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1 Introduction.

If Γ is a path family fromRn, we set F (Γ) = {ρ : Rn → [0,∞] Borel maps|
´
γ

ρds ≥ 1 for every

γ ∈ Γ locally rectifiable} and if ω : Rn → [0,∞] is measurable and finite a.e., ω > 0 a.e. and
p > 1, we define the weight p-modulus of weight ω by Mp

ω(Γ) = inf
ρ∈F (Γ)

´
Rn

ω(x)ρp(x)dx for every

path family Γ from Rn. If ω = 1, we obtain the usual p-modulus Mp(Γ) = inf
ρ∈F (Γ)

´
Rn

ρp(x)dx for

every path family Γ in Rn, which is a basic tool in the study of quasiregular mappings. The
systematic utilization of the arbitrary weight p-modulus in the mapping theory was initiated
by Cabiria Andreian in [2].

If D ⊂ Rn is a domain, we say that a map f : D → Rn is of finite distortion if f ∈
W 1,1

loc (D,Rn), Jf ∈ L1
loc(D) and there exists K : D → [0,∞] measurable and finite a.e. so that

|f ‘(x)|n ≤ K(x)Jf (x) a.e., and if in addition f ∈ W 1,n
loc (D,Rn) and K ∈ L∞(D), we obtain the

known class of quasiregular mappings. For more information about the theory of quasiregular
mappings we send the reader to [21-22] and [27-29].

If x = (x1, ..., xn) ∈ Rn, we set |x| = (
n∑

i=1

x2
i )

1
2 and if A ∈ L(Rn,Rn), detA ̸= 0, p > 0, we

set |A| = sup
|h|=1

|A(h)|, l(A) = inf
|h|=1

|A(h)|, K0,p(A) = |A|p/|detA|, KI,p(A) = |detA|/l(A)p.

If D ⊂ Rn is a domain and f : D → Rn is a.e. differentiable and Jf (x) ̸= 0 a.e., we
can define a.e. the mappings K0,p(f) : D → [0,∞] by K0,p(f)(x) = K0,p(f

‘(x)) a.e. and
KI,p(f) : D → [0,∞] by KI,p(f)(x) = KI,p(f

‘(x)) a.e. A quasiregular map is open and discrete,
is a.e. differentiable and Jf (x) ̸= 0 a.e. and satisfies the known modular inequality of Poleckii
which says that Mn(f(Γ)) ≤ KI,n(f)Mn(Γ) for every path family Γ from D. This modular
inequality is the key for proving most of the important geometric properties of quasiregular
mappings.

If f is a map of finite distortion and either KI,n(f) ∈ BMO(D), or exp(A ◦ K0,n(f)) ∈
L1

loc(D) for some Orlicz map A, then, using some weight modular inequalities, in [5,6], [13-15],
[20], [23] are established basic geometric properties in this class of mappings. In [7] and [8] is
studied a class of continuous, open, discrete mappings having local ACLn inverses for which a
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generalized Poleckii’s modular inequality of type ”Mnf(Γ) ≤ Mn
KI,n(f)

(Γ) for every path family

Γ” holds. This thing, together with the condition ”lim
a→0

Mn
KI,n(f)

(Γx,a,b) = 0 for every x ∈ D and

every b > 0 so that B(x, b) ⊂ D” permits us to reconstruct most of the geometric properties
of the quasiregular mappings. Also, using the modulus method, in [16], [17], [24-26] are estab-
lished for ring homeomorphisms and for mappings of finite length distortion equicontinuity and
boundary extension results.

If D ⊂ Rn is a domain, E,F ⊂ D, we denote by ∆(E,F,D) = {γ : [a, b] → D path
|γ(a) ∈ E, γ(b) ∈ F and γ((a, b)) ⊂ D} and if x ∈ D and 0 < a < b we set Γx,a,b =
∆(B(x, a), S(x, b), B(x, b) \ B(x, a)). We denote by M(D) = {u : D → [0,∞] measurable and
finite a.e.} and by A(D) the set of all path families from D.

If D ⊂ Rn is a domain, we say that M : A(D) → [0,∞] is a modulus on D if:
a) M(ϕ) = 0.
b) M(Γ1) ≤ M(Γ2) if Γ1 ⊂ Γ2, Γ1,Γ2 ∈ A(D).

c) M(
∞∪
p=1

Γp) ≤
∞∑
p=1

M(Γp) if Γ1, ...,Γp, ... are from A(D).

In a recent paper [9] we investigate the geometric properties of the continuous, open, discrete
mappings f : D ⊂ Rn → Rn satisfying the condition ”M1(f(Γ)) ≤ γ(M2(Γ)) for every Γ ∈
A(D)”, where M1 and M2 are some modulus on Rn, respectively D and γ : [0,∞) → [0,∞)
is increasing so that lim

t→0
γ(t) = 0. Picard, Montel and Liouville type theorems, modulus of

continuity, equicontinuity and eliminability results are established for very general kind of
modulus M1 and M2, and the modulus M1 is of the form MN(Γ) = inf

ρ∈F (Γ)
N(ρ), for Γ ∈ A(Rn),

where N : M(Rn) → [0,∞] is a general convex operator.
In the present paper we study the geometric properties of some continuous, open, discrete

mappings f : D ⊂ Rn → Rn satisfying a modular inequality of type ”Mq(f(Γ)) ≤ γ(Mp
ω(Γ)) for

every Γ ∈ A(D), some n−1 < q, p > 1, a weight ω ∈ L1
loc(D) so that lim

a→0
Mp

ω(Γx,a,b) = 0 for some

x ∈ D and every b > 0 so that B(x, b) ⊂ D and a function γ : [0,∞) → [0,∞) increasing with
lim
t→0

γ(t) = 0”. We continue in this way the researches from [9] and we construct in Proposition

2 a class of homeomorphisms f : D → D‘ between two domains from Rn satisfying a modular
inequality of type ”Mq(f(Γ)) ≤ CMp

ω(Γ)
q
p for every Γ ∈ A(D) and some 1 < q < p, a class

which is larger than the class of homeomorphisms with finite mean dilatations of A. Goldberg
from [10], [11] (see also Chapter 12 from [19]).

We prove equicontinuity and eliminability results and we extend the theorems of Picard
and Hurwitz in the new introduced class of mappings. A basic tool in our proof is a known
result from the theory of quasiregular mappings, established in [27] for the Mn modulus in Rn

and by P. Caraman in Theorem 4 from [3] for the p-modulus in Rn. Caraman’s result shows
that if E,F are disjoint subsets from Rn so that S(x, t) ∩ E ̸= 0, S(x, t) ∩ F ̸= 0 for some
x ∈ Rn and every a < t < b, then there exists a constant C(n, p) depending only on n and p
so that Mp(∆(E,F,B(x, b) \B(x, a))) ≥ C(n, p)(bn−p − an−p) if p > n− 1, p ̸= n, whether the
classical result from Theorem 10.12, page 31 from [26] says thatMn(∆(E,F,B(x, b)\B(x, a))) ≥
C(n) ln( b

a
).

If p ≥ 1, we denote by W 1,p
loc (D,Rm) the Sobolev space of all functions f : D → Rm which

are locally in Lp together with their first order derivatives. We say that f is ACL if f is
continuous and for every cube Q ⊂ D with the sides parallel to coordinate axes and every face
S of Q it results that f |P−1

S (y)∩Q : P−1
S (y)∩Q → Rm is absolutely continuous for a.e. y ∈ S,

where PS : Rn → S is the projection on S. An ACL map has a.e. partial derivatives and
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we say that f is ACLp if f is ACL and the partial derivatives are locally in Lp. We see from
Proposition 1.1.2, page 6 from [22] that if p ≥ 1 and f ∈ C(D,Rm), then f is ACLp if and
only if f ∈ W 1,p

loc (D,Rm).
If D ⊂ Rn is a domain, f : D → Rn is continuous, open, discrete, x ∈ D and r > 0 is

so that B(x, r) ⊂ D, we set L(x, f, r) = sup
|y−x|=r

|f(y) − f(x)|, l(x, f, r) = inf
|y−x|=r

|f(y) − f(x)|,

H(x, f) = lim sup
r→0

L(x, f, r)/l(x, f, r). We know that a homeomorphism f : D → D‘ between

two domains from Rn is quasiconformal if and only if there exists H ≥ 1 so that H(x, f) ≤ H
for every x ∈ D, and we also know that if f is differentiable in a point x ∈ D and Jf (x) ̸= 0,
then H(x, f) = |f ‘(x)|/l(f ‘(x)). If D ⊂ Rn is a domain, p > 0 and f : D → Rn is a map,
we define the map HI,p(f) : D → R by HI,p(f)(x) = KI,p(f

‘(x)) if f is differentiable in x and
Jf (x) ̸= 0, HI,p(f)(x) = 0 otherwise.

If D ⊂ Rn is a domain, b ∈ ∂D and f : D → Rn is a map, we set C(f, b) = {z ∈ R
n|

there exists bp ∈ D, bp → b so that f(bp) → z} and if A ⊂ D, y ∈ Rn, we put N(y, f, A) =

Cardf−1(y) ∩ A and N(f,A) = sup
y∈Rn

N(y, f, A). We also set L(x, f) = lim sup
h→0

|f(x+h)−f(x)|
|h| if

x ∈ D. If p > 0 and A is a Borel set from Rn, we set mp(A) the p Hausdorff measure of A and
we set µn(A) the Lebesgue measure of A. If a, b ∈ R

n
, we denote by q(a, b) the chordal distance

between a and b and q(a, b) = |a−b|/(1+|a|2)1/2(1+|b|2)1/2 if a, b ∈ Rn, q(a,∞) = 1/(1+|a|2)1/2
if a ∈ Rn and if A ⊂ R

n
, we set q(A) the diameter of A considering the chordal metric on R

n
.

Also, if A ⊂ Rn, we set d(A) the diameter of A considering the euclidean metric on Rn.
If E,F are Hausdorff spaces and f : E → F is a map, we say that f is open if f carries

open sets into open sets and we say that f is discrete if f−1(y) is discrete or empty for every
y ∈ F . If p : [0, 1] → F is a path and x ∈ E is so that f(x) = p(0), we say that the path
q : [0, 1] → E is a lifting of p from x if q(0) = x and f ◦ q = p and we say that q : [0, a) → E
is a maximal lifting of p from x if q is a path, q(0) = x, 0 < a ≤ 1, f ◦ q = p|[0, a) and a is
maximal with this property. If D ⊂ Rn is a domain, f : D → Rn is continuous, open, discrete,
p : [0, 1] → f(D) is a path, x ∈ D is so that f(x) = p(0), there exists allways a maximal lifting
of p from x. If q : [0, a) → Rn is a path, we say that a point x ∈ R

n
is a limit point of q if

there exists tp → a so that q(tp) → x.
If M is a modulus on Rn and E ⊂ R

n
, we say that E is of zero M modulus (and we write

M(E) = 0) if the M modulus of all paths having some limit point in E is zero. We say that
E = (A,C) is a condenser if C ⊂ A ⊂ Rn, C is compact and A is open, and if p > 1, we
define capp(E) = inf

´
Rn

|∇u|p(x)dx the p capacity of E, where the infimum is taken over all

u ∈ C∞
0 (A) so that u ≥ 1 on C. If C ⊂ Rn is compact we say that cappC = 0 if capp(A,C) = 0

for every open set A so that C ⊂ A ⊂ Rn, and the definition does not depend on the choice
of the open set A so that C ⊂ A. If K ⊂ Rn, we say that cappK = 0 if cappC = 0 for every
compact set C ⊂ K. We know from Prop. II.10.2, page 54 from [22] that if C ⊂ Rn is closed,
then cappC = 0 if and only if Mp(C) = 0.

If X, Y are metric spaces and W is a family of mappings f : X → Y , we say that the
family W is equicontinuous at a point x ∈ D if for every ϵ > 0, there exists δϵ > 0 so that
d(f(y), f(x)) ≤ ϵ if d(x, y) ≤ δϵ for every f ∈ W .

If X is a separable metric space and (Ai)i∈N is a collection of sets, we define the superior
limit of the collection (Ai)i∈N to be lim supAi = {x ∈ X| every neighborhood of x contains
points from infinitely many sets Ai} and we define the inferior limit of the collection (Ai)i∈N
to be lim inf Ai = {x ∈ X| every neighborhood of x contains points of all but a finite member
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of sets Ai}. If for a collection (Ai)i∈N we have lim supAi = lim inf Ai, we say that Ai → A,
where A is the common value of lim supAi and lim inf Ai. We know from Theorem 7.1 [30],
page 11 that every sequence of sets (Ai)i∈N contains a convergent subsequence and from [30]
page 15 we see that if (Ai)i∈N is a convergent sequence of compact connected sets so that

∪
i∈N

Ai

is compact, then, if Ai → A, it results that A is compact and connected.
If D ⊂ Rn is a domain, x is an isolated point of ∂D and f : D → Rn is continuous, open,

discrete, we say that x is an essential singularity of f if there exists not lim
z→x

f(z) ∈ R
n
.

2 Examples of mappings satisfying generalized modular

inequalities.

Proposition 1. Let n ≥ 2, D ⊂ Rn a domain, 1 < q < p, f ∈ ACLq(D,Rn), f a.e. differen-
tiable so that Jf (x) ̸= 0 a.e., α, β ∈ [0, 1] so that α+ β = 1, K0,p(f) ∈ Lqα/(p−q)(D), N(f,D) <
∞, and let C = N(f,D)q/p(

´
D

K0,p(f)(x)
qα/(p−q)dx)(p−q)/p. Then Mq(Γ) ≤ C(Mp

ω(f(Γ))
q/p) for

every Γ ∈ A(D), where ω = HI,p(f
−1)β.

Proof: Let Γ be a path family from D and let ρ‘ ∈ F (f(Γ)). Let ρ : Rn → [0,∞],
ρ(x) = ρ‘(f(x)) · L(x, f) if x ∈ D, ρ(x) = 0 otherwise and let Γ0 = {γ ∈ Γ|f ◦ γ0 is absolutely
continuous}. Using Fuglede’s theorem (see [27], Theorem 28.2, page 95), we have Mq(Γ) =
Mq(Γ0) and from Theorem 5.3, page 12 from [27], we see that ρ ∈ F (Γ0). Using the change of
variable formulae (3) from [12] and Hölder’s inequality, we have

ˆ

D

ρq(x)dx =

ˆ

D

ρ‘q(f(x))L(x, f)qdx =

ˆ

D

ρ‘q(f(x))|f ‘(x)|qdx ≤

≤
ˆ

D

ρ‘q(f(x))HI,p(f
−1)(f(x))βq/pK0,p(f)(x)

αq/p|Jf (x)|q/pdx ≤

≤ (

ˆ

D

ρ‘p(f(x))HI,p(f
−1)(f(x))β|Jf (x)|dx)q/p(

ˆ

D

K0,p(f)(x)
αq/(p−q)dx)(p−q)/p ≤

≤ (

ˆ

Rn

ρ‘p(y)HI,p(f
−1)(y)βN(y, f,D)dy)q/p(

ˆ

D

K0,p(f)(x)
αq/(p−q)dx)(p−q)/p ≤

≤ C(

ˆ

Rn

ρ‘p(y)HI,p(f
−1)(y)βdy)q/p.

It results thatMq(Γ) = Mq(Γ0) ≤
´
D

ρq(x)dx ≤ C(
´
Rn

ρ‘p(y)ω(y)dy)q/p for every ρ‘ ∈ F (f(Γ)),

hence Mq(Γ) ≤ C(Mp
ω(f(Γ))

q/p).
We used here the fact that HI,p(f

−1)(f(x)) = K0,p(f)(x) in every point x ∈ D so that f is
differentiable in x and Jf (x) ̸= 0.

Proposition 2. Let n ≥ 2, 1 < q < p, D,D‘ domains from Rn, h : D‘ → D a homeomor-
phism, f = h−1 that f ∈ ACLq(D,D‘), f is a.e. differentiable and Jf (x) ̸= 0 in D, α, β ∈ [0, 1]
with α+β = 1, γ = pqα/(p−βq), C = (

´
D‘

HI,γ(h)(y)
(p−βq)/(p−q)dy)(p−q)/p and let ω = HI,p(h)

β.

Then Mq(h(Γ
‘)) ≤ C(Mp

ω(Γ
‘))q/p for every Γ‘ ∈ A(D‘).
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Proof: Let A = {x ∈ D|f is differentiable in x and Jf (x) ̸= 0} and B = {y ∈ D‘|h is
differentiable in y and Jh(y) ̸= 0}. Then f(A) ⊂ B and µn(CA) = 0. Using the change of
variable formulae (3) from [12] we see that

ˆ

D

K0,p(f)(x)
αq/(p−q)dx =

ˆ

A

(|f ‘(x)|p/|Jf (x)|)αq/(p−q) =

ˆ

A

|f ‘(x)|pqα/(p−q)/|Jf (x)|αq/(p−q)dx =

=

ˆ

A

(Jh(f(x))
(p−βq)/(p−q)/l(h‘(f(x))pqα/(p−q)))|Jf (x)|dx ≤

≤
ˆ

f(A)

|Jh(y)|(p−βq)/(p−q)/l(h‘(y))pqα/(p−q)dy ≤
ˆ

B

|Jh(y)|(p−βq)/(p−q)/l(h‘(y))pqα/(p−q)dy =

=

ˆ

B

(|Jh(y)|/l(h‘(y))γ)(p−βq)/(p−q)dy =

ˆ

D‘

HI,γ(h)(y)
(p−βq)/(p−q)dy.

Let Γ‘ ∈ A(D‘) and Γ = h(Γ‘). Then Γ‘ = f(Γ) and using Proposition 1, we see that
Mq(h(Γ

‘)) = Mq(Γ) ≤ C(Mp
ω(f(Γ)))

q/p = C(Mp
ω(Γ

‘))q/p.
Remark 1. Of course, the most natural case we can have in Proposition 2 is when β = 0,

i.e. when the weight ω = 1. In this case we obtain Proposition 2 from [9], which is in connection
with the class of homeomorphisms with finite mean dilatations of A. Goldberg from [10] and
[11]. However, we can find an example of a homeomorphism h : D‘ → D and 1 < q < p,
α, β ∈ [0, 1] so that p/q < pα + β < p and so that if γ = pqα/(p − βq), it results that
HI,γ(h) ∈ L(p−βq)/(p−q)(D‘) andHI,q(h) ̸∈ Lp/(p−q)(D‘) and this shows that Proposition 2 extends
Proposition 2 from [9]. It also shows that if ω = HI,p(h)

β, then Mq(h(Γ
‘)) ≤ C(Mp

ω(Γ
‘))q/p for

every Γ‘ ∈ A(D‘), where C = (
´
D‘

HI,γ(h)(y)
(p−βq)/(p−q)dy)(p−q)/p.

Example 1. Let D = (0, 1)n, 1 < q < p, α, β ∈ [0, 1] so that α + β = 1, p/q < pα + β < p
and let γ = pqα/(p − βq). We see that pq − p > 0, pqα + βq − p > 0, (p − q)/(pq − p) <
(p− q)/(pqα+ βq − p) and let (p− q)/(pq − p) < c < (p− q)/(pqα+ βq − p) and h : D → Rn

be defined by h(x1, ..., xn) = (x1, ..., xn−1,
x1+c
n

1+c
) for x = (x1, ..., xn) ∈ D. We see that h is a

homeomorphism onto a domainD‘ fromRn, that h ∈ C1(D,D‘), Jh(x) = xc
n ̸= 0, l(h‘(x)) = xc

n,
|h‘(x)| = 1 for every x ∈ D, hence H(x, h) = |f ‘(x)|/l(f ‘(x)) = x−c

n → ∞ if x → 0 and hence

h is not quasiconformal. Also, HI,q(h)(x) = x
c(1−q)
n and let J =

´
D

HI,q(h)(x)
p/(p−q)dx. Then

J =
1́

0

x
pc(1−q)/(p−q)
n dxn and since p−q < c(pq−p), we see that pc(1−q)

p−q
+1 < 0 and hence J = ∞.

Let now I =
´
D

HI,γ(h)(x)
(p−βq)/(p−q)dx.

Then I =
1́

0

x
c(1−γ)(p−βq)/(p−q)
n dxn =

1́

0

x
c(p−βq−pqα)/(p−q)
n dxn, and since c(p−βq−pqα)

p−q
+1 > 0, we

see that I = (p− q)/(p− q − c(pqα+ βq − p)) < ∞.
We denote by Wq,p,ω,γ(D) = {f : D → Rn|D ⊂ Rn is a domain, f is continuous, open,

discrete, 1 ≤ n− 1 < q, p > 1,ω ∈ L1
loc(D), γ : [0,∞) → [0,∞) is increasing with lim

t→0
γ(t) = 0

and Mq(f(Γ)) ≤ γ(Mp
ω(Γ)) for every Γ ∈ A(D)}. We also denote by Qq,p,ω,γ(D) = {f : D →

Rn|D ⊂ Rn is a domain, f is continuous, open, discrete, n − 1 < q, p > 1, ω ∈ L1
loc(D),

γ : [0,∞) → [0,∞) is increasing with lim
t→∞

γ(t) = ∞ and Mq(f(Γ)) ≤ γ(Mp
ω(Γ)) for every
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Γ ∈ A(D) so that Γ = ∆(E,F,G) with G a domain so that G ⊂ D and E,F ⊂ G compact,
connected}.

We showed that the class Wq,p,ω,γ(D) is nonempty if q < p and we found in Proposition 2 a
map f ∈ Wq,p,ω,γ(D) which is not quasiconformal.

3 Geometric properties of the mappings satisfying gen-

eralized modular inequalities.

We shall study the geometric properties of the functions from the class Wq,p,ω,γ(D). The
following lemma, together with Caraman’s result from [3] will be an important instrument for
proving this things.

Lemma 1. Let 1 ≤ n − 1 < q, E ⊂ Rn closed so that capq(E) > 0, δ > 0 and let Qm be
compact, connected subsets from R

n
so that Qm ∩ E = ϕ and q(Qm) ≥ δ for every m ∈ N .

Then there exists ϵ > 0 so that Mq(∆(Qm, E,Rn)) > ϵ > 0 for every m ∈ N .
Proof. If q = n, the theorem holds due to Lemma III.2.6, page 65 from [22].
Let now q > n−1, q ̸= n and suppose that the theorem is false. In this case we can find sets

Qmk
, k ∈ N so that Mq(∆(Qmk

, E,Rn)) → 0 and using Theorem 7.1, page 11 from [30], we
can find Q ⊂ R

n
compact, connected in R

n
and a subsequence (Qmkp

)p∈N so that Qmkp
→ Q.

We can suppose that Qm → Q and Mq(∆(Qm, E,Rn)) → 0 and we show that we shall obtain
a contradiction.

We suppose first that Q is compact in Rn, and in this case we can suppose that we find
R > 0 so that Qm ⊂ B(0, R) for every m ∈ N and capq(E ∩ B(0, R)) > 0. Let Γ0 =
∆(E ∩ B(0, R), S(0, 2R), B(0, 2R)). Then there exists δ1 > 0 so that Mq(Γ0) > δ1 and there
exists d > 0 so that d(Qm) > d for every m ∈ N . Let δ2 = C(n, q)d(n − q)(1/3R)q−n+1 and
let δ3 = C(n, q)(n − q)R(1/2R)q−n+1, where C(n, q) is the constant from Caraman’s result
(see Theorem 4 from [3]). Then ϵ = 1

3q
min{δ1, δ2, δ3} > 0 does not depend on m. Let Γ̃m =

∆(Qm, S(0, 2R), B(0, 2R)) and let Γm = ∆(E ∩B(0, R), Qm, B(0, 2R)) for m ∈ N . We fix now
m ∈ N . We choose now am, bm ∈ Qm so that |am − bm| > d, let dm be the line determined
by the points am and bm and let cm ∈ S(0, 2R) ∩ dm be so that bm ∈ (am, cm). We see that
S(cm, t) ∩ Qm ̸= ϕ, S(cm, t) ∩ CB(0, 2R) ̸= ϕ for every |bm − cm| < t < |am − cm| and using
Caraman’s result from [3] we have thatMq(Γ̃m) ≥ C(n, q)(|cm−am|n−q−|bm−cm|n−q) ≥ δ2 > 0.

Let ρ ∈ F (Γm) and suppose that 3ρ ̸∈ F (Γ0) and 3ρ ̸∈ F (Γ̃m). Then there exists paths αm

joining E ∩ B(0, R) with S(0, 2R) in B(0, 2R) and βm joining Qm with S(0, 2R) in B(0, 2R)
so that

´
αm

ρds < 1
3
and

´
βm

ρds < 1
3
. Let ∆m = ∆(Imαm, Imβm, B(0, 2R) \ B(0, R)). Using

again Caraman’s result from [3], we see that Mq(∆m) ≥ C(n, q)((2R)n−q−Rn−q) ≥ δ3 > 0. Let
φm ∈ ∆m. We can find a subpath α̃m of αm, a subpath β̃m of βm and a subpath φ̃m of φm so
that the path Ψm = α̃m

∨
φ̃m

∨
β̃m ∈ Γm. We see that 1 ≤

´
Ψm

ρds =
´
α̃m

ρds+
´
φ̃m

ρds+
´
β̃m

ρds ≤
´
αm

ρds+
´
φm

ρds+
´
βm

ρds < 2
3
+
´
φm

ρds, hence 1 ≤ 3
´
φm

ρds for every ρm ∈ ∆m.

It results that 3ρ ∈ F (∆m) and we proved that Mq(Γm) = inf
ρ∈F (Γm)

´
Rn

ρq(x)dx ≥ 1
3q
min{Mq

(Γ0),Mq(Γ̃m),Mq(∆m)} ≥ ϵ > 0 for every m ∈ N . We reached a contradiction, since we
supposed that Mq(∆(Qm, E,Rn)) → 0, and on the other side we see that Mq(∆(Qm, E,Rn)) ≥
Mq(Γm) > ϵ > 0 for every m ∈ N .
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Suppose now that Q is not compact in Rn. We can suppose in this case that there exists
R > 0 so that capq(E ∩ B(0, 2R)) > 0 and Qm ∩ S(0, t) ̸= ϕ for R < t < 2R for every m ∈ N .
We see that d(Qm∩(B(0, 2R)\B(0, R))) ≥ R > 0 for every m ∈ N and capq(E∩B(0, 2R)) > 0
and using the preceding argument, we can find ϵ > 0 so that Mq(∆(E∩B(0, 2R), Qm, B(0, 4R)\
B(0, 2R))) > ϵ > 0 for every m ∈ N . We reached again a contradiction and the theorem is now
proved.

Theorem 1. (Generalization of Picard’s theorem). Let 1 ≤ n − 1 < q, E ⊂ Rn closed,
f : Rn \ E → Rn continuous, open, discrete, M a modulus on Rn so that M(E ∪ {∞}) = 0
and Mq(f(Γ)) = 0 for every Γ ∈ A(Rn \ E) with M(Γ) = 0. Then capqC(f(Rn \ E)) = 0.

Proof. Let K ⊂ Rn \E be compact, connected so that CardK > 1. Since f is continuous,
open, discrete, we see that f(K) is compact, connected so that Cardf(K) > 1, and we also
see that f(K) ∩ Cf(Rn \ E) = ϕ. Let Γ‘ = ∆(f(K), Cf(Rn \ E),Rn) and let Γ be the family
of all maximal lifting of some paths from Γ‘ starting from some points of K. Then Γ‘ > f(Γ)
and since every path from Γ has at least a limit point in E ∪ {∞}, we see that M(Γ) = 0.
Using the hypothesis, we see that Mq(f(Γ)) = 0, hence Mq(Γ

‘) = 0. On the other side, if

capqCf(Rn \ E) > 0, we see from Lemma 1 that Mq(Γ
‘) > 0 and we reached a contradiction.

We therefore proved that capqCf(Rn \ E) = 0.
The following equicontinuity result extends Corollary 2.7, page 66 from [22]. It also extends

Theorem 14 from [9] in the case MN = Mq with q > n− 1.
Theorem 2. Let 1 ≤ n − 1 < q, Q ⊂ Rn with capqQ > 0, D ⊂ Rn a domain, x ∈ D, M

a modulus on D so that lim
a→0

M(Γx,a,b) = 0 for every b > 0 so that B(x, b) ⊂ D, γ : [0,∞) →
[0,∞) increasing with lim

t→0
γ(t) = 0, let W be a family of continuous, open, discrete mappings

f : D → Rn \Q so that Mq(f(Γ)) ≤ γ(M(Γ)) for every Γ ∈ A(D) and every f ∈ W . Then the
family W is equicontinuous at x, and we take on D the euclidean metric and we take on R

n

the chordal metric.
Proof. Let ϵ > 0 be so that B(x, ϵ) ⊂ D. Suppose that the family W is not equicontinuous

at x. Then there exists δ > 0, rm → 0 and fm ∈ W so that q(fm(B(x, rm))) ≥ δ for every
m ∈ N and let Gm = fm(B(x, rm)) for m ∈ N . Since Imfm ∩ Q = ϕ and Imfm are open
sets, we see that Imfm ∩ Q = ϕ, hence Gm ∩ Q = ϕ for m ∈ N . Let Γ‘

m = ∆(Gm, Q,Rn) for
m ∈ N and let Γm be the family of all maximal lifting of some paths from Γ‘

m starting from
some points from B(x, rm) for every m ∈ N . Since every path from Γm has at least a limit
point outside B(x, ϵ), we see that Γm > Γx,rm,ϵ. We also see that Γ‘

m > f(Γm) for m ∈ N
and from Lemma 1 we can find α > 0 so that Mq(Γ

‘
m) > α for every m ∈ N . We obtain

that Mq(Γ
‘
m) ≤ Mq(f(Γm)) ≤ γ(M(Γm)) ≤ γ(M(Γx,rm,ϵ)) → 0 if m → ∞, and we reached a

contradiction. It results that the family W is equicontinuous at x.
Remark 2. If in the preceding theorem we take M = Mp

ω with p ≥ 2 and ω ∈ L1
loc(D)

and the family W is a family of homeomorphisms, we can use Lemma 7 from [8] and Theorem
16 from [9] to extend a known result from the theory of quasiconformal mappings from [27],
Theorem 19.2, page 65.

Theorem 3. Let 1 ≤ n − 1 < q, p ≥ 2, D ⊂ Rn a domain, x ∈ D, ω ∈ L1
loc(D) so that

Mp
ω({x}) = 0, let γ : [0,∞) → [0,∞) be increasing with lim

t→0
γ(t) = 0, and let W be a family of

homeomorphisms f : D → Df ⊂ Rn so that there exists δ > 0 so that for every f ∈ W there
exists points af , bf ̸∈ Imf with q(af , bf ) ≥ δ and suppose that Mq(f(Γ)) ≤ γ(Mp

ω(Γ)) for every
Γ ∈ A(D). Then the family W is equicontinuous at x, and we take on D the euclidean metric,
and we take on R

n
the chordal metric.

The following eliminability result extends partially Theorem 2.9, page 66 from [22]. It also
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extends Theorem 17 from [9] in the case MN = Mq with q > n− 1.
Theorem 4. Let 1 ≤ n − 1 < q, D ⊂ Rn a domain, x ∈ D, M a modulus on D so that

lim
a→0

M(Γx,a,b) = 0 for every b > 0 so that B(x, b) ⊂ D, let γ : [0,∞) → [0,∞) be increasing so

that lim
t→0

γ(t) = 0 and let E ⊂ D be closed in D and nowhere disconnecting so that x ∈ E and

M(E) = 0. Let f : D \ E → Rn be continuous, open, discrete so that Mq(f(Γ)) ≤ γ(M(Γ))
for every Γ ∈ A(D \ E) and suppose that there exists rx > 0 so that B(x, rx) ⊂ D and
capqCf(B(x, rx) \ E) > 0. Then there exists lim

z→x
f(z) ∈ R

n
.

Proof: Suppose that CardC(f, x) > 1 and let b1, b2 ∈ C(f, x), b1 ̸= b2 and let xj, yj ∈
B(x, rx) \ E be so that xj ̸= yj for j ∈ N and f(xj) → b1, f(yj) → b2. Let rj > 0 be so that
0 < rj < rx and xj, yj ∈ B(x, rj) and let Cj ⊂ B(x, rj) \ E be compact, connected so that
xj, yj ∈ Cj for j ∈ N . We can find δ > 0 so that q(f(Cj)) ≥ δ for every j ∈ N and we see

that f(Cj) ∩ Cf(B(x, rx) \ E) = ϕ for every j ∈ N . Let Γ‘
j = ∆(f(Cj), Cf(B(x, rx) \ E),Rn)

for j ∈ N and let Γj be the family of all maximal lifting of some paths from Γ‘
j starting from

some points from Cj for j ∈ N . Let Γ1j = {φ ∈ Γj|φ has at least a limit point in E} and let
Γ2j = {φ ∈ Γj|φ has at least a limit point outside B(x, rx)} for j ∈ N . We see that M(Γ1j) = 0,
that Γj = Γ1j ∪ Γ2j, Γ2j > Γx,rj ,rx and Γ‘

j > f(Γj) for every j ∈ N . Using Lemma 1, we can
find ϵ > 0 so that Mq(Γ

‘
j) > ϵ for every j ∈ N . It results that 0 < ϵ < Mq(Γ

‘
j) ≤ Mq(f(Γj)) ≤

γ(M(Γj)) = γ(M(Γ1j ∪ Γ2j)) ≤ γ(M(Γ1j) + M(Γ2j)) = γ(M(Γ2j)) ≤ γ(M(Γx,rj ,rx)) → 0 if
j → ∞ and we reached a contradiction.

We obtained that CardC(f, x) = 1 and hence that there exists lim
z→x

f(z) ∈ R
n
.

Using the preceding theorem, we have the following extension of Theorem 18 from [9] in the
case MN = Mq with q > n− 1.

Theorem 5. Let 1 ≤ n−1 < q, D ⊂ Rn a domain, x an isolated point of ∂D, M a modulus
on D so that lim

a→0
M(Γx,a,b) = 0 for every b > 0 so that B(x, b) \ {x} ⊂ D, γ : [0,∞) → [0,∞)

increasing with lim
t→0

γ(t) = 0, let f : D → Rn be continuous, open, discrete such that x is an

essential singularity of f and suppose that Mq(f(Γ)) ≤ γ(M(Γ)) for every Γ ∈ A(D). Then

capqCf(B(x, b) \ {x}) = 0 for every b > 0 so that B(x, b) \ {x} ⊂ D.
If f is of finite multiplicity, we can use Theorem 19 from [9] to prove the following elim-

inability result:
Theorem 6. Let 1 ≤ n − 1 < q, p ≥ 2, D ⊂ Rn a domain, ω ∈ L1

loc(D), x ∈ D,
γ : [0,∞) → [0,∞) be increasing so that lim

t→0
γ(t) = 0, E ⊂ D closed in D and nowhere

disconnecting so that x ∈ E and Mp
ω(E) = 0. Let f : D \ E → Rn be continuous, open,

discrete so that there exists Ux ∈ V(x) and nx ∈ N so that N(f, Ux ∩ (D \ E)) ≤ nx and
Mq(f(Γ)) ≤ γ(Mp

ω(Γ)) for every Γ ∈ A(D \ E). Then there exists lim
z→x

f(z) = R
n
.

Remark 3. If the modulus M from Theorem 2,4,5 is of the form M = Mp
ω with ω ∈ L1

loc(D)
and p ≥ 2, we see from Lemma 7 from [8] that the condition ”lim

a→0
Mp

ω(Γx,a,b) = 0 for every fixed

b > 0 so that B(x, b) ⊂ D” is equivalent to ”Mp
ω({x}) = 0”, and if ω = 1 and p ≤ n, then

Mp({x}) = 0. It results that if in Theorem 4 we have M = Mp
ω with p ≥ 2 and ω ∈ L1

loc(D), the
condition ”Mp

ω(E) = 0” also implies the condition ”lim
a→0

Mp
ω(Γx,a,b) = 0 for every fixed b > 0 so

that B(x, b) ⊂ D” for a point x ∈ E. Of course, the most important case we have in mind for
the singular set E from Theorem 4 and Theorem 6 is when E = {x}, i.e. when x is an isolated
singularity of f . We see from Theorem 2 from [7] that Mp

ω({x}) = 0 if there exists a > 0 so
that B(x, a) ⊂ D and either

´
B(x,a)

exp(A ◦ ω)(z)dz < ∞ for some Orlicz map A, or there exists
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M > 0 and 0 < α < n− 1 so that
ffl

B(x,r)

ω(z)dz ≤ M(ln(ae/r))α for 0 < r < a.

Also, using Theorem 3 from [9] we see that Mp
ω({x}) = 0 if ω ∈ L1

loc(D), p > 1 and there
exists b > 0 so that B(x, b) ⊂ D and p < l so that

´
B(x,r)

ω(z)dz ≤ C(b)rl if 0 < r < b.

We also see from Theorem VII.1.15, page 166 from [22] that if n− 1 < q ≤ n and A ⊂ Rn

is so that capqA = 0, then m1(A) = 0 and hence A is totally disconnecting. It results that
Theorem 1 generalizes Theorem 13 from [9], Theorem 2 extends Theorem 14 from [9], Theorem
4 generalizes Theorem 17 from [9] and Theorem 5 generalizes Theorem 18 from [9] in the case
MN = Mq with n − 1 < q ≤ n. Also, if in Theorem 4 and Theorem 6 we take M = Mp with
p > 1, then we also see from Theorem VII.1.15 from [22] that mn−1(E) = 0 and hence that E
is nowhere disconnecting. In this case, Theorem 4 has the following form:

Theorem 7. Let 1 ≤ n − 1 < q, 1 < p ≤ n, D ⊂ Rn a domain, E ⊂ D closed in D with
Mp(E) = 0, x ∈ E, γ : [0,∞) → [0,∞) increasing with lim

t→0
γ(t) = 0, let f : D \ E → Rn be

continuous, open, discrete, so that Mq(f(Γ)) ≤ γ(Mp(Γ)) for every Γ ∈ A(D \ E) and suppose

that there exists rx > 0 so that B(x, rx) ⊂ D and capqCf(B(x, rx) \ E) > 0. Then there exists
lim
z→x

f(z) ∈ R
n
.

We showed in Theorem 12 from [9] that if f ∈ Wq,p,ω,γ(D) and there exists φ : [0,∞) →
[0,∞) continuous, increasing with lim

t→0
φ(t) = 0 and so that Mp

ω(Γx,a,b) ≤ φ(a/b) for every

x ∈ D and b > 0 so that B(x, b) ⊂ D, then there exists a constant C(b) so that |f(y)− f(x)| ≤
C(b)γ◦φ(|y−x|) if x ∈ D and 0 < |y−x| < b, B(x, b) ⊂ D. We found in this way an estimation
of the modulus of continuity of the mappings from the class Wq,p,ω,γ(D) and we can use again
Theorem 2 from [7] or Theorem 3 and Theorem 4 from [9] to establish some conditions of type
”Mp

ω(Γx,a,b) ≤ φ(a/b), with φ : (0,∞) → (0,∞) continuous, increasing with lim
t→0

φ(t) = 0”.

We give now a lower estimate of the distortion of a homeomorphism from the classQn,p,ω,γ(D),
extending in this way Theorem 4.4, page 89 from [19] and Lemma 7.7, page 142 from [19].

Theorem 8. Let f ∈ Qn,p,ω,γ(D) be injective and let x ∈ D and r > 0 be so that B(x, r) ⊂
D. Then there exists Ψ : (0, r

2
) → R increasing with lim

t→0
Ψ(t) = 0 and |f(y)−f(x)| ≥ Ψ(|y−x|)

for every y ∈ B(x, r
2
) and Ψ(t) = L(x, f, r

2
)exp(−γ(

´
B(x,r)

ω(z)dz 1
tp
) 1
C(n)

) for t ∈ (0, r
2
), where

C(n) is a constant depending only on n.
Proof: Using Brouwer’s theorem, we see that f is homeomorphism onto a domain D‘ from

Rn. Let z ∈ S(x, r
2
) be so that L(x, f, r

2
) = |f(z) − f(x)| and let S ∈ S(x, r) be so that

|f(x) − f(S)| = L(x, f, r), and let y ∈ B(x, r
2
). Let P be the plane determined by the points

x, y, z and let C be the circle under the intersection of P and S(y, |y−x|). Let B be the tangency
point to C of a ray emerging from z, let C1 be the shortest arc from C joining x and B and
let E1 = C1 ∪ [B, z]. Then E1 is compact, connected, E1 \ {z} ⊂ B(x, r

2
), f(E1) is compact

and connected, joins f(x) with f(z) and f(E1) \ {f(z)} ⊂ B(f(x), L(x, f, r
2
)). We take a line d

perpendicular on the plane P at the point y and let M ∈ d∩S(x, r) and E2 = [y,M ]∪S(x, r).
Then E2 is compact, connected, E2 ⊂ B(x, r) and f(E2) is compact, connected and joins f(y)
with a point f(S) ∈ f(S(x, r)) and d(E1, E2) ≥ |y − x| > 0.

Suppose that f(y) ∈ B(f(x), L(x, f, r
2
)). Since B(f(x), L(x, f, r

2
)) ⊂ B(f(x), L(x, f, r)), we

see that |f(x) − f(z)| < |f(x) − f(S)|, hence S(f(x), t) ∩ f(E1) ̸= ϕ, S(f(x), t) ∩ f(E2) ̸= ϕ
for |f(y)− f(x)| < t < L(x, f, r

2
). Let Γ‘ = ∆(f(E1), f(E2), B(f(x), L(x, f, r

2
) \B(f(x), |f(y)−

f(x)|))). Let Γ be the family of all maximal lifting of some paths from Γ‘ starting from some
points of E1.
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Let φ : [0, 1] → Rn, φ ∈ Γ‘. Then φ([0, 1)) ∩ f(E2) = ϕ and let φ0 : [0, a) → Rn be a
maximal lifting of φ from a point x0 ∈ E1 with 0 < a < 1. Then f(φ0([0, a)))∩ f(E2) = ϕ and
since Imφ0 is connected and φ0(0) = x0 ∈ E1 ⊂ B(x, r), it results that φ0([0, a)) ⊂ B(x, r).
Indeed, otherwise we can find 0 < c < a so that φ0(c) ∈ S(x, r), hence f(φ0(c)) ∈ f(S(x, r)) ⊂
f(E2), and this contradicts the fact that f(φ0([0, a))) ∩ f(E2) = ϕ. Let b be a limit point of
φ0 : [0, a) → B(x, r). If b ∈ S(x, r), then f(b) = φ(a) ∈ φ([0, 1)) ∩ f(E2) and this contradicts
the hypothesis that φ([0, 1)) ∩ f(E2) = ϕ, and if b ∈ B(x, r), this contradicts the maximality
of the path φ0 : [0, a) → Rn. It results that a = 1 and if b is a limit point of φ0 : [0, 1) →
B(x, r), then f(b) = φ(1) ∈ f(E2) and since f : D → D‘ is a homeomorphism, it results that
b ∈ f−1(f(E2)) = E2. We proved that if φ0 ∈ Γ, φ0 : [0, 1] → D, then φ0 joins a point from E1

with a point from E2, hence, if φ0 is locally rectifiable, it results that l(φ0) ≥ |y − x|.
Let ρ = (1/|y − x|)χB(x,r). Then ρ ∈ F (Γ) and since f(Γ) > Γ‘, we have C(n) ln(L(x, f, r

2
)/

|f(y)−f(x)|) ≤ Mn(Γ
‘) ≤ Mn(f(Γ)) ≤ γ(Mp

ω(Γ)) ≤ γ(
‘́

Rn

ω(z)ρp(z)dz) ≤ γ(
´

B(x,r)

ω(z)dz 1
|y−x|p ).

This implies that |f(y)− f(x)| ≥ L(x, f, r
2
) exp(−γ(

´
B(x,r)

ω(z)dz 1
|y−x|p )

1
C(n)

) if |y − x| < r
2
.

The preceding inequality holds also if L(x, f, r
2
) ≤ |f(y) − f(x)|, hence we can take now

Ψ : (0, r
2
) → R, Ψ(t) = L(x, f, r

2
) exp(−γ(

´
B(x,r)

ω(z)dz 1
tp
) 1
C(n)

) for t ∈ (0, r
2
) and the theorem is

now proved.
We use now the preceding theorem to prove a Hurwitz type theorem in class Qn,p,ω,γ(D),

extending in this way Theorem 21.9, page 73 from [27] and Corollary 37.3, page 125 from [27].
Theorem 9. (Hurwitz’s theorem in the class Qn,p,ω,γ(D)). Let fm ∈ Qn,p,ω,γ(D) be homeo-

morphisms so that fm → f uniformly on the compact subsets of D. Then f is either a constant
map on D, or f : D → f(D) is a homeomorphism in the class Qn,p,ω,γ(D).

Proof: Suppose that f is not discrete at a point x ∈ D and let r > 0 be so that B(x, r) ⊂ D.
There exists points xk ∈ B(x, r

2
) so that xk ̸= x and f(xk) = f(x) for every k ∈ N and suppose

that there exists y ∈ B(x, r
2
) so that f(y) ̸= f(x). Let δ = |f(y) − f(x)| > 0. We can

suppose that |fk(y) − fk(x)| ≥ δ
2
for every k ∈ N and let α = |y − x|. Then L(x, fk,

r
2
) ≥

L(x, fk, α) ≥ |fk(y) − fk(x)| ≥ δ
2
for every k ∈ N and let Ψk : (0, r

2
) → R be given by

Ψk(t) = L(x, fk,
r
2
) exp(−γ(

´
B(x,r)

ω(z)dz 1
tp
) 1
C(n)

) for t ∈ (0, r
2
). We see from Theorem 8 that

|fk(z)− fk(x)| ≥ Ψk(|z − x|) for z ∈ B(x, r
2
) and every k ∈ N , hence

|fk(z)− fk(x)| ≥ δ
2
exp(−γ(

´
B(x,r)

ω(u)du 1
|z−x|p )

1
C(n)

) for every z ∈ B(x, r
2
) and every k ∈ N .

Letting z = xm in the preceding inequality, we find that

|fk(xm)− fk(x)| ≥
δ

2
exp(−γ(

ˆ

B(x,r)

ω(u)du
1

|xm − x|p
)

1

C(n)
), for k,m ∈ N (1)

We fix now m in (1) and letting k → ∞ we find that

0 = |f(xm)− f(x)| ≥ δ

2
exp(−γ(

ˆ

B(x,r)

ω(u)du
1

|xm − x|p
)

1

C(n)
) > 0

, and we reached a contradiction.
We proved that if B(x, r) ⊂ D and xk → x, xk ̸= x, xk ∈ B(x, r) and f(xk) = f(x) for

every k ∈ N , then it results that f(y) = f(x) for every y ∈ B(x, r
2
). We therefore proved that

if x ∈ D, then either f is discrete at x, or f is constant on a neighborhood of x.
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Suppose that f is constant on a neighborhood of a point x ∈ D and let Q = {y ∈ D| there
exists Uy ∈ V(y) so that f(z) = f(x) for every z ∈ Uy}. Then Q is open in D and suppose
that ∂DQ ̸= ϕ, and let y ∈ ∂DQ. Then there exists xk ∈ Q, xk → y and from what we have
proved before we can find Uy ∈ V(y) so that Uy ⊂ D and f(z) = f(x) for every z ∈ Uy, and we
reached a contradiction, since we supposed that y ∈ ∂DQ. It results that ∂DQ = ϕ and since
D is a domain, we find that D = Q, i.e. f is constant on D. We therefore proved that either
f is a constant map on D, or f is a discrete map on D.

Suppose that f is not constant on D. Then f is a discrete map and since fm → f uniformly
on the compact subsets of D and every map fm is injective, we see from [4] that f : D → f(D)
is a homeomorphism.

Let now G a domain so that G ⊂ D and E,F compact, connected so that E,F ⊂ G
and let Γ = ∆(E,F,G). Since fm → f uniformly on G, we see that there exists m0 ∈ N so
that f(G) ⊂ fm(G) for every m ≥ m0 (see for instance the first part of the proof of Theorem
21.9, page 73 from [27]). Then Mn(∆(fm(E), fm(F ), f(G))) ≤ Mn(∆(fm(E), fm(F ), fm(G))) =
Mn(fm(∆(E,F,G))) ≤ γ(Mp

ω(∆(E,F,G))) = γ(Mp
ω(Γ)) for every m ≥ m0.

Using Lemma 6 from [5] or Lemma 6 from [8] we obtain that Mn(f(Γ)) = Mn(f(∆(E,F,
G))) = Mn(∆(f(E), f(F ), f(G))) = lim

m→∞
Mn(∆(fm(E), fm(F ), f(G))) ≤ γ(Mp

ω(Γ)), hence f ∈
Qn,p,ω,γ(D).

Remark 4. Natural extensions of our results can be established on arbitrary metric measure
spaces. Indeed, the important modular inequality of Caraman from Theorem 4 from [3] used
in our Lemma 1 on Rn, holds also on Ahlfors regular metric spaces (see Proposition 4.7 from
[1]).

In a future paper we shall study the boundary behavior of the mappings from the class
Wq,p,ω,γ(D).
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