

INSTITUTUL DE MATEMATICA "SIMION STOILOW" AL ACADEMIEI ROMANE

PREPRINT SERIES OF THE INSTITUTE OF MATHEMATICS OF THE ROMANIAN ACADEMY

ISSN 0250 3638

The Osofsky-Smith theorem for modular lattices and applications (II)

by Toma Albu Preprint nr. 2/2012

BUCURESTI

The Osofsky-Smith theorem for modular lattices and applications (II)

by Toma Albu Preprint nr. 2/2012

October, 2012

Toma Albu E-mail: Toma.Albu@imar.ro

THE OSOFSKY-SMITH THEOREM FOR MODULAR LATTICES, AND APPLICATIONS (II)

TOMA ALBU Simion Stoilow Institute of Mathematics of the Romanian Academy, Research Unit 5, P.O. Box 1 - 764 RO - 010145 Bucharest 1, ROMANIA *e-mail*: Toma.Albu@imar.ro

October 10, 2012

Abstract

This is the second part of the paper with the same title published in *Communications* in Algebra **39** (2011), 4488-4506. It contains applications of the Latticial Osofsky-Smith Theorem to Grothendieck categories and module categories equipped with a torsion theory. Various many different meanings spread in the literature of the relative concepts with respect to a hereditary torsion theory τ on Mod-*R* like τ -essential submodule, τ complement submodule, τ -CS module, etc. are also discussed.

2010 Mathematics Subject Classification: 06C05, 06B35, 16S90, 18E15.

Key words: The Latticial Osofsky-Smith Theorem, The Categorical Osofsky-Smith Theorem, The Relative Osofsky-Smith Theorem, Grothendieck category, finitely generated object, locally finitely generated category, torsion theory, τ -CS module, τ -compact module, τ -compactly generated module, τ -finitely generated module.

4 Applications to Grothendieck categories

In this section we apply the lattice-theoretical results established in the previous sections to Grothendieck categories.

Throughout this section \mathcal{G} will denote a fixed *Grothendieck category*, that is, an Abelian category with exact direct limits and with a generator. For any object $X \in \mathcal{G}$, $\mathcal{L}(X)$ will denote the lattice of all subobjects of X. It is well-known that $\mathcal{L}(X)$ is an upper continuous modular lattice (see e.g., Stenström [31, Chapter 4, Proposition 5.3, and Chapter 5, Section 1]). For any subobjects Y and Z of X we denote by $Y \cap Z$ their meet and by Y + Z their join in the lattice $\mathcal{L}(X)$.

Recall that an object $X \in \mathcal{G}$ is said to be *finitely generated* if the lattice $\mathcal{L}(X)$ is compact. The category \mathcal{G} is called *locally finitely generated* if it has a family of finitely generated generators, or equivalently if the lattices $\mathcal{L}(X)$ are compactly generated for all objects X of \mathcal{G} (see Stenström [31, p. 122]). We say that an object $X \in \mathcal{G}$ is *locally finitely generated* if the lattice $\mathcal{L}(X)$ of all its subobjects is compactly generated. Observe that unlike the category Mod-R whose objects are all locally finitely generated, a quotient category Mod-R/T of Mod-R modulo a localizing subcategory T may not have this property. Indeed let R be an infinite direct product of copies of a field and let \mathcal{L} the localizing subcategory of Mod-R consisting of all semi-Artinian R-modules. Then, as observed in Albu [1, Remark 1.4(1)], the quotient category $C_0 := \text{Mod-}R/\mathcal{L}$ has no simple object, in particular it has no nonzero finitely generated object because any nonzero finitely generated object must have maximal proper subobjects, so at least a simple factor object. Observe also that for any nonzero object X of C_0 , the lattice $\mathcal{L}(X)$ is not compactly generated.

For all undefined notation and terminology on Abelian categories the reader is referred to Albu and Năstăsescu [8] and/or Stenström [31].

For any object $X \in \mathcal{G}$, we denote

 $C(X) := C(\mathcal{L}(X)) =$ the set of all *closed* elements of $\mathcal{L}(X)$,

 $D(X) := D(\mathcal{L}(X)) =$ the set of all *complement* elements of $\mathcal{L}(X)$.

If \mathbb{P} is any property on lattices, we say that an object $X \in \mathcal{G}$ is/has \mathbb{P} if the lattice $\mathcal{L}(X)$ is/has \mathbb{P} . Similarly, a subobject Y of an object $X \in \mathcal{G}$ is/has \mathbb{P} if the element Y of the lattice $\mathcal{L}(X)$ is/has \mathbb{P} . Thus, we obtain the concepts of an *uniform* object, *compact* object, CC object, *completely CC* object, CEK object, *pseudo-complement* subobject of an object, *essential* subobject of an object, *closed* subobject of an object, *complement* subobject of an object, *irreducible subobject* of an object, *essentially compact* subobject of an object, etc. For a complement (resp. compact) subobject of an object $X \in \mathcal{G}$ one uses the well-established term of a *direct summand* (resp. *finitely generated*) subobject of X, and for this reason instead of saying that X is a CC object we will say that X is a CS object (acronym for *C*losed subobjects are direct *Summands*). For the same reason, instead of using the term of essentially compact subobject (resp. CEK object) we will use the term of *essentially finitely generated* subobject (resp. *CEF* object).

If we specialize Lemma 2.1 (this means Lemma 2.1 from the first part Albu [4] of this paper) for $L = \mathcal{L}(X)$, we obtain at once

Lemma 4.1. Let X be a finitely generated, locally finitely generated object of a Grothendieck category \mathcal{G} . Assume that all finitely generated subfactors Z/Y of $X, Y \subseteq Z \subseteq X$, are CEF, i.e., every $U \in C(Z/Y)$ is an essentially finitely generated subobject of Z/Y. Then X satisfies the ACC on direct summands, i.e., the poset D(X) of all direct summands of X is Noetherian.

By Lemma 4.1, or applying Theorem 3.4 to the lattice $L = \mathcal{L}(X)$, we deduce immediately:

Theorem 4.2. (THE CATEGORICAL OSOFSKY-SMITH THEOREM). Let \mathcal{G} be a Grothendieck category, and let $X \in \mathcal{G}$ be a finitely generated, locally finitely generated object such that every finitely generated subfactor object of X is CS. Then X is a finite direct sum of uniform objects.

Remarks 4.3. (1) It is not clear whether the hypothesis "X is a locally finitely generated object of \mathcal{G} " in both Lemma 4.1 and Theorem 4.2 can be removed. In fact, according to Remarks 2.2 (2), only the following property

If $Z \subseteq Y \subseteq X$ are such that such that Y/Z is finitely generated then $\exists U \subseteq X$ such that U is finitely generated and Y = Z + U,

implied by this hypothesis is used in their proofs.

(2) In Albu and Van Den Berg [10, Proposition 5], a triangular 2×2 -matrix ring S is constructed and a hereditary torsion theory $\tau = (\mathcal{T}, \mathcal{F})$ on Mod-S is considered, having the following two properties:

- the quotient category $\mathcal{C} := \text{Mod}-S/\mathcal{T}$ has only one simple object;
- the canonical image U of the module S_S in the quotient category \mathcal{C} has only one nonzero finitely generated subobject.

It follows that the lattice $\mathcal{L}(U)$ of all subobjects of U is not compactly generated, in other words, U is not locally finitely generated, and consequently the Grothendieck category \mathcal{C} is not locally finitely generated.

Following Dung [20], a right *R*-module *M* is said to be *CF* if every closed submodule of *M* is finitely generated, and *completely CF* provided every quotient of *M* is also CF. Similarly, an object *X* of a Grothendieck category \mathcal{G} is called *CF* (acronym for *C*losed are *F*initely generated) if every closed subobject of *X* is finitely generated, and *completely CF* if every quotient object of *X* is CF. Clearly, any CF object of \mathcal{G} is CEF, therefore, using Lemma 3.1 specialized for the lattice $L = \mathcal{L}(X)$, the next result is a particular case of Lemma 4.1.

Corollary 4.4. Let X be a finitely generated, locally finitely generated object of a Grothendieck category \mathcal{G} such that every finitely generated subobject of X is completely CF. Then X is a finite direct sum of indecomposable subobjects.

Remark 4.5. Corollary 4.4 is the categorical counterpart of the module-theoretical result Dung [20, Theorem 2.5], which in turn, can be viewed as a generalization of the Osofsky-Smith Theorem. \Box

More generally, we say that a lattice L is CK (acronym for Closed are Kompact) if every closed element of L is compact, i.e., $C(L) \subseteq K(L)$. Clearly, any CK lattice is also CEK, so the following result, which is a latticial version of Corollary 4.4, is an immediate consequence of Lemmas 2.1 and 3.1:

Proposition 4.6. Let L be a compact, compactly generated, modular lattice. Assume that all compact subfactors of L are CK. Then D(L) is a Noetherian poset, in particular 1 is a finite direct join of indecomposable elements of L.

Denote by \mathcal{H} the class of all finitely generated objects of \mathcal{G} , and let \mathcal{A} be a subclass of \mathcal{H} satisfying the following three conditions:

(A₁) If $X \in \mathcal{A}, X' \in \mathcal{G}$ and $X \simeq X'$ then $X' \in \mathcal{A}$.

- (A_2) If $X \in \mathcal{A}$ then $X/X' \in \mathcal{A}, \forall X' \subseteq X$.
- (A₃) If $X \in \mathcal{A}$ and $Z \subseteq Y \subseteq X$ with $Y/Z \in \mathcal{A}$, then $\exists U \subseteq X$ such that $U \in \mathcal{A}$ and Y = Z + U.

As we have noticed above, the class \mathcal{H} could be empty, and in this case everything that follows makes no sense.

Similarly with the latticial case, we say that an object $X \in \mathcal{G}$ is essentially \mathcal{A} if there exists an essential subobject Y of X with $Y \in \mathcal{A}$. Further, X is called $CE\mathcal{A}$ if any closed subobject of X is essentially \mathcal{A} .

Lemma 4.7. Let \mathcal{A} be a class of finitely generated objects of a Grothendieck category \mathcal{G} satisfying the conditions $(A_1) - (A_3)$ above, and let $X \in \mathcal{A}$. Assume that all subfactors of X are CE \mathcal{A} . Then D(X) is a Noetherian poset.

Proof. Apply Lemma 3.6 to the lattice $L = \mathcal{L}(X)$.

By Lemma 4.7 or applying Theorem 3.7 to the lattice $L = \mathcal{L}(X)$ we deduce immediately:

Theorem 4.8. (THE CATEGORICAL \mathcal{A} -OSOFSKY-SMITH THEOREM). Let \mathcal{A} be a class of finitely generated objects of a Grothendieck category \mathcal{G} satisfying the conditions $(A_1) - (A_3)$ above, and let $X \in \mathcal{A}$. Assume that all subfactors of X in \mathcal{A} are CS. Then X is a finite direct sum of uniform objects of \mathcal{G} .

An *A*-version of Corollary 4.4, which is an easy consequence of Proposition 4.6, also holds:

Corollary 4.9. Let \mathcal{A} be a class of finitely generated objects of a Grothendieck category \mathcal{G} satisfying the conditions $(A_1) - (A_3)$ above, and let $X \in \mathcal{A}$. Assume that every finitely generated subobject of X in \mathcal{A} is completely CF. Then X is a finite direct sum of indecomposable subobjects.

We are now going to present a consequence, involving injective objects, of the Categorical Osofsky-Smith Theorem. Note that because we did not have handy a good latticial substitute of the concept of an injective object in a category we could not obtain in Albu [4] such a result for lattices. However, using the concept of a linear morphism of lattices recently introduced by Albu and Iosif [5], we expect to provide a consequence, involving injective lattices, of the Latticial Osofsky-Smith Theorem.

Recall that for any Grothendieck category one can define as in Mod-R the concepts of an *M*-injective object, self-injective object, and semi-simple object (see, e.g., Albu and Năstăsescu [8, p. 9]). For any object X of a Grothendieck category we denote by E(X) its injective hull.

Lemma 4.10. Let \mathcal{A} be an arbitrary Abelian category, $A, B \in \mathcal{A}$, and $u, v \in \text{Hom}_{\mathcal{A}}(A, B)$. Then

$$\operatorname{Im}\left(u+v\right)\subseteq\operatorname{Im}\left(u\right)+\operatorname{Im}\left(v\right).$$

Proof. Consider the diagram:

$$A \xrightarrow{\Delta} A \times A \xrightarrow{f} B,$$

where Δ is the diagonal morphism, and f denotes the morphism (u, v) determined by the two morphisms $u, v : A \longrightarrow B$. Then, by Mitchell [27, Lemma 18.3, Chap. I], we have

$$u + v = f \circ \Delta.$$

Clearly $\operatorname{Im}(u+v) = \operatorname{Im}(f \circ \Delta) \subseteq \operatorname{Im}(f)$.

Next, in order to calculate Im (f), we write $A \times A = A \oplus A$ as $A \oplus A = (A \oplus 0) + (0 \oplus A)$, and use Mitchell [27, Proposition 11.2, Chap. I] to deduce that

$$\operatorname{Im}(f) = f(A \oplus A) = f((A \oplus 0) + (0 \oplus A)) = f(A \oplus 0) + f(0 \oplus A) = u(A) + v(A) = \operatorname{Im}(u) + \operatorname{Im}(v).$$

The next result is the categorical version of Albu and Năstăsescu [8, Proposition 2.5].

Proposition 4.11. Let \mathcal{A} be an Abelian category, and let $U, M \in \mathcal{A}$. Assume that U has an injective hull E(U) in \mathcal{A} (this holds always when \mathcal{A} is a Grothendieck category). Then, the following two assertions are equivalent.

- (1) U is M-injective.
- (2) $\operatorname{Im}(f) \subseteq U, \forall f \in \operatorname{Hom}(M, E(U)).$

In particular, U is self-injective \iff Im $(f) \subseteq U, \forall f \in$ End(E(U)).

Proof. $(2) \implies (1)$: This implication is exactly as for modules, cf. Albu and Năstăsescu [8, Proposition 2.5].

(1) \implies (2): Of course, we may assume that both U and M are non-zero. We adapt the proof in the module case by avoiding the use of elements. Let $f \in \text{Hom}(M, E(U))$, and set $X := f^{-1}(U)$. Then $X \subseteq M$. Let $f_1 := f|X$. Since U is M-injective, there exists a morphism g making commutative the following diagram:

where j and i are the canonical injections. Observe that $\operatorname{Ker}(f - ig) = X$.

We claim that X = M, which will imply that $\operatorname{Im}(f) \subseteq U$, as desired. Assume that $X \neq M$. Then $(f - ig)(N) \neq 0$ for some $N \subseteq M$ with $N \not\subseteq X$. Since the extension $U \subseteq E(U)$ is essential, it follows that $(f - ig)(N) \cap U \neq 0$. For simplicity, set

$$\alpha := f - ig, \ V := \alpha(N) \cap U, \ Y := \alpha^{-1}(V).$$

Since $Y = \alpha^{-1}(V) = (f - ig)^{-1}(V)$, we have $(f - ig)(Y) \subseteq V \subseteq U$, so

 $f(Y) = ((f - ig) + ig)(Y) \subseteq (f - ig)(Y) + (ig)(Y) \subseteq U + U = U$

in view of Lemma 4.10. Thus $f(Y) \subseteq U$, and then $Y \subseteq f^{-1}(U) = X$. We deduce that $\alpha(Y) \subseteq \alpha(X) = 0$.

On the other hand, we claim that $\alpha(Y) \neq 0$, which will produce a contradiction. Indeed, denote by $\beta : N \twoheadrightarrow \alpha(N)$ the canonical epimorphism induced by α . Since $V \subseteq \alpha(N)$, let $Z := \beta^{-1}(V)$. Then, by Mitchell [27, Corollary 16.3, Chap. I] applied to the pullback diagram

$$\begin{array}{cccc} Z & \stackrel{\gamma}{\longrightarrow} & V \\ \downarrow & & \downarrow \\ N & \stackrel{\beta}{\longrightarrow} \alpha(N) \end{array}$$

where γ is the canonical epimorphism induced by α and the vertical arrows are the canonical injections, one deduces that γ is an epimorphism, so $\gamma(Z) = V$. On the other hand, clearly $Z \neq 0$ because $0 \neq V = \gamma(Z)$, so $0 \neq Z = \beta^{-1}(V) \subseteq \alpha^{-1}(V) = Y$, and then necessarily $0 \neq V = \gamma(Z) = \alpha(Z) \subseteq \alpha(Y)$, as claimed. Consequently, our assumption that $X \neq M$ fails, and then X = M, which finishes the proof.

Lemma 4.12. If X is a self-injective object of a Grothendieck category and $E(X) = E_1 \oplus E_2$, then $X = (X \cap E_1) \oplus (X \cap E_2)$.

Proof. Clearly $(X \cap E_1) + (X \cap E_2) \subseteq X$. Denote by i_1, i_2, p_1, p_2 the canonical injections and projections defining the direct sum $E(X) = E_1 \oplus E_2$, and by $i : X \hookrightarrow E(X)$ the canonical inclusion morphism. Then

$$1_{E(X)} = i_1 p_1 + i_2 p_2.$$

For k = 1, 2, the morphism $g_k := i_k p_k i$ can be extended to an endomorphism f_k of E(X). By Proposition 4.11, $f_k(X) = i_k p_k(X) \subseteq X \cap E_k$, so

$$X = 1_{E(X)}(X) = (i_1 p_1 + i_2 p_2)(X) \subseteq (X \cap E_1) + (X \cap E_2),$$

by Lemma 4.10.

Lemma 4.13. Any self-injective object of a Grothendieck category \mathcal{G} is a CS object.

Proof. Let X be a self-injective object of \mathcal{G} , and let $Y \subseteq X$. Consider a pseudo-complement Z of Y in X. Then $Y \oplus Z$ is an essential subobject of X because this happens in any upper continuous modular lattice by Stenström [31, Proposition 6.4, p. 75], so in particular in the lattice $\mathcal{L}(X)$ of all subobjects of X. By taking injective hulls, we deduce that

$$E(X) = E(Y) \oplus E(Z).$$

By Lemma 4.12, we have

$$X = (X \cap E(Y)) \oplus (X \cap E(Z),$$

which implies that Y is an essential subobject of the direct summand $X \cap E(Y)$ of X, i.e., X is a CS object, as desired.

The next result, a categorical counterpart of Osofsky and Smith [29, Corollary 2] and Dung, Huynh, Smith, and Wisbauer [21, Corollary 7.14], is more general than Crivei, Năstăsescu Torrecillas [16, Corollary 2.9]:

Proposition 4.14. The following assertions are equivalent for a locally finitely generated object X of a Grothendieck category \mathcal{G} .

- (1) X is semi-simple.
- (2) Every finitely generated subfactor of X is X-injective.

Proof. (1) \implies (2): If X is semi-simple then so is any subfactor of X, which is clearly X-injective.

 $(2) \Longrightarrow (1)$: Let V = Y/Z, $Z \subseteq Y \subseteq X$, be a finitely generated subfactor of X. Then V is X-injective by hypothesis. It follows that V is X/Z-injective, and so, also Y/Z-injective by the well known properties of X-injective objects (see, e.g., Albu and Năstăsescu [8, Proposition 1.11]). Thus, V is self-injective, and consequently CS by Lemma 4.13.

Now let F be a finitely generated subobject of X. By the Categorical Osofsky-Smith Theorem, F is a finite direct sum of uniform objects. Let U be a uniform direct summand of F. Then, by hypothesis, any finitely generated subobject U' of U is X-injective, so it is a direct summand of X. Clearly U' is also a direct summand of the uniform object U. It follows that either U' = 0 or U' = U. On the other hand, because X has been supposed to be locally finitely generated, for any $0 \neq W \subseteq U$, W is the sum of all its nonzero finitely generated subobjects, all of them being equal to U. Thus, U is a simple object of \mathcal{G} , and consequently F is a semi-simple object of \mathcal{G} . Using again the fact that X is locally finitely generated, we conclude that X is a sum of simple objects, i.e., is semi-simple. \Box

Remark 4.15. Our proof of Proposition 4.14 has used essentially the hypothesis that the object X is locally finitely generated. The result fails for objects that are not locally finitely generated. Indeed, let C_0 be the Grothendieck category considered at the beginning of this section. We have seen that there are no nonzero finitely generated objects in C_0 , so assertion (2) of Proposition 4.14 is vacuously satisfied for any nonzero object X of C_0 , but X is not semi-simple.

Recall that an object Q of \mathcal{G} is called *completely injective* if every quotient object of Q is injective, and the category \mathcal{G} is said to be *semi-simple* or *discrete spectral* if every its object is semi-simple.

Corollary 4.16. (Crivei, Năstăsescu, and Torrecillas [16, Theorem 2.10]). Let \mathcal{G} be a Grothendieck category having a family of completely injective finitely generated generators. Then \mathcal{G} is semi-simple.

Proof. Let X be an arbitrary object of \mathcal{G} . Then X is the sum of all its finitely generated subobjects because \mathcal{G} is locally finitely generated. In order to show that X is semi-simple, it is sufficient to prove that so is any finitely generated subobject of X. Consequently, without loss of generality, we may as assume that X is finitely generated. Then X is an epimorphic image of a direct sum of finitely many completely injective generators of \mathcal{G} , so it is itself completely injective by Crivei, Năstăsescu, Torrecillas [16, Proposition 2.2]. Therefore, any finitely generated subfactor of X is injective, and a fortiori X-injective. Apply now Proposition 4.14 to conclude that X is semi-simple.

Remark 4.17. A nice result due to Okado [28] states that a unital ring R is right Noetherian if and only if every CS right R-module can be expressed as a direct sum of indecomposable (or uniform) modules. We guess that the following categorical version of Okado's Theorem holds:

A Grothendieck category \mathcal{G} is locally Noetherian (this means that \mathcal{G} has a set of Noetherian generators) if and only if every CS object of \mathcal{G} can be expressed as a direct sum of indecomposable (or uniform) objects.

We end this section by referring to some statements related to the Categorical Osofsky-Smith Theorem from Osofsky and Smith [29] and Crivei, Năstăsescu, and Torrecillas [16], that seem not to be in order.

First of all, Osofsky and Smith claim in the introduction of their paper [29] that the proof of their main theorem also works in any Abelian category C having arbitrary direct sums and exact direct limits (i.e., satisfying the Grothendieck's AB5 condition) and any class \mathcal{A} of finitely generated objects of C having the following two properties:

- (A'_1) If $X \in \mathcal{A}$ then $X' \in \mathcal{A}$ for any direct summand X' of X.
- (A'_2) If $X \in \mathcal{A}$ and $Z \subseteq Y \subseteq X$ with $Y/Z \in \mathcal{A}$ is a direct summand of X/Z, then $\exists U \subseteq X$ such that $U \in \mathcal{A}$ and Y = Z + U.

Note that though in Crivei, Năstăsescu, and Torrecillas [16] it is claimed that their [16, Theorem 2.7] can be proved in the same manner as in the module case, there are some parts of the original proof in Osofsky and Smith [29] that cannot be transferred mutatis-mutandis to Grothendieck categories; in particular, [16, Corollary 2.8], which is a consequence [16, Theorem 2.7], is not true in case the considered object M is not locally finitely generated, as this has been pointed out in Remark 4.15.

A thorough analysis of the proof of the Latticial Osofsky-Smith Theorem specialized to the lattice $\mathcal{L}(X)$ of all subobjects of an object X of a Grothendieck category \mathcal{G} suggests us to assert that the Osofsky and Smith's conditions (A'_1) and (A'_2) are not sufficient to prove the Categorical \mathcal{A} -Osofsky-Smith Theorem (Theorem 4.8) for \mathcal{G} ; they should be replaced by our conditions $(A_1) - (A_3)$ presented above just after Proposition 4.6. Unfortunately we do not have handy an example of such a class \mathcal{A} of finitely generated objects of \mathcal{G} satisfying the conditions (A'_1) and (A'_2) above for which the Categorical \mathcal{A} -Osofsky-Smith Theorem fails.

5 Applications to module categories equipped with a hereditary torsion theory

In this section we present the relative version with respect to a hereditary torsion theory of the module-theoretical Osofsky-Smith Theorem [29], as well as some of its consequences. Their proofs are easy applications of the corresponding lattice-theoretical results of sections 1-3.

Throughout this section R denotes an associative ring with nonzero identity, Mod-R the category of all unital right R-modules, $\tau = (\mathcal{T}, \mathcal{F})$ a fixed hereditary torsion theory on Mod-R, and $\tau(M)$ the τ -torsion submodule of a right R-module M.

We shall use the notation M_R to emphasize that M is a right R-module. For any M_R we denote $\operatorname{Sat}_{\tau}(M) := \{N \mid N \leq M, M/N \in \mathcal{F}\}$, and for any $N \leq M$ we denote by $\overline{N} := \bigcap \{C \mid N \leq C \leq M, M/C \in \mathcal{F}\}$ the τ -saturation of N in M; N is called τ -saturated if $N = \overline{N}$. Note that $\overline{N}/N = \tau(M/N)$ and

$$\operatorname{Sat}_{\tau}(M) = \{ N \mid N \leqslant M, N = \overline{N} \},\$$

so $\operatorname{Sat}_{\tau}(M)$ is the set of all τ -saturated submodules of M, which explains the notation. It is known that $\operatorname{Sat}_{\tau}(M)$ is an upper continuous modular lattice for any M_R (see Stenström [31, Chapter 9, Proposition 4.1]).

For all undefined notation and terminology on torsion theories the reader is referred to Albu and Năstăsescu [8], Golan [23], and/or Stenström [31].

We say that a module M_R is τ -CC (or τ -extending) if the lattice $\operatorname{Sat}_{\tau}(M)$ is CC (or extending). More generally, if \mathbb{P} is any property on lattices, we say that a module M_R is/has τ - \mathbb{P} if the lattice $\operatorname{Sat}_{\tau}(M)$ is/has \mathbb{P} . Since the lattices $\operatorname{Sat}_{\tau}(M)$ and $\operatorname{Sat}_{\tau}(M/\tau(M))$ are canonically isomorphic, we deduce that M_R is τ - \mathbb{P} if and only if $M/\tau(M)$ is τ - \mathbb{P} . Thus, we obtain the concepts of a τ -Artinian module, τ -Noetherian module, τ -uniform module, τ -compact module, τ -compactly generated module, τ -CEK module, etc. We say that a submodule N of M_R is/has τ - \mathbb{P} if its τ -saturation \overline{N} , which is an element of $\operatorname{Sat}_{\tau}(M)$, is/has \mathbb{P} . Thus, we obtain the concepts of a τ -pseudo-complement submodule of a module, τ -complement submodule of a module, τ -essential submodule of a module, τ -closed submodule of a module, τ -essentially compact submodule of a module, etc. Since $\overline{N} = \overline{\overline{N}}$, it follows that N is/has τ - \mathbb{P} if and only if \overline{N} is/has τ - \mathbb{P} . In the sequel we shall use the well-established term of a τ -CC module (resp. τ -direct summand of a module) instead of that of a τ -CC module (resp. τ -complement submodule of a module).

For any module M_R we denote

 $C_{\tau}(M) = C(\operatorname{Sat}_{\tau}(M)) =$ the set of all closed elements of the lattice $\operatorname{Sat}_{\tau}(M)$,

 $D_{\tau}(M) = D(\operatorname{Sat}_{\tau}(M)) =$ the set of all complement elements of the lattice $\operatorname{Sat}_{\tau}(M)$, $K_{\tau}(M) = K(\operatorname{Sat}_{\tau}(M)) =$ the set of all τ -compact elements of $\operatorname{Sat}_{\tau}(M)$.

We denote by Mod- R/\mathcal{T} the quotient category of Mod-R by its localizing subcategory \mathcal{T} and by T_{τ} the canonical functor Mod- $R \longrightarrow \text{Mod-}R/\mathcal{T}$. Note that Mod- R/\mathcal{T} is a

Grothendieck category, and actually, any Grothendieck category is equivalent to such a category in view of the renown *Gabriel-Popescu Theorem* (see, e.g., Stenström [31, Chapter 10, Theorem 1.6]). Moreover, for any M_R , the map

$$\operatorname{Sat}_{\tau}(M) \longrightarrow \mathcal{L}(T_{\tau}(M)), \ N \mapsto T_{\tau}(N),$$

is an isomorphism of lattices by Albu and Năstăsescu [8, Proposition 7.10]; so, for any property on lattices \mathbb{P} , the module M_R is/has $\tau - \mathbb{P}$ if and only if the object $T_{\tau}(M)$ in the quotient Grothendieck category Mod- R/\mathcal{T} is/has \mathbb{P} .

We are now going to provide intrinsic characterizations, that is, without explicitly referring to the lattice $\operatorname{Sat}_{\tau}(M)$, of the relative concepts appearing in the *Relative Osofsky-Smith Theorem* we shall prove in the final part of this section.

Lemma 5.1. The following assertions hold for submodules N, P of a module M_R .

- (1) $\overline{\overline{N} + P} = \overline{N + P}$.
- (2) If $N \subseteq P$, then $\overline{N} = \overline{P} \iff P/N \in \mathcal{T}$.

Proof. (1) The result is certainly known, but because we did not find a reference in the literature, for reader's convenience we include below its proof.

Since $N + P \subseteq \overline{N} + P$, we have $\overline{N + P} \subseteq \overline{\overline{N} + P}$. For the opposite inclusion, it is sufficient to show that $(\overline{\overline{N} + P})/(N + P) \in \mathcal{T}$ because $\overline{X}/X = \tau(M/X)$ for any $X \leq M$. To do that, consider the exact sequence in Mod-R:

$$0 \longrightarrow (\overline{N} + P)/(N + P) \longrightarrow (\overline{\overline{N} + P})/(N + P) \longrightarrow (\overline{\overline{N} + P})/(\overline{N} + P) \longrightarrow 0.$$

The nonzero edges of this sequence are both in \mathcal{T} : this is clear for the right edge, and for the left one, consider the canonical epimorphism $p: M/N \longrightarrow M/(N+P)$. Since $\overline{N}/N \in \mathcal{T}$, we deduce that $p(\overline{N}/N) = (\overline{N}+P)/(N+P) \in \mathcal{T}$. Because \mathcal{T} is closed under extensions, we deduce that the middle term $(\overline{N}+P)/(N+P)$ of the sequence is also a member of \mathcal{T} , as desired.

(2) follows from Albu and Smith [9, Lemma 3.4] applied to the lattice $L = \operatorname{Sat}_{\tau}(M)$.

Lemma 5.2. The following statements hold for a module M_R and $X \in \text{Sat}_{\tau}(M)$.

- (1) For any $N \leq M$ with $N \subseteq X$, the τ -saturation \overline{N} of N in M coincides with the τ -saturation \overline{N}_X of N in X.
- (2) $\operatorname{Sat}_{\tau}(X)$ is exactly the interval $[\tau(M), X]$ of $\operatorname{Sat}_{\tau}(M)$.

Proof. (1) By definition,

$$\overline{N}/N = \tau(M/N)$$
 and $\overline{N}_X/N = \tau(X/N).$

Since $X/N \leq M/N$, we have $\overline{N}_X/N = \tau(X/N) \leq \tau(M/N) = \overline{N}/N$, so $\overline{N}_X \subseteq \overline{N}$.

In order to prove the opposite inclusion $\overline{N} \subseteq \overline{N}_X$, let $x \in \overline{N}$. Then, there exists a right ideal I of R such that $R/I \in \mathcal{T}$ $xI \subseteq N \subseteq X$. But $x \in M$ and $M/X \in \mathcal{F}$, so $x \in X$. Because $xI \subseteq N$, we have $x + N \in \tau(X/N) = \overline{N}_X/N$, and then $x \in \overline{N}_X$, as desired.

(2) If $Y \in \operatorname{Sat}_{\tau}(X)$ then $Y \leq X$ and $\tau(M) \leq Y$. Moreover, $Y \in \operatorname{Sat}_{\tau}(M)$, i.e., $M/Y \in \mathcal{F}$, because the nonzero edges of the exact sequence

$$0 \longrightarrow X/Y \longrightarrow M/Y \longrightarrow M/X \longrightarrow 0$$

are both in \mathcal{F} . So, $\operatorname{Sat}_{\tau}(X) \subseteq [\tau(M), X]$.

Conversely, let $Y \in [\tau(M), X]$. Then $Y \in \operatorname{Sat}_{\tau}(M)$. We have to show that $X/Y \in \mathcal{F}$. Indeed, because $Y \in \operatorname{Sat}_{\tau}(M)$ we have $M/Y \in \mathcal{F}$, and so $X/Y \in \mathcal{F}$, as desired. \Box

Proposition 5.3. The following assertions hold for a module M_R and $N \leq M$.

- (1) N is τ -essential in $M \iff (\forall P \leq M, P \cap N \in \mathcal{T} \Longrightarrow P \in \mathcal{T}).$
- (2) M is τ -uniform $\iff (\forall P, K \leq M, P \cap K \in \mathcal{T} \implies P \in \mathcal{T} \text{ or } K \in \mathcal{T}).$
- (3) N is a τ -pseudo-complement in $M \iff \exists P \leqslant M$ such that $N \cap P \in \mathcal{T}$ and N is maximal among the submodules of M having this property; in this case $N \in \operatorname{Sat}_{\tau}(M)$ and $N \cap \overline{P} = \tau(M)$.
- (4) N is τ -closed in $M \iff$ for any $P \leqslant M$ such that $N \subseteq P$ and N is a τ -essential submodule of P one has $P/N \in \mathcal{T}$. If additionally $N \in \operatorname{Sat}_{\tau}(M)$, then N is τ -closed in $M \iff N$ has no proper τ -essential extension in M.
- (5) N is a τ -direct summand in $M \iff \exists P \leqslant M$ such that $M/(N+P) \in \mathcal{T} \& N \cap P \in \mathcal{T}$.
- (6) *M* is τ -complemented $\iff \forall N \leq M, \exists P \leq M \text{ such that } M/(N+P) \in \mathcal{T} \& N \cap P \in \mathcal{T}.$
- (7) M is τ -compact $\iff \forall N \leq M$ with $M/N \in \mathcal{T}$, $\exists N' \leq N$ such that N' is finitely generated and $M/N' \in \mathcal{T}$, in other words, the filter $F(M) := \{N \leq M | M/N \in \mathcal{T}\}$ has a basis consisting of finitely generated submodules.
- (8) M is τ -CEK \iff any τ -closed submodule of M is a τ -essential submodule of a τ compact submodule of M.
- (9) M is τ -compactly generated $\iff \forall N \leq M, \exists I_N \text{ a set and a family } (C_i)_{i \in I_N} \text{ of } \tau$ compact submodules of M such that $\sum_{i \in I_N} C_i \subseteq N$ and $N/(\sum_{i \in I_N} C_i) \in \mathcal{T}$.

Proof. By our definitions, for any property \mathbb{P} on lattices, N is/has $\tau - \mathbb{P}$ if and only if the element \overline{N} of $\operatorname{Sat}_{\tau}(M)$ is/has \mathbb{P} .

- (1) is a part of Gómez Pardo [24, Proposition 2.2].
- (2) follows immediately from (1) (see also Albu [3, Corollary 2.10]).

(4) Assume that N is τ -closed in M, i.e., \overline{N} is a closed element of the lattice $\operatorname{Sat}_{\tau}(M)$. Let $P \leq M$ be such that $N \subseteq P$ and N is a τ -essential submodule of P. We are going to show that $P/N \in \mathcal{T}$. First note that any submodule T of M with $M/T \in \mathcal{T}$ is τ -essential in M because $\overline{T} = M$ is an essential element of $\operatorname{Sat}_{\tau}(M)$. In particular, P is a τ -essential submodule of \overline{P} . It follows easily that N is a τ -essential submodule of \overline{P} . By definition, this means that the τ -saturation $\overline{N}_{\overline{P}}$ of N in \overline{P} is an essential element of the lattice $\operatorname{Sat}_{\tau}(\overline{P})$. By Lemma 5.2 (1), $\overline{N}_{\overline{P}} = \overline{N}$, so \overline{N} is an essential element of $\operatorname{Sat}_{\tau}(M)$, so \overline{N} is an essential element of the interval $[\tau(M), \overline{P}] = [\overline{0}, \overline{P}]$ of $\operatorname{Sat}_{\tau}(M)$, so \overline{N} is an essential element of the interval $[\overline{0}, \overline{P}]$ of $\operatorname{Sat}_{\tau}(M)$. Since \overline{N} is a closed element of the lattice $\operatorname{Sat}_{\tau}(M)$ by assumption, we deduce that $\overline{N} = \overline{P}$. Therefore $P/N \leq \overline{P}/N = \overline{N}/N \in \mathcal{T}$, and then $P/N \in \mathcal{T}$, as desired.

Conversely, assume that for any $P \leq M$ such that $N \subseteq P$ and N is a τ -essential submodule of P one has $P/N \in \mathcal{T}$, and prove that N is τ -closed, i.e., \overline{N} is a closed element of the lattice $\operatorname{Sat}_{\tau}(M)$. To do that, let $X \in \operatorname{Sat}_{\tau}(M)$ with $\overline{N} \leq X$ and \overline{N} is an essential element of the interval $[\overline{0}, X]$ of $\operatorname{Sat}_{\tau}(M)$, so of the sublattice $\operatorname{Sat}_{\tau}(X)$ of $\operatorname{Sat}_{\tau}(M)$. By definition, this means that the \overline{N} is a τ -essential submodule of X. As we have observed above, N is a τ -essential submodule of \overline{N} , so N is a τ -essential submodule of X. By hypothesis, it follows that $X/N \in \mathcal{T}$, which implies that $X = \overline{X} = \overline{N}$. This shows that N is a τ -closed submodule of M, as desired.

In case $N \in \operatorname{Sat}_{\tau}(M)$, the implication " \Leftarrow " is clear. For implication " \Rightarrow ", assume that $P \leq M$ is such that $N \subseteq P$ and N is a τ -essential submodule of P. Then $P/N \in \mathcal{T}$, and so $P/N \subseteq \tau(M/N) = \overline{N}/N = N/N$, i.e., P = N, as desired.

(5) By definition, N is a τ -direct summand in M if and only if there exists $P \in \operatorname{Sat}_{\tau}(M)$ such that $\overline{N} \vee P = M$ and $\overline{N} \wedge P = \tau(M)$, where " \vee " and " \wedge " are the join and meet, respectively, in the lattice $\operatorname{Sat}_{\tau}(M)$, i.e., $\overline{\overline{N} + P} = M$ and $\overline{N} \cap P = \tau(M)$. By Lemma 5.1 (1), $\overline{\overline{N} + P} = \overline{N + P}$, so we deduce that $M/(N + P) \in \mathcal{T}$ and $N \cap P \in \mathcal{T}$.

Conversely, if $M/(N + P) \in \mathcal{T}$ and $N \cap P \in \mathcal{T}$ for some $P \leq M$, then we also have $M/(\overline{N} + \overline{P}) \in \mathcal{T}$, i.e., $M = \overline{\overline{N} + \overline{P}} = \overline{N} \vee \overline{P}$. Since $\overline{N} \wedge \overline{P} = \overline{N} \cap \overline{P} = \tau(M)$ we deduce that N is a τ -direct summand in M.

(6) By definition, M is τ -complemented if and only if for every $A \in \operatorname{Sat}_{\tau}(M)$ there exists $B \in \operatorname{Sat}_{\tau}(M)$ such that $A \lor B = M$ and $A \land B = \tau(M)$, i.e., $M/(A+B) \in \mathcal{T}$ and $A \cap B \in \mathcal{T}$. Continue now as in (5).

(7) is exactly the equivalence $(b) \iff (c)$ in Stenström [31, Proposition 1.1, Chap. XXIII].

(8) Assume that M is τ -CEK, and let N be a τ -closed submodule of M, i.e., \overline{N} is a closed element of the lattice $\operatorname{Sat}_{\tau}(M)$. By definition, there exists $P \in \operatorname{Sat}_{\tau}(M)$, $P \leq \overline{N}$, such that P is an essential element of the interval $[\overline{0}, \overline{N}]$ of $\operatorname{Sat}_{\tau}(M)$ and P is a compact element of $\operatorname{Sat}_{\tau}(M)$. By Lemma 5.2 (2), $[\overline{0}, \overline{N}] = \operatorname{Sat}_{\tau}(\overline{N})$, so P is a τ -essential submodule of \overline{N} . Since N is a τ -essential submodule of \overline{N} , it follows that $P \cap N$ is a τ -essential submodule of \overline{N} , so also a τ -essential submodule of N. Now, observe that $P \cap N$ is a τ -compact submodule of M because $\overline{P \cap N} = \overline{P} \cap \overline{N} = P \cap \overline{N} = P$ is a compact element of the lattice $\operatorname{Sat}_{\tau}(M)$.

Conversely, assume that any τ -closed submodule of M is a τ -essential submodule of a τ -compact submodule of M, and let $X \in \operatorname{Sat}_{\tau}(M)$ be a closed element. Then X is a τ -closed submodule of M, so, by hypothesis, there exists a τ -compact submodule P of M such that P is a τ -essential submodule of X. Therefore, \overline{P} is a compact element of $\operatorname{Sat}_{\tau}(M)$ and an essential element of the interval $[\overline{0}, X]$ of $\operatorname{Sat}_{\tau}(M)$. This shows that $\operatorname{Sat}_{\tau}(M)$ is a CEK lattice, i.e., M is τ -CEK.

(9) Assume that M is τ -compactly generated, i.e., $\operatorname{Sat}_{\tau}(M)$ is a compactly generated lattice. Then, for any $N \leq M$, there exists a set I_N and a family $(B_i)_{i \in I_N}$ of compact elements of $\operatorname{Sat}_{\tau}(M)$, i.e., of τ -compact submodules of M, such that $\overline{N} = \bigvee_{i \in I_N} B_i = \overline{\sum_{i \in I_N} B_i}$. We claim that $C_i := B_i \cap N$ is a τ -compact submodule of M for each $i \in I$. Indeed, we have $\overline{C_i} = \overline{B_i \cap N} = \overline{B_i} \cap \overline{N} = B_i \cap \overline{N} = B_i$, so $\overline{C_i}$ is a compact element of $\operatorname{Sat}_{\tau}(M)$, i.e., C_i is a τ -compact submodule of M for all $i \in I$, as claimed. Since $\sum_{i \in I_N} C_i \subseteq N$ and

$$\overline{N} = \bigvee_{i \in I_N} B_i = \bigvee_{i \in I_N} \overline{C_i} = \overline{\sum_{i \in I_N} C_i},$$

by Lemma 5.1 (2), we deduce that $N/(\sum_{i \in I_N} C_i) \in \mathcal{T}$, which proves the implication " \Longrightarrow ".

Conversely, let $X \in \operatorname{Sat}_{\tau}(M)$. By assumption, there exists a set I_X and a family $(C_i)_{i \in I_X}$ of τ -compact submodules of M such that $X / \sum_{i \in I_X} C_i \in \mathcal{T}$. Then, $E_i := \overline{C_i}$ is a compact element of $\operatorname{Sat}_{\tau}(M)$, and $X = \overline{X} = \overline{\sum_{i \in I_X} C_i} = \bigvee_{i \in I_X} \overline{C_i} = \bigvee_{i \in I_X} E_i$, which shows that $\operatorname{Sat}_{\tau}(M)$ is a compactly generated lattice, i.e., M is τ -compactly generated, and proves the implication " \Leftarrow ".

Remark 5.4. We are going to clarify the relations between the concepts of a τ -compact, τ -compactly generated, and τ -finitely generated module.

As in Albu and Năstăsescu [7], a module M is said to be τ -finitely generated if there exists a finitely generated submodule M' of M such that $M/M' \in \mathcal{T}$. Note that a τ -finitely generated module is not necessarily τ -compact. To see this, let R be an infinite direct product of copies of a field, let \mathcal{L} be the localizing subcategory of Mod-R consisting of all semi-Artinian R-modules, and let τ_0 be the hereditary torsion theory on Mod-R defined by \mathcal{L} . We have seen at the beginning of Section 4 that the quotient category $\mathcal{C}_0 := \text{Mod-}R/\mathcal{L}$ has no simple object, so, in particular $\text{Sat}_{\tau_0}(R_R)$ is not a compact lattice, i.e., R_R is not τ_0 -compact, though R_R is a finitely generated R-module, in particular τ_0 -finitely generated. Conversely, a τ -compact module is necessarily τ -finitely generated: indeed, $M \in F(M)$ because $M/M \in \mathcal{T}$, so, there exists a finitely generated submodule M' of M such that $M/M' \in \mathcal{T}$, i.e., M is τ -finitely generated.

A τ -compactly generated module is not necessarily τ -compact: indeed, any module M_R which is not finitely generated is clearly ξ -compactly generated but not ξ -compact, where $\xi =$ ({0}, Mod-R) is the trivial torsion theory on Mod-R. Conversely, we guess that a τ -compact module is not necessarily τ -compactly generated, but do not have any counterexample.

The following example considered in Albu [2, Example 1.16] is very helpful to illustrate some of the relative concepts discussed above and to relate them with the ones in the literature and having the same names.

Example 5.5. Let R be an infinite direct product of copies of a commutative and let \mathfrak{m} be a maximal ideal of R which is not principal (e.g., $R = \mathbb{Q}^{\mathbb{N}}$ and \mathfrak{m} is a maximal ideal of $\mathbb{Q}^{\mathbb{N}}$ including its ideal $\mathbb{Q}^{(\mathbb{N})}$). Denote by $\mathcal{T}_{\mathfrak{m}}$ the localizing subcategory of Mod-R consisting of all modules M_R such that their localizations $M_{\mathfrak{m}}$ at \mathfrak{m} are zero and by $\tau_{\mathfrak{m}}$ the hereditary torsion theory on Mod-R defined by $\mathcal{T}_{\mathfrak{m}}$.

Then $\tau_{\mathfrak{m}}(R) = \mathfrak{m}$ and $\operatorname{Sat}_{\tau_{\mathfrak{m}}}(R) = \{\mathfrak{m}, R\}$, so R_R is $\tau_{\mathfrak{m}}$ -simple but R_R does not contain any $\tau_{\mathfrak{m}}$ -cocritical submodule. Moreover, \mathfrak{m} is an essential submodule of R_R but not an essential element of the lattice $\operatorname{Sat}_{\tau_{\mathfrak{m}}}(R)$. It follows that

$$C_{\tau_{\mathfrak{m}}}(R) = \operatorname{Sat}_{\tau_{\mathfrak{m}}}(R) = \{\mathfrak{m}, R\} = D_{\tau_{\mathfrak{m}}}(R).$$

Consequently, the lattice $\operatorname{Sat}_{\tau_{\mathfrak{m}}}(R)$ is both complemented and CC, in other words, R_R is both $\tau_{\mathfrak{m}}$ -complemented and $\tau_{\mathfrak{m}}$ -CS.

Remarks 5.6. We are going to discuss below in a chronological order how our relative τ - \mathbb{P} concepts are related with the ones spread in the literature.

(1) 1985: Gómez Pardo defines in [24] the relative concepts of essential, complement, and essentially closed submodule of a module. By [24, Proposition 2.2], his concept of τ essential submodule coincides with ours, by [24, Propositions 2.8] his concept of τ -complement submodule is exactly our concept of τ -pseudo-complement submodule, and his concept of a τ -essentially closed submodule is exactly our concept of a τ -closed submodule. Because our relative concepts defined above have been introduced as natural specializations to lattices of type Sat_{τ}(M_R) of well established latticial concepts, we preferred to use these latticial concepts preceded by " τ -", and this is the reason to talk, e.g., about " τ -pseudo-complement" instead of " τ -complement", which corresponds to the latticial concept of "complement".

(2) 1997: Smith, Viola-Prioli, and Viola-Prioli [30] say that a module M_R is τ -complemented if for every submodule N of M there exists a direct summand K of M such that $N \leq K$ and $K/N \in \mathcal{T}$, and show in [30, Proposition 1.6] that this is equivalent with the condition that every $P \in \operatorname{Sat}_{\tau}(M)$ is a direct summand of M. As we will see immediately, this concept is different form ours, and for this reason we will call such modules strongly τ -complemented.

Clearly, any strongly τ -complemented module is τ -complemented but not conversely as Example 5.5 shows: $\mathfrak{m} \in \operatorname{Sat}_{\tau}(R_R)$ is not a direct summand of R_R , so R_R is not strongly $\tau_{\mathfrak{m}}$ -complemented, but R_R is $\tau_{\mathfrak{m}}$ -complemented as we have seen above.

(3) 1998: López-Permouth, Oshiro, and Rizvi [26] introduce among others the relative concept of a \mathcal{A} -CS or \mathcal{A} -extending module, where \mathcal{A} is a given nonempty subclass of Mod-R,

as being a module M_R such that any $A \in \mathcal{A}$ is essential in a direct summand of M. This concept has no connection with our relative concept of a CS-module.

(4) 1998: Doğruöz and Smith [19] define for any nonempty subclass \mathcal{A} of Mod-R closed under isomorphisms and containing the zero module two concepts of CS modules relative to \mathcal{A} : M_R is called a *type 1* \mathcal{A} -*extending* module (resp. *type 2* \mathcal{A} -*extending*) if for any $N \leq M$ with $N \in \mathcal{A}$, every $C \leq M$ maximal with respect to $C \cap N = 0$ is a direct summand of M(resp. every essential closure of N in M is a direct summand of M). These two concepts have no relations with our relative concept of a CS-module.

(5) 2006: Al-Takhman, Lomp, and Wisbauer [11] define a completely different concept of τ -complemented module, we will not present here.

(6) 2007: Charalambides and Clark [13] define several relative notions of Module Theory in their attempt to relativize the concept of a CS-module. We warn the reader that their concepts of τ -essential, τ -complement, and τ -compact are different from ours and do not agree with the natural expectation that M_R is/has τ - \mathbb{P} if and only if the object $T_{\tau}(M)$ of the quotient Grothendieck category Mod-R/T is/has \mathbb{P} . For instance, they call a module τ -compact if it is either τ -torsion or τ -cocritical, that is far away from what is expected to be such a module. Further, with our definition, any submodule of any module M_R has a τ -pseudo-complement (because in any upper continuous modular lattice, in particular in the lattice $\operatorname{Sat}_{\tau}(M)$, any element has a pseudo-complement) but not with their definition which, in fact, should have been called so and not τ -complement, as we explained this in (1). Note also that the concept of a τ -CS module as defined in Charalambides and Clark [13] is different from ours and does not agree with the property that M_R is τ -CS if and only if the object $T_{\tau}(M)$ of the quotient Grothendieck category Mod-R/T is CS. In their setting, a module M_R is τ -CS in case any essentially closed submodule N of M with $M/N \in \mathcal{T}$ is a direct summand of M. If we denote by $\xi = (\{0\}, \text{Mod}-R)$ the trivial torsion theory on Mod-R, then any module M_R is ξ -CS with their definition, but, in our setting, a module M_R is ξ -CS if and only M_R is a CS module, so their τ -CS concept is far away from ours. It is strange that Charalambides and Clark [13] make no reference to the paper of Gómez Pardo [24] published more than 20 years earlier than theirs, where the natural concepts of τ -essential, τ -complement, and τ -essentially closed have been introduced and investigated.

(7) 2008: Doğruöz [18] call a module M to be a type 2 τ -extending, where $\tau = (\mathcal{T}, \mathcal{F})$ is a hereditary torsion theory on Mod-R, if every essentially closed submodule N of M with $M/N \in \mathcal{T}$ is a direct summand of M. Note that these are exactly the τ -CS modules considered by Charalambides and Clark [13].

(8) 2008-2009: Crivei [14], [15] defines the concept of an \mathbb{E} - \mathcal{A} -extending module, where \mathcal{A} is a nonempty subclass \mathcal{A} of Mod-R closed under isomorphisms and containing the zero module and \mathbb{E} is a so called *proper class* of short exact sequences in Mod-R in the sense of Buchsbaum, as being a module A_R such that for every $B \leq A$ there exists $C \leq A$ with

 $B \subseteq C, C/B \in \mathcal{A}$ and the canonical exact sequence $0 \to C \to A \to C/A \to 0$ is a member of \mathbb{E} . If \mathbb{E}_s denotes the class of all splitting short exact sequences in Mod-R, then the \mathbb{E}_s - \mathcal{A} extending modules are simply called \mathcal{A} -extending. Note that for any hereditary torsion theory $\tau = (\mathcal{T}, \mathcal{F})$, the \mathcal{T} -extending modules are exactly the \mathcal{T} -complemented modules in the sense of Smith, Viola-Prioli, and Viola-Prioli [30] we discussed and called strongly τ -complemented.

(9) 2012: Çeken and Alkan [17] use the concepts of τ -essential, τ -complement, and τ essentially closed as introduced by Gómez Pardo [24] in order to define the relative concept
of a τ -CS module: a module M_R is called τ -CS if every τ -(essentially) closed submodule of M is a direct summand of M. Because, as we will see right away, this concept is different of
ours, we will call such modules strongly τ -CS. The module R_R in Example 5.5 is τ -CS but
not strongly τ -CS because \mathfrak{m} is τ -(essentially) closed but not a direct summand of R.

Note that the authors use the confusing related terms of a τ -complement submodule of a module as given in Gómez Pardo [24] and that of a τ -complemented module as given in Smith, Viola-Prioli, and Viola-Prioli [30]. Also, note that many of the results of Section 2 in Çeken and Alkan [17] are simple consequences of the more general results true in any upper continuous modular lattice.

The next result is needed in the proof of the Relative Osofsky-Smith Theorem as an easy specialization of the Latticial Osofsky-Smith Theorem (Theorem 3.4) for the particular case of lattice $\operatorname{Sat}_{\tau}(M)$.

Lemma 5.7. The following statements hold for a module M_R and submodules N, P of M_R such that $P \subseteq N$.

(1) The mapping

 $\alpha: \operatorname{Sat}_{\tau}(N/P) \longrightarrow \operatorname{Sat}_{\tau}(\overline{N}/\overline{P}), \ X/P \mapsto \overline{X}/\overline{P},$

is a lattice isomorphism.

(2) If $N, P \in \operatorname{Sat}_{\tau}(M)$, then the assignment $X \mapsto X/P$ defines a lattice isomorphism from the interval [P, N] of the lattice $\operatorname{Sat}_{\tau}(M)$ onto the lattice $\operatorname{Sat}_{\tau}(N/P)$.

Proof. (1) is exactly Albu [2, Lemma 1.6], and (2) is a specialization of Albu and Smith [9, Proposition 3.9] for the lattice $L = \operatorname{Sat}_{\tau}(M)$.

We say that a finite family $(N_i)_{1 \leq i \leq n}$ of submodules of a module M_R is τ -independent if $N_i \notin \mathcal{T}, \forall i, 1 \leq i \leq n$, and

$$N_{k+1} \cap \sum_{1 \leq j \leq k} N_j \subseteq \tau(M), \, \forall \, k, \, 1 \leq k \leq n-1,$$

or, equivalently

$$\overline{N_{k+1}} \cap \overline{\sum_{1 \leqslant j \leqslant k} N_j} = \overline{N_{k+1}} \wedge \left(\bigvee_{1 \leqslant j \leqslant k} \overline{N_j}\right) = \tau(M),$$

in other words, the family $(\overline{N_i})_{1 \leq i \leq n}$ of elements of the lattice $\operatorname{Sat}_{\tau}(M)$ is independent (see, e.g., Grätzer [25, Theorem 11, Chapter 4]).

Theorem 5.8. (THE RELATIVE OSOFSKY-SMITH THEOREM). Let M_R be a τ -compact, τ compactly generated module. Assume that all τ -compact subfactors of M are τ -CS. Then
there exists a finite τ -independent family $(U_i)_{1 \leq i \leq n}$ of τ -uniform submodules of M such that $M/(\sum_{1 \leq i \leq n} U_i) \in \mathcal{T}$.

Proof. Let N/P, $P \leq N \leq M$, be a τ -compact subfactor of M. Observe that, in view of Lemma 5.7, the interval $[\overline{P}, \overline{N}]$ of $\operatorname{Sat}_{\tau}(M)$ is isomorphic to the compact lattice $\operatorname{Sat}_{\tau}(N/P)$, which, by hypothesis is CC. So, we can specialize the Latticial Osofsky-Smith Theorem (Theorem 3.4) for the compact, compactly generated, modular lattice $L = \operatorname{Sat}_{\tau}(M)$ to deduce that there exists a finite independent family $(U_i)_{1 \leq i \leq n}$ of uniform elements of L such that $M = \bigvee_{1 \leq i \leq n} U_i$ is the direct join in L of the family $(U_i)_{1 \leq i \leq n}$. Thus, $(U_i)_{1 \leq i \leq n}$ is a τ -independent family of τ -uniform submodules of M. Since

$$M = \bigvee_{1 \leqslant i \leqslant n} U_i = \overline{\sum_{1 \leqslant i \leqslant n} U_i} \,,$$

it follows that $M/(\sum_{1 \leq i \leq n} U_i) \in \mathcal{T}$, as desired.

As we remember, the key point in proving the Latticial Osofsky-Smith Theorem was Lemma 2.1, whose immediate specialization for the lattice $L = \text{Sat}_{\tau}(M)$ can be proven similarly to that of Theorem 5.8 by using Lemma 5.1 (2), Proposition 5.3, and Lemma 5.7:

Lemma 5.9. Let M_R be a τ -compact, τ -compactly generated module. Assume that all τ compact subfactor modules N/P of M, $P \leq N \leq M$, are τ -CEK. Then, for any ascending
chain

$$D_1 \subseteq D_2 \subseteq \ldots \subseteq \ldots$$

of τ -direct summands of M, there exists a positive integer k such that $D_{n+1}/D_n \in \mathcal{T}$ for each $n \ge k$.

As we have stressed in Remarks 2.2 (2), the condition that the lattice L in the Latticial Osofsky-Smith Theorem is compactly generated can be replaced by the following weaker condition:

(*)
$$\forall a < b \text{ in } L, \forall k \in K(b/a), \exists c \in K(L) \text{ with } k = c \lor a.$$

where, remember that K(L) denotes the set of all compact elements of L. Observe that the condition (*) trivially holds for a = b.

If we specialize the condition (*) for the lattice $L = \operatorname{Sat}_{\tau}(M)$, we obtain the condition:

$$(\tau - *) \qquad \forall P \leq N \text{ in } \operatorname{Sat}_{\tau}(M), \forall K \in K([P, N]), \exists C \in K_{\tau}(M) \text{ with } K = C \lor P,$$

which, in view of Lemma 5.7 can be also expressed as

$$\begin{array}{ll} (\tau \text{-}*) & \forall P \leqslant K \leqslant N \leqslant M, \ \text{with} \ K/P \ \tau \text{-compact in } N/P, \ \exists C \leqslant M \\ \tau \text{-compact in } M \ \text{with} \ K = \overline{C+P}. \end{array}$$

Thus, the condition that the module M_R in the Relative Osofsky-Smith Theorem is τ compactly generated may be replaced by the weaker one (τ -*).

We are now going to state a more simplified version of the Relative Osofsky-Smith Theorem in case the given module M_R is τ -torsion-free. To do that, we need the following results.

Lemma 5.10. (Albu [3, Lemma 2.22]). Let $M_R \in \mathcal{F}$ be a module, and let $(N_i)_{i \in I}$ be a family of submodules of M. Then $(N_i)_{i \in I}$ is an independent family of submodules of M if and only if $(\overline{N_i})_{i \in I}$ is an independent family of elements of the lattice $\operatorname{Sat}_{\tau}(M)$.

Lemma 5.11. (Albu [3, Corollary 2.10]). If $M_R \in \mathcal{F}$, then M is τ -uniform $\iff M$ is uniform.

Theorem 5.12. (THE TORSION-FREE RELATIVE OSOFSKY-SMITH THEOREM). Let $M_R \in \mathcal{F}$ be a τ -compact, τ -compactly generated module. Assume that all τ -compact subfactors of Mare τ -CS. Then there exists a finite independent family $(U_i)_{1 \leq i \leq n}$ of uniform submodules of M such that $M/(\sum_{1 \leq i \leq n} U_i) \in \mathcal{T}$.

Proof. Use Lemmas 5.10 and 5.11 in Theorem 5.8.

Since M is $\tau - \mathbb{P}$ if and only if $M/\tau(M)$ is so, in view of 5.12 we can of course formulate the Relative Osofsky-Smith Theorem 5.8 in terms of essentiality and independence in the lattice $\mathcal{L}(M/\tau(M))$ instead of the relative ones in the lattice $\mathcal{L}(M)$:

Theorem 5.13. Let M_R be a τ -compact, τ -compactly generated module. If all τ -compact subfactors of M are τ -CS, then there exists a finite family $(U_i)_{1 \leq i \leq n}$ of submodules of M, all containing $\tau(M)$, such that $(U_i/\tau(M))_{1 \leq i \leq n}$ is an independent family of uniform submodules of $M/\tau(M)$ and $M/(\sum_{1 \leq i \leq n} U_i) \in \mathcal{T}$.

For a hereditary torsion theory $\tau = (\mathcal{T}, \mathcal{F})$ on Mod-*R* we denote by

$$F_{\tau} := \{ I \leqslant R_R \mid R/I \in \mathcal{T} \}$$

the so called *Gabriel filter* associated with τ . With the notation in Proposition 5.3 (7), we have $F_{\tau} = F(R_R)$. Recall that by a *basis* of the Gabriel filter F_{τ} we mean a subset B of F_{τ} such that every right ideal in F_{τ} contains some $J \in B$. By Stenström [31, Corollary 2.5, Chap. XIII], if R is τ -Noetherian, then F_{τ} has a basis consisting of finitely generated right ideals of R. Of course, the converse is, in general, not true by looking at the trivial torsion theory $\xi = (\{0\}, \text{Mod-}R)$ on Mod-R for any non-Noetherian ring R: the Gabriel filter $F_{\xi} = \{R\}$ has the basis $B = \{R\}$ having a single finitely generated ideal R, but R is not ξ -Noetherian.

By Albu, Iosif, and Teply [6, Proposition 2.12], a Grothendieck category \mathcal{G} has a finitely generated generator if and only if there exists a unital ring A and a hereditary torsion theory $\rho = (\mathcal{H}, \mathcal{E})$ on Mod-A such that $\mathcal{G} \simeq \text{Mod-}A/\mathcal{H}$ and the Gabriel filter F_{ρ} has a basis consisting of finitely generated right ideals of A. Therefore, in case F_{τ} has a basis consisting of finitely generated right ideals of R, then the Grothendieck category Mod- R/\mathcal{T} is locally finitely generated, and so, any module M_R is τ -compactly generated. Therefore, the next result is an immediate consequence of Theorem 5.13.

Theorem 5.14. Let $\tau = (\mathcal{T}, \mathcal{F})$ be a hereditary torsion theory on Mod-R such that its Gabriel filter F_{τ} has a basis consisting of finitely generated right ideals of R (in particular, this holds when R is τ -Noetherian), and let M_R be a τ -compact module. If all τ -compact subfactors of M are τ -CS, then there exists a finite family $(U_i)_{1 \leq i \leq n}$ of submodules of M, all containing $\tau(M)$, such that $(U_i/\tau(M))_{1 \leq i \leq n}$ is an independent family of uniform submodules of $M/\tau(M)$ and $M/(\sum_{1 \leq i \leq n} U_i) \in \mathcal{T}$.

The policy of this paper is to provide for most categorical results of Section 4 their relativizations with respect to a hereditary torsion theory $\tau = (\mathcal{T}, \mathcal{F})$ on Mod-R. Therefore, we will discuss now the relative versions of the consequences of the Categorical Osofsky-Smith Theorem that involve the concept of an injective object of a Grothendieck category, namely Proposition 4.14 and Corollary 4.16. To do that, we need first of all to characterize the modules M_R such that $T_{\tau}(M)$ is an injective object of the quotient category Mod- R/\mathcal{T} . An expected candidate for such modules are the well-studied τ -injective modules. Recall that a module M_R is said to be τ -injective if for every module B_R and every submodule Aof B with $B/A \in \mathcal{T}$, any morphism $f \in \text{Hom}_R(A, M)$ can be extended to a morphism $\overline{f} \in \text{Hom}_R(B, M)$.

By Gabriel [22, Chapitre 3], the canonical functor T_{τ} : Mod- $R \longrightarrow \text{Mod-}R/\mathcal{T}$ has a right adjoint S_{τ} : Mod- $R/\mathcal{T} \longrightarrow \text{Mod-}R$, and the canonical functorial morphism

$$\Phi: T_{\tau} \circ S_{\tau} \longrightarrow 1_{\mathrm{Mod} - R/\mathcal{T}}$$

is a functorial isomorphism.

Proposition 5.15. The following statements are equivalent for a τ -injective module $M_R \in \mathcal{F}$.

- (1) $T_{\tau}(M)$ is an injective object of Mod- R/\mathcal{T} .
- (2) M is an injective R-module.

Proof. (1) \implies (2): Assume that $T_{\tau}(M)$ is an injective object of Mod- R/\mathcal{T} . By Bucur and Deleanu [12, Proposition 6.3], $S_{\tau}(Q)$ is an injective *R*-module for any injective object Q of Mod- R/\mathcal{T} , so $S_{\tau}(T_{\tau}(M))$ is an injective *R*-module. By hypothesis, M_R is a τ -injective and τ -torsion-free module, i.e., M_R is a τ -closed module. By Gabriel [22, Corollaire, p. 371], the canonical morphism $\Psi(M): M \longrightarrow (S_{\tau} \circ T_{\tau})(M)$ is an isomorphism, so that

$$M \simeq (S_\tau \circ T_\tau)(M) = S_\tau(T_\tau(M))$$

is an injective *R*-module, as desired.

(2) \implies (1): If M_R is an injective module, then, by Gabriel [22, Corollaire 2, p.375], $M \simeq E \oplus S_{\tau}(X)$, where E is the injective hull of an injective R-module from \mathcal{T} and X is an injective object of Mod- R/\mathcal{T} . Since $M \in \mathcal{F}$ by hypothesis, it follows that E = 0, and so, $M \simeq S_{\tau}(X)$. Therefore, $T_{\tau}(M) \simeq T_{\tau}(S_{\tau}(X)) = (T_{\tau} \circ S_{\tau})(X) \simeq X$ is an injective object of Mod- R/\mathcal{T} . Proposition 5.15. shows that the usual concept of a τ -injective module does not agree with the natural expectation that its canonical image in Mod-R/T is an injective object.

In order to obtain a τ -version of Proposition 4.14 we should define the relative corresponding concept of an X-injective object of a Grothendieck category as follows: if M_R , N_R are modules, then N is said to be τ -M-injective if $T_{\tau}(N)$ is a $T_{\tau}(M)$ -injective object of Mod-R/T. Unfortunately we could not find a characterization of such modules similar to that in Proposition 5.15, so that, we are unable to state a relative version of Proposition 4.14; however, we can do this for Corollary 4.16 as we will see right away.

Recall that a module U_R is said to be τ -simple if $U \notin \mathcal{T}$ and $\operatorname{Sat}_{\tau}(U) = \{\tau(U), U\}$, and τ -cocritical if it τ -simple and $U \in \mathcal{F}$. The τ -socle of a module M_R , denoted by $\operatorname{Soc}_{\tau}(M)$, is defined as the τ -saturation of the sum of all τ -simple (or τ -cocritical) submodules of M, and M is said to be τ -semi-simple if $M = \operatorname{Soc}_{\tau}(M)$. By Albu [2, Proposition 1.15], $\operatorname{Soc}_{\tau}(M)$ is exactly the socle of the lattice $\operatorname{Sat}_{\tau}(M)$, and so,

the module M_R is τ -semi-simple \iff the lattice $\operatorname{Sat}_{\tau}(M)$ is semi-simple $\iff T_{\tau}(M)$ is a semi-simple object of the quotient category $\operatorname{Mod} R/\mathcal{T}$.

We are now in a position to state the relative version of Corollary 4.16.

Corollary 5.16. Let $\tau = (\mathcal{T}, \mathcal{F})$ be a hereditary torsion theory on Mod-R such that its Gabriel filter F_{τ} has a basis consisting of finitely generated right ideals of R (in particular, this holds when R is τ -Noetherian). Assume that R/I is an injective R-module for any $I \in \operatorname{Sat}_{\tau}(M)$. Then, any right R-module is τ -semi-simple.

Proof. First, note that $T_{\tau}(R_R)$ is a generator of Mod- R/τ by Gabriel [22, Lemme 4, p. 373], which is finitely generated by Stenström [31, Proposition 1.1, Chap. XXIII] (or Proposition 5.3 (7)). Moreover, every quotient object of $T(R_R)$ is isomorphic to $T(R_R)/T(I) \simeq T(R/I)$ for some $I \in \operatorname{Sat}_{\tau}(M)$, i.e., is an injective object of Mod- R/τ by Proposition 5.15. Apply now Corollary 4.16 to deduce that Mod-R/T is a semi-simple category, i.e., any right R-module is τ -semi-simple.

Acknowledgements. The author thanks N. V. Dung for drawing to his attention the paper Dung [20], Constantin Năstăsescu and John Van Den Berg for helpful discussions, and Septimiu Crivei for providing him references [14], [15], [17].

References

- T. ALBU, On commutative Grothendieck categories having a Noetherian cogenerator, Arch. Math. (Basel) 34 (1980), 210-219.
- T. ALBU, F-Semicocritical modules, F-primitive ideals, and prime ideals, Rev. Roumaine Math. Pures Appl. 31 (1986), 449-459.

- [3] T. ALBU, Completely irreducible meet decompositions in lattices, with applications to Grothendieck categories and torsion theories (II), Bull. Math. Soc. Sci. Math. Roumanie 53 (101) (2010), 1-13.
- [4] T. ALBU, The Osofsky-Smith Theorem for modular lattices, and applications (I), Comm. Algebra 39 (2011), 4488-4506.
- [5] T. ALBU and M. IOSIF, Lattices subgenerated by a lattice, in preparation.
- [6] T. ALBU, M. IOSIF, and M.L. TEPLY, Dual Krull dimension and quotient finite dimensionality, J. Algebra 284 (2005), 52-79.
- [7] T. ALBU et C. NĂSTĂSESCU, Décompositions primaires dans les catégories de Grothendieck commutatives (I), J. Reine Angew. Math. 280 (1976), 172-194.
- [8] T. ALBU and C. NÅSTÅSESCU, "Relative Finiteness in Module Theory", Marcel Dekker, Inc., New York and Basel, 1984.
- [9] T. ALBU and P. F. SMITH, Localization of modular lattices, Krull dimension, and the Hopkins-Levitzki Theorem (I), Math. Proc. Cambridge Philos. Soc. 120 (1996), 87-101.
- [10] T. ALBU and J. VAN DEN BERG, An indecomposable non-locally finitely generated Grothendieck category with simple objects, J. Algebra 321 (2009), 1538-1545.
- [11] K. AL-TAKHMAN, C. LOMP, and R. WISBAUER, τ-complemented and τ-supplemented modules, Algebra Discrete Math. 3 (2006), 1-16.
- [12] I. BUCUR and A. DELEANU, "Introduction to the Theory of Categories and Functors", John Wiley & Sons Ltd, London New York Sydney, 1968.
- S. CHARALAMBIDES and J. CLARK, CS modules relative to a torsion theory, Mediterr. J. Math. 4 (2007), 291-308.
- [14] S. CRIVEI, Σ-Extending modules, Σ-lifting modules, and proper classes, Comm. Algebra 36 (2008), 529-545.
- [15] S. CRIVEI, *Relatively extending modules*, Algebr. Repres. Theory **12** (2009), 319-332.
- [16] S. CRIVEI, C. NĂSTĂSESCU, and B. TORRECILLAS, On the Osofsky-Smith Theorem, Glasgow Math. J. 52A (2010), 61-87.
- [17] S. ÇEKEN and M. ALKAN, On τ -extending modules, Mediterr. J. Math. 9 (2012), 129-142.
- [18] S. DOĞRUÖZ, Extending modules relative to a torsion theory, Czechoslovak Math. J. 58 (2008), 381-393.

- [19] S. DOĞRUÖZ and P.F. SMITH, Modules which are extending relative to module classes, Comm. Algebra 26 (1998), 1699-1721.
- [20] N.V. DUNG, Modules whose closed submodules are finitely generated, Proc. Edinb. Math. Soc. 34 (1991), 161-166.
- [21] N.V. DUNG, D.V. HUYNH, P.F. SMITH, and R. WISBAUER, "Extending Modules", Longman Scientific & Technical, Harlow, 1990.
- [22] P. GABRIEL, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323-448.
- [23] J.S. GOLAN, "Torsion Theories", Pitman/Longman, New York, 1986.
- [24] J.L. GOMEZ PARDO, Spectral Gabriel topologies and relative singular functors, Comm. Algebra 11 (1985), 21-57.
- [25] G. GRÄTZER, "General Lattice Theory", Second Edition, Birkhäuser Verlag, Basel Boston Berlin, 2003.
- [26] S.R. LÓPEZ-PERMOUTH, K. OSHIRO, and S.T. RIZVI, On the relative (quasi-) continuity of modules, Comm. Algebra 26 (1998), 3497-3510.
- [27] B. MITCHELL, "Theory of Categories", Academic Press, New York and London, 1965.
- [28] M. OKADO, On the decomposition of extending modules, Math. Japonica 29 (1984), 939-941.
- [29] B.L. OSOFSKY and P.F. SMITH, Cyclic modules whose quotients have all complement submodules direct summands, J. Algebra 139 (1991), 342-354.
- [30] P.F. SMITH, A.M. DE VIOLA-PRIOLI, and J.E. VIOLA-PRIOLI, Modules complemented with respect to a torsion theory, Comm. Algebra 25 (1997), 1307-1326.
- [31] B. STENSTRÖM, "Rings of Quotients", Springer-Verlag, Berlin Heidelberg New York, 1975.