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1. INTRODUCTION

These are the notes of the lectures given during the winter 2012-2013 at the Institute of Mathematics
of the Romanian Academy and based on P. Glowacki’s papers [G1] and [G2] on Melin calculus for
pseudodifferential operators on homogeneous Lie groups. The aim of these two papers was to extend some
of the Melin’s results ([Me]) on pseudodifferential operators on graded Lie groups to pseudodifferential
operators on general homogeneous groups. The main Glowacki’s ideas were to use Héormander’s results
on slowly varying metrics and to introduce an operator, which we called the reduction operator (see
Proposition 6.7 for its definition). Using the reduction operator and induction, one can reduce the study
of pseudodifferential operators to commutative groups.

During these lectures we detailed the proofs from Glowacki’s papers, using, partially, [H]. Also we
introduced the notion of admissible metric (Definition 6.6), which, we think, may help to clarify the
statements and proofs.We have to mention that we were able to prove the theorem on the continuity of
Melin’s operator(Proposition 5.1 from [G1] and Theorem 5.1 from [G2]) only in a weaker form (Propo-
sition 6.17 in our notes). But we could prove the main results from Glowacki’s papers (the theorem on
the composition of symbols and the theorem which asserts the L2?-continuity of the pseudodifferential
operators) using Proposition 6.17.

Let us describe now the content of these notes. In section 2 the definition of slowly varying metrics,
self-tempered metrics and weights in Hormander’s sense is given. An important, for us, subclass of such
metrics is described in Lemma 2.6. The spaces of symbols associated to slowly varying metrics are also
defined and their properties needed in our notes are proved. Section 3 deals with metrics and weights
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2 MIHAI PASCU

on homogeneous spaces. The basic tools of Hérmander’s theory of Weyl calculus for pseudodifferential
calculus are presented in section 4. In section 5 one introduces the homogeneous groups and one specifies
some notations used in section 6. Section 6 is the main section of these notes and corresponds to the
main sections of Glowacki’s papers. Here one proves the main propositions, Proposition 6.7, Proposition
6.15 and Proposition 6.17, used in the last section in the proofs of the theorem on the composition of
symbols and of the theorem which asserts the L?-continuity of the pseudodifferential operators.

Finally, let us stress that our notes constitute only a rephrasing of Glowacki’s papers. Therefore we
freely reproduced parts of these papers if we considered that no completion or correction is needed.

The list of references is minimal.

2. SLOWLY VARYING METRICS, WEIGHTS, SYMBOLS

Let X be a real n- dimensional vector space. A family of Euclidian norms on X, g = (g )zex is called
a varying metric on X or, simply, a metric on X. Ocasionally, in this section, we fix an orthogonal basis
{ej};—1. ., in X and, in this case, we denote z = S iy = (T, Tp).
Definition 2.1. A metric g on X is called slowly varying if there exist some positive constant v € (0, 1]
such that

9o _ 1 .
(2.1) Vw,yeXﬁSfS;ngx(x—y)Sv-
y

Remark 2.2. A metric g is slowly varying if and only if there exists some positive constant v € (0, 1]
such that

+1
B 1.
(2.2) Vr,y € X,y < (g> < - ifge(z—y) <.
9y v
Indeed, if (2.1) holds for some ~, then (2.2) holds also if we replace v with 2.

Definition 2.3. Let g and G be two metrics on X. The metric g is G-tempered if there exist some
positive constants C and M such that

+1
(2.3) (?) <CA 4Gz —y))M Vo,ye X
y

and if g, < G,V € X.
The metric g is called self-tempered if it is g-tempered.

Remark 2.4. A self-tempered metric g is slowly varying. Indeed, let us assume that (2.3) holds. If
v € (0,1] is such that C(1 + )M < %, then

1 1
g—ngandg—ygfifgm(m—y)gv.
9y vy 9z Y

Lemma 2.5. If g is a self-tempered metric with the constants C and M, C > 1, then for every x,y,z € X

(2.4) 1+ go(z —y) < C(A+gy(z —y)MT,
(2.5) 1+ go(z —y) <C(A+g:(x — 2)"TH 1+ g2(z — y)),
(2.6) 1+ go(x —y) < C*(L+ gol — 2))M(L+ gy(z —y)M T

Proof. First of all, we have

1+ go(z—y) <14 Cgy(x —y)(1+ gy(z —y)M < C(A+ gy(z —y)M T
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Then, from (2.4) and the definition of the self-tempered metric, we obtain (2.5):
L+ go(z—y) <1+ ge(r—2) +gu(z—y) <
<O+ gz —2)MH 4+ Cga(z —y)(L+ galz — )M <
<O+ ga(z = )M (1 + g2(2 — y)).

The inequality (2.6) is proved in a similar manner:
L4 go(@ —y) <1+ go(z = 2) + gu(z — y) <1+ go(w = 2) + Cga(z = y)(1 + gulz — 2)) <
< (14 go(z = )M+ Cga(z —y) < O+ galz = 2))M (1 + g2(2 — y)) <
< C*(1+ ga(z — 2))M (1 + gy (2 —y)) M H

O
Lemma 2.6. Let
9= (9s)rex,92(2)* = Zaj(ac)Qz?,Vm,z € X,a;: X — (0,00),V5 €{1,...,n}.
j=1
Then
a) The metric g is slowly varying if and only if there exists v € (0,1] so that
; 1
Ve Xy <9 < Lvie ) -y <o
aj(z) ~ v
b) If the metric g is G-tempered with constants C and M, then
a; )\
( J ) <CA+4Gu(z—y)M Vje{l,...,n},Vr,y € X.
a;(z)
Proof. If we take z = €;,j7 = 1,...,n, then b) and the "only if” part from a) follows straigtforward by
the definitions. The ”if” part of assertion a) is quite obvious. O

Definition 2.7. A function m : X — (0,00) is called a G-tempered weight with respect to the G-tempered
metric g if

+1
(2.7) Vr,y € X, (%) <Cifge(z—y) <~
My
and
o\ £
(2.8) (mx) < C(1+ Gz —y)M, Yo,y € X.
y

If g is self-tempered and m is a g-tempered weight with respect to g, we shall say simply that m is a
g-tempered weight.

Remark 2.8. Let m, n be G-tempered weights with respect to g and let & € R. Then m*, mn , m +n
and max(m,n) are G-tempered weights with respect to g.

Example 2.9. If g is a G-tempered slowly varying metric on X, if G is self-tempered and if xg € X,
then m: X — Ry, m(x) =1+ g,(z — z9),Vz € X is a G-tempered weight with respect to g.
Indeed, if ¢ satisfies (2.1) and g, (z —y) < 7, since
1
gx(x - xO) < ;gy(x - (Eo)
and )
9y(x = 0) < g9y =) + gy (y = ¥0) < Zgu(x = y) + 9y (y = 70) < 1+ (y = o),
then
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14 gu(z — o) _ 14 ga(® —x0) 1+ gy(x —20) - 1+%gy(ﬂc—$o) 2+ gy(y — x0) <g
1+ gy(y — o) 1+ gy(x—z0) 1+gy(y—20) =~ 1+gy(@—z0) 1+gy(y—z0) ~ 7

Also, let as assume that (2.3) holds, without any loss of generality, with some constants C' > 1 and
M > 0. Then

1+ ge(z — 20) _ 1+ go(z — 20) ' 1+ gy(z — 20)
1+gy(y_x0) 1—|—gy(a:—x0) 1+gy(y_x0)
1+ CA+Ga(w—y)Mgy(x —20) 1+ 9y(y —0) + Gy(z —y)
B 1+ gy(z — x0) 1+ gy(y — o)
<O+ Gz —y)M (1 + Gz —y)) <
<O+ Golz —y)M (1 + CA+ Go(z —y)M ) <
<2C%(1 + Go(x — ))2M+1,

<

IN

Example 2.10. Let g = (9)zex, g2(2)% = 2?21 a; (x)%?ﬁx,z € X be a slowly varying, G-tempered
metric. Then, from Lemma 2.6 it follows that the functions a;,j € {1,...,n} are G-tempered weights

with respect to g.

We shall define now the symbol classes we are working with ([H], [G2]). If f € C*°(X) and if g is a
metric on X, then

9:(D" f(x)) = sup ID*F(@) (v - yw)| =
y; €X,9.(y;)<1,j=1,....,k
(2.9) o
_ sup | f(x)(ylw..’yk)',VlEGX.

weX\(0hi=lok 1oy 92(y))
With D* f(z) we denoted the Fréchet derivative of order k of f.
Lemma 2.11. a) Let f,g € C*°(X). Then

(2.10) 0.(D*(fg)(a Z( )ggc (D7 1(2))ga (DF T g ().

b) For every k € N* there exists a positive constant Cy, such that if f(x) # 0, then

(2.11) 9o(D*(1/f)(@)) < Crf ()" (92(Df) () + -+ + (92 (D" f(2)))/*)*
if u(z) > 1 and

(2.12) 9o(D*(1/f)(@)) < Crf (2)(gs(Df)(@)) + -+ + (g2(D" f)(2))/*)*
if u(z) <1
Proof. a) (2.10) follows from (2.9) and the Leibniz’ rule:

D*(f9)() (- - ur) Z Z D f(2)(ya) D" g(2) (yc (o))

Jj=0 a€Fj

where Fjp = {a = (a1,...,05);1 <oy <--- < a; <k}, Ya = Ways- -+ Ya,), Ca) is the complement of
o and card Fj = (?)
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b) We shall prove b) for f(z) = 1. The general result will follow by homogenization. Let h =
1 — f. Then, there exists a neighbourhood V of x such that |h(y)| < 1/2,¥y € V. Therefore 1~

fly
Yo hi(y),Yy € V. Since h(z) = 0, D*hi(z) = 0,Vi > k. Therefore, using a), we obtain that

¥

9o(D*(1/)(@)) <Y 92(D*'(2)) < Cilga(DA(@)) + (92(Dh)(@))'? + - + (9o (D*h) (2))/*)* =

-

1=1

= Ci(ga(Df(2) + (u(D* f(@))/? 4 -+ + (9 (D" 1) (@) /1),

O

If m is a G-tempered weight with respect to the G-tempered metric g and f € C*°(X), then we put
92(D* ()

| f1(y(9) = sup

and
k
F1(9) = D115 (9)-
§=0
The space of symbols of order m with respect to g is
S(m,g) = {a € C=(X);]ali*(g) < o0,k € N}.

Example 2.12. Let g = (g2)sex, 92(2)% = Z;'L=1 aj(x)zzf-,Vx, z € X be a slowly varying metric on X.
If we fix a basis {e1,...,e,} in X, then a function f € C°(X) is in S™(X,g) if and only if for every

a € N™ there exists a constant C, so that
(2.13) |0 f(z)| < Com(z)a(z)*, Vo € X.

We have used the standard notations 9% = o7 ...95~, 9; = 0/0x;,Vj € {1,...,n} and a(z)* =
ay () .. ap ().

Proof. We shall give the proof only for derivatives of order 1. Derivatives of higher order can be treated
in a similar manner.

7 =7 Forie€{l,...,n}, gz(e;) = a;(x). If f € S™(X,g), then
92(Df(x)) [(Df(x)(en)] |0if ()]
CIIR e IR e R wlm()
7«7 If (2.13) holds, then
oy DI _ i@
cex  m(x) zeX yex\{0} 9=(y)m(z)

= sup sup | Z;L:l yiaz‘fl(zﬂ <
eeX yex\{o} (30 a;(z)?y?) / m(z)
<sup sup (Z?:l a; (x)2yi2)1/2 (Z?:l ai(:r)72(9¢f(I)2)

z€X yeX\{0} (Z?:l ai(I)ny)l/z m(z)

1/2
< 00.

O

Remark 2.13. S™(X,g) with the family of norms |- |} is a Fréchet space. If ¢ is as in Example 2.12,
then

sup |0 f(x)|m(z) ta(x) "%, o € N®
rzeX

is an equivalent family of seminorms.
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3. METRICS AND WEIGHTS ON HOMOGENEOUS EUCLIDEAN SPACES

A triplet (X,(X1...,XRg),(d1,...,dr)), where X = X; @ --- ® Xp is an euclidean vector space of

dimension n, scalar product < -,- > and norm || - || and dy,...,dg are real numbers, 1 = d; < --- < dp is
called a homogeneous euclidean space. We shall denote with nj the dimension of Xj. Thus the variable
x € X splits into ¢ = (z1,...,2r). On X we introduce a family of dilations

Sex =tx = (thaxy, ... tiRxR), Vo € X,Vt > 0.

This adhoc definition is justified by the fact that such a triplet corresponds to the Lie algebra of a Lie
homogeneous group (see section 5).
For = (x1,...,zr) € X we put

R
o =l
k=1

|| is a homogeneous norm ([FS]), in the sense that (a) |x| = 0 if and only if 2 = 0, (b) |—z| = |z|,Vx € X
and (c) |tz| = t|z|,Vz € X,Vt > 0. More than that, since (a + b)* < a* + b*,Va,b > 0,Vu € (0,1], | - |
satisfies also the triangle inequality |z + y| < |z| + |y|,Vz,y € X.

For 1 <k < R we define

R
|| = Z ||xj||1/df,V:1c e X.
j=k

|z|r are homogeneous seminorms, in the sense that they satisfy (b) and (c) from above, and they
satisfy also the triangle inequality. Let us remark that |x|; = |x|. We shall also put |z|gp+1 =0,Vz € X
@e(2) = 1+ |2es1, Vo € X,Vk € {0,1, ..., R}
and
Grs(x) =0 + |x|py1, Vo € X, Vb € {0,1,...,R},Vé > 0.
Let

R 2
5/ \2 l| 2|
2(2)° = g ———,Vx,z € X,V > 0.
g ( ) pt gk,é(q’.)2dk

We shall also use the notation ¢, = g..
We shall prove now that the metrics gx(-; d) are uniformly slowly varying and uniformly self-tempered
with respect to § > 0.

Lemma 3.1. For every k € {0,..., R} and for every § > 0,

~

gr.s(T
9k,5(y)

Proof. 1f g’(z —y) < [1/(2R)]*#, then

(3.1) <

1 1\%
3 szifgi(x—y)<(2R> :

o ,1/dj<9135(x)<9’“7‘5(x)v' k+1,...,R}.
g = |V < o < SV € k1, RY

Therefore |z — y|r+1 < gr,6(z)/2 and consequently

1
Grs(x) =0+ [z|ppr <O+ lesr + 2 — ylerr < grs(y) + ggk,é(l”)

and

3
Grs(y) =0+ [Ylerr <0+ [2lpr1 + |z —ylpyr < 5%,5(:6)

which implies (3.1). O
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Lemma 3.2. There exists a constant C > 0 so that

(3.2) g,5(x) < Cars(y) (1 + g5 (x — y)), Yo,y € X,Vk € {0,1,..., R} ,¥6 > 0
and
(3.3) 9k,6(2) < Cgrs(y)(1+ gi(m — y))R_k,Vx, y € X,Vk €{0,1,...,R},Vé > 0.

Proof. We shall prove first (3.2). We have

yill %

R
T — xj—
9e5(2) < grs(¥) + |7 — yles1 = grs(y) (1 Ll 25} yk“) <ges(y) [1+ D L 7
9r.5(y) S 9is)

Using the inequality

R R
S g <R-k+ Y af Va; >0,¥d; > 1,
j=k+1 Jj=k+1

we obtain that

?JJ”l/dj

R
Z ||$j— j

R
<R+ Z ||17j—yj\|.
ikt 95,5(y)

Pt 95.6(y)%
Therefore

grs(x) < Cgrs(y)(L+ g)(x — )

for C =2(R+1) and (3.2) is proved.
We shall prove (3.3) by induction. For k = R there is nothing to prove. We can take C' = 1 in this
case. Let us assume that (3.3) holds for k& + 1 with some constant C > 1. Then

|z — ylkt1 gr+15() |7 —yler
9r,6(%) < grks(y) + |2 — yler1 = gr.s(y) (1 + ) <grs(y) [ 1+ ’ : :
Ir,5(Y) gk+1.6(Y)  Grr15()

By induction hypothesis,

-
9e6(2) < Cgra(y) (1 + gl — )P4 (1 4 'y“) <
9it1,6(2)

R
o vy,
< Couan)1+ 2 =)™+ [ R+ Y Lol (jjj”
j=ky1 930
< Cugrs(y)(1 + gh(z — ) F,

which proves that (3.3) holds with some new constant C. O

Corollary 3.3. a)The metrics gg are uniformly slowly varying and uniformly self-tempered with respect
to 6 > 0.

b) gr.s are g,‘i weights uniformly with respect to § > 0.

c) g is a g) weight ¥5,8" > 0.

Proof. All the assertions of the corollary follow from Lemmas 3.1, 3.2 and 2.6 if we put

—1 —1 —d —d
(@1, @nys ey Ottty o5 @n) = (G 50291501 9Rs - IRS )-
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4. HORMANDER’S LEMMAS
The following two results are essential tools in Hormander’s theory of Weyl calculus ([H]).

Proposition 4.1. Let g be a slowly varying metric on X.

a) If v is the constant from formula (2.2) and 0 < £ < 7, then there exists a sequence (x,), of points
in X so that the balls

B, =Bi(z,,r)={z € X; 9, (x —x,) <7}

cover X and there exists some N so that card{v;x € B,} < N,Vzx € X,Ve <r <~.

b) For every r € (g,7), there exist ¢, € C§°(By),Vv € N*, so that (¢), is a bounded sequence in
SYX,g) and >, ¢ (x) =1,z € X.

¢) If g is a self-tempered metric, then there exist two positive constants C and M which depend only
on the constants C and M from (2.8), on € and on the dimension of X so that

(4.1) S +dy(z) M <Cvre X

Here d,(z) = gy, (x — x,).

Proof. a) First of all, let us remark that if K is a compact set in X, if F' is a totally ordered set of
indices and if (z,),er is a family of points in K so that g, (z, — x,) > &,Vv > pu, then F' is finite.
Else, since K is a compact set, there exists a point x € K and a sequence (l‘yj ); convergent to  so that
Ya,, (v, — @y;) 2 €,k > j. Let 6 € (0,7). Then there exists js € N so that g, (z,, —2) <0 if j > js.
Then

gl‘uj (ka - xl/j) S giuj (ka - x) + gwuj (ij - x) S %gl(l‘ljk - JI) + %gl(l‘ljk - 3?) S 2,76avj7 k 2 j5-

If we take § < /2, we obtain a contradiction.
Therefore, there exists a maximal sequence of points (x,), in X so that

(4.2) Gz, (T, — ) > €,V > p.

This sequence has all the required properties. Indeed, the balls (B,), cover X when r = ¢ since
otherwise would be possible to add some point z to the sequence (z,), without violating (4.2).

Next, let z € X and « € B, N B,. We can always assume that ¢ < v. Then g,(z —z,) < % <1 and
9z (Ty—2p) > V9o, (x,—x,) > ve. Therefore {y € X;g.(y —x,) <ve/2} |y € X5 9.(y — 1) <7e/2} =
(). There is a fixed upper bound for the number of disjoint open balls of a fixed radius which are included
in a ball of radius 1 in a finite dimensional normed space. This bound depends only on the dimension of
the space and on the radius. It does not depend on the norm. This remark ends the proof of point a).

b) Let ¢ € C5°(—r?,72), ¥(t) = L,Vt € (—e2,e%), Yu(x) = Y(gu, (v — z,)?),V2z € X,V € N¥,
b (z) = ¥y (z)/ (Z# zpﬂ(x)). It is clear that (¢,), € C5°(B,), Vv € N* and 3 ¢, (x) = 1,¥a € X. Let

us prove that (¢,), is a bounded sequence in S*(X,g).
We shall first prove that (1, ), is a bounded sequence in S*(X,g). We have
D v D 14 1 D v
DY (@)yl _ y;éo\ Yo(@)yl 9o, () _ 1 _Supy;éol Yu(2)y|
9=(y) 92,(y)  g2(y) 9z, (Y)

since g, (¥ — ) < v on suppy,. Let (a;;); j=1...n be the matrix of the quadratic form (g, )?. Then

92 (D (2)) = sup, g

n 8 n
Dipy(x)y = 5. Vs, (2~ 2)2)yj = 20 (Ga, (& = 2.,)%) D yjais (s — w0).
j=1 "7

ij=1

Here z = (21,...,2,),n = dimX.
Since

n
1D yiaii (@i — 20| < go, ()90, (2 — 2),
ij=1
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we have

D 2 2
DY@ 200 0 5)?)] < %,Vx € X,¥y € X\ {0}, ¥ € N*

9z, () gl
for some positive constant C'. Therefore |¢U|%1)(g) are uniformly bounded with respect to v. One can
prove in a similar manner that |wl"(1k:) (g) are uniformly bounded with respect to v, Vk € N.

Taking into account the uniform boundedness of the sequence (¢,), and the fact that there exists
some N so that card {v;z € B,} < N,Vz € X,Ve <r < v, we obtain that ). v, € S'(X,g). Lemma
2.11 ends the proof of the point b).

¢) Let My, = My(x) = {v;d,(z) < k},Vz € X,Vk € N. It is sufficient to prove that there exist some
constants ¢ and m, which depend only on the constants C and M from (2.3), on ¢ and on the dimension
of X so that

(4.3) card(My) < c(1+ k)™, Ve € X,Vk e N
Indeed, if (4.3) is true and if M = m + 2, then

Datd@) =Y ¥ ard@) sy ¥ o0+ s

v k>0 ve My 1\ My >0 €My 1\ My,
<ed (1+k)T = 0 < .
k>0
We shall prove now (4.3). Let v € M}, and
V, = {Z € X;gm(z - xV) < Tk}

where 7, = 7/(C(1 + k)™) and C and M are the constants from (2.3).
Then

(4.4) V, C B,.

Indeed, if z € V,, and v € M, then
r

—z) < — )M gu(z — ) < Y EareT =
92, (2 = 1) SO+ ga, (x —20) " ga(z —2) S C(1+ k) C(1+ k)M

r.

Also, for z € V,, and v € M}, we have
9u(2 = 2) < go(2 = 2) + gul@y — 2) <1p + Ofa, (2 — ) (1 + ga, (v, — 2))™ <7 + C(1 + k)MFL
Therefore
(4.5) V, CV =V(z,k) ={z € X;9,(z —x) < Ry},
where Ry = rp + C(1 + k)M+L,
Let |V,| = Ci(z)r}, n = dimX be the volume of V,,. Using (4.4) and (4.5), we obtain that

Ci(z)card(My)ry = > Vo < N|Uyen, Vi| < N|V| < Ci(z)NRE,
ve My
where N is the constant from a).
Therefore

cardMj, < Nrp "Ry = N(1+ C(1 + k)M+1p-1)m < 202" Ny (1 + k) ZMFDn,
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Proposition 4.2. Let (X, | - ||) be an euclidean normed space, r1 > r > 0, z9 € X and L an affine
function so that L(z) # 0,Yx € B(xg,71). Then

(4.6) | DF (i) (z)|| < o= r)kljﬁ'L(xo)' Va € B(xo,r),Vk € N.

Proof. We may assume, without loss of generality, that xop = 0 and that L(0) = 1. In this case, there
exists £ € X so that L(z) =< {,x > +1,Va € X. Since < &,z > +1 > 0,Vz € X, ||z|| < rq, it follows
that ||¢]| < 1/r and L(x) > (r1 — 1) /11, Vo € B(0,r).

Since, for z € B(0,7), L™ (x) = 2i>0 (—1)7 < & 2 >7, we have

D(L™Y)(2)y =35 (1)) <&a>I71< gy >=— <&y > L(x) 2

We have used the fact that —(1 +a)~2 = Zj21(—1)jjaj_17Va eR,|a| < 1.
Using the formula D* f(x)(y1, ..., yr) = Do[D*~1 f(2)(y1, ..., Y—1)]yx, one can prove by induction on k
that

—1)*k!
Dk(L_l)(x)(yh ~"7yk?) =< €7y1 > ... < gvyk > (L(x)))k 7vxay17 s Yk e X.
Therefore el |
_ K€ klrq
DE(L! < < vz € B(0,r).
IDHL @ < it € g ¥ € BOW)
|
5. HOMOGENEOUS GROUPS
Let (g,+, [, ]) be a finite dimensional Lie algebra of dimension n endowed with a scalar product < -, - >.

A family of dilations on g is a family (d;)¢~o of algebra automorphisms of g of the form ¢; = exp(Alog t),
where A is a positive definite operator on g. Let 0 < d; < ... < di be the eigenvalues of A and

gr = {r €g b= td’“x} ,Vke{l,..,R}.

Since ;o = exp(aAlogt), by adjusting « if necessary, we may assume that d; = 1.
Proposition 5.1. If a Lie algebra g admits a family of dilations, then g is nilpotent.

Proof. If x € gj,y € gk, then &[z,y] = [0z, 6y] = [thx, tdy] = tditde[z y]. Hence [g;, 9] = {0} if
d; + dj, is not an eigenvalue of A and [g;, gx] C g; if d; + di, = d; for some eigenvalue d; of A. Therefore,
if we denote as usually, g1) = g, g(;) = [8,9(j—1)], then g;) € g; @ ... ® gr. Consequenly, g(;) = {0} for
j > dgr and g is nilpotent. ]

A homogeneous group is a connected and simply connected nilpotent Lie group whose Lie algebra is
endowed with a family of dilations. In these notes we shall consider that the Lie algebra g itself is a Lie
group with the multiplication given by the Campbell-Hausdorff-Baker formula

zoy=zy=xz+y+r(zvy),vz,y €g,
where

) = gl ] + 15 (el + s oy 2l) + o

is the finite sum of terms of order at least 2 in the Campbell-Hausdorff-Baker series for g.

We shall also assume that g is endowed with a fixed scalar product and we shall identify the dual
vector space g* with g by means of the scalar product.

Let us remark that according to the Campbell-Hausdorff-Baker formula, the inverse of a vector z € g
with respect to the multiplication is —z. Therefore the Lebesgue measure is a bi-invariant Haar measure
for the group g and the convolution formula reads

fog(a) = / Flay)g(y) dy = / f(x o (—y))aly) dy, Vg € S(g).
g

g
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The Lebesgue measure on g will be normalized so that the inverse of the Fourier transform on the
Schwartz space S(g)

fo) = [ fo) do

g
is
3 _ i<z, y> d
f@) / <00 £(y) dy
and

/ @) do = / F@)P dy,vf € Sg).

We shall also operate with the notions of homogeneous degree of a multiindex and homogeneous
degree of a polynomial function on g. If o = (a,...,agr),ar € N n; = dim gg,Vk € {1,...,R} is
a multiindex in N™, then we denote with |a| its usual length (the sum of all its n components). The
homogeneous length of « is

R
d(a) = di|al.
k=1

Ifx=(x1,...,28) = (X115 T1myy-- - TRs - - » TRing) € G, then the homogeneous degree of z* is

6. THE MELIN OPERATOR AND THE REDUCTION OPERATOR

The Melin operator U on g is defined by the formula
US) = [[ et fge <98 ax vt € CGax o)
axg

where x = (z1,22) € g x g, ¥y = (y1,42) € g X 8, 7(x) = r(z1,22) and y = 8182,
Remark 6.1. If g is a commutative Lie algebra, then U is the identity operator.
Lemma 6.2. For every f,g € C5°(g)

(6.1) T 9) =U(f © 9y ).y € g

Proof. For every f,g € C§°(g) we have

Frow) = [ age) o= [ ds [ fleugtu) du=
0 g g
= /g(u) du/e_i<y’z>f(zu_1) dz = /g(u) du/e_i<y’”’1“>f(x1) dz; =
g g g g
= [[ e fag(a) dodes = U(F 0 6)(0.0),
gxg
for every y € g. O

Lemma 6.3. For every f € C§°(g X g),
DUf(y)= >, csaUD’f)y)
d(8)=d()

for some constants cg, € C.
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Proof. Let us denote with 7(x) the sum of terms of homogeneous degree k from r(x), for k € {1,..., R}.
Then

R
<r(x),y >= Z< re(x),y >,Vx €gxg,Vy €g.
k=1

Therefore
Dosz(y) — / f(X)D$ (e—i<x,y>e—i<r(x),§/>) dx =
axg
_ / efi<x,y>efi<r(x);5'>P1 (X)f(X) dx =
gxg
— // €7i<x,y>67i<r(x),§/> (P(D)f)v(x) dx,
axg
where P; and P are homogeneous polynomials of homogeneous degree d(a). (|
Let

g =g1D - Dgr_1-

The commutator
o xg > (x1,20) = [w1,20]) € ¢,
where ’ stands for the orthogonal projection of g onto g’, makes g’ into a Lie algebra isomorphic to g/gg.
The group multiplication in g’ is

/ / /
x10 o =1 + 22 + r(x1,22) V1,20 € 9.

Proposition 6.4. Let f € C§°(g x g). Then
(6.2) Uf(y,\) =U"(PAf(-N) (v),Vy € ¢’ x ¢',YA € gr X g,
where
Pu) = [[ et foe e devp € G <o)
is an integral operator on C3° (g’ ixg%) invariant under abelian translations and U’ is the Melin operator
ong.
Proof. Let us first remark that since gr is central,

(1, 1), (2, p2)) = (@1, x2),Y(x1, 1), (22, p2) € ¢’ X gr
and

<r((w1, ), (w2, p2)), (¥, A) >=<r(21,22), (¥, A) >=<r(x1,22),§ > + < r(x1,22), A >

for all (x, p),(y,A) €9 % g.
Therefore

Uf(y,\) = // e TIXYZ g TISA> f(x u)e‘i<r(x)/’5'>e_i<T(x)”~\> dxdp =
gxg

_ // e I<KY> (f()(, )\)efi<r(x),5\>) 67i<r(x)',§l> dx
g'xg’
where we denoted with f(x,\) the partial inverse Fourier transform of f with respect to y.

The proof of (6.2) is concluded by the equality
(PAF(- M) = f(3, \)e ™" <7 0IA>,

If we denote with 7, the translation with z, (7.9)(y) = g(y + 2),Vy, 2z € ¢’ x g/, Vg € C§°(g’ x g’), then

(r=9)(w) = e7"<**>g(z) and (7.(Prg))(y) = Px(7:(9))(y)- 0
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Remark 6.5. Since P, commutes with the translations, then it will commute also with derivatives.

If g is a Lie algebra endowed with a family of dilations d; then on X = g x g we shall consider the
family of dilations 0;(x) = §¢(x1) @ 6¢(z2),Vx = (z1,22) € g X g.

Definition 6.6. We shall say that a self-tempered metric g on g is admissible if
R

2 =3

j=1

gj(z) > gjy1(z) > 0,Ve e g,Vj € {1,...,R—1}
and
g;(z )>93(0() (7))>5+|x|]+1,Vx€g,Vj€{l R—1},
for some § > 0. Here 29 = (zj11,...,2R).

Let us remark that the metrics g,‘z introduced in section 3 are admissible metrics.
We also define a metric g on g x g by the formula

R 2 R 2
Z1.4 z9. i
Bx(a) = (98 0)e(a)’ =3 I 4 30 B v (@1 m) 5= (1) c g ¢

= gi(x1) = 9i(@2

Then g is also self-tempered. For A = (A1, \2) € gr X gr we put
g2(z) = gx1(2,0),Vx,z € g’ x ¢’

The metrics g* = (gf;)xegxxg/ are uniformly self-tempered and, consequently, uniformly slowly varying
with respect to A € gr X gr. Let C, M (in (2.3)) and ~ (in (2.1)) be joint constants for all these metrics.
We shall also use the following notations: g;(z) = g;(z,),¥(z,)) € g, B, = B) = B’\(x 1) Cg xg
for the covering of Proposition 4.1 for the metric g*, A € gr X gr, x, = x; and d))(y) = g% (y—%.),Vy €
g x g,V E€gr X gr, Vv € N*,

For an admissible metric g we put

_ 9r—1(0, A1) gr-1(0,A2)
_1(A\) = max s
I 1( ) (QR—l(OJ\Q) QR—l(Oa)\l)

) ,V)\: ()\1,)\2) € gr X 9R-

From Remark 2.8 and Example 2.10 it follows that gr_; is a g-tempered weight.
Proposition 6.7. Let g =g @ g, g an admissible metric on g. Then VN € N, 3C > 0, 3k € N so that

(6.3) |Pof(y)] < Ol (@) (1 + dX(y)) " Yy € ¢/ x g, YA € gr X gr, Vv € N*,Vf € C°(BD).
Proof. For f € C§°(B,) we have
// x)| dx.
xg/

|P>\f | _ ‘// —L<x,y>f( ) —i<r(x), > dx
xg’

Let
A A
fu (y) = f(y(u))7
where
Y?V) = (gi\(%,l)dlyl,hn~,91>%—1($u,1)d1y1,3—17gf(%,g)dlyzh e ,9?{_1(%,2) "=lya R 1)
Then

I oo ], o
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If y € suppf?, then

2
1>~ >7r%> g,)é,, (gi\(wu,1)dly1,1a s G (T )My ro1, 97 (T 2) Y 79?{71(%,2)‘11{*12/2,1%71) =
2 2
A Ty, 1,4 A 2d L Ty,2,45
B R-14; (ﬂfy 1) Yi,j — m RZ 9; (ﬂvy 2) 7 ||Y2,5 gj(xmi)dj B
=1 g])'\<xl/,1)2dj — 9?(1‘”72)2%
= ly =%

for some %, € g X g.
Therefore suppf; is included in a ball of radius 1 with respect to the fixed euclidean norm on g x g.
Hence we obtain from Sobolev’s lemma that there exists some positive constant C' so that

FA D A
ﬂ |fu (X)| dx < Sup\a|§2n+1supyeg’><g’| afu (y)|
/Xg/

But, using Lemma 2.6, we have

D3] = Hg 2y1) I (D)) H (2,2)!271 (D )} (y)| =
Jj=1 j=1
R—-1 _
- Hg] T, 1)\0t1 ild; i D f( y(V) H (2,.2) |a27\d D’l2f(y(y)) <
Jj=1 Jj=1
o] R—1 R—-1
< (7> H gj Y(y), )le.alds |Da1f ‘ H gj)‘\(Y?u),Q)laz’jldj (YE\V))' <
j=1 j=1

< Culfli(gY)

for |a| < k.

Therefore for N = 0, (6.3) holds with k = n + 1.

We shall prove (6.3) for N € N by induction on N. So let us assume that (6.3) is true for some N
and let us prove it for N + 1. Let d))(y) = a > 1 (otherwise the estimate is a simple consequence of the
estimate for N = 0).

Let £ € (g' x g')* be a vector of unit length with respect to the norm dual to g3 so that {(y —x,) = a.
Then, for r; € (r,7) we have

Ly —x)=E&y—x,)—&x—x) >a—[é(x—x,)| >a—1>0,Vx € B)(x),m1).

Let L(x) = &{(x—y),Vx € g’ x g’. Then L(x,) = —a and L does not vanish on B)(x},71). Therefore,
by Proposition 4.2, Vk € N, there exists a positive constant Cy = Ci(r,71) so that

(6.4 g (D' 00) <, (05 00) < Foxe B,

Another inequality we shall need follows from the fact that £ € (g’ x g')* is a vector of unit length
with respect to the norm dual to gfg :

R-1
1= g (2,0)*" 1€05]1% + Z 93t (x0,2)* Y [|€2 511 >
Jj=1 j=1
(6'5) R-1 R—1
> gr-1(0,X1)*% ||&0 ;17 + Z 9r-1(0, A2)>¥ [|€2,5]1%.
Jj=1 j=1
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Let Ax =< x,{ >,Vx € g’ x g’. Then, since L(y) = 0, we have
PALA) = [P L) = (P AIf) = [ e ag (e i< e
o' xg/
— // <y, &> e—z<xvy>f(x)e—l<r(x),>\> dx =
glxg/

= — // e—i<x,y>(< 57 D— iy > f)(x)e—i<r(x),5\> dx =

/Xg/
— // < y’g > €*i<x»Y>f(x)€fi<r(x),5\> dx—+

o' xg’

—|—Z// ) <& Dx > ( ’<X’Y>e_i<r(x)’5‘>) dx =
xg’

<<§ Dy > (< 7(x), A >)) eIy > mi<r()A> x =

Q

><9

= < 51,;',// o i<XY> —i<r(x),A> Dy, ;v r(x),A > f(x) dx >+
1 g

N ’ ’
j= Xg

R—1
+ Z < fz,j,// e ISR > i< (x)A> Dy, ;r(x ),;\ > f(x) dx > =
- g

xg’

<
Il
Ja

=

|
A

517]‘7/ e—z’<x,y>e—z’<r(x),5\><< 1 (Z-D)7 5\ > f)'(x) dx >4

<
Il
=
a
X
©Qa

i

IRV IS OOAZ (< gy (D), X > f) (%) dx > =
/Xg,

_|_
i

A
=

=
L

<&y, PA(< (D), A > f)(y) >+

T .
[
[

+) <&y, Pu(<r2;(iD), A > f(y) >,

<.
Il
—

where 7; j(x) = D, ;r(x) for i = 1,2 and Vj € {1,..., R — 1} are homogeneous polynomials of homoge-
neous degree dr — d;j. Let us stress that here D stands for the partial derivatives D = 0.
Using the induction hypothesis, we deduce that

Gr1(M)NIR

PA(< i (iD). A > £)()] < C|< rigliD), A > ) (1+d) " <

.i(iD), A > f(z)|-

R—1 R—1 N
. (H g;\ll(zl)dillal,q) (H g;\ZQ(ZQ)dQlaz,ig) (1+d;\(y)) <

11=1 i2=1

~ Nd
< Cgr-1(A) " SUP o <k meg x g

(6.7)
SCQRfl()\)N SUD|a|<k,zeg’x g/ ,d(8)=dr—d; ‘Dawf ‘H)\H
R—1
. (H gi)\;(zl)dil(|a1,7‘,1+ﬁ1,7‘,1)> (H gi);z(z2)di2(|a2,q‘,2+ﬂ2,¢2)> .
i1=1 io=1

_ —N
~gr—1(0,21) " gr_1(0,22) 7452 (1 + d(y))
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Formulas (6.4)-(6.7), the fact that g is an admissible metric, Lemma 2.11, a) and Remark 2.13 conclude
the proof:

[PAf(y)l =

Py (L- 2f) (y)] <

=

1

< &1y PA(< rg(iD), A > (Lf))(Y) >‘+

IA

jav IS
I
[

+

< &4, PA(< 12,5(iD), X > (f))(}’) >' <

1

<.
Il

1

(&) (1+d(y) " <
y

- Chrr _N
< Ogrot (NN ZE L pl (g0) (1 +d)(y)) <

a
< Clgroa NNV (g3) (1+d)(y)) ™

IN
Q

gR—l (/\)(NJrl)dR

1
7/

N-1

for k' > k(N) + dg.
(|

Remark 6.8. From the proof of Proposition 6.7 we can see that the conclusion of the proposition is still
true if we replace gr_1 with
LA Al T+ Al

Gr—1(A\) = max ,
Tr-1() (1+||A2|| W

Remark 6.9. If instead of the metric g ® g with g admissible we have on g X g a metric of the form

) ,V/\ = ()\1,/\2) € OgrR X 9R-

R R

21,511 22,511

gx(z)” =) LY = sa s VX = (21,22),2 = (21, 22) € g X g,
= 91,5(x)?% = 92,5(x)%%

with g; j(z) > § + ||xg||"/9",¥x € g x g,Vi € {1,2},Vj € {1,...,R—1}, for some § > 0, then the

conclusion of the Proposition (6.7) is still true if we replace gg with 1.

At this point we need to introduce the notion of double continuous mapping between spaces of symbols.
Let S™(X, g) be a space of symbols on an euclidean space X, m a G-tempered weight with respect to a
G-tempered slowly varying metric g. Besides the Fréchet topology on S™ (X, g) (see Remark (2.13)), we
introduce the weak topology [Ma] of the C*® convergence on Fréchet bounded subsets.

Lemma 6.10. The weak convergence is equivalent to the pointwise convergence on Fréchet bounded
subsets of S™(X, g).

Proof. We shall apply Arzela-Ascoli theorem. First of all, if (f;); is a bounded sequence in S™(X, g) and
if K is a compact set in X, then (D*f;); is a sequence of uniformly bounded functions on K.

Let us prove this assertion for k = 1. The balls (B9(x,7)).ck are an open covering of K. Therefore
there exists a finite set {z1,...,2;} C K so that (BY(x,7))ieqa,...13 is still a covering of K. Each of the
metrics g, ¢ € {1,...,1}, is equivalent to the euclidean metric. Hence there exists some positive constant
Cy so that g, (y) < Cilly||,Vi € {1,...,1},Vy € X. An arbitrary point 2 € K belongs to some ball
B9(x;,7). Therefore, from (2.1) we obtain that

1

Now our assertion in case k = 1 follows from the fact that m beeing a g weight is bounded on K and
from the boundedness in S™(X, g) of the sequence (f;);. Its proof for the other values of k is similar.

From Arzela-Ascoli theorem it follows that every sub-sequence of (D* f;); contains a sub-sub-sequence
uniformly convergent on K. If f; — f pointwise, then, in case £ = 0, this limit is always equal to f.
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Therefore f; — f uniformly on K. For k > 0, in order to obtain the same conclusion we have to use also
either the fact that f; — f in the distribution sense, or the classical theorem of derivation of sequences
of functions. |

Lemma 6.11. Let m be a G-tempered weight with respect to a G-tempered slowly varying metric g,
[ € S™(X,g) and (¢u), the partition of unity from Proposition 4.1. Then Y.} _, ¢, f — [ weakly in
S™(X,g) when j — oo.

This lemma is a straightforward consequence of the definitions, of Propositions 4.1 b) and of Lemma
211, a).

Remark 6.12. Let m be a G-tempered weight with respect to the slowly varying metric g on g x g and
m*(x) = m(x,\),Vx € ¢’ x g/,V\ € gr X gr- Then m* is a G*-tempered weight with respect to the
slowly varying metric g*, uniformly with respect to \.

Remark 6.13. Let g be a slowly varying metric on g x g and g*(x) = g(x,\),¥x € g’ x g/, VA € gr X gr.
Then the partition of unity (¢7), in the conclusion of Proposition 4.1, b) can be selected so that the
sequences (¢7), are uniformly bounded in S'(g’ x g’), with respect to A\ € gr x gr. This assertion follows
from the proof of Proposition 4.1, b), since te constant v in (2.2) does not depend on A.

Remark 6.14. Let g be a self-tempered metric on g x g. Then the constants C' and M in the conclusion
of Proposition 4.1, c) corresponding to the metrics g* can be selected the same for all A € gr x gr. This
assertion follows from the proof of Proposition 4.1, ¢), since te constants v in (2.2) and C and M in (2.3)
do not depend on A.

Proposition 6.15. Let g = g® g, g an admissible metric on g and m be a g-tempered weight. Then for
N € N, sufficiently large there exists a double continuous extension of Py to a map

Py:S™ (g x g,g") — 8™ 9 VT (gl x g )
and the estimates are uniform with respect to A € gr X gg-

Proof. We shall apply Proposition 6.7. Let (¢}), be a partition of unity as in Remark 6.13. We shall
denote with C; a constant which may depend on the constant « in (2.2), on the constants C' and M in
(2.3), on N € N and on r in Proposition 4.1, but does not depend on A € gg X gr and on v € N*. Then

VN €N, Vfes™ (g xg,g)
P2 F)()] < CLlgA I VT (@) (1+ dd(y)) Yy € g/ x ', YA € gr X g, Vv € N7,

Since m is a g tempered weight and ¢} are uniformly bounded in S (g’ x g'), with respect to A € grxgr
and to v € N* | we have

ma(y) PG ) ()] < Cimia(x,) 7 (1 + d(y ) M|PA<¢3f><y>\ <
< Cimiy(x,)” 1|¢Af\gR T (@ (14 d(y) MY <
< GRS T T @A+ )M N <
< Oyl T O @ (1 4 d(y) M.

(6.8)

If N is sufficiently large so that
Z(l +dy(y)M N <Cp<oo,Vyeg xg,VAEgr X gr

v

then, accordingly to (6.8),

Z IPAGN)] < CulfE 7 O (@ )my(y). Yy € ¢ x g, YA € gr X gr

and Vf € S™ (g x g/, g*).
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Therefore the operator

Fe () gaa ()T P )

is an extension of (m’\)f1 Gr(\)~N4r Py to a continuous operator defined on sm” (¢ x ¢',g") and L*>®
valued. The estimates are uniform in A.
The uniqueness of this extension follows from Lemma 6.11 if we prove that the linear form

S (g xg,g") 3 f— Y PA®)(y) €C

is weakly continuous Vy € g’ X g’,V\ € gr X gg.
Let (f;); be a bounded sequence in sm’* (¢/ xg',g") so that f; — f in the C* topology, M; = M;(y, \)
be sets as in the proof of the point ¢) of Proposition 4.1 and let m be the constant in (4.3). Then

)MfN

(m*(y))

<

Yaraa )TN IR — D < C Y10 - DI () (1+ dX(y)
<Gy Y e - D Y+ MY <

>0 veM; 1\ M,

L
<Gy Y - DI Y+

1=0 veM; 1\ M,

+ 02 Z(l + l)M—'rm—N.
I>L

We denoted with Cy a constant which may depend on A and on the norms of the functions f; also.
If we first select L sufficiently large and if we next remark that ¢ fi — #) f,¥v, in the topology of
Sm (g x ¢, ) we see that

S P f)Y) =D P N()-

Estimates for the derivatives of Py f are obtained from the fact that Py and, consequently, its extension,
commute with differentiation.
Finally, the weak convergence is now a consequence of Lemma 6.10. O

Remark 6.16. For the proof of the next proposition we shall need a slightly different version of Propo-
sition 6.15. Before stating this version we have to introduce some more notations. Starting fom this
point, for j € {1,..., R —1} we put g;) = g1 ®--- ® g; (in the proof of Proposition 5.1 g(;) denoted a
different object) , and g¥) = g1 ® - ® gr. If 2 = (z1,...25) €gand j € {1,..., R — 1} then we put
z(;)y = (w1,...2;) and 20 = (Zj41,--.,2r). Also, if g is a metric on g, then we define a metric g’\(j) on
g(;) by the formula

220 () = 9o 20 (257, 09, V(). 25) € 95y, VAV € gV

and if g is an admissible metric, then

9;(0,A9) g;(0, A9
;0. 07) " ;0,29

3;(AY)) = max ( ) VAU = (A§j),)\gj)) eg? x g vje{1,...,R—1}.

A+

The functions g¢j11) X gij+1) 2 (0¢y, Aj+1) — G;(A\9)) are (g @ g) : tempered weights, uniformly

with respect to AUTD and g x g 3 (0(;), A\9)) — §;(A9)) are g ® g tempered weights. In this context,
g9 =geg
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On Cg°(g(;) X 8(;)) for AU € gl) x gl we define an operator Py by the formula
Pyo f(yy)) = // €7i<x(”’y(j)>f(X(j))€7i<r"'“(x”))’;\j+l> dx(;),Vf € C5°(8(j) X 9(j)):
9 X80

where 7;11(x(;)) is the projection of 7(x;)) on g(;41)-
Finally, for m a g @ g tempered weight, we put
m™ (x(;)) = m((x(;), A")), ¥x(5) € 95 X 8, VA € g7 x ).

Then, for N sufficiently large, Py¢) can be extended to a continuous operator

m ) ) A (G AN )
Pyoy S (8G) X 9, (g® g ) = ™ WD gy x gy, (9@ 9) )

and the estimates are uniform with respect to A7) € g(9) x g(@),

Proposition 6.17. Let g be an admissible metric on g and m a g ® g tempered weight. Then the Melin
operator U admits a unique weakly continuous extension

U:S™(gxg,9®9) —C(gxg)
s0 that Ya = (ay, ) € N*" there exist Ny €N, ko € N and C,, > 0 such that

R—1
(6.9) 0°U f(x)] < Cam(x) [ 3;(x9)™ Hg (1) dﬂ‘““l'Hg (wg) ™ hzlozial| plm (),
j=1 i1=1 io=1

forallx € g x g and for oll f € S™(gx g,9 D g).

Proof. We shall prove (6.9) by induction on j. We shall denote with U; the Melin operator defined on
G5 (8) * 8())-

If j = 1, then g(;) = g1 is an abelian algebra, U; = I and there is nothing to prove. Let us assume
that the assertion is true for j and let us prove it for j 4+ 1. For f € S™(g x g,g ® g) and A\9) € g0 let
us put

Fror (%)) = F@ ), AD), x5y € 805y X 8()-

Then
A0

- @
Fro €5™ (g¢) X 9¢ys (9B 9)™)

uniformly with respect to A7),
Therefore, accordingly to Remark 6.16, to the induction hypothesis and to the formula

Ujs1f (x5, A9) = Uj(Pair fr0 ) (X(5)), Y(x(), A9)) € g x g

we obtain that Vo) = (ay, ¢y, a2,;)) € P 2nk  there exist Na;y» ko, € Nand Cy ;) > 0 so that

109D U1 f (x5 AD)| < Cay ™ (x5 f[ 7Y Nag) 5
Jj+1 = j+1
< IL oo A7)0 ”'ylgk 25 )l (e),
for all x(;) € g(;) X gy and for all f € Sm .D (8G+1) X 9G+1): (9 @ g)/\(”n). The estimates are uniform

with respect to A7),
We have to estimate the derivatives of Ujyq f(-, A9)) with respect to Aj41 also. In order to simplify
the notations we shall assume that g;41 has dimension 1 and A\j11 = (A1 j+1,A2j+1). We consider only
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the derivative of order 1 with respect to A; j4i. Similar estimates for derivatives of greater order will
follow by induction on the order of derivation. We have

0 ; 0 4 9
ENE U1 [y, A9) = Uj(Pyir f (- X)) (y () = U; (8 Py F(,A9)) (v (7))
A1j+1 A1,j+1 A1,j+1
and
aip)\(j)f(,’ /\(j))(y(j)) = 5 // e*i<x<J>ay(j>>f(x(j)~’)\(J‘))e—z‘<rj+1(x(,~>),5\j+1> dx(j) =
A1j1 A+ S gy e

= // e I<X) Y ()> o f(x(j)V7)\(j))67i<7‘j+1(x(j))’5‘j+1> dx(j)—
@) X80) On g

1 . . . y by
_Z // 6—1<X(j)7y(j>>f(x(j)v,)\(J))rﬁ‘l(x(j))e_Kr”l(xm)’/\j“> dx(j) =
g(])xg(J)

0 , . .
= PA(]’)(a HE, )‘('7))(3’(1')) - %P)\(j)(rj-i_l(_iD(j))f('a A('j)))(Y(j)) =

AL 41

= 50{,,\(.7» (o)) + 50;,,\(.7> (Y())-

We have denoted with 777! (x;)) the sum of terms of homogeneous degree d;1q from 7)1 (x(j)).
Now

9 m G+1)
: (8G41) X BG40y, (9D ) =

aAl,j-H
A+1)

m 1 (G AGTD Yy w
-8 @i AT gy X gy, (9@ 9)N )

are continuous operators and the estimates are uniform with respect to AU+, Therefore, using again the

induction hypothesis and Remark 6.16, we obtain that Ya(;) = (o), @2,j)) € N2k—1 2% there exist
Nu,., kL, €Nand C/, >0 so that

A@) 0 M) @)
0 , AL d k)\Na;
‘( aa(])Uj‘P{,,\m) (X(j))‘ Czlxu (x(5)) H )‘(j ( )) @ X
ALj+1 k=1
j+1 Jj+1
x [T ontarg)=lornt T gulaa, )~ telozlx
i1=1 io=1

X (950120, AU (@)

and the estimates are uniform with respect to A7),
Since g is an admissible metric, we obtain, as in the final part of the proof of Proposition 6.7, that

vag) = (a1,(), 02,()) € NXi=1 2% there exist Nayr k0, € Nand C”4 > 0 so that
O gony.of " Au) J 60y 80y Vo
N +18 PUje5 \o) (x(jy)| £ C7q(;m H » YNt x
it 1
< T gulwr,gptomal T guas, ) ~#=lolx
=1 ia=1

X (g1 (@1, AN THH GOV SR, (®)

and the estimates are uniform with respect to A7),
The week continuity follows from the induction hypothesis and from Proposition 6.15. |
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7. SYMBOLIC CALCULUS AND L?— CONTINUITY
We shall prove first the continuity of the operation of composition of two symbols.

Theorem 7.1. Let g be an admissible metric on the homogeneous Lie group g and let my and mo be two
g-tempered weights. Then the product
C5°(8) x C5°(8) > (a,b) = a#tb = (a* by € S(g)
admits a unique double continuous extension
# 5" (g,9) x 5™ (g,9) — 5™ (g, 9)-
Proof. We have
(a#b)(z) = U(& % b)(z, 2) = U(a @ b)(z, z), Yz € g.
For the estimation of the derivatives of a#b we shall apply Proposition 6.17. Let us remark that if

r1 = T9 € g, then gj(x(j)) =1,Vj € {1,..., R — 1}. Therefore Vo € N" there exist k, € N and C,, > 0

such that
R

09U (a @ b)(z, z)| < Com(z)ms(z) H gi(@)~ 1 al7 (9) b2 (9),

for all z € g,a € S™(g,g) and b € S™2(g, g). O

We pass now to the proof of the L?-continuity of the pseudodifferential operators for the metric ¢ on
g. Remark that ¢ is clearly an admissible metric. Let ¢, be a partition of unity for ¢ as in Proposition
4.1. We put ®,,,(x) = ¢ppu(x1)dy(x2), Vx = (21,22) € g X g. Since ¢ is a self-tempered varying metric, by
(2.5) we have

(7.1) 1+ o, (zp — 1) S C+ qy(z, — )M (1 + g2 — y)), Vv, € N*, Wy € g.

We shall use the notation q = ¢ & q.

Lemma 7.2. If
Fur(y) = U@ )y, ), Vv, p € N*, ¥y € g,V f € S'(g x g, ).
then VN € N, 3k € N,3C > 0 so that
[ fullr (@) < ClAR@ + g, (20 — 2,)) ™Y, Vv, p € N*.

Proof. If m and n are two g-tempered weights, then m®mn is a gq-tempered weight. Therefore, accordingly
to Example 2.9, the function

m,,, (y) = (1 + gy, (@, — 1)) V(14 gy, (1, — 92)) ™, Vy = (y1,52) €9 x g
is a g-tempered q-weight. If y; € B, and y» € B, then

Qe (1 — ) <7, Qe (Y2 —20) <7
and therefore, by (2.1)

Gy, (Y1 — ) < 1,qy, (Y2 — ) < 1.

~1 is uniformly bounded on the support of ®,,, and, consequently, there exists some constant

Hence m
C' > 0 so that

1@, F10 (q) < C|®u fIL ().

Therefore, accordingly to Proposition 4.1,
Dy f € S (g x g,q)

and the estimates are uniform with respect to p and v. More precisely, for all k& € N there exists a positive
constant C}, so that

1D, f (@) < Crlf|k(Q), Y, v € N*,Vf € S (g x g, q).
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Therefore, if we apply Proposition 6.17, we obtain that Yo = (ay,as) € N?7, there exist N, € N,
ko € N and C, > 0 such that

R-1 R R
0°U (@ ) ()] < Caomyy (%) [T G50 T iy () =100 ! I s, (o) =122l (@),
j=1

=1 in=1
for all x € g x g, for all pu,v € N* and for all f € S'(g x g,q® q).

As we already remarked, cjj(y(j), yY)) = 0,Vy € g. Hence for all @ € N™ there exist k, € Nand C,, > 0
so that

R
0% ()] < Camny (y,9) [ @)~ £k, (@) < Cam (y,9)| f1i, (@)
i=1
for all y € g, for all pu,v € N* and for all f € S'(g x g,¢® q).
By (7.1)
m;w(y7y) S C(l + qwu (xli - l‘V))iN
for all y € g, for all u,v € N*. So, finally we obtain that for all £ € N there exist k& € N and Cy > 0 so
that

0% fruw (W] < Crlfliy (@ + g, (2 — 2)) 7

for ally € g and |a| < k. If k is large enough, the conclusion of the lemma follows from Sobolev inequality,
as in the proof of Proposition 6.7. O

Theorem 7.3. Let a € S*(g,q). Then the linear operator C§°(g) > f — Af = f*a € L*(g) extends to
a unique bounded mapping of L?(g). More precisely, there exist k € N and C > 0 so that

[Afllz2(0) < Clali (@I fllz2(), V.f € C5°(g).

Proof. We shall apply Cotlar’s lemma: if Ay, ..., Ay are bounded operators in a Hilbert space H such
thaI‘j, for some constant M, Y [|A% A, [|V/? < M and Y _, [[A AL ||V? < M, then || Y2 Ayl < M.
et
Avf = f* (dva),Vf € L¥(g).

The operators A, are bounded operators in L?(g) since ¢,a € C5°(g) and (¢,a) € S(g) C L'(g). The
adjoint of A, is given by the formula A% f = f *(¢,a). Therefore, if we apply Lemma 6.2, we obtain that

ALALf = [ ((dva)* (dpa)) = [+ (U(dva @ ¢pa)a) = fx((a®a)yy) ™
For a function h defined on g x g we put ha(y) = h(y,y).
From Lemma 7.2 we obtain that VN € N, 3k € N, 3C > 0 so that
* 2 — *
145 ALl < C (Jali(@)” (1 + ga, (2y — 2,)) ", Vo, € N%.

Similar estimates hold for A,A%. So, choosing N sufficiently large, we obtain from Proposition 4.1
that

J J
(7.2) > 1ALA IV < Clali(q) and Y [|A,AL1Y? < Clalj(q), Vi € N
v=1 v=1
for some C > 0 and some k € N.
On the other hand

a:Zgbya

in the sense of weak convergence in S*(g, q) so that, by Theorem 7.1,

(7.3) Af =D ALfVf € C(a)

in the sense of weak convergence in S(g, q) of the Fourier transforms.
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Cotlar’s lemma, (7.2) and (7.3) conclude the proof.
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