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Abstract

In this paper, based on the discrete valence force field model for diamond-like

crystals we construct and compare predictions of two models with cubic symme-

try containing an intrinsic internal length. The first model is constructed using

lattice dynamics and the classical polynomial approximation of the acoustic

branches near the Γ point. We show that the second-gradient continuum ap-

proximation obtained in this way leads to unphysically small internal lengths,

enforcing a result obtained previously recently in [1]. The second model follows

a line studied in the one-dimensional context in [2]. It takes into account in-

compatible reference lengths in the discrete setting and is able to model both

cohesion, surface energy and defects. We study the ground state of an infinite

lattice and we conclude that as expected, for parameters in the range of in-

terest, a boundary-layer effect occur. We explore numerically using the second

model : (a) the average lattice parameter of bulk-like, plate-like and beam-like

nano-structures and (b) we predict lattice parameter variations as a function of

porosity in porous silicon. We conclude that the anisotropic three-dimensional

model with hyper-pre-stress provides a realistic model for mechanics of nano-

structures.
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1. Introduction

It is well admitted that for objects with at least one very small characteristic

length (ultra-thin films, nano-wires, nano-tubes, etc.) the macroscopic proper-

ties are governed by the competition between bulk and surface effects and thus

may deviate significantly from the bulk properties. The review presented in

[3] shows several generic experimental facts : for instance, 〈100〉 oriented Ag
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nano-wires exhibit dramatic increase of the Young modulus, while for the 〈110〉

oriented Si nano-wires a softening phenomena occurs. Most of these experi-

mental facts can be explained using atomistic calculations but, following the

conclusion in [3] there is still a large gap between computational predictions

and experimental measurements of the Young modulus both for metallic and

semiconductor nano-wires, and more generally for nano-structures.

From a theoretical point of view, experimental evidence about the depen-

dence of the elastic moduli on the specimen size, commonly called size effects,

requires at the continuum level, a theory containing at least an intrinsic internal

length scale. The simplest generalization of the classical linear elasticity that

includes an internal length is to include the second-gradient of the displacement

field in the expression of the elastic energy density ([4] [5], [6]), [7]. Theoretical

predictions of the resulting theory allow the identification of higher-order con-

stants from a phenomenological basis and were largely discussed in the recent

years (see for example [8] and references within). Main applications discuss

mainly isotropic materials[9], when the coupling between the first and the sec-

ond gradient of the displacement field vanishes, leading to a non-local model

including five new material parameters (see also [10], [11] for strain gradients in

plasticity). Generally, including second-gradients in the continuum description

leads to some boundary layers effects associated with manifestations of surface

and/or interfaces effects.

In a recent work [1], following a line previously developed in [12], an atom-

istic approach based on density functional theory and molecular dynamics was

used in order to determine strain-gradient elasticity constants. The second-

gradient theory obtained in this way posses higher-order material parameters

which can be obtained from the discrete model. From this perspective, the lin-

ear elasticity theory is a first-order approximation of the discrete model, while

the second-gradient theory is a second-order approximation. From an analytical

point of view, for very simple discrete models we face an apparent paradox : the
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material parameters of the second-gradient theory will depend on the first-order

elasticities and some geometric characteristics of the discrete structure, as the

lattice parameter. Along this line [1] show that, for a large class of materials

including both metals and semi-conductors, the second-order effects computed

manifest only at unphysical small sizes.

An interesting theoretical argument able to include an internal length in

the discrete setting was presented in [2]. A detailed analysis of the mechanical

response of the one dimensional chain including NN and NNN interactions with

incompatible reference lengths shows that, in the generic case, boundary layers

occur. However, in contrast with the continuum setting, in this case the reference

configuration of the chain is non-trivial so, as a consequence, at very small

scales, the elasticity of the chain may deviate significantly from the classical

predictions of the homogenization theory. This is in a certain sense expected

since elasticity reflects only material behavior at very large scales with respect

to the inter-particle distance.

In this paper, motivated by the experimental evidence of size-dependent lat-

tice parameter in nano-porous silicon, we explore the two lines presented above

for materials with diamond-like structure. The starting point is the discrete

valence force field (VFF) model that fits remarkably well the bulk elasticity of

group IV elements in the diamond-like structure. Using lattice dynamics we

derive explicitly the second-order approximation, i.e. the continuum second-

gradient approximation of the discrete model following the method of [12]. The

key point on this line is the approximation of the dispersion relations near the

Γ point in the multi-dimensional case with cubic symmetry. The analytical re-

sults obtained on this line complete and enforces the conclusions obtained by

[1]. We show that the length-scales obtained are too small to predict correctly

the size-dependent lattice parameter observed in nano-porous silicon, which is

a seriously drawback of the second-gradient theory, already evidenced using a

different approach in [1].
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Back to the discrete setting and following the ideas in [2] we explore a sec-

ond alternative that includes in the VFF model incompatible reference lengths.

On this line we construct a discrete model for crystals with diamond lattice

structure able to predict both (a) the variations of the lattice parameter during

the porosification and (b) the correct macroscopic elastic constants. The key

point in the construction of a model with hyper-pre-stress is to add a specific

null-lagrangian to the discrete model and we evidence the role of the ground

state in the choice of material parameters. The analytical complexity of the

resulting three-dimensional discrete model is prohibitive for a complete quali-

tative study comparable with that of the one-dimensional chain [2] but, using

numerical simulations, we evidence several size effects induced by the presence

of the incompatible reference lengths acting on NN and angular interactions.

The numerical study of the average lattice parameter of beam-like, plate-like

and bulk-like structures of Si evidence enhanced relaxation of beam-like struc-

ture with respect to plate-like structures and plate-like structures with respect

to bulk like structures. We fit the single new material parameter of the model

using available Raman spectroscopy data obtained for porous bulk silicon in a

range of moderate porosities.

2. Discrete models for diamond-like structures

2.1. An overview

In a fundamental paper on discrete interactions in covalent crystals, Tersoff

[13] divides interaction potentials in two major groups: the first one contains

the pair interaction potentials (Lennard-Jones, Morse, etc.) which apply to

arbitrary configurations but give poor results for strong covalent bonds. In this

direction, the pioneering work of Born was extended by Hermann [14] up to fifth-

shell in an attempt to fit both elastic moduli and the phonon dispersion data for

silicon. The second group of potentials, intended to describe small distorsions
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from a ground state includes three-body potentials and the most famous example

is the simplest valence force field model of Keating [15]. Formally, for a system

containing N particles the total interaction energy can be expanded in a formal

Taylor series as

W =
∑

1≤i≤N

V1(ri) +
∑

1≤i<j≤N

V2(ri, rj) +
∑

1≤i<j<k≤N

V3(ri, rj , rk) + . . . (1)

Models accounting only for pair interactions (Lennard-Jones, Morse, etc.) con-

sider only approximations accounting for the first two terms, usually including

a cut-off radius. Models in the second group include at least the third term and

are able to provide a fairly good description of the elastic properties of diamond-

like structures of group IV elements : C, Si, Ge. We note here that accounting

for NNN interactions (or more longer range pair(interactions) is obviously not

equivalent to accounting for three-body terms. Moreover, the rôle of angular

interactions can be evidenced only in multidimensional setting.

Among the models designed to extend the models of Born and Keating we

cite here the most common :

(i) The Stillinger-Weber model : (which falls in the second group) for

which the interaction energy is given by

W =
∑
i,j

V2(|rj − ri|) +
∑
i,j,k

λe
γ
[

1
rij−a+ 1

rik−a

]
(cos θijk + 1/3)2 (2)

where λ and γ are material constants θijk is the angle between rij and rik

and a is the lattice parameter. The model includes nonlinearities able to

give a fairly realistic description of crystalline silicon but encounter trans-

ferability problems (i.e., is unable to cover non-tetrahedral polytypes).

(ii) The Tersoff model : [13] The interaction energy is assumed to have the

form :

W =
∑
i,j

fc(rij)
[
Ae−λ1rij +B(1 + βnξijn)

1
2n e−λ2rij

]
(3)
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where ξij =
∑
k 6=i,j fc(rij)

[
1 + c2

d2 + c2

d2+(h−cos θijk)2

]
eλ

3
3(rij−rik)

3

and fc is

a cut-off function and A,B, λ1, λ2, λ3, β, n, c, d and h are material param-

eters. The model emphasize the fundamental role of the coordination and

use only pair interactions with the bond strength depending on coordina-

tion. It covers a broad spectrum of situations but fitting to real situations

is a hard task. In particular the model predicts [13] for the elastic con-

stants of silicon : C11 = 121 GPa, C12 = 86 GPa and C44 = 10 GPa in

disagreement with experimental data ([16] : C11 = 165 GPa, C12 = 63

GPa and C44 = 79 GPa).

(iii.) The embedded atom method model [17], [18] where

W =
∑
i

f(ρi) +
∑
i,j

V2(rij) (4)

and f(ρi) is the electron density around the atom i and V2 is a pair

potential, both calibrated from quantum mechanical calculations.

Justification of the form of the cohesive energy potentials from band theory

[19] may motivate both angular terms in 2, [13] and pair terms giving a matrix

description of an atoms local environment ([20] with applications to Si).

2.2. The valence force field model of Keating

The simplest valence force field (VFF) model of Keating [15] assumes that,

in the harmonic regime near a ground state, the total elastic energy of a cova-

lent system can be decomposed as a sum between a central and a non-central

interaction energies as:

W =
∑
(i,j)

wji +
∑

(i,j,k)

wjki . (5)

where the pair potential wji and the three-body potential wjki are given, respec-

tively, by

wji =
2A

3a2
((xj − xi) · (xj − xi)− 3a2

16
)2 (6)
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wjki =
8B

3a2
((xj − xi) · (xk − xi) +

a2

16
)2. (7)

In (6) and (7) we use a for the lattice parameter and xi for the positions

of the atom i. Using ui for the displacement of the atom i with respect to its

position Xi on the reference configuration (the diamond lattice with lattice

parameter a), we have

xi = Xi + ui (8)

so that xj − xi = a
√
3
4 n

ij + (uj − ui).

It follows that, up to third-order terms in the displacement, the interaction

energies in the VFF model have expressions given by:

wji '
A

2

[
(~uj − ~ui) · ~nij

]2
(9)

and

wjki '
B

2

[
(~uj − ~ui) · ~nki + (~uk − ~ui) · ~nji

]2
. (10)

where in (9) and (10) A and B are stiffnesses for, respectively, central and

non-central interactions.

Thus the model with interaction energy given by

W =
∑
(i,j)

A

2

[
(~uj − ~ui) · ~nij

]2
+
∑

(i,j,k)

B

2

[
(~uj − ~ui) · ~nki + (~uk − ~ui) · ~nji

]2
. (11)

is the quadratic approximation of the VFF model.

We notice first that both the VFF model and it’s quadratic approximation

have a trivial reference configuration which is the diamond type structure with

lattice parameter a. Thus, in the regime of small strains, near the ground state

of the diamond lattice with lattice parameter a, both the VFF model and it’s

quadratic approximation give identical results.

2.3. Macroscopic elasticity for the VFF model

The most important feature of the VFF model of Keating is it’s ability to

accurately describe the elasticity of diamond-like crystals. This shows that,
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near the ground state, the simple NN pair interactions and three-body angular

interactions are the dominant terms in the expression of the elastic energy of

the diamond structure. For completeness, we shall briefly present here the

computation of the macroscopic elasticity predicted by the VFF model. The

discrete homogenization method we use is well admitted and can be rigourously

justified at the analytical level ([21], [22] under suitable hypothesis fulfilled here).

Figure 1: A unit cell of a tetrahedraly bonded structure; each unit cell contains 2 identical

atoms, 4 pair-interactions and 12 angular interactions.

We consider in an infinite crystal the unit cell represented in figure 1 and

containing two identical atoms. Submitted to the macroscopic strain E, the

individual displacements of the atoms in the cell will be given by

u1 = EX1 + ũ1, u2 = EX2 + ũ2. (12)

Since the elastic energy is invariant with respect to translation of the cell, assum-

ing periodicity and without loosing the generality, we can suppose that ũ1 = 0

and use U instead of ũ2. Collecting together the contributions of the 4 terms

accounting for the pair interactions of a unit cell and the 12 terms accounting

for three-body interactions, we obtain per unit cell

W =
1

24

[
a2(A+ 12B)(E2

11 + E2
22 + E2

33)+
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+2a2(A− 4B)(E11E22 +E22E33 +E11E33) + 4a2(A+ 4B)(E2
12 +E2

13 +E2
23)+

+16a(A− 4B)(E23Ux + E13Uy + E12Uz) + 16(A+ 4B)(U2
x + U2

y + U2
z )
]

(13)

Position of the atom 2, under imposed macroscopic deformation, is provided by

the minimization with respect to U in (13). This gives

U = −a
2

A− 4B

A+ 4B


E23

E13

E12

 . (14)

and represent the local equilibrium of the lattice. Substitution of this result in

(13) leads to the quadratic form

Wmacro.(E) =
1

vol(Y )
min
U

Wmicro(E,U) =

=
1

6a(A+ 4B)

[
A2(E11 + E22 + E33)2 + 16AB(E2

11 + E2
22 + E2

33) + 4(E2
12 + E2

13 + +E2
23)

+16B2(3(E2
11 + E2

22 + E2
33)− 2(E11E22 + E11E33 + E22E33))

]
(15)

which can be formally expressed as

Wmacro(E) =
1

2



C11 C12 C12 0 0 0

C11 C11 C12 0 0 0

C11 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44





E11

E22

E33

2E23

2E13

2E12


·



E11

E22

E33

2E23

2E13

2E12


(16)

if

C11 =
A+ 12B

3a
, C12 =

A− 4B

3a
, C44 =

16AB

3a(A+ 4B)
. (17)

As expected, the result is the macroscopic elastic energy of a material with

cubic symmetry, inherited from the (point group) symmetry of the lattice and

interactions.
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At a qualitative level, it is interesting to note here that the three macroscopic

elasticities depend on only two microscopic parameters (stiffnesses A and B) so

that the models also predict the relation

2C44(C11 + C12)

(C11 − C12)(C11 + 3C12)
= 1. (18)

which is verified remarkably well for all group IV elements. The following table

gives the values of material parameters A and B obtained using experimental

data for C11 and C12, the predicted elastic constant C44, the experimental value

for C44 from [16] and the value of the ratio in the left-hand side of (18).

a (Å) A (N/m) B (N/m) Cth44 (GPa) Cexp44 (GPa) LHS in (18)

C 3.567 388.1 63.87 575.9 578 1.004

Si 5.431 145.8 10.38 79.3 79.6 1.002

Ge 5.658 109.5 8.67 62.2 67.7 1.08

Table 1: Lattice parameter, material parameters A, B, predicted and experimental data for

C44 and the value of the left-hand-side in (18) at 300K for C, Si and Ge [16].

The model (5)-(6)-(7) is unable to predict surface relaxation of nano-structures

as it does not contain an internal length. Otherwise stated, the different local

environment (coordination) of atoms situated far or near a free-surface in a fi-

nite domain do not affect the size of a finite structure. The reason for this is

the fact that all forces acting on particles vanish simultaneously in the ground

state, which is also the actual reference configuration.

Among the different methods leading to models with internal lengths we

shall explore in the next section a second-gradient continuum approximation of

the discrete VFF model. To this end, we follow the classical line initiated by

Krumhansl [23] and exposed in detail in Kunin [24]. This procedure offers also

a different perspective of the result obtained in this section.
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3. Second-gradient model via lattice dynamics

This section presents the lattice dynamics for diamond structures based on

the discrete VFF model of Keating and two of its continuum approximations.

The basic idea is to obtain the dispersion relation and then to look for approxi-

mations of the acoustic branches near the center of the first Brillouin zone (the

Γ point). As the elastic energy is invariant to translations the lower-order poly-

nomial approximation will leads to linear elasticity with macroscopic constants

described in the previous section which corresponds to quadratic polynomial ap-

proximation of the acoustic branches near the Γ point. Successive higher-order

polynomial approximations will correspond to higher-order partial derivatives

in the continuous setting [25] and, among this, the simplest is a second-gradient

model we look for.

For the lattice dynamics calculations we shall follow the general presentation

of Mielke [21].

3.1. Lattice dynamics

The diamond structure is a non-primitive lattice with 2 atoms per unit cell,

further denoted by i and j. Dynamics for each atom is governed by

müi = −∂W
∂ui

(19)

where the total elastic energy is the sum of central and non-central parts de-

scribed by (11). Taking into account pair and three-body interactions in the

the right-hand side of (19), displacement of atom i contributes to

∂W

∂ui
=

∑
j∈NN(i)

∂W j
i

∂ui
+

∑
{j,k}⊂NN(i)

k 6=j

∂W jk
i

∂ui
+

∑
j∈NN(i)
k∈NN(j)
k 6=i

∂W ik
j

∂ui
(20)

where we have used NN(i) for subscripts j corresponding to atoms which are

near-neighbors of atom i. If we introduce Ejk
i = nij ⊗ nik we obtain:
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• Contribution of central forces (atom j is NN of atom i):

−
∑

j∈NN(i)

∂W j
i

∂ui
= A

∑
j∈NN(i)

Ejj
i (uj − ui) (21)

• Contribution of non-central forces of the type W jk
i (atoms j and k are NN

of atom i):

−
∑

{j,k}⊂NN(i)
k 6=j

∂W jk
i

∂ui
=

= B
∑

{j,k}⊂NN(i)
k 6=j

[
(Ejj

i +Ekj
i )(uk − ui) + (Ekk

i +Ejk
i )(uj − ui)

]
(22)

• Contribution of non-central forces of the type W ik
j (atom k and i are NN

of atom j):

−
∑

j∈NN(i)
k∈NN(j)
k 6=i

∂W ik
j

∂ui
= −B

∑
j∈NN(i)
k∈NN(j)
k 6=i

[
Ekk
j (ui − uj) +Eki

j (uk − uj)
]

(23)

Since the diamond structure is a non-primite lattice, we have to distinguish

in the right-hand side of (19) the contribution of particles from different FCC-

sublattices. We first note that :

• In (21) and (22) subscripts i and j correspond to atoms situated in different

sublattices, while k correspond to an atoms situated in the same sublattice

as j;

• In (23) subscripts i and j correspond to atoms in different sublattices,

while k correspond to an atom in the same sublattice as i.

Next step is to look for particular solutions in the form of progressive plane

waves for each sublattice, i.e.

u = Uei(k·x+ωt) (24)

using U for the amplitude in one of the sublattice and V for the other.
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At this point we need to describe the coordination around a fixed atom in

one (of the lattices). To this end, we introduce 4 vectors v1, v2, v3 and v4 giving

the positions of the four near neighbors of an atom of one of the sublattices1.

We obviously have
∑4
i=1 vi = 0 so, as a consequence, the coordination around

an atom of the second lattice is given by the opposite vectors. It follows that,

formally, the dynamics of both sublattices are given by similar equations but

their connectivity is described by the opposite vectors.

Collecting together results in (21), (22) and (23) and using (24) we obtain

after simplification for one sublattice

−ω2mU =

−A
∑

j∈NN(i)

Ejj
i −B

 ∑
{j,k}⊂NN(i)

k 6=j

(Ejj
i +Ekj

i +Ekk
i +Ejk

i )+

+
∑

j∈NN(i)
k∈NN(j)

k 6=i

(Ekk
j +Eki

j eik·(vj−vk))


U+

+

A ∑
j∈NN(i)

Ejj
i e

ik·vj +B

 ∑
{j,k}⊂NN(i)

k 6=j

[
(Ejj

i +Ekj
i )eik·vk + (Ejk

i +Ekk
i )eik·vj

]
+

+
∑

j∈NN(i)
k∈NN(j)

k 6=i

(Ekk
j +Eki

j )eik·vj


V (25)

We shall denote by −AUU and −AUV respectively the factors of U and V in

the above equation. We notice that, since coordination in the second lattice is

obtained by changing vi to −vi, the dynamics of the second lattice is governed

by

A?
UVU +AV V V − ω2mV = 0, (26)

1These vectors are represented in Figure 1 inside the unit cell.
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where

AV V =

A ∑
j∈NN(i)

Ejj
i +

+B


∑

{j,k}⊂NN(i)
k 6=j

(Ejj
i +Ekj

i +Ekk
i +Ejk

i ) +
∑

j∈NN(i)
k∈NN(j)

k 6=i

(Ekk
j +Eki

j e−ik·(vj−vk))



(27)

so that, finally, the system has the following structure

(
A(k)− ω2mI6×6

) U

V

 =

 0

0

 , (28)

where, A(k) denotes the dispersion matrix

A(k) =

 AUU AUV

A?
UV AV V

 . (29)

3.2. Separation of the acoustic and optical branches

We are interested in the structure of the spectrum of A(k) near the Γ-point,

i.e., k = 0 which is the center of the first Brillouin zone. Invariance of the cell

translation as a whole implies [21], [24] that, with respect to a suitable basis,

A(k) has the following structure

A(k) =

 Aaa(k) Aao(k)

A?
ao(k) Aoo(k)

 =

 O(|k|2) O(|k|)

O(|k|) O(1)

 (30)

A straightforward computation shows that, this is obtained using the collective

cell variables

Ua = (V +U)/
√

2, Uo = (V −U)/
√

2. (31)

Then, a result of [21] shows that the elasticity tensor Ĉ defined as

Ĉ[v ⊗ k1]k2 =

[
1

2
D2Aaa(0)[k1,k2]− (DAao(0)[k1])A−1oo (0) (DA?

ao(0)[k2])

]
v

(32)

15



defines the macroscopic elasticity of the lattice in the long wave-length ap-

proximation. This result shows also that in order to obtain the macroscopic

approximation it is sufficient to obtain A(k) (mod |k|2). However exact disper-

sion relation are needed in order to plot the dispersion curves in the whole first

Brillouin zone and to compare them to experimental data.

We postpone to the appendix the details of the computation (mod |k|2) of

the dispersion matrix but note here that the final result obtained using (32) is

Ĉ11 = a2
A+ 4B

24
, Ĉ44 = a2

2AB

3(A+ 4B)
, Ĉ12 = a2

A− 4B

24
. (33)

As the volume of the unit cell is a3/4 and the total mass in the cell 2ma, we

recover the result of subsection 2.3. Thus, the first-order approximation of the

discrete model leads to the macroscopic equations of the elastodynamics with

elasticities given by Cij = Ĉij
2

V (cell) which gives, as expected, the result in (17).

Once again, the cubic symmetry of the macroscopic elasticity is inherited from

the microscopic symmetry of the lattice. Moreover, using a result of [22] (since

we fit assumption A in Sect. 2 of [22]) the resulting macroscopic law satisfies

the generalized Legendre-Hadamard condition.

Figures 1 and 2 show the experimental dispersion relations along high sym-

metry lines in the first Brillouin zone for silicon. Experimental data obtained

by Doling [26] are illustrated in Figure 1 and the predicted dispersion relations

obtained using the exact dispersion relation (28). We notice a remarkably good

prediction of the dispersion data excepting the high value of the transverse

acoustic branch near the X (or R) point. We also note the flatness of the dis-

persion data near the Γ point that we interpret this as an indication of very low

numerical values of higher-order corrections based on successive approximations

near the k = 0.

3.3. Higher-order polynomial approximation

Computation of higher-order polynomial approximations of the acoustic branches

near the center of the first Brillouin zone needs a different approach. The main
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Figure 2: Experimental dispersion curves for crystalline silicon from [26], [16].

Figure 3: Computed dispersion curves for crystalline silicon using the quadratic approximation

of the Keating model.

reason is that higher-order approximations of the dispersion matrix affects the

splitting between the acoustic and optical branches. Two solutions of this prob-

lem exist in the literature: the first one is presented in [24] and the second one

in [12]. We follow the method in [12] (also used recently in [1]) and we shall

compute the third-order and the fourth-order approximations of the dispersion
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relations near the Γ point. In particular, we shall recover, as expected, the well-

known fact that for centro-symmetric crystals the coupling constants between

the deformation and it’s spatial derivatives vanish2.

The starting point of the method is the splitting of the exact dispersion

matrix A(k) in (30) as

A(k) = H + Y (k) +X(k), (34)

where

H =

 EaI3×3 03×3

03×3 EoI3×3

 , (35)

Y (k) =

 Aaa(k)− EaI3×3 03×3

03×3 Aoo(k)− EoI3×3

 , (36)

and

X(k) =

 03×3 Aao(k)

A?
ao(k) 03×3

 (37)

and consider X(k) as the small parameter. The result in [12] can be stated

as follows: splitting between the acoustic and optical branches of polynomial

approximations of degree m ≤ 4 of the exact dispersion matrix are obtained as

sums
∑m
s=0K

(s) where

K(0) = H,

K(1) = Y ,

K(2) =
1

2
[XH , X], (38)

K(3) =
1

2
[X, [Y ,XH ]H ],

K(4) =
1

2
[X,

{
[[Y ,XH ]H ,Y ]H +

2

3
[K(2),XH ]H

}
]− 1

12
[[K(2),XH ],XH ],

the commutator [X,Y ] denotes XY − Y X and XH is the (unique) solution

A of the equation [H,A] = X.

2This is not the case for non centro-symmetric crystals such that InP, AsP, GaAs, etc.
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We notice that along the line presented above computations mod(|k|m) still

hold in order to obtain K(m). A result of the previous section shows that

H =
8

3
(A+ 4B)

 03×3 03×3

03×3 I3×3

 , (39)

or, otherwise stated Ea = 0 and Eo = 8
3 (A+ 4B). We obtain successively :

• For m = 2
2∑
s=0

K(s) =

 D(2)
aa 03×3

03×3 . . .

 (40)

where

D(2)
aa =

a2

24(A+ 4B)


f (2)(k1, k2, k3) g(2)(k1, k2, k3) g(2)(k1, k3, k2)

g(2)(k2, k1, k3) f (2)(k2, k3, k1) g(2)(k2, k3, k1)

g(2)(k3, k1, k2) g(2)(k3, k2, k1) f (2)(k3, k1, k2)


(41)

and

f (2)(k1, k2, k3) = (A2 + 48B2)k21 + 16AB|k|2,

g(2)(k1, k2, k3) = (A2 + 16AB − 16B2)k1k2.

Since the unit cell has volume a3/4 and two atoms we identify

a2

24(A+ 4B)
(A2 + 48B2)k21 + 16AB|k|2 =

a3

8

[
C11k

2
1 + C44(k22 + k23)

]
and

a2

24(A+ 4B)
(A2 + 16AB − 16B2)k1k2 =

a3

8
C12k1k2.

This identification gives, as expected, the elastic constants of the previous

section, i.e.

C11 =
A+ 12B

3a
, C12 =

A− 4B

3a
, C44 =

16AB

3a(A+ 4B)
.

• For m = 3

K(3) = 0 ⇒
3∑
s=0

K(s) =

2∑
s=0

K(s). (42)

19



• For m = 4
4∑
s=0

K(s) =

 D(2)
aa +D(4)

aa 03×3

03×3 . . .

 (43)

where D(4)
aa is the fourth-order homogeneous polynomial with the same

structure as D(2)
aa but now

f (4)(k1, k2, k3) = f̂122122(k42 + k43) + 6f̂122133k
2
2k

2
3 + 6f̂211222k

2
1(k22 + k23)

and

g(4)(k1, k2, k3) = (4f̂112222(k21 + k22) + 12f̂112233k
2
3)k1k2.

A long but straightforward computation of coefficients in f (4) and g(4)

provides :

f̂122122 = −a4 (A− 4B)2(7A2 + 40AB + 112B2)

4608(A+ 4B)3
,

f̂122133 = −a4 (A− 4B)3(13A+ 44B)

13824(A+ 4B)3
,

f̂211222 = −a4 (A− 4B)2(13A2 + 88AB + 208B2)

27648(A+ 4B)3
, (44)

f̂122222 = −a4 (A− 4B)2(5A2 + 32AB + 80B2)

(A+ 4B)3
,

f̂112233 = f̂122133.

Remarks :

(i) We notice that K(3) = 0 means that there is no coupling between the first

derivatives of the strain and the strain itself in the free-energy density of

the continuum approximation. This result can be obtained directly from

group representation theory using the symmetry properties of the centre-

symmetric lattice.

(ii) As in the second-order approximation, we can define f = 2
V (cell) f̂ . The

two qualitative results: f111111 = 0 and f112233 = f122133 are specific to

the the discrete VFF model.
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(iii) The dynamics of the continuum model obtained above is governed by

ρüi = Cijkluk,lj + fijklmnuk,lmnj . (45)

It follows that the ratio between fijklmn and Cijkl provides one (or several)

estimates for the characteristic lengths of the approximate model. In our

case f ' 10−10N and C ' 1010N/m2 which predicts internal length scale

of ' 1 Angstrom.

(iv) The material parameters of the second-gradient approximation of the dis-

crete model can be computed numerically using the values of A and B

from the discrete VFF model. Using (44) and (17) we obtain

f122122 = −3.37× 10−10 N, f122133 = −1.24× 10−10 N,

f112222 = −1.24× 10−10 N, f112233 = −1.24× 10−10 N,

f211222 = −1.10× 10−10 N.

We notice here that they are one order of magnitude lower than those

obtained using ab initio and molecular dynamics simulations in [1]. This

result enforce the conclusion that the internal length introduced in the

continuum model using approximation of the dispersion relation near the

Γ point is insignificant unless the specimen size is un-physically small. As

already noted, we interpret this result as a consequence of the fact that

near the Γ point the dispersion relations are almost linear expressions (see

figure 2). It follows that corrections near the center of the first Brillouin

zone will not improve significantly the previously obtained approximations

of the dispersion curves. A different alternative is proposed in [25] where,

in the one dimensional case, approximative models based on a qualitative

different method (such as Padé interpolation, or approximation of first

roots) were studied.
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(v) The above computation gives the coefficients of the dynamic equation

of motion which is a continuum approximation of the discrete model. It

should be also noticed that, as shown in [1], [4] and [5], in the multidimen-

sional case, the coefficients in the equation of the motion do not determine

in an unique manner the analytical expression of the free-energy. Thus,

as already discussed in [1], the sign paradox in the multidimensional can

be avoided.

Figure 4: Computed dispersion curves for crystalline silicon using the second-order polynomial

approximation. For comparaison with the experimental data we have plotted the dispersion

curves only in the first Brillouin zone along the high symmetry lines; in this approximation

acoustic branches are straight lines with slopes depending on the elastic constants. In this

approximation ωa(k) is always real.

In figures 4 and 5 we have represented the theoretical dispersion relations

(real part of acoustic and optical branches) along the high symmetry lines in

the first Brillouin zone. Topological characteristics (multiplicity, etc.) are con-

served and, as expected, the first-order approximation leads to linear dispersion

relations for the acoustic branches. The second order-approximation illustrates

a well-known behavior of the acoustic branch (also discussed in [6], [27]): it
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Figure 5: Computed dispersion curves for crystalline silicon using the fourth-order polyno-

mial approximation. We have represent only the real part of the acoustic branches on high

symmetry lines. As noted in the last paragraph of section 3, the imaginary part of ω(k) does

not vanish.

cross the horizontal axis at finite values of wavelength. This is related to the

instability of the elastic response for continuum models which represent approx-

imations of discrete systems. A different discrete-to-continuum method able to

correct this unphysical behavior was proposed in [28].

4. A model with hyper-pre-stress

An alternative to the higher order continuum theory, which also introduces

an internal length in the discrete model was presented in [2] in the one dimen-

sional setting. The key ingredient is the competition between two force systems

with different reference lengths. The analysis of the simplest one-dimensional

model with near-neighbors (NN) and next-to-near neighbors (NNN) interac-

tions with incompatible references lengths evidence surface energy associated

with free-boundaries and a size-effect. In this section we shall adopt the ideas

in [2] and modify the discrete VFF model in order to predict both (a) the bulk
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elasticity of cristalline diamond-like structures and (b) surface effects associated

to relaxation near free-boundaries. The constructed model incorporates an in-

ternal length that can be calibrated so as to fit the observed lattice parameter

evolution determined experimentally .

The starting point is the quadratic approximation of the Keating model

including two equilibrium lengths, further denoted l1 and l2 and associated to

central and non-central interaction energies. Thus, the total elastic energy of

the model becomes

W =
∑
(i,j)

A

2

[
(~uj − ~ui) · ~nij − l1

]2
+
∑

(i,j,k)

B

2

[
(~uj − ~ui) · ~nki + (~uk − ~ui) · ~nji − l2

]2
.

(46)

4.1. Infinite lattice : macroscopic behavior and incompatibility

Using (46) and the method in subsection 2.3 we obtain, in an infinite crystal,

the macroscopic constitutive relation in the form

σ = C[ε− ε0] (47)

where ε0 = ε0I,

ε0 =
4
√

3

a

Al1 − 2Bl2
3A+ 4B

.

With respect to the reference configuration used to write (46), the macroscopic

elastic constants are still given by (17). It follows that in an infinite lattice (or

far from the boundary in a finite domain) the overall lattice parameter for a

free bulk material is

â = a(1 + ε0) = a

(
1 +

4
√

3

a

Al1 − 2Bl2
3A+ 4B

)
, (48)

but the physical meaning of a is not the ground state lattice parameter but just

an arbitrary reference length, with respect to which displacements in (46) are

measured.
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Following a parallel to the one-dimensional case presented in Charlotte and

Truskinovsky [2], in (46) we have to distinguish between the two cases of com-

patible and incompatible reference lengths.

In the following, two reference lengths l1 and l2 will be called compatible if

and only if

2l1 + 3l2 = 0. (49)

Otherwise, the couple (l1, l2) will be called incompatible.

The result in (48) shows that when the reference configuration is submitted

to a macroscopic deformation ε0I (pure dilation or compression, depending on

the sign of Al1−2Bl2) the lattice parameter changes from a to â and the lattice

reach it’s ground state. With respect to this new (reference) configuration the

elastic energy is

W =
∑
(i,j)

A

2

[
(~uj − ~ui) · ~nij − L1

]2
+
∑

(i,j,k)

B

2

[
(~uj − ~ui) · ~nki + (~uk − ~ui) · ~nji − L2

]2
(50)

where

L1 = l1 −
√

3

4
ε0a, L2 = l2 +

1

2
√

3
ε0a. (51)

Note that the couple (L1, L2) is the unique couple with the properties

2L1 + 3L2 = 2l1 + 3l2, AL1 − 2BL2 = 0. (52)

The first equation in (52) shows that the incompatibility is conserved by changes

in the reference configuration, while the second one reflects the fact that at

lattice parameter â we are in the ground state. Without loosing the generality,

we shall use in the following (50) so that the bulk material behavior is described

by

C11 =
A+ 12B

3â
, C12 =

A− 4B

3â
, C44 =

16AB

3â(A+ 4B)
(53)

and the elastic energy density is, up to an additive constant, W = 1
2C[ε] : ε.
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4.2. Hyper-pre-stress in the finite lattice

As noted in [2] including incompatible references in the lattice is equivalent

to a self-equilibrated force system acting on each particle. The following remarks

provide more insight on the rôle of the reference lengths:

1. Assume (L1, L2) compatible and consider a finite free-lattice. Then the

minimum of the total elastic energy (46) is attained (up to a rigid body

displacement) by the homogeneous displacement given by

ui = E0x
i for E0 = ε0I and ε0 = 4L1/(

√
3a). (54)

This result can be easily verified since in the case of compatible reference

lengths the minimum of the total elastic energy is zero.

2. In the following, a particle of a finite-lattice will be called completely coor-

dinated if all it’s NN and NNN neighbors belong to the structure. Other-

wise, the particle is called incompletely coordinated. Then, in the reference

configuration, for a fully coordinated particle the force system acting on it

is self-equilibrated. In order to prove this assertion we shall denote by i

a fixed particle and by jα (α = 1, 2, 3, 4) it’s four near-neighbors. Taking

into account the expressions of the central and non-central forces acting

on particle i we obtain:

• The sum of central forces−A ∑
j∈NN(i)

[(uj − ui) · nij − L1]nij


ui=uj=0

= AL1

∑
j∈NN(i)

nij = 0.

(55)

due to the geometry of the diamond structure.

• The sum of non-central forces is ∑
j,k∈NN(i)

j 6=k

∂wjki
∂ui

+
∑

j∈NN(i)

 ∑
k∈NN(j)

k 6=i

∂wikj
∂ui



ui=uj=uk=0

(56)
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The explicit computation of the first sum in (56) gives

BL2

∑
j,k∈NN(i)

k 6=j

(nij + nik) = 3BL2

∑
j∈NN(i)

nij , (57)

and vanish due to the symmetry of the diamond lattice (as in (55)),

while the second sum is

−BL2

∑
j∈NN(i)

∑
k∈NN(j)

k 6=i

njk = −3BL2

∑
j∈NN(i)

nij = 0. (58)

after rearrangement. It is interesting to notice here that the right-

hand sides of (57) and (58) show that the sum in (56) vanish even

without the symmetry of the diamond structure.

3. A different perspective the second remark is obtained noting that for a free

finite-lattice (and up to a rigid displacement of the lattice) the displace-

ment that realizes the minimum of the total energy given in (46) realizes

also the minimum of∑
(i,j)

wji +
∑

(i,j,k)

wjki −
∑
i∈IC

f i · ui (59)

where the first two sums represent the total elastic energy in the original

VFF model (5) and the third one may be regarded as the work of external

forces f i acting only on incompletely coordinated particles. To prove this

we note that the development of (5) provide three terms: a quadratic

part with respect to the displacement, denoted W2, which is exactly (5),

a constant term, denoted W0, that do not affect the minimum and a term

homogeneous of degree one with respect to the displacement, denoted W1.

Our previous remark shows that in the general expression

W1 =
∑
i

f i · ui (60)

the factors of ui vanish for completely coordinated particles, which proves

the assertion.
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Assertions (1) and (2) show that when the reference lengths are incompatible

the self-equilibrated force system introduced by the hyper pre-stress produces a

boundary layer effect in the finite lattice.

Using (52.2) with respect to the ground state of an infinite lattice, the elastic

energy is :

W =
∑
(i,j)

A

2

[
(~uj − ~ui) · ~nij − L1

]2
+

+
∑

(i,j,k)

B

2

[
(~uj − ~ui) · ~nki + (~uk − ~ui) · ~nji − L1

A

2B

]2
. (61)

The above model has the following properties :

• The lattice parameter in an infinite lattice is â.

• The elastic constants obtained using (53) fit the experimental data; dis-

persion curves are those presented in figures (3).

• The model includes an adjustable internal length so that, in a finite do-

main, it has a size-dependent lattice parameter.

A straightforward consequence of the last property is that the model will also

predict a size-dependent Young modulus. Due to analytical complexity of the

multidimensional case we are not able to present a complete analysis following

the line in [2] but instead we shall illustrate the main features of the obtain

model using numerical simulations.

We note that a positive (negative) sign of L1 induces in a finite domain an

average lattice parameter larger (smaller) than that of an infinite lattice. As

these effects are similar we shall focus the numerical study of the case L1 > 0

(average lattice parameter of finite structure larger that of the infinite lattice)

as indicates experimental data obtained using Raman spectroscopy for porous

silicon. The reverse phenomena can be obtained (average lattice parameter of

finite structures lower than that of an infinite lattice) by changing the sign of

L1.
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5. Size effects in finite structures

5.1. Average lattice parameter for finite structures

In order to illustrate the size-effect induced by the hyper-pre-stress we have

performed numerical computations of the average lattice parameter for silicon

free-structures with different characteristic lengths. For simplicity, we have

considered only parallelipipedic structures oriented along the crystallographic

axes.

We choose for the material parameters A and B the values given in Table

(2.3), â used as the reference configuration equals 5.431 Åand L1 was fixed to

1% of the interatomic distance of the infinite lattice, i.e.
√

3/4â. We choose

L2 = A
2BL1 in order to measure the deviation of the average lattice parameter

from the ideal infinite lattice, so the reference configuration it that of the ground

state of the infinite lattice.

We have considered nano-structures with lateral dimensions (α, l, l) - also

called in the following plate-like structures, (α, α, l) - also called beam-like struc-

tures, and (α, α, α) - also called bulk-like structures, for l = 10 nm (which

corresponds to 20 mono-layers) and α between 2 nm and 10 nm. Figure 6 shows

the obtained numerical results for the deviation of the average lattice parameter

with respect to that of the infinite lattice. As expected, for L1 > 0 (respectively

¡0) the average lattice parameter increases (decreases) when one characteristic

dimension of the structure decreases, but tends to â (which is the average lat-

tice parameter of an infinite lattice) when all dimensions of the structure are

very large. At this limit the continuum theory applies and surface effects can

be neglected. Figure 6 also indicates, as expected, that for fixed l, for bulk-

like structures the average lattice parameter increases faster than for beam-like

structures, and for beam-like structures the lattice parameter increases faster

than for plate-like structures when α varies. This is obviously the effect of the

specific surface available for different shapes.
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Figure 6: The average lattice parameter for finite plate-like structures with lateral dimensions

(α, l, l) (�), beam-like structures with lateral dimensions (α, α, l) (•) and bulk-like structures

with lateral dimensions (α, α, α) (�) for 2 nm < α < 10nm, and l = 10 nm.

5.2. Porosity dependent lattice parameter in porous silicon

Porous silicon is a nano-structured material obtained using electrochemical

anodization in a solution of fluorhydric acid (HF) and ethanol [29]. Depending

on the size of the pores [30], one can speak about nanoporous silicon when the

size of crystallites is less than 5 nm, about mesoporous silicon when the pore

sizes range between 5 nm and 50 nm and macroporous silicon when the pores

sizes are larger than 50 nm. From an experimental point of view, the porosity is

controlled by the anodization current density, anodization time and HF/ethanol

ratio. The obtained pores are inter-connected as they have been obtained by

the action of the HF/ethanol solution on bulk Si.

In the case of nanoporous silicon the specific area can reach very large values

as for exemple 100 m2/g. In such situations one can expect that the mechanical

behavior of the material is largely dominated by the ”surface effects”. It follows

that the porous silicon is a particularly interesting object in order to understand

deviations from classical bulk properties and size effects in elastic (covalent)
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Figure 7: Stress-free configuration illustrating relaxation near the boundary, edges and ver-

texes on a 10 nm3 bulk silicon block using the model with hyper-pre-stress.

crystals.

Generally, real three-dimensional crystal surfaces present an additional dif-

ficulty due to the recombination (of electrostatic nature) of surface bonds.

Thus, surface reconstruction always induces additional deformation near the

free-surfaces so that, generally, both the size-effect mentioned above and the

surface reconstruction together contribute to the elasticity of nano-scale objects.

In very special circumstances one can distinguish between these two sources of

deformation near free-surfaces of crystals. Electrochemical anodization used to

obtain porous silicon avoids surface recombination since the chemical reactions

implied in the process result in Si-H terminated surface.

During anodization the lattice parameter is measured using X-ray diffraction
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(XRD) and/or Raman spectroscopy. When anodization is performed on a part

of a bulk specimen the porous silicon conserves the crystallographic directions

of the original bulk specimen but

• the lattice parameter in the [001] direction is larger than the bulk lattice

parameter,

• the lattice parameter in the [100] and [010] directions are the same as in

the bulk.

This behavior is commonly presented as a relaxation of porous silicon due

to porosification, and is interpreted as the manifestation of a modification of

the average lattice parameter under the constraint of ”no lateral motion”. Ex-

perimental data concerning the modification of the (average) lattice parameter

induced by anodization as a function of porosity was measured in ([31], [32])

and is plotted in figure 8.

Figure 8: Lattice mismatch as a function of porosity after anodization (experimental data

from [31]).

In order to explore the porosity-dependent lattice parameter predicted by

our model we have considered a cubic super-cell oriented along the crystallo-
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graphic axes and containing a one-parameter connected pore. The volume of

the porous super-cell is obtained eliminating the atoms inside the union of the

three cylinders Ci = {(x1, x2, x3),max(|xj |, |xk|) ≤ α} for i = 1, 2, 3. A typical

super-cell obtained with this method is illustrated in figure 10.

The computational procedure involves the following steps :

1. At fixed super-cell size and porosity (α fixed) we solve the discrete ho-

mogenization problem with periodic boundary conditions and deduce the

macroscopic relation in the form

Σ = C(α)[E −E0(α)].

At this point both the macroscopic elasticity and the pre-strain are poros-

ity dependent. As expected, using (61) we obtain E0(0) = 0 (as the bulk

material is self-equilibrated) and C(0) is given by (53). The computation

of macroscopic coefficients for the bulk material (vanishing porosity) is

independent on the cell-size.

2. Since the porous material in constraint in the lateral directions but free

in the vertical one we conclude that the vertical strain induced by the

pre-strain, porosity and lateral constraint is given by

E33 = (1 + 2
C12

C11
E0. (62)

We fit the new material parameter L1 so as to obtain one of the experimental

data - the deformation at 50% porosity. The value of L1 obtained using only this

data was used to predict the average lattice parameter at different porosities.

The obtained numerical results are illustrated on figure ??. We note :

• a linear regime at small porosities in agreement with experimental data;

• an increasing average lattice-parameter at larger porosities in disagree-

ment with experimental data.
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Figure 9: Typical geometry of a super-cell (containing here 20.000 atoms) used to compute

the average lattice-parameter for porous Si using the model with hyper-pre-stress.

We notice that interpretation of Raman spectroscopy data (one of the method

used in experiments) needs macroscopic behavior law of the porous material -

partially available in the literature [33]. In this context, the Vegard law over-

estimates the macroscopic elasticities which in turn leads to a underestimate of

the lattice parameter in high range porosity. We notice also that the particular

geometry we have used induces a macroscopic law with cubic symmetry. This is

not the case if one consider only a vertical pore in the super-cell in which case

the macroscopic law will posses transversal isotropy. The actual method answer

also the question of a porosity dependent lattice parameter for nano-porous
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Figure 10: Numerical results for the porosity-dependent vertical induced deformation as a

function of porosity; we interpret the larger lattice-parameter predicted by the model in the

high porosity range as a numerical drawback due to limited computational size.

silicon. For larger systems, as is the case of the macro-porous silicon, the mod-

ification of the average lattice parameter induces by E0 will be insignificant as

bulk behavior dominates the surface effects.

6. Overview and conclusions

In this paper we have investigated two alternative solutions intended to

include an internal length is the discrete model of Keating in order to fit both

(a) the macroscopic elasticity of crystals with diamond-like structure and (b) a

size-dependent lattice parameter (evidenced by Raman spectrosocpy).

The first solution consists in considering successive continuum approxima-

tions of the discrete model. The second-order polynomial approximation of the

dispersion relation near the center of the first Brillouin zone gives the contin-

uum elasticity theory but does not incorporate an internal length. The next
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approximation leads to a second-gradient model which includes several internal

lengths but the model obtained have some intrinsic drawbacks. Starting with

a realistic discrete elastic model that includes pair interactions and three-body

interactions, we compute explicitly all fourth-order material parameters of the

second-gradient theory obtained using polynomial approximation of the acous-

tic branches and show that, in agreement with previously obtained results [1],

the internal length obtained are too small to apply to realistic situations. This

conclusion can be anticipated from the dispersion relations which show almost

linear dependence on the wave number near the Γ point.

The second solution we present includes incompatible reference lengths in

the valence force field model. This is equivalent to a self-equilibrated force

system acting on each atom in the reference configuration. In agreement with

results obtained in the one-dimensional case [2] we show that average lattice

parameter of finite structures deviates from the ideal lattice parameter of an

infinite lattice. We study numerically the size-dependent average lattice param-

eter for stress-free finite beam-like, plate-like and bulk-like nano-structures and

evidence not only a size effect but also a shape effect. In the particular case

of nano-porous silicon, we can fit the material parameters of the model with

hyper-pre-stress so as to fit experimental results obtained in [31]) in the range

of moderate porosities. At very large porosities (> 80%), due to limited size

of our computation, the size-effect of small cross-section beam-like crystallites

dominates the numerical results so that the predicted values diverge from the

measured data. The application of the model with hyper-pre-stress for the pre-

diction of hardening/softening in nano-structures will be discussed in a future

work.
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Appendix - Dispersion relation mod(k2)

We present here the details of the computation leading from (25) to (33).

For convenience, we shall introduce the following notations

P =


0 k1k2 k1k3

k1k2 0 k2k3

k1k3 k2k3 0

 , T =


k21 0 0

0 k22 0

0 0 k23

 , S =


0 k3 k2

k3 0 k1

k2 k1 0

 .

(63)

The block AUU is (mod|k|2) the sum of :

A
∑

j∈NN(i)

Ejj
i =

4A

3
I, (64)

B
∑

{j,k}⊂NN(i)
k 6=j

(Ejj
i +Ekj

i +Ekk
i +Ejk

i ) =
8B

3
I, (65)

B
∑

j∈NN(i)
k∈NN(j)
k 6=i

Ekk
j = 3B

∑
j∈NN(i)

Ejj
i = 4BI, (66)

and mod(k2)

B
∑

j∈NN(i)
k∈NN(j)
k 6=i

Eki
j e

ik·(vj−vk) =
−B
3

(4I − a2k ⊗ k). (67)

The block AUV is (mod|k|2) the sum of

A
∑

j∈NN(i)

Ejj
i e

ik·vj = −4A

3
I + i

aA

3
S + a2

A

24

[
k ⊗ k + S2

]
(68)

B
∑

{j,k}⊂NN(i)
k 6=j

(Ejj
i +Ekj

i )eik·vk = B
∑

{j,k}⊂NN(i)
k 6=j

(Ejk
i +Ekk

i )eik·vj =

= −8B

3
I + i

2aB

3
S + a2

B

12

[
k ⊗ k + S2

]
(69)

and

B
∑

j∈NN(i)
k∈NN(j)
k 6=i

(Ekk
j +Eki

j )eik·vj =
−B
3

(4I − a2k ⊗ k). (70)
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As already noted AV V is identical to AUU where vectors vi are replaced

by −vi. Then, a straightforward computation shows that AV V = AUU so that

finally, the dispersion matrix is (mod|k|2)

A(k) =

 AUU AUV

A?
UV AUU

 (71)

where

AUU =
4

3
(A+ 4B)I +

a2B

3
k ⊗ k (72)

AUV = (A+ 4B)(−4

3
I +

a2

24
k ⊗ k) +

iA

3
(A− 4B)S + (A− 4B)

a2

12
P .(73)

Separation of acoustical and optical branches is performed by changing to

collective variables, i.e. from (U ,V ) to ( 1√
2
(U + V ), 1√

2
(U − V )). This leads

to

A =

 Aaa(k) Aao(k)

A?
ao(k) Aoo(k)

 . (74)

We have

Aaa(k) =
1

12
a2AP +

1

24
a2(A+ 4B)(k · k)I +

1

3
a2BT (75)

Aao(k) =
1

3
a(A− 4B)S (76)

Aoo(k) = (
8

3
(A+ 4B)− 1

24
a2(k · k))I − 1

12
a2(A− 8B)P +

1

3
a3BT(77)

We note that Aaa, Aao and Aoo are respectively O(|k|2), O(|k|), and O(1).

Using relation (32) we are lead to (33).
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