
  
INSTITUTUL DE MATEMATICA

                          “SIMION STOILOW”     
AL ACADEMIEI ROMANE

PREPRINT SERIES OF THE INSTITUTE OF MATHEMATICS
OF THE ROMANIAN ACADEMY

____________________________________________________________________________

       ISSN 0250 3638

The Osofsky-Smith theorem for modular lattices 

and applications (II)   

by   

        Toma Albu          

                                           Preprint nr. 2/2012

                                                               
____________________________________________________________________________

  BUCURESTI   



The Osofsky-Smith theorem for modular lattices and 

applications (II)

by    

       Toma Albu         

Preprint nr. 2/2012

                                                 October, 2012

Toma Albu 
E-mail: Toma.Albu@imar.ro 



THE OSOFSKY-SMITH THEOREM FOR

MODULAR LATTICES, AND APPLICATIONS

(II)

TOMA ALBU
Simion Stoilow Institute of Mathematics of the Romanian Academy,

Research Unit 5, P.O. Box 1 - 764
RO - 010145 Bucharest 1, ROMANIA

e-mail: Toma.Albu@imar.ro

October 10, 2012

Abstract

This is the second part of the paper with the same title published in Communications
in Algebra 39 (2011), 4488-4506. It contains applications of the Latticial Osofsky-Smith
Theorem to Grothendieck categories and module categories equipped with a torsion the-
ory. Various many different meanings spread in the literature of the relative concepts
with respect to a hereditary torsion theory τ on Mod-R like τ -essential submodule, τ -
complement submodule, τ -CS module, etc. are also discussed.

2010 Mathematics Subject Classification: 06C05, 06B35, 16S90, 18E15.

Key words: The Latticial Osofsky-Smith Theorem, The Categorical Osofsky-Smith Theo-
rem, The Relative Osofsky-Smith Theorem, Grothendieck category, finitely generated ob-
ject, locally finitely generated category, torsion theory, τ -CS module, τ -compact module,
τ -compactly generated module, τ -finitely generated module.

4 Applications to Grothendieck categories

In this section we apply the lattice-theoretical results established in the previous sections to

Grothendieck categories.

Throughout this section G will denote a fixed Grothendieck category, that is, an Abelian

category with exact direct limits and with a generator. For any object X ∈ G, L(X) will

denote the lattice of all subobjects of X. It is well-known that L(X) is an upper continuous

modular lattice (see e.g., Stenström [31, Chapter 4, Proposition 5.3, and Chapter 5, Section

1]). For any subobjects Y and Z of X we denote by Y ∩Z their meet and by Y + Z their

join in the lattice L(X).

Recall that an object X ∈ G is said to be finitely generated if the lattice L(X) is com-

pact. The category G is called locally finitely generated if it has a family of finitely generated

generators, or equivalently if the lattices L(X) are compactly generated for all objects X of

G (see Stenström [31, p. 122]). We say that an object X ∈ G is locally finitely generated if

the lattice L(X) of all its subobjects is compactly generated.
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Observe that unlike the category Mod-R whose objects are all locally finitely generated,

a quotient category Mod-R/T of Mod-R modulo a localizing subcategory T may not have

this property. Indeed let R be an infinite direct product of copies of a field and let L the

localizing subcategory of Mod-R consisting of all semi-Artinian R-modules. Then, as observed

in Albu [1, Remark 1.4(1)], the quotient category C0 := Mod-R/L has no simple object, in

particular it has no nonzero finitely generated object because any nonzero finitely generated

object must have maximal proper subobjects, so at least a simple factor object. Observe also

that for any nonzero object X of C0, the lattice L(X) is not compactly generated.

For all undefined notation and terminology on Abelian categories the reader is referred to

Albu and Năstăsescu [8] and/or Stenström [31].

For any object X ∈ G, we denote

C(X) := C(L(X)) = the set of all closed elements of L(X),

D(X) := D(L(X)) = the set of all complement elements of L(X).

If P is any property on lattices, we say that an object X ∈ G is/has P if the lattice L(X)

is/has P. Similarly, a subobject Y of an object X ∈ G is/has P if the element Y of the

lattice L(X) is/has P. Thus, we obtain the concepts of an uniform object, compact object,

CC object, completely CC object, CEK object, pseudo-complement subobject of an object,

essential subobject of an object, closed subobject of an object, complement subobject of an

object, irreducible subobject of an object, essentially compact subobject of an object, etc. For a

complement (resp. compact) subobject of an object X ∈ G one uses the well-established term

of a direct summand (resp. finitely generated) subobject of X, and for this reason instead of

saying that X is a CC object we will say that X is a CS object (acronym for C losed subobjects

are direct Summands). For the same reason, instead of using the term of essentially compact

subobject (resp. CEK object) we will use the term of essentially finitely generated subobject

(resp. CEF object).

If we specialize Lemma 2.1 (this means Lemma 2.1 from the first part Albu [4] of this

paper) for L = L(X), we obtain at once

Lemma 4.1. Let X be a finitely generated, locally finitely generated object of a Grothendieck

category G. Assume that all finitely generated subfactors Z/Y of X, Y ⊆ Z ⊆ X, are

CEF, i.e., every U ∈ C(Z/Y ) is an essentially finitely generated subobject of Z/Y . Then X

satisfies the ACC on direct summands, i.e., the poset D(X) of all direct summands of X is

Noetherian. ¤

By Lemma 4.1, or applying Theorem 3.4 to the lattice L = L(X), we deduce immediately:

Theorem 4.2. (The Categorical Osofsky-Smith Theorem). Let G be a Grothendieck

category, and let X ∈ G be a finitely generated, locally finitely generated object such that every

finitely generated subfactor object of X is CS. Then X is a finite direct sum of uniform

objects. ¤
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Remarks 4.3. (1) It is not clear whether the hypothesis “X is a locally finitely generated

object of G ” in both Lemma 4.1 and Theorem 4.2 can be removed. In fact, according to

Remarks 2.2 (2), only the following property

If Z ⊆ Y ⊆ X are such that such that Y/Z is finitely generated then ∃U ⊆ X such that

U is finitely generated and Y = Z + U ,

implied by this hypothesis is used in their proofs.

(2) In Albu and Van Den Berg [10, Proposition 5], a triangular 2 × 2-matrix ring S is

constructed and a hereditary torsion theory τ = (T ,F) on Mod-S is considered, having the

following two properties:

• the quotient category C := Mod-S/T has only one simple object;

• the canonical image U of the module SS in the quotient category C has only one

nonzero finitely generated subobject.

It follows that the lattice L(U) of all subobjects of U is not compactly generated, in other

words, U is not locally finitely generated, and consequently the Grothendieck category C is

not locally finitely generated. ¤

Following Dung [20], a right R-module M is said to be CF if every closed submodule of M

is finitely generated, and completely CF provided every quotient of M is also CF. Similarly,

an object X of a Grothendieck category G is called CF (acronym for Closed are Finitely

generated) if every closed subobject of X is finitely generated, and completely CF if every

quotient object of X is CF. Clearly, any CF object of G is CEF, therefore, using Lemma 3.1

specialized for the lattice L = L(X), the next result is a particular case of Lemma 4.1.

Corollary 4.4. Let X be a finitely generated, locally finitely generated object of a Grothendieck

category G such that every finitely generated subobject of X is completely CF. Then X is a

finite direct sum of indecomposable subobjects. ¤

Remark 4.5. Corollary 4.4 is the categorical counterpart of the module-theoretical result

Dung [20, Theorem 2.5], which in turn, can be viewed as a generalization of the Osofsky-

Smith Theorem. ¤

More generally, we say that a lattice L is CK (acronym for Closed are Kompact) if every

closed element of L is compact, i.e., C(L) ⊆ K(L). Clearly, any CK lattice is also CEK, so

the following result, which is a latticial version of Corollary 4.4, is an immediate consequence

of Lemmas 2.1 and 3.1:

Proposition 4.6. Let L be a compact, compactly generated, modular lattice. Assume that all

compact subfactors of L are CK. Then D(L) is a Noetherian poset, in particular 1 is a finite

direct join of indecomposable elements of L. ¤

Denote by H the class of all finitely generated objects of G, and let A be a subclass of

H satisfying the following three conditions:

(A1) If X ∈ A, X ′ ∈ G and X ' X ′ then X ′ ∈ A.
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(A2) If X ∈ A then X/X ′ ∈ A, ∀X ′ ⊆ X.

(A3) If X ∈ A and Z ⊆ Y ⊆ X with Y/Z ∈ A, then ∃U ⊆ X such that U ∈ A
and Y = Z + U .

As we have noticed above, the class H could be empty, and in this case everything that

follows makes no sense.

Similarly with the latticial case, we say that an object X ∈ G is essentially A if there

exists an essential subobject Y of X with Y ∈ A. Further, X is called CEA if any closed

subobject of X is essentially A.

Lemma 4.7. Let A be a class of finitely generated objects of a Grothendieck category G
satisfying the conditions (A1)− (A3) above, and let X ∈ A. Assume that all subfactors of X

are CEA. Then D(X) is a Noetherian poset. ¤

Proof. Apply Lemma 3.6 to the lattice L = L(X).

By Lemma 4.7 or applying Theorem 3.7 to the lattice L = L(X) we deduce immediately:

Theorem 4.8. (The Categorical A-Osofsky-Smith Theorem). Let A be a class of

finitely generated objects of a Grothendieck category G satisfying the conditions

(A1) − (A3) above, and let X ∈ A. Assume that all subfactors of X in A are CS. Then X

is a finite direct sum of uniform objects of G. ¤

An A-version of Corollary 4.4, which is an easy consequence of Proposition 4.6, also holds:

Corollary 4.9. Let A be a class of finitely generated objects of a Grothendieck category G
satisfying the conditions (A1)− (A3) above, and let X ∈ A. Assume that every finitely gener-

ated subobject of X in A is completely CF. Then X is a finite direct sum of indecomposable

subobjects. ¤

We are now going to present a consequence, involving injective objects, of the Categorical

Osofsky-Smith Theorem. Note that because we did not have handy a good latticial substitute

of the concept of an injective object in a category we could not obtain in Albu [4] such a result

for lattices. However, using the concept of a linear morphism of lattices recently introduced

by Albu and Iosif [5], we expect to provide a consequence, involving injective lattices, of the

Latticial Osofsky-Smith Theorem.

Recall that for any Grothendieck category one can define as in Mod-R the concepts of an

M -injective object, self-injective object, and semi-simple object (see, e.g., Albu and Năstăsescu

[8, p. 9]). For any object X of a Grothendieck category we denote by E(X) its injective hull.

Lemma 4.10. Let A be an arbitrary Abelian category, A,B ∈ A, and u, v ∈ HomA(A,B).

Then

Im (u + v) ⊆ Im (u) + Im (v).
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Proof. Consider the diagram:

A
∆−→ A×A

f−→ B,

where ∆ is the diagonal morphism, and f denotes the morphism (u, v) determined by the

two morphisms u, v : A −→ B. Then, by Mitchell [27, Lemma 18.3, Chap. I], we have

u + v = f ◦∆.

Clearly Im (u + v) = Im (f ◦∆) ⊆ Im (f).

Next, in order to calculate Im (f), we write A×A = A⊕A as A⊕A = (A⊕ 0)+ (0⊕A),

and use Mitchell [27, Proposition 11.2, Chap. I] to deduce that

Im (f) = f(A⊕A) = f((A⊕0)+(0⊕A)) = f(A⊕0)+f(0⊕A) = u(A)+v(A) = Im (u)+Im (v).

The next result is the categorical version of Albu and Năstăsescu [8, Proposition 2.5].

Proposition 4.11. Let A be an Abelian category, and let U, M ∈ A. Assume that U has

an injective hull E(U) in A (this holds always when A is a Grothendieck category). Then,

the following two assertions are equivalent.

(1) U is M -injective.

(2) Im(f) ⊆ U, ∀ f ∈ Hom(M,E(U)).

In particular, U is self-injective ⇐⇒ Im(f) ⊆ U, ∀ f ∈ End(E(U)).

Proof. (2) =⇒ (1): This implication is exactly as for modules, cf. Albu and Năstăsescu [8,

Proposition 2.5].

(1) =⇒ (2): Of course, we may assume that both U and M are non-zero. We adapt the

proof in the module case by avoiding the use of elements. Let f ∈ Hom(M, E(U))), and set

X := f−1(U). Then X ⊆ M . Let f1 := f |X. Since U is M -injective, there exists a morphism

g making commutative the following diagram:

- ppppppppppppppª?
-

X M

E(U)U

j

i

f1 g

where j and i are the canonical injections. Observe that Ker (f − ig) = X.

We claim that X = M , which will imply that Im(f) ⊆ U , as desired. Assume that X 6= M .

Then (f − ig)(N) 6= 0 for some N ⊆ M with N 6⊆ X. Since the extension U ⊆ E(U) is

essential, it follows that (f − ig)(N) ∩ U 6= 0. For simplicity, set

α := f − ig, V := α(N) ∩ U, Y := α−1(V ).
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Since Y = α−1(V ) = (f − ig)−1(V ), we have (f − ig)(Y ) ⊆ V ⊆ U , so

f(Y ) = ((f − ig) + ig)(Y ) ⊆ (f − ig)(Y ) + (ig)(Y ) ⊆ U + U = U

in view of Lemma 4.10. Thus f(Y ) ⊆ U , and then Y ⊆ f−1(U) = X. We deduce that

α(Y ) ⊆ α(X) = 0.

On the other hand, we claim that α(Y ) 6= 0, which will produce a contradiction. Indeed,

denote by β : N ³ α(N) the canonical epimorphism induced by α. Since V ⊆ α(N), let

Z := β−1(V ). Then, by Mitchell [27, Corollary 16.3, Chap. I] applied to the pullback diagram

Z
γ−−−−→ Vy

y
N

β−−−−→ α(N)

where γ is the canonical epimorphism induced by α and the vertical arrows are the canonical

injections, one deduces that γ is an epimorphism, so γ(Z) = V. On the other hand, clearly

Z 6= 0 because 0 6= V = γ(Z), so 0 6= Z = β−1(V ) ⊆ α−1(V ) = Y , and then necessarily

0 6= V = γ(Z) = α(Z) ⊆ α(Y ), as claimed. Consequently, our assumption that X 6= M fails,

and then X = M , which finishes the proof.

Lemma 4.12. If X is a self-injective object of a Grothendieck category and E(X) = E1⊕E2,

then X = (X ∩ E1)⊕ (X ∩ E2).

Proof. Clearly (X∩E1)+(X∩E2) ⊆ X. Denote by i1, i2, p1, p2 the canonical injections and

projections defining the direct sum E(X) = E1 ⊕ E2, and by i : X ↪→ E(X) the canonical

inclusion morphism. Then

1E(X) = i1p1 + i2p2.

For k = 1, 2, the morphism gk := ikpki can be extended to an endomorphism fk of E(X).

By Proposition 4.11, fk(X) = ikpk(X) ⊆ X ∩ Ek, so

X = 1E(X)(X) = (i1p1 + i2p2)(X) ⊆ (X ∩ E1) + (X ∩ E2),

by Lemma 4.10.

Lemma 4.13. Any self-injective object of a Grothendieck category G is a CS object.

Proof. Let X be a self-injective object of G, and let Y ⊆ X. Consider a pseudo-complement

Z of Y in X. Then Y ⊕Z is an essential subobject of X because this happens in any upper

continuous modular lattice by Stenström [31, Proposition 6.4, p. 75], so in particular in the

lattice L(X) of all subobjects of X. By taking injective hulls, we deduce that

E(X) = E(Y )⊕ E(Z).

By Lemma 4.12, we have

X = (X ∩ E(Y ))⊕ (X ∩ E(Z),
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which implies that Y is an essential subobject of the direct summand X ∩E(Y ) of X, i.e., X

is a CS object, as desired.

The next result, a categorical counterpart of Osofsky and Smith [29, Corollary 2] and Dung,

Huynh, Smith, and Wisbauer [21, Corollary 7.14], is more general than Crivei, Năstăsescu

Torrecillas [16, Corollary 2.9]:

Proposition 4.14. The following assertions are equivalent for a locally finitely generated

object X of a Grothendieck category G.

(1) X is semi-simple.

(2) Every finitely generated subfactor of X is X-injective.

Proof. (1) =⇒ (2): If X is semi-simple then so is any subfactor of X, which is clearly X-

injective.

(2) =⇒ (1): Let V = Y/Z, Z ⊆ Y ⊆ X, be a finitely generated subfactor of X. Then V is

X-injective by hypothesis. It follows that V is X/Z-injective, and so, also Y/Z-injective by the

well known properties of X-injective objects (see, e.g., Albu and Năstăsescu [8, Proposition

1.11]). Thus, V is self-injective, and consequently CS by Lemma 4.13.

Now let F be a finitely generated subobject of X. By the Categorical Osofsky-Smith

Theorem, F is a finite direct sum of uniform objects. Let U be a uniform direct summand

of F . Then, by hypothesis, any finitely generated subobject U ′ of U is X-injective, so it is

a direct summand of X. Clearly U ′ is also a direct summand of the uniform object U . It

follows that either U ′ = 0 or U ′ = U . On the other hand, because X has been supposed

to be locally finitely generated, for any 0 6= W ⊆ U , W is the sum of all its nonzero finitely

generated subobjects, all of them being equal to U . Thus, U is a simple object of G, and

consequently F is a semi-simple object of G. Using again the fact that X is locally finitely

generated, we conclude that X is a sum of simple objects, i.e., is semi-simple.

Remark 4.15. Our proof of Proposition 4.14 has used essentially the hypothesis that the

object X is locally finitely generated. The result fails for objects that are not locally finitely

generated. Indeed, let C0 be the Grothendieck category considered at the beginning of this

section. We have seen that there are no nonzero finitely generated objects in C0, so assertion

(2) of Proposition 4.14 is vacuously satisfied for any nonzero object X of C0, but X is not

semi-simple. ¤

Recall that an object Q of G is called completely injective if every quotient object of Q is

injective, and the category G is said to be semi-simple or discrete spectral if every its object

is semi-simple.

Corollary 4.16. (Crivei, Năstăsescu, and Torrecillas [16, Theorem 2.10]). Let G be a

Grothendieck category having a family of completely injective finitely generated generators.

Then G is semi-simple.
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Proof. Let X be an arbitrary object of G. Then X is the sum of all its finitely generated

subobjects because G is locally finitely generated. In order to show that X is semi-simple, it

is sufficient to prove that so is any finitely generated subobject of X . Consequently, without

loss of generality, we may as assume that X is finitely generated. Then X is an epimorphic

image of a direct sum of finitely many completely injective generators of G, so it is itself com-

pletely injective by Crivei, Năstăsescu, Torrecillas [16, Proposition 2.2]. Therefore, any finitely

generated subfactor of X is injective, and a fortiori X-injective. Apply now Proposition 4.14

to conclude that X is semi-simple.

Remark 4.17. A nice result due to Okado [28] states that a unital ring R is right Noetherian

if and only if every CS right R-module can be expressed as a direct sum of indecomposable (or

uniform) modules. We guess that the following categorical version of Okado’s Theorem holds:

A Grothendieck category G is locally Noetherian (this means that G has a set of Noethe-

rian generators) if and only if every CS object of G can be expressed as a direct sum of

indecomposable (or uniform) objects. ¤

We end this section by referring to some statements related to the Categorical Osofsky-

Smith Theorem from Osofsky and Smith [29] and Crivei, Năstăsescu, and Torrecillas [16] ,that

seem not to be in order.

First of all, Osofsky and Smith claim in the introduction of their paper [29] that the proof

of their main theorem also works in any Abelian category C having arbitrary direct sums

and exact direct limits (i.e., satisfying the Grothendieck’s AB5 condition) and any class A of

finitely generated objects of C having the following two properties:

(A′1) If X ∈ A then X ′ ∈ A for any direct summand X ′ of X.

(A′2) If X ∈ A and Z ⊆ Y ⊆ X with Y/Z ∈ A is a direct summand of X/Z, then

∃U ⊆ X such that U ∈ A and Y = Z + U .

Note that though in Crivei, Năstăsescu, and Torrecillas [16] it is claimed that their [16,

Theorem 2.7] can be proved in the same manner as in the module case, there are some parts of

the original proof in Osofsky and Smith [29] that cannot be transferred mutatis-mutandis to

Grothendieck categories; in particular, [16, Corollary 2.8], which is a consequence [16, Theorem

2.7], is not true in case the considered object M is not locally finitely generated, as this has

been pointed out in Remark 4.15.

A thorough analysis of the proof of the Latticial Osofsky-Smith Theorem specialized to

the lattice L(X) of all subobjects of an object X of a Grothendieck category G suggests us

to assert that the Osofsky and Smith’s conditions (A′1) and (A′2) are not sufficient to prove

the Categorical A-Osofsky-Smith Theorem (Theorem 4.8) for G; they should be replaced by

our conditions (A1) − (A3) presented above just after Proposition 4.6. Unfortunately we do

not have handy an example of such a class A of finitely generated objects of G satisfying the

conditions (A′1) and (A′2) above for which the Categorical A-Osofsky-Smith Theorem fails.
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5 Applications to module categories equipped with a heredi-
tary torsion theory

In this section we present the relative version with respect to a hereditary torsion theory of the

module-theoretical Osofsky-Smith Theorem [29], as well as some of its consequences. Their

proofs are easy applications of the corresponding lattice-theoretical results of sections 1-3.

Throughout this section R denotes an associative ring with nonzero identity, Mod-R

the category of all unital right R-modules, τ = (T ,F) a fixed hereditary torsion theory on

Mod-R, and τ(M) the τ -torsion submodule of a right R-module M .

We shall use the notation MR to emphasize that M is a right R-module. For any MR

we denote Satτ (M) := {N |N 6 M, M/N ∈ F }, and for any N 6 M we denote by

N :=
⋂{C |N 6 C 6 M, M/C ∈ F } the τ -saturation of N in M ; N is called τ -saturated if

N = N . Note that N/N = τ(M/N) and

Satτ (M) = {N |N 6 M, N = N },

so Satτ (M) is the set of all τ -saturated submodules of M , which explains the notation. It is

known that Satτ (M) is an upper continuous modular lattice for any MR (see Stenström [31,

Chapter 9, Proposition 4.1]).

For all undefined notation and terminology on torsion theories the reader is referred to

Albu and Năstăsescu [8], Golan [23], and/or Stenström [31].

We say that a module MR is τ -CC (or τ -extending) if the lattice Satτ (M) is CC (or

extending). More generally, if P is any property on lattices, we say that a module MR is/has

τ -P if the lattice Satτ (M) is/has P. Since the lattices Satτ (M) and Satτ (M/τ(M)) are canon-

ically isomorphic, we deduce that MR is τ -P if and only if M/τ(M) is τ -P. Thus, we obtain

the concepts of a τ -Artinian module, τ -Noetherian module, τ -uniform module, τ -compact

module, τ -compactly generated module, τ -CEK module, etc. We say that a submodule N of

MR is/has τ -P if its τ -saturation N , which is an element of Satτ (M), is/has P. Thus, we

obtain the concepts of a τ -pseudo-complement submodule of a module, τ -complement sub-

module of a module, τ -essential submodule of a module, τ -closed submodule of a module,

τ -essentially compact submodule of a module, etc. Since N = N , it follows that N is/has

τ -P if and only if N is/has τ -P. In the sequel we shall use the well-established term of a

τ -CS module (resp. τ -direct summand of a module) instead of that of a τ -CC module (resp.

τ -complement submodule of a module).

For any module MR we denote

Cτ (M) = C(Satτ (M)) = the set of all closed elements of the lattice Satτ (M),

Dτ (M) = D(Satτ (M)) = the set of all complement elements of the lattice Satτ (M),

Kτ (M) = K(Satτ (M)) = the set of all τ -compact elements of Satτ (M).

We denote by Mod-R/T the quotient category of Mod-R by its localizing subcategory

T and by Tτ the canonical functor Mod-R −→ Mod-R/T . Note that Mod-R/T is a
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Grothendieck category, and actually, any Grothendieck category is equivalent to such a cat-

egory in view of the renown Gabriel-Popescu Theorem (see, e.g., Stenström [31, Chapter 10,

Theorem 1.6]). Moreover, for any MR, the map

Satτ (M) −→ L(Tτ (M)), N 7→ Tτ (N),

is an isomorphism of lattices by Albu and Năstăsescu [8, Proposition 7.10]; so, for any property

on lattices P, the module MR is/has τ -P if and only if the object Tτ (M) in the quotient

Grothendieck category Mod-R/T is/has P.
We are now going to provide intrinsic characterizations, that is, without explicitly refer-

ring to the lattice Satτ (M), of the relative concepts appearing in the Relative Osofsky-Smith

Theorem we shall prove in the final part of this section.

Lemma 5.1. The following assertions hold for submodules N, P of a module MR.

(1) N + P = N + P .

(2) If N ⊆ P , then N = P ⇐⇒ P/N ∈ T .

Proof. (1) The result is certainly known, but because we did not find a reference in the

literature, for reader’s convenience we include below its proof.

Since N +P ⊆ N +P , we have N + P ⊆ N + P . For the opposite inclusion, it is sufficient

to show that (N + P )/(N + P ) ∈ T because X/X = τ(M/X) for any X 6 M . To do that,

consider the exact sequence in Mod-R:

0 −→ (N + P )/(N + P ) −→ (N + P )/(N + P ) −→ (N + P )/(N + P ) −→ 0.

The nonzero edges of this sequence are both in T : this is clear for the right edge, and for the

left one, consider the canonical epimorphism p : M/N −→ M/(N + P ). Since N/N ∈ T , we

deduce that p(N/N) = (N + P )/(N + P ) ∈ T . Because T is closed under extensions, we

deduce that the middle term (N + P )/(N + P ) of the sequence is also a member of T , as

desired.

(2) follows from Albu and Smith [9, Lemma 3.4] applied to the lattice L = Satτ (M).

Lemma 5.2. The following statements hold for a module MR and X ∈ Satτ (M).

(1) For any N 6 M with N ⊆ X, the τ -saturation N of N in M coincides with the

τ -saturation NX of N in X.

(2) Satτ (X) is exactly the interval [ τ(M), X ] of Satτ (M).

Proof. (1) By definition,

N/N = τ(M/N) and NX/N = τ(X/N).

Since X/N 6 M/N , we have NX/N = τ(X/N) 6 τ(M/N) = N/N , so NX ⊆ N .
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In order to prove the opposite inclusion N ⊆ NX , let x ∈ N . Then, there exists a right

ideal I of R such that R/I ∈ T xI ⊆ N ⊆ X. But x ∈ M and M/X ∈ F , so x ∈ X.

Because xI ⊆ N , we have x + N ∈ τ(X/N) = NX/N , and then x ∈ NX , as desired.

(2) If Y ∈ Satτ (X) then Y 6 X and τ(M) 6 Y . Moreover, Y ∈ Satτ (M), i.e., M/Y ∈ F ,

because the nonzero edges of the exact sequence

0 −→ X/Y −→ M/Y −→ M/X −→ 0

are both in F . So, Satτ (X) ⊆ [ τ(M), X ].

Conversely, let Y ∈ [ τ(M), X ]. Then Y ∈ Satτ (M). We have to show that X/Y ∈ F .

Indeed, because Y ∈ Satτ (M) we have M/Y ∈ F , and so X/Y ∈ F , as desired.

Proposition 5.3. The following assertions hold for a module MR and N 6 M .

(1) N is τ -essential in M ⇐⇒ (∀P 6 M, P ∩N ∈ T =⇒ P ∈ T ).

(2) M is τ -uniform ⇐⇒ (∀P, K 6 M, P ∩K ∈ T =⇒ P ∈ T or K ∈ T ).

(3) N is a τ -pseudo-complement in M ⇐⇒ ∃P 6 M such that N ∩ P ∈ T and N is

maximal among the submodules of M having this property; in this case N ∈ Satτ (M)

and N ∩ P = τ(M).

(4) N is τ -closed in M ⇐⇒ for any P 6 M such that N ⊆ P and N is a τ -essential

submodule of P one has P/N ∈ T . If additionally N ∈ Satτ (M), then N is τ -closed

in M ⇐⇒ N has no proper τ -essential extension in M .

(5) N is a τ -direct summand in M ⇐⇒ ∃P 6 M such that M/(N +P ) ∈ T & N ∩P ∈ T .

(6) M is τ -complemented ⇐⇒ ∀N 6 M, ∃P 6 M such that M/(N +P ) ∈ T & N∩P ∈ T .

(7) M is τ -compact ⇐⇒ ∀N 6 M with M/N ∈ T , ∃N ′ 6 N such that N ′ is finitely

generated and M/N ′ ∈ T , in other words, the filter F (M) := {N 6 M |M/N ∈ T }
has a basis consisting of finitely generated submodules.

(8) M is τ -CEK ⇐⇒ any τ -closed submodule of M is a τ -essential submodule of a τ -

compact submodule of M .

(9) M is τ -compactly generated ⇐⇒ ∀N 6 M, ∃ IN a set and a family (Ci)i∈IN
of τ -

compact submodules of M such that
∑

i∈IN
Ci ⊆ N and N/

(∑
i∈IN

Ci

) ∈ T .

Proof. By our definitions, for any property P on lattices, N is/has τ -P if and only if the

element N of Satτ (M) is/has P.

(1) is a part of Gómez Pardo [24, Proposition 2.2].

(2) follows immediately from (1) (see also Albu [3, Corollary 2.10]).
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(3) is exactly Gómez Pardo [24, Propositions 2.8] by observing that his concept of a τ -

complement submodule coincides with our concept of a τ -pseudo-complement submodule.

(4) Assume that N is τ -closed in M , i.e., N is a closed element of the lattice Satτ (M). Let

P 6 M be such that N ⊆ P and N is a τ -essential submodule of P . We are going to show that

P/N ∈ T . First note that any submodule T of M with M/T ∈ T is τ -essential in M because

T = M is an essential element of Satτ (M). In particular, P is a τ -essential submodule of P .

It follows easily that N is a τ -essential submodule of P . By definition, this means that the

τ -saturation NP of N in P is an essential element of the lattice Satτ (P ). By Lemma 5.2 (1),

NP = N, so N is an essential element of Satτ (P ). By Lemma 5.2 (2), Satτ (P ) is exactly

the interval [ τ(M), P ] = [ 0, P ] of Satτ (M), so N is an essential element of the interval

[ 0, P ] of Satτ (M). Since N is a closed element of the lattice Satτ (M) by assumption, we

deduce that N = P . Therefore P/N 6 P/N = N/N ∈ T , and then P/N ∈ T , as desired.

Conversely, assume that for any P 6 M such that N ⊆ P and N is a τ -essential

submodule of P one has P/N ∈ T , and prove that N is τ -closed, i.e., N is a closed element

of the lattice Satτ (M). To do that, let X ∈ Satτ (M) with N 6 X and N is an essential

element of the interval [ 0, X ] of Satτ (M), so of the sublattice Satτ (X) of Satτ (M). By

definition, this means that the N is a τ -essential submodule of X. As we have observed above,

N is a τ -essential submodule of N, so N is a τ -essential submodule of X. By hypothesis,

it follows that X/N ∈ T , which implies that X = X = N . This shows that N is a τ -closed

submodule of M , as desired.

In case N ∈ Satτ (M), the implication “⇐=” is clear. For implication “=⇒”, assume that

P 6 M is such that N ⊆ P and N is a τ -essential submodule of P . Then P/N ∈ T , and so

P/N ⊆ τ(M/N) = N/N = N/N , i.e., P = N , as desired.

(5) By definition, N is a τ -direct summand in M if and only if there exists P ∈ Satτ (M)

such that N ∨ P = M and N ∧ P = τ(M), where “∨ ” and “∧ ” are the join and meet,

respectively, in the lattice Satτ (M), i.e., N + P = M and N ∩ P = τ(M). By Lemma 5.1

(1), N + P = N + P , so we deduce that M/(N + P ) ∈ T and N ∩ P ∈ T .

Conversely, if M/(N + P ) ∈ T and N ∩ P ∈ T for some P 6 M , then we also have

M/(N + P ) ∈ T , i.e., M = N + P = N ∨ P . Since N ∧ P = N ∩ P = τ(M) we deduce that

N is a τ -direct summand in M .

(6) By definition, M is τ -complemented if and only if for every A ∈ Satτ (M) there exists

B ∈ Satτ (M) such that A∨B = M and A∧B = τ(M), i.e., M/(A+B) ∈ T and A∩B ∈ T .

Continue now as in (5).

(7) is exactly the equivalence (b) ⇐⇒ (c) in Stenström [31, Proposition 1.1, Chap. XXIII].

(8) Assume that M is τ -CEK, and let N be a τ -closed submodule of M , i.e., N is a closed

element of the lattice Satτ (M). By definition, there exists P ∈ Satτ (M), P 6 N, such that

P is an essential element of the interval [ 0, N ] of Satτ (M) and P is a compact element of

Satτ (M). By Lemma 5.2 (2), [ 0, N ] = Satτ (N ), so P is a τ -essential submodule of N . Since
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N is a τ -essential submodule of N , it follows that P ∩N is a τ -essential submodule of N , so

also a τ -essential submodule of N . Now, observe that P ∩N is a τ -compact submodule of M

because P ∩N = P ∩N = P ∩N = P is a compact element of the lattice Satτ (M).

Conversely, assume that any τ -closed submodule of M is a τ -essential submodule of a

τ -compact submodule of M , and let X ∈ Satτ (M) be a closed element. Then X is a τ -closed

submodule of M , so, by hypothesis, there exists a τ -compact submodule P of M such that

P is a τ -essential submodule of X. Therefore, P is a compact element of Satτ (M) and an

essential element of the interval [ 0, X ] of Satτ (M). This shows that Satτ (M) is a CEK

lattice, i.e., M is τ -CEK.

(9) Assume that M is τ -compactly generated, i.e., Satτ (M) is a compactly generated lat-

tice. Then, for any N 6 M , there exists a set IN and a family (Bi)i∈IN
of compact elements

of Satτ (M), i.e., of τ -compact submodules of M , such that N =
∨

i∈IN
Bi =

∑
i∈IN

Bi. We

claim that Ci := Bi ∩ N is a τ -compact submodule of M for each i ∈ I. Indeed, we have

Ci = Bi ∩N = Bi ∩N = Bi ∩N = Bi, so Ci is a compact element of Satτ (M), i.e., Ci is a

τ -compact submodule of M for all i ∈ I, as claimed. Since
∑

i∈IN
Ci ⊆ N and

N =
∨

i∈IN

Bi =
∨

i∈IN

Ci =
∑

i∈IN

Ci,

by Lemma 5.1 (2), we deduce that N/
(∑

i∈IN
Ci

) ∈ T , which proves the implication “=⇒”.

Conversely, let X ∈ Satτ (M). By assumption, there exists a set IX and a family (Ci)i∈IX

of τ -compact submodules of M such that X/
∑

i∈IX
Ci ∈ T . Then, Ei := Ci is a compact

element of Satτ (M), and X = X =
∑

i∈IX
Ci =

∨
i∈IX

Ci =
∨

i∈IX
Ei, which shows that

Satτ (M) is a compactly generated lattice, i.e., M is τ -compactly generated, and proves the

implication “⇐=”.

Remark 5.4. We are going to clarify the relations between the concepts of a τ -compact,

τ -compactly generated, and τ -finitely generated module.

As in Albu and Năstăsescu [7], a module M is said to be τ -finitely generated if there

exists a finitely generated submodule M ′ of M such that M/M ′ ∈ T . Note that a τ -finitely

generated module is not necessarily τ -compact. To see this, let R be an infinite direct product

of copies of a field, let L be the localizing subcategory of Mod-R consisting of all semi-Artinian

R-modules, and let τ0 be the hereditary torsion theory on Mod-R defined by L. We have seen

at the beginning of Section 4 that the quotient category C0 := Mod-R/L has no simple object,

so, in particular Satτ0 (RR) is not a compact lattice, i.e., RR is not τ0-compact, though RR

is a finitely generated R-module, in particular τ0-finitely generated. Conversely, a τ -compact

module is necessarily τ -finitely generated: indeed, M ∈ F (M) because M/M ∈ T , so, there

exists a finitely generated submodule M ′ of M such that M/M ′ ∈ T , i.e., M is τ -finitely

generated.

A τ -compactly generated module is not necessarily τ -compact: indeed, any module MR

which is not finitely generated is clearly ξ-compactly generated but not ξ-compact, where ξ =
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({0}, Mod-R) is the trivial torsion theory on Mod-R. Conversely, we guess that a τ -compact

module is not necessarily τ -compactly generated, but do not have any counterexample. ¤

The following example considered in Albu [2, Example 1.16] is very helpful to illustrate

some of the relative concepts discussed above and to relate them with the ones in the literature

and having the same names.

Example 5.5. Let R be an infinite direct product of copies of a commutative and let m be

a maximal ideal of R which is not principal (e.g., R = QN and m is a maximal ideal of QN

including its ideal Q (N) ). Denote by Tm the localizing subcategory of Mod-R consisting of

all modules MR such that their localizations Mm at m are zero and by τm the hereditary

torsion theory on Mod-R defined by Tm.

Then τm(R) = m and Satτm(R) = {m, R}, so RR is τm-simple but RR does not contain

any τm-cocritical submodule. Moreover, m is an essential submodule of RR but not an essential

element of the lattice Satτm(R). It follows that

Cτm(R) = Satτm(R) = {m, R} = Dτm(R).

Consequently, the lattice Satτm(R) is both complemented and CC, in other words, RR is

both τm-complemented and τm-CS. ¤

Remarks 5.6. We are going to discuss below in a chronological order how our relative τ -P
concepts are related with the ones spread in the literature.

(1) 1985: Gómez Pardo defines in [24] the relative concepts of essential, complement,

and essentially closed submodule of a module. By [24, Proposition 2.2], his concept of τ -

essential submodule coincides with ours, by [24, Propositions 2.8] his concept of τ -complement

submodule is exactly our concept of τ -pseudo-complement submodule, and his concept of a

τ -essentially closed submodule is exactly our concept of a τ -closed submodule. Because our

relative concepts defined above have been introduced as natural specializations to lattices of

type Satτ (MR) of well established latticial concepts, we preferred to use these latticial concepts

preceded by “τ -”, and this is the reason to talk, e.g., about “τ -pseudo-complement” instead

of “τ -complement”, which corresponds to the latticial concept of “complement”.

(2) 1997: Smith, Viola-Prioli, and Viola-Prioli [30] say that a module MR is τ -comple-

mented if for every submodule N of M there exists a direct summand K of M such that N 6 K

and K/N ∈ T , and show in [30, Proposition 1.6] that this is equivalent with the condition

that every P ∈ Satτ (M) is a direct summand of M . As we will see immediately, this concept

is different form ours, and for this reason we will call such modules strongly τ -complemented.

Clearly, any strongly τ -complemented module is τ -complemented but not conversely as

Example 5.5 shows: m ∈ Satτ (RR) is not a direct summand of RR, so RR is not strongly

τm-complemented, but RR is τm-complemented as we have seen above.

(3) 1998: López-Permouth, Oshiro, and Rizvi [26] introduce among others the relative

concept of a A-CS or A-extending module, where A is a given nonempty subclass of Mod-R,
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as being a module MR such that any A ∈ A is essential in a direct summand of M . This

concept has no connection with our relative concept of a CS-module.

(4) 1998: Doğruöz and Smith [19] define for any nonempty subclass A of Mod-R closed

under isomorphisms and containing the zero module two concepts of CS modules relative to

A: MR is called a type 1 A-extending module (resp. type 2 A-extending) if for any N 6 M

with N ∈ A, every C 6 M maximal with respect to C ∩N = 0 is a direct summand of M

(resp. every essential closure of N in M is a direct summand of M). These two concepts

have no relations with our relative concept of a CS-module.

(5) 2006: Al-Takhman, Lomp, and Wisbauer [11] define a completely different concept of

τ -complemented module, we will not present here.

(6) 2007: Charalambides and Clark [13] define several relative notions of Module Theory in

their attempt to relativize the concept of a CS-module. We warn the reader that their concepts

of τ -essential, τ -complement, and τ -compact are different from ours and do not agree with

the natural expectation that MR is/has τ -P if and only if the object Tτ (M) of the quotient

Grothendieck category Mod-R/T is/has P. For instance, they call a module τ -compact if it

is either τ -torsion or τ -cocritical, that is far away from what is expected to be such a module.

Further, with our definition, any submodule of any module MR has a τ -pseudo-complement

(because in any upper continuous modular lattice, in particular in the lattice Satτ (M), any

element has a pseudo-complement) but not with their definition which, in fact, should have

been called so and not τ -complement, as we explained this in (1). Note also that the concept

of a τ -CS module as defined in Charalambides and Clark [13] is different from ours and does

not agree with the property that MR is τ -CS if and only if the object Tτ (M) of the quotient

Grothendieck category Mod-R/T is CS. In their setting, a module MR is τ -CS in case any

essentially closed submodule N of M with M/N ∈ T is a direct summand of M . If we denote

by ξ = ({0}, Mod-R) the trivial torsion theory on Mod-R, then any module MR is ξ-CS with

their definition, but, in our setting, a module MR is ξ-CS if and only MR is a CS module,

so their τ -CS concept is far away from ours. It is strange that Charalambides and Clark [13]

make no reference to the paper of Gómez Pardo [24] published more than 20 years earlier than

theirs, where the natural concepts of τ -essential, τ -complement, and τ -essentially closed have

been introduced and investigated.

(7) 2008: Doğruöz [18] call a module M to be a type 2 τ -extending , where τ = (T ,F)

is a hereditary torsion theory on Mod-R, if every essentially closed submodule N of M with

M/N ∈ T is a direct summand of M . Note that these are exactly the τ -CS modules considered

by Charalambides and Clark [13].

(8) 2008-2009: Crivei [14], [15] defines the concept of an E-A-extending module, where

A is a nonempty subclass A of Mod-R closed under isomorphisms and containing the zero

module and E is a so called proper class of short exact sequences in Mod-R in the sense of

Buchsbaum, as being a module AR such that for every B 6 A there exists C 6 A with
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B ⊆ C, C/B ∈ A and the canonical exact sequence 0 → C → A → C/A → 0 is a member

of E. If Es denotes the class of all splitting short exact sequences in Mod-R, then the Es-A-

extending modules are simply called A-extending. Note that for any hereditary torsion theory

τ = (T ,F), the T -extending modules are exactly the T -complemented modules in the sense

of Smith, Viola-Prioli, and Viola-Prioli [30] we discussed and called strongly τ -complemented.

(9) 2012: Çeken and Alkan [17] use the concepts of τ -essential, τ -complement, and τ -

essentially closed as introduced by Gómez Pardo [24] in order to define the relative concept

of a τ -CS module: a module MR is called τ -CS if every τ -(essentially) closed submodule of

M is a direct summand of M . Because, as we will see right away, this concept is different of

ours, we will call such modules strongly τ -CS. The module RR in Example 5.5 is τ -CS but

not strongly τ -CS because m is τ -(essentially) closed but not a direct summand of R.

Note that the authors use the confusing related terms of a τ -complement submodule of

a module as given in Gómez Pardo [24] and that of a τ -complemented module as given in

Smith, Viola-Prioli, and Viola-Prioli [30]. Also, note that many of the results of Section 2 in

Çeken and Alkan [17] are simple consequences of the more general results true in any upper

continuous modular lattice. ¤

The next result is needed in the proof of the Relative Osofsky-Smith Theorem as an easy

specialization of the Latticial Osofsky-Smith Theorem (Theorem 3.4) for the particular case

of lattice Satτ (M).

Lemma 5.7. The following statements hold for a module MR and submodules N, P of MR

such that P ⊆ N .

(1) The mapping

α : Satτ (N/P ) −→ Satτ (N/P ), X/P 7→ X/P,

is a lattice isomorphism.

(2) If N, P ∈ Satτ (M), then the assignment X 7→ X/P defines a lattice isomorphism from

the interval [P, N ] of the lattice Satτ (M) onto the lattice Satτ (N/P ).

Proof. (1) is exactly Albu [2, Lemma 1.6], and (2) is a specialization of Albu and Smith [9,

Proposition 3.9] for the lattice L = Satτ (M).

We say that a finite family (Ni)16i6n of submodules of a module MR is τ -independent if

Ni 6∈ T , ∀ i, 1 6 i 6 n, and

Nk+1 ∩
∑

16j6k

Nj ⊆ τ(M), ∀ k, 1 6 k 6 n− 1,

or, equivalently

Nk+1 ∩
∑

16j6k

Nj = Nk+1 ∧
( ∨

16j6k

Nj

)
= τ(M),

in other words, the family (Ni )16i6n of elements of the lattice Satτ (M) is independent (see,

e.g., Grätzer [25, Theorem 11, Chapter 4]).
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Theorem 5.8. (The Relative Osofsky-Smith Theorem). Let MR be a τ -compact, τ -

compactly generated module. Assume that all τ -compact subfactors of M are τ -CS. Then

there exists a finite τ -independent family (Ui)16i6n of τ -uniform submodules of M such that

M/(
∑

16i6n Ui) ∈ T .

Proof. Let N/P, P 6 N 6 M, be a τ -compact subfactor of M . Observe that, in view of

Lemma 5.7, the interval [P , N ] of Satτ (M) is isomorphic to the compact lattice Satτ (N/P ),

which, by hypothesis is CC. So, we can specialize the Latticial Osofsky-Smith Theorem (The-

orem 3.4) for the compact, compactly generated, modular lattice L = Satτ (M) to deduce

that there exists a finite independent family (Ui)16i6n of uniform elements of L such that

M =
·∨

16i6n Ui is the direct join in L of the family (Ui)16i6n. Thus, (Ui)16i6n is a τ -

independent family of τ -uniform submodules of M . Since

M =
·∨

16i6n
Ui =

∑

16i6n

Ui ,

it follows that M/(
∑

16i6n Ui) ∈ T , as desired.

As we remember, the key point in proving the Latticial Osofsky-Smith Theorem was Lemma

2.1, whose immediate specialization for the lattice L = Satτ (M) can be proven similarly to

that of Theorem 5.8 by using Lemma 5.1 (2), Proposition 5.3, and Lemma 5.7:

Lemma 5.9. Let MR be a τ -compact, τ -compactly generated module. Assume that all τ -

compact subfactor modules N/P of M, P 6 N 6 M, are τ -CEK. Then, for any ascending

chain

D1 ⊆ D2 ⊆ . . . ⊆ . . .

of τ -direct summands of M , there exists a positive integer k such that Dn+1/Dn ∈ T for

each n > k. ¤

As we have stressed in Remarks 2.2 (2), the condition that the lattice L in the Latti-

cial Osofsky-Smith Theorem is compactly generated can be replaced by the following weaker

condition:

(∗) ∀ a < b in L, ∀ k ∈ K(b/a), ∃ c ∈ K(L) with k = c ∨ a.

where, remember that K(L) denotes the set of all compact elements of L. Observe that the

condition (∗) trivially holds for a = b.

If we specialize the condition (∗) for the lattice L = Satτ (M), we obtain the condition:

(τ -∗) ∀P 6 N in Satτ (M), ∀K ∈ K([P, N ]), ∃C ∈ Kτ (M) with K = C ∨ P ,

which, in view of Lemma 5.7 can be also expressed as

(τ -∗) ∀P 6 K 6 N 6 M, with K/P τ -compact in N/P, ∃C 6 M

τ -compact in M with K = C + P .
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Thus, the condition that the module MR in the Relative Osofsky-Smith Theorem is τ -

compactly generated may be replaced by the weaker one (τ -∗).
We are now going to state a more simplified version of the Relative Osofsky-Smith Theorem

in case the given module MR is τ -torsion-free. To do that, we need the following results.

Lemma 5.10. (Albu [3, Lemma 2.22]). Let MR ∈ F be a module, and let (Ni)i∈I be a family

of submodules of M . Then (Ni)i∈I is an independent family of submodules of M if and only

if (Ni)i∈I is an independent family of elements of the lattice Satτ (M). ¤

Lemma 5.11. (Albu [3, Corollary 2.10]). If MR ∈ F , then M is τ -uniform ⇐⇒ M is

uniform. ¤

Theorem 5.12. (The Torsion-free Relative Osofsky-Smith Theorem). Let MR ∈ F
be a τ -compact, τ -compactly generated module. Assume that all τ -compact subfactors of M

are τ -CS. Then there exists a finite independent family (Ui)16i6n of uniform submodules of

M such that M/(
∑

16i6n Ui) ∈ T .

Proof. Use Lemmas 5.10 and 5.11 in Theorem 5.8.

Since M is τ -P if and only if M/τ(M) is so, in view of 5.12 we can of course formulate the

Relative Osofsky-Smith Theorem 5.8 in terms of essentiality and independence in the lattice

L(M/τ(M)) instead of the relative ones in the lattice L(M):

Theorem 5.13. Let MR be a τ -compact, τ -compactly generated module. If all τ -compact

subfactors of M are τ -CS, then there exists a finite family (Ui)16i6n of submodules of M , all

containing τ(M), such that (Ui/τ(M))16i6n is an independent family of uniform submodules

of M/τ(M) and M/(
∑

16i6n Ui) ∈ T . ¤

For a hereditary torsion theory τ = (T ,F) on Mod-R we denote by

Fτ := { I 6 RR | R/I ∈ T }

the so called Gabriel filter associated with τ . With the notation in Proposition 5.3 (7), we have

Fτ = F (RR). Recall that by a basis of the Gabriel filter Fτ we mean a subset B of Fτ such

that every right ideal in Fτ contains some J ∈ B. By Stenström [31, Corollary 2.5, Chap.

XIII], if R is τ -Noetherian, then Fτ has a basis consisting of finitely generated right ideals

of R. Of course, the converse is, in general, not true by looking at the trivial torsion theory

ξ = ({0}, Mod-R) on Mod-R for any non-Noetherian ring R: the Gabriel filter Fξ = {R} has

the basis B = {R} having a single finitely generated ideal R, but R is not ξ-Noetherian.

By Albu, Iosif, and Teply [6, Proposition 2.12], a Grothendieck category G has a finitely

generated generator if and only if there exists a unital ring A and a hereditary torsion theory

ρ = (H, E) on Mod-A such that G ' Mod-A/H and the Gabriel filter Fρ has a basis

consisting of finitely generated right ideals of A. Therefore, in case Fτ has a basis consisting

of finitely generated right ideals of R, then the Grothendieck category Mod-R/T is locally

finitely generated, and so, any module MR is τ -compactly generated. Therefore, the next

result is an immediate consequence of Theorem 5.13.
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Theorem 5.14. Let τ = (T ,F) be a hereditary torsion theory on Mod-R such that its Gabriel

filter Fτ has a basis consisting of finitely generated right ideals of R (in particular, this holds

when R is τ -Noetherian), and let MR be a τ -compact module. If all τ -compact subfactors of

M are τ -CS, then there exists a finite family (Ui)16i6n of submodules of M , all containing

τ(M), such that (Ui/τ(M))16i6n is an independent family of uniform submodules of M/τ(M)

and M/(
∑

16i6n Ui) ∈ T . ¤

The policy of this paper is to provide for most categorical results of Section 4 their rela-

tivizations with respect to a hereditary torsion theory τ = (T ,F) on Mod-R. Therefore, we

will discuss now the relative versions of the consequences of the Categorical Osofsky-Smith

Theorem that involve the concept of an injective object of a Grothendieck category, namely

Proposition 4.14 and Corollary 4.16. To do that, we need first of all to characterize the mod-

ules MR such that Tτ (M) is an injective object of the quotient category Mod-R/T . An

expected candidate for such modules are the well-studied τ -injective modules. Recall that

a module MR is said to be τ -injective if for every module BR and every submodule A

of B with B/A ∈ T , any morphism f ∈ HomR(A,M) can be extended to a morphism

f ∈ HomR(B, M).

By Gabriel [22, Chapitre 3], the canonical functor Tτ : Mod-R −→ Mod-R/T has a right

adjoint Sτ : Mod-R/T −→ Mod-R, and the canonical functorial morphism

Φ : Tτ ◦ Sτ −→ 1Mod-R/T

is a functorial isomorphism.

Proposition 5.15. The following statements are equivalent for a τ -injective module MR ∈ F .

(1) Tτ (M) is an injective object of Mod-R/T .

(2) M is an injective R-module.

Proof. (1) =⇒ (2): Assume that Tτ (M) is an injective object of Mod-R/T . By Bucur and

Deleanu [12, Proposition 6.3], Sτ (Q) is an injective R-module for any injective object Q of

Mod-R/T , so Sτ (Tτ (M)) is an injective R-module. By hypothesis, MR is a τ -injective and

τ -torsion-free module, i.e., MR is a τ -closed module. By Gabriel [22, Corollaire, p. 371], the

canonical morphism Ψ(M) : M −→ (Sτ ◦ Tτ )(M) is an isomorphism, so that

M ' (Sτ ◦ Tτ )(M) = Sτ (Tτ (M))

is an injective R-module, as desired.

(2) =⇒ (1): If MR is an injective module, then, by Gabriel [22, Corollaire 2, p.375],

M ' E ⊕ Sτ (X), where E is the injective hull of an injective R-module from T and X is

an injective object of Mod-R/T . Since M ∈ F by hypothesis, it follows that E = 0, and so,

M ' Sτ (X). Therefore, Tτ (M) ' Tτ (Sτ (X)) = (Tτ ◦ Sτ )(X) ' X is an injective object of

Mod-R/T .
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Proposition 5.15. shows that the usual concept of a τ -injective module does not agree with

the natural expectation that its canonical image in Mod-R/T is an injective object.

In order to obtain a τ -version of Proposition 4.14 we should define the relative correspond-

ing concept of an X-injective object of a Grothendieck category as follows: if MR, NR are

modules, then N is said to be τ -M -injective if Tτ (N) is a Tτ (M)-injective object of Mod-R/T .

Unfortunately we could not find a characterization of such modules similar to that in Propo-

sition 5.15, so that, we are unable to state a relative version of Proposition 4.14; however, we

can do this for Corollary 4.16 as we will see right away.

Recall that a module UR is said to be τ -simple if U 6∈ T and Satτ (U) = {τ(U), U}, and

τ -cocritical if it τ -simple and U ∈ F . The τ -socle of a module MR , denoted by Socτ (M), is

defined as the τ -saturation of the sum of all τ -simple (or τ -cocritical) submodules of M , and

M is said to be τ -semi-simple if M = Socτ (M). By Albu [2, Proposition 1.15], Socτ (M) is

exactly the socle of the lattice Satτ (M), and so,

the module MR is τ -semi-simple ⇐⇒ the lattice Satτ (M) is semi-simple

⇐⇒ Tτ (M) is a semi-simple object of the quotient category Mod-R/T .

We are now in a position to state the relative version of Corollary 4.16.

Corollary 5.16. Let τ = (T ,F) be a hereditary torsion theory on Mod-R such that its Gabriel

filter Fτ has a basis consisting of finitely generated right ideals of R (in particular, this holds

when R is τ -Noetherian). Assume that R/I is an injective R-module for any I ∈ Satτ (M).

Then, any right R-module is τ -semi-simple.

Proof. First, note that Tτ (RR) is a generator of Mod-R/τ by Gabriel [22, Lemme 4, p. 373],

which is finitely generated by Stenström [31, Proposition 1.1, Chap. XXIII] (or Proposition

5.3 (7)). Moreover, every quotient object of T (RR) is isomorphic to T (RR)/T (I) ' T (R/I)

for some I ∈ Satτ (M), i.e., is an injective object of Mod-R/τ by Proposition 5.15. Apply now

Corollary 4.16 to deduce that Mod-R/T is a semi-simple category, i.e., any right R-module is

τ -semi-simple.
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[8] T. ALBU and C. NĂSTĂSESCU, “Relative Finiteness in Module Theory”, Marcel

Dekker, Inc., New York and Basel, 1984.

[9] T. ALBU and P. F. SMITH, Localization of modular lattices, Krull dimension, and the

Hopkins-Levitzki Theorem (I), Math. Proc. Cambridge Philos. Soc. 120 (1996), 87-101.

[10] T. ALBU and J. VAN DEN BERG, An indecomposable non-locally finitely generated

Grothendieck category with simple objects, J. Algebra 321 (2009), 1538-1545.

[11] K. AL-TAKHMAN, C. LOMP, and R. WISBAUER, τ -complemented and τ -supplemented

modules, Algebra Discrete Math. 3 (2006), 1-16.

[12] I. BUCUR and A. DELEANU, “Introduction to the Theory of Categories and Functors”,

John Wiley & Sons Ltd, London New York Sydney, 1968.

[13] S. CHARALAMBIDES and J. CLARK, CS modules relative to a torsion theory, Mediterr.

J. Math. 4 (2007), 291-308.

[14] S. CRIVEI, Σ-Extending modules, Σ-lifting modules, and proper classes, Comm. Algebra

36 (2008), 529-545.

[15] S. CRIVEI, Relatively extending modules, Algebr. Repres. Theory 12 (2009), 319-332.
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