. Then $f(A) \subset B$ and $\mu_{n}(C A)=0$. We have, using the change of variable formulae (3) from [11] that

$$
\begin{gathered}
\int_{D} K_{0, p}(f)(x)^{q /(p-q)} d x=\int_{A}\left(\left|f^{\prime}(x)\right|^{p} /\left|J_{f}(x)\right|\right)^{q /(p-q)} d x=\int_{A}\left|f^{\prime}(x)\right|^{p q /(p-q)} /\left|J_{f}(x)\right|^{q /(p-q)} d x= \\
=\int_{A}\left(J_{h}(f(x))^{p /(p-q)} / l\left(h^{\prime}(f(x))^{p q /(p-q)}\right)\right)\left|J_{f}(x)\right| d x \leq \int_{f(A)}\left|J_{h}(y)\right|^{p /(p-q)} / l\left(h^{\prime}(y)\right)^{p q /(p-q)} d y \leq \\
\leq \int_{B}\left|J_{h}(y)\right|^{p /(p-q)} / l\left(h^{\prime}(y)\right)^{p q /(p-q)} d y=\int_{B}\left(\left|J_{h}(y)\right| / l\left(h^{\prime}(y)\right)^{q}\right)^{p /(p-q)} d y= \\
=\int_{D^{\prime}} H_{I, q}(h)(y)^{p /(p-q)} d y<\infty .
\end{gathered}
$$

Let $\Gamma^{\star}$ be a path family from $D^{\star}$ and let $\Gamma=h\left(\Gamma^{\prime}\right)$. Then $\Gamma^{\star}=f(\Gamma)$ and using Proposition 1, we see that $M_{q}\left(h\left(\Gamma^{*}\right)\right)=M_{q}(\Gamma) \leq C M_{p}(f(\Gamma))^{q / p}=C M_{p}\left(\Gamma^{\prime}\right)^{q / p}$.

Proposition 2 is closely related to Theorem 3 from [9] and the class $B(G)$ from [9].
We give now an example of a homeomorphism $h:(0,1)^{n} \rightarrow D^{\star}$ which is not quasiconformal, but is a generalized quasiregular mapping, since it satisfies a modular inequality $M_{q}\left(h\left(\Gamma^{\prime}\right)\right) \leq$ $C M_{p}\left(\Gamma^{‘}\right)^{q / p}$ for every path family $\Gamma^{‘}$ from $(0,1)^{n}$ and some $1<q<p$. The example is from [9]. See also [19], page 240.

Example 1. Let $D=(0,1)^{n}, 1<q<p, 0<c<(p-q) /(p q-p)$ and let $h: D \rightarrow \mathbf{R}^{n}$ be defined by $h\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{n-1}, \frac{x_{n}^{1+c}}{1+c}\right)$ for $x=\left(x_{1}, \ldots, x_{n}\right) \in D$. We see that $h$ is a homeomorphism onto a domain $D^{c}$ from $\mathbf{R}^{n}$ and $h \in C^{1}\left(D, D^{c}\right), J_{h}(x)=x_{n}^{c} \neq 0, l\left(h^{\natural}(x)\right)=x_{n}^{c}$, $\left|h^{i}(x)\right|=1$ for every $x \in D$, hence $H(x, h)=\left|h^{i}(x)\right| / l\left(h^{\prime}(x)\right)=x_{n}^{-c} \rightarrow \infty$ if $x \rightarrow 0$ and hence $h$ is not quasiconformal. We have $H_{I, q}(h)(x)=\left|J_{h}(x)\right| / l\left(h^{i}(x)\right)^{q}=x_{n}^{c(1-q)}$ for $x \in D$ and let $C=\left(\int_{D} H_{I, q}(h)(x)^{p /(p-q)} d x\right)^{(p-q) / p}$. Then $C=\left(\int_{0}^{1} x_{n}^{p c(1-q) /(p-q)} d x_{n}\right)^{(p-q) / p}=((p-q) /(p c-p q c+$ $p-q))^{(p-q) / p}<\infty$, and from Proposition 2 we see that $M_{q}\left(h\left(\Gamma^{*}\right)\right) \leq C M_{p}\left(\Gamma^{i}\right)^{q / p}$ for every path family $\Gamma^{〔}$ from $D$.

## 5 Geometric properties of generalized quasiregular mappings.

We shall prove first some geometric properties of generalized quasiregular mappings in the general setting of the operator $N$ in dimension $n \geq 2$.

Theorem 9. (Generalization of Schwarz's lemma and modulus of continuity).
Let $n \geq 2, D \subset \mathbf{R}^{n}$ a domain, $f: D \rightarrow \mathbf{R}^{n}$ continuous, open, discrete and bounded, let $M$ be a modulus on $D$ so that there exists $\varphi:(0, \infty) \rightarrow(0, \infty)$ continuous, increasing with $\lim _{t \rightarrow 0} \varphi(t)=0$ and $M\left(\Gamma_{x, a, b}\right) \leq \varphi(1 / \ln \ln (b e / a))$ for every $x \in D$ and every $b>0$ so that $\bar{B}(x, b) \subset D$ and let $\gamma:[0, \infty) \rightarrow[0, \infty)$ be continuous, increasing with $\lim _{t \rightarrow 0} \gamma(t)=0$ and so that $M_{N}(f(\Gamma)) \leq \gamma(M(\Gamma))$ for every path family $\Gamma$ from $D$.

Then there exists $\delta>0$ and $F:(0, \infty) \rightarrow(0, \infty)$ continuous, increasing with $\lim _{t \rightarrow 0} F(t)=0$ and so that $l(x, f, a) \leq F(1 / \ln \ln (b e / a))$ for every $x \in D$ and every $0<a<b \delta$ so that $\bar{B}(x, b) \subset D$.

Proof: Let $d=d f(D)$ and let $h_{4}:(0, d) \rightarrow(0, \infty)$ be defined by $h_{4}(t)=\frac{t^{n-1} \omega_{n-1}}{V_{n}\left(d^{n}-t^{n}\right)}$ for $t \in(0, d)$. Then $\lim _{t \rightarrow 0} h_{4}(t)=0$ and $h_{4}:(0, d) \rightarrow(0, \infty)$ is an increasing homeomorphism. There exists $\delta_{0} \in(0, d)$ so that $h_{4}\left(\delta_{0}\right)=1$ and $h_{4}(t) \leq 1$ if $t \in\left[0, \delta_{0}\right], h_{4}(t)>1$ if $t \in\left(\delta_{0}, d\right)$. Let $C_{0}=q 2^{(r-s) / r} \Phi^{s}(1)$. Let $h_{1}:\left(0, \delta_{0}\right] \rightarrow \mathbf{R}, h_{1}(t)=C_{0}\left(h_{4}(t)\right)^{s q(\Phi)} g\left(V_{n}\left(d^{n}-t^{n}\right)\right)$ for $t \in\left(0, \delta_{0}\right]$, $h_{2}:\left(\delta_{0}, d\right) \rightarrow \mathbf{R}, h_{2}(t)=C_{0}\left(h_{4}(t)\right)^{s p(\Phi)} g\left(V_{n}\left(d^{n}-t^{n}\right)\right)$ for $t \in\left(\delta_{0}, d\right)$ and let $h:(0, d) \rightarrow(0, \infty)$ be defined by $h(t)=h_{1}(t)$ for $t \in\left(0, \delta_{0}\right], h(t)=h_{2}(t)$ for $t \in\left(\delta_{0}, d\right)$. Then $h$ is continuous on $(0, d)$ and let $c \in(0, d)$ be so that $V_{n}\left(d^{n}-c^{n}\right)=1$.

Suppose first that $0<c<\delta_{0}$. Then $h_{1}(t)=C_{0}\left(t^{n-1} \omega_{n-1}\right)^{s q(\Phi)}\left(1 /\left(V_{n}\left(d^{n}-t^{n}\right)\right)^{s q(\Phi)-1}\right)$ if $t \in$ $(0, c), h_{1}(t)=C_{0}\left(t^{n-1} \omega_{n-1}\right)^{s q(\Phi)}\left(1 /\left(V_{n}\left(d^{n}-t^{n}\right)\right)^{s q(\Phi)-s / r}\right)$ if $t \in\left[c, \delta_{0}\right)$, and since $s q(\Phi)-1 \geq 0$, $s q(\phi)-s / r \geq 0$, we see that $h_{1}$ is strictly increasing. Also, $h_{2}(t)=C_{0}\left(t^{n-1} \omega_{n-1}\right)^{s p(\Phi)}\left(1 /\left(V_{n}\left(d^{n}-\right.\right.\right.$ $\left.\left.\left.t^{n}\right)\right)^{s p(\Phi)-s / r}\right)$ if $t \in\left(\delta_{0}, d\right)$, hence $h_{2}$ is strictly increasing and let $\alpha=\lim _{t \rightarrow d} h_{2}(t)$. Then $h:(0, d) \rightarrow$ $(0, \alpha)$ is an increasing homeomorphism.

Suppose now that $\delta_{0}<c$. Then $h_{1}(t)=C_{0}\left(t^{n-1} \omega_{n-1}\right)^{s q(\Phi)}\left(1 /\left(V_{n}\left(d^{n}-t^{n}\right)\right)^{s q(\Phi)-1}\right)$ if $0<$ $t \leq \delta_{0}$, hence $h_{1}$ is strictly increasing and $h_{2}(t)=C_{0}\left(t^{n-1} \omega_{n-1}\right)^{s p(\Phi)}\left(1 /\left(V_{n}\left(d^{n}-t^{n}\right)\right)^{s p(\Phi)-1}\right)$ if $\delta_{0}<t \leq c$ and $h_{2}(t)=C_{0}\left(t^{n-1} \omega_{n-1}\right)^{s p(\Phi)}\left(1 /\left(V_{n}\left(d^{n}-t^{n}\right)\right)^{s p(\Phi)-s / r}\right.$ if $c<t<d$. Since $s p(\Phi)-1 \geq 0, s p(\Phi)-s / r \geq 0$, we see that $h_{2}$ is strictly increasing and if $\alpha=\lim _{t \rightarrow d} h_{2}(t)$, we see that $h:(0, d) \rightarrow(0, \alpha)$ is an increasing homeomorphism. We proved that in both cases $h:(0, d) \rightarrow(0, \alpha)$ is an increasing homeomorphism.

Let $h_{3}:(0, d) \rightarrow(0, \infty), h_{3}(t)=q 2^{(r-s) / r} \Phi^{s}\left(h_{4}(t)\right) g\left(V_{n}\left(d^{n}-t^{n}\right)\right)$ for $t \in(0, d)$. We see that $h_{3}(t)=q 2^{(r-s) / r} \Phi^{s}\left(h_{4}(t)\right) g\left(V^{n}\left(d^{n}-t^{n}\right)\right) \geq q 2^{(r-s) / r} \Phi^{s}(1) g\left(V_{n}\left(d^{n}-t^{n}\right)\right) \min \left\{h_{4}(t)^{s p(\Phi)}\right.$, $\left.h_{4}(t)^{s q(\Phi)}\right\}=h(t)$ for $t \in(0, d)$. Let $\beta=\min \left\{q, \alpha q 2^{(r-s) / r}\right\}$ and let $\delta=\exp (1-\exp (1 /(\gamma \circ$ $\left.\varphi)^{-1}(\beta)\right)$ ). Let $x \in D$ and $b>0$ be so that $\bar{B}(x, b) \subset D$ and $0<a<b \delta$, and let $U$ be the component of $f^{-1}(B(f(x), l(x, f, a)))$ containing $x$. We see that $U \subset B(x, a)$ and let $\Gamma^{*}=\Gamma_{f(x), l(x, f, a), d}$. Let $\Gamma$ be the family of all maximal lifting of some paths from $\Gamma^{\prime}$ starting from some points from $U$. Then $\Gamma>\Gamma_{x, a, b}, \Gamma^{\prime}>f(\Gamma)$ and from Theorem 5 we see that $\min \left\{q, q 2^{(r-s) / r} h_{3}(l(x, f, a))\right\} \leq$ $M_{N}\left(\Gamma^{*}\right) \leq M_{N}(f(\Gamma)) \leq \gamma(M(\Gamma)) \leq \gamma\left(M\left(\Gamma_{x, a, b}\right)\right) \leq \gamma(\varphi(1 / \ln \ln (b e / a)))<\beta \leq q$.

This implies that $q 2^{(r-s) / r} h_{3}(l(x, f, a)) \leq \gamma(\varphi(1 / \ln \ln (b e / a)))<\beta \leq \alpha q 2^{(r-s) / r}$, hence $h(l(x, f, a)) \leq h_{3}(l(x, f, a))<q^{-1} 2^{(s-r) / r} \gamma(\varphi(1 / \ln \ln (b e / a)))<\alpha$. Let $v:(0, \alpha) \rightarrow(0, d)$ be the inverse of $h:(0, d) \rightarrow(0, \alpha)$. Since $q^{-1} 2^{(s-r) / r} \gamma(\varphi(1 / \ln \ln (b e / a))) \in I m h$, we can take $F=v\left(q^{-1} 2^{(s-r) / r} \gamma \circ \varphi\right)$ and we see that $F$ is continuous, increasing, $\lim _{t \rightarrow 0} F(t)=0$ and $l(x, f, a,) \leq F(1 / \ln \ln (b e / a))$ if $\bar{B}(x, b) \subset D$ and $0<a<b \delta$.

Remark 6. Suppose that in the preceding theorem we additionally have the relation $" L(x, f, a) \leq \alpha(l(x, f, a))$ for some continuous, increasing function $\alpha:(0, \infty) \rightarrow(0, \infty)$, every $x \in D$ and every $0<a<b \delta$ so that $\bar{B}(x, b) \subset D^{\prime \prime}$. Then, if $x \in D$ is so that $\bar{B}(x, b) \subset D$ and $0<a<b \delta$, we see that $L(x, f, a) \leq \alpha(l(x, f, a)) \leq \alpha(F(1 / \ln \ln (b e / a)))$. We obtain in this case
that if $x \in D, b>0$ is so that $\bar{B}(x, b) \subset D$, then $|f(y)-f(x)| \leq \alpha(F(1 / \ln \ln (b e /|y-x|)))$ if $0<|y-x|<b \delta$.

Theorem 10. (Generalization of Liouville's theorem) Let $n \geq 2, f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ a function which is either constant, or continuous, open, discrete and bounded, let $M$ be a modulus on $\mathbf{R}^{n}$ so that there exists $\varphi:(0, \infty) \rightarrow(0, \infty)$ continuous,, increasing with $\lim _{t \rightarrow 0} \varphi(t)=0$ and $M\left(\Gamma_{x, a, b}\right) \leq \varphi(1 / \ln \ln (b e / a))$ for every $x \in D$ and $b>0$ so that $\bar{B}(x, b) \subset D$ and let $\gamma$ : $[0, \infty) \rightarrow[0, \infty)$ be continuous, increasing with $\lim _{t \rightarrow 0} \gamma(t)=0$ and so that $M_{N}(f(\Gamma)) \leq \gamma(M(\Gamma))$ for every path family $\Gamma$ from $D$. Then $f$ is constant.

Proof: Suppose that $f$ is not constant. Then $f$ is continuous, open, discrete and bounded and let $x \in \mathbf{R}^{n}$ and $0<a$ be fixed. Using the preceding theorem, there exists $\delta>0$ and a continuous, increasing function $F:(0, \infty) \rightarrow(0, \infty)$ with $\lim _{t \rightarrow 0} F(t)=0$ and so that $l(x, f, a) \leq$ $F(1 / \ln \ln (b e / a))$ if $0<a<b \delta$. Letting $b=m a$ with $m>\delta^{-1}$, we see that $l(x, f, a) \leq$ $F(1 / \ln \ln m) \rightarrow 0$ if $m \rightarrow \infty$. It results that $l(x, f, a)=0$ and this contradicts the fact that $f$ is open, discrete. We proved that $f$ is constant.

Definition. Let $D \subset \mathbf{R}^{n}$ a domain, $M$ a modulus on $D$ and $E \subset \overline{\mathbf{R}}^{n}$. We say that $E$ is of zero $M$ modulus (and we write $M(E)=0$ ) if the $M$ modulus of the family of all paths passing through some points from $E$ is zero.

If $x \in D, b>0$ is so that $\bar{B}(x, b) \subset D$ and $\lim _{a \rightarrow 0} M\left(\Gamma_{x, a, b}\right)=0$ (and such a condition holds in Theorem 2,3,4), then $M(\{x\})=0$. If $A \subset D$ is at most countable and $M(\{x\})=0$ for every $x \in A$, then $M(A)=0$.

Theorem 11. (Generalization of Picard's theorem). Let $n \geq 2, E \subset \mathbf{R}^{n}$ closed, $f$ : $\mathbf{R}^{n} \backslash E \rightarrow \mathbf{R}^{n}$ continuous, open, discrete, $M$ a modulus on $\mathbf{R}^{n}$ so that $M(E \cup\{\infty\})=0$, let $\gamma:[0, \infty) \rightarrow[0, \infty)$ be so that $\gamma(0)=0$ and $M_{N}(f(\Gamma)) \leq \gamma(M(\Gamma))$ for every path family $\Gamma$ from $\mathbf{R}^{n}$. Then $\mu_{n}\left(\overline{C f\left(\mathbf{R}^{n} \backslash E\right)}\right)=\phi$.

Proof: Suppose that there exists $F \subset \overline{C f\left(\mathbf{R}^{n} \backslash E\right)}$ so that $\mu_{n}(F)>0$. Let $K \subset \mathbf{R}^{n} \backslash E$ be compact so that $\operatorname{Int} f(K) \neq \phi$. Then $f(K) \cap \overline{C f\left(\mathbf{R}^{n} \backslash E\right)}=\phi$ and let $\Gamma^{*}=\Delta(f(K)$, $\left.\overline{C f\left(\mathbf{R}^{n} \backslash E\right)}, \mathbf{R}^{n}\right)$ and $\Gamma$ be the family of all maximal lifting of some paths from $\Gamma^{\prime}$ starting from some points from $K$. Then $\Gamma^{\prime}>f(\Gamma)$ and since every path from $\Gamma$ has at least a limit point in $E \cup\{\infty\}$, we see that $M(\Gamma)=0$, and from Theorem 7 we see that $M_{N}\left(\Gamma^{\prime}\right)>0$. We have that $0<M_{N}\left(\Gamma^{*}\right) \leq M_{N}(f(\Gamma)) \leq \gamma(M(\Gamma))=\gamma(0)=0$, and we reached a contradiction. We therefore proved that $\mu_{n}\left(\overline{C f\left(\mathbf{R}^{n} \backslash E\right)}\right)=0$.

## 6 Stronger geometric properties of generalized quasiregular mappings.

As we can see in the classical case of quasiregular mappings, which satisfies a modular inequality of type $M_{N}(f(\Gamma)) \leq \gamma(M(\Gamma))$ with $M_{N}=M=M_{n}$ and $\gamma(t)=K t$ for $t \geq 0$, an essential step in proving some basic geometric properties in this class of mappings is the fact that $M_{n}(\Delta(E, F, B(x, b) \backslash \bar{B}(x, a))) \geq C_{n} \ln \frac{b}{a}=C(a, b, n)>0$ for every $x \in \mathbf{R}^{n}$ and every $E, F \subset \mathbf{R}^{n}$ so that $S(x, t) \cap E \neq \phi, S(x, t) \cap F \neq \phi$ for every $a<t<b$.

We proved in Theorem 8 such a result in the case $n=2$ for the operator $N: \mathcal{M}(D) \rightarrow[0, \infty]$ given by $N(u)=\int_{D} \Psi_{p(x)}\left(\Phi(|u|(x)) d x\right.$ for $u \in \mathcal{M}(D)$ and in the case $n \geq 3$ for $M_{N}=M_{p}$ with $p>n-1$, and so we can expect that also for some other generalized quasiregular mappings some similar results can hold.

Throughout this chapter the operator $N: \mathcal{M}(D) \rightarrow[0, \infty]$ will be given in the case $n=2$ by the formulae $N(u)=\int_{D} \Psi_{p(x)}(\Phi(|u|(x))) d x$ for $u \in \mathcal{M}(D)$, with the functions $\Psi, \Phi, p$ and the constants $q, r, s$ as before, and if $n \geq 3$, then $M_{N}=M_{p}$ with $p>n-1$.

Theorem 12. (Generalization of Schwarz's lemma and modulus of continuity). Let $n \geq 2$, $D \subset \mathbf{R}^{n}$ a domain, $f: D \rightarrow \mathbf{R}^{n}$ continuous, open, discrete and bounded, let $M$ a modulus on $D$ so that there exists $\varphi:(0, \infty) \rightarrow(0, \infty)$ continuous, increasing with $\lim _{t \rightarrow 0} \varphi(t)=0$ and $M\left(\Gamma_{x, a, b}\right) \leq \varphi(1 / \ln \ln (b e / a))$ for every $x \in D$ and every $b>0$ so that $\bar{B}(x, b) \subset D$, let $\gamma:[0, \infty) \rightarrow[0, \infty)$ be continuous, increasing with $\lim _{t \rightarrow 0} \gamma(t)=0$ and suppose that $M_{N}(f(\Gamma)) \leq$ $\gamma(M(\Gamma))$ for every path family $\Gamma$ from $D$. Then there exists $\delta>0$ and $F:(0, \infty) \rightarrow(0, \infty)$ continuous, increasing with $\lim _{t \rightarrow 0} F(t)=0$ and so that $|f(y)-f(x)| \leq F(1 / \ln \ln (b e /|y-x|))$ for every $x \in D$ and every $0<|y-x|<b \delta$ so that $\bar{B}(x, b) \subset D$, and we can take $\delta=$ $\exp \left(1-\exp \left(1 /(\gamma \circ \varphi)^{-1}(q)\right)\right)$ if $n=2$ and $\delta=1$ if $M_{N}=M_{p}$ with $p>n-1$.

Proof: Let $d=d f(D)$, let $x \in D$ and $b>0$ be so that $\bar{B}(x, b) \subset D$ and let $y \in B(x, b)$. Let $y_{1} \in S(x,|y-x|)$ be so that $L(x, f,|y-x|)=\left|f\left(y_{1}\right)-f(x)\right|$, and let $P$ be the point from the line determined by $f(x)$ and $f\left(y_{1}\right)$, opposite to $f\left(y_{1}\right)$ and so that $|P-f(x)|=d$. Let $E=f(\bar{B}(x,|y-x|)), F=C B(f(x), d)$ and let $\Gamma^{\kappa}=\Delta\left(E, F, \mathbf{R}^{n}\right)$. Let $\Gamma$ be the family of all maximal lifting of some paths from $\Gamma^{\kappa}$ starting from some points of $\bar{B}(x,|y-x|)$. Then $\Gamma^{‘}>f(\Gamma), \Gamma>\Gamma_{x,|y-x|, b}$ and $S(P, t) \cap E \neq \phi, S(P, t) \cap F \neq \phi$ for $d<t<d+\left|f\left(y_{1}\right)-f(x)\right|$.

Suppose that $n=2$. From Theorem 8 we have
$\min \left\{q, q 2^{(r-s) / r} \Phi^{s}\left(1 / \pi\left(2 d+\left|f\left(y_{1}\right)-f(x)\right|\right)\right) g\left(\pi\left(d+\left|f\left(y_{1}\right)-f(x)\right|\right)^{2}-d^{2}\right) \leq M_{N}\left(\Gamma^{\prime}\right) \leq M_{N}(f(\Gamma)) \leq\right.$ $\gamma(M(\Gamma)) \leq \gamma\left(M\left(\Gamma_{x,|y-x|, b}\right)\right) \leq \gamma(\varphi(1 / \ln \ln (b e /|y-x|)))<q$ if $|y-x|<b \delta$.

This implies that if $0<|y-x|<b \delta$, then
$q 2^{(r-s) / r} \Phi^{s}\left(1 / \pi\left(2 d+\left|f\left(y_{1}\right)-f(x)\right|\right)\right) g\left(\pi\left|f\left(y_{1}\right)-f(x)\right|\left(2 d+\left|f\left(y_{1}\right)-f(x)\right|\right)\right) \leq \gamma(\varphi(1 / \ln \ln (b e / \mid y-$ $x \mid))$ ) and hence $q 2^{(r-s) / r} \Phi^{s}(1 / 3 \pi d) g\left(\pi|f(y)-f(x)|^{2}\right) \leq \gamma(\varphi(1 / \ln \ln (b e /|y-x|)))$.

Letting $F=\left(\pi^{-1} g^{-1}\left(q^{-1} 2^{(s-r) / r} \Phi^{-s}(1 / 3 \pi d) \gamma \circ \varphi\right)\right)^{\frac{1}{2}}$, we see that $F$ is continuous, increasing, $\lim _{t \rightarrow 0} F(t)=0$ and $|f(y)-f(x)| \leq F(1 / \ln \ln (b e /|y-x|))$ if $0<|y-x|<b \delta$ and $\bar{B}(x, b) \subset D$.

Suppose now that $M_{N}=M_{n}$. Then $M_{N}\left(\Gamma^{\prime}\right)=M_{n}\left(\Gamma^{\prime}\right) \geq C(n) \ln \left(\frac{d+\left|f\left(y_{1}\right)-f(x)\right|}{d}\right) \geq C(n) \ln (1+$ $\left.\frac{|f(y)-f(x)|}{d}\right) \geq \frac{C(n)}{2 d}|f(y)-f(x)|$, hence $\frac{C(n)}{2 d}|f(y)-f(x)| \leq M_{N}\left(\Gamma^{\prime}\right) \leq M_{N}(f(\Gamma)) \leq \gamma(M(\Gamma)) \leq$ $\gamma\left(M\left(\Gamma_{x,|y-x|, d}\right)\right) \leq \gamma(\varphi(1 / \ln \ln (b e /|y-x|)))$ if $|y-x|<b$ and $\bar{B}(x, b) \subset D$.

Letting $F=\frac{2 d}{C(n)} \gamma \circ \varphi$, we see that $F:(0, \infty) \rightarrow(0, \infty)$ is continuous, increasing, $\lim _{t \rightarrow 0} F(t)=$ 0 and $|f(y)-f(x)| \leq F(1 / \ln \ln (b e /|y-x|))$ if $x \in D, \bar{B}(x, b) \subset D$ and $0<|y-x|<b$.

Suppose now that $M_{N}=M_{p}$, with $p>n-1, p \neq n$. Then $M_{N}\left(\Gamma^{\prime}\right)=M_{p}\left(\Gamma^{\prime}\right) \geq C(n, p)((d+$ $\left.\left.\left|f\left(y_{1}\right)-f(x)\right|\right)^{n-p}-d^{n-p}\right) \geq C(n, p)\left((d+|f(y)-f(x)|)^{n-p}-d^{n-p}\right) \geq C(n, p)(n-p) \mid f(y)-$ $f(x) \mid(2 d)^{n-p-1}$. It results that
$C(n, p)(n-p)(2 d)^{n-p-1}|f(y)-f(x)| \leq M_{N}\left(\Gamma^{c}\right) \leq M_{N}(f(\Gamma)) \leq \gamma(M(\Gamma)) \leq \gamma\left(M\left(\Gamma_{x,|y-x|, b}\right)\right) \leq$ $\gamma(\varphi(1 / \ln \ln (b e /|y-x|)))$ if $|y-x|<b$ and $\bar{B}(x, b) \subset D$.

Letting $F=\left(1 /\left(C(n, p)(n-p)(2 d)^{n-p-1}\right)\right) \gamma \circ \varphi$, we see that $F:(0, \infty) \rightarrow(0, \infty)$ is continuous, increasing, $\lim _{t \rightarrow 0} F(t)=0$ and $|f(y)-f(x)| \leq F(1 / \ln \ln (b e /|y-x|))$ if $x \in D, \bar{B}(x, b) \subset D$ and $0<|y-x|<b$.

Theorem 13. (Generalization of Picard's theorem). Let $n \geq 2, E \subset \mathbf{R}^{n}$ closed, $f$ : $\mathbf{R}^{n} \backslash E \rightarrow \mathbf{R}^{n}$ continuous, open, discrete, $M$ a modulus on $\mathbf{R}^{n}$ so that $M(E \cup\{\infty\})=0$ and let $\gamma:[0, \infty) \rightarrow[0, \infty)$ be so that $\gamma(0)=0$ and $M_{N}(f(\Gamma)) \leq \gamma(M(\Gamma))$ for every path family $\Gamma$ from $\mathbf{R}^{n}$. Then $\overline{C f\left(\mathbf{R}^{n} \backslash E\right)}$ is totally disconnected.

Proof: Suppose that there exists $F \subset \overline{C f\left(\mathbf{R}^{n} \backslash E\right)}$ compact, connected so that $\operatorname{CardF}>1$
and let $K \subset \mathbf{R}^{n} \backslash E$ be compact, connected with $\operatorname{Cardf}(K)>1$ and $f(K) \cap F=\phi$. Let $\Gamma^{\star}=\Delta\left(f(K), F, \mathbf{R}^{n}\right)$ and let $\Gamma$ be the family of all maximal lifting of some paths from $\Gamma^{\star}$ starting from some points from $K$. Then $\Gamma^{\prime}>f(\Gamma), M(E \cup\{\infty\})=0$ and since every path from $\Gamma$ has at least a limit point in $E \cup\{\infty\}$, it results that $M(\Gamma)=0$. Using Theorem 8, we see that $M_{N}\left(\Gamma^{i}\right)>0$, hence $0<M_{N}\left(\Gamma^{\dot{c}}\right) \leq M_{N}(f(\Gamma)) \leq \gamma(M(\Gamma))=\gamma(0)=0$ and we reached a contradiction. We therefore proved that $\overline{C f\left(\mathbf{R}^{n} \backslash E\right)}$ is totally disconnected.

The following equicontinuity result extends Corollary 2.7, page 66 from [23].
Theorem 14. Let $n \geq 2, D \subset \mathbf{R}^{n}$ a domain, $M$ a modulus on $D$ so that $\lim _{a \rightarrow 0} M\left(\Gamma_{x, a, b}\right)=0$ for every $x \in D$ and every $b>0$ so that $\bar{B}(x, b) \subset D$, let $\gamma:[0, \infty) \rightarrow[0, \infty)$ be increasing so that $\lim _{t \rightarrow 0} \gamma(t)=0$, let $W$ be a family of continuous, open, discrete mappings $f: D \rightarrow \mathbf{R}^{n}$ so that there exists $\delta>0$ and sets $M_{f} \subset C \operatorname{Imf}$ so that $\bar{M}_{f}$ is compact, connected, $\operatorname{Card} \bar{M}_{f}>1$, $q\left(\bar{M}_{f}\right) \geq \delta$ for every $f \in W$ and suppose that $M_{N}(f(\Gamma)) \leq \gamma(M(\Gamma))$ for every path family $\Gamma$ from $D$ and every $f \in W$. Then the family $W$ is equicontinuous, and we take on $D$ the euclidean metric and we take on $\overline{\mathbf{R}}^{n}$ the chordal metric.

Proof: Let $x \in D$ and $\epsilon>0$ so that $\bar{B}(x, \epsilon) \subset D$. Suppose that the family $W$ is not equicontinuous at $x$. Then there exists $\alpha>0, r_{m} \rightarrow 0$ and $f_{m} \in W$ so that $q\left(f_{m}\left(\bar{B}\left(x, r_{m}\right)\right)\right)>\alpha$ for every $m \in N$ and let $Q_{m}=f_{m}\left(\bar{B}\left(x, r_{m}\right)\right)$ for $m \in N$. Since $\operatorname{Im} f_{m} \cap M_{f_{m}}=\phi$ and $\operatorname{Im} f_{m}$ are open sets for every $m \in N$, we see that $\operatorname{Im} f_{m} \cap \bar{M}_{f_{m}}=\phi$, hence $Q_{m} \cap \bar{M}_{f_{m}}=\phi$ for every $m \in N$. Let $\Gamma_{m}^{\iota}=\Delta\left(Q_{m}, \bar{M}_{f_{m}}, \mathbf{R}^{n}\right)$ and let $\Gamma_{m}$ be the family of all maximal lifting of some paths from $\Gamma_{m}^{6}$ starting from some points of $\bar{B}\left(x, r_{m}\right)$ for $m \in N$. Since every path from $\Gamma_{m}$ has at least a limit point outside $B(x, \epsilon)$, we see that $\Gamma_{m}>\Gamma_{x, r_{m}, \epsilon}$ and we also see that $\Gamma_{m}^{*}>f\left(\Gamma_{m}\right)$ for every $m \in N$. Using Theorem 7.1, page 11 from [33], we can find compact, connected sets $Q$ and $Y$ so that $q(Q) \geq \alpha, q(Y) \geq \delta$ and so that $\lim _{m \rightarrow \infty} Q_{m}=Q, \lim _{m \rightarrow \infty} \bar{M}_{f_{m}}=Y$. We can therefore find $z \in \mathbf{R}^{n}$ and $0<a<b$ such that $S(z, t) \cap Y \neq \phi, S(z, t) \cap Q \neq \phi$, for $a<t<b$. This implies that we can find $m_{0} \in N$ so that $S(z, t) \cap Q_{m} \neq \phi, S(z, t) \cap \bar{M}_{f_{m}} \neq \phi$ for every $a<t<b$ and every $m \geq m_{0}$.

Using Theorem 8, we can find a constant $C$ so that $M_{N}\left(\Gamma_{m}^{*}\right)>C>0$ for every $m \geq m_{0}$, and $C=C(q, r, s, a, b)$ if $n=2, C=C(n, a, b)$ if $n \geq 3$ and $M_{N}=M_{n}, C=C(n, p, a, b)$ if $n \geq 3$ and $M_{N}=M_{p}$ with $p>n-1, p \neq n$. It results that if $m \geq m_{0}$ we have $0<C<M_{N}\left(\Gamma_{m}^{*}\right) \leq$ $M_{N}\left(f\left(\Gamma_{m}\right)\right) \leq \gamma\left(M\left(\Gamma_{m}\right)\right) \leq \gamma\left(M\left(\Gamma_{x, r_{m}, \epsilon}\right)\right) \rightarrow 0$ if $m \rightarrow \infty$, and we reached a contradiction. It results that the family $W$ is equicontinuous at $x$.

Theorem 15. (Generalization of Montel's theorem). Let $n \geq 2, D \subset \mathbf{R}^{n}$ be a domain, $M$ a modulus on $D$ so that $\lim _{a \rightarrow 0} M\left(\Gamma_{x, a, b}\right)=0$ for every $x \in D$ and every $b>0$ so that $\bar{B}(x, b) \subset D$, let $\gamma:[0, \infty) \rightarrow[0, \infty)$ be increasing so that $\lim _{t \rightarrow 0} \gamma(t)=0$ and let $W$ be a bounded family of continuous, open, discrete mappings $f: D \rightarrow \mathbf{R}^{n}$ so that $M_{N}(f(\Gamma)) \leq \gamma(M(\Gamma))$ for every path family $\Gamma$ from $D$ and every $f \in W$. Then $W$ is equicontinuous, and we take the euclidian metric on $D$ and the chordal metric on $\overline{\mathbf{R}}^{n}$.

Remark 7. An important particular case of Theorem 14 is when $M_{f}=Y$ for every $f \in W$, i.e. when there exists a single set $Y$ avoided by every map $f \in W$ and so that $\bar{Y}$ is compact, connected and $\operatorname{Card} \bar{Y}>1$.

Another important particular case of Theorem 14 is obtained when every map $f$ from the family $W$ is a homeomorphism, extending a known result from the theory of quasiconformal mappings from [30], Theorem 19.2, page 65.

Theorem 16. Let $n \geq 2, D \subset \mathbf{R}^{n}$ be a domain, $M$ a modulus on $D$ so that $\lim _{a \rightarrow 0} M\left(\Gamma_{x, a, b}\right)=$ 0 for every $x \in D$ and every $b>0$ so that $\bar{B}(x, b) \subset D$, let $\gamma:[0, \infty) \rightarrow[0, \infty)$ be increasing so
that $\lim _{t \rightarrow 0} \gamma(t)=0$ and let $W$ be a family of homeomorphisms $f: D \rightarrow D_{f} \subset \mathbf{R}^{n}$ so that there exists $\delta>0$ so that for every $f \in W$ there exists points $a_{f}, b_{f} \notin \operatorname{Imf}$ so that $q\left(a_{f}, b_{f}\right) \geq \delta$ and suppose that $M_{N}(f(\Gamma)) \leq \gamma(M(\Gamma))$ for every path family $\Gamma$ from $D$ and every $f \in W$. Then $W$ is equicontinuous, and we take the euclidian metric on $D$ and we take the chordal metric on $\overline{\mathbf{R}}^{n}$.

Proof: Let $x \in D$ and $\epsilon>0$ be fixed so that $\bar{B}(x, \epsilon) \subset D$. Let $f \in W$. Since $f \mid S(x, \epsilon)$ : $S(x, \epsilon) \rightarrow f(S(x, \epsilon))$ is a homeomorphism, we use Jordan's theorem to see that $\mathbf{R}^{n} \backslash f(S(x, \epsilon))$ has exactly two components $A_{f}$ and $B_{f}$. If $f(B(x, \epsilon)) \cap A_{f} \neq \phi$, then $f(B(x, \epsilon))=A_{f}$ and hence $a_{f}, b_{f} \in B_{f}$. It results that $B_{f}$ is a domain so that $q\left(B_{f}\right) \geq \delta$ and $B_{f} \cap f(B(x, \epsilon))=\phi$ for every $f \in W$. Let $W_{\epsilon}=\{f|B(x, \epsilon)| f \in W\}$. Using Theorem 14 we see that the family $W_{\epsilon}$ is equicontinuous at $x$, hence the family $W$ is equicontinuous at $x$.

Remark 8. As in [30] Theorem 19.4, page 66, we can prove that we can replace in Theorem 16 the condition "there exists $\delta>0$ such that fort every $f \in W$ there exists points $a_{f}, b_{f} \notin \operatorname{Imf}$ so that $q\left(a_{f}, b_{f}\right) \geq \delta$ " with one of the following conditions:
a) there exists $\delta>0$ and $x_{1}, x_{2} \in D$ such that for every $f \in W$ there exists a point $a_{f} \notin \operatorname{Imf}$ with $q\left(a_{f}, f\left(x_{i}\right)\right) \geq \delta, i=1,2$.
b) there exists $\delta>0$ and points $x_{1}, x_{2}, x_{3}$ so that $q\left(f\left(x_{i}\right), f\left(x_{j}\right)\right) \geq \delta$ for $i \neq j, i, j=1,2,3$ and for every $f \in W$.

We also have the following eliminability result, which is a partial extension of Theorem 2.9, page 66 from [23].

Theorem 17. Let $n \geq 2, D \subset \mathbf{R}^{n}$ be a domain, $x \in D, M$ a modulus on $D$ so that $\lim _{a \rightarrow 0} M\left(\Gamma_{x, a, b}\right)=0$ for every $b>0$ so that $\bar{B}(x, b) \subset D$, let $\gamma:[0, \infty) \rightarrow[0, \infty)$ be increasing so that $\lim _{t \rightarrow 0} \gamma(t)=0$ and let $E \subset D$ closed in $D$ and nowhere disconnecting so that $x \in E$ and $M(E)=0$. Let $f: D \backslash E \rightarrow \mathbf{R}^{n}$ be continuous, open, discrete so that $M_{N}(f(\Gamma)) \leq$ $\gamma(M(\Gamma))$ for every path family $\Gamma$ from $D \backslash E$ and suppose that there exists $r_{x}>0$ and a set $Y \subset C f\left(B\left(x, r_{x}\right) \backslash E\right)$ so that $\bar{Y}$ is compact, connected and $\operatorname{Car} \bar{Y}>1$. Then there exists $\lim _{z \rightarrow x} f(z) \in \overline{\mathbf{R}}^{n}$.

Proof: We can suppose that $\bar{B}\left(x, r_{x}\right) \subset D$. Suppose that $\operatorname{CardC}(f, x)>1$ and let $b_{1}, b_{2} \in$ $C(f, x), b_{1} \neq b_{2}$. Let $x_{j}, y_{j} \in B\left(x, r_{x}\right) \backslash E$ be so that $x_{j} \neq y_{j}$ for $j \in N, f\left(x_{j}\right) \rightarrow b_{1}, f\left(y_{j}\right) \rightarrow b_{2}$ and let $r_{j} \rightarrow 0$ be so that $x_{j}, y_{j} \in B\left(x, r_{j}\right), 0<r_{j}<r_{x}$ for every $j \in N$. Since $E$ is nowhere disconnecting, we can find a compact, connected set $C_{j} \subset B\left(x, r_{j}\right) \backslash E$ so that $x_{j}, y_{j} \in C_{j}$ for every $j \in N$. Let $\delta=\left|b_{1}-b_{2}\right|$. We can suppose that $q\left(f\left(C_{j}\right)\right) \geq \lambda \delta, q(\bar{Y}) \geq \lambda \delta$ for every $j \in N$ and some $0<\lambda<1$. Since $f\left(B\left(x, r_{x}\right) \backslash E\right)$ is an open set and $Y \cap f\left(B\left(x, r_{x}\right) \backslash E\right)=\phi$, it results that $\bar{Y} \cap f\left(B\left(x, r_{x}\right) \backslash E\right)=\phi$ and hence $f\left(C_{j}\right) \cap \bar{Y}=\phi$ for every $j \in N$. Using Theorem 7.1, page 11 from [33], we can find a compact, connected set $Q$ so that $f\left(C_{j}\right) \rightarrow Q$ and $q(Q) \geq \lambda \delta$. We can therefore find $z \in \mathbf{R}^{n}$ and $0<a<b$ such that $S(z, t) \cap \bar{Y} \neq \phi, S(z, t) \cap Q \neq \phi$ for $a<t<b$, hence we can find $j_{0} \in N$ so that $S(z, t) \cap f\left(C_{j}\right) \neq \phi$ for every $a<t<b$ and every $j \geq j_{0}$.

Let $\Gamma_{j}^{*}=\Delta\left(f\left(C_{j}\right), \bar{Y}, \mathbf{R}^{n}\right)$ and let $\Gamma_{j}$ be the family of all maximal lifting of some paths from $\Gamma_{j}^{*}$ starting from some points from $C_{j}$ for $j \in N$. Let $\Gamma_{1 j}=\{\varphi \in \Gamma \mid \varphi$ has at least a limit point in $E\}$ and let $\Gamma_{2 j}=\left\{\varphi \in \Gamma \mid \varphi\right.$ has at least a limit point outside $\left.B\left(x, r_{x}\right)\right\}$ for $j \in N$. We see that $M\left(\Gamma_{1 j}\right)=0$, that $\Gamma_{j}=\Gamma_{1 j} \cup \Gamma_{2 j}, \Gamma_{2 j}>\Gamma_{x, r_{j}, r_{x}}$ and $\Gamma_{j}^{i}>f\left(\Gamma_{j}\right)$ for every $j \in N$. Using Theorem 8, we can find a constant $C>0$ so that $M_{N}\left(\Gamma_{j}^{j}\right)>C>0$ for every $j \geq j_{0}$, and $C=C(q, r, s, a, b)$ if $n=2, C=C(n, a, b)$ if $n \geq 3$ and $M_{N}=M_{n}$ and $C=C(n, p, a, b)$ if $n \geq 3$ and $M_{N}=M_{p}$ with $p>n-1, p \neq n$. It results that $0<C<M_{N}\left(\Gamma_{j}^{*}\right) \leq M_{N}\left(f\left(\Gamma_{j}\right)\right) \leq$ $\gamma\left(M\left(\Gamma_{j}\right)\right)=\gamma\left(M\left(\Gamma_{1 j} \cup \Gamma_{2 j}\right)\right) \leq \gamma\left(M\left(\Gamma_{1 j}\right)+M\left(\Gamma_{2 j}\right)\right)=\gamma\left(M\left(\Gamma_{2 j}\right)\right) \leq \gamma\left(M\left(\Gamma_{x, r_{j}, r_{x}}\right)\right) \rightarrow 0$ if
$j \rightarrow \infty$ and we reached a contradiction.
It results that $\operatorname{CardC}(f, x)=1$ and hence there exists $\lim _{z \rightarrow x} f(z) \in \overline{\mathbf{R}}^{n}$.
Remark 9. The most important case in Theorem 17 is when $x$ is an isolated singularity of $D$, i.e. when $E=\{x\}$. In this case, due to the condition $" \lim _{a \rightarrow 0} M\left(\Gamma_{x, a, b}\right)=0$ for every $b>0$ so that $\bar{B}(x, b) \subset D^{\prime \prime}$, it results that $M(\{x\})=0$.

Definition. If $D \subset \mathbf{R}^{n}$ is a domain, $x \in \partial D$ is an isolated point of $\partial D$ and $f: D \rightarrow \mathbf{R}^{n}$ is continuous, open, discrete, we say that $x$ is an essential singularity of $f$ if there exists not $\lim _{z \rightarrow x} f(z) \in \mathbf{R}^{n}$.

Using Theorem 17, we obtain as in the classical case of quasiregular mappings the characterization of the behavior of a continuous, open, discrete mapping satisfying a modular inequality near an essential singularity.

Theorem 18. Let $n \geq 2, D \subset \mathbf{R}^{n}$ be a domain, $x$ an isolated point of $\partial D, M$ a modulus on $D$ such that $\lim _{a \rightarrow 0} M\left(\Gamma_{x, a, b}\right)=0$ for every $b>0$ so that $\bar{B}(x, b) \backslash\{x\} \subset D, \gamma:[0, \infty) \rightarrow[0, \infty)$ be increasing with $\lim _{t \rightarrow 0} \gamma(t)=0$, let $f: D \rightarrow \mathbf{R}^{n}$ be continuous, open, discrete so that $x$ is essential singularity of $f$ and suppose that $M_{N}(f(\Gamma)) \leq \gamma(M(\Gamma))$ for every path family $\Gamma$ from $D$. Then $\overline{C f(B(x, b) \backslash\{x\})}$ is totally disconnected for every $b>0$ so that $\bar{B}(x, b) \backslash\{x\} \subset D$.

If in Theorem 17 the map $f: D \backslash E \rightarrow \mathbf{R}^{n}$ is a homeomorphism (or even a map of finite multiplicity), we have the following eliminability result, which extends a known result from the theory of quasiconformal mappings from [30], Theorem 17.3, page 52.

Theorem 19. Let $n \geq 2, D \subset \mathbf{R}^{n}$ be a domain, $x \in D, M$ a modulus on $D$ so that $\lim _{a \rightarrow 0} M\left(\Gamma_{x, a, b}\right)=0$ for every $b>0$ so that $\bar{B}(x, b) \subset D$, let $\gamma:[0, \infty) \rightarrow[0, \infty)$ be increasing so that $\lim _{t \rightarrow 0} \gamma(t)=0$ and let $E \subset D$ be closed in $D$ and nowhere disconnecting so that $x \in E$ and $M(E)=0$. Let $f: D \backslash E \rightarrow \mathbf{R}^{n}$ be continuous, open, discrete so that there exists $U_{x} \in \mathcal{V}(x)$ and $n_{x} \in N$ so that $N\left(f \mid U_{x} \cap(D \backslash E)\right) \leq n_{x}$ and so that $M_{N}(f(\Gamma)) \leq \gamma(M(\Gamma))$ for every path family $\Gamma$ from $D \backslash E$. Then there exists $\lim _{z \rightarrow x} f(z) \in \bar{R}^{n}$.

Proof: Let $b>0$ be so that $\bar{B}(x, b) \subset U_{x} \cap D$, and we can suppose that there exists points $x_{1}, x_{2}, \ldots, x_{n_{x}} \in B(x, b) \backslash E$ so that $f\left(x_{1}\right)=f\left(x_{2}\right)=\ldots=f\left(x_{n_{x}}\right)$. Let $U_{i} \in \mathcal{V}\left(x_{i}\right)$ be so that $\bar{U}_{i} \subset B(x, b) \backslash E$ and $f\left(x_{i}\right) \notin f\left(\partial U_{i}\right)$ for $i=1, . ., n_{x}$. Let $r>0$ be so that $B\left(f\left(x_{1}\right), r\right) \cap f\left(\partial U_{i}\right)=\phi$ for $i=1, \ldots, n_{x}$, and let $V=B\left(f\left(x_{1}\right), r\right)$. Let $Q_{i}$ be the component of $f^{-1}(V)$ containing $x_{i}$ for $i=1, \ldots, n_{x}$. Then $Q_{i} \subset U_{i}$ and $f\left(Q_{i}\right)=V$ for $i=1, \ldots, n_{x}$. Let $g=f \mid\left(\left(U_{x} \cap(D \backslash E)\right) \backslash \bigcup_{i=1}^{n_{x}} Q_{i}\right)$. Since $n_{x}$ is the maximal multiplicity of $f$ on $U_{x} \cap(D \backslash E)$, we see that $\operatorname{Img} \cap V=\phi$ and from Theorem 17 we find that there exists $\lim _{z \rightarrow x} g(z) \in \overline{\mathbf{R}}^{n}$. It results that there exists $\lim _{z \rightarrow x} f(z) \in \overline{\mathbf{R}}^{n}$.

Remark 10. We worked in this paper with continuous, open, discrete mappings $f: D \subset$ $\mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ satisfying a modular inequality $M_{N}(f(\Gamma)) \leq \gamma(M(\Gamma))$ for every path family $\Gamma$ from the domain $D$, where $\gamma:[0, \infty) \rightarrow[0, \infty)$ is increasing with $\lim _{t \rightarrow 0} \gamma(t)=0$ and $M$ is a modulus on $D$ so that $\lim _{a \rightarrow 0} M\left(\Gamma_{x, a, b}\right)=0$ for every $b>0$ so that $\bar{B}(x, b) \subset D$. The operator $N: \mathcal{M}(D) \rightarrow$ $[0, \infty]$ is given by $N(u)=\int_{D} \Psi_{p(x)}(\Phi(|u|(x))) d x$ for every $u \in \mathcal{M}(D)$, where $p: D \rightarrow[1, \infty]$ is measurable and finite a.e., $\Phi:[0, \infty) \rightarrow[0, \infty)$ a Young function, $\Psi:[0, \infty) \times[1, \infty) \rightarrow[0, \infty)$ a Borel map so that all the mappings $\Psi_{c}:[0, \infty) \rightarrow[0, \infty)$ given by $\Psi_{c}(t)=\Psi(t, c)$ for $t \geq 0$, $c \geq 1$ are Young functions for every fixed $c \geq 1$ and so that there exists $q, r, s>0$ so that $q \leq \Psi_{p(x)}(1), 1 \leq r \leq p\left(\Psi_{p(x)}\right) \leq q\left(\Psi_{p(x)}\right) \leq s \leq \infty$ for every $x \in D$. The modulus $M_{N}$ is given
by $M_{N}(\Gamma)=\inf _{\rho \in F(\Gamma)} N(\rho)$ if $\Gamma \in \mathcal{A}(D)$.
The stronger results were established in the case $n=2$ or if $n \geq 3$ and $M_{N}=M_{p}$ with $p>n-1$, and a key result used for proving the geometric properties of our generalized quasiregular mappings is that from Theorem 8 which says that $M_{N}(\Delta(E, F, B(x, b) \backslash \bar{B}(x, a))) \geq$ $C(q, r, s, a, b)>0$ if $x \in D$ and $S(x, t) \cap E \neq \phi, S(x, t) \cap F \neq \phi$ for $a<t<b$.

It is obvious that if we can have such a result in dimension $n \geq 3$ for more general modulus $M_{N}$, then all the theorems from this paper hold also in this cases.

In fact, for a quasiregular map $f: D \rightarrow \mathbf{R}^{n}$ we have the known modular inequality of Poleckii which says that $M_{n}(f(\Gamma)) \leq K M_{n}(\Gamma)$ for every path family $\Gamma$ from $D$ and every $K \geq K_{I}(f)$, i.e. we can take $M_{N}=M_{n}, M=M_{n}$ and the function $\gamma:[0, \infty) \rightarrow[0, \infty)$ given by $\gamma(t)=K t$ for $t \geq 0$.

Also, in [5], [6], [12], [13], [14], [15], [20], [21] are considered mappings $f: D \subset \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ of finite distortion so that $\exp \left(\mathcal{A} \circ K_{0}(f)\right) \in L_{\text {loc }}^{1}(D)$ for some Orlicz map $\mathcal{A}$, in [18], [19],, [24], [25] are considered mappings of finite distortion so that $K_{0}(f) \in B M O(D)$ and in [7], [8] are considered open, discrete mappings having local $A C L^{n}$ inverses. All this mappings satisfy a modular inequality of type $M_{N}(f(\Gamma)) \leq M_{\omega}^{n}(\Gamma)$ for every path family $\Gamma$ from $D$ and some weight $\omega$ so that $\lim _{a \rightarrow 0} M_{\omega}^{n}\left(\Gamma_{x, a, b}\right)=0$ for every $b>0$ so that $\bar{B}(x, b) \subset D$, where $\omega=K_{0}(f)^{n-1}$ or $\omega=K_{I}(f)$, hence in all this cases we can take $M_{N}=M_{n}$ and $M=M_{\omega}^{n}$. In all this papers the whole work needed for proving boundary extension theorems, equicontinuity, eliminability and modulus of continuity theorems is done using mainly the modular inequality $M_{N}(f(\Gamma)) \leq \gamma(M(\Gamma))$ together with the fact that $\lim _{a \rightarrow 0} M\left(\Gamma_{x, a, b, D}\right)=0$, and following the methods from the present paper. It results that the facts from the above mentioned papers are particular cases of our theory.

Coming back to the classes of homeomorphisms with finite mean dilatations $f: D \rightarrow$ $D^{\star}$ between two domains from $\mathbf{R}^{n}$ studied in [9] and presented in Proposition 2, for which the modular inequality $M_{q}(f(\Gamma)) \leq \gamma\left(M_{p}(\Gamma)\right)$ holds for every path family $\Gamma$ from $D$, some $1<q<p$ and some continuous, increasing function $\gamma:[0, \infty) \rightarrow[0, \infty)$ with $\lim _{t \rightarrow 0} \gamma(t)=0$, it results that the properties established in this paper are valid in this class of mappings if $1 \leq n-1<q \leq p \leq n$.

Let us see for instance the particular case of Theorem 12 in this class of mappings.
Theorem 20. Let $n \geq 2, n-1<q<p \leq n, D$ a domain in $\mathbf{R}^{n}, f: D \rightarrow \mathbf{R}^{n}$ continuous, open, discrete so that there exists $\gamma:[0, \infty) \rightarrow[0, \infty)$ continuous, increasing with $\lim _{t \rightarrow 0} \gamma(t)=0$ so that $M_{q}(f(\Gamma)) \leq \gamma\left(M_{p}(\Gamma)\right)$ for every path family $\Gamma$ from $D$. Then there exists $F:(0, \infty) \rightarrow$ $(0, \infty)$ continuous, increasing with $\lim _{t \rightarrow 0} F(t)=0$ so that $|f(y)-f(x)| \leq F(1 / \ln \ln (b e /|y-x|))$ for every $x \in D$ so that $\bar{B}(x, b) \subset D$ and every $0<|y-x|<b$.

Theorem 21. Let $n \geq 2, n-1<q<p \leq n, D, D^{\star}$ domains in $\mathbf{R}^{n}, h: D^{\star} \rightarrow D$ a homeomorphism, $f=h^{-1}$ so that $f \in A C L^{q}\left(D, D^{*}\right)$, $f$ is a.e. differentiable on $D, J_{f}(x) \neq 0$ a.e. in $D$ and $H_{I, q}(h) \leq L^{p /(p-q)}\left(D^{‘}\right)$. Then there exists $F:(0, \infty) \rightarrow(0, \infty)$ continuous, increasing with $\lim _{t \rightarrow 0} F(t)=0$ so that $|h(y)-h(x)| \leq F(1 / \ln \ln (b e /|y-x|))$ for every $x \in D^{\text {c }}$ so that $\bar{B}(x, b) \subset D^{*}$ and every $0<|y-x|<b$.

In a future paper we shall study the boundary behavior of the generalized quasiregular mappings.

Natural extensions of our results can be established on abstract metric measure spaces. For instance, the condition $M_{p}(\Delta(E, F,(B(x, b) \backslash \bar{B}(x, a)))) \geq C(p, a, b)>0$ holds if $S(x, t) \cap E \neq \phi$, $S(x, t) \cap F \neq \phi$ for $a<t<b$ and if $p>n-1$ in some abstract metric spaces, as we can see
from [1], Proposition 4.7. See also Chapter 13 from [19] and Chapter 2 from the present paper.

## References

1) T. Adamowicz and N. Shanmugalingam, Non-conformal Loewner type estimates for modulus of curve families, Ann. Acad. Sci. Fenn., Math., Vol. 35, 2010, 609-626.
2) Cabiria Andreian Cazacu, Influence of the Orientation of the Characteristic Ellipses on the Properties of Quasiconformal Mappings, Proc. of the Romanian-Finnish Seminar on Teichmüller Spaces and Riemann Surfaces, Brasov, 1969, Editura Academiei R.S.R., 1971, 65-85.
3) P. Caraman, Relations between $p$-capacity and $p$-module (I), Rev. Roumaine Math. Pures Appl., 39, 6(1994), 509-553.
4) M. Cristea, Some conditions of quasiconformality, Ann. Acad. Sci. Fenn., Ser AI, Math., Vol. 14(1989), 345-350.
5) M. Cristea, Mappings of finite distortion. Boundary extension. Revue Roumaine Math. Pures Appl., 51, 5-6 (2006), 607-631.
6) M. Cristea, Mappings of finite distortion, Zoric's theorem and equicontinuity results, Revue Roumaine Math. Pures Appl, 52, 5(2007), 539-554.
7) M. Cristea, Local homeomorphisms having local $A C L^{n}$ inverses, Complex Variables and Elliptic Equations, 53, 1(2008), 77-99.
8) M. Cristea, Open, discrete mappings having local $A C L^{n}$ inverses, Complex Variables and Elliptic Equations, 55, 1-3(2010), 61-90.
9) A. Goldberg, Generalized classes of quasiconformal homeomorphisms, Math. Reports, 7(57), 4(2005), 289-303.
10) P. Harjulehto, P. Hästo and O. Martio, Fuglede's theorem in variable exponent Sobolev space, Collect. Math., 55, 3(2004), 315-324.
11) S. Hencl and J. Malý, Mappings of finite distortion. Hausdorff measure of zero sets, Math. Ann., 324(2002), 451-464.
12) I. Holopainen and P. Pankka, Mappings of finite distortion: Global homeomorphism theorem, Ann. Acad. Sci. Fenn., Math., 29(2004), 135-151.
13) J. Kauhanen, P. Koskela, J. Malý and X. Zhong, Mappings of finite distortion: Sharp Orlicz conditions, JEMS, 5(2003),95-105.
14) P. Koskela, J. Onninen and K. Rajala, Mappings of finite distortion: Injectivity radius of local homeomorphisms, Future Trends in Geometric Function Theory, Vol. 92, Rep. Univ. Jyväskylä, Dept. Mat. Stat., Univ. of Jyväskylä (2002), 169-174.
15) P. Koskela and J. Onninen, Mappings of finite distortion: Capacity and modulus inequalities, J. Reine Angew. Math., 599(2005), 1-26.
16) D. Kovtonyuk and V. Ryazanov, On the theory of lower Q-homeomorphisms, Ukrainean Math. Bull., (2), 5(2008), 291-306.
17) O, Martio, V. Ryazanov, U. Srebro and E. Yakubov, Mappings of finite length distortion, J. D'Analyse Math., 93(2004), 215-236.
18) O. Martio, V. Ryazanov, U. Srebro and E. Yakubov, On Q-homeomorphisms, Ann. Acad. Sci. Fenn., Math., 30(2005), 49-69.
19) O. Martio, V. Ryazanov, U. Srebro and E. Yakubov, Moduli in Modern Mapping Theory, Springer Monographs in Math., Springer, New York, (2009).
20) K. Rajala, Mappings of finite distortion: Removability of Canter sets, Ann. Acad. Sci. Fenn., Math., Vol. 26, (2004), 269-281.
21) K. Rajala, Mappings of finite distortion: Removable singularities for locally homeomorphic mappings, Proc. AMS, 123(2004), 3251-3258.
22) Y. G. Reshetnyak, Space Mappings of Bounded Distortion, Transf. of Math. Monogr., Vol. 73, AMS, Providence, RI, (1989).
23) S. Rickman, Quasiregular Mappings, Springer Verlag, Vol. 26, (1993).
24) V. Ryazanov, U. Srebro and E. Yakubov, To the theory of BMO - quasiregular mappings, Dokl. Nauk. Rossi, 364(1999), 13-15.
25) V. Ryazanov, U. Srebro and E. Yakubov, BMO - quasiconformal mappings, J. D'Analyse Math., 83(2001), 1-20.
26) V. Ryazanov, E. Sevostyanov, Toward the theory of ring Q - homeomorphisms, Israel J. Math., 168(2008), 101-115.
27) V. Ryazanov and E. Sevostyanov, Equicontinuity of mappings quasiconformal in the mean, Ann. Acad. Sci. Fenn., Math., 36(2011), 1-14.
28) R. Salimov, On regular homeomorphisms in the plane, Ann. Acad. Sci. Fenn., Math., 35(2010), 285-289.
29) E. Sevostyanov, Theorems of Liouville, Picard and Sohotskii for ring mappings, Ukrainean Math. Bull., 3(2008), 366-381.
30) J. Väisälä, Lectures on n-dimensional quasiconformal mappings, Lecture Notes in Math., 229, Springer Verlag, 1971.
31) M. Vuorinen, Exceptional sets and boundary behavior of quasiregular mappings in $n$ - space, Ann. Acad. Sci. Fenn., Ser AI, Dissertationes, 1976.
32) M. Vuorinen, Conformal geometry and quasiregular mappings, Lecture Notes in Math., 1319, Springer Verlag, 1988.
33) G. T. Whyburn, Analytic Topology, Colloq. Publ., 28, AMS, Providence, RI, 1942.
