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1 Introduction

The standard characteristic system associated to an initial value problem of nonlinear (H-J)

equations can be described as a system of ODEs

dx̂

dt
(t, λ) = f(x̂(t, λ), ϕ(λ)), t ∈ [0, T ], x̂(0, λ) = λ ∈ Rn,

where the smooth mappings f(x, u) : Rn × RN → Rn and ϕ = (ϕ1, . . . , ϕN) fulfil some

regularity conditions (see f ∈ (C1
b ∩C2)(Rn×RN ; Rn), ϕ ∈ (C1

b ∩C2)(Rn; RN)). The smooth

solution u(t, x) : [0, T̂ ] × Rn → RN of the given system of nonlinear (H-J) equations will

be obtained as a composition u(t, x) = ϕ(ψ̂(t, x)), t ∈ [0, T̂ ], x ∈ Rn, where 0 < T̂ ≤ T is

sufficiently small such that the flow equations x̂(t, λ) = x ∈ Rn, t ∈ [0, T̂ ], can be solved

leading us to a unique smooth solution {λ = ψ̂(t, x) ∈ Rn, t ∈ [0, T̂ ], x ∈ Rn} (Banach fixed

point theorem will be the main ingredient). The irregular perturbations of the flow solution
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{x̂(t, λ) ∈ Rn : t ∈ [0, T̂ ]} will be generated in a simple case when smooth composition of

commuting deterministic flows y(p, z) := G1(t1) ◦ · · · ◦Gm(tm)[z], p = (t1, . . . , tm), z ∈ Rn

are used. Define o primary perturbation of the flow {x̂(t, λ)} considering the following

smooth mapping ŷ(p, t;λ) := y(p, x̂(t, λ)), p ∈ Rn, t ∈ [0, T̂ ], λ ∈ Rn. Notice that the

smooth mapping {ŷ(p, t;λ)} is the solution of the following gradient system

∂t1 ŷ = g1(ŷ), . . . , ∂tm ŷ = gm(ŷ), ∂tŷ = f(ŷ, ϕ(λ)),

ŷ(0, 0;λ) = λ ∈ Rn, t ∈ [0, T̂ ],

provided the vector field f(·, u) ∈ C1
b ∩C2(Rn; Rn) commutes with any gi ∈ {g1, . . . , gm}, i.e.

[f(·, u), gi] = 0, i ∈ {1, . . . ,m}, u ∈ RN (see [·, ·] as the Lie bracket). By definition, y(p, x),

p ∈ Rm shares the group property and the unique solution of the perturbed flow equation

ŷ(p, t;λ) = x ∈ Rn, t ∈ [0, T̂ ], p ∈ Rm will be given by λ = ψ̃(t, p;x) := ψ̂(t, y(−p, x)),

where λ = ψ̂(t, z) is the unique solution of the original flow equation. Let {w(t) ∈ Rm : t ∈

[0, T̂ ]} be standard m-dimensional Wiener process associated with the complete filtered

probability space {Ω,F ⊃ {Ft}, P}. The nonlinear SPDEs involved in this paper will be

obtained as the stochastic dynamics satisfied by the mappings ψ(t, x) := ψ̃(t, w(t);x) ∈ Rn

and u(t, x) = ϕ(ψ(t, x)) ∈ RN , t ∈ [0, T̂ ], x ∈ Rn, where ψ(0, x) = x ∈ Rn and ψ̃(t, p;x) ∈

Rn stands for the corresponding smooth test deterministic function. They will appear as

solutions for problems (P4) and (P5) correspondingly as it is contained in section 3 of this

paper. We shall recall them as follows
dtψ(t, x) + [∂xψ(t, x)]f(x, ϕ(ψ(t, x)))dt+

m∑
k=1

∂xψ(t, x)gk(x)◦̂dwk(t) = 0,

ψ(0, x) = x ∈ Rn, t ∈ [0, T̂ ],

and 
dtu(t, x) + [∂xu(t, x)]f(x, u(t, x)))dt+

m∑
k=1

[∂xu(t, x)]gk(x)◦̂dwk(t) = 0,

u(0, x) = h(x), x ∈ Rn, t ∈ [0, T̂ ],

Here, the Stratonovich integral “◦̂” is computed by

hk(t, x)◦̂dwk(t) = hk(t, x) · dwk(t)−
1

2
[∂xhk(t, x)]gk(x)dt, k ∈ {1, . . . ,m},
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using Itô integral “·”.

A direct inspection of the last two nonlinear SPDEs show us that the nonlinearity are

contained in the drift part of both equations, and diffusion part is linear but contain the

gradient with respect to x ∈ Rn of the unknown functions. Some subjects of this paper

have been analysed also in [2], [3], [4] and [7], but under stronger hypotheses. Regarding

some applications, one may notice that the drift in both SPDEs contains a nonlinearity

〈∂xuj(t, x), u(t, x)〉, j ∈ {1, . . . , n}, as in Burger’s equations from mechanics, provided

N = n and f(x, u) = u ∈ Rn. If this is the case, the nonlinear system of SPDEs includes a

Laplacian of each uj (∆xuj(t, x)) in the drift, provided m = n and gk = ek, k ∈ {1, . . . , n},

where {e1, . . . , en} ⊂ Rn is the canonical basis. This allows us to say that the second SPDEs

mentioned above stands for Burger’s equations with stochastic martingale perturbations

for which a classical solution can be constructed. The investigation of evolution equations

with stochastic perturbations serves a large variety of applicability. It is well known the

applicability of backward SDEs (BSDEs) in mathematical finance as in [1], [4] and [9], and

in stochastic control with partial information as it is specified in [8]. Other applications of

SPDEs, including finance, may be found in Da Prato and Tubaso (see [3]). In Buckdahn and

Ma (see [2]) the authors consider a system of nonlinear SPDEs driven by Fisk-Stratonovich

integrals with the diffusion term independent of the gradiendt of the solution, for which they

prove the existence and uniqueness of the so called stochastic viscosity solution, introduced

in [8] and relying on Doss-Sussmann type transformations applied in the corresponding

stochastic characteristic system. This paper contains section 2 where the problems (P1)-

(P5) are stated. Solutions for the problems (P1)-(P5) given in section 2 will be analysed

in section 3 (see Lemmas 1, 2 and Theorems 1,2 and 3). The main result including the

above given nonlinear SPDEs is contained in Theorems 2 and 3 solving the problems (P4)

and (P5).
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2 Quasilinear (H-J) equations with irregular pertur-

bations. Statement of the problems

There are given smooth mappings ϕ = (ϕ1, . . . , ϕN) ∈ (C1
b∩C2)(Rn; RN), f ∈ (C1

b∩C2)(Rn×

RN ; Rn) and a finite set of smooth vector fields {g1, . . . , gm} ⊂ (C1
b ∩ C2)(Rn; Rn).

Associate two types of characteristic systems. According to some scalar bounded vari-

ation functions µk(t) : [0, T ] → R, which are piecewise continuous and µk(0) = 0, we

introduce the characteristic system
dtx(t;λ) = f(x(t;λ), ϕ(λ))dt+

m∑
k=1

gk(x(t−;λ))dµk(t), t ∈ [0, T ],

x(0;λ) = λ ∈ Rn.

(1)

For a given standard m-dimensional Wiener process w(t) = (w1(t), . . . , wm(t)) ∈ Rm,

t ∈ [0, T ], over the complete filtered probability space {Ω,F ⊃ {F t}, P} we consider the

following characteristic system
dtx(t;λ) = f(x(t;λ), ϕ(λ))dt+

m∑
k=1

gk(x(t;λ)) ◦ dwk(t), t ∈ [0, T ],

x(0;λ) = λ ∈ Rn,

(2)

where the Stratonovich integral “◦” is computed by

gk(x) ◦ dwk(t) = gk(x) · dwk(t) +
1

2
[∂xgk(x)]gk(x)dt

using Itô integral “·”. The main assumptions which allow us to get classical solutions for

our problems are the following:

(a) {g1, . . . , gm} ⊂ (C1
b ∩ C2)(Rn; Rn) commute using Lie bracket [·, ·];

(b) [fu, gk] = 0, u ∈ RN , k ∈ {1, . . . ,m}, where fu(x) := f(x, u) and f ∈ (C1
b ∩ C2)(Rn ×

RN ; Rn) is given.

Denote by {G(σ)[x] : σ ∈ Rm, x ∈ Rn} the unique smooth solution of the gradient

system  ∂σi
G(σ)[x] = gi(G(σ)[x]), i ∈ {1, . . . ,m}, σ ∈ Rm,

G(0)[x] = x ∈ Rn,
(3)
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and let Fϕ(t;λ) : [0, T ]× Rn → Rn be the unique smooth solution satisfying ODEs
dFϕ(t;λ)

dt
= f(Fϕ(t;λ), ϕ(λ)), t ∈ [0, T ],

Fϕ(0;λ) = λ ∈ Rn.

(4)

Define a smooth deterministic mapping

Sϕ(t, σ;λ) := G(σ)[Fϕ(t;λ)], t ∈ [0, T ], λ ∈ Rn, σ ∈ Rm (5)

and consider two types of mappings. Let

x1
ϕ(t;λ) := Sϕ(t, µ(t);λ), t ∈ [0, T ] (6)

be a bounded variation piecewise continuous application for each λ ∈ Rn, and define

x2
ϕ(t;λ) := Sϕ(t, w(t);λ), t ∈ [0, T ] (7)

as a continuous F t-adapted process for each λ ∈ Rn.

The problems we are going to study are the following:

(P1) Under the hypothesis (a)-(b), show that {x1
ϕ(t;λ) ∈ Rn : t ∈ [0, T ]} (see (6)) is the

unique solution of the characteristic system (1) and {x2
ϕ(t;λ) ∈ Rn : t ∈ [0, T ]} is the unique

continuous and F t-adapted solution of SDEs (2) (see (7)). The characteristic systems (1)

and (2) will be called gradient characteristic systems (see the gradient representation (5)

of the flow solution).

(P2) Under the hypothesis (a)-(b), find 0 < T̂ ≤ T and a smooth mapping λ = ψ̂(t, z) :

[0, T̂ ]×Rn → Rn satisfying functional equations Fϕ(t; ψ̂(t, z)) = z ∈ Rn, t ∈ [0, T̂ ], z ∈ Rn

(see ODEs (4)). In addition, show (if possible) that λ = ψ̂(t, z) satisfies the following

quasilinear (H-J) equations ∂tψ̂(t, z) + [∂zψ̂(t, z)]f(z, ϕ(ψ̂(t, z))) = 0, t ∈ [0, T̂ ],

ψ̂(0, z) = z ∈ Rn.
(8)

(P3) Under the hypothesis (a)-(b), prove (if possible) that λ = ψ̂(t, z1(t, x)) := ψ1(t, x),

(see z1(t, x) = G(−µ(t))[x], t ∈ [0, T̂ ], x ∈ Rn), is a solution of the flow equation x1
ϕ(t;λ) =
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x ∈ Rn, t ∈ [0, T̂ ] and λ = ψ̂(t, z2(t, x)) := ψ2(t, x), where (see z2(t, x) = G(−w(t))[x],

t ∈ [0, T̂ ], x ∈ Rn), is a solution of the flow equation x2
ϕ(t, λ) = x ∈ Rn, t ∈ [0, T̂ ].

(P4) Under the hypothesis (a)-(b), show (if possible) that {λ = ψ1(t, x) : t ∈ [0, T̂ ], x ∈ Rn}

satisfies the following quasilinear (H-J) equations with bounded variation perturbations
dtψ

1(t, x) + [∂xψ
1(t, x)]f(x, ϕ(ψ1(t, x)))dt+

m∑
k=1

∂xψ
1(t−, x)gk(x)dµk(t) = 0,

ψ1(0, x) = x ∈ Rn, t ∈ [0, T̂ ].

(9)

In addition, λ = ψ2(t, x) ∈ Rn : t ∈ [0, T̂ ], x ∈ Rn satisfies the following nonlinear SPDEs
dtψ

2(t, x) + [∂xψ
2(t, x)]f(x, ϕ(ψ2(t, x)))dt+

m∑
k=1

∂xψ
2(t, x)gk(x)◦̂dwk(t) = 0,

ψ2(0, x) = x ∈ Rn, t ∈ [0, T̂ ],

(10)

where, the Stratonovich integral “◦̂” is computed by

hk(t, x)◦̂dwk(t) = hk(t, x) · dwk(t)−
1

2
[∂xhk(t, x)]gk(x)dt, k ∈ {1, . . . ,m},

using Itô integral “·”.

(P5) Under the hypothesis (a)-(b), describe the evolution of the functionals u1(t, x) =

h(ψ1(t, x)) and u2(t, x) = h(ψ2(t, x)), t ∈ [0, T̂ ], x ∈ Rn, for f ∈ (C1
b ∩ C2)(Rn; RN). In

particular, u1(t, x) := ϕ(ψ1(t, x)), t ∈ [0, T̂ ], x ∈ Rn, is a solution of the quasilinear (H-J)

equations with bounded variation perturbations
dtuj(t, x) + 〈∂xuj(t, x), f(x, u(t, x))〉 dt+

m∑
k=1

〈∂xuj(t−, x), gk(x)〉 dµj(t) = 0,

uj(0, x) = ϕj(x), j ∈ {1, . . . , N}, x ∈ Rn, t ∈ [0, T̂ ].

(11)

and u2(t, x) := ϕ(ψ2(t, x)), t ∈ [0, T̂ ], x ∈ Rn, is a classical solution of SPDEs
dtuj(t, x) + 〈∂xuj(t, x), f(x, u(t, x))〉 dt+

m∑
k=1

〈∂xuj(t, x), gk(x)〉 ◦̂dwk(t) = 0,

uj(0, x) = ϕj(x), j ∈ {1, . . . , N}, x ∈ Rn, t ∈ [0, T̂ ].

(12)
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Here, the Stratonovich integral “◦̂” is computed by

hk(t, x)◦̂dwk(t) = hk(t, x) · dwk(t)−
1

2
〈∂xhk(t, x), gk(x)〉 dt, k ∈ {1, . . . ,m},

using Itô integral “·”.

3 Solutions for (P1)-(P5)

Lemma 1. (solution for (P1)) Under the hypothesis (a)-(b), consider the smooth deter-

ministic mapping Sϕ(t, σ;λ) ∈ Rn, t ∈ [0, T ], σ ∈ Rm, λ ∈ Rn defined in (5) and associate

the flows x1
ϕ(t;λ) = Sϕ(t, µ(t);λ) ∈ Rn and x2

ϕ(t;λ) = Sϕ(t, w(t);λ), t ∈ [0, T ] (for each

λ ∈ Rn) as in (6) and (7). Then {x1
ϕ(t;λ) ∈ Rn : t ∈ [0, T ], λ ∈ Rn} satisfies the bounded

variation characteristic system (1) and {x2
ϕ(t;λ) ∈ Rn : t ∈ [0, T ], λ ∈ Rn} is the unique

continuous and F t-adapted solution of SDEs (2).

Proof. By definition (see (5)),

Sϕ(t, σ;λ) = G(σ)[Fϕ(t;λ)], t ∈ [0, T ], σ ∈ Rm (λ ∈ Rn fixed) (13)

is a continuously differentiable mapping of second order with respect to t ∈ [0, T ] and

σ ∈ Rm. As far as the m-orbit {G(σ)[x] ∈ Rn : σ ∈ Rm} is the unique solution of the

gradient system in (3), we get ∂σi
Sϕ(t, σ;λ) = gi(Sϕ(t, σ);λ), i ∈ {1, . . . ,m},

∂2
σi
Sϕ(t, σ;λ) = [∂xgi(Sϕ(t, σ;λ))]gi(Sϕ(t, σ;λ)), i ∈ 1, . . . ,m.

(14)

In addition, using [fu, gk] = 0, k ∈ {1, . . . ,m}, u ∈ RN (see the hypotheses (b)), and

G(−σ)[Sϕ(t, σ;λ)] = Fϕ(t;λ), t ∈ [0, T ], (15)

we compute ∂t[Sϕ(t, σ;λ)] by the following formula

∂t[Sϕ(t, σ;λ)] = [M(σ;x)]−1f(G(−σ)[x], ϕ(λ)), for x = Sϕ(t, σ;λ), (16)
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where M(σ;x) = ∂x(G(−σ)[x]). Here H(σ;x) := [M(σ;x)]−1 and M(σ;x) satisfy the

following linear gradient systems ∂σi
H(σ;x) = H(σ;x)[∂ygi(G(−σ)[x])], i ∈ {1, . . . ,m},

∂σi
M(σ;x) = −[∂ygi(G(−σ)[x])]M(σ;x), i ∈ {1, . . . ,m},

(17)

and H(0;x) = M(0;x) = In (identity (n × n) matrix). Notice that by taking straight

derivations and using (17) we get

H(σ;x)f(G(−σ)[x], ϕ(λ)) = f(x, ϕ(λ))+

m∑
i=1

σi

∫ 1

0

H(θσ;x)[fu, gi](G(−θσ)[x])dθ = f(x, ϕ(λ)),
(18)

for any x ∈ Rn, λ ∈ Rn.

In particular, for x = Sϕ(t, σ;λ), the equalities in (18) allow us to rewrite (16) as follows

∂t[Sϕ(t, σ;λ)] = f(Sϕ(t, σ;λ), ϕ(λ)), t ∈ [0, T ], σ ∈ Rm, λ ∈ Rn. (19)

The dynamic satisfied by x1
ϕ(t;λ), t ∈ [0, T ], follows directly from (14) and (19), i.e.

dtx
1
ϕ(t;λ) = f(x1

ϕ(t;λ), ϕ(λ))dt+
m∑
k=1

gk(x
1
ϕ(t−;λ))dµk(t),

x1
ϕ(0;λ) = λ ∈ Rn, t ∈ [0, T ], where x(t−;λ) = lim

tn↑t
x(tn;λ).

(20)

As far as x2
ϕ := Sϕ(t, w(t);λ), t ∈ [0, T ], is concerned, applying the standard rule of

stochastic derivation and using (14) and (19), we obtain SDEs
dtx

2
ϕ(t;λ) = f(x2

ϕ(t;λ), ϕ(λ))dt+
m∑
k=1

gk(x
2
ϕ(t;λ)) ◦ dwk(t),

x2
ϕ(0;λ) = λ ∈ Rn, t ∈ [0, T ],

(21)

where the Stratonovich integral “◦”is computed by

gi(x) ◦ dwi(t) = gi(x) · dwi(t) +
1

2
[∂xgi(x)gi(x)dt, 1 ≤ i ≤ m,

using Itô integral “·”. The proof is complete.
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Lemma 2. (solution for (P2)) Under the hypothesis (a)-(b), there exist 0 < T̂ ≤ T and

a unique smooth deterministic mapping {λ = ψ̂(t, z) ∈ Rn : t ∈ [0, T̂ ], z ∈ Rn} satisfying

functional equations

Fϕ(t; ψ̂(t, z)) = z ∈ Rn, t ∈ [0, T̂ ], z ∈ Rn.

In addition, ψ̂ ∈ C1,2([0, T̂ ]× Rn; Rn) satisfies (H-J) equations (8)

Proof. By definition, {Fϕ(t;λ) ∈ Rn : t ∈ [0, T ], λ ∈ Rn} satisfies ODEs (4) which can be

written as integral equations

Fϕ(t;λ) = λ+

∫ t

0

f(Fϕ(s;λ), ϕ(λ))ds, t ∈ [0, T ], λ ∈ Rn (22)

and functional equations Fϕ(t;λ) = z ∈ Rn can be written as

Fϕ(t;λ) = z ⇔ λ = z −
∫ t

0

f(Fϕ(s;λ), ϕ(λ))ds := V̂ (t, z;λ), t ∈ [0, T ], λ ∈ Rn. (23)

Here the smooth mapping V̂ (t, z;λ) : [0, T ]× Rn × Rn → Rn is defined by

V̂ (t, z;λ) = z −
∫ t

0

f(Fϕ(s;λ), ϕ(λ))ds (24)

and the functional equations

λ = V̂ (t, z;λ) (25)

will be solved by applying Banach fixed point theorem. In this respect, we are looking for

0 < T̂ ≤ T sufficiently small such that

|V̂ (t, z;λ′′)− V̂ (t, z;λ′)| ≤ ρ|λ′′ − λ′|, t ∈ [0, T̂ ], z ∈ Rn, λ′, λ′′ ∈ Rn, (26)

for some constant ρ ∈ [0, 1) which shows that the nonlinear mapping V̂ (t, z;λ) is a con-

tractive one with respect to λ ∈ Rn and uniformly of t ∈ [0, T̂ ], z ∈ R. For proving (26),

define (see f ∈ (C1
b ∩ C2)(Rn × RN ; Rn))

K1 = sup{|∂uf(x, ϕ(λ))||∂λϕ(λ)| : λ ∈ Rn, x ∈ Rn},

K2 = sup{|∂xf(x, ϕ(λ))| : λ ∈ Rn, x ∈ Rn},
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and K3(T ) = (1 +K1T ) expK2T . Then using (22) and (24), by a direct computation, we

get

|Fϕ(t;λ′′)− Fϕ(t;λ′)| ≤ K3(T )|λ′′ − λ′|, t ∈ [0, T ], λ′, λ′′ ∈ Rn, (27)

|V̂ (t, z;λ′′)− V̂ (t, z;λ′)| ≤ T [K1 +K2K3(T )]|λ′′ − λ′|, t ∈ [0, T ], z ∈ Rn, λ′, λ′′ ∈ Rn. (28)

Take 0 < T̂ ≤ T sufficiently small such that

ρ = T̂ [K1 +K2K3(T )] ∈ [0, 1) (29)

and it yelds (see (28))

|V̂ (t, z;λ′′)− V̂ (t, z;λ′)| ≤ ρ|λ′′ − λ′|, t ∈ [0, T̂ ], z ∈ Rn, λ′′, λ′ ∈ Rn. (30)

The contractive property of the mapping {V̂ (t, z;λ) : λ ∈ Rn} found in (30) allow us to

get the fixed point λ = ψ̂(t, z) ∈ Rn (satisfying (25)) as a limit of a convergent sequence

ψ̂(t, z) = lim
k→∞

λk(t, z), ψ̂(0, z) = z, t ∈ [0, T̂ ], z ∈ Rn (31)

where

λ0(t, z) = z, λk+1(t, z) = V̂ (t, z;λk(t, z)), k ≥ 0. (32)

The smooth mapping ψ̂ ∈ C1,2([0, T̂ ] × Rn; Rn) is the unique solution of the functional

equations (25) and it lead us to

ψ̂(t, Fϕ(t;λ)) = λ, t ∈ [0, T̂ ], (33)

showing that {ψ̂(t, z) ∈ Rn : t ∈ [0, T̂ ], z ∈ Rn} is a fundamental system of first integral

associated with the flow {Fϕ(t;λ)}. Taking derivative with respect to the variable t, from

(33), we get

∂tψ̂(t, Fϕ(t;λ)) + ∂zψ̂(t, Fϕ(t;λ))f(Fϕ(t;λ), ϕ(λ)) = 0, t ∈ [0, T̂ ] (34)

for each λ ∈ Rn and, in particular, for λ = ψ̂(t, z) from (34) and ψ̂(0, z) = z we obtain

(H-J) equations (8). The proof is complete.

10



Theorem 1. (solution for P3) Under the same hypotheses as in Lemmas 1 and 2, consider

the flows {xiϕ(t, λ) ∈ Rn : t ∈ [0, T̂ ], λ ∈ Rn}, i ∈ {1, 2}, defined in Lemma 1 and satisfying

the characteristic systems (1) and (2) correspondingly. Let the smooth deterministic map-

ping ψ̂ ∈ C1,2([0, T̂ ]×Rn; Rn) be defined as in Lemma 2. Define z1(t, x) = G(−µ(t))[x] ∈ Rn

z2(t, x) = G(−w(t))[x] ∈ Rn, t ∈ [0, T̂ ], x ∈ Rn, and

λ = ψ1(t, x) := ψ̂(t, z1(t, x)) ∈ Rn, λ = ψ2(t, x) := ψ̂(t, z2(t, x)) ∈ Rn, t ∈ [0, T̂ ], x ∈ Rn.

(35)

Then the bounded variation mapping {ψ1(t, x) : t ∈ [0, T̂ ]} satisfies functional equations

x1
ϕ(t, ψ1(t, x)) = x, ψ1(t, x1

ϕ(t, λ)) = λ, t ∈ [0, T̂ ], λ ∈ Rn, x ∈ Rn, (36)

and the continuous and F t-adapted process {λ = ψ2(t, x) : t ∈ [0, T̂ ]} satisfies pathwisely

the following equations

x2
ϕ(t, ψ2(t, x)) = x, ψ2(t, x2

ϕ(t, λ)) = λ, t ∈ [0, T̂ ], λ ∈ Rn, x ∈ Rn. (37)

Proof. By definition, λ = ψ̂ ∈ C1,2([0, T̂ ] × Rn; Rn) is the unique smooth deterministic

mapping satisfying functional equations Fϕ(t; ψ̂(t, z)) = z, t ∈ [0, T̂ ], z ∈ Rn. Replacing

z = z1(t, x) ∈ Rn into the above equations, we get Fϕ(t, ψ1(t, x)) = G(−µ(t))[x] and

x1
ϕ(t;ψ1(t, x)) = x, t ∈ [0, T̂ ], for each x ∈ Rn. As far as z1(t, x1

ϕ(t;λ)) = Fϕ(t;λ),

t ∈ [0, T̂ ], it yelds ψ1(t, x1
ϕ(t;λ)) = λ, t ∈ [0, T̂ ] and the conclusion (36) is proved. Similar

arguments will be used to get (37) and noticing that ψ2(t, x2
ϕ(t;λ)) = λ, x2

ϕ(t, ψ2(t, x)) = x,

t ∈ [0, T̂ ], we obtain (37). The proof is complete.

Theorem 2. (solution for P4) Under the hypotheses of Theorem 1, consider the mappings

{λ = ψi(t, x) ∈ Rn : t ∈ [0, T̂ ], x ∈ Rn}, i ∈ {1, 2}, as defined in (35). Then {ψ1(t, x)}

satisfies the following nonlinear (H-J) equations with bounded variation perturbations (see

(9))
dtψ

1(t, x) + [∂xψ
1(t, x)]f(x, ϕ(ψ1(t, x)))dt+

m∑
j=1

[∂xψ
1(t−, x)]gj(x)dµj(t) = 0,

ψ1(0, x) = x ∈ Rn, t ∈ [0, T̂ ], where h(t−, x) = lim
tn↑t

h(tn, x).

(38)
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In addition, the continuous and F t-adapted process {ψ2(t, x)} satisfies the nonlinear SPDEs

(see (10))
dtψ

2(t, x) + [∂xψ
2(t, x)]f(x, ϕ(ψ2(t, x)))dt+

m∑
j=1

([∂xψ
2(t, x)]gj(x))◦̂dwj(t) = 0,

ψ2(0, x) = x ∈ Rn, t ∈ [0, T̂ ].

(39)

Proof. Applying the standard rule of deterministic derivation associated with the test

functions ψ̂ ∈ C1,2([0, T̂ ] × Rn; Rn) and bounded variation process z1(t, x) = G(−µ(t))[x],

t ∈ [0, T ], we get

dtψ
1(t, x) = ∂tψ̂(t, z1(t, x))dt+ [∂zψ̂(t, z1(t−, x))]dtz

1(t, x)

= ∂tψ̂(t, z1(t, x))dt−
m∑
j=1

[∂zψ̂(t, z1(t−, x))]gj(z
1(t−, x))dµj(t)

= E1(t, x) + E2(t, x),

ψ1(0, x) = x ∈ Rn, t ∈ [0, T̂ ].

(40)

Here, E1(t, x) := ∂tψ̂(t, z1(t, x)) where ψ̂ ∈ C1,2([0, T̂ ] × Rn; Rn) satisfies (H-J) equations

(8) and yelds

E1(t, x) = −∂zψ̂(t, z1(t, x))f(z1(t, x), ϕ(ψ1(t, x)))dt

= −∂xψ1(t, x)[∂xz
1(t, x)]−1f(z1(t, x), ϕ(ψ1(t, x)))dt.

(41)

Using the hypothesis [fu, gk] = 0, k ∈ {1, . . . ,m}, u ∈ RN , we notice that the product

{∂xG(−σ)[x]}−1f(G(−σ)[x], u) equals f(x, u) (see (18) of Lemma 1) and, in particular for

σ = −µ(t) ∈ Rm, we may and do write

E1(t, x) = −[∂xψ
1(t, , x)]f(x, ϕ(ψ1(t, x)))dt, t ∈ [0, T̂ ]. (42)

In addition, using similar arguments, we rewrite E2(t, x) as follows,

E2(t, x) = −
m∑
j=1

[∂xψ
1(t−, x)]gj(x)dµj(t), t ∈ [0, T̂ ], x ∈ Rn (43)

and (40) coincides with the conclusion (38), i.e.
dtψ

1(t, x) + [∂xψ
1(t, x)]f(x, ϕ(ψ1(t, x)))dt+

m∑
j=1

[∂xψ
1(t−, x)]gj(x)dµj(t) = 0,

ψ1(0, x) = x ∈ Rn, t ∈ [0, T̂ ].

(44)
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Regarding the conclusion (39), we get the result by applying the standard rule of stochastic

derivation associated with the test function ψ̂ ∈ C1,2([0, T̂ ] × Rn; Rn) and continuous F t-

adapted process z2(t, x) = G(−w(t))[x], t ∈ [0, T̂ ], x ∈ Rn. The following SPDEs of

parabolic type 
dtz

2(t, x) +
m∑
j=1

([∂xz
2(t, x)]gj(x))◦̂dwj(t) = 0,

z2(0, x) = x ∈ Rn, t ∈ [0, T̂ ]

(45)

is valid for {z2(t, x) : t ∈ [0, T̂ ], x ∈ Rn} which can be deduced by applying the standard

rule of stochastic derivation associated with the smooth deterministic mapping S(σ)[x] =

G(−σ)[x] when σ = w(t) ∈ Rm, t ∈ [0, T̂ ]. In this respect, notice that ∂σk
S(σ)[x] = −∂x{S(σ)[x]}gk(x),

∂2
σk

[x] = ∂σk
{∂σk
{S(σ)[x]}} = {∂x[∂x{S(σ)[x]}gk(x)]}gk(x)

(46)

for any σ ∈ Rm and x ∈ Rn which allow us to rewrite

dtz
2(t, x) =

m∑
j=1

∂σk
{S(σ)[x]}σ=w(t) · dw(t) +

1

2

m∑
k=1

∂2
σk
{S(σ)[x]}σ=w(t)dt (47)

as in (45). Here the Stratonovich integral “◦̂” is computed by

hj(t, x)◦̂dwj(t) = hj(t, x) · dwj(t)−
1

2
∂xhj(t, x)gj(x)dt, j ∈ {1, . . . ,m}, (48)

using Itô integral “·”. By definition, ψ2(t, x) = ψ̂(t, z2(t, x)), t ∈ [0, T̂ ], and applying

standard rule of stochastic derivation, we get

dtψ
2
j (t, x) = ∂tψ̂j(t, z

2(t, x))dt+ ∂zψ̂j(t, z
2(t, x))dtz

2(t, x)+

+
1

2
[
m∑
k=1

〈∂2
z ψ̂j(t, z

2(t, x))hk(t, x), hk(t, x)〉]dt, j ∈ {1, . . . , n},

ψ2(0, x) = (ψ2
1(0, x), . . . , ψ2

n(0, x)) = x ∈ Rn, t ∈ [0, T̂ ],

(49)

where hk(t, x) = −∂xz2(t, x)gk(x), k ∈ {1, . . . ,m}, and Itô equations (45), (48) are used.
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The last two terms in (49) can be rewritten as follows

m∑
k=1

(〈∂zψ̂j(t, z2(t, x)), hk(t, x)〉 · dwk(t)−
1

2
〈∂zψ̂j(t, z2(t, x)), ∂xhk(t, x)gk(x)〉dt)+

+
1

2
[
m∑
k=1

〈∂2
z ψ̂j(t, z

2(t, x))hk(t, x), hk(t, x)〉]dt =

−
m∑
k=1

〈∂xψ2
j (t, x), gk(x)〉◦̂dwk(t), t ∈ [0, T̂ ], x ∈ Rn.

(50)

In addition, using similar arguments as for writting E1(t, x) (see (42)) we get that the first

term in the right-hand side of (49) has the following form

∂tψ̂j(t, z
2(t, x))dt = −〈∂zψ̂j(t, z2(t, x)), f(z2(t, x), ϕ(ψ2(t, x)))〉dt

− 〈∂xψ2
j (t, x), f(x, ϕ(ψ2(t, x)))〉dt, t ∈ [0, T̂ ], x ∈ Rn.

(51)

Using (50) and (49) we get the conclusion (39) satisfied and the proof is complete.

Theorem 3. (Solution for P5) Under the same hypotheses as in Theorem 2, consider the

mappings {λ = ψi(t, x) ∈ Rn : t ∈ [0, T̂ ], x ∈ Rn}, i ∈ {1, 2}, satisfying nonlinear (H-J)

equations with irregular perturbations (38) and (39). Let h ∈ (C1
b ∩ C2)(Rn; RN) be fixed

and define ui(t, x) := h(ψi(t, x)), t ∈ [0, T̂ ], x ∈ Rn. Then the following (H-J) equations

are satisfied
dtu

1(t, x) + [∂xu
1(t, x)]f(x, ϕ(ψ1(t, x)))dt+

m∑
k=1

[∂xu
1(t−, x)]gk(x)dµk(t) = 0,

u1(0, x) = h(x), x ∈ Rn, t ∈ [0, T̂ ],

(52)


dtu

2(t, x) + [∂xu
2(t, x)]f(x, ϕ(ψ2(t, x)))dt+

m∑
k=1

[∂xu
2(t, x)]gk(x)◦̂dwk(t) = 0,

u2(0, x) = h(x), x ∈ Rn, t ∈ [0, T̂ ],

(53)

In particular, ui(t, x) = ϕ(ψi(t, x)) ∈ Rn, i ∈ {1, 2}, t ∈ [0, T̂ ], x ∈ Rn (see ϕ ∈

(C1
b ∩ C2)(Rn; RN) and (H-J) equations (11), (12)) satisfies (H-J) equations (11) and (12)

correspondingly.
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Proof. By definition, ui(t, x) = h(ψ̂(t, zi(t, x))), t ∈ [0, T̂ ], x ∈ Rn and rewrite it as

ui(t, x) = ĥ(t, zi(t, x)), t ∈ [0, T̂ ], x ∈ Rn, i ∈ {1, 2}, (54)

where the smooth deterministic mapping ĥ ∈ C1,2([0, T̂ ]× Rn; RN) is defined by

ĥ(t, x) = h(ψ̂(t, z)) ∈ Rn, t ∈ [0, T̂ ], z ∈ Rn. (55)

Using similar arguments as in the proof of Theorem 2 (see conclusions (38) and (39)) we get

the conclusions (52) and (53) as consequences of the standard deterministic and stochastic

rule of derivations. As far as ûi(t, x) = ϕ(ψi(t, x)), i ∈ {1, 2}, (see ϕ ∈ (C1
b ∩ C2)(Rn; RN))

enters the nonlinear vector field f(x, ϕ(ψi(t, x))), the conclusions (52) and (53) become

(H-J) equations (11) and (12) for {ûi(t, x)}. The proof is complete.
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