
THE SMALLEST NON-ABELIAN NILPOTENT
QUASIVARIETIES OF MOUFANG LOOPS

VASILE I. URSU

Abstract. This paper describes the smallest non-abelian quasivarieties for

nilpotent Moufang loops.

1. Introduction

The theory of quasivarieties is one of the most important compartments of the

universal algebra. The basis of this theory was set by A.I. Mal’cev ([1], [2], [3],

[4]). The special attention is paid to two important problem: description of the

lattice of quasivarieties of algebras.

The research of these problem in the class of nilpotent Moufang loops is the goal

of this paper.

In this paper we describe all minimal non-abelian quasivarieties for nilpotent

Moufang loops:

- minimal non-associative quasivarieties of commutative Moufang loops;

- minimal non-associative and non-commutative quasivarieties of Moufang A-

loops with one proper minimal non-associative sub-quasivariety of commutative

Moufang loops and one proper minimal non-commutative subquasivariety of groups;

- minimal non-associative and non-commutative quasivarieties of Moufang loops

with the only proper non-commutative subquasivariety of groups;

- minimal non-commutative quasivarieties of groups.

For some of these quasivarieties, examples of non-associative Moufang loops are

constructed. For instance, the smallest non-associative and non-commutative

nilpotent Moufang loop has 16 elements and forms the basis of the algebra of

Cayley-Dixon numbers.
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2. Definitions, preliminary results, observations and notations

We shall use some notions and results from the monograph of R.H. Bruck [5].

The Moufang Loop (ML) is an 〈L, ·,−1 〉 algebra of type 〈2, 1〉 whose operations

and elements satisfy the following identities:

x (y · xz) = (xy · x)z (1)

x−1 · xy = y = yx · x−1 (2)

where by x−1 we denote the result of the unary operation applied to the x element.

We observe that the (2) involves the identity y · (x−1)−1 = yx, which in its turn

involves the identity (x−1)−1 = x, that helps to deduce the identity

x · x−1y = y = yx−1 · x (3)

For a certain x ∈ L element we denote e = x−1 · x. Then, according to the

identities (1)–(3) we will have

ye = x−1 · x (ye) = x−1
[
x · y

(
xx−1

)]
= x−1

[
(xy · x)x−1

]
= x−1 · xy = y

for any y ∈ L. It results that e = y−1 · y and, therefore, e doesn’t depend on the

x element. Then, taking in consideration that (3)

e · y = yy−1 · y = y

for any y ∈ L, it follows that e is a unit element of ML L. Further on ML L will be

studied with the signature 〈.,−1, e〉 made up of three operational symbols, which

will be simply noted as L.

ML is dissociative, in the sense that any of its subloops generated by two ele-

ments is associative (Moufang theorem [5]).

For x, y and z elements from ML L the associator [x, y, z] and the commutator

[x, y] are defined by the equalities [x, y, z]=(x · yz)−1 · (xy · z) and [x, y] =

x−1 · y−1(xy), respectively.

The ML L associant-commutator is the subloop generated in L by all the asso-

ciators and commutators of L and we shall denote it as L′ or [L,L]. The set

Z (L) =
{
x ∈ L

∣∣ [x, y, z] = e, [x, y] = e for any y, z ∈ L
}

is called the ML L center.
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For any H subloop of the L subloop by [H,L] we shall denote the subloop

generated in L by all the elements of type [h, x, y] and [h, x] where h ∈ H, x, y ∈ L.

The H subloop of the ML L is called normal in L if xH = Hx, x · yH = xy ·H
for any x, y ∈ L. It is easy to verify that the associant-commutator L′ and any

subloop of ML L, contained in the center Z (L), are normal in L.

With the help of the induction hypothesis special associant-commutator of the n

multiplicity its defined; x1 is a special associant-commutator of 1 multiplicity; if u

is a special associant of n multiplicity which the includes exactly in variables, then[
u, xin+1

]
,
[
u, xin+1 , xin+2

]
is a special associant-commutator of n+ 1 multiplicity.

ML L is called (central-)nilpotent (NML) of n class or n-nilpotent if for any

values of the variables in L the value of any special associant-commutator of n+ 1

multiplicity is equal to the e ∈ L unity element, but the value of at least one

special associant-commutator of n multiplicity is different from e.

According to [6] in any nilpotent Moufang loop of class 2 the following identities

are true

[x, y, z] = [y, z, x] = [y, x, z]−1 , (4)

[x · y, z, t] = [x, z, t] [y, z, t] , (5)

[xm, y, z] = [x, y, z]m , (6)

[x, y, z]6 = e, (7)

[x · y, z] = [x, z] [y, z] [x, y, z]3 , (8)

and

[xm, y] = [x, y]m , (9)

[x, y] = [y, x]−1 , (10)

because ML is dissociative.
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3. The smallest nilpotent non-abelian quasivarieties of Moufang

loops

The following varieties are defined in the class of all 2-nilpotent Moufang loops:

K1,0,0 = mod{[x, y, z] = e},

K1,p,0 = mod{[x, y, z] = e, [x, y]p = e},

K1,p,pm = mod{[x, y, z] = e, [x, y]p = e, xp
m

= e},

where m = 2, 3, . . . for p = 2 and m = 1, 2, . . . for any prime number p ≥ 3,

K2,0,0 = mod{[x, y, z]2 = e},

K2,2,0 = mod{[x, y, z]2 = e, [x, y]2 = e},

K2,2,2m = mod{[x, y, z]2 = e, [x, y]2 = e, x2
m

= e}, m = 2, 3, . . . ,

K3,0,0 = mod{[x, y, z]3 = e},

K3,1,0 = mod{[x, y, z]3 = e, [x, y] = e},

K3,1,3m = mod{[x, y, z]3 = e}, [x, y] = e, x3
m

= e}, m = 1, 2, . . . ,

K3,3,0 = mod{[x, y, z]3 = e, [x, y]3 = e},

K3,3,3m = mod{[x, y, z]3 = e}, [x, y]3 = e, x3
m

= e}, m = 1, 2, . . .

Denote by < the set of all varieties defined above.

Lemma 1. If a 2-nilpotent Moufang loop N is finite, then there exists such a

variety K ∈ < that F3(K) ∈ qN .

Proof. Since N is nilpotent we can regard N as a p-loop. Let exp(N) = pm. We

consider the following possible cases.

1) N is non-associative and p = 2. In this case m > 1. Then according to

the identity (7) in N the identity (x, y, z)2 = e holds true. For a certain integer

k, 1 ≤ k ≤ m, in N the identity [x, y]2
k

= e also holds. Let F3 = F3(x, y, z) be a

v(N)-free loop of the third rank with free generators x, y, z, and H = lp(a, b, c) be

the subloop of F 4
3 generated by the elements

a = (x, x, e, e), b = (e, y2
k−1

, y, e), c = (e, z2
k−1

, z2
m−1

, z).

Then it becomes obvious that

a2
m

= b2
m

= c2
m

= e, [a, b] = (e, [x, y]2
k−1

, e, e), [a, c] = (e, [x, z]2
k−1

, e, e),
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[b, c] = (e, [y, z]2
2(k−1)

, [y, z]2
m−1

, e), (a, b, c) = (e, (x, y, z)2
2(k−1)

, e, e).

From here it follows that for k = 1 the loop H is non-associative and non-

commutative and the identities

(x1, x2, x3)
2 = e, [x1, x2]

2 = e and H ∈ K2,2,2m

hold and for k > 1 H is a non-commutative group and in it the identity holds true

[x1, x2]
2 = e and H ∈ K1,2,2m .

We will show that any equality relation in H between the elements a, b and c is a

trivial equality. Indeed, let

(aαbβ · cγ) · [a, b]δ[a, c]λ[b, c]µ(a, b, c)ν = e (1)

be such an equality relation in H. Then we have(
xα, (xαy2

k−1β · z2k−1γ) · [x, y]2
k−1δ[x, z]2

k−1λ[y, z]2
2(k−1)µ(x, y, z)2

2(k−1)ν ,

yβz2
k−1γ[y, z]2

k−1µ, zγ
)

= (e, e, e, e),

from where in F3 it results that the equality relations

xα = e, yβ[y, z]2
m−1µ = e, zγ = e, (2)

[x, y]2
k−1δ[x, z]2

k−1λ(x, y, z)2
2(k−1)ν = e, (3)

hold true in the ν(N)-free loop F3. But any equality relation between the free

generators x, y, z is a true identity in F3. That is why the equalities from (2) and

(3) are true identities in F3. But the first and the last identity from (2) are true

in F3 only if

α ≡ 0 mod 2m, γ ≡ 0 mod 2m.

From the second identity of (2), substituting in it z = e, and from identity (3),

substituting in it alternatively z = e, y = e, we obtain

yβ = e, [y, z]2
k−1µ = e, [x, y]2

k−1δ = e, [x, z]2
k−1λ (4)

and

(x, y, z)2
2(k−1)ν = e. (5)

But the identities from (4) are true in F3(x, y, z) only if

β ≡ 0 mod 2m, µ ≡ 0 mod 2, δ ≡ 0 mod 2, λ ≡ 0 mod 2
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and identity (5), when k = 1, holds true in F3(x, y, z) only if ν ≡ 0 mod 2 and

when k > 1 for any positive integer ν. From which we can easily conclude that (1)

is a trivial equality. Therefore, for k = 1 in the variety K2,2,2m , and for k > 1 in

the variety Km
1,2, the loop H has a finite representation formed of three generators

without any equality relation. Hence for k = 1 the loop H is Km
2,2-free of the third

rank and H ∈ q(N).

2) N is non-associative and p = 3. In this case the identity (x, y, z)3 = e holds

true in N . Assume that for a certain integer k, 0 ≤ k ≤ m the identity [x, y]3
k

= e

holds true in N .

If k = 0, then in N the identity [x, y] = e holds true and N is a commutative

Moufang loop. Then the ν(N)-free commutative Moufang loop F3(x, y, z) is free

in any variety of Moufang loops with the exponent 3m. Hence F3(K3,1,3m) ∼=
F3(x, y, z) ∈ q(N).

Let k ≥ 1, F3 = F3(x, y, z) be a ν(N)-free loop of the third rank with free

generators x, y, z, and H = lp(a, b, c) be the subloop generated in F 4
3 by the

elements

a = (x, x, e, e), b = (e, y2
k−1

, y, e), c = (e, z2
k−1

, z2
m−1

, z).

Then, obviously

a3
m

= b3
m

= c3
m

= (e, e, e, e), [a, b] = (e, [x, y]3
k−1

, e, e), [a, c] = (e, [x, z]3
k−1

, e, e),

[b, c] = (e, [y, z]3
2(k−1)

, [y, z]3
k−1

, e), (a, b, c) = (e, (x, y, z)3
2(k−1)

, e, e).

From here it follows that for k = 1 the loop H is non-associative and non-

commutative and the following identities hold true in it

(x1, x2, x3)
3 = e, [x1, x2]

3 = e and H ∈ K3,3,3m ,

and for k > 1 H is a non-commutative group and in it the identities

[x1, x2]
3 = e and H ∈ K1,3,3m .

hold true. By analogy with case 2) we show that for k = 1 the loop H is K3,3,3m-

free of the third rank and for k > 1 the loop H is K1,3,3m-free of the third rank

and H ∈ q(N).

3. N is associative and p is any prime number. Similarly to the previous cases

we can show that if in the group N the identity [x, y]p
k

holds true for a certain

natural number k, 1 ≤ k ≤ m, then for k = 1 we have F3(K1,p,pm) ∈ q(N). �
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Lemma 2. If the 2-nilpotent Moufang loop N, generated by three elements, is

infinite, then there exists such a variety K ∈ < that F3(K) ∈ qN .

Proof. Since the loop N is not finite, then exp(N) = 0. We will consider the

following possible cases.

1) Let N be non-associative, in N the identity (x, y, z)2 = e holds true and

exp(lp([u, v] |u, v ∈ N)) = 2ms, where m is a non-negative integer and 2 does not

divide s.

We will show, first, that m > 0. Indeed, let m = 0. Then, according to

(8) and the identities (x, y, z)2 = e, [x, y]s = e we can deduce e = [x, y, z]s =

[x, y]s[x, z]s(x, y, z)3s = (x, y, z)s. Hence in N the identity (x, y, z)s = e holds true

and, since 2 does not divide s, we conclude that in N the identity (x, y, z) = e is

also true. That is N is associative - a contradiction.

Hence, m ≥ 1. Let F3 = F3(x, y, z) be a ν(N)-free loop of the third rank with

free generators x, y, z, and H = lp(a, b, c) be a subloop generated in F 4
3 by the

elements

a = (x, x, e, e), b = (e, y2
m−1s, y, e), c = (e, z2

m−1s, z2
m−1s, z).

Then, obviously, exp(H) = 0 and the following equalities hold true

[a, b] = (e, [x, y]2
m−1

, e, e), [a, c] = (e, [x, z]2
m−1

, e, e),

[b, c] = (e, [y, z]2
2(m−1)

, [y, z]2
m−1

, e), (a, b, c) = (e, (x, y, z)2
2(m−1)·s2 , e, e).

(6)

From where it results that for m = 1 the loop H is non-associative and non-

commutative and for it the identities (x1, x2, x3)
2 = e, [x1, x2]

2 = e hold true. For

m > 1 H is a non-commutative group and the identity [x1, x2]
2 = e holds true in

it. Therefore, for m = 1 the loop H ∈ K2,2,0, and for m > 1 the loop H ∈ K1,2,0.

We will show now that any equality relation in H between the elements a, b and

c is a trivial equality. Indeed, let

(aαbβ · cγ) · [a, b]δ[a, c]λ[b, c]µ(a, b, c)ν = e (7)

be such an equality relation. Then we have(
xα, (xαy2

m−1s β · z2m−1s γ) · [x, y]2
m−1s δ[x, z]2

m−1s λ[y, z]2
2(m−1)s2µ

(x, y, z)2
2(m−1)s2ν , yβz2

m−1s γ[y, z]2
m−1s µ, zγ

)
= (e, e, e, e). (8)
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Similarly to Lemma 1 we can show the identities

xα = e, yβ = e, zγ = e, (9)

[x, y]2
m−1s δ = e, [x, z]2

m−1s2λ = e, [y, z]2
m−1s2µ = e, (10)

(x, y, z)2
2(m−1)s2ν = e. (11)

Because exp(N) = exp (F3) = 0, the identities from (9) hold true in F3(x, y, z)

only if

α = 0, β = 0, γ = 0.

The identities from (10) are true only if δ ≡ 0 mod (2), λ ≡ 0 mod 2 and µ ≡
0 mod 2 and the identity (11), when m = 1 is true in F3 only if ν ≡ 0 mod 2

and when m > 1 – for any positive integer ν. We can easily conclude that (7)

is a trivial equality. Therefore, for m = 1 in the variety K2,2,0 and for m > 1

in the variety K1,2,0, the Moufang loop H has a finite representation formed of

three generators without any equality relation. Hence, for m = 1 the loop H is

K2,2,0-free of the third rank and for m > 1 the loop H is K1,2,0-free of the third

rank and H ∈ q(N).

2) N is non-associative, the identities (x, y, z)3 = e and exp(lp ([u, v] |u, v ∈
N)) = 3ms, hold true in it, where m is a non-negative integer and 3 does not

divide s. Let m = 0, then we consider the subloop H = lp(a, b, c), generated in

the ν(H)-free loop F3(x, y, z) by the elements a = x, b = ys, c = zs. We can

notice that in the loop F3(x, y, z) the following equalities hold true

(a, b, c) = (x, y, z)s
3

, [a, b] = [x, y]s = e, [a, c] = [x, z]s = e, [b, c] = [y, z]s
2

= e,

which implies that H is a commutative Moufang loop. As exp(H) = 0, it results

that H is a free 2-nilpotent commutative Moufang loop, which is contained in the

variety K3,1,0. Therefore F3(K3,1,0) ∼= H ∈ q(N).

Now assume that m ≥ 1. Let F3 = F3(x, y, z) be a ν(N)-free loop of the third

rank and H = lp(a, b, c) be the subloop generated in F 4
3 by the elements

a = (x, x, e, e), b = (e, y3
m−1s, y, e), c = (e, z3

m−1s, z3
m−1s, z).

Then, obviously, exp(H) = 0 and the following equalities hold true

[a, b] = (e, [x, y]3
m−1s, e, e), [a, c] = (e, [x, z]3

m−1s, e, e),

[b, c] = (e, [y, z]3
(m−1)s2 , [y, z]3

m−1s, e), (a, b, c) = (e, (x, y, z)3
2(m−1)s2 , e, e).
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From here it results that for m = 1 the loop H is non-associative and non-

commutative and the identities (x1, x2, x3)
3 = e, [x1, x2]

3 = e hold true in it,

while for m > 1 H is a non-commutative group and the identity [x1, x2]
3 = e

holds in it. Therefore, for m = 1 the loop H ∈ K3,3,0 and for m = 1 the loop

H ∈ K1,3,0. Then, similarly to case 1) we can show that for k = 1 the loop H is

K3,3,0-free of the third rank and for k > 1 the H is K1,3,0-free of the third rank

and H ∈ q(N).

3) N is non-associative, the identities (x, y, z)3 = e (respectively, (x,y, z)2 = e)

and exp(lp ([u, v] |u, v ∈ N)) = 0 hold true in it. Let F3(x, y, z) be a ν(N)-free loop

with free generators x, y and z. It is clear that F3(x, y, z) ∈ K3,0,0 (respectively,

F3(x, y, z) ∈ K2,0,0).

Let an arbitrary equality relation hold true in the ν(N)-free loop F3(x, y, z)

(xαyβ · yγ) · [x, y]δ[x, z]λ[y, z]µ(x, y, z)ν = e. (12)

This equality relation is the identity true in F3(x, y, z). Then we can easily deduce

that it implies the identities

xα = e, yβ = e, yγ = e, [x, y]δ = e, [x, z]λ = e, [y, z]µ = e, (x, y, z)ν = e,

which are true in F3(x, y, z) only if

α = 0, β = 0, γ = 0, δ = 0, λ = 0, µ = 0, ν ≡ 0mod 3

(respectively ν ≡ 0mod 2)

From here we obtain that (12) is a trivial equality in F3(x, y, z). Therefore,

F3(x, y, z) is a free loop in the variety K3,0,0 (respectively, K2,0,0). From here

it results that F3(x, y, z) ∈ q(N).

4) N is non-associative, the identities (x, y, z)2 = e and (x, y, z)3 = e do not hold

true in it. We consider one of the non-associative subloops N1 = lp (u2 |u ∈ N),

N2 = lp (u3 |u ∈ N). The loops N1 and N2 are non-associative loops from the N .

Because the identity (x, y, z)6 = e holds true in N , then the identities (x, y, z)3 = e

and (x, y, z)2 = e, respectively, hold true in the non-associative loops N1 and N2,

respectively. Thus we obtain one of the situations studied above.

5) N is associative and exp(lp ([u, v] |u, v ∈ N)) = pms, where p is a prime

number and p does not divide s and m ≥ 1. In this case we consider in the

ν(N)-free group F3(x, y, z) the elements a = xs, b = yp
m−1s, c = zp

m−1s and
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H = lp(a, b, c). Then it is obvious that the loop H with exponent zero is non-

commutative and the following equalities hold true

[a, b]p = e, [a, c]p = e, [b, c]p = e.

Then in the non-commutative group H the identity [x, y]p = e is true. Applying

the same reasoning as in 1) or 2) we obtain F3(K1,p,0) ∼= H ∈ q(N).

6) N is associative and exp(lp ([u, v] |u, v ∈ N)) = 0. Similarly to previous cases

we can easily deduce that F3(K1,0,0) ∈ q(N). �

Lemma 3. For any variety K ∈ < the following equalities q(F3(K)) = q(Fω(K)),

q(F3(K)) = q(Fn(K)), n = 4, 5, . . ., hold.

Proof. It is enough to show that for any natural number n the K-free loop Fn(K),

of the finite rank n, belongs to the quasivariety Q. Because F3 ∈ Q, and also for

F1, F2 ∈ Q, we assume that n > 3 and let Fn = Fn(x1, . . . , xn) be a K-free loop

of the rank n with free generators x1, . . . , xn. We will show first that the K-free

loop Fn is approximated by the subloops of the K-free loop F3(x, y, z), i.e. for

any element u 6= e from Fn there exists such a homomorphism ϕ from Fn in F3

that ϕ(u) 6= e. If we admit that it is impossible, then in Fn there exists such an

element u = u(x1, . . . , xn) 6= e that any homomorphism ϕ from Fn in F3 we have

ϕ(u) 6= e. We will represent the element u in its canonic form

u = (xα1
1 , . . . , x

αn
n ) ·

∏
1≤i<j≤n

[xi, xj]
βij

∏
1≤i<j<k≤n

(xi, xj, xk)
γijk ,

where the multiplication of factors from parenthesis is performed in a certain

established order, for instance, from the left to the right. Assume for a certain

i, 1 ≤ i ≤ n that xαi
i 6= e. The mapping xj → e, j ∈ {1, . . . , n}\{i}, xi → x

extends to a homomorphism ψ from Fn in F3. That is why ψ(u) = ψ(xi)
αi = xαi

and in F3 we get the equality xαi = e. But the last expression is a true identity

in the K-free loop Fn(x, y, z), hence in Fn as well. But in this case we came to a

contradiction with xαi
i 6= e. Hence, we can say that xα1

1 = e, . . . , xαn
n = e and

u =
∏

1≤i<j≤n

[xi, xj]
βij

∏
1≤i<j<k≤n

(xi, xj, xk)
γijk .

Assume for a certain pair (i, j), 1 ≤ i < j ≤ n, that [xi, xj]
βij 6= e. The mapping

xk → e, k ∈ {1, . . . , n}\{i, j}, xi → x, xj → y extends to a homomorphism ψ

from Fn in F3. That is why ψ(u) = [ψ(xi), ψ(xj)]
βij = [x, y]βij and we get that
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in F3 the identity [x, y]βij = e holds true. But then this identity also holds true

in Fn, which contradicts the inequality [xi, xj]
βij 6= e. Hence, we can say that∏

1≤i<j≤n
[xi, xj]

βij = e and

u =
∏

1≤i<j<k≤n

(xi, xj, xk)
γijk .

Now assume for a certain triplet (i, j, k), 1 ≤ i < j < k ≤ n that (xi, xj, xk)
γijk .

The mapping xl → e, l ∈ {1, . . . , n}\{i, j, k}, xi → x, xj → y, xk → z extends to

a homomorphism ψ from Fn in F3. That is why ψ(u) = [ψ(xi), ψ(xj), ψ(xk)]
γijk =

[x, y, z]γijk and we get that in F3 the identity [x, y, z]γijk = e holds true. But then

this identity is also true in Fn, which contradicts the inequality [xi, xj, xk]
γijk 6= e.

Then we can say that ∏
1≤i<j<k≤n

[xi, xj, xk]
γijk = e

and u = e. We came to a contradiction with the assumption that u 6= e. From

here we can conclude that the loop Fn is approximated by the subloops of the

loop F3, hence it is included isomorphically in a Cartesian product of subloops of

the loop F3. Therefore, Fn belongs to the quasivariety q(F3) and, hence, Fn also

belongs to the quasivariety Q. �

According the Lemmas 1, 2 and 3 we can formulate the following theorem.

Theorem 1. If Q is a quasivariety that contains a nilpotent non-associative or

non-commutative Moufang loop, then there exists at least one variety K ∈ < so

that Fω(K) ∈ Q.

Corollary 1. For any variety K ∈ < the following statements are true:

a) if q(Fω(K)) contains a non-associative and non-commutative loop H, then

q(H) = q(Fω(K));

b) if q(Fω(K)) contains only commutative Moufang loops (respectively, groups)

and H is a non-associative (respectively, non-commutative) loop from q(H) =

q(Fω(K)).

Remark 1. Since the following inclusions holds true

K3,1,0 ⊂ K3,3,0, K1,3,0 ⊂ K3,3,0, K3,1,3m ⊂ K3,3,3m , m = 1, 2, . . . ,
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then each of the quasivarieties q(Fω(K3,3), q(Fω(Km
3,3)), m = 1, 2, . . . , contains

only two non-abelian subquasivarieties: one formed of commutative Moufang loops

and another formed of groups.

Remark 2. According to identity (5) and (8) internal substitutions of any loop

in K3,0,0 are automorphisms variety. Loops so these varieties are A-loops (see the

research nilpotent A-loops in [7]).

Remark 3. Each of the set {q(Fω(K0,2,2)), q(Fω(K2m,2,2)), m = 2, 3, . . . } cvasi-

variete has only one non-abelian subcvasivariete own being generated free group

of rank 2 of this cvasivariete.

From Theorem 1, Corollar 1 and Remarks 1–3 results the following sentence:

Corollary 2. Cvasivarietaties us all non-abelian minimal of the lattice cvasivari-

etaties of 2-nilpotent Moufang loops are: - minimal non-associative quasivarieties

of commutative Moufang loops

q(Fω(K3,1,0)), q(Fω(K3,1,3m)) (m = 1, 2, . . . );

- minimal non-associative and non-commutative quasivarieties of Moufang A-

loops with one proper minimal non-associative sub-quasivariety of commutative

Moufang loops and one proper minimal non-commutative subquasivariety of groups;

q(Fω(K3,0,0)), q(Fω(K3,3,0)), q(Fω(K3,3,3m)) (m = 1, 2, . . . );

- minimal non-associative and non-commutative quasivarieties of Moufang loops

with the only proper non-commutative subquasivariety of groups

q(Fω(K2,0,0)), q(Fω(K2,2,0)), q(Fω(K2,2,2m)) (m = 2, 3, . . . );

- minimal non-commutative quasivarieties of groups

q(Fω(K1,0,0)), q(Fω(K1,p,0)) (p = 2, 3, . . . ),

q(Fω(K1,2,2m)) (m = 2, 3, . . . ), q(Fω(K1,p,pm)) (p ≥ 3, m = 2, 3, . . . ).

Further, we whole show a few concrete examples of nilpotent Moufang loops.

First, we will prove the following important statement.
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Theorem 2. If the alternative ring K with a unit contains a nilpotent sub-ring R

with index n ≥ 2 (i.e. any product of n factors a1a2 . . . an = 0 for any a1, . . . , an ∈
K), then the set L of all elements of the form 1+x, where x ∈ R, forms a-nilpotent

Moufang loop of class n− 1.

Proof. The equality

(1 + r)(1− r + r2 − . . .+ (−1)n−1rn−1 = 1

where x ∈ R, shows that any element from the set L is reversible and, therefore,

L is a Moufang loop. Let now Rk the set of all linear combinations of all products

of k elements from R. Then fir any x ∈ Rk we have the equality

(1 + x)−1 = 1− x+ x2 − . . .+ (−1)n−1xn−1

or, in brief,

(1 + x)−1 = 1 + x∗, (13)

where x∗ = −x+ x′, x ∈ R2k. Now, if x, y ∈ r and z ∈ Rk, then, according to the

Moufang theorem and the equality (13),

[1 + x, 1 + y, 1 + z] = ((1 + x) · (1 + y)(1 + z))−1 · ((1 + x)(1 + y) · (1 + z)) =

((1 + z)−1(1 + y)−1 · (1 + x)−1) · ((1 + x)(1 + y) · (1 + z)) =

((1 + z∗)(1 + y)−1 · (1 + x)−1) · ((1 + x)(1 + y) · (1 + z)) =

((1 + y)−1(1 + x)−1 + z∗ · (1 + y)−1(1 + x)−1 · ((1 + x)(1 + y) · (1 + z)) =

1 + z + (z∗ · (1 + y)−1(1 + x)−1) · ((1 + x)(1 + y) · (1 + z)) =

1 + z + (z∗ · (1 + y∗)(1 + x∗)) · ((1 + x)(1 + y) · (1 + z)) =

1 + z + (z∗ + z∗ · x∗ + z∗ · y∗(1 + x∗)) · (1 + z + y + x+ xz + yz + xy · z) =

1 + z + z∗ + z∗x∗ + z∗ · y∗(1 + x∗)+

(z∗(1 + x∗ + y8(1 + x∗))) · (z + y + x+ xz + yz + xy · z) =

1 + z − z + z′ + z∗x∗+

z∗ · y∗(1 + x∗) + (z∗(1 + x∗ + y8(1 + x∗))) · (z + y + x+ xz + yz + xy · z) = 1 + z0,

where

z0 = z′+z∗x∗+z∗·y∗(1+x∗)+(z∗(1+x∗+y∗(1+x∗))·(z+y+x+xz+yz+xy·z) ∈ Rk+1.

Hence, we have

[1 + x, 1 + y, 1 + z] = 1 + z0 ∈ 1 +Rk+1. (14)
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Similarly for x ∈ Rk and y ∈ R we can deduce

[1 + x, 1 + y] = (1 + x)−1 · (1 + y)−1 · ((1 + x)(1 + y)) =

(1 + x)−1(1 + (1 + y)−1 · x(1 + y)) =

(1 + x∗)(1 + (1 + y∗) · x(1 + y)) = 1 + x∗ + (1 + x∗) · (1 + y∗)(x+ xy) =

1 + x∗ + (1 + x∗) · (x+ xy + y∗x+ y∗ · xy) =

1− x+ x′ + x+ x∗x+ (1 + x∗)(xy + y∗x+ y∗ · xy) =

1 + x′ + x∗x+ (1 + x∗)(xy + y∗x+ y∗ · xy) = 1 + x0

where

x0 = x′ + x∗x+ (1 + x∗)(xy + y∗x+ y∗ · xy) ∈ Rk + 1.

Hence, we have

[1 + x, 1 + y] = 1 + x0 ∈ 1 +Rk+1. (15)

Now, if x ∈ Rk and y, z ∈ R, then x∗ ∈ Rk and y∗, z∗ ∈ R, which results in

[1 + z∗, 1 + y∗, 1 + x∗] ∈ 1 +Rk+1 and [1 + z∗, 1 + y∗, 1 + x∗]−1 ∈ 1 +Rk+1.

Then, according to (14) and (15), we will have

(1 + x) · (1 + y)(1 + z) = (1 + x∗)−1 · (1 + y∗)−1(1 + z∗)−1 =

((1 + z∗)−1(1 + y∗)−1 · (1 + x∗)−1) =

(((1 + z∗) · (1 + y∗)−1(1 + x∗))[1 + z∗, 1 + y∗, 1 + x∗]) =

[1 + z∗, 1 + y∗, 1 + x∗]−1 ((1 + x∗)−1(1 + y∗)−1 · (1 + z∗)−1) =

[1 + z∗, 1 + y∗, 1 + x∗]−1 ((1 + x)(1 + y) · (1 + z)) = (1 + x)(1 + y) · (1 + z)

[1 + z∗, 1 + y∗, 1 + x∗v]−1 [[1 + z∗, 1 + y∗, 1 + x∗]−1, (1 + x) · (1 + y)(1 + z)]

∈ (1 + x)(1 + y) · (1 + z)(1 +Rk+1),

which shows that the associator

[1 + x, 1 + y, 1 + z] ∈ 1 +Rk+1. (16)

Now, taking into account (15) and (16), it is not difficult to deduce that all

associator-commutators of multiplicity n − 1 of the elements from Moufang loop

L are equal tj the unit, which wqs required. �

Example 1. Let R be an alternative n-nilpotent ring and Z the ring of integers.

On the set K = R× Z we define operations +” and ·” as follows:

(a, k) + (b, l) = (a+ b, k + l),

(a, k) · (b, l) = (a · b+ la+ kb, k · l),
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where (a, k), (b, l) ∈ K. It is easy to see that K together with operations defined

is an alternative ring with the unit l = (0, 1) and the set L′ of all elements of the

form (a, 0) is a subring K isomorphic to R. From here, due to Theorem 2, the

set L = e + L′ forms an (n − 1)-nilpotent Moufang loop. In Particular, if n = 3

and the ring R has characteristic 3, then L is a 2-nilpotent Moufang loop with

exponent 3.

Example 2. The basis of Cayley-Dixon algebra K [4], over the field of real num-

bers R, consists of the elements e1 = 1, e2 = i, e3 = j, e4 = k, e5 = e, e6 =

ie, e7 = je, e8 = ke the first of which is a unit for algebra K and the following

four form the basis of the sub-algebra of quaternions that are multiplied by the

others in accordince with the relations:

i2 = j2 = k2 = e2 = −1,

ij = −ji = k, jk = −kj = i, ki = −ik = j,

eq = qe, p · qe = qp · e, pe · q = pq, pe · qe = −qp,

(17)

where q = −q, p, q ∈ {i, j, k}.
The Cayley numbers K are multiplied according to the distributive laws and

relations (17), it is easy to verify that

[ei, ej] = 1 or [ei, ej] = −1, [ei, ej, ek] = 1 or [ei, ej, ek] = −1. (18)

From (17) and (18) we can see that the subsets

L = {±1, ±i, ±j, ±k, ±e, ±ie, ±je, ±ke},

L = R ∪Ri ∪Rj ∪Re ∪Rie ∪Rje ∪Rke (R = R \ {0})

with respect yo the multiplication are Moufang loops with the associators and

commutators equal to 1 or −1, hence, they belong to the center of this loop.

therefore, Moufang loops L and L are non-associative, non-commutative and 2-

nilpotent. It is easy to verify that the exponent of L is 4 and the exponent of L is

infinite and in both loops the following identities hold

(x, y, z)2 = 1, [x, y]2 = 1.

Therefore, L ∈ K2,2,22 and L ∈ K2,2,0.
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Example 3. In the ring of all square matrices of order n ≥ 3 over the Cayley-

Dixon algebra we study the set of all matrices of the form E + A · q, where E is

the unit matrix of order n, q is the Cayley number and A is an upper triangular

(respectively, lower triangular) matrix of order n that have the unit on the main

diagonal and the other elements, above it respectively, below it) are real numbers

the totality of these matrices A forms a (n − 1)-nilpotent group (see [8]). Using

direct calculations we can see that for any elements E +Ap, E +Bq, E +Cr ∈ L
the following relations hold

[E + Ap, E +Bq, E + Cr] = [Ap, Bq, Cr] = [A,B,C][p, q, r] = ±E.

From here we can deduce

[[E + A1p1, E + A2p2, E + A3p3], E + A4p4, E + A5p5] =

[[A1p1, A2p2, A3p3], A4p4, A5p5] = [±E,A4p4, A5p5] =

[E,A4, A5][±1, p4, p5] = E,

[[E + A1p1, E + A2p2, E + A3p3], E + A4p4] =

[[A1p1, A2p2, A3p3], A4p4] = [±E,A4p4] = [E,A4][±1, p4] = E,

[[E + A1p1, E + A2p2], E + A3p3, E + A4p4] =

[[A1p1, A2p2], A3p3, A4p4] = [[A1, A2][p1, p2], A3, A4] =

[±[A1, A2], A3p3, A4p4] = [[A1, A2], A3, A4][±1, p3, p4] = ±E,

[[. . . [[E + A1p1, E + A2p2], E + A3p3], . . . ], E + Anpn] =

[. . . [[A1p1, A2p2], A3p3], . . . ], Anpn] = E.

Therefore, we can conclude that the set L forms a relation with the multiplication

by a (n− 1)-nilpotent Moufang loop. in particular, if n = 3 the Moufang loop L

is 2-nilpotent, i.e. all commutators of the loop belong to the center. The center of

loop L consists of all matrices on whose main diagonal there is a unit, in its upper

respectively, lower) corner there is a real number and its other elements are equal

to zero. from here we can easy understand that any element from the center that is

different from a unit is not a finite order. in particular, any non-trivial commutator

has a finite order. Therefore, the non-associative and non-commutative Moufang

loop L belongs to the variety K2,0,0.
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