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Recently special attention has been paid to the theory of quasiidentities
developed by A. I. Mal’cev in the ’60s of the past century, due to the fact
that it has various relations with the mathematical logic, theory of lattices
and computer programming. For the latter areas the following problem is
of particular importance: when has a given algebraic system with a finite
signature a finite basis of quasiidentities? The importance of this problem
is also mentioned for theoretical programming by R. McKenzie in the sum-
mary of his work [1]. Currently the problem of the finite basis is solved for
finite groups (A. Iu. Olishanski [2]), finite associative rings (V. P. Belkin
[3]), finitely generated Moufang commutative loop and finitely generated
nilpotent Moufang loop (V. I. Ursu [4], [5]). W. Dziobiak [6] extended the
condition of the need for V. P. Belkin’s result in the case of finite non-
associative rings.

This paper proves that a finitely generated nilpotent A-loop has a finite
basis of quasiidentities if and only if it is a finite Abelian group. Moreover,
if a finite nilpotent A-loop is not commutative or associative, it has no basis
of quasiidentities from a finite number of variables. On the basis of this
result we found that the lattice of all subquasivarieties of the quasivariety
generated by a finitely generated nilpotent A-loop is finite or continuum.

By loop we mean an algebra L with an operation of multiplication · and
two operations of division /, \, where there is an element e ∈ L, that for
any elements x, y ∈ L the following equalities hold true

ex = xe = x; (xy)/y = y\(yx) = (x/y)y = y(y\x) = x.
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Further in this paper the element e will represent a unit element of the
loop and x−1 = e/x.

Let L be a certain loop and H its subloop. H is called a normal subloop
in L, if for any x, y ∈ L the following equalities hold true

x ·H = H · x, x · yH = xy ·H, Hx · y = H · xy.

The set

Z(L) = {a ∈ L | ax · y = a · xy, x · ya = xy · a, ax = xa for any x, y ∈ L}

is called the centre of the loop L. It is easy to note that the centre Z(L)
is a normal subloop in the loop L.

Let a be a certain element of the loop L. The left and right translations
La and Ra are defined by the equalities

xLa = ax, xRa = xa; x ∈ L.

The group M(L), generated by all translations with the form La and Ra,
a ∈ L, is called multiplicative group of the loop L. The element α ∈ M(L)
is called an internal substitution, if eα = e, i.e. α applies the unit e of the
loop L on itself. All internal substitutions of the loop L form a subgroup in
M(L), called the group of internal substitutions of the loop L, which will
be denoted by J(L). It is known (see [7]) that the group J(L) is generated
by all substitutions of the form

Rx,y = RxRyR
−1
xy , Lx,y = LyLxL

−1
xy , Tx = RxL

−1
x (x, y ∈ L).

The subloop H of the loop L is normal when and only when Hα = H
for any α ∈ J(L) (see [7]-[8]). If all internal substitutions of the loop L are
automorphisms, then L is called Ŕ-loop [7]-[9].

Let

L0 ⊇ L1 ⊇ . . . ⊇ Ln ⊇ . . .

be the central descendant range of the loop L, i.e. L0 = L, and for any
n > 0, Ln/Ln+1 is the subloop from the centre of the factor loop L/Ln+1.
The loop L is called nilpotent (or centrally nilpotent) if there is such a natural
number n that Ln = {e}. The least natural number n for which Ln = {e}
is called the class of nilpotence of L.

Let L be a nilpotent A-loop of class 2 and x, y and z elements from L.
The element (x, y, z)x\((xy ·z)/(yz)) is called the associator of the elements
x, y, z ∈ L; the element [x, y] = x/(y/xy) is called the commutator of
elements x, y ∈ L. The subloop of the loop L, generated by the set
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{[x, y], (x, y, z) | x, y, z ∈ L}

is called the commutator of the A-loop L and will be denoted by L′.
For any loop L with the symbol Φ(L) we will mark the Frattini subloop

of the loop L, i.e. the intersection of all maximal subloops of the loop L [8].
We also remind that if L is a di-associative (i.e. any of its two elements

generate a group) and commutative A-loop, then L is a Moufang loop. [10].
According to [11] in any nilpotent A-loop of class 2 the following identi-

ties hold true

[x · y, z] = [x, z] · [y, z],

[x, y · z] = [x, y] · [x, z],

(x, y, z) = (y, x, z) · (x, z, y),

(x, y, x) = e,

(x · y, z, t) = (x, z, t) · (y, z, t),

(x, y · z, t) = (x, y, t) · (x, z, t),

(x, y, z · t) = (x, y, z) · (x, y, t)

which will be used further by default.
For any class K of A-loops, we denote by P (K) the class of all Cartesian

products of loops from K, by S(K) we denote the class of all subloops of
the loops from K and by H(K) - the class of all homomorphic images of the
loops from the class K.

The smallest quasivariety (respectively, variety) generated by A-loop L
is called quasivariety (respectively, variety) generated by A-loop L and is
denoted by Q(L) (respectively, V (L)).

It is said that the quasiidentities (respectively, identities) of the loop L
have a finite basis if there is a finite subset Σ of quasiidentities (respectively,
identities) of the signature of the loop so that if a in a loop B, any formula
from Σ, holds true, then B belongs to the quasivariety (respectively, variety)
generated by loop L.

Let A and B be two A-loops, a ∈ Z(A) and b ∈ Z(B) - elements of the
same order. We will denote the factor-loop A×B/lp(a/b) by A×B(a = b).
It is easy to note that there are canonical isomorphisms of inclusion ϕ : A→
A×B(a = b) and ψ : B → A×B(a = b) so that
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A×B(a = b) = Aϕ ·Bψ, Aϕ ∩Bψ = lp(aϕ),

In this case we will consider A and Aϕ, B and Bψ the same loops and
instead of A×B(a = b) we will write AB.

Theorem. The quasiidentities of the finitely generated nilpotent A-loop
have a finite basis of quasiidentities if and only if it is a finite Abelian group.

Proof. Indeed, if L is a finite Abelian group, then according to Birkhoff
Theorem [12] the variety V (L) = HSP (I(L)), where I(L) is the class of
all loops isomorphic to L. Any cyclic group C ∈ SP (I(L)) is finite and
therefore any of its homomorphic images is isomorphic to one of its sub-
groups. Therefore, all cyclic groups from V (L) belong to the quasivariety
Q(L). Now if L is a finitely generated group from V (L), then L is finite and
(according to Theorem 8.1.2 from [13]) L = L1 · . . . · Lm is a direct product
of cyclic subgroups Li, i = 1, . . ., m. As Li ∈ Q(L), i = 1, . . ., m, we have
L ∈ Q(L). Therefore Q(L) = V (L). Hence, the quasiidentities of L have a
finite basis and it coincides with the finite basis of the true quasiidentities
in the finite abelian group L.

Conversely, let L be a finitely generated nilpotent loop, whose quasiiden-
tities have a finite basis. According to [11], the nilpotent A-loop is mono-
associative and the periodical nilpotent A-loop is locally finite. Therefore,
if we suppose that L is not finite, then L contains a cyclically infinite group.

According to Theorem 2.6 [11], the loop L satisfies the condition of maxi-
mality for subloops and, thus, the total number of prime numbers p for which
L contains a p-cyclical group is finite. This, in line with [14], means that the
quasiidentities, which hold true in L, have an infinite and independent basis
of quasiidentities - contradiction with the hypothesis. Hence, the nilpotent
A-loop L is finite. Suppose that L is non-associative or non-commutative.
Then L contains a non-associative or non-commutative p-subloop H. Sup-
pose the A-loop H is di-associative. If H is commutative, then, according
to [10], H is a Moufang loop; if, though, it is not commutative, then we
can consider H as generated by two elements, hence a non-commutative p-
group. In this case, according to [4] and [2] respectively, it results that the
quasiidentities of the finite loop L do not have a finite basis - contradiction.
Suppose now that the subloop H is not di-associative and exp(H) = pα.
Then we can consider H finitely represented as follows:

H = lp(a, b || apα = e, bp
α

= e, (a, a, b)p
β

= e, (a, b, b)p
γ

= e, [a, b]p
δ

= e),

where the positive integers α, β, γ and δ satisfy the conditions α ≥ β,
α ≥ γ, α ≥ δ. Suppose β ≥ γ (the case β ≤ γ is verified by analogy). If
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δ > β, then for the elements a1 = a, a2 = abp
δ−1

the following equalities
hold true

(a1, a1, a2) = (a, a, abp
δ−1

) = (a, a, b)p
δ−1

= e,

(a1, a2, a2) = (a, abp
δ−1

, abp
δ−1

) = (a, a, bp
δ−1

)(a, bp
δ−1

, bp
δ−1

) = (a, a,

b)p
δ−1 · (a, b, b)p

2(δ−1)
= e,

[a1, a2]
p = [a, abp

δ−1
]p = [a, b]p

δ
= e.

Hence, the subloop N = lp(a1, a2) of the loop L is a nilpotent non-
commutative p-group and as in the previous case we come to a contradiction.
Let β ≥ δ. In this case for elements a1 = a, a2 = abp

β−1
we have

(a1, a1, a2)
p = (a, a, a · bpβ−1

)p = (a, a, bp
β−1

)p = (a, a, b)p
β

= e,

(a1, a2, a2)
p = (a, a · bpβ−1

, a · bpβ−1
)p = (a, a, bp

β−1
)p · (a, bp

β−1
,

bp
β−1

)p = (a, a, b)p
β · (a, b, b)p

2β−1
= e

and

[a1, a2]
p = [a, a · bpβ−1

]p = [a, b]p
β

= e.

Hence, the subloop N = lp(a1, a2) of the loop L is a non-associative A-
loop, whose generators a1, a2 satifsy the conditions (a1, a1, a2) 6= e, ap

α

1 = e,

ap
α

2 = e, (a1, a1, a2)
p = e, (a1, a2, a2)

p = e, [a1, a2]
p = e. Obviously, the

non-associative A-loop N is commutative if [a1, a2] = e, which holds true if
β > δ.

Further we will mark as Fn (or Fn(x1, . . ., xn)) the free loop in the
quasivariety Q(N), of the rank m (with free generators x1, . . ., xn).

Lemma 1. The commutator F ′n of the Q(N)-free loop Fn(x1, . . ., xn)) is
a free Abelian group with the exponent p, with the following free generators:

a)(xi, xi, xj), (xi, xj , xj), 1 ≤ i < j ≤ n; (xl, xj , xk), 1 ≤ i < j < k ≤ n;
[xi, xj ], 1 ≤ i < j ≤ n,

if Fn is non-commutative;
b)(xi, xi, xj), (xi, xj , xj), 1 ≤ i < j ≤ n; (xl, xj , xk), 1 ≤ i < j < k ≤ n,
if Fn is commutative.
Proof. To prove the lemma it is sufficient to show that any relation of

equality between the generators of the group F ′n shown in a) (for b) the
procedure is similar) is a trivial identity in the variety V (N). Indeed, let
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∏
1≤i<j≤n

(xi, xj , xk)
αij ·

∏
1≤i<j≤n

(xi, xi, xj)
βij ·

∏
1≤i<j<k≤n

(xi, xj , xj)
γijk ·

∏
1≤i<j≤n

[xi, xj ]
δij = e

(1)

be a such a relation of equality

As x1, . . ., xn are free generators of the Q(N)-free loop Fn(x1, . . ., xn),
(1) is a true identity in any loop from the variety V (N). We will consider
two cases depending on the prime number p.

Case p = 2. We will show first that all exponents aij from (1) are equal to
zero, i.e. αij = 0mod2, 1 ≤ i < j ≤ n. For simplicity, suppose α12 6= 0mod2.
From the identity (1) for xi = e, i = 3, 4, . . ., n we obtain the identity

(xi, xi, x2) · (xi, x2, x2)γ12 · [x1, x2]δ12 = e, (2)

true in the A-loop N . If we suppose β12 = 0mod2 and δ12 = 0mod2,
then, according to (2), in the A-loop N the identity (x1, x1, x2) = e is
true, which means that N is di-associative - contradiction. Suppose that
β12 6= 0mod2 and δ12 = 0mod2. Then, from (2), we obtain the identity

(x1, x1, x2) · (x1, x2, x2) = e. (3)

If we make the substitution x1 → x1 · x2 in (3), we obtain

(x1x2, x1x2, x2) · (x1x2, x2, x2) = (x1, x1, x2) · (x1, x2, x2) · (x1, x2,
x2) = (x1, x1, x2) = e,

and hence, again we obtain that in the A-loop N the identity (x1, x1,
x2) = e holds true, which is impossible. Now suppose β12 = 0mod2 and
δ12 6= 0mod2. Then from (2) we obtain the identity

(x1, x1, x2) · [x1, x2] = e, (4)

true in the A-loop N . In (4) we make the substitution x1 → x1 · x2 and
obtain

(x1x2, x1x2, x2) · [x1x2, x2] = (x1, x1, x2)(x1, x2, x2) · [x1, x2] = (x1, x2,
x2) · (x1, x1, x2)[x1, x2] = (x1, x2, x2) = e,

i.e. (x1, x2, x2) = e. By changing the variable in the latter identity,
again we find that in N the identity (x1, x1, x2) = e, holds true, which is
impossible. Finally, let there be β12 6= 0mod2 and δ12 6= 0mod2. Then (2)
has the form
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(x1, x1, x2)(x1, x2, x2)[x1, x2] = e, (5)

If in (5) we make the substitution x1 → x1 · x2, then we have

(x1x2, x1x2, x2)(x1x2, x2, x2)[x1x2, x2] = (x1, x1, x2)(x1, x2, x2)(x1,
x2, x2)[x1, x2] = (x1, x2, x2) · (x1, x1, x2)(x1, x2, x2)[x1, x2] = (x1, x2,
x2) = e,

i.e. (x1, x2, x2) = e. From here, as previously, we come to a contradic-
tion. Hence, the assumption α12 6= 0mod2 is wrong. So we can conclude
that αij = 0mod2, 1 ≤ i < j ≤ n. Similarly we can deduce βij = 0mod2,
1 ≤ i < j ≤ n. Then the identity (1) takes the form∏

1≤i<j<k≤n
(xi, xj , xk)

γijk ·
∏

1≤i<j≤n
[xi, xj ]

δij = e. (6)

We show that δij = 0mod2, 1 ≤ i < j ≤ n. For simplicity we assume
that δ12 6= 0mod2. For xi = e, i = 3, 4, . . ., n, from (6) we obtain that in
the A-loop N the identity [x1, x2] = e holds true, which is impossible since
N is a non-commutative loop. Hence, the assumption that δ12 6= 0mod2 is
wrong. Therefore, we can conclude that δij = 0mod2, 1 ≤ i < j ≤ n. Then
the identity (6), equivalent to (1), takes the form∏

1≤i<j<k≤n
(xi, xj , xk)

γijk = e. (7)

Finally, we show that γijk = 0mod2, 1 ≤ i < j < k ≤ n. For simplicity
let us assume γ123 6= 0mod2. For xi = e, i = 4, 5, . . ., n, from (7) we
obtain that in the A-loop N the identity (x1, x2, x3) = e, holds true,
i.e. N is associative, which is impossible. Therefore, the assumption that
γ123 6= 0mod2 is wrong and, hence, we can conclude that γijk = 0mod2,
1 ≤ i < j < k ≤ n.

Case p > 2. As in previous case we will show first that all exponents αij
from (1) are equal to zero. For simplicity, let us assume that α12 6= 0modp.
From the identity (1) for xi = e, i = 3, 4, . . ., n we obtain the identity

(x1, x1, x2)
α12(x1, x2, x2)

β12 · [x1, x2]δ12 = e, (8)

true in the A-loop N . If we assume that β12 = 0modp and δ12 = 0modp,
then, according to (8) in the A-loop N the identity (x1, x1, x2)

α12 = e, holds
true. As p does not divide α12, the latter identity implies the identity (x1,
x1, x2) = e, which means that N is di-associative - contradiction. Let us
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assume that β12 6= 0modp and δ12 = 0modp. Then, from (8), we obtain the
identity

(x1, x1, x2)
α12 · (x1, x2, x2)β12 = e, (9)

If in (9) we make the substitution x1 → x−11 , we obtain

(x1, x1, x2)
α12 · (x1, x2, x2)−β12 = e.

Multiplying the latter identity by identity (9), we obtain

(x1, x1, x2)
2α12 = e.

Since p does not divide 2α12, the latter identity implies (x1, x1, x2) = e.
Hence we obtained that in the non-di-associative A-loop N the identity (x1,
x1, x2) = e holds true, which is impossible. Let us assume that β12 = 0modp
and δ12 6= 0modp. Then from (8) we obtain the identity

(x1, x1, x2)
α12 · [x1, x2]δ12 = e. (10)

If in (10) we make the substitution x1 → x−11 , we obtain

(x1, x1, x2)
α12 · [x1, x2]−δ12 = e.

Multiplying the latter identity by identity (10), we obtain

(x1, x1, x2)
2α12 = e

which, in its turn, implies (x1, x1, x2) = e. Hence in this case we also
obtain that in N the identity (x1, x1, x2) = e holds true, which is impossible.
Finaly, we assume that β12 6= 0modp and δ12 6= 0modp. If in (8) we make
the substitution x1 → x−11 , we obtain

(x1, x1, x2)
α12(x1, x2, x2)

−β12 · [x1, x2]−δ12 = e.

Multiplying the latter identity by identity (8), we obtain

(x1, x1, x2)
2α12 = e
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which again means that (x1, x1, x2) = e. Hence, in the non-di-associative
A-loop N the identity (x1, x1, x2) = e holds true. We have again a con-
tradiction. Therefore, the assumption that α12 6= 0modp is wrong. Thus,
we can conclude that αij = 0modp, 1 ≤ i < j ≤ n. Similarly we can de-
duce βij = 0modp, 1 ≤ i < j ≤ n. Then the identity (1) has the form
(6). Now we show that δij = 0modp, 1 ≤ i < j ≤ n. For simplicity we
assume δ12 6= 0modp. For xi = e, i = 3, 4, . . ., n, from (6) we obtain that
in the A-loop N the identity [x1, x2]

δ12 = e holds true. Since p does not
divide δ12, the latter identity implies that [x1, x2] = e. Hence, we obtained
that in the non-commutative A-loop N the identity [x1, x2] = e holds true,
which is a contradiction. Therefore, the assumption that δ12 6= 0mod2 is
wrong. Hence, we can conclude that δij = 0modp, 1 ≤ i < j ≤ n. Then the
identity (6), equivalent to (1), obtains the form (7). Finally, we show that
αijk = 0modp, 1 ≤ i < j < k ≤ n. For simplicity we assume α123 6= 0modp.
For xi = e, i = 4, 5, . . ., n, from (8) we obtain that in the A-loop N the
identity (x1, x2, x3)

α123 = e holds true. Since p does not divide α123, the
latter identity implies (x1, x2, x3) = e. Therefore, we have that in the non-
associative A-loop N the identity (x1, x2, x3) = e holds true, which is a
contradiction. Hence, the assumption that α123 6= 0modp is wrong and thus
we can conclude that αijk = 0modp, 1 ≤ i < j < k ≤ n. In this way we
obtained that (1) is a trivial identity, i.e. true in any loop from the variety
V (N). �

Lemma 2. The element x = (x1, x1, x2)(x3, x3, x4) . . . (x2n−1, x2n−1,
x2n) ∈ F2n(x1, . . ., x2n) cannot be represented as a product by a smaller
number of n associators.

Proof. We assume that x can be written as a product by a smaller num-
ber of n associators, i.e. for certain terms t1, . . ., t3k of the loop signature,
the following holds true

(x1, x1, x2) . . . (x2n−1, x2n−1, x2n) =
∏k
i=1(ti(x1, . . ., x2n), tk+i(x1, . . .,

x2n), t2k+i(a1, . . ., a2n)),

where k < n. Any relation of equality between the generators of A-loop
F2n is a true identity in the variety V (N), i.e. the obtained equality can be
considered as identity in V (N). The fact that this identity holds true in any
loop B ∈ V (N), means that any element g ∈ B′ with the following form

s = (u1, u1, u2) · (u3, u3, u4) . . . (u2l−1, u2l−1, u2l) (11)

can be written as a product of associators, whose number does not exceed
the number k. Since the number of elements with the form (u, v, w) from
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the loop Fs is at most p3s, then the number of elements with the form (u1,
v1, w1, . . ., (uk, vk, wk in the A-loop Fs is not higher than p3ks. This implies
that the total number of elements that can be written in the form (11) does
not exceed the number p3k·s. On the other hand, according to Lemma 1, F ′s
is free Abelian group with the exponent p and has s(s−1)/2 free generators
with the form (xi, xi, xj), 1 ≤ i < j ≤ s. Therefore, the total number of
elements with the form (11) cannot be smaller than ps(s−1)/2. Therefore, for
s > 6k + 1 we have a contradiction. �

Let’s establish a family of {Bm|m = 1, 2, . . .} A-loops, isomorphic to
the Q(N)-free A-loop F2n. Let A-loop Bm be generated by the elements

x1,m, x2,m, . . ., x2n,m and cm =
∏n
i=1(xi,m, xi,m, xn+i,m) ∈ Z(Bm),

then, by definition, we have

C1,n = B1, C2,n = C1,n ×B2(c1 = c2), . . .,
Cm,n = Cm−1,n ×Bm(cm−1 = cm).

For more simplicity, further on we will write Cm instead of Cm,n.

Lemma 3. The element

c = cm =
∏n
i=1(xi,m, xi,m, xn+i,m) ∈ Cm(m = 1, 2, . . .)

cannot be represented as a product of fewer than n associators.

Proof. We will apply induction by m. If m = 1, then according to
Lemma 1, the statement holds true. Let m > 1 and let us assume that the
statement of the lemma is not true. Then for a l < n and certain elements
d1, d2, . . ., d3l ∈ Cm, the following equality holds true

c =
∏l
i=1(di, dl+i, d2l+i).

Then for certain elements a1, . . ., a3t ∈ Cm−1, and b1, . . ., b3t ∈ Bm, we
have

c =
∏l
i=1(ai, al+i, a2l+i) ·

∏l
i=1(bi, bl+i, b2l+i).

From this equality it results that the elements∏l
i=1(ai, al+i, a2l+i) and

∏l
i=1(bi, bl+i, b2l+i)
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belong to the intersection Cm−1 ∩ Bm = lp(c). By the hypothesis of
induction this is possible only if both indicated elements are equal to unit,
and thus c is also equal to unit, which is not true. �

Lemma 4. The Frattini subloop Φ(Cm) of the A-loop Cm(m = 1, 2,
. . .) is the direct product of the subloops C ′m and Cpm = lp(xp|x ∈ Cm), i.e.

Φ(Cm) = C ′m · C
p
m and C ′m ∩ C

p
m = lp(e).

Proof. Let H be a maximal subloop of the A-loop Cm. Since the com-
mutator C ′m is in the centre of Z(Cm), then (H · C ′m)′ = H ′. From here it
follows that C ′m ⊆ H. Therefore, the subloop H is normal in the A-loop
Cm and, obviously, has the index p. But then xp ∈ H for any x ∈ Cm,
i.e. Cpm ⊆ H. But Φ(Cm), by definition, is the intersection of all maximal
subloops of the loop Cm, that is why C ′m · C

p
m ⊆ Φ(Cm).

The factor loop Cm/C
′
mC

p
m is an elementary abelian group, and thus, it

can decompose into a product of cyclic groups of p order. Therefore, it is
obvious that the Frattini subloop of the loop Cm/C

′
mC

p
m coincides with the

unit of the loop. Then, according to Lemma 2.1 ([8], p.97)

Φ(Cm)/C ′pC
p
m ⊆ Φ(Cb/C

′
mC

p
m),

and, thus, C ′b · C3
b ⊇ Φ(Cm). Therefore, Φ(Cb) = C ′b · C3

b .

Now we show that C ′m ∩ C
p
m = lp(e). First we not that if a p-loop L

satisfies the condition L′ ∩ Lp = lp(e), then this condition is also satisfied
by any finite Cartesian power Lm of L and by any factor-loop L/H, where
H ⊆ L′. Indeed, the equalities (Lm)′ = (L′)m and (Lm)p = (Lp)m lead to the
equality (Lm)′ ∩ (Lm)p = lp(e). Now let H be a normal subloop of the loop
L contained in L′. Then we have (L/H)′ = L′/H and (L/H)p = LpH/H.
Therefore, if we assume that (L/H)′ ∩ (L/H)p 6= lp(e), then for certain
elements e 6= a ∈ Lp and h ∈ L′, we have aH = hH. Which results in
a ∈ hH ⊆ L′, which contradicts the quality L′ ∩ Lp = lp(e).

Hence, to show that C ′m ∩ C
p
m = lp(e), it is sufficient to show that the

Q(N)-free loop F = F (x1, x2, . . .) of any rank s (finite or infinite) the
relation F ′ ∩F p = lp(e) holds. Indeed, let u ∈ F ′ ∩F p, hence u = u(x1, . . .,
xs) can be written in a canonical form, as follows

u(x1, . . ., xs) = xpm1
1 xpm2

2 . . . xpmss .

Since the latter expression is an identity in the Q(N)-free loop F , after
the successive substitution of xi in it by the unit element e, we obtain the
equalities xpmii = e, i = 1, . . ., s. Therefore u = e. �

Continuation of the proof of the theorem. Further we will show that the
finite A-loop L does not have a basis of quasiidentities from a finite number

11



of variables and, particularly, it does not have a finite basis of quasiidentities.
For this it is sufficient to have a A-loop At for any natural number t, which
does not belong to the quasivariety qL, but all its t-generated subloops to
belong to the quasivariety qL.

Indeed, let t > 1 be a natural number and Ft - a free A-loop of the
rank t of the quasivariety Q(N). We denote by g(t) the total number of
generators with the form (x, y, z) of the subloop F ′t . Then it is clear that
for any loop K ∈ V (N), generated by t elements, any element from the
subloop generated by all associators from K are expressed by a product of
g(t) associators with the form [x, y, z]. Now consider that n = g(t) + 1
and let M be a subloop of the loop Cm(≡ Cm,n), generated by t elements.
We denote by ϕ the natural homomorphism of loop B = B1 × . . .×Bm on
loop Cm, whose kern Kerϕ = lp(c1c

−1
2 , . . ., cm−1c

−1
m ). Let K be a minimal

pro-image through ϕ of the subloop M . It is clear that K is generated
by t generators. Let us show that K ∩ Kerϕ ⊆ K ′. Indeed, let there be
such an element d ∈ K ∩ Kerϕ and d /∈ K ′. If we admit that d ∈ Φ(K),
then according to Lemma 4, d = a · b, where a ∈ K ′ and b ∈ Kp ⊆ Bp.
This results in b = a\d ∈ K ′ ⊆ B′. Hence, b ∈ B′ ∩ Bp and, according to
Lemma 4, b = e. Hence d = a and, thus, d ∈ K ′ - contradiction. Therefore,
d /∈ Φ(K). Then in K there is a maximal subloop H so as d /∈ H. Then
K = (K ∩Kerϕ) ·H, which results in Kϕ = Hϕ. Thus we obtained that K
is not a minimal pro-image through ϕ of M . Hence, K ∩Kerϕ ⊆ K ′ and,
since g(t) < n it follows that any element from the intersection K ∩Kerϕ
is expressed as a product of n − 1 simple associators with the form (x, y,
z). On the other hand, according to Lemmas 2 and 3, the elements that
are different from the unit from Kerϕ cannot be expressed as a product of
fewer than n associators. Therefore, K ∩ Kerϕ = lp(e) and K ≡ M , but
then M ∈ Q(N). Hence, any subloop generated by t elements of the loop
Cm(m = 1, 2, . . .) belongs to the quasivariety Q(N). Particularly, if we
consider s = |L|+ 1 and At = Cs then any t-generated subloop of the loop
At belongs to the quasivariety Q(N).

Let us show that At /∈ qL. Since the loop At is finite, then according
to Theorem 8 ([13], p.294], it is sufficient to show that At is not included
isomorphically in any Cartesian power of the loop L.

Let us assume that the loop At is included isomorphically in a Cartesian
power of loop L. Then there is such an isomorphism ψ : At → L so that
cψs 6= e. If we suppose that for any j ∈ {1, 2, . . ., m} the set {xψi,j |i = 1,
2, . . ., 2n} contains an element aj , which does not belong to the subloop
(B1 . . . Bj−1Bj+1 . . . Bs)

ψ, then L contains s different elements, which is
impossible.

12



Therefore, there is such a j ∈ {1, 2, . . ., m} so that any element of the

set {xψi,j |i = 1, 2, . . ., 2n} belongs to the subloop (B1 . . . Bj−1Bj+1 . . . Bs)
ψ.

Then we will have

(xi,j , xi,j , xn+i,j)
ψ = (xψi,j , x

ψ
i,j , x

ψ
n+1 ∈ ((B1 . . . Bj−1Bj+1 . . . Bs)

ψ, xψi,j ,

xψn+i,j) = (B1 . . . Bj−1Bj+1 . . . Bs, xi,j , xn+i,j)
ψ = lp(e)

for each i = 1, 2, . . ., n. From here we obtain

cψs =
∏n
i=1(xi,j , xi,j , xn+i,j)

ψ = e,

which contradicts cψs 6= e. Thus the assumption At ∈ qL is not true. There-
fore, At /∈ Q(L). This proves the theorem.

Directly from the Theorem two corollaries follow.
Corollary 1. If a finite nilpotent A-loop is not commutative or associa-

tive, then it has no basis of quasiidentities from a finite number of variables.
Corollary 2. If L is a finitely generated nilpotent A-loop, then Q(L) =

V (L) if and only if L is a finite Abelian group.
Similarly to [5] we will prove the following.
Corollary 3. The lattice of subquasivarieties of the variety generated

by a finitely generated nilpotent and non-associative or non-commutative
A-loop has the power of the continuum.

Proof. Indeed, let L be a finitely generated nilpotent A-loop and M the
variety generated by the A-loop L. If A-loop L is not finite, it contains an
infinite cyclic group and a finite number of p-subloops. Then, according to
the proved Theorem, the quasivariety Q(L) is defined in the variety V (L) by
a infinite and independent system of quasivarieties. Therefore the number
of quasivarieties from V (L) that contain Q(L) is continuum.

Let now the A-loop L be finite. The proof of the above Theorem showed
that for any natural number t there is such a finite loop Lt from the variety
V (L) that any t-generated subloop from Lt is contained in the quasivariety
Q(L), but the loop Lt itself is not contained in the quasivariety generated
by all loops from V (L) of a strictly smaller order than t. We construct such
an infinite range of natural numbers {ti|i ∈ N = {1, 2, . . .}} that: t1 = |L|,
ti+1 = |Li|+ |L| (here and further on instead of Lti we will write Li).

Let us prove that Li /∈ Q({Lj |j ∈ N\{i}}). Indeed, if it is not true,
then, according to Theorem 8 [13], for any a ∈ Li, a 6= 1, there is an
homomorphism ϕa from Li in a certain loop Lj , j 6= i, so as aϕa 6= 1. If
i < j, then |Lϕi | < tj and, since Lϕi ⊆ Lj , we have Lϕi ∈ Q(L). This means
that the element a verges towards the loop L. Therefore, according to the
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same Theorem 8, Li ∈ Q({L, Lj |1 ≤ j < i}). But |Lj | < ti, |L| < ti, which
contradicts the definition of Li.

For each i we establish the quasiidentity Φi identically true in the qua-
sivariety Q({Lj |j ∈ N\{i}}) and false in the loop Li. Then the system
{Φi, i ∈ N} of quasiidentities is infinite, independent and, in particular,
the lattice of subquasivarieties from the variety M has the power of the
continuum.�
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