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Abstract. These are the notes of a seminar held at the Institute of Mathematics “Simion Stoilow” of
the Romanian Academy in 2012-2013 based on P. Glowacki’s papers [G1] and [G2].
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1. Introduction

These are the notes of the lectures given during the winter 2012-2013 at the Institute of Mathematics
of the Romanian Academy and based on P. Glowacki’s papers [G1] and [G2] on Melin calculus for
pseudodifferential operators on homogeneous Lie groups. The aim of these two papers was to extend some
of the Melin’s results ([Me]) on pseudodifferential operators on graded Lie groups to pseudodifferential
operators on general homogeneous groups. The main Glowacki’s ideas were to use Hörmander’s results
on slowly varying metrics and to introduce an operator, which we called the reduction operator (see
Proposition 6.7 for its definition). Using the reduction operator and induction, one can reduce the study
of pseudodifferential operators to commutative groups.

During these lectures we detailed the proofs from Glowacki’s papers, using, partially, [H]. Also we
introduced the notion of admissible metric (Definition 6.6), which, we think, may help to clarify the
statements and proofs.We have to mention that we were able to prove the theorem on the continuity of
Melin’s operator(Proposition 5.1 from [G1] and Theorem 5.1 from [G2]) only in a weaker form (Propo-
sition 6.17 in our notes). But we could prove the main results from Glowacki’s papers (the theorem on
the composition of symbols and the theorem which asserts the L2-continuity of the pseudodifferential
operators) using Proposition 6.17.

Let us describe now the content of these notes. In section 2 the definition of slowly varying metrics,
self-tempered metrics and weights in Hörmander’s sense is given. An important, for us, subclass of such
metrics is described in Lemma 2.6. The spaces of symbols associated to slowly varying metrics are also
defined and their properties needed in our notes are proved. Section 3 deals with metrics and weights
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2 MIHAI PASCU

on homogeneous spaces. The basic tools of Hörmander’s theory of Weyl calculus for pseudodifferential
calculus are presented in section 4. In section 5 one introduces the homogeneous groups and one specifies
some notations used in section 6. Section 6 is the main section of these notes and corresponds to the
main sections of Glowacki’s papers. Here one proves the main propositions, Proposition 6.7, Proposition
6.15 and Proposition 6.17, used in the last section in the proofs of the theorem on the composition of
symbols and of the theorem which asserts the L2-continuity of the pseudodifferential operators.

Finally, let us stress that our notes constitute only a rephrasing of Glowacki’s papers. Therefore we
freely reproduced parts of these papers if we considered that no completion or correction is needed.

The list of references is minimal.

2. Slowly varying metrics, weights, symbols

Let X be a real n- dimensional vector space. A family of Euclidian norms on X, g = (gx)x∈X is called
a varying metric on X or, simply, a metric on X. Ocasionally, in this section, we fix an orthogonal basis
{ej}j=1,...,n in X and, in this case, we denote x =

∑n
j=1 xjej = (x1, . . . , xn).

Definition 2.1. A metric g on X is called slowly varying if there exist some positive constant γ ∈ (0, 1]
such that

(2.1) ∀x, y ∈ X, γ ≤ gx
gy
≤ 1
γ

if gx(x− y) ≤ γ.

Remark 2.2. A metric g is slowly varying if and only if there exists some positive constant γ ∈ (0, 1]
such that

(2.2) ∀x, y ∈ X, γ ≤
(
gx
gy

)±1

≤ 1
γ

if gx(x− y) ≤ γ.

Indeed, if (2.1) holds for some γ, then (2.2) holds also if we replace γ with γ2.

Definition 2.3. Let g and G be two metrics on X. The metric g is G-tempered if there exist some
positive constants C and M such that

(2.3)
(
gx
gy

)±1

≤ C(1 +Gx(x− y))M ,∀x, y ∈ X

and if gx ≤ Gx,∀x ∈ X.
The metric g is called self-tempered if it is g-tempered.

Remark 2.4. A self-tempered metric g is slowly varying. Indeed, let us assume that (2.3) holds. If
γ ∈ (0, 1] is such that C(1 + γ)M ≤ 1

γ , then

gx
gy
≤ 1
γ

and
gy
gx
≤ 1
γ

if gx(x− y) ≤ γ.

Lemma 2.5. If g is a self-tempered metric with the constants C and M , C ≥ 1, then for every x, y, z ∈ X

(2.4) 1 + gx(x− y) ≤ C(1 + gy(x− y))M+1,

(2.5) 1 + gx(x− y) ≤ C(1 + gz(x− z))M+1(1 + gz(z − y)),

(2.6) 1 + gx(x− y) ≤ C2(1 + gx(x− z))M (1 + gy(z − y))M+1.

Proof. First of all, we have

1 + gx(x− y) ≤ 1 + Cgy(x− y)(1 + gy(x− y))M ≤ C(1 + gy(x− y))M+1.
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Then, from (2.4) and the definition of the self-tempered metric, we obtain (2.5):

1 + gx(x− y) ≤ 1 + gx(x− z) + gx(z − y) ≤
≤ C(1 + gz(x− z))M+1 + Cgz(z − y)(1 + gz(x− z))M ≤
≤ C(1 + gz(x− z))M+1(1 + gz(z − y)).

The inequality (2.6) is proved in a similar manner:

1 + gx(x− y) ≤ 1 + gx(x− z) + gx(z − y) ≤ 1 + gx(x− z) + Cgz(z − y)(1 + gx(x− z))M ≤
≤ (1 + gx(x− z))M (1 + Cgz(z − y)) ≤ C(1 + gx(x− z))M (1 + gz(z − y)) ≤
≤ C2(1 + gx(x− z))M (1 + gy(z − y))M+1.

�

Lemma 2.6. Let

g = (gx)x∈X , gx(z)2 =
n∑
j=1

aj(x)2z2
j ,∀x, z ∈ X, aj : X → (0,∞),∀j ∈ {1, . . . , n} .

Then
a) The metric g is slowly varying if and only if there exists γ ∈ (0, 1] so that

∀x, y ∈ X, γ ≤ aj(y)
aj(x)

≤ 1
γ
,∀j ∈ {1, . . . , n} if gx(x− y) ≤ γ.

b) If the metric g is G-tempered with constants C and M , then(
aj(y)
aj(x)

)±1

≤ C(1 +Gx(x− y))M ,∀j ∈ {1, . . . , n} ,∀x, y ∈ X.

Proof. If we take z = ej , j = 1, . . . , n, then b) and the ”only if” part from a) follows straigtforward by
the definitions. The ”if” part of assertion a) is quite obvious. �

Definition 2.7. A function m : X → (0,∞) is called a G-tempered weight with respect to the G-tempered
metric g if

(2.7) ∀x, y ∈ X,
(
mx

my

)±1

≤ C if gx(x− y) ≤ γ

and

(2.8)
(
mx

my

)±1

≤ C(1 +Gx(x− y))M ,∀x, y ∈ X.

If g is self-tempered and m is a g-tempered weight with respect to g, we shall say simply that m is a
g-tempered weight.

Remark 2.8. Let m, n be G-tempered weights with respect to g and let k ∈ R. Then mk, mn , m+ n
and max(m,n) are G-tempered weights with respect to g.

Example 2.9. If g is a G-tempered slowly varying metric on X, if G is self-tempered and if x0 ∈ X,
then m : X → R+, m(x) = 1 + gx(x− x0),∀x ∈ X is a G-tempered weight with respect to g.

Indeed, if g satisfies (2.1) and gx(x− y) ≤ γ, since

gx(x− x0) ≤ 1
γ
gy(x− x0)

and
gy(x− x0) ≤ gy(x− y) + gy(y − x0) ≤ 1

γ
gx(x− y) + gy(y − x0) ≤ 1 + gy(y − x0),

then
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1 + gx(x− x0)
1 + gy(y − x0)

=
1 + gx(x− x0)
1 + gy(x− x0)

· 1 + gy(x− x0)
1 + gy(y − x0)

≤
1 + 1

γ gy(x− x0)

1 + gy(x− x0)
· 2 + gy(y − x0)

1 + gy(y − x0)
≤ 2
γ
.

Also, let as assume that (2.3) holds, without any loss of generality, with some constants C ≥ 1 and
M > 0. Then

1 + gx(x− x0)
1 + gy(y − x0)

=
1 + gx(x− x0)
1 + gy(x− x0)

· 1 + gy(x− x0)
1 + gy(y − x0)

≤

≤ 1 + C(1 +Gx(x− y))Mgy(x− x0)
1 + gy(x− x0)

· 1 + gy(y − x0) +Gy(x− y)
1 + gy(y − x0)

≤

≤ C(1 +Gx(x− y))M (1 +Gy(x− y)) ≤
≤ C(1 +Gx(x− y))M (1 + C(1 +Gx(x− y))M+1) ≤
≤ 2C2(1 +Gx(x− y))2M+1.

Example 2.10. Let g = (gx)x∈X , gx(z)2 =
∑n
j=1 aj(x)2z2

j ,∀x, z ∈ X be a slowly varying, G-tempered
metric. Then, from Lemma 2.6 it follows that the functions aj , j ∈ {1, . . . , n} are G-tempered weights
with respect to g.

We shall define now the symbol classes we are working with ([H], [G2]). If f ∈ C∞(X) and if g is a
metric on X, then

gx(Dkf(x)) = sup
yj∈X,gx(yj)≤1,j=1,...,k

|Dkf(x)(y1, . . . , yk)| =

= sup
yj∈X\{0},j=1,...,k

|Dkf(x)(y1, . . . , yk)|∏k
j=1 gx(yj)

,∀x ∈ X.
(2.9)

With Dkf(x) we denoted the Fréchet derivative of order k of f .

Lemma 2.11. a) Let f, g ∈ C∞(X). Then

(2.10) gx(Dk(fg)(x)) ≤
k∑
j=0

(
k
j

)
gx(Djf(x))gx(Dk−jg(x)).

b) For every k ∈ N∗ there exists a positive constant Ck such that if f(x) 6= 0, then

(2.11) gx(Dk(1/f)(x)) ≤ Ckf(x)k(gx(Df)(x)) + · · ·+ (gx(Dkf(x)))1/k)k

if u(x) ≥ 1 and

(2.12) gx(Dk(1/f)(x)) ≤ Ckf(x)(gx(Df)(x)) + · · ·+ (gx(Dkf)(x))1/k)k

if u(x) < 1.

Proof. a) (2.10) follows from (2.9) and the Leibniz’ rule:

Dk(fg)(x)(y1, . . . , yk) =
k∑
j=0

∑
α∈Fj,k

Djf(x)(yα)Dk−jg(x)(yC(α))

where Fj,k = {α = (α1, . . . , αj); 1 ≤ α1 < · · · < αj ≤ k}, yα = (yα1 , . . . , yαj ), C(α) is the complement of

α and card Fj,k =
(
k
j

)
.
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b) We shall prove b) for f(x) = 1. The general result will follow by homogenization. Let h =
1 − f . Then, there exists a neighbourhood V of x such that |h(y)| ≤ 1/2,∀y ∈ V . Therefore 1

f(y) =∑∞
i=0 h

i(y),∀y ∈ V . Since h(x) = 0, Dkhi(x) = 0,∀i > k. Therefore, using a), we obtain that

gx(Dk(1/f)(x)) ≤
k∑
i=1

gx(Dkhi(x)) ≤ Ck(gx(Dh(x)) + (gx(D2h)(x))1/2 + · · ·+ (gx(Dkh)(x))1/k)k =

= Ck(gx(Df(x)) + (gx(D2f(x)))1/2 + · · ·+ (gx(Dkf)(x))1/k)k.

�

If m is a G-tempered weight with respect to the G-tempered metric g and f ∈ C∞(X), then we put

|f |m(k)(g) = sup
x∈X

gx(Dkf(x))
m(x)

and

|f |mk (g) =
k∑
j=0

|f |m(j)(g).

The space of symbols of order m with respect to g is

S(m, g) = {a ∈ C∞(X); |a|mk (g) <∞,∀k ∈ N}.

Example 2.12. Let g = (gx)x∈X , gx(z)2 =
∑n
j=1 aj(x)2z2

j ,∀x, z ∈ X be a slowly varying metric on X.
If we fix a basis {e1, . . . , en} in X, then a function f ∈ C∞(X) is in Sm(X, g) if and only if for every
α ∈ Nn there exists a constant Cα so that

(2.13) |∂αf(x)| ≤ Cαm(x)a(x)α,∀x ∈ X.

We have used the standard notations ∂α = ∂α1
1 . . . ∂αnn , ∂j = ∂/∂xj ,∀j ∈ {1, . . . , n} and a(x)α =

a1(x)α1 . . . an(x)αn .

Proof. We shall give the proof only for derivatives of order 1. Derivatives of higher order can be treated
in a similar manner.

”⇒ ” For i ∈ {1, ..., n}, gx(ei) = ai(x). If f ∈ Sm(X, g), then

∞ > sup
x∈X

gx(Df(x))
m(x)

≥ sup
x∈X

|(Df(x)(ei)|
gx(ei)m(x)

= sup
x∈X

|∂if(x)|
ai(x)m(x)

.

”⇐ ” If (2.13) holds, then

sup
x∈X

gx(Df(x))
m(x)

= sup
x∈X

sup
y∈X\{0}

|Df(x)(y)|
gx(y)m(x)

=

= sup
x∈X

sup
y∈X\{0}

|
∑n
i=1 yi∂if(x)|

(
∑n
i=1 ai(x)2y2

i )1/2
m(x)

≤

≤ sup
x∈X

sup
y∈X\{0}

(∑n
i=1 ai(x)2y2

i

)1/2 (∑n
i=1 ai(x)−2∂if(x)2

)1/2
(
∑n
i=1 ai(x)2y2

i )1/2
m(x)

<∞.

�

Remark 2.13. Sm(X, g) with the family of norms | · |mk is a Fréchet space. If g is as in Example 2.12,
then

sup
x∈X
|∂αf(x)|m(x)−1a(x)−α, α ∈ Nn

is an equivalent family of seminorms.
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3. Metrics and weights on homogeneous euclidean spaces

A triplet (X, (X1 . . . , XR), (d1, . . . , dR)), where X = X1 ⊕ · · · ⊕ XR is an euclidean vector space of
dimension n, scalar product < ·, · > and norm ‖ · ‖ and d1, . . . , dR are real numbers, 1 = d1 < · · · < dR is
called a homogeneous euclidean space. We shall denote with nk the dimension of Xk. Thus the variable
x ∈ X splits into x = (x1, . . . , xR). On X we introduce a family of dilations

δtx = tx = (td1x1, . . . , t
dRxR),∀x ∈ X,∀t > 0.

This adhoc definition is justified by the fact that such a triplet corresponds to the Lie algebra of a Lie
homogeneous group (see section 5).

For x = (x1, . . . , xR) ∈ X we put

|x| =
R∑
k=1

‖xk‖1/dk .

|·| is a homogeneous norm ([FS]), in the sense that (a) |x| = 0 if and only if x = 0, (b) |−x| = |x|,∀x ∈ X
and (c) |tx| = t|x|,∀x ∈ X,∀t > 0. More than that, since (a + b)µ ≤ aµ + bµ,∀a, b ≥ 0,∀µ ∈ (0, 1], | · |
satisfies also the triangle inequality |x+ y| ≤ |x|+ |y|,∀x, y ∈ X.

For 1 ≤ k ≤ R we define

|x|k =
R∑
j=k

‖xj‖1/dj ,∀x ∈ X.

|x|k are homogeneous seminorms, in the sense that they satisfy (b) and (c) from above, and they
satisfy also the triangle inequality. Let us remark that |x|1 = |x|. We shall also put |x|R+1 = 0,∀x ∈ X

qk(x) = 1 + |x|k+1,∀x ∈ X,∀k ∈ {0, 1, ..., R}
and

gk,δ(x) = δ + |x|k+1,∀x ∈ X,∀k ∈ {0, 1, . . . , R} ,∀δ > 0.

Let

gδx(z)2 =
R∑
k=1

‖zk‖2

gk,δ(x)2dk
,∀x, z ∈ X,∀δ > 0.

We shall also use the notation qx = g1
x.

We shall prove now that the metrics gk(·; δ) are uniformly slowly varying and uniformly self-tempered
with respect to δ > 0.

Lemma 3.1. For every k ∈ {0, . . . , R} and for every δ > 0,

(3.1)
1
2
≤ gk,δ(x)
gk,δ(y)

≤ 2 if gδx(x− y) <
(

1
2R

)dR
.

Proof. If gδx(x− y) < [1/(2R)]dR , then

‖xj − yj‖1/dj ≤
gj,δ(x)

2R
≤ gk,δ(x)

2R
,∀j ∈ {k + 1, . . . , R} .

Therefore |x− y|k+1 ≤ gk,δ(x)/2 and consequently

gk,δ(x) = δ + |x|k+1 ≤ δ + |y|k+1 + |x− y|k+1 ≤ gk,δ(y) +
1
2
gk,δ(x)

and

gk,δ(y) = δ + |y|k+1 ≤ δ + |x|k+1 + |x− y|k+1 ≤
3
2
gk,δ(x)

which implies (3.1). �
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Lemma 3.2. There exists a constant C > 0 so that

(3.2) gk,δ(x) ≤ Cgk,δ(y)(1 + gδy(x− y)),∀x, y ∈ X,∀k ∈ {0, 1, . . . , R} ,∀δ > 0

and

(3.3) gk,δ(x) ≤ Cgk,δ(y)(1 + gδx(x− y))R−k,∀x, y ∈ X,∀k ∈ {0, 1, . . . , R} ,∀δ > 0.

Proof. We shall prove first (3.2). We have

gk,δ(x) ≤ gk,δ(y) + |x− y|k+1 = gk,δ(y)
(

1 +
|x− y|k+1

gk,δ(y)

)
≤ gk,δ(y)

1 +
R∑

j=k+1

‖xj − yj‖1/dj
gj,δ(y)

 .

Using the inequality
R∑

j=k+1

aj ≤ R− k +
R∑

j=k+1

a
dj
j ,∀aj > 0,∀dj ≥ 1,

we obtain that
R∑

j=k+1

‖xj − yj‖1/dj
gj,δ(y)

≤ R+
R∑

j=k+1

‖xj − yj‖
gj,δ(y)dj

.

Therefore

gk,δ(x) ≤ Cgk,δ(y)(1 + gδy(x− y))

for C = 2(R+ 1) and (3.2) is proved.
We shall prove (3.3) by induction. For k = R there is nothing to prove. We can take C = 1 in this

case. Let us assume that (3.3) holds for k + 1 with some constant C > 1. Then

gk,δ(x) ≤ gk,δ(y) + |x− y|k+1 = gk,δ(y)
(

1 +
|x− y|k+1

gk,δ(y)

)
≤ gk,δ(y)

(
1 +

gk+1,δ(x)
gk+1,δ(y)

· |x− y|k+1

gk+1,δ(x)

)
.

By induction hypothesis,

gk,δ(x) ≤ Cgk,δ(y)(1 + gδx(x− y))R−k−1

(
1 +
|x− y|k+1

gk+1,δ(x)

)
≤

≤ Cgk,δ(y)(1 + gδx(x− y))R−k−1

R+ 1 +
R∑

j=k+1

‖xj − yj‖
gj,δ(x)dj

 ≤
≤ C1gk,δ(y)(1 + gδx(x− y))R−k,

which proves that (3.3) holds with some new constant C1. �

Corollary 3.3. a)The metrics gδk are uniformly slowly varying and uniformly self-tempered with respect
to δ > 0.

b) gk,δ are gδk weights uniformly with respect to δ > 0.
c) gk,δ′ is a gδk weight ∀δ, δ′ > 0.

Proof. All the assertions of the corollary follow from Lemmas 3.1, 3.2 and 2.6 if we put

(a1, . . . , an1 , . . . , an−nR+1, . . . , an) = (g−1
1,δ , . . . , g

−1
1,δ , . . . , g

−dR
R,δ , . . . , g

−dR
R,δ ).

�
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4. Hörmander’s lemmas

The following two results are essential tools in Hörmander’s theory of Weyl calculus ([H]).

Proposition 4.1. Let g be a slowly varying metric on X.
a) If γ is the constant from formula (2.2) and 0 < ε < γ, then there exists a sequence (xν)ν of points

in X so that the balls
Bν = Bgν(xν , r) = {x ∈ X; gxν (x− xν) < r}

cover X and there exists some N so that card {ν;x ∈ Bν} ≤ N, ∀x ∈ X,∀ε ≤ r ≤ γ.
b) For every r ∈ (ε, γ), there exist φν ∈ C∞0 (Bν),∀ν ∈ N∗, so that (φν)ν is a bounded sequence in

S1(X, g) and
∑
ν φν(x) = 1,∀x ∈ X.

c) If g is a self-tempered metric, then there exist two positive constants C̃ and M̃ which depend only
on the constants C and M from (2.3), on ε and on the dimension of X so that

(4.1)
∑
ν

(1 + dν(x))−M̃ ≤ C̃,∀x ∈ X.

Here dν(x) = gxν (x− xν).

Proof. a) First of all, let us remark that if K is a compact set in X, if F is a totally ordered set of
indices and if (xν)ν∈F is a family of points in K so that gxµ(xν − xµ) ≥ ε,∀ν > µ, then F is finite.
Else, since K is a compact set, there exists a point x ∈ K and a sequence (xνj )j convergent to x so that
gxνj (xνk − xνj ) ≥ ε,∀k > j. Let δ ∈ (0, γ). Then there exists jδ ∈ N so that gx(xνj − x) < δ if j ≥ jδ.
Then

gxνj (xνk − xνj ) ≤ gxνj (xνk − x) + gxνj (xνj − x) ≤ 1
γ gx(xνk − x) + 1

γ gx(xνk − x) ≤ 2δ
γ ,∀j, k ≥ jδ.

If we take δ < εγ/2, we obtain a contradiction.
Therefore, there exists a maximal sequence of points (xν)ν in X so that

(4.2) gxµ(xν − xµ) ≥ ε,∀ν > µ.

This sequence has all the required properties. Indeed, the balls (Bν)ν cover X when r = ε since
otherwise would be possible to add some point x to the sequence (xν)ν without violating (4.2).

Next, let x ∈ X and x ∈ Bν ∩ Bµ. We can always assume that µ < ν. Then gx(x− xν) ≤ r
γ ≤ 1 and

gx(xν−xµ) ≥ γgxµ(xν−xµ) ≥ γε. Therefore {y ∈ X; gx(y − xµ) < γε/2}∩{y ∈ X; gx(y − xν) < γε/2} =
∅. There is a fixed upper bound for the number of disjoint open balls of a fixed radius which are included
in a ball of radius 1 in a finite dimensional normed space. This bound depends only on the dimension of
the space and on the radius. It does not depend on the norm. This remark ends the proof of point a).

b) Let ψ ∈ C∞0 (−r2, r2), ψ(t) = 1,∀t ∈ (−ε2, ε2), ψν(x) = ψ(gxν (x − xν)2),∀x ∈ X,∀ν ∈ N∗,
φν(x) = ψν(x)/

(∑
µ ψµ(x)

)
. It is clear that (φν)ν ∈ C∞0 (Bν),∀ν ∈ N∗ and

∑
ν φν(x) = 1,∀x ∈ X. Let

us prove that (φν)ν is a bounded sequence in S1(X, g).
We shall first prove that (ψν)ν is a bounded sequence in S1(X, g). We have

gx(Dψν(x)) = supy 6=0

|Dψν(x)y|
gx(y)

= supy 6=0

|Dψν(x)y|
gxν (y)

gxν (y)
gx(y)

≤ 1
γ
· supy 6=0

|Dψν(x)y|
gxν (y)

since gxν (x− xν) < γ on suppψν . Let (aij)i,j=1,...,n be the matrix of the quadratic form (gxν )2. Then

Dψν(x)y =
n∑
j=1

∂

∂xj
ψ(gxν (x− xν)2)yj = 2ψ′(gxν (x− xν)2)

n∑
i,j=1

yjaij(xi − xν;i).

Here x = (x1, ..., xn), n = dimX.
Since

|
n∑

i,j=1

yjaij(xi − xν;i)| ≤ gxν (y)gxν (x− xν),
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we have
|Dψν(x)y|
gxν (y)

≤ 2r
γ
|ψ′(gxν (x− xν)2)| ≤ 2Cr

γ
,∀x ∈ X,∀y ∈ X \ {0} ,∀ν ∈ N∗

for some positive constant C. Therefore |ψν |1(1)(g) are uniformly bounded with respect to ν. One can
prove in a similar manner that |ψν |1(k)(g) are uniformly bounded with respect to ν, ∀k ∈ N.

Taking into account the uniform boundedness of the sequence (ψν)ν and the fact that there exists
some N so that card {ν;x ∈ Bν} ≤ N, ∀x ∈ X,∀ε ≤ r ≤ γ, we obtain that

∑
ν ψν ∈ S1(X, g). Lemma

2.11 ends the proof of the point b).
c) Let Mk = Mk(x) = {ν; dν(x) < k} ,∀x ∈ X,∀k ∈ N. It is sufficient to prove that there exist some

constants c and m, which depend only on the constants C and M from (2.3), on ε and on the dimension
of X so that

(4.3) card(Mk) ≤ c(1 + k)m,∀x ∈ X,∀k ∈ N

Indeed, if (4.3) is true and if M̃ = m+ 2, then

∑
ν

(1 + dν(x))−M̃ =
∑
k≥0

∑
ν∈Mk+1\Mk

(1 + dν(x))−M̃ ≤
∑
k≥0

∑
ν∈Mk+1\Mk

(1 + k)−M̃ ≤

≤ c
∑
k≥0

(1 + k)−M̃+m = C̃ <∞.

We shall prove now (4.3). Let ν ∈Mk and

Vν = {z ∈ X; gx(z − xν) < rk}

where rk = r/(C(1 + k)M ) and C and M are the constants from (2.3).
Then

(4.4) Vν ⊆ Bν .

Indeed, if z ∈ Vν and ν ∈Mk, then

gxν (z − xν) ≤ C(1 + gxν (x− xν)Mgx(z − xν) ≤ C(1 + k)M · r

C(1 + k)M
= r.

Also, for z ∈ Vν and ν ∈Mk, we have

gx(z − x) ≤ gx(z − xν) + gx(xν − x) < rk + Cgxν (xν − x)(1 + gxν (xν − x))M ≤ rk + C(1 + k)M+1.

Therefore

(4.5) Vν ⊆ V = V (x, k) = {z ∈ X; gx(z − x) < Rk} ,

where Rk = rk + C(1 + k)M+1.
Let |Vν | = C1(x)rnk , n = dimX be the volume of Vν . Using (4.4) and (4.5), we obtain that

C1(x)card(Mk)rnk =
∑
ν∈Mk

|Vν | ≤ N | ∪ν∈Mk
Vν | ≤ N |V | ≤ C1(x)NRnk ,

where N is the constant from a).
Therefore

cardMk ≤ Nr−nk Rnk = N(1 + C(1 + k)M+1r−1
k )n ≤ 2C2nNr−n(1 + k)(2M+1)n.

�
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Proposition 4.2. Let (X, ‖ · ‖) be an euclidean normed space, r1 > r > 0, x0 ∈ X and L an affine
function so that L(x) 6= 0,∀x ∈ B(x0, r1). Then

(4.6) ‖Dk

(
1
L

)
(x)‖ ≤ k!r1

(r1 − r)k+1|L(x0)|
,∀x ∈ B(x0, r),∀k ∈ N.

Proof. We may assume, without loss of generality, that x0 = 0 and that L(0) = 1. In this case, there
exists ξ ∈ X so that L(x) =< ξ, x > +1,∀x ∈ X. Since < ξ, x > +1 > 0,∀x ∈ X, ‖x‖ < r1, it follows
that ‖ξ‖ ≤ 1/r1 and L(x) ≥ (r1 − r)/r1,∀x ∈ B(0, r).

Since, for x ∈ B(0, r), L−1(x) =
∑
j≥0 (−1)j < ξ, x >j , we have

D(L−1)(x)y =
∑
j≥1(−1)jj < ξ, x >j−1< ξ, y >= − < ξ, y > L(x)−2.

We have used the fact that −(1 + a)−2 =
∑
j≥1(−1)jjaj−1,∀a ∈ R, |a| < 1.

Using the formula Dkf(x)(y1, ..., yk) = Dx[Dk−1f(x)(y1, ..., yk−1)]yk, one can prove by induction on k
that

Dk(L−1)(x)(y1, ..., yk) =< ξ, y1 > ... < ξ, yk > ·
(−1)kk!
L(x))k

,∀x, y1, ..., yk ∈ X.

Therefore

‖Dk(L−1)(x)‖ ≤ k!‖ξ‖k

|L(x)|k+1
≤ k!r1

(r1 − r)k+1
,∀x ∈ B(0, r).

�

5. Homogeneous groups

Let (g,+, [·, ·]) be a finite dimensional Lie algebra of dimension n endowed with a scalar product< ·, · >.
A family of dilations on g is a family (δt)t>0 of algebra automorphisms of g of the form δt = exp(Alog t),
where A is a positive definite operator on g. Let 0 < d1 < ... < dR be the eigenvalues of A and

gk =
{
x ∈ g; δtx = tdkx

}
,∀k ∈ {1, ..., R} .

Since δtα = exp(αAlogt), by adjusting α if necessary, we may assume that d1 = 1.

Proposition 5.1. If a Lie algebra g admits a family of dilations, then g is nilpotent.

Proof. If x ∈ gj , y ∈ gk, then δt[x, y] = [δtx, δty] = [tdjx, tdky] = tdj+dk [x, y]. Hence [gj , gk] = {0} if
dj + dk is not an eigenvalue of A and [gj , gk] ⊆ gl if dj + dk = dl for some eigenvalue dl of A. Therefore,
if we denote as usually, g(1) = g, g(j) = [g, g(j−1)], then g(j) ⊆ gj ⊕ ...⊕ gR. Consequenly, g(j) = {0} for
j ≥ dR and g is nilpotent. �

A homogeneous group is a connected and simply connected nilpotent Lie group whose Lie algebra is
endowed with a family of dilations. In these notes we shall consider that the Lie algebra g itself is a Lie
group with the multiplication given by the Campbell-Hausdorff-Baker formula

x ◦ y = xy = x+ y + r(x, y),∀x, y ∈ g,

where
r(x, y) =

1
2

[x, y] +
1
12

([x, [x, y]] + [y, [y, x]]) + . . .

is the finite sum of terms of order at least 2 in the Campbell-Hausdorff-Baker series for g.
We shall also assume that g is endowed with a fixed scalar product and we shall identify the dual

vector space g∗ with g by means of the scalar product.
Let us remark that according to the Campbell-Hausdorff-Baker formula, the inverse of a vector x ∈ g

with respect to the multiplication is −x. Therefore the Lebesgue measure is a bi-invariant Haar measure
for the group g and the convolution formula reads

f ∗ g(x) =
∫

g

f(xy−1)g(y) dy =
∫

g

f(x ◦ (−y))g(y) dy,∀f, g ∈ S(g).



MELIN CALCULUS ON HOMOGENEOUS LIE GROUPS - SEMINAR NOTES 11

The Lebesgue measure on g will be normalized so that the inverse of the Fourier transform on the
Schwartz space S(g)

f̂(y) =
∫

g

e−i<x,y>f(x) dx

is

f̌(x) =
∫

g

ei<x,y>f(y) dy

and ∫
g

|f(x)|2 dx =
∫

g

|f̂(y)|2 dy,∀f ∈ S(g).

We shall also operate with the notions of homogeneous degree of a multiindex and homogeneous
degree of a polynomial function on g. If α = (α1, . . . , αR), αk ∈ Nnk , nk = dim gk,∀k ∈ {1, . . . , R} is
a multiindex in Nn, then we denote with |α| its usual length (the sum of all its n components). The
homogeneous length of α is

d(α) =
R∑
k=1

dk|αk|.

If x = (x1, . . . , xR) = (x1;1, . . . , x1;n1 , . . . , xR;1, . . . , xR;nR) ∈ g, then the homogeneous degree of xα is
d(α).

6. The Melin operator and the reduction operator

The Melin operator U on g is defined by the formula

Uf(y) =
∫∫

g×g

e−i<x,y>f̌(x)e−i<r(x),ỹ> dx,∀f ∈ C∞0 (g× g),

where x = (x1, x2) ∈ g× g, y = (y1, y2) ∈ g× g, r(x) = r(x1, x2) and ỹ = y1+y2
2 .

Remark 6.1. If g is a commutative Lie algebra, then U is the identity operator.

Lemma 6.2. For every f, g ∈ C∞0 (g)

(6.1) f̂ ∗ g(y) = U(f̂ ⊗ ĝ)(y, y),∀y ∈ g.

Proof. For every f, g ∈ C∞0 (g) we have

f̂ ∗ g(y) =
∫

g

e−i<y,z>f ∗ g(z) dz =
∫

g

e−i<y,z> dz
∫

g

f(zu−1)g(u) du =

=
∫

g

g(u) du
∫

g

e−i<y,z>f(zu−1) dz =
∫

g

g(u) du
∫

g

e−i<y,x1u>f(x1) dx1 =

=
∫∫

g×g

e−i<y,x1+x2+r(x1,x2)>f(x1)g(x2) dx1dx2 = U(f̂ ⊗ ĝ)(y, y),

for every y ∈ g. �

Lemma 6.3. For every f ∈ C∞0 (g× g),

DαUf(y) =
∑

d(β)=d(α)

cβαU(Dβf)(y)

for some constants cβα ∈ C.
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Proof. Let us denote with rk(x) the sum of terms of homogeneous degree k from r(x), for k ∈ {1, . . . , R}.
Then

< r(x), y >=
R∑
k=1

< rk(x), y >, ∀x ∈ g× g,∀y ∈ g.

Therefore

DαUf(y) =
∫∫

g×g

f̌(x)Dα
y

(
e−i<x,y>e−i<r(x),ỹ>

)
dx =

=
∫∫

g×g

e−i<x,y>e−i<r(x),ỹ>P1(x)f̌(x) dx =

=
∫∫

g×g

e−i<x,y>e−i<r(x),ỹ>(P (D)f )̌(x) dx,

where P1 and P are homogeneous polynomials of homogeneous degree d(α). �

Let
g′ = g1 ⊕ · · · ⊕ gR−1.

The commutator
g′ × g′ 3 (x1, x2) 7→ [x1, x2]′ ∈ g′,

where ′ stands for the orthogonal projection of g onto g′, makes g′ into a Lie algebra isomorphic to g/gR.
The group multiplication in g′ is

x1 ◦′ x2 = x1 + x2 + r(x1, x2)′,∀x1, x2 ∈ g′.

Proposition 6.4. Let f ∈ C∞0 (g× g). Then

(6.2) Uf(y, λ) = U ′ (Pλf(·, λ)) (y),∀y ∈ g′ × g′,∀λ ∈ gR × gR,

where
Pλf(y) =

∫∫
g′×g′

e−i<x,y>f̌(x)e−i<r(x),λ̃> dx,∀f ∈ C∞0 (g′ × g′)

is an integral operator on C∞0 (g′ × g′) invariant under abelian translations and U ′ is the Melin operator
on g′.

Proof. Let us first remark that since gR is central,

r((x1, µ1), (x2, µ2)) = r(x1, x2),∀(x1, µ1), (x2, µ2) ∈ g′ × gR

and

< r((x1, µ1), (x2, µ2)), (ỹ, λ̃) >=< r(x1, x2), (ỹ, λ̃) >=< r(x1, x2)′, ỹ > + < r(x1, x2), λ̃ >

for all (x, µ), (y, λ) ∈ g× g.
Therefore

Uf(y, λ) =
∫∫

g×g

e−i<x,y>e−i<µ,λ>f̌(x, µ)e−i<r(x)′,ỹ>e−i<r(x),λ̃> dxdµ =

=
∫∫

g′×g′
e−i<x,y>

(
f(x̌, λ)e−i<r(x),λ̃>

)
e−i<r(x)′,ỹ> dx

where we denoted with f(x̌, λ) the partial inverse Fourier transform of f with respect to y.
The proof of (6.2) is concluded by the equality

(Pλf(·, λ))̌(x) = f(x̌, λ)e−i<r(x),λ̃>.

If we denote with τz the translation with z, (τzg)(y) = g(y+ z),∀y, z ∈ g′× g′,∀g ∈ C∞0 (g′× g′), then
(τzg)̌(x) = e−i<x,z>ǧ(x) and (τz(Pλg))(y) = Pλ(τz(g))(y). �
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Remark 6.5. Since Pλ commutes with the translations, then it will commute also with derivatives.

If g is a Lie algebra endowed with a family of dilations δt then on X = g × g we shall consider the
family of dilations δt(x) = δt(x1)⊕ δt(x2),∀x = (x1, x2) ∈ g× g.

Definition 6.6. We shall say that a self-tempered metric g on g is admissible if

gx(z)2 =
R∑
j=1

‖zj‖2

gj(x)2dj
,

gj(x) ≥ gj+1(x) ≥ δ, ∀x ∈ g,∀j ∈ {1, . . . , R− 1}
and

gj(x) ≥ gj(0(j), x
(j)) ≥ δ + |x|j+1,∀x ∈ g,∀j ∈ {1, . . . , R− 1} ,

for some δ > 0. Here x(j) = (xj+1, . . . , xR).

Let us remark that the metrics gδk introduced in section 3 are admissible metrics.
We also define a metric g on g× g by the formula

gx(z)2 = (g ⊕ g)x(z)2 =
R∑
j=1

‖z1,j‖2

gj(x1)2dj
+

R∑
j=1

‖z2,j‖2

gj(x2)2dj
,∀x = (x1, x2), z = (z1, z2) ∈ g× g.

Then g is also self-tempered. For λ = (λ1, λ2) ∈ gR × gR we put

gλx(z) = gx,λ(z, 0),∀x, z ∈ g′ × g′.

The metrics gλ = (gλx)x∈g′×g′ are uniformly self-tempered and, consequently, uniformly slowly varying
with respect to λ ∈ gR× gR. Let C, M (in (2.3)) and γ (in (2.1)) be joint constants for all these metrics.
We shall also use the following notations: gλj (x) = gj(x, λ),∀(x, λ) ∈ g, Bν = Bλν = Bλν (xλν , r) ⊂ g′ × g′

for the covering of Proposition 4.1 for the metric gλ, λ ∈ gR×gR, xν = xλν and dλν (y) = gλxν (y−xν),∀y ∈
g′ × g′,∀λ ∈ gR × gR,∀ν ∈ N∗.

For an admissible metric g we put

g̃R−1(λ) = max
(
gR−1(0, λ1)
gR−1(0, λ2)

,
gR−1(0, λ2)
gR−1(0, λ1)

)
,∀λ = (λ1, λ2) ∈ gR × gR.

From Remark 2.8 and Example 2.10 it follows that g̃R−1 is a g-tempered weight.

Proposition 6.7. Let g = g ⊕ g, g an admissible metric on g. Then ∀N ∈ N, ∃C > 0, ∃k ∈ N so that

(6.3) |Pλf(y)| ≤ C|f |g̃R−1(λ)NdR

k (gλ)
(
1 + dλν (y)

)−N
,∀y ∈ g′×g′,∀λ ∈ gR×gR,∀ν ∈ N∗,∀f ∈ C∞0 (Bλν ).

Proof. For f ∈ C∞0 (Bλν ) we have

|Pλf(y)| =
∣∣∣∣∫∫

g′×g′
e−i<x,y>f̌(x)e−i<r(x),λ̃> dx

∣∣∣∣ ≤ ∫∫
g′×g′

|f̌(x)| dx.

Let
fλν (y) = f(yλ(ν)),

where

yλ(ν) =
(
gλ1 (xν,1)d1y1,1, . . . , g

λ
R−1(xν,1)d1y1,R−1, g

λ
1 (xν,2)d1y2,1, . . . , g

λ
R−1(xν,2)dR−1y2,R−1

)
.

Then ∫∫
g′×g′

|f̌(x)| dx =
∫∫

g′×g′
|f̌λν (x)| dx.
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If y ∈ suppfλν , then

1 ≥ γ2 > r2 ≥ gλxν
(
gλ1 (xν,1)d1y1,1, . . . , g

λ
R−1(xν,1)d1y1,R−1, g

λ
1 (xν,2)d1y2,j , . . . , g

λ
R−1(xν,2)dR−1y2,R−1

)2
=

=
R−1∑
j=1

gλj (xν,1)2dj

∥∥∥∥y1,j − xν,1,j

gλj (xν,1)dj

∥∥∥∥2

gλj (xν,1)2dj
+
R−1∑
j=1

gλj (xν,2)2dj

∥∥∥∥y2,j − xν,2,j

gλj (xν,2)dj

∥∥∥∥2

gλj (xν,2)2dj
=

= ‖y − x̃ν‖2

for some x̃ν ∈ g× g.
Therefore suppfλν is included in a ball of radius 1 with respect to the fixed euclidean norm on g × g.

Hence we obtain from Sobolev’s lemma that there exists some positive constant C so that∫∫
g′×g′

|f̌λν (x)| dx ≤ sup|α|≤2n+1supy∈g′×g′ |Dαfλν (y)|.

But, using Lemma 2.6, we have

∣∣Dαfλν (y)
∣∣ =

∣∣∣∣∣∣
R−1∏
j=1

gλj (xν,1)|α1,j |dj (Dα1f)λν (y) ·
R−1∏
j=1

gλj (xν,2)|α2,j |dj (Dα2f)λν (y)

∣∣∣∣∣∣ =

=

∣∣∣∣∣∣
R−1∏
j=1

gλj (xν,1)|α1,j |djDα1f(yλ(ν)) ·
R−1∏
j=1

gλj (xν,2)|α2,j |djDα2f(yλ(ν))

∣∣∣∣∣∣ ≤
≤
(

1
γ

)|α| R−1∏
j=1

gλj (yλ(ν),1)|α1,j |dj
∣∣Dα1f(yλν )

∣∣ · R−1∏
j=1

gλj (yλ(ν),2)|α2,j |dj
∣∣∣Dα2f(yλ(ν))

∣∣∣ ≤
≤ Ck|f |1k(gλ)

for |α| ≤ k.
Therefore for N = 0, (6.3) holds with k = n+ 1.
We shall prove (6.3) for N ∈ N by induction on N . So let us assume that (6.3) is true for some N

and let us prove it for N + 1. Let dλν (y) = a > 1 (otherwise the estimate is a simple consequence of the
estimate for N = 0).

Let ξ ∈ (g′×g′)∗ be a vector of unit length with respect to the norm dual to gλxν so that ξ(y−xν) = a.
Then, for r1 ∈ (r, γ) we have

ξ(y − x) = ξ(y − xν)− ξ(x− xν) ≥ a− |ξ(x− xν)| ≥ a− 1 > 0,∀x ∈ Bλν (xλν , r1).

Let L(x) = ξ(x− y),∀x ∈ g′ × g′. Then L(xν) = −a and L does not vanish on Bλν (xλν , r1). Therefore,
by Proposition 4.2, ∀k ∈ N, there exists a positive constant Ck = Ck(r, r1) so that

(6.4) gλx

(
Dk 1

L
(x)
)
≤ γ−kgλxν

(
Dk 1

L
(x)
)
≤ Ck

a
,∀x ∈ Bλν (xλν , r).

Another inequality we shall need follows from the fact that ξ ∈ (g′ × g′)∗ is a vector of unit length
with respect to the norm dual to gλxν :

1 =
R−1∑
j=1

gλ1
j (xν,1)2dj‖ξ1,j‖2 +

R−1∑
j=1

gλ1
j (xν,2)2dj‖ξ2,j‖2 ≥

≥
R−1∑
j=1

gR−1(0, λ1)2dj‖ξ1,j‖2 +
R−1∑
j=1

gR−1(0, λ2)2dj‖ξ2,j‖2.

(6.5)
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Let Ax =< x, ξ >, ∀x ∈ g′ × g′. Then, since L(y) = 0, we have

Pλ(Lf)(y) = [Pλ, L]f(y) = [Pλ, A]f(y) =
∫∫

g′×g′
e−i<x,y>Af (̌x)e−i<r(x),λ̃> dx−

−
∫∫

g′×g′
< y, ξ > e−i<x,y>f̌(x)e−i<r(x),λ̃> dx =

= −i
∫∫

g′×g′
e−i<x,y>(< ξ,D − iy > f̌)(x)e−i<r(x),λ̃> dx =

= −
∫∫

g′×g′
< y, ξ > e−i<x,y>f̌(x)e−i<r(x),λ̃> dx+

+ i

∫∫
g′×g′

f̌(x) < ξ,Dx >
(
e−i<x,y>e−i<r(x),λ̃>

)
dx =

=
∫∫

g′×g′
f̌(x)

(
< ξ,Dx > (< r(x), λ̃ >)

)
e−i<x,y>e−i<r(x),λ̃> dx =

=
R−1∑
j=1

< ξ1,j ,

∫∫
g′×g′

e−i<x,y>e−i<r(x),λ̃> < Dx1,jr(x), λ̃ > f̌(x) dx >+

+
R−1∑
j=1

< ξ2,j ,

∫∫
g′×g′

e−i<x,y>e−i<r(x),λ̃> < Dx2,jr(x), λ̃ > f̌(x) dx > =

=
R−1∑
j=1

< ξ1,j ,

∫∫
g′×g′

e−i<x,y>e−i<r(x),λ̃>(< r1,j(iD), λ̃ > f )̌ (x) dx >+

+
R−1∑
j=1

< ξ2,j ,

∫∫
g′×g′

e−i<x,y>e−i<r(x),λ̃>(< r2,j(iD), λ̃ > f )̌ (x) dx > =

=
R−1∑
j=1

< ξ1,j , Pλ(< r1,j(iD), λ̃ > f)(y) >+

+
R−1∑
j=1

< ξ2,j , Pλ(< r2,j(iD), λ̃ > f)(y) >,

(6.6)

where ri,j(x) = Dxi,jr(x) for i = 1, 2 and ∀j ∈ {1, ..., R− 1} are homogeneous polynomials of homoge-
neous degree dR − dj . Let us stress that here D stands for the partial derivatives D = ∂.

Using the induction hypothesis, we deduce that∣∣∣Pλ(< ri,j(iD), λ̃ > f)(y)
∣∣∣ ≤ C ∣∣∣< ri,j(iD), λ̃ > f

∣∣∣g̃R−1(λ)NdR

k
(gλ)

(
1 + dλν (y)

)−N ≤
≤ Cg̃R−1(λ)NdRsup|α|≤k,z∈g′×g′

∣∣∣Dα < ri,j(iD), λ̃ > f(z)
∣∣∣ ·

·

(
R−1∏
i1=1

gλ1
i1

(z1)di1 |α1,i1 |

)(
R−1∏
i2=1

gλ2
i2

(z2)di2 |α2,i2 |

)(
1 + dλν (y)

)−N ≤
≤ Cg̃R−1(λ)NdRsup|α|≤k,z∈g′×g′,d(β)=dR−dj

∣∣Dα+βf(z)
∣∣ ‖λ̃‖·

·

(
R−1∏
i1=1

gλ1
i1

(z1)di1 (|α1,i1 |+|β1,i1 |)

)(
R−1∏
i2=1

gλ2
i2

(z2)di2 (|α2,i2 |+|β2,i2 |)

)
·

· gR−1(0, λ1)−d(β1)gR−1(0, λ2)−d(β2)
(
1 + dλν (y)

)−N
.

(6.7)
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Formulas (6.4)-(6.7), the fact that g is an admissible metric, Lemma 2.11, a) and Remark 2.13 conclude
the proof:

|Pλf(y)| =
∣∣∣∣Pλ(L · 1

L
f

)
(y)
∣∣∣∣ ≤

≤
R−1∑
j=1

∣∣∣∣< ξ1,j , Pλ(< r1,j(iD), λ̃ >
(

1
L
f

)
)(y) >

∣∣∣∣+
+
R−1∑
j=1

∣∣∣∣< ξ2,j , Pλ(< r2,j(iD), λ̃ >
(

1
L
f

)
)(y) >

∣∣∣∣ ≤
≤ Cg̃R−1(λ)(N+1)dR

∣∣∣∣ 1Lf
∣∣∣∣1
k′

(gλ)
(
1 + dλν (y)

)−N ≤
≤ Cg̃R−1(λ)(N+1)dR

Ck′

a
· |f |1k′ (gλ)

(
1 + dλν (y)

)−N ≤
≤ C ′k′ g̃R−1(λ)(N+1)dR |f |1k′ (gλ)

(
1 + dλν (y)

)−N−1

for k′ ≥ k(N) + dR.
�

Remark 6.8. From the proof of Proposition 6.7 we can see that the conclusion of the proposition is still
true if we replace g̃R−1 with

q̃R−1(λ) = max
(

1 + ‖λ1‖
1 + ‖λ2‖

,
1 + ‖λ2‖
1 + ‖λ1‖

)
,∀λ = (λ1, λ2) ∈ gR × gR.

Remark 6.9. If instead of the metric g ⊕ g with g admissible we have on g× g a metric of the form

gx(z)2 =
R∑
j=1

‖z1,j‖2

g1,j(x)2dj
+

R∑
j=1

‖z2,j‖2

g2,j(x)2dj
,∀x = (x1, x2), z = (z1, z2) ∈ g× g,

with gi,j(x) ≥ δ + ‖xR‖1/dR ,∀x ∈ g × g,∀i ∈ {1, 2} ,∀j ∈ {1, ..., R− 1} , for some δ > 0, then the
conclusion of the Proposition (6.7) is still true if we replace g̃R with 1.

At this point we need to introduce the notion of double continuous mapping between spaces of symbols.
Let Sm(X, g) be a space of symbols on an euclidean space X, m a G-tempered weight with respect to a
G-tempered slowly varying metric g. Besides the Fréchet topology on Sm(X, g) (see Remark (2.13)), we
introduce the weak topology [Ma] of the C∞ convergence on Fréchet bounded subsets.

Lemma 6.10. The weak convergence is equivalent to the pointwise convergence on Fréchet bounded
subsets of Sm(X, g).

Proof. We shall apply Arzela-Ascoli theorem. First of all, if (fj)j is a bounded sequence in Sm(X, g) and
if K is a compact set in X, then (Dkfj)j is a sequence of uniformly bounded functions on K.

Let us prove this assertion for k = 1. The balls (Bg(x, γ))x∈K are an open covering of K. Therefore
there exists a finite set {x1, ..., xl} ⊂ K so that (Bg(xi, γ))i∈{1,...,l} is still a covering of K. Each of the
metrics gxi , i ∈ {1, ..., l}, is equivalent to the euclidean metric. Hence there exists some positive constant
C1 so that gxi(y) ≤ C1‖y‖,∀i ∈ {1, ..., l} ,∀y ∈ X. An arbitrary point x ∈ K belongs to some ball
Bg(xi, γ). Therefore, from (2.1) we obtain that

gx(y) ≤ 1
γ
C1‖y‖,∀x ∈ K, ∀y ∈ X.

Now our assertion in case k = 1 follows from the fact that m beeing a g weight is bounded on K and
from the boundedness in Sm(X, g) of the sequence (fj)j . Its proof for the other values of k is similar.

From Arzela-Ascoli theorem it follows that every sub-sequence of (Dkfj)j contains a sub-sub-sequence
uniformly convergent on K. If fj → f pointwise, then, in case k = 0, this limit is always equal to f .
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Therefore fj → f uniformly on K. For k > 0, in order to obtain the same conclusion we have to use also
either the fact that fj → f in the distribution sense, or the classical theorem of derivation of sequences
of functions. �

Lemma 6.11. Let m be a G-tempered weight with respect to a G-tempered slowly varying metric g,
f ∈ Sm(X, g) and (φν)ν the partition of unity from Proposition 4.1. Then

∑j
ν=1 φνf → f weakly in

Sm(X, g) when j →∞.

This lemma is a straightforward consequence of the definitions, of Propositions 4.1 b) and of Lemma
2.11, a).

Remark 6.12. Let m be a G-tempered weight with respect to the slowly varying metric g on g× g and
mλ(x) = m(x, λ),∀x ∈ g′ × g′,∀λ ∈ gR × gR. Then mλ is a Gλ-tempered weight with respect to the
slowly varying metric gλ, uniformly with respect to λ.

Remark 6.13. Let g be a slowly varying metric on g×g and gλ(x) = g(x, λ),∀x ∈ g′×g′,∀λ ∈ gR×gR.
Then the partition of unity (φλν )ν in the conclusion of Proposition 4.1, b) can be selected so that the
sequences (φλν )ν are uniformly bounded in S1(g′×g′), with respect to λ ∈ gR×gR. This assertion follows
from the proof of Proposition 4.1, b), since te constant γ in (2.2) does not depend on λ.

Remark 6.14. Let g be a self-tempered metric on g×g. Then the constants C̃ and M̃ in the conclusion
of Proposition 4.1, c) corresponding to the metrics gλ can be selected the same for all λ ∈ gR× gR. This
assertion follows from the proof of Proposition 4.1, c), since te constants γ in (2.2) and C and M in (2.3)
do not depend on λ.

Proposition 6.15. Let g = g⊕ g, g an admissible metric on g and m be a g-tempered weight. Then for
N ∈ N, sufficiently large there exists a double continuous extension of Pλ to a map

Pλ : Smλ

(g′ × g′,gλ)→ Smλg̃R−1(λ)NdR (g′ × g′,gλ)

and the estimates are uniform with respect to λ ∈ gR × gR.

Proof. We shall apply Proposition 6.7. Let (φλν )ν be a partition of unity as in Remark 6.13. We shall
denote with C1 a constant which may depend on the constant γ in (2.2), on the constants C and M in
(2.3), on N ∈ N and on r in Proposition 4.1, but does not depend on λ ∈ gR × gR and on ν ∈ N∗. Then
∀N ∈ N, ∀f ∈ Smλ

(g′ × g′,gλ)

|Pλ(φλνf)(y)| ≤ C1|φλνf |
g̃R−1(λ)NdR

k (gλ)
(
1 + dλν (y)

)−N
,∀y ∈ g′ × g′,∀λ ∈ gR × gR,∀ν ∈ N∗.

Since m is a g tempered weight and φλν are uniformly bounded in S1(g′×g′), with respect to λ ∈ gR×gR
and to ν ∈ N∗ , we have

mλ(y)−1|Pλ(φλνf)(y)| ≤ C1mλ(xν)−1(1 + dλν (y))M |Pλ(φλνf)(y)| ≤

≤ C1mλ(xν)−1|φλνf |
g̃R−1(λ)NdR

k (gλ)(1 + dλν (y))M−N ≤

≤ C1|φλνf |
mλg̃R−1(λ)NdR

k (gλ)(1 + dλν (y))M−N ≤

≤ C1|f |m
λg̃R−1(λ)NdR

k (gλ)(1 + dλν (y))M−N .

(6.8)

If N is sufficiently large so that∑
ν

(1 + dλν (y))M−N ≤ C0 <∞,∀y ∈ g′ × g′,∀λ ∈ gR × gR

then, accordingly to (6.8),∑
ν

|Pλ(φλνf)(y)| ≤ C1|f |m
λg̃R−1(λ)NdR

k (gλ)mλ(y),∀y ∈ g′ × g′,∀λ ∈ gR × gR

and ∀f ∈ Smλ

(g′ × g′,gλ).
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Therefore the operator

f 7→
(
mλ
)−1

g̃R−1(λ)−NdR
∑
ν

Pλ(φλνf)

is an extension of
(
mλ
)−1

g̃R(λ)−NdRPλ to a continuous operator defined on Smλ

(g′ × g′,gλ) and L∞

valued. The estimates are uniform in λ.
The uniqueness of this extension follows from Lemma 6.11 if we prove that the linear form

Smλ

(g′ × g′,gλ) 3 f 7→
∑
ν

Pλ(Φλνf)(y) ∈ C

is weakly continuous ∀y ∈ g′ × g′,∀λ ∈ gR × gR.
Let (fj)j be a bounded sequence in Smλ

(g′×g′,gλ) so that fj → f in the C∞ topology, Mj = Mj(y, λ)
be sets as in the proof of the point c) of Proposition 4.1 and let m be the constant in (4.3). Then

(
mλ(y)

)−1
g̃R−1(λ)−NdR

∑
ν

|Pλ(φλν (fj − f))(y)| ≤ C2

∑
ν

|φλν (fj − f)|m
λ

k (gλ)
(
1 + dλν (y)

)M−N ≤
≤ C2

∑
l≥0

∑
ν∈Ml+1\Ml

|φλν (fj − f)|m
λ

k (gλ)(1 + l)M−N ≤

≤ C2

L∑
l=0

∑
ν∈Ml+1\Ml

|φλν (fj − f)|m
λ

k (gλ)+

+ C2

∑
l>L

(1 + l)M+m−N .

We denoted with C2 a constant which may depend on λ and on the norms of the functions fj also.
If we first select L sufficiently large and if we next remark that φλνfj → φλνf, ∀ν, in the topology of

Smλ

(g′ × g′,gλ) we see that ∑
ν

Pλ(φλνfj)(y) =
∑
ν

Pλ(φλνf)(y).

Estimates for the derivatives of Pλf are obtained from the fact that Pλ and, consequently, its extension,
commute with differentiation.

Finally, the weak convergence is now a consequence of Lemma 6.10. �

Remark 6.16. For the proof of the next proposition we shall need a slightly different version of Propo-
sition 6.15. Before stating this version we have to introduce some more notations. Starting fom this
point, for j ∈ {1, . . . , R− 1} we put g(j) = g1 ⊕ · · · ⊕ gj (in the proof of Proposition 5.1 g(j) denoted a
different object) , and g(j) = gj+1 ⊕ · · · ⊕ gR. If x = (x1, . . . xR) ∈ g and j ∈ {1, . . . , R− 1} then we put
x(j) = (x1, . . . xj) and x(j) = (xj+1, . . . , xR). Also, if g is a metric on g, then we define a metric gλ

(j)
on

g(j) by the formula

gλ
(j)

x(j)
(z(j)) = g(x(j),λ(j))(z(j), 0(j)),∀x(j), z(j) ∈ g(j),∀λ(j) ∈ g(j)

and if g is an admissible metric, then

g̃j(λ(j)) = max

(
gj(0, λ

(j)
1 )

gj(0, λ
(j)
2 )

,
gj(0, λ

(j)
2 )

gj(0, λ
(j)
1 )

)
,∀λ(j) = (λ(j)

1 , λ
(j)
2 ) ∈ g(j) × g(j),∀j ∈ {1, . . . , R− 1} .

The functions g(j+1) × g(j+1) 3 (0(j), λj+1) 7→ g̃j(λ(j)) are (g ⊕ g)λ
(j+1)

tempered weights, uniformly
with respect to λ(j+1) and g × g 3 (0(j), λ

(j)) 7→ g̃j(λ(j)) are g ⊕ g tempered weights. In this context,
(g ⊕ g)λ

(R)
= g ⊕ g.
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On C∞0 (g(j) × g(j)), for λ(j) ∈ g(j) × g(j), we define an operator Pλ(j) by the formula

Pλ(j)f(y(j)) =
∫∫

g(j)×g(j)

e−i<x(j),y(j)>f̌(x(j))e−i<rj+1(x(j)),λ̃j+1> dx(j),∀f ∈ C∞0 (g(j) × g(j)),

where rj+1(x(j)) is the projection of r(x(j)) on g(j+1).
Finally, for m a g ⊕ g tempered weight, we put

mλ(j)
(x(j)) = m((x(j), λ

(j))),∀x(j) ∈ g(j) × g(j),∀λ(j) ∈ g(j) × g(j).

Then, for N sufficiently large, Pλ(j) can be extended to a continuous operator

Pλ(j) : Sm
λ(j)

(g(j) × g(j), (g ⊕ g)λ
(j)

)→ Sm
λ(j)

(g̃j(λ
(j)))N (g(j) × g(j), (g ⊕ g)λ

(j)
)

and the estimates are uniform with respect to λ(j) ∈ g(j) × g(j).

Proposition 6.17. Let g be an admissible metric on g and m a g ⊕ g tempered weight. Then the Melin
operator U admits a unique weakly continuous extension

U : Sm(g× g, g ⊕ g)→ C∞(g× g)

so that ∀α = (α1, α2) ∈ N2n, there exist Nα ∈ N, kα ∈ N and Cα > 0 such that

(6.9) |∂αUf(x)| ≤ Cαm(x)
R−1∏
j=1

g̃j(x(j))Nα
R∏

i1=1

gi1(x1)−di1 |α1,i1 |
R∏

i2=1

gi2(x2)−di2 |α2,i2 ||f |mkα(g),

for all x ∈ g× g and for all f ∈ Sm(g× g, g ⊕ g).

Proof. We shall prove (6.9) by induction on j. We shall denote with Uj the Melin operator defined on
C∞0 (g(j) × g(j)).

If j = 1, then g(1) = g1 is an abelian algebra, U1 = I and there is nothing to prove. Let us assume
that the assertion is true for j and let us prove it for j + 1. For f ∈ Sm(g× g, g ⊕ g) and λ(j) ∈ g(j) let
us put

fλ(j)(x(j)) = f(x(j), λ
(j)),∀x(j) ∈ g(j) × g(j).

Then

fλ(j) ∈ Smλ(j)

(g(j) × g(j), (g ⊕ g)λ
(j)

)

uniformly with respect to λ(j).
Therefore, accordingly to Remark 6.16, to the induction hypothesis and to the formula

Uj+1f(x(j), λ
(j)) = Uj(Pλ(j)fλ(j))(x(j)),∀(x(j), λ

(j)) ∈ g× g

we obtain that ∀α(j) = (α1,(j), α2,(j)) ∈ N
Pj
k=1 2nk , there exist Nα(j) , kα(j) ∈ N and Cα(j) > 0 so that

|∂α(j)Uj+1f(x(j), λ
(j))| ≤ Cα(j)m

λ(j)
(x(j))

j∏
k=1

g̃k((x(j), λ
(j))(k))Nα(j)×

×
j+1∏
i1=1

gk(x1,(j), λ
(j)
1 )−di1 |α1,i1 |

j+1∏
i2=1

gk(x2,(j), λ
(j)
2 )−di2 |α2,i2 ||f |mkα(j)

(g),

for all x(j) ∈ g(j) × g(j) and for all f ∈ Smλ(j+1)

(g(j+1) × g(j+1), (g ⊕ g)λ
(j+1)

). The estimates are uniform
with respect to λ(j).

We have to estimate the derivatives of Uj+1f(·, λ(j)) with respect to λj+1 also. In order to simplify
the notations we shall assume that gj+1 has dimension 1 and λj+1 = (λ1,j+1, λ2,j+1). We consider only
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the derivative of order 1 with respect to λ1,j+1. Similar estimates for derivatives of greater order will
follow by induction on the order of derivation. We have

∂

∂λ1,j+1

Uj+1f(y(j), λ
(j)) =

∂

∂λ1,j+1

Uj(Pλ(j)f(·, λ(j)))(y(j)) = Uj(
∂

∂λ1,j+1

Pλ(j)f(·, λ(j)))(y(j))

and

∂

∂λ1,j+1

Pλ(j)f(·, λ(j))(y(j)) =
∂

∂λ1,j+1

∫∫
g(j)×g(j)

e−i<x(j),y(j)>f(x(j) ,̌ λ
(j))e−i<rj+1(x(j)),λ̃j+1> dx(j) =

=
∫∫

g(j)×g(j)

e−i<x(j),y(j)>
∂

∂λ1,j+1

f(x(j) ,̌ λ
(j))e−i<rj+1(x(j)),λ̃j+1> dx(j)−

− 1
2

∫∫
g(j)×g(j)

e−i<x(j),y(j)>f(x(j) ,̌ λ
(j))rj+1(x(j))e−i<rj+1(x(j)),λ̃j+1> dx(j) =

= Pλ(j)(
∂

∂λ1,j+1

f)(·, λ(j))(y(j))−
1
2
Pλ(j)(rj+1(−iD(j))f(·, λ(j)))(y(j)) =

= ϕf
1,λ(j)(y(j)) + ϕf

2,λ(j)(y(j)).

We have denoted with rj+1(x(j)) the sum of terms of homogeneous degree dj+1 from rj+1(x(j)).
Now

∂

∂λ1,j+1

: Smλ(j+1)

(g(j+1) × g(j+1), (g ⊕ g)λ
(j+1)

)→

→ Smλ(j+1)
(gj+1(·,λ(j+1)))−dj+1 (g(j+1) × g(j+1), (g ⊕ g)λ

(j+1)
)

are continuous operators and the estimates are uniform with respect to λ(j+1). Therefore, using again the
induction hypothesis and Remark 6.16, we obtain that ∀α(j) = (α1,(j), α2,(j)) ∈ N

Pj
k=1 2nk , there exist

Nα(j) , k
′
α(j)
∈ N and C ′α(j)

> 0 so that∣∣∣∣( ∂

∂λ1,j+1

∂α(j)Ujϕ
f
1,λ(j)

)
(x(j))

∣∣∣∣ ≤ C ′α(j)
mλ(j)

(x(j))
j∏

k=1

g̃k((x(j), λ
(j))(k))Nα(j)×

×
j+1∏
i1=1

gk(x1,(j))−di1 |α1,i1 |
j+1∏
i2=1

gk(x2,(j))−di2 |α2,i2 |×

× (gj+1(x1,(j), λ
(j)
1 ))−dj+1 |f |mk′α(j)

(g),

and the estimates are uniform with respect to λ(j).
Since g is an admissible metric, we obtain, as in the final part of the proof of Proposition 6.7, that

∀α(j) = (α1,(j), α2,(j)) ∈ N
Pj
k=1 2nk , there exist Nα(j) , k”α(j) ∈ N and C”α(j) > 0 so that∣∣∣∣( ∂

∂λ1,j+1

∂α(j)Ujϕ
f
2,λ(j)

)
(x(j))

∣∣∣∣ ≤ C”α(j)m
λ(j)

(x(j))
j∏

k=1

g̃k((x(j), λ
(j))(k))Nα(j)×

×
j+1∏
i1=1

gk(x1,(j))−di1 |α1,i1 |
j+1∏
i2=1

gk(x2,(j))−di2 |α2,i2 |×

× (gj+1(x1,(j), λ
(j)
1 ))−dj+1 g̃j(λ(j))dj |f |mk”α(j)

(g)

and the estimates are uniform with respect to λ(j).
The week continuity follows from the induction hypothesis and from Proposition 6.15. �
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7. Symbolic calculus and L2− continuity

We shall prove first the continuity of the operation of composition of two symbols.

Theorem 7.1. Let g be an admissible metric on the homogeneous Lie group g and let m1 and m2 be two
g-tempered weights. Then the product

C∞0 (g)× C∞0 (g) 3 (a, b) 7→ a#b = (ǎ ∗ b̌)̂ ∈ S(g)

admits a unique double continuous extension

# : Sm1(g, g)× Sm2(g, g)→ Sm1m2(g, g).

Proof. We have
(a#b)(x) = U(ˆ̌a ∗ ˆ̌b)(x, x) = U(a⊗ b)(x, x),∀x ∈ g.

For the estimation of the derivatives of a#b we shall apply Proposition 6.17. Let us remark that if
x1 = x2 ∈ g, then g̃j(x(j)) = 1,∀j ∈ {1, ..., R− 1}. Therefore ∀α ∈ Nn there exist kα ∈ N and Cα > 0
such that

|∂αU(a⊗ b)(x, x)| ≤ Cαm1(x)m2(x)
R∏
i=1

gi(x)−di|αi||a|m1
kα

(g)|b|m2
kα

(g),

for all x ∈ g, a ∈ Sm1(g, g) and b ∈ Sm2(g, g). �

We pass now to the proof of the L2-continuity of the pseudodifferential operators for the metric q on
g. Remark that q is clearly an admissible metric. Let φν be a partition of unity for q as in Proposition
4.1. We put Φµν(x) = φµ(x1)φν(x2),∀x = (x1, x2) ∈ g× g. Since q is a self-tempered varying metric, by
(2.5) we have

(7.1) 1 + qxν (xµ − xν) ≤ C(1 + qy(xµ − y))M+1(1 + qy(xν − y)),∀ν, µ ∈ N∗,∀y ∈ g.

We shall use the notation q = q ⊕ q.

Lemma 7.2. If
fµν(y) = U(Φµνf)(y, y),∀ν, µ ∈ N∗,∀y ∈ g,∀f ∈ S1(g× g,q).

then ∀N ∈ N,∃k ∈ N,∃C > 0 so that

‖f̌µν‖L1(g) ≤ C|f |1k(q)(1 + qxν (xµ − xν))−N ,∀ν, µ ∈ N∗.

Proof. If m and n are two q-tempered weights, then m⊗n is a q-tempered weight. Therefore, accordingly
to Example 2.9, the function

mµν(y) = (1 + qy1(xµ − y1))−N(M+1)(1 + qy2(xν − y2))−N ,∀y = (y1, y2) ∈ g× g

is a q-tempered q-weight. If y1 ∈ Bµ and y2 ∈ Bν , then

qxµ(y1 − xµ) < γ, qxν (y2 − xν) < γ

and therefore, by (2.1)
qy1(y1 − xµ) < 1, qy2(y2 − xµ) < 1.

Hence m−1
µν is uniformly bounded on the support of Φµν and, consequently, there exists some constant

C > 0 so that
|Φµνf |

mµν

k (q) ≤ C|Φµνf |1k(q).
.

Therefore, accordingly to Proposition 4.1,

Φµνf ∈ Smµν (g× g,q)

and the estimates are uniform with respect to µ and ν. More precisely, for all k ∈ N there exists a positive
constant Ck so that

|Φµνf |
mµν

k (q) ≤ Ck|f |1k(q),∀µ, ν ∈ N∗,∀f ∈ S1(g× g,q).
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Therefore, if we apply Proposition 6.17, we obtain that ∀α = (α1, α2) ∈ N2n, there exist Nα ∈ N,
kα ∈ N and Cα > 0 such that

|∂αU(Φµνf)(x)| ≤ Cαmµν(x)
R−1∏
j=1

q̃j(x(j))Nα
R∏

i1=1

qi1(x1)−di1 |α1,i1 |
R∏

i2=1

qi2(x2)−di2 |α2,i2 ||f |1kα(q),

for all x ∈ g× g, for all µ, ν ∈ N∗ and for all f ∈ S1(g× g, q ⊕ q).
As we already remarked, q̃j(y(j), y(j)) = 0,∀y ∈ g. Hence for all α ∈ Nn there exist kα ∈ N and Cα > 0

so that

|∂αfµν(y)| ≤ Cαmµν(y, y)
R∏
i=1

qi(y)−di|αi||f |1kα(q) ≤ Cαmµν(y, y)|f |1kα(q)

for all y ∈ g, for all µ, ν ∈ N∗ and for all f ∈ S1(g× g, q ⊕ q).
By (7.1)

mµν(y, y) ≤ C(1 + qxν (xµ − xν))−N

for all y ∈ g, for all µ, ν ∈ N∗. So, finally we obtain that for all k ∈ N there exist k1 ∈ N and Ck > 0 so
that

|∂αfµν(y)| ≤ Ck|f |1k1(q)(1 + qxν (xµ − xν))−N

for all y ∈ g and |α| ≤ k. If k is large enough, the conclusion of the lemma follows from Sobolev inequality,
as in the proof of Proposition 6.7. �

Theorem 7.3. Let a ∈ S1(g, q). Then the linear operator C∞0 (g) 3 f 7→ Af = f ∗ ǎ ∈ L2(g) extends to
a unique bounded mapping of L2(g). More precisely, there exist k ∈ N and C > 0 so that

‖Af‖L2(g) ≤ C|a|1k(q)‖f‖L2(g),∀f ∈ C∞0 (g).

Proof. We shall apply Cotlar’s lemma: if A1, ..., Ak are bounded operators in a Hilbert space H such
that, for some constant M ,

∑j
ν=1 ‖A∗µAν‖1/2 ≤M and

∑j
ν=1 ‖AµA∗ν‖1/2 ≤M , then ‖

∑j
µ=1Aµ‖ ≤M .

Let
Aνf = f ∗ (φνa)̌,∀f ∈ L2(g).

The operators Aν are bounded operators in L2(g) since φνa ∈ C∞0 (g) and (φνa)̌ ∈ S(g) ⊂ L1(g). The
adjoint of Aν is given by the formula A∗νf = f ∗ (φν ā)̌. Therefore, if we apply Lemma 6.2, we obtain that

A∗µAνf = f ∗ ((φνa)̌ ∗ (φµā) )̌ = f ∗ (U(φνa⊗ φµā)∆)ˇ= f ∗ ((a⊗ ā)νµ) .̌

For a function h defined on g× g we put h∆(y) = h(y, y).
From Lemma 7.2 we obtain that ∀N ∈ N,∃k ∈ N,∃C > 0 so that

‖A∗µAν‖ ≤ C
(
|a|1k(q)

)2
(1 + qxν (xµ − xν))−N ,∀ν, µ ∈ N∗.

Similar estimates hold for AµA∗ν . So, choosing N sufficiently large, we obtain from Proposition 4.1
that

(7.2)
j∑

ν=1

‖A∗µAν‖1/2 ≤ C|a|1k(q) and
j∑

ν=1

‖AµA∗ν‖1/2 ≤ C|a|1k(q),∀j ∈ N

for some C > 0 and some k ∈ N.
On the other hand

a =
∑
ν

φνa

in the sense of weak convergence in S1(g, q) so that, by Theorem 7.1,

(7.3) Af =
∑
ν

Aνf, ∀f ∈ C∞0 (g)

in the sense of weak convergence in S1(g, q) of the Fourier transforms.
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Cotlar’s lemma, (7.2) and (7.3) conclude the proof.
�
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