
INSTITUTUL DE MATEMATICA
“SIMION STOILOW”

AL ACADEMIEI ROMANE

PREPRINT SERIES OF THE INSTITUTE OF MATHEMATICS
OF THE ROMANIAN ACADEMY

____________________________________________________________________________

       ISSN 0250 3638

 
Embedding theorems for free actions on

Λ-trees

   by 

Serban  A. Basarab

  

         Preprint nr. 11/2014

      BUCURESTI   



Embedding theorems for  free actions on Λ-trees

by 

Serban  A. Basarab

 Preprint nr. 11/2014

                                                              December 2014

Serban A. Basarab: Simion Stoilow Institute of Mathematics of the Romanian Academy, P.O. Box 1-764, RO-014700 
Bucharest, ROMANIA 
E-mail: serban.basarab@imar.ro



Embedding theorems for free actions on Λ-trees

Şerban A. Basarab

Abstract

Using suitable deformations of simplicial trees, we show that any free action on
a median set can be extended to a free and transitive one.

Keywords. free action, transitive action, simplicial tree, median set, median group,
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1 Introduction

A natural generalization of simplicial trees (i.e. acyclic connected graphs) was introduced
by Morgan and Shalen in the fundamental paper [20] under the name of Λ-trees. This
notion is obtained from that of a simplicial tree, interpreted as a metric space with an
integer-valued distance function, by replacing Z with any totally ordered abelian group
Λ. A still more general notion is introduced and investigated in [6], [8], by taking Λ an
arbitrary abelian l-group.

Definition 1.1. Let Λ be an abelian l-group. By a Λ-tree we understand a Λ-metric space
(X, d : X ×X −→ Λ) satisfying the following conditions, where we put

[[[x, y]]] := {z ∈ X | d(x, z) + d(z, y) = d(x, y)}

for x, y ∈ X .

(1) For all x, y, z ∈ X , the set [[[x, y]]] ∩ [[[y, z]]] ∩ [[[z, x]]] is a singleton; denote its unique
element m(x, y, z), and call it the median of the triple (x, y, z).

(2) For all x, y ∈ X , the map ιx,y : [[[x, y]]] −→ [0, d(x, y)], z 7→ d(x, z) is bijective.
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2 Şerban A. Basarab

Any Λ-tree (X, d) has an underlying structure (X,m) of median set (algebra) 1, and
[[[x, y]]] = {m(x, y, z) | z ∈ X} = {z ∈ X |m(x, y, z) = z} for x, y ∈ X . Note that the
median set (X,m) is locally linear (cf. [12, Definition 1.4 (4), Lemma 2.7] provided Λ is
totally ordered.

A Λ-metric version for median groups (cf. [12, Definition 1.5]) is defined as follows.

Definition 1.2. By a Λ-tree-group we mean a group G together with a map d : G2 −→ Λ

satisfying the following conditions.

(1) (G, d) is a Λ-tree.

(2) For all g, h, u ∈ G, d(ug, uh) = d(g, h).

In the present work we use the embedding theorem for free actions on median sets
[12, Theorem 1.6] to prove an analogous result for free actions on Λ-trees, where Λ is an
arbitrary abelian l-group, extending in this way [17, Theorem 5.4.] devoted to free and
without inversions actions on Λ-trees, where Λ is a totally ordered abelian group.

The main result reads as follows.

Theorem Let H be a group acting freely on a nonempty set X . Fix a basepoint b1 ∈
X . For a given abelian l-group Λ, we denote by TΛ(X) the set of those distance maps
d : X ×X −→ Λ for which (X, d) is a Λ-tree, compatible with the free action of H , i.e.
d(hx, hy) = d(x, y) for all x, y ∈ X, h ∈ H . Then there exists a group Ĥ containing H
as its subgroup, together with an embedding ι : X −→ Ĥ and a retract ϕ : Ĥ −→ X

such that the following hold.

(1) The maps ι and ϕ are H-equivariant, i.e. ι(h · x) = hι(x), ϕ(hu) = h ·ϕ(u) for all
h ∈ H, x ∈ X, u ∈ Ĥ .

(2) ι(b1) = 1, so ι(Hb1) = H , and ι(X) generates the group Ĥ .

(3) For each d ∈ TΛ(X) there exists uniquely a map d̂ : Ĥ × Ĥ −→ Λ with the
following properties.

(i) (Ĥ, d̂) is a Λ-tree-group.

(ii) d̂ extends d, i.e. d̂(ι(x), ι(y)) = d(x, y) for all x, y ∈ X .

1By a median set we mean a set X together with a ternary operation m : X3 −→ X , called median,
satisfying the following equational axioms.

(1) m(x, y, z) = m(y, x, z) = m(x, z, y).

(2) m(x, y, x) = x.

(3) m(m(x, u, v),m(y, u, v), x) = m(x, u, v).
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(iii) The map ι ◦ ϕ : Ĥ −→ Ĥ is a folding identifying X with a retractible Λ-
subtree of (Ĥ, d̂), i.e.

⋂
x∈X [ ι(x), u ] = [ ι(ϕ(u)), u ] for all u ∈ Ĥ .

Corollary Let H be a group acting freely on a Λ-tree X, where Λ is an abelian l-
group. Then there exists a group Ĥ acting freely and transitively on a Λ-tree X̂, together
with a group embedding H −→ Ĥ and a H-equivariant Λ-isometry X −→ X̂.

The part I of the paper is organized in three sections. Section 1 introduces the reader
to the basic notions and facts concerning median sets and median groups. In Section 2
we associate to an arbitrary free action H × X −→ X a group Ĥ with an underlying
tree structure, together with a natural embedding of the H-set X into Ĥ . Section 3 is
devoted to the proof of the main result stated above using a procedure for deformation of
the underlying simplicial tree of Ĥ introduced in Section 2 into a suitable median group
operation m̂ which extends any given median operation m on the H-set X .

The result above is extended in the part II of the paper to more general actions on
median sets, in particular on more general Λ-trees, where Λ is an arbitrary Abelian l-
group. More precisely, we shall consider actions G ×X −→ X satisfying the following
two conditions

(i) for all x, y ∈ X , the stabilizers Gx and Gy are conjugate subgroups of the group G,
and

(ii) for some (for all) x ∈ X , the stabilizer Gx has a complement Hx in G, i.e. Hx ∩
Gx = 1 and G = Hx ·Gx.

2 Λ-trees and their subspaces

In the following we denote by Λ an abelian l-group with the group operation +, the
partial order ≤, and the (distributive) lattice operations ∧,∨. Set Λ+ := {λ ∈ Λ |λ ≥ 0},
λ+ := λ ∨ 0, λ− := (−λ)+ = −(λ ∧ 0), |λ| := λ ∨ (−λ) = λ+ + λ− for λ ∈ Λ. The
abelian l-group Λ has a canonical subdirect representation into the product

∏
p∈P(Λ)

Λ/p of

its maximal totally ordered quotients, where p ranges over the set P(Λ) of the minimal
prime convex l-subgroups of Λ, in bijection with the set of the minimal prime convex
submonoids of Λ+ as well as with the set of the ultrafilters of the distributive lattice
(Λ+;∧,∨) with 0 as the least element.

2.1 Remarkable classes of Λ-metric spaces

Definition 2.1. By a pre-Λ-metric space we understand a set X together with a Λ-valued
distance map d : X2 −→ Λ satisfying the following two conditions.

(1) For x, y ∈ X , d(x, y) = 0 if and only if x = y.
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(2) d(x, y) = d(y, x) for all x, y ∈ X .

A pre-Λ-metric space (X, d) is a Λ-metric space if the triangle inequality

(3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X

is satisfied.

Assuming that (X, d) is a Λ-metric space, we obtain 0 = d(x, x) ≤ d(x, y)+d(y, x) =

2d(x, y) for all x, y ∈ X , therefore the map d takes values in Λ+. Note that Λ itself
becomes a Λ-metric space with d(λ, λ′) := |λ− λ′| for λ, λ′ ∈ Λ.

For x, y ∈ X , set [[[x, y]]] := {z ∈ X | d(x, z) + d(z, y) = d(x, y)}; thus, x, y ∈ [[[x, y]]],
and d(x, z) ≤ d(x, y) for all z ∈ [[[x, y]]]. We define the map ιx,y : [[[x, y]]] −→ [0, d(x, y)]

by ιx,y(z) := d(x, z). Call cell of (X, d) any subset of X having the form [[[x, y]]] with
x, y ∈ X . For any cell C ⊆ X , its boundary is the nonempty subset ∂C := {x ∈ X |C =

[[[x, y]]] for some y ∈ X}.
The metric d on a Λ-metric space X induces the betweenness relation

xzy (read z is between x and y)⇐⇒ z ∈ [[[x, y]]].

Note that [[[x, x]]] = {x}, [[[x, y]]] = [[[y, x]]], [[[x, y]]] = [[[x, z]]] =⇒ y = z, and

z ∈ [[[x, y]]], u ∈ [[[x, z]]] =⇒ z ∈ [[[u, y]]].

Definition 2.2. A Λ-metric space (X, d) is called median if for all x, y, z ∈ X , the inter-
section [[[x, y]]] ∩ [[[y, z]]] ∩ [[[z, x]]] consists of a single element.

Remark 2.3. (1) The name median is justified since, according to [2], [8, Proposition
3.1.], a Λ-metric space (X, d) satisfying the condition above becomes a median set,
where the median m(x, y, z) of any triple (x, y, z) of elements of X is the unique
element of the set [[[x, y]]] ∩ [[[y, z]]] ∩ [[[z, x]]].

(2) According to [8, Lemma 6.1.], a necessary and sufficient condition for a Λ-metric
space (X, d) to be median is that for all x, y, z ∈ X there exists u ∈ [[[y, z]]] such that
[[[x, y]]] ∩ [[[x, z]]] = [[[x, u]]].

(3) In a median Λ-metric space (X, d), the map ιx,y : [[[x, y]]] −→ [0, d(x, y)] is not neces-
sarily injective for all x, y ∈ X . The simplest example of a median Z-metric space,
where the ι’s are surjective but not all are injective, is the square X = Z/4 with

d(nmod 4, n+ 1 mod 4) = 1, d(nmod 4, n+ 2 mod 4) = 2,

so X = [[[0 mod 4, 2 mod 4]]] = [[[1 mod 4, 3 mod 4]]].
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Definition 2.4. Let X = (X, d) be a median Λ-metric space, and let m be the induced
median operation.

(1) X is called a pre-Λ-tree if for all x, y ∈ X , the map ιx,y : [[[x, y]]] −→ [0, d(x, y)] is a
Λ-isometry, i.e., d(u, v) = |d(x, u) − d(x, v)| for all u, v ∈ [[[x, y]]]; in particular, the
map ιx,y is injective for all x, y ∈ X .

(2) X is called a Λ-tree if it is locally faithfully full (cf. [6, 1.3.]), i.e., for all x, y ∈ X ,
the map ιx,y : [[[x, y]]] −→ [0, d(x, y)] is bijective.

Remark 2.5. (1) The necessary and sufficient condition for a median Λ-metric space
X = (X, d,m) to be a pre-Λ-tree is that d(x,m(x, u, v)) = d(x, u) ∧ d(x, v) for all
x, y ∈ X, u, v ∈ [[[x, y]]], whence the map ιx,y : [[[x, y]]] −→ [0, d(x, y)] is an injective
morphism of bounded distributive lattices for all x, y ∈ X .

(2) If X = (X, d) is a Λ-tree then for all x, y ∈ X , the map ιx,y : [[[x, y]]] −→ [0, d(x, y)] is
an isomorphism of Λ-metric spaces, and also an isomorphism of bounded distributive
lattices; in particular, any Λ-tree is a pre-Λ-tree.

(3) Assuming that Λ is totally ordered, we obtain the Morgan-Shalen Λ-trees [20], [1].

(4) The abelian l-group Λ, with d(λ, λ′) = |λ− λ′| for λ, λ′ ∈ Λ, is obviously a Λ-tree.

(5) Let X = (X, d) be a Λ-tree. The canonical subdirect product representation of the
abelian l-group Λ, Λ −→

∏
p∈P(Λ)

Λp, with Λp := Λ/p totally ordered, induces a

canonical subdirect product representation X −→
∏

p∈P(Λ)

Xp, where the Λp-tree Xp :=

(Xp, dp : X2
p −→ Λp) is the quotient of X by the congruence x ∼p y ⇐⇒ d(x, y) ∈ p

for x, y ∈ X , and dp(xp, yp) = d(x, y) mod p for xp = xmod ∼p, yp = ymod ∼p

in Xp = X/ ∼p . Though, in general, we prefer direct proofs, sometimes we shall use
the canonical representation above to transfer known results for Λ-trees with Λ totally
ordered (the local case) to Λ-trees with Λ an abelian l-group (the global case).

(6) Λ-trees, where Λ is an abelian l-group, not necessarily totally ordered, occur in a
natural way in various algebraic and geometric contexts. Thus, the residue structures
induced by Prüfer extensions have underlying Λ-tree structures with suitable abelian
l-groups Λ (cf. [6, 11]).

(7) Any median Λ-metric space is a pre-Λ-tree provided the induced median operation is
locally linear, though Λ is not necessarily totally ordered.
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(8) A simple example of a pre-Λ-tree which is not a Λ-tree is obtained as follows: let
Λ = Z×Z with Λ+ = N×N, andX = {a, b, c} ⊆ Λ, with a = (0, 0), b = (1, 0), c =

(0, 1), and the induced Λ-metric d : X2 −→ Λ. (X, d) is a pre-Λ-tree, but not a Λ-
tree, since the injective map ιb,c is not surjective : [[[b, c]]] = X is of cardinality 3, while
the cardinality of [0, d(b, c)] is 4. Adding the point (1, 1) to X , we obtain the Λ-tree
closure of the pre-Λ-tree (X, d) (see Corollary 2.11).

2.2 An equivalent description of Λ-trees

The next lemma introduces a class of Λ-metric spaces which contains the pre-Λ-trees as
a proper subclass.

Lemma 2.6. Let (X, d) be a nonempty pre-Λ-metric space. Set

(x, y)u :=
1

2
(d(x, u) + d(u, y)− d(x, y)) ∈ Z[

1

2
]⊗Z Λ for x, y, u ∈ X.

Fix a base point a ∈ X , and assume that the following two conditions are satisfied.

(S1)a (x, y)a ∈ Λ for all x, y ∈ X .

(S2)a (x, y)a ≥ (x, z)a ∧ (y, z)a for all x, y, z ∈ X .

Then the following assertions hold.

(1) (x, y)u ∈ Λ+ for all x, y, u ∈ X , in particular, (S1)u holds for all u ∈ X .

(2) (X, d) is a Λ-metric space.

(3) (x, y)u ≥ (x, z)u ∧ (y, z)u for all x, y, z, u ∈ X , i.e., (S2)u holds for all u ∈ X .

(4) For all x, y ∈ X , the map ιx,y : [[[x, y]]] −→ [0, d(x, y)] is a Λ-isometry. In particular,
for x, y ∈ X , ιx,y is injective, and for z, u ∈ [[[x, y]]], z ∈ [[[x, u]]] if and only if d(x, z) ≤
d(x, u).

(5) For all x, y, z ∈ X , the set [[[x, y]]] ∩ [[[y, z]]] ∩ [[[z, x]]] has at most one element.

(6) For all x, y, u, v ∈ X , u, v ∈ [[[x, y]]] if and only if [[[u, v]]] ⊆ [[[x, y]]].

Proof. Taking z = a in (S2)a, we obtain (x, y)a ≥ (x, a)a ∧ (y, a)a = 0, therefore
(x, y)a ∈ Λ+ for all x, y ∈ X by (S1)a. Further it follows by (S2)a that d(x, a) =

(x, x)a ≥ (x, y)a, and, similarly, d(y, a) ≥ (x, y)a, and hence

(x, y)a ∈ [0, d(x, a) ∧ d(y, a)] ⊆ Λ+ for all x, y ∈ X.
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(1) We obtain

(x, y)u = d(u, a)− (x, u)a − (y, u)a + (x, y)a

≥ d(u, a)− (x, u)a − (y, u)a + ((x, u)a ∧ (y, u)a)

= (d(u, a)− (x, u)a) ∧ (d(u, a)− (y, u)a) ≥ 0,

and hence (x, y)u ∈ Λ+ for all x, y, u ∈ X , as desired.
(2) is a consequence of (1).
Note that (3) is equivalent with the inequality A+B ≥ (A1 +B1)∧ (A2 +B2), where

A := (x, y)a, B := (z, u)a, A1 := (x, u)a, B1 := (y, z)a, A2 := (y, u)a, B2 := (x, z)a.

By (S2)a we deduce that

A ≥ (A1 ∧ A2) ∨ (B1 ∧B2) = (A1 ∨B1) ∧ (A1 ∨B2) ∧ (A2 ∨B1) ∧ (A2 ∨B2),

and

B ≥ (A1 ∧B2) ∨ (B1 ∧ A2) = (A1 ∨B1) ∧ (A1 ∨ A2) ∧ (B1 ∨B2) ∧ (A2 ∨B2).

Using the identity (
∧

1≤i≤n ai) + (
∧

1≤i≤n bi) =
∧

1≤i,j≤n(ai + bj), it follows that

A+B ≥ (A1 +B1)∧ (A2 +B2)∧ ((A1 ∨B1) + (A2 ∨B2)) = (A1 +B1)∧ (A2 +B2),

as required, since

(A1 ∨B1) + (A2 ∨B2)− ((A1 +B1) ∧ (A2 +B2)) = |(A1 ∧B1)− (A2 ∧B2)| ≥ 0.

(4) Let z, u ∈ [[[x, y]]], i.e., (z, y)x = d(x, z), (u, y)x = d(x, u). By (3) we get (z, u)x ≥
(z, y)x ∧ (u, y)x = d(x, z)∧ d(x, u), therefore d(z, u) ≤ |d(x, z)− d(x, u)|. On the other
hand, |d(x, z) − d(x, u)| ≤ d(z, u) by the triangle inequality, since (X, d) is a Λ-metric
space by (2). Thus, the map ιx,y is a Λ-isometry for all x, y ∈ X .

(5) Let x, y, z, u, v ∈ X be such that u, v ∈ [[[x, y]]] ∩ [[[y, z]]] ∩ [[[z, x]]]. Then d(x, u) =

(y, z)x = d(x, v), and hence u = v by (4).
(6) Let u, v ∈ [[[x, y]]], z ∈ [[[u, v]]], i.e. (x, y)u = (x, y)v = (u, v)z = 0. We have to

show that z ∈ [[[x, y]]], i.e., (x, y)z = 0. As (u, v)z = 0 by assumption, it follows by (3)
that (x, u)z ∧ (x, v)z = 0, therefore d(x, z) = (d(x, u) − d(u, z)) ∨ (d(x, v) − d(v, z)).
Similarly, we obtain d(y, z) = (d(y, u)− d(u, z)) ∨ (d(y, v)− d(v, z)), and hence

0 ≤ (x, y)z = (−d(u, z)) ∨ (−d(v, z)) ∨ (−(x, u)v) ∨ (−(x, v)u) ≤ 0

by (1), so (x, y)z = 0 as desired.
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Lemma 2.7. Let X = (X, d,m) be a pre-Λ-tree. Then X satisfies (S1)a and (S2)a for
any element a ∈ X .

Proof. (S1)a is satisfied since for all x, y ∈ X , (x, y)a = d(a,m(a, x, y)) ∈ Λ.
To check (S2)a, let x, y, z ∈ X . As (X,m) is a median set, it follows that

[[[a,m(a, x, z)]]] ∩ [[[a,m(a, y, z)]]] = [[[a,m(a,m(a, x, z),m(a, y, z))]]]

= [[[a,m(a,m(a, x, y), z)]]]

= [[[a, z]]] ∩ [[[a,m(a, x, y)]]].

Since the map ιa,z is a Λ-isometry, we deduce that

(x, y)a = d(a,m(a, x, y)) ≥ d(a,m(a,m(a, x, z),m(a, y, z))

= d(a,m(a, x, z)) ∧ d(a,m(a, y, z)) = (x, z)a ∧ (y, z)a ,

as required.

The next statement provides an equivalent description of Λ-trees. It is a slight ex-
tension of [6, Proposition 1.3.], [8, Proposition 6.2.]) and also a generalization of the
characterization of Λ-trees, where Λ is a totally ordered abelian group (cf. [1, Theorem
3.17.]

Proposition 2.8. Let (X, d) be a nonempty pre-Λ-metric space. For any a ∈ X , the
following assertions are equivalent.

(1) (X, d) is a Λ-tree.

(2) (X, d) satisfies (S1)a, (S2)a, and

(T) for all x, y ∈ X , the map ιx,y : [[[x, y]]] −→ [0, d(x, y)] is onto.

(3) (X, d) satisfies the conditions (S1)a, (S2)a ,

(T)a for all x ∈ X , the map ιa,x : [[[a, x]]] −→ [0, d(a, x)] is onto, and

(T’) for all x, y ∈ X, z ∈ [[[x, y]]], there is u ∈ [[[x, y]]] such that d(x, u) = d(y, z).

Proof. (1) =⇒ (2) follows by Lemma 2.7, while (2) =⇒ (3) is obvious.
(3) =⇒ (1). Assume that the pre-Λ-metric space (X, d) satisfies the assertion (3) of the

statement. Thus, (X, d) is a Λ-metric space by Lemma 2.6 (2), and for all x ∈ X , the map
ιa,x is bijective by (T)a and Lemma 2.6 (4). Note also that for all x, y ∈ X , there exists
uniquely u := m(a, x, y) ∈ [[[a, x]]]∩ [[[a, y]]]∩ [[[x, y]]]. Indeed, there is uniquely u ∈ [[[a, x]]] such
that d(a, u) = (x, y)a since ιa,x is bijective and (x, y)a ∈ [0, d(a, x)], so we have to show
that d(y, u) = (a, x)y. By Lemma 2.6 (1, 3), we obtain

d(y, u)− (a, x)y = 2((a, y)u ∧ (x, y)u) ∈ [0, 2(a, x)u] = {0},
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therefore d(y, u) = (a, x)y as desired.
According to Lemma 2.6 (2, 4, 5), it remains to show that for all x, y ∈ X , the map ιx,y

is onto (and hence bijective), while the set [[[x, y]]]∩ [[[y, z]]]∩ [[[z, x]]] is nonempty (and hence a
singleton) for all x, y, z ∈ X .

Let x, y ∈ X,λ ∈ [0, d(x, y)]. We have to show that there exists z ∈ [[[x, y]]] such that
d(x, z) = λ. Let w := m(a, x, y),

µ := d(a, x)− (λ ∧ d(x,w))

= (d(a, x)− λ) ∨ d(a, w) ∈ [d(a, w), d(a, x)],

and

ζ := d(a, y)− ((d(x, y)− λ) ∧ d(y, w))

= (d(a, y) + λ− d(x, y)) ∨ d(a, w) ∈ [d(a, w), d(a, y)].

As the maps ιa,x and ιa,y are bijective, there exist uniquely u ∈ [[[a, x]]] , v ∈ [[[a, y]]] such that
d(a, u) = µ, d(a, v) = ζ . As µ, ζ ≥ d(a, w) and the maps ιa,x, ιa,y are Λ-isometries, we
deduce that w ∈ [[[a, u]]] ∩ [a, v]]], u ∈ [[[w, x]]], v ∈ [[[w, y]]], therefore u, v ∈ [[[x, y]]], and hence
[[[u, v]]] ⊆ [[[x, y]]] by Lemma 2.6 (6). On the other hand, since the map ιx,y is a Λ-isometry
by Lemma 2.6 (4), it follows that w ∈ [[[u, v]]], and hence w = m(a, u, v). According to
(T’) there is z ∈ [[[u, v]]] such that d(u, z) = d(v, w), therefore d(v, z) = d(u,w). As
d(x, y) = d(x,w)+d(w, y) = d(x, u)+d(u, z)+d(z, v)+d(v, y) and z ∈ [[[u, v]]] ⊆ [[[x, y]]],
we deduce that d(x, z) = d(x, u) + d(u, z) = d(a, x)− µ+ ζ − d(a, w) = λ as desired.

Finally, we can use the same argument as in the beginning of the proof of the impli-
cation (3) =⇒ (1), with the point a replaced by any element z ∈ X , to conclude that
for all x, y, z ∈ X , the set [[[x, y]]] ∩ [[[y, z]]] ∩ [[[z, x]]] is nonempty (and hence a singleton) as
required.

Remark 2.9. (1) If Λ is totally ordered then (T’) is a consequence of the rest of hypotheses since

[[[x, y]]] = [[[x,m(a, x, y)]]] ∪ [[[m(a, x, y), y]]] ⊆ [[[a, x]]] ∪ [[[a, y]]]

and [[[x,m(a, x, y)]]] ∩ [[[m(a, x, y), y]]] = {m(a, x, y)}. However, in general, the condition (T’) cannot be
omitted (see Remark 2.5 (5)).

(2) Let (X, d) be a nonempty Λ-tree with the induced median operation m : X3 −→ X . It follows from
Proposition 2.8 that the following assertions are equivalent for a subset S ⊆ X .

(a) S is a convex subset of the median set (X,m).

(b) (S, d|S2) is a Λ-tree, so S is a sub-Λ-tree of (X, d).

In particular, the Λ-tree (X, d) is spanned by a subset S ⊆ X if and only if X is the convex closure of
S in the median set (X,m).
A nonempty sub-Λ-tree S of the Λ-tree (X, d) is said to be closed if the intersection of S with any
cell of (X, d) is either empty or a cell. In particular, the cells are the simplest closed sub-Λ-trees
of (X, d). According to [3, Proposition 7.3.], the following assertions are equivalent for a nonempty
subset S ⊆ X .
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(i) S is a closed sub-Λ-tree of (X, d).

(ii) S is a retractible convex subset of the median set (X,m).

(iii) S = ϕ(X), where ϕ : X −→ X is a folding of the median set (X,m), i.e., ϕ(m(x, y, z)) =
m(ϕ(x), ϕ(y), z) for all x, y, z ∈ X , in particular, ϕ = ϕ ◦ϕ is an idempotent endomorphism of
the median set (X,m).

If S is a closed sub-Λ-tree of (X, d) then the folding ϕ satisfying S = ϕ(X) is unique, so we may
call it the folding associated to S. For all s ∈ S, x ∈ X , S ∩ [[[s, x]]] = [[[s, ϕ(x)]]], and for any x ∈ X ,⋂
s∈S [[[x, s]]] = [[[x, ϕ(x)]]] is called the bridge from the point x to the closed sub-Λ-tree S of (X, d). In

particular, the distance from x to S is well defined :

d(x, S) := d(x, ϕ(x)) = min{d(x, s) | s ∈ S}.

(3) For any cell C of a Λ-tree (X, d), put d(C) := d(x, y) for some (for all) x, y ∈ X such that C = [[[x, y]]];
call d(C) ∈ Λ+ the diameter of the cell C. By a midpoint (or a center) of the cell C we mean a
point c ∈ C such that d(c, x) = d(c, y) for all x, y ∈ ∂C. The necessary and sufficient condition for
the existence of a (unique) midpoint c of the cell C is that d(C) ∈ 2Λ, whence the radius d(c, x) =
d(C)

2 ∈ Λ+ for all x ∈ ∂C. More generally, for any two cells C and C ′ such that C ⊆ C ′, we say
that C is centrally situated in C ′ if for some (for all) x ∈ ∂C, x′ ∈ ∂C ′, d(x, x′) = d(¬x,¬x′),
where ¬x ∈ ∂C,¬x′ ∈ ∂C ′ are unique with the property C = [[[x,¬x]]], C ′ = [[[x′,¬x′]]]. It follows that
d(C ′)− d(C) = 2d(x′,m(x, x′,¬x)) ∈ 2Λ+ for all x ∈ ∂C, x′ ∈ ∂C ′.

(4) Let (X, d) be a Λ-tree, and x, y, z, u ∈ X be such that z ∈ [[[x, y]]]. Then v := m(x, y, u) ∈ [[[u, z]]], and
hence

d(u, z) = d(u, v) + d(v, z)
= (x, y)u + |(u, y)x − d(z, x)|
= (d(u, x)− d(x, z)) ∨ (d(u, y)− d(y, z)).

Similarly, assuming that z ∈ [[[x1, x2]]], u ∈ [[[y1, y2]]], we obtain

d(z, u) =
∨

i,j∈{1,2}

(d(xi, yj)− d(xi, z)− d(yj , u)). (2.1)

In particular, if d(x, y) = 2r ∈ 2Λ and z is the midpoint of the cell [[[x, y]]], it follows that d(u, z) =
(d(u, x)∨d(u, y))−r. Consequently, if c, c′ are the midpoints of the cells [[[x, y]]] and [[[x′, y′]]] respectively,
with d(x, y) = 2r, d(x′, y′) = 2r′, then

d(c, c′) = (d(x, x′) ∨ d(x, y′) ∨ d(y, x′) ∨ d(y, y′))− (r + r′). (2.2)

(5) Let (X, d) be a Λ-tree. We denote by Dir(X) the median set of all directions on the underlying median
set (X,m). According to [3, Definition 3.1.], a direction D on (X,m) is a semilattice operation ∨D on
X with the property that for every a ∈ X , the map X −→ X,x 7→ a ∨D x is a folding of (X,m), i.e.,
a ∨D m(x, y, z) = m(a ∨D x, a ∨D y, z) for all x, y, z ∈ X . By [3, Proposition 8.3.], the set Dir(X)
becomes a median set with respect to the ternary operation (D1, D2, D3) 7→ D, where the direction D
is defined by

x ∨D y := m(x ∨D1 y, x ∨D2 y, x ∨D3 y)

for all x, y ∈ X . Moreover the map X −→ Dir(X), a 7→ da, with x∨da
y := m(a, x, y) for x, y ∈ X ,

is injective, identifying (X,m) with a convex subset of the median set Dir(X). The directions da, for
a ∈ X , are called internal, while the rest of directions are called external. If X is the convex closure
in (X,m) of some finite subset of X then (X,m) ∼= Dir(X), i.e., Dir(X) consists entirely of internal
directions. Note also that Dir(X) ∼= Dir(Dir(X)) according to [3, Proposition 8.7.].
For D ∈ Dir(X), a ∈ X , the convex subset [[[a,D]]] ∩ X = {x ∈ X | a ∨D x = x}, called the
ray from a in the direction D, is a distributive lattice with the least element a, the meet operation
(x, y) 7→ m(x, a, y), and the join operation (x, y) 7→ x ∨D y.
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On the other hand, the family (Ci)i∈I of all nonempty finitely generated convex subsets of (X,m)
form an inverse system, where the connecting morphisms are the canonical retracts πi,j : Cj −→ Ci
of the embeddings Ci ⊆ Cj (for any x ∈ Cj , the bridge from x to Ci is the cell [[[x, πi,j(x) = ∨dx

Ci]]]).
According to [3, Proposition 8.1.], the median set Dir(X) is identified with the inverse limit of the
inverse system above via the isomorphism D 7→ (∨DCi)i∈I , whose inverse sends any compatible
family (ci)i∈I ∈

∏
i∈I

Ci to the direction D defined by x ∨D y := m(x, y, ci) for some (for all) i ∈ I

satisfying x, y ∈ Ci.
Using the Λ-tree structure of X , we can define the following convex subset of Dir(X) lying over X .
Fix a point a ∈ X , and consider the family of balls

B(λ) = Ba(λ) = {x ∈ X | d(a, x) ≤ λ} (λ ∈ Λ+).

One checks easily that for any λ ∈ Λ+, the ball B(λ) is a closed sub-Λ-tree of (X, d), with the
associated folding ϕλ : X −→ X,x 7→ the unique point y ∈ [[[a, x]]] satisfying d(a, y) = λ ∧ d(a, x),
so the cell [x, ϕλ(x)] is the bridge from x to the ball B(λ). The balls B(λ)(λ ∈ Λ+) form an
inverse system of median sets with the connecting morphisms ϕλ|B(µ) : B(µ) −→ B(λ) for λ ≤ µ.
We denote by B = Ba the inverse limit of this inverse system of median sets. The injective map
X −→ B, x 7→ (ϕλ(x))λ∈Λ+ identifies (X,m) with a convex subset of the median set B, and hence
the canonical embedding X −→ Dir(X) extends uniquely to a morphism of median sets
B −→ Dir(X), b 7→ db, where x∨db

y = m(x, y, b) = m(x, y, bλ) for some (for all) λ ∈ Λ+ satisfying
λ ≥ d(a, x) ∨ d(a, y) (x, y ∈ X). Moreover the map B −→ Dir(X) is injective, identifying B with a
convex subset of Dir(X). The construction does not depend on the choice of the base point a ∈ X , and
Dir(X) ∼= Dir(B). Consequently, B ∼= Dir(X) provided the Λ-tree B(λ) is spanned by a finite subset
for all λ ∈ Λ+. For instance, this happens for X = Λ, with d(x, y) = |x − y| (see for details 2.1.1.).
By contrast, for Λ = R, X = [0, 1) = {x ∈ R | 0 ≤ x < 1}, we obtain X = B 6= Dir(X) ∼= [0, 1].

2.3 Subspaces of Λ-trees and their Λ-tree closures

The next statement provides a characterization of the Λ-metric spaces which are isometric
to subspaces of Λ-trees. It extends to arbitrary abelian l-groups [1, Theorem 3.17], where
Λ is a totally ordered abelian group.

Theorem 2.10. Let (X, d) be a nonempty pre-Λ-metric space. For any element a ∈ X ,
the following assertions are equivalent.

(1) (X, d) is isometric to a subspace of a Λ-tree.

(2) (X, d) satisfies (S1)a and (S2)a.

Proof. The implication (1) =⇒ (2) is immediate by Proposition 2.8. To prove the con-
verse, assume that (X, d) satisfies (S1)a and (S2)a, in particular, (X, d) is a Λ-metric
space by Lemma 2.6 (2). We denote by X̃ the subset of ΛX

+ consisting of those maps
f : X −→ Λ+ satisfying the following three conditions

(α) (x, y)f := 1
2
(f(x) + f(y)− d(x, y)) ∈ Λ+ for all x, y ∈ X ,

(β) (x, y)f ≥ (x, z)f ∧ (y, z)f for all x, y, z ∈ X , and

(γ)a there exists a nonempty finite subset Mf ⊆ X such that
∧
x∈Mf

(a, x)f = 0.
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Note that the definition of X̃ does not depend on the choice of a base point a ∈ X . Indeed,
we may assume without loss that a ∈Mf , and hence it follows by (α), (β) and (γ)a that

0 ≤
∧
x∈Mf

(b, x)f =
∧
x∈Mf

((b, a)f ∧ (b, x)f ) ≤
∧
x∈Mf

(a, x)f = 0,

so (γ)b holds for any b ∈ X .
By Lemma 2.6 (1, 3), X is identified with a subset of X̃ via the injective map u 7→ ũ,

where ũ(x) = d(u, x) for x ∈ X , with Meu = {u} for u ∈ X .
We define a map d̃ : X̃ × X̃ −→ Λ+ as follows. Let f, g ∈ X̃ . By assumption there is

a nonempty finite subset M ⊆ X such that
∧
x,y∈M(x, y)f =

∧
x,y∈M(x, y)g = 0. Setting

L :=
∨
x∈M

(f(x)− g(x)), R :=
∨
x∈M

(g(x)− f(x)),

it follows by (α) and (β) that for all x ∈ X ,

f(x)− g(x)−R = 2
∧
y∈M

((x, y)f − (x, y)g) ≤ 2
∧
y∈M

(x, y)f ≤ 2
∧

y,z∈M

(y, z)f = 0,

in particular, L ≤ R. By symmetry, we obtain L = R ≥ |f(x)− g(x)| for all x ∈ X , and
hence it makes sense to define

d̃(f, g) = d̃(g, f) := L = R =
∨
x∈X

|f(x)− g(x)| ∈ Λ+.

It follows that (X̃, d̃) is a Λ-metric space, and d̃(f, x̃) = f(x) for all f ∈ X̃, x ∈ X . In
particular, (X, d) is identified to a Λ-metric subspace of (X̃, d̃).

To conclude that (X̃, d̃) is a Λ-tree we have to show that the assertion (2) of Proposi-
tion 2.8 is satisfied.

(i) First, taking ã = a ∈ X as a base point of X̃ , we have to show that

(f, g)a :=
1

2
(f(a) + g(a)− d̃(f, g)) ∈ Λ for all f, g ∈ X̃.

Given f, g ∈ X̃ , choose a nonempty finite subset M ⊆ X as in the definition of the
distance d̃(f, g). Then

2(f, g)a = f(a) + g(a)− d̃(f, g)

=
∧
x∈M

(f(a) + g(a)− f(x) + g(x))

= 2
∧
x∈M

((f, x)a + (a, x)g) ∈ 2Λ,

so (f, g)a ∈ Λ as desired.
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(ii) Next we have to check the inequality (f, g)a ≥ (f, h)a ∧ (g, h)a for f, g, h ∈ X̃ .
Since the abelian l-group Λ is a subdirect product of the family of all its maximal totally
ordered quotients, it suffices to show that the inequality above holds in each totally ordered
quotient of Λ, so we may assume without loss that Λ itself is totally ordered. Then it
follows by (γ)a that there are b, c, e ∈ X such that (a, b)f = (a, c)g = (a, e)h = 0. As
(b, c)a ≥ (b, e)a ∧ (c, e)a by assumption, it suffices to show that (f, g)a = f(a) ∧ g(a) ∧
(b, c)a provided (a, b)f = (a, c)g = 0. According to the definition of d̃, we obtain

d̃(f, g) = (f(a)− g(a)) ∨ (f(b)− g(b)) ∨ (f(c)− g(c)),

therefore

(f, g)a = g(a) ∧ ((f, b)a + (a, b)g) ∧ ((f, c)a + (a, c)g)

= g(a) ∧ (f(a) + (a, b)g) ∧ (f, c)a.

By symmetry, we get (f, g)a = f(a) ∧ (g(a) + (a, c)f ) ∧ (g, b)a), and hence (f, g)a =

(f, c)a ∧ (g, b)a since (f, c)a ≤ f(a), (g, b)a ≤ g(a). Thus, it remains to show that
(f, c)a = f(a) ∧ (b, c)a since the equality (g, b)a = g(a) ∧ (b, c)a follows by symme-
try. As (a, b)f = 0 by assumption, it follows by (α) and (β) that (a, c)f ∧ (b, c)f = 0,
therefore

(f, c)a = ((f, c)a + (a, c)f ) ∧ ((f, c)a + (b, c)f ) = f(a) ∧ (b, c)a,

as required.
(iii) Thus, we have shown that (X̃, d̃) satisfies (S1)a and (S2)a. To conclude, by Propo-

sition 2.8, that (X̃, d̃) is a Λ-tree, it remains to prove that the map

ιf,g : [[[f, g]]] −→ [0, d̃(f, g)], h 7→ d̃(f, h),

is onto for all f, g ∈ X̃ . Let f, g ∈ X̃, λ ∈ [0, d̃(f, g)]. Define the map h : X −→ Λ+ by

h(x) := (f, g)x + |(g, x)f − λ| = f(x) + λ− 2(λ ∧ (g, x)f ).

It follows by symmetry that

h(x) = g(x) + d̃(f, g)− λ− 2((d̃(f, g)− λ) ∧ (f, x)g).

We have to show that h ∈ X̃ , d̃(f, h) = λ, and d̃(g, h) = d̃(f, g)− λ.
(α) Let x, y ∈ X . As x, y, f, g ∈ X̃ , it follows by Lemma 2.6 (3) that (x, y)f ≥

(g, x)f ∧ (g, y)f , and hence

(x, y)h = (x, y)f + λ− λ ∧ (g, x)f − λ ∧ (g, y)f

= ((x, y)f − (λ ∧ (g, x)f ∧ (g, y)f )) + (λ− (λ ∧ ((g, x)f ∨ (g, y)f ))) ∈ Λ+
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as a sum of two elements of Λ+.
(β) Let x, y, z ∈ X . The inequality (x, y)h ≥ (x, z)h ∧ (y, z)h is equivalent with the

inequality A+B ≥ (A1 +B1) ∧ (A2 +B2), where

A = (x, y)f , B = λ ∧ (g, z)f ,

A1 = (x, z)f , B1 = λ ∧ (g, y)f ,

A2 = (y, z)f , B2 = λ ∧ (g, x)f .

Since x, y, z, f, g ∈ X̃ , it follows by Lemma 2.6 (3) that

A ≥ (A1 ∧ A2) ∨ (B1 ∧B2) andB ≥ (A1 ∧B2) ∨ (B1 ∧ A2),

therefore A + B ≥ (A1 + B1) ∧ (A2 + B2) as shown in the proof of the assertion (3) of
Lemma 2.6.

(γ)a As f, g ∈ X̃ , there is a nonempty finite subset M ⊆ X such that
∧
x∈M(a, x)f =∧

x∈M(a, x)g = 0. Set B :=
∧
x∈M(a, x)h. Note that B ≥ 0 by (α). To conclude that

h ∈ X̃ , it remains to show that B ≤ 0. We obtain

B ≤ (
∧
x∈M

(a, x)f ) + (λ− λ ∧ (g, a)f ) = (λ− (g, a)f )+,

and, by symmetry, B ≤ (d̃(f, g) − λ − (f, a)g)+ = (λ − (g, a)f )−, therefore B ≤ 0 as
desired.

Finally note that the equalities d̃(f, h) = λ, d̃(g, h) = d̃(f, g) − λ follow easily from
the definitions of h and d̃.

Corollary 2.11. Let (X, d) be a Λ-metric space satisfying (S1)a and (S2)a for some
(for all) a ∈ X . Then there exists the Λ-tree closure (X̃, d̃) of (X, d), i.e., the following
conditions hold.

(1) (X, d) is a Λ-metric subspace of the Λ-tree (X̃, d̃).

(2) Any Λ-isometry ρ : (X, d) −→ (X̂, d̂) from (X, d) into a Λ-tree (X̂, d̂) extends
uniquely to a Λ-isometry ρ̃ : (X̃, d̃) −→ (X̂, d̂).

In particular, the unique up to isomorphism Λ-tree (X̃, d̃) is spanned by (X, d), and X̃ is
the convex closure of X into the underlying median set of (X̃, d̃).

Proof. Let (X̃, d̃) be the Λ-tree extension of (X, d), defined as in the proof of Theo-
rem 2.10. Denote by m : X̃3 −→ X̃ the induced median operation. First, let us show that
X̃ is the convex closure of X in the median set (X̃,m), equivalently, by Remark 2.9 (2),
the Λ-tree (X̃, d̃) is spanned by X . Let X ′ ⊆ X̃ be such that X ⊆ X ′ and X ′ is a convex
subset of (X̃,m). We have to show that X ′ = X̃ . Fix a base point a ∈ X , and let f ∈ X̃ .
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According to the definition of X̃ , there exists a finite subset M ⊆ X such that a ∈ M

and
∧
x∈M(a, x)f = 0. As a ∈ M and (X̃,m) is a median set, there is an unique element

g ∈ X̃ such that ⋂
x∈M

[[[f, x]]] =
⋂
x∈M

[[[f,m(f, a, x)]]] = [[[f, g]]] ⊆ [[[f, a]]].

Since M ⊆ X ⊆ X ′ and X ′ is a convex subset of (X̃,m) by assumption, it follows that
g ∈ X ′. As the canonical map ιf,a : [[[f, a]]] −→ [0, d̃(f, a)] is an isomorphism of Λ-metric
spaces, we deduce that d̃(f, g) =

∧
x∈M d̃(f,m(f, a, x)) =

∧
x∈M(a, x)f = 0, therefore

f = g ∈ X ′ as desired.
To prove the universal property (2), let ρ : (X, d) −→ (X̂, d̂) be a Λ-isometry from

(X, d) into a Λ-tree (X̂, d̂). We have to show that ρ extends uniquely to a Λ-isometry
ρ̃ : (X̃, d̃) −→ (X̂, d̂). Since we have already proved that the Λ-tree (X̃, d̃) is spanned by
X , we may assume without loss that ρ is an inclusion and the Λ-tree (X̂, d̂) is spanned
by X , equivalently X̂ is the convex closure of X into the underlying median set (X̂, m̂).
Thus we have to show that (X̃, d̃) and (X̂, d̂) are canonically isomorphic over (X, d).
Consider the map F : X̂ −→ ΛX

+ , where F (x̂)(x) := d̂(x̂, x) for x̂ ∈ X̂, x ∈ X . In
particular, F (x) = x̃ for x ∈ X , so the restriction F |X is identified with the identity
map 1X . It remains only to show that F (X̂) ⊆ X̃ and that F is a Λ-isometry since the
uniqueness is immediate from the definition of (X̃, d̃).

Let x̂ ∈ X̂ . Then F (x̂) satisfies obviously the conditions (α) and (β) of the definition
of X̃ . To check the condition (γa), we use the assumption that X̂ is the convex closure of
X in the median set (X̂, m̂), and hence, according to [5, Proposition 3.1.(e, g)], there is a
finite subset M ⊆ X such that a ∈ M and x̂ belongs to the convex closure [M] bX of M
in (X̂, m̂), i.e., ⋂

y∈M

[[[x̂, y]]] bX =
⋂
y∈M

[[[x̂, m̂(x̂, a, y)]]] bX = {x̂}.

Since the canonical map ι̂bx,a : [[[x̂, a]]] bX −→ [0, d̂(x̂, a)] is an isomorphism of Λ-metric
spaces, it follows that∧

y∈M

(a, y)bx =
∧
y∈M

d̂(x̂, m̂(x̂, a, y)) = d̂(x̂, x̂) = 0

as required. Thus F (x̂) ∈ X̃ for all x̂ ∈ X̂ .
To prove that F : (X̂, d̂) −→ (X̃, d̃) is a Λ-isometry, let x̂, ŷ ∈ X̂ . As shown above

there exists a nonempty finite subset M ⊆ X such that x̂, ŷ ∈ [M] bX , therefore, by [5,
Proposition 3.1.(f)], [[[x̂, ŷ]]] bX = [[[{m̂(x̂, ŷ, z) | z ∈M}]]] bX .

Since the map ι̂bx,by : [[[x̂, ŷ]]] bX −→ [0, d̂(x̂, ŷ)] is an isomorphism of Λ-metric spaces, it
follows that ∧

z∈M

d̂(x̂, m̂(x̂, ŷ, z)) =
∧
z∈M

d̂(ŷ, m̂(x̂, ŷ, z)) = 0,
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therefore

d̂(x̂, ŷ) =
∨
z∈M

(F (x̂)(z)− F (ŷ)(z)) =
∨
z∈M

(F (ŷ)(z)− F (x̂)(z)) = d̃(F (x̂), F (ŷ))

as desired, according to the definitions of F and d̃.

Corollary 2.12. Let (X, d) be a Λ-tree, and S ⊆ X be such that the Λ-tree (X, d) is
spanned by S. Denote by G the group consisting of the automorphisms f of (X, d) satis-
fying f(S) = S. Then the restriction map G −→ Aut(S, d|S×S) is an isomorphism.

Remark 2.13. Using Corollaries 2.11 and 2.12, we can construct a base change functor which extends to
abelian l-groups the construction from [1, I, 4 Base change] concerning Λ-trees with Λ totally ordered. We
fix a morphism h : Λ −→ Λ′ of abelian l-groups, identifying the quotient Λ/Ker (h) with the l-subgroup
h(Λ) of Λ′. We construct a covariant functor X 7→ X⊗Λ Λ′ from Λ-trees to Λ′-trees.

Let X = (X, d) be a Λ-tree with the induced median operation m. One checks easily that the binary
relation x ∼ y ⇐⇒ h(d(x, y)) = 0 is a congruence on X and that the quotient X := (X := X/ ∼ , d),
where the distance map d : X × X −→ h(Λ) is induced by d : X × X −→ Λ, is a h(Λ)-tree, with
the median operation m induced by m. As h(Λ) is an l-subgroup of Λ′, it follows that X is a pre-Λ′-tree.
We define X ⊗Λ Λ′ as the Λ′-tree closure of the pre-Λ′-tree X. The desired functoriality follows easily by
Corollary 2.11.

Moreover, for any Λ-tree X, we obtain a group morphism Aut(X) −→ Aut(X⊗Λ Λ′), σ 7→ σ ⊗Λ Λ′,
by composing the morphism Aut(X) −→ Aut(X) (not necessarily surjective), induced by the projection
X −→ X, with the embedding Aut(X) −→ Aut(X⊗Λ Λ′) provided by Corollary 2.12. Consequently, the
morphism Aut(X) −→ Aut(X⊗Λ Λ′) is injective whenever the morphism h : Λ −→ Λ′ is injective.

In particular, if X is the Λ-tree with support Λ, and Λ′ is an abelian l-group containing Λ, then the Λ′-tree
X⊗Λ Λ′ is isomorphic over X with the underlying Λ′-tree of the convex closure

⋃
λ∈Λ+

{λ′ ∈ Λ′ | |λ′| ≤ λ}
of Λ in Λ′.

3 Automorphisms of Λ-trees

We extend in this section some basic results concerning the automorphisms of Λ-trees,
where Λ is a totally ordered abelian group (see [1, II, 6]), to the more general case of an
abelian l-group Λ.

Let (X, d) be a nonempty Λ-tree, where Λ is an abelian l-group. Letm : X3 −→ X be
the induced median operation on X . The automorphism group Aut(X, d) of the Λ-metric
space (X, d) consists of all bijective maps σ : X −→ X satisfying d(σx, σy) = d(x, y)

for all x, y ∈ X (bijective isometries). Any σ ∈ Aut(X, d) is also an automorphism of the
median set (X,m), so Aut(X, d) is a subgroup of the automorphism group Aut(X,m). In
general, Aut(X, d) is a proper subgroup of Aut(X,m). For instance, if X = R, d(x, y) =

|x − y|, and λ ∈ R \ {−1, 0, 1}, then the map x 7→ λx belongs to the complement of
Aut(X, d) in Aut(X,m).

Usually the elements of Aut(X, d) are classified as follows.

Definition 3.1. Let σ ∈ Aut(X, d).
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(E) The automorphism σ is called elliptic if Fix(σ) := {x ∈ X |σx = x} 6= ∅.

(I) σ is said to be an inversion if Fix(σ) = ∅ and Fix(σ2) 6= ∅.

(H) σ is called hyperbolic if Fix(σ2) = ∅, in particular, Fix(σ) = ∅.

Thus, Aut(X, d) is a disjoint union E(X, d) t I(X, d) t H(X, d), where E(X, d),
I(X, d) and H(X, d) denote the subsets of elliptic automorphisms, inversions, and hy-
perbolic automorphisms respectively, which are closed under inversion (σ 7→ σ−1) and
conjugation (σ 7→ τ ◦ σ ◦ τ−1 for τ ∈ Aut(X, d)). Note that 1X is a priviliged element of
E(X, d), while the sets E(X, d) \ {1X}, I(X, d) andH(X, d) may be empty.

To study the automorphisms of a Λ-tree X = (X, d), where Λ is an abelian l-group,
we may try to transfer the known results concerning the automorphisms of Λ-trees, where
Λ is a totally ordered abelian group, via the embedding

Aut(X) −→
∏

p∈P(Λ)

Aut(Xp), σ 7→ (σp)p∈P(Λ),

induced by the canonical subdirect product representation X −→
∏

p∈P(Λ)

Xp from Re-

mark 2.5 (3). Indeed, any automorphism σ ∈ Aut(X) induces an automorphism σp of the
(Λ/p)-tree quotient Xp of X, for all p ∈ P(Λ), and the map above identifies Aut(X) with
a subgroup of the product

∏
p∈P(Λ)

Aut(Xp). However, the morphism Aut(X) −→ Aut(Xp)

is not necessarily surjective for all p ∈ P(Λ), so, in general, the injective morphism above
is not a subdirect product representation of Aut(X).

Though, in general, we prefer a direct global approach and find again the results in
the local case, we will use in certain circumstances the transfer from the local case to the
global one, as, for instance, in the next subsection devoted to the particular case of the
isometry group of an abelian l-group Λ.

3.1 The isometry group of an abelian l-group

Let Λ 6= {0} be an abelian l-group, and take X = Λ with d(x, y) = |x − y|. Among
the isometries of Λ we distinguish the translations ta(x) = a + x, and the reflections
ra(x) = a − x (a ∈ Λ). Under composition, they form a group isomorphic with the
semidirect product TΛ n {t0 = 1Λ, r0 = −1Λ} of the normal abelian subgroup TΛ

∼= Λ of
translations with the group {±1Λ} ∼= Z/2Z.

If Λ is totally ordered then the isometries of Λ form a group Autmetric(Λ) consisting
entirely of translations and reflections (see [1, Proposition 2.5.(a)]). Note that in this case
r0 = −1Λ is the unique isometry σ 6= 1Λ satisfying σ(0) = 0.
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To see what happens in the more general case when Λ is not necessarily totally or-
dered, we denote by G0 the set of those isometries σ satisfying σ(0) = 0, in particular,
{1Λ, r0} ⊆ G0. The set G0 is closed under composition, TΛ ∩ G0 = {1Λ}, and any
isometry σ is uniquely written in the form σ = t ◦ τ with t ∈ TΛ, τ ∈ G0, where
t = tσ(0), τ = t−1 ◦ σ.

[1, Proposition 2.5.(a)] is extended to a similar structure theorem for the isometries of
an abelian l-group Λ as follows.

Proposition 3.2. Let Λ be an abelian l-group. Then, with the notation above, the following
assertions hold.

(1) G0 is an abelian group of exponent 2. Consequently, all the isometries of Λ are bijec-
tive, so they form a group G := Autmetric(Λ).

(2) G0 = G ∩ Autgroup(Λ) = {σ ∈ Autgroup(Λ) | ∀x ∈ Λ, |σ(x)| = |x|}.

(3) G = TΛ n G0 is the semidirect product of the normal abelian subgroup TΛ
∼= Λ of

translations with G0.

(4) The embedding G −→
∏

p∈P(Λ)

Gp, σ 7→ (σp)p∈P(Λ), where Gp := Autmetric(Λ/p), is a

subdirect product representation ofG = Autmetric(Λ). In particular,G0 is a subdirect
product of

∏
p∈P(Λ)

{±1Λ/p} ∼= (Z/2Z)P(Λ).

Proof. The proof is straightforward. It suffices to note that for any σ ∈ G0, σp = ±1Λ/p

for all p ∈ P(Λ), and hence σ2 = 1Λ, and σ(x− y) = σ(x)− σ(y) for all x, y ∈ Λ.

According to Definition 3.1, the isometries of an abelian l-group Λ are easily classified
as follows.

Lemma 3.3. Let Λ be an abelian l-group. We denote by E(Λ), I(Λ) andH(Λ) the corre-
sponding sets of elliptic isometries, inversions and hyperbolic isometries of Λ; in par-
ticular, E(Λ/p) = {ra | a ∈ 2(Λ/p)}, I(Λ/p) = {ra | a ∈ (Λ/p) \ 2(Λ/p)}, and
H(Λ/p) = TΛ/p \ {1Λ/p} for any p ∈ P(Λ). Then the following assertions hold.

(1) E(Λ) is the conjugacy class of G0, the stabilizer of 0 in G = Autmetric(Λ), so

E(Λ) =
⋃
a∈Λ

taG0t−a

= {taτ | a ∈ 2Λ, τ ∈ G0, τ(a) = −a}
= {σ ∈ G |σ2 = 1Λ, σ(0) ∈ 2Λ}.

For any σ ∈ G, σ ∈ E(Λ) if and only if σp ∈ E(Λ/p) for all p ∈ P(Λ). In particular,
{ra | a ∈ 2Λ} ⊆ E(Λ).
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(2) I(Λ) = {taτ | a ∈ Λ \ 2Λ, τ ∈ G0, τ(a) = −a} = {σ ∈ G |σ2 = 1Λ, σ(0) /∈ 2Λ}.
For any σ ∈ G, σ ∈ I(Λ) if and only if {p ∈ P(Λ) |σp ∈ I(Λ/p)} 6= ∅ and
{p ∈ P(Λ) |σp ∈ H(Λ/p)} = ∅. In particular, {ra | a ∈ Λ \ 2Λ} ⊆ I(Λ).

(3) H(Λ) = {σ ∈ G |σ2 6= 1Λ} = {taτ | a ∈ Λ, τ ∈ G0, τ(a) 6= −a}, in particular,
TΛ \ {1Λ} ⊆ H(Λ). For any σ ∈ G, σ ∈ H(Λ) if and only if there exists p ∈ P(Λ)

such that σp ∈ H(Λ/p).

3.1.1 The action of Autmetric(Λ) on the median set of directions of Λ

If Λ is totally ordered then the median set Dir(Λ) is obtained by adding to the internal
directions dλ(λ ∈ Λ), identified with the elements of Λ, two external directions D+ and
D− induced by the linear order ≤ and its opposite. Thus Dir(Λ) is a cell [[[D−, D+]]] with
the boundary ∂[[[D−, D+]]] = {D−, D+}. With respect to the direction D+, Dir(Λ) is a
bounded totally ordered set with the least element D− and the last element D+. The
action of Autmetric(Λ) on Λ is extended to an action on Dir(Λ), with the normal subgroup
TΛ
∼= Λ as stabilizer of both external directionsD+ andD−, inducing a free and transitive

action of G0 = {1Λ, r0 = −1Λ} ∼= Z/2Z on the boundary {D−, D+}. Note also that the
reflexion r0 is a negation operator on Dir(Λ) with 0 as its unique fixed point.

To extend this very simple situation to the general case of an abelian l-group Λ, we
consider the family of closed balls B(λ) := {x ∈ Λ | |x| ≤ λ} (λ ∈ Λ+).

Any such ball B(λ) is a cell with the boundary ∂B(λ) = {x ∈ Λ | |x| = λ} and the
midpoint 0. With respect to the partial order≤, B(λ) is a bounded distributive lattice with
the least element −λ and the last element λ, while the restriction r0|B(λ), x 7→ −x, is a
negation operator with 0 as its unique fixed point. With respect to the lattice operations
∨,∧ and the negation operator, the boundary ∂B(λ) is a boolean algebra with the least el-
ement −λ and the last element λ, and B(λ) = [[[− x, x]]] for all x ∈ ∂B(λ). The isometries
of B(λ) form an abelian group Autmetric(B(λ)) of exponent 2, identified, via the em-
bedding B(λ) −→

∏
p∈P(Λ)

B(λmod p), with a subdirect product of the power {±1}U(λ),

where U(λ) := {p ∈ P(Λ) |λmod p > 0}. The isometry group Autmetric(B(λ)) acts
freely and transitively on the boundary ∂B(λ), and the kernel of the restriction map
G0 −→ Autmetric(B(λ)), not necessarily surjective, is G0 ∩Gλ = G0 ∩ tλG0t−λ.

The balls B(λ)(λ ∈ Λ+) form an inverse system of median sets, with the connecting
surjective morphisms ϕλ|B(µ) : B(µ) −→ B(λ) (λ ≤ µ), where

ϕλ(x) = m(−λ, x, λ) = (−λ) ∨ (λ ∧ x) = λ ∧ ((−λ) ∨ x) (x ∈ Λ)

is the folding of the median set (Λ,m), with image B(λ). Note that ϕλ(x)+ = λ ∧ x+,
ϕλ(x)− = λ ∧ x−, |ϕλ(x)| = λ ∧ |x|.
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We denote by B the inverse limit of the inverse system of balls B(λ) (λ ∈ Λ+), so
B consists of the maps ψ : Λ+ −→ Λ satisfying ψ(λ) = ϕλ(ψ(µ)) for all λ, µ ∈ Λ+,
with λ ≤ µ, while the median operation on B is defined component-wise. According to
Remark 2.9 (5), the median setB is identified with the median set Dir(Λ) of the directions
of the median set (Λ,m), via the isomorphism Dir(Λ) −→ B,D 7→ ψD, where ψD(λ) :=

(−λ) ∨D λ (λ ∈ Λ+), with the inverse B −→ Dir(Λ), ψ 7→ Dψ, where the direction Dψ

is defined by x ∨Dψ y := m(x, y, ψ(λ)) for some (for all) λ ≥ |x| ∨ |y|. In particular, the
internal directions dx (x ∈ Λ) correspond bijectively to the maps ψx : Λ+ −→ Λ, λ 7→
ϕλ(x) (x ∈ Λ), while the external directions D+, D−, induced by the partial order ≤ and
its opposite, correspond to the maps ψ+(λ) = λ, ψ−(λ) = −λ (λ ∈ Λ+) respectively.
Note also that Dir(Λ) ∼= B is a subdirect product of∏

p∈P(Λ)

Dir(Λ/p) ∼=
∏

p∈P(Λ)

({D− p} ∪ (Λ/p) ∪ {D+ p}),

where D+ p and D− p are the external opposite directions of the nontrivial totally ordered
factor Λ/p.

It follows that Dir(Λ) ∼= B is a cell, and its boundary

∂B = {ψ ∈ B | ∀λ ∈ Λ+, |ψ(λ)| = λ}

is the inverse limit of the boundaries ∂B(λ) = {x ∈ Λ | |x| = λ} of the balls B(λ) (λ ∈
Λ+), isomorphic to a subdirect product of

∏
p∈P(Λ)

{D− p, D+ p}. Note that, though the pro-

jections B(µ) −→ B(λ) (λ ≤ µ) and B −→ B(λ) (λ ∈ Λ+) are onto, the induced maps
∂B(µ) −→ ∂B(λ) and ∂B −→ ∂B(λ) are not necessarily onto.

With respect to the partial order ψ ≤ ψ′ ⇐⇒ ∀λ ∈ Λ+, ψ(λ) ≤ ψ′(λ), induced by the
direction D+, B is a bounded distributive lattice with the least element ψ− and the last
element ψ+, while the map ψ 7→ −ψ is a negation operator with ψ0 = 0 as its unique
fixed point. With respect to the lattice operations and the negation operator, the boundary
∂B is the boolean subalgebra of B consisting of those elements which have (unique)
complements.

The isometry group G = Autmetric(Λ) acts canonically on the median set Dir(Λ)

according to the rule

x ∨σD y := σ(σ−1(x) ∨D σ−1(y)) (σ ∈ G,D ∈ Dir(Λ), x, y ∈ Λ).

The action above induces an action of G on B, given by (σψ)(λ) := ϕλ(σ(ψ(µ))) for
some (for all) µ ∈ Λ+ satisfying µ ≥ λ + |σ(0)|. In particular, (σψ)(λ) = σ(ψ(λ)) for
all λ ∈ Λ+ whenever σ ∈ G0. It follows that the kernel of the induced action of G on the
boundary ∂B is the normal subgroup TΛ, while the action on ∂B of the groupG0, isomor-
phic to the inverse limit of the isometry groups Autmetric(B(λ)) ∼= Autmetric(∂B(λ)) (λ ∈
Λ+), is free and transitive.
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3.2 Invariants associated to automorphisms of Λ-trees

A key role in the study of the automorphism group Aut(X, d) is played by the restriction
to Aut(X, d) of the map Aut(X,m) −→ XX which assigns to any σ ∈ Aut(X,m) the
map ψσ : X −→ X defined by ψσ(x) := m(σ−1x, x, σx).

Note that ψ1X = 1X , ψσ = ψσ−1 , and ψτ◦σ◦τ−1 = τ ◦ψσ◦τ−1 for all σ, τ ∈ Aut(X,m).
In particular, ψσ ◦ σ = σ ◦ ψσ, whence any σ ∈ Aut(X, d) induces by restriction an
automorphism of the Λ-metric subspace ψσ(X). Note also that for every σ ∈ Aut(X, d)

and for every point x ∈ X , the element σψσ(x) = ψσ(σx) is the midpoint of the cell
[[[x, σ2x]]], in particular, d(x, σ2x) ∈ 2Λ+.

In the following we shall show that the maps ψσ : X −→ X , for σ ∈ Aut(X, d), have
remarkable properties, in particular, they are endomorphisms of the median set (X,m),
and moreover ψ2

σ := ψσ◦ψσ is a folding of the median set (X,m) for every σ ∈ Aut(X, d)

(see Proposition 3.10) In addition, we shall extend to our more general context the basic
notion of hyperbolic length of an automorphism.

We fix an automorphism σ of the nonempty Λ-tree (X, d).

Lemma 3.4. Let x ∈ X , and put ψ := ψσ,D := d(x, σ2x)−d(x, σx). Then the following
assertions hold.

(1) The cell [[[ψ(x), σψ(x)]]] is centrally situated in the cell [[[x, σx]]].

(2) m(ψ(x), x, σψ(x)) = ψ2(x), and m(ψ(x), σx, σψ(x)) = σψ2(x).

(3) [[[ψ(x), σψ(x)]]] = [[[ψ2(x), σψ2(x)]]], whence d(ψ(x), σψ(x)) = d(ψ2(x), σψ2(x)) and
d(ψ2(x), σψ(x)) = d(ψ(x), σψ2(x)).

(4) d(x, σx) = d(ψ(x), σψ(x)) + 2d(x, ψ2(x)).

(5) D+ = d(ψ2(x), σψ(x)),D− = d(ψ(x), ψ2(x)), and |D| = d(ψ(x), σψ(x)).

Proof. (1) is immediate since ψ(x), σψ(x) ∈ [[[x, σx]]] and d(x, ψ(x)) = d(σx, σψ(x)).
(2). Put z := m(ψ(x), x, σψ(x)), z′ := m(ψ(x), x, σ−1ψ(x)). We have to show that

z = z′ = ψ2(x). As z, z′ ∈ [[[x, ψ(x)]]], and

d(x, z) + d(z′, ψ(x)) = (ψ(x), σψ(x))x + (x, σ−1ψ(x))ψ(x) = d(x, ψ(x)),

it follows that

z = z′ ∈ [[[ψ(x), σψ(x)]]] ∩ [[[ψ(x), σ−1ψ(x)]]] = [[[ψ(x), ψ2(x)]]].

To conclude that ψ2(x) = z, it remains to show that z ∈ [[[σ−1ψ(x), σψ(x)]]]. Assuming
the contrary, it follows by [12, Theorem 1.6.(1)] that there exists P ∈ Spec(X,m) such
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that σ−1ψ(x), σψ(x) /∈ P, z ∈ P . Consequently, x ∈ P , ψ(x) ∈ P ∩ [[[σx, σ−1x]]], whence
either σx ∈ P or σ−1x ∈ P . Assuming that σx ∈ P , we obtain σψ(x) ∈ [[[x, σx]]] ⊆ P ,
a contradiction, while assuming that σ−1x ∈ P , we obtain σ−1ψ(x) ∈ [[[x, σ−1x]]] ⊆ P ,
again a contradiction.

(3) and (4) are immediate consequences of (2).
(5). We obtain

D = 2d(x, σψ(x))− d(x, σx)

= d(x, σψ(x))− d(σx, σψ(x))

= d(ψ2(x), σψ(x))− d(ψ2(x), ψ(x)).

Since the map ιψ2(x),σψ2(x) : [[[ψ2(x), σψ2(x)]]] −→ [0, d(ψ2(x), σψ2(x)], is an isomor-
phism of Λ-metric spaces, and [[[ψ2(x), σψ2(x)]]] = [[[ψ(x), σψ(x)]]] by (3), it follows that
d(ψ2(x), ψ(x)) ∧ d(ψ2(x), σψ(x)) = 0, whence the identities from (5).

Corollary 3.5. ψ3 = ψ, whence ψ(X) = ψ2(X) = Fix(ψ2) := {x ∈ X |ψ2(x) = x},
and the restriction ψ|ψ(X) is an involution. Thus, for any point x ∈ X , x ∈ ψ(X) if and
only if x is the midpoint of the cell [[[σ−1ψ(x), σψ(x)]]].

Proof. Let x ∈ X . By Lemma 3.4 (4) applied to ψ(x), we obtain 2d(ψ(x), ψ3(x)) =

d(ψ(x), σψ(x)) − d(ψ2(x), σψ2(x)). Consequently, d(ψ(x), ψ3(x)) = 0, i.e., ψ3(x) =

ψ(x), since d(ψ(x), σψ(x)) = d(ψ2(x), σψ2(x)) by Lemma 3.4 (3).

Using the map ψσ2 , we obtain another useful description of ψσ(X).

Lemma 3.6. ψσ(X) = Fix(ψσ2) ⊆ ψσ2(X). Thus, for any point x ∈ X , x ∈ ψσ(X) if
and only if x is the midpoint of the cell [[[σ−2x, σ2x]]].

Proof. Put ψ := ψσ, ψ
′ := ψσ2 . As ψ(X) = Fix(ψ2) by Corollary 3.5, we have to show

that Fix(ψ′) = Fix(ψ2). First, let us show that Fix(ψ′) ⊆ Fix(ψ2). Let x ∈ Fix(ψ′),
whence x is the midpoint of the cell [[[σ−2x, σ2x]]]. Since σ−1ψ(x) ∈ [[[σ−2x, x]]], σψ(x) ∈
[[[x, σ2x]]], and d(x, σψ(x)) = d(x, σ−1ψ(x)), it follows that x = ψ2(x) is the midpoint of
the cell [[[σ−1ψ(x), σψ(x)]]] as desired.

Conversely, let x ∈ Fix(ψ2), so x is the midpoint of the cell [[[σ−1ψ(x), σψ(x)]]]. Con-
sequently, d(x, σ2x) = 2d(x, σψ(x)) = d(ψ(x), σ2ψ(x)) = (d(x, σ4x) − d(x, σ2x))+,
where the last equality is obtained by applying the formula (2.2) to ψ(x) and σ2ψ(x) -
the midpoints of the cells [[[σ−1x, σx]]] and [[[σx, σ3x]]] respectively. From the equality above
we deduce that d(x, σ4x) = 2d(x, σ2x), therefore x = ψ′(x) is the midpoint of the cell
[[[σ−2x, σ2x]]] as required.

Corollary 3.7. For all x, y ∈ ψσ(X), d(x, σ2x) = d(y, σ2y).
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Proof. Let x ∈ ψσ(X). Set xn := σnx for n ∈ Z. By Lemma 3.6, x = ψσ2(x) is the
midpoint of the cell [[[x−2, x2]]]. Applying again Lemma 3.6 to the automorphism σ2, we
get ψσ2(X) = Fix(ψσ4). It follows that the cell [[[x−2, x2]]] is centrally situated in the cell
[[[x−4, x4]]], and x is the midpoint of the cell [[[x−4, x4]]] too.

Setting d := d(x, x2), d′ := d(y, y2) for x, y ∈ ψσ(X), we have to show that d = d′.
Applying the formula (2.2) to x and y - the midpoints of the cells [[[x−2, x2]]] and [[[y−4, y4]]]

respectively, we obtain d(x, y) + d+ 2d′ = d′′, where

d′′ := d(x2, y4) ∨ d(x2, y−4) ∨ d(x−2, y4) ∨ d(x−2, y−4).

By symmetry, interchanging x and y, we get d(x, y) + 2d+ d′ = d′′, and hence d = d′ as
desired.

Definition 3.8. Let l(σ) := d(x,σ2x)
2
∈ Λ+ for some (for all) x ∈ ψσ(X). We call l(σ) the

hyperbolic length of the automorphism σ.

As a consequence of Lemma 3.4 and Corollaries 3.5 and 3.7, we obtain

Corollary 3.9. Let σ be an automorphism of a Λ-tree (X, d). Then the following asser-
tions hold.

(1) l(σ) = (d(x, σ2x) − d(x, σx))+ = d(ψ2
σ(x), σψσ(x)) = d(ψσ(x), σψ2

σ(x)) for all
x ∈ X .

(2) l(σ) = min{d(x,σ2x)
2
|x ∈ X} = min{d(x, σψσ(x)) |x ∈ X}.

(3) ψσ(X) = {x ∈ X | d(x, σ2x) = 2l(σ)} = {x ∈ X | d(x, σψσ(x)) = l(σ)}.

(4) l(τστ−1) = l(σ) and ψτστ−1(X) = τψσ(X) for all τ ∈ Aut(X, d).

Proposition 3.10. Let σ be an automorphism of a Λ-tree (X, d). Then the following as-
sertions hold.

(1) ψσ(X) is a closed sub-Λ-tree of (X, d), and ψ2
σ is its associated folding.

(2) For any x ∈ X , the cell [[[x, ψ2
σ(x)]]] is the bridge from x to ψσ(X), and d(x, ψσ(X)) =

d(x, ψ2
σ(x)) = min{d(x, y) | y ∈ ψσ(X)}.

(3) The map ψσ is an endomorphism of the underlying median set (X,m) of the Λ-tree
(X, d).

Proof. First we show that ψσ(X) is a convex subset of (X,m), and hence a sub-Λ-tree
of (X, d). Let x, y ∈ ψσ(X), z ∈ [[[x, y]]]. According to Corollary 3.9 (3), d(x, σ2x) =
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d(y, σ2y) = 2l(σ), and we have to show that z ∈ ψσ(X), i.e., d(z, σ2z) = 2l(σ). Apply-
ing the formula (2.1) to the points z ∈ [[[x, y]]] and σ2z ∈ [[[σ2x, σ2y]]], we obtain

2l(σ)− d(z, σ2z) = 2(d(x, z) ∧ d(y, z) ∧ (x, σ2y)y ∧ (x, σ−2y)y) = 0,

as desired, since 0 ≤ (x, σ2y)y ∧ (x, σ−2y)y ≤ (σ2y, σ−2y)y = 0 as y ∈ ψσ(X), and
hence y ∈ [[[σ−2y, σ2y]]] by Lemma 3.6.

Next we show that the involution ψσ|ψσ(X) is an automorphism of the Λ-tree ψσ(X),
i.e., d(ψσ(x), ψσ(y)) = d(x, y) for all x, y ∈ ψσ(X). Applying the formula (2.2) to ψ(x)

and ψ(y) - the midpoints of the cells [[[σ−1x, σx]]] and [[[σ−1y, σy]]] respectively, we obtain
with the same argument as above that

d(x, y)− d(ψσ(x), ψσ(y)) = 2(l(σ) ∧ (x, σ2y)y ∧ (x, σ−2y)y) = 0,

as required.
To conclude that ψσ(X) is a closed sub-Λ-tree with associated folding ψ2

σ, it re-
mains to show that ψ2

σ(x) ∈ [[[x, y]]] for all x ∈ X, y ∈ ψσ(X). As shown above, the
restriction ψσ|ψσ(X) is an involutive automorphism of the sub-Λ-tree ψσ(X), therefore
d(ψ2

σ(x), y) = d(ψσ(x), ψσ(y)) for x ∈ X, y ∈ ψσ(X). Applying the formula (2.2)
to ψσ(x) and ψσ(y) - the midpoints of the cells [[[σ−1x, σx]]] and [[[σ−1y, σy]]] respectively,
and using the identities d(ψσ(x), σx) = d(x, ψ2

σ(x)) + l(σ), d(ψσ(y), σy) = l(σ) (cf.
Lemma 3.4 and Corollary 3.9), we obtain

d(x, y)− d(x, ψ2
σ(x))− d(ψ2

σ(x), y) = 2(l(σ) ∧ (x, σ2y)y ∧ (x, σ−2y)y) = 0,

as desired.
Finally note that the map ψσ = ψ3

σ is an endomorphism of the median set (X,m) as
a composition of the folding ψ2

σ : X −→ ψσ(X) with the automorphism ψσ|ψσ(X) of
ψσ(X).

3.3 Elliptic automorphisms and inversions

The next characterization of the automorphisms σ with hyperbolic length l(σ) = 0 is an
immediate consequence of Corollary 3.9.

Proposition 3.11. Let σ be an automorphism of a nonempty Λ-tree (X, d). Then the fol-
lowing assertions are equivalent.

(1) l(σ) = 0.

(2) σ2 is elliptic, i.e., either σ is elliptic or σ is an inversion.

(3) Fix(σ2) = ψσ(X).
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(4) σ|ψσ(X) = ψσ|ψσ(X).

(5) σ|ψσ(X) is an involution.

(6) For all x ∈ X, d(x, σ2x) ≤ d(x, σx).

(7) There exists x ∈ X such that d(x, σ2x) ≤ d(x, σx).

As a consequence of Proposition 3.11, we obtain

Corollary 3.12. Let σ ∈ Aut(X, d) with l(σ) = 0. Then the nonempty set Fix(σ2) is a
closed sub-Λ-tree of (X, d), with the associated folding ψ2

σ = σ ◦ ψσ = ψσ ◦ σ sending
any point x ∈ X to the midpoint of the cell [[[x, σ2x]]], while d(x,Fix(σ2)) = d(x,σ2x)

2
.

The next statement provides a characterization of the elliptic automorphisms.

Proposition 3.13. Let σ be an automorphism of a nonempty Λ-tree (X, d). Then the fol-
lowing assertions are equivalent.

(1) The automorphism σ is elliptic, i.e., Fix(σ) 6= ∅.

(2) l(σ) = 0 and d(x, σx) ∈ 2Λ for all x ∈ X .

(3) For all x ∈ X, d(x, σ2x) ≤ d(x, σx) and d(x, σx) ∈ 2Λ.

(4) There exists x ∈ X such that d(x, σ2x) ≤ d(x, σx) and d(x, σx) ∈ 2Λ.

(5) There exists x ∈ X such that d(x, σ2x) = d(x, σx).

Proof. The implications (2) ⇐⇒ (3), (3) =⇒ (4), (1) =⇒ (5), and (5) =⇒ (4) are
obvious.

(1) =⇒ (2). Let x ∈ X . We have only to show that d(x, σx) ∈ 2Λ. Let a ∈ Fix(σ).
Then m(x, a, σx) is the midpoint of the cell [[[x, σx]]], whence d(x, σx) ∈ 2Λ as desired.

(4) =⇒ (1). Let x ∈ X be such that d(x, σ2x) ≤ d(x, σx) ∈ 2Λ. Let y be the midpoint
of the cell [[[x, σx]]]. It follows by Proposition 3.11 that ψσ(x) ∈ Fix(σ2), whence y ∈
Fix(σ) as a midpoint of the cell [[[σψσ(x) = ψ2

σ(x), ψσ(x) = σψ2
σ(x)]]], centrally situated

in the cell [[[x, σx]]].

The next statement extends to abelian l-groups [1, Proposition 6.1.] concerning elliptic
automorphisms of Λ-trees, where Λ is a totally ordered abelian group.

Corollary 3.14. Let σ be an elliptic automorphism of the Λ-tree (X, d). Then the follow-
ing assertions hold.

(1) The nonempty set Fix(σ) = Fix(ψσ) ⊆ Fix(σ2) = ψσ(X) is a closed sub-Λ-tree of
(X, d).
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(2) The folding θ := θσ : X −→ X , with θ(X) = Fix(σ), sends any point x ∈ X

to θ(x) := m(x, a, σx) for some (for all) a ∈ Fix(σ). θ(x) is the midpoint of the
cell [[[ψ2

σ(x) = σψσ(x), ψσ(x) = σψ2
σ(x)]]], centrally situated in the cells [[[x, σx]]] and

[[[x, σ−1x]]], while the cell [[[x, θ(x)]]] is the bridge from x to Fix(σ), d(x,Fix(σ)) =

d(x, θ(x)) = d(x,σx)
2

, and ψ2
σ ◦ θ = θ ◦ ψ2

σ = θ.

(3) Fix(σ) is the smallest sub-Λ-tree which meets any 〈σ〉-invariant sub-Λ-tree of (X, d).

Proof. The proof is straightforward, and hence it is left to the reader.

Remark 3.15. Let (X, d) be a Λ-tree, σ ∈ Aut(X, d), and M := {x ∈ X | d(x, σ2x) = d(x, σx)}.
Then Fix(σ) = ψσ(M) ⊆ M , while Fix(σ) = M if and only if M ⊆ Fix(σ2). In particular, the equality
Fix(σ) = M holds whenever σ is an involution.The simplest example of an elliptic automorphism σ, with
the nonempty set Fix(σ) properly contained in M , is obtained by taking Λ = Z, X := {x0, x1, x2, x3} ,
d(x0, xi) = 1 for i 6= 0, m(x1, x2, x3) = x0, while σ is the cycle (x1, x2, x3) of length 3. Then Fix(σ) =
{x0} 6= M = X .

Corollary 3.16. Let σ be an automorphism of a Λ-tree (X, d). Then the following asser-
tions are equivalent.

(1) σ is elliptic.

(2) σn is elliptic for some odd n ∈ Z.

(3) σn is elliptic for all n ∈ Z.

Proof. The implications (1) =⇒ (3) and (3) =⇒ (2) are obvious.
(2) =⇒ (1). Assume that σn is elliptic for some odd n ∈ Z \ {1,−1}, and let p be a

prime number such that p |n. It suffices to show that τ := σ
n
p is elliptic. By assumption,

A := Fix(σn) = Fix(τ p) is a nonempty sub-Λ-tree of (X, d), stable under the action of τ .
Assuming that Fix(τ) ⊆ A is empty, it follows that the action on the underlying median
set of A of the cyclic group of odd prime order p generated by τ |A is free, contrary to [12,
Lemma 2.12]. Consequently, Fix(τ) 6= ∅ as desired.

The next statement is a completion of Proposition 3.11.

Corollary 3.17. Let σ be an automorphism of a Λ-tree (X, d). Then the following asser-
tions are equivlent.

(1) σ2 is elliptic.

(2) For all x ∈ X , d(x, σ4x) ≤ d(x, σ2x).

(3) There exists x ∈ X such that d(x, σ4x) ≤ d(x, σ2x).

(4) There exists x ∈ X such that d(x, σ4x) = d(x, σ2x).
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(5) σ2n is elliptic for some n ∈ Z \ {0}.

(6) σ2n is elliptic for all n ∈ Z.

Proof. As d(x, σ2x) ∈ 2Λ for all x ∈ X , the logical equivalence of the assertions (1)−(4)

follows by applying Proposition 3.13 to the automorphism σ2, while the implications
(1) =⇒ (6) and (6) =⇒ (5) are obvious.

(5) =⇒ (1). Assume that σ2n is elliptic for some n ∈ Z\{−1, 0, 1}. By Corollary 3.16,
we may assume that n = 2m,m ≥ 1. Setting τ := σ

n
2 = σ2m−1 , it suffices to show

that τ 2 is elliptic. As τ 4 = σ2n is elliptic by assumption, there exists x ∈ X such that
d(x, τ 4x) = 0 ≤ d(x, τ 2x), and hence τ satisfies (3). As (3) =⇒ (1), we deduce that τ 2

is elliptic as desired.

The next two statements extend to abelian l-groups [1, Proposition 6.3.] concerning
inversions of Λ-trees, where Λ is a totally ordered abelian group.

Proposition 3.18. The following assertions are equivalent.

(1) The automorphism σ is an inversion, i.e., Fix(σ) = ∅ and Fix(σ2) 6= ∅, so l(σ) = 0.

(2) For all x ∈ X , d(x, σ2x) ≤ d(x, σx) and d(x, σx) /∈ 2Λ, in particular, d(x, σ2x) <

d(x, σx).

(3) There exists x ∈ X such that d(x, σ2x) < d(x, σx) and d(x, σx) /∈ 2Λ.

(4) For all x ∈ X , σψσ(x) = ψ2
σ(x) 6= ψσ(x), so σ|ψσ(X) is an involution without fixed

points.

(5) There exists x ∈ X such that σ2x = x and d(x, σx) /∈ 2Λ.

(6) Fix(σ) = ∅, and if Λ′ is an abelian l-group containing Λ such that d(x, σx) ∈ 2Λ′

for some x ∈ X then the automorphism σ⊗Λ Λ′ of the Λ′-tree (X, d)⊗Λ Λ′ is elliptic.

(7) σn is an inversion for some odd n ∈ Z.

(8) σn is an inversion for all odd n ∈ Z.

Proof. The logical equivalence of the assertions (1) − (5) follows by Propositions 3.11
and 3.13, while the logical equivalence of the assertions (1), (7), (8) is a consequence of
Corollary 3.16.

(1) =⇒ (6). By assumption σ is an inversion, in particular, Fix(σ) = ∅. Let Λ′ be an
abelian l-group containing Λ, and X′ := (X, d) ⊗Λ Λ′, σ′ := σ ⊗Λ Λ′ ∈ Aut(X′) be as
defined in Remark 2.13. By assumption there exists x ∈ X such that d(x, σx) ∈ Λ∩ 2Λ′.
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As σ2 is elliptic, it follows by Proposition 3.11 (6) that d(x, σ2x) ≤ d(x, σx), and hence
Fix(σ′) 6= ∅ by Proposition 3.13 (4).

(6) =⇒ (2). Let x ∈ X . We have to show that d(x, σ2x) ≤ d(x, σx) and d(x, σx) /∈
2Λ. Let Λ′ := Z[1

2
]⊗Z Λ,X′ := (X, d)⊗Λ Λ′, σ′ := σ⊗Λ Λ′. As Λ ⊆ Λ′ = 2Λ′, it follows

by assumption that σ′ is elliptic, therefore d(x, σ2x) ≤ d(x, σx) by Proposition 3.13 (3).
Since Fix(σ) = ∅ by assumption, we deduce by Proposition 3.13 (4) that d(x, σx) /∈ 2Λ

as desired.

Proposition 3.19. Let X := (X, d) be a nonempty Λ-tree, and σ ∈ Aut(X) be an inver-
sion. Let Λ′ be an abelian l-group containing Λ such that σ′ := σ⊗Λ Λ′ ∈ Aut(X⊗Λ Λ′)

is elliptic. Let θ′ : X ′ −→ X ′ be the folding of the underlying median set (X ′,m′) of the
Λ′-tree X′ = X ⊗Λ Λ′ = (X ′, d′) sending any point x′ ∈ X ′ to the midpoint of the cell
[[[x′, σ′x′]]] ⊆ X ′. Then the following assertions hold.

(1) The closed sub-Λ′-tree Fix(σ′) = θ′(X ′) of the Λ′-tree X′ is the Λ′-tree closure of its
nonempty subspace θ′(X) = θ′(ψσ(X)) = θ′(Fix(σ2)).

(2) For all x′, y′ ∈ θ′(X), d′(x′, y′) ∈ Λ, θ′(X) is a Λ-tree, and Fix(σ′) ∼= θ′(X)⊗Λ Λ′.

(3) The restriction map θ′|X induces a bijection Fix(σ2)/ ∼∼= X/ ∼−→ θ′(X), where
the congruence ∼ on the underlying median set (X,m) is defined by

x ∼ y ⇐⇒ [[[x, σx]]] ∩ [[[y, σy]]] 6= ∅.

The congruence ∼ as well as the induced Λ-tree structure on the quotient X/ ∼ do
not depend on the extension Λ′ of Λ satisfying Fix(σ ⊗Λ Λ′) 6= ∅, and for any such
Λ′, Fix(σ ⊗Λ Λ′) ∼= (X/ ∼)⊗Λ Λ′.

(4) If Λ is totally ordered then the automorphism σ′ = σ ⊗Λ Λ′ has a unique fixed point.

Proof. (1) Since Fix(σ2) = ψσ(X) = ψ2
σ(X) by Proposition 3.11, while θ′ ◦ ψ2

σ′ = θ′

by Corollary 3.14, it follows that θ′(X) = θ′(ψσ(X)) = θ′(Fix(σ2)). As X ′ is the con-
vex closure of X in the median set (X ′,m′) and θ′ is an endomorphism of the median
set (X ′,m′), we deduce that θ′(X ′) = Fix(σ′) is the convex closure of θ′(X), and hence
the closed sub-Λ′-tree Fix(σ′) is spanned by its subspace θ′(X). Consequently, by Corol-
lary 2.11, Fix(σ′) is the Λ′-tree closure of its subspace θ′(X).

(2) First we show that for all x, y ∈ Fix(σ2), there exist p, q ∈ Fix(σ2) such that
p, q ∈ [[[x, y]]], θ′(p) = θ′(x), θ′(q) = θ′(y), and d(p, q) = d′(θ′(p), θ′(q)), in particular,
θ′(X) = θ′(Fix(σ2)) is a Λ-metric space, and for all x′, y′ ∈ θ′(X),

d′(x′, y′) = min{d(x, y) |x, y ∈ Fix(σ2), θ′(x) = x′, θ′(y) = y′}.
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For x, y ∈ Fix(σ2), set p := m(x, y, σx), q := m(y, p, σy). Since θ′(x) = θ′(σx), θ′(y) =

θ′(σy), it follows that θ′(p) = θ′(x), θ′(q) = θ′(y), and hence the cells [[[p, σp]]] and [[[q, σq]]]

are centrally situated in the cells [[[x, σx]]] and [[[y, σy]]] respectively. On the other hand, as
p ∈ [[[x, y]]] and q ∈ [[[p, y]]], we deduce that q ∈ [[[x, y]]] too.

Moreover we claim that [[[p, σq]]] = [[[σp, q]]], in particular, d(p, σp) = d(q, σq).

Indeed, since σq ∈ [[[y, σy]]] and q = m(y, p, σy), it follows that q ∈ [[[p, σq]]], and hence,
by acting with σ, σq ∈ [[[σp, q]]]. To show that p ∈ [[[σp, q]]], whence σp ∈ [[[p, σq]]], let P ∈
Spec(X,m) be a prime convex subset of the median set (X,m) such that σp, q ∈ P . By
[12, Theorem 2.5 (1)], we have to show that p ∈ P . Assuming the contrary, it follows that
y, σy ∈ P , while x, σx ∈ X \ P , and hence σp ∈ [[[x, σx]]] ⊆ X \ P , i.e., a contradiction.
Consequently, [[[p, σq]]] = [[[σp, q]]] as claimed.

As θ′(x) = θ′(p) and θ′(y) = θ′(q) are the midpoints of the cells [[[p, σp]]] ⊗Λ Λ′ and
[[[q, σq]]]⊗Λ Λ′ respectively, and [[[p, σq]]] = [[[σp, q]]], it follows by (2.2) that d′(θ′(x), θ′(y)) =

d(p, q) ≤ d(x, y) as desired.

To conclude that θ′(X) is a Λ-tree, whence Fix(σ′) ∼= θ′(X) ⊗Λ Λ′, we have to show
by Proposition 2.8 that for all x′, y′ ∈ θ′(X) and for all λ ∈ Λ+ such that λ ≤ d′(x′, y′),
the unique element z′ of the cell [[[x′, y′]]] ⊆ Fix(σ′) satisfying d′(x′, z′) = λ belongs to
θ′(X). Given x′, y′ ∈ θ′(X), we may choose as above x, y ∈ Fix(σ2) such that θ′(x) =

x′, θ′(y) = y′, and [[[x, σy]]] = [[[σx, y]]], whence d′(x′, y′) = d(x, y). Since Fix(σ2) is a
sub-Λ-tree of (X, d), it follows that for any λ ∈ Λ+ such that λ ≤ d′(x′, y′), there exists
uniquely z ∈ [[[x, y]]] ⊆ Fix(σ2) such that d(x, z) = d(σx, σz) = λ. It follows easily that
[[[x, σz]]] = [[[σx, z]]], and hence θ′(z) ∈ [[[x′, y′]]], with d′(x′, θ′(z)) = d(x, z) = λ as desired.

(3) Let x, y ∈ Fix(σ2) be such that θ′(x) = θ′(y). Setting p := m(x, y, σx) , q :=

m(y, p, σy), it follows by (2) that p = q ∈ [[[x, σx]]] ∩ [[[y, σy]]] 6= ∅. Conversely, assuming
that C := [[[x, σx]]]∩ [[[y, σy]]] 6= ∅, we obtain C = [[[p, σp]]] = [[[r, σr]]], where r := m(y, x, σy).
Consequently, θ′(x) = θ′(p) = θ′(r) = θ′(y). Thus, the restriction map θ′|Fix(σ2) induces
an isomorphism of median sets Fix(σ2)/ ∼−→ θ′(Fix(σ2)) = θ′(X), where the congru-
ence x ∼ y ⇐⇒ [[[x, σx]]] ∩ [[[y, σy]]] 6= ∅ does not depend on the choice of the extension
Λ′ of Λ satisfying Fix(σ ⊗Λ Λ′) 6= ∅. As Fix(σ2) = ψσ(X), and for all x ∈ X , the cell
[[[ψσ(x), σψσ(x) = ψ2

σ(x)]]] is centrally situated in the cell [[[x, σx]]], the binary relation ∼ is
a congruence on (X,m) too, and the inclusion Fix(σ2) ⊆ X induces an isomorphism of
median sets Fix(σ2)/ ∼−→ X/ ∼.

Moreover, as we have seen above, the induced Λ-tree structure on the quotient X/ ∼
does not depend on Λ′, and Fix(σ ⊗Λ Λ′) ∼= (X/ ∼)⊗Λ Λ′ for any suitable extension Λ′

of Λ.

(4) Assuming that Λ is totally ordered, it suffices to show by (1) that θ′(X) is a single-
ton. Let x′, y′ ∈ θ′(X). By (2) there exists x, y ∈ Fix(σ2) such that d′(x′, y′) = d(x, y)

and [[[x, σy]]] = [[[σx, y]]]. As Λ is totally ordered by assumption, the median set (X,m) is
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locally linear, and hence either x = σx or x = y. Since Fix(σ) = ∅ by assumption, we
deduce that x = y, whence x′ = y′ as desired.

Remark 3.20. (1) If Λ = 2Λ then inversions don’t exist.
(2) The converse of (4) from Proposition 3.19 does not hold. For instance, let Λ′ =

Z×Z, Λ = 2Λ′, X = {0, 2}×{0, 2} be the square with the induced Λ-tree structure, and
σ be the involution ((0, 0)(2, 2))((2, 0)(0, 2)). Then X ⊗Λ Λ′ = {0, 1, 2} × {0, 1, 2}, and
Fix(σ ⊗Λ Λ′) = {(1, 1)}. By contrast, taking τ the involution ((0, 0)(2, 0))((0, 2)(2, 2)),
we obtain θ′τ (X) = {(1, 0), (1, 2)} ( Fix(τ⊗ΛΛ′) = {(1, 0), (1, 1), (1, 2)} = [[[(1, 0), (1, 2)]]].

(3) If σ is an automorphism of a Λ-tree then σ2 is not an inversion. Indeed, assum-
ing that σ2 is an inversion, it follows that σ4 is elliptic, and hence σ2 is also elliptic by
Corollary 3.17 ((5) =⇒ (1)), i.e., a contradiction.

(4) Let G be a group acting freely on a Λ-tree (X, d), and σ ∈ G \ {1}. Then either σ
is hyperbolic of infinite order or σ is an inversion of order 2; note that the latter possibility
does not occur whenever Λ = 2Λ. Indeed, if Fix(σ2) 6= ∅ then σ2 = 1 and σ is an
inversion. On the other hand, if σ is of finite order, say n ≥ 2, then Fix(σ2n) = X 6= ∅,
and hence Fix(σ2) 6= ∅ by Corollary 3.17 ((5) =⇒ (1)).

3.4 Hyperbolic automorphisms

4 Actions on Λ-trees, length functions, and Λ-tree-groups

The connection between Lyndon length functions and actions on Λ-trees, where Λ is a
totally ordered abelian group (cf. [1, Theorem 5.4.]), can be extended to the more general
case where Λ is an arbitrary abelian l-group.

We fix an abelian l-group Λ.
Let G be a group with neutral element 1.

Definition 4.1. By a (Λ-valued) length function on G we understand a map L : G −→ Λ

satifying the following conditions, where we put

(g, h)L :=
1

2
(L(g) + L(h)− L(g−1h)) ∈ Λ⊗Z Z[

1

2
]

for g, h ∈ G.

(L0) L(1) = 0.

(L1) L(g) = L(g−1) for all g ∈ G.

(L2) (g, h)L ≥ 0 for all g, h ∈ G.

Remark 4.2. Assuming (L0) and (L1), (L2) is equivalent with the folowing conditions.
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(i) L(gh) ≤ L(g) + L(h) for all g, h ∈ G.

(ii) (g, h)L ≤ L(g) ∧ L(h) for all g, h ∈ G.

Note also that the conditions (L0)-(L2) imply L(g) = (g, g)L ≥ 0 for all g ∈ G and (g, h)L = (h, g)L for
all g, h ∈ G.

The next characterization of the length functions is immediate.

Lemma 4.3. Let L : G −→ Λ be a map defined on the group G with values in the abelian
l-group Λ. Set K := L−1(0). Then, the necessary and sufficient condition for the map L
to be a length function is that the following assertions hold.

(1) K is a subgroup of G; set G := G/K = {gK | g ∈ G}, 1 := 1 ·K.

(2) The map L : G −→ Λ factorizes through K \ G/K := {KgK | g ∈ G}; set
d(gK, hK) := L(g−1h) for g, h ∈ G.

(3) (G, d) is a Λ-metric space on which the group G acts transitively from the left by
Λ-isometries.

Corollary 4.4. The map L : G −→ Λ is a length function with the property L(gh) =

L(hg) for all g, h ∈ G if and only if K = L−1(0) is a normal subgroup of G and
the quotient group G = G/K becomes a Λ-metric space with respect to the biinvariant
metric defined by d(gK, hK) = L(g−1h).

A remarkable class of length functions is defined as follows.

Definition 4.5. By a (Λ-valued) Lyndon length function on G we understand a length
function L : G −→ Λ satisfying the following conditions.

(L2)’ (g, h)L ≥ (g, u)L ∧ (u, h)L for all g, h, u ∈ G.

(L3) (g, h)L ∈ Λ for all g, h ∈ G.

Remark 4.6. (1) (L2) is a consequence of (L0), (L1) and (L2)’: take u = 1 in (L2)’.

(2) Suppose that G acts by Λ-isometries on a Λ-tree (X, d) and x ∈ X is any point. Then the displacement
map L = Lx : G −→ Λ, defined by L(g) = d(x, gx), is a Lyndon length function. Indeed properties
(L0) and (L1) are evident, while (g, h)L = (gx, hx)x = d(x,m(x, gx, hx)), where m : X3 −→ X
is the induced median operation on the Λ-tree (X, d), whence properties (L2)’ and (L3), by Proposi-
tion 2.8.

(3) The condition (L2)’ is quite restrictive. A remarkable class of length functions which do not satisfy
(L2)’ is obtained by taking G = Sn, the symmetric group, n ≥ 3, Λ = R, and setting L(σ) :=
#{i |σ(i) 6=i}

n . As L(στ) = L(τσ) for all σ, τ ∈ G, the induced (Hamming) metric on G is biinvariant.
Letting σ = (1, 2), τ = (2, 3), ρ = (1, 2, 3), we obtain (σ, τ)L = 1

2n , (σ, ρ)L = (ρ, τ)L = 3
2n , and

hence (L2)’ is not satisfied.

With the notation from Lemma 4.3, we obtain the following characterization of the
Lyndon length functions.
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Corollary 4.7. The necessary and sufficient condition for a map L : G −→ Λ to be a Lyn-
don length function is that the assertions (1)− (3) from Lemma 4.3 hold and, in addition,
the Λ-metric space (G, d) satisfies the conditions (S1)1 and (S2)1 from Lemma 2.7.

Proof. Note that (gK, hK)1 = (g, h)L for g, h ∈ G.

The next statement is a converse of Remark 4.6 (2).

Theorem 4.8. Let L : G −→ Λ be a Lyndon length function. Then there exists a Λ-
tree T with base point 1, and an action of G on T (by Λ-isometries), with the following
properties.

(1) For all g ∈ G, L(g) = d(1, g1), i.e., L is the length function L1 arising from the
action of G on T.

(2) Suppose that G acts on a Λ-tree X and L = Lx for some x ∈ X . Then there exists a
unique G-equivariant Λ-isometry ψ : T −→ X with ψ(1) = x. The image of ψ is the
sub-Λ-tree of X spanned by the orbit Gx.

Proof. (1) According to Corollary 4.7, K := L−1(0) is a subgroup of G, and the factor
set G := G/K becomes a Λ-metric space with the metric d : G × G −→ Λ given by
d(gK, hK) := L(g−1h). In addition (G, d) satisfies (S1)1 and (S2)1, where 1 := 1 ·K,
and the group G acts transitively (by Λ-isometries) on (G, d). Applying Corollary 2.11,
we define the required Λ-tree T as the Λ-tree closure G̃ of G. By Corollary 2.12, the action
of G on G extends uniquely to an action on T with L1 = L as desired.

(2) Suppose that G acts on a Λ-tree X such that L = Lx for some x ∈ X . Then the
map G −→ X, g 7→ gx, induces a G-equivariant Λ-isometry G −→ X, which extends
uniquely to a G-equivariant Λ-isometry ψ : T −→ X by Corollary 2.11. Since ψ(1) = x

and the Λ-tree T = G̃ is spanned by G = G1, we deduce that the image of ψ is the
sub-Λ-tree of X spanned by Gx as desired.

We denote by T(L) the (unique up to isomorphism) G-Λ-tree with base point 1,
associated as in Theorem 4.8 to a Lyndon length function L : G −→ Λ. Denote by
ν : G −→ T(L), g 7→ g1, the canonicalG-equivariant map. Recall that T(L) is the Λ-tree
closure of its Λ-metric subspace ν(G).

Examples 4.9. (3) Let G = Z/4, î := imod 4 for i ∈ Z. A map L : G −→ Λ+, with L(0̂) = 0, is
a Lyndon length function if and only if λ := L(1̂) = L(3̂) ≥ 2µ := L(2̂). Indeed, assuming that L is
a Lyndon length function. it follows that λ := L(1̂) = L(3̂) ≥ 0 and (1̂, 2̂)L = (2̂, 3̂)L = L(b2)

2 ∈ Λ+,
whence L(2̂) = 2µ for some µ ∈ Λ+ and λ− µ = (1̂, 3̂)L ≥ (1̂, 2̂)L ∧ (2̂, 3̂)L = µ, so λ ≥ 2µ as desired.
The converse is immediate. Consequently, K := L−1(0) = {0̂} if and only if µ > 0. Assuming µ > 0, G
becomes a Λ-metric space with d(̂i, σî) = λ, d(̂i, σ2î) = 2µ, where σî := î+ 1. The associated G-Λ-tree
T(L) is the Λ-tree closure of (G, d) whose points are identified with the maps f : G −→ Λ+ satisfying
the conditions (α), (β) from the proof of Theorem 2.10, with X = G, together with the identity (γ)e0 :

(0̂, 1̂)f ∧ (0̂, 2̂)f ∧ (0̂, 3̂)f = 0, where (0̂, î)f = f(b0)+f(bi)−L(bi)
2 . The free action of G on the Λ-metric space
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(G, d) extends canonically to a faithful action on the Λ-tree T(L) according to the rule (σf)(̂i) = f(î− 1).
It follows that Fix(σ2) is the cell [[[c0, c1]]], where c0(0̂) = c0(2̂) = µ, c0(1̂) = c0(3̂) = λ− µ and c1 = σc0
are the midpoints of the diagonal cells [[[0̂, 2̂]]] and [[[1̂, 3̂]]] respectively; note that c0 = m(0̂, 1̂, 2̂) = m(0̂, 2̂, 3̂),
c1 = m(0̂, 1̂, 3̂) = m(1̂, 2̂, 3̂), and [[[c0, c1]]] = [[[0̂, 1̂]]]∩[[[2̂, 3̂]]] = [[[0̂, 3̂]]]∩[[[1̂, 2̂]]] is the intersection of opposite side
cells as well as the bridge between the diagonal cells [[[0̂, 2̂]]] and [[[1̂, 3̂]]]. On the other hand, Fix(σ) 6= ∅ if and
only if λ ∈ 2Λ, and in this case, Fix(σ) = {c} is a singleton, where c(̂i) = λ

2 for all î ∈ G is the common
midpoint of the four side cells [[[̂i, σî]]] of diameter λ and of the cell [[[c0, c1]]] of diameter λ− 2µ; in particular,
Fix(σ) = Fix(σ2) = {c}, the common midpoint of side and diagonal cells of the same diameter λ, if and
only if λ = 2µ. Thus, the automorphism σ is either elliptic (for λ ∈ 2Λ) or an inversion (for λ /∈ 2Λ). If
the abelian group Λ is totally ordered then the Λ-tree T(L) consists of the cells [[[0̂, 2̂]]] and [[[1̂, 3̂]]] connected
by the bridge [[[c0, c1]]].

(4) Let G = S3
∼= D6 = 〈σ, τ |σ2 = τ3 = (στ)2 = 1〉. Let L : G −→ Λ be a length function inducing

a biinvariant metric, so L(σ) = L(τσ) = L(τ2σ) and L(τ) = L(τ2). Since (σ, τ)L = (τ, τσ)L = L(τ)
2

and (σ, τσ)L = L(σ)− L(τ)
2 , L is a Lyndon length function if and only if L(σ) = λ, L(τ) = 2µ for some

λ, µ ∈ Λ+ such that λ ≥ 2µ. Assuming λ ≥ 2µ > 0, the transitive free action of G on the Λ-metric space
(G, d) is extended to a faithful action ofG on the Λ-tree closure T(L) of (G, d), and Fix(τ) = Fix(τ2) is the
cell [[[c0, σc0]]] of diameter λ− 2µ, where c0 = m(1, τ, τ2) is the common midpoint of the cells [[[1, τ]]], [[[1, τ2]]]
and [[[τ, τ2]]] of diameter 2µ, while σc0 = m(σ, τσ, τ2σ) is the common midpoint of the cells [[[σ, τσ]]], [[[σ, τ2σ]]]
and [[[τσ, τ2σ]]] also of diameter 2µ. On the other hand, Fix(σ) = Fix(τσ) = Fix(τ2σ) 6= ∅ if and only if
λ ∈ 2Λ; in this case, Fix(σ) = {c}, where c is the common midpoint of the cells [[[τ i, τ jσ]]] (i, j ∈ Z/3) of
diameter λ ∈ 2Λ+ and of the cell [[[c0, σc0]]] of diameter 2(λ2 − µ). In particular, Fix(τ) = Fix(σ) = {c} if
and only if λ = 2µ. Thus, τ and τ2 are elliptic, while the involutions σ, τσ and τ2σ are either elliptic (for
λ ∈ 2Λ) or inversions (for λ /∈ 2Λ).

The next statement extends [17, Lemma 5.2.] concerning strongly regular Lyndon
length functions with values in totally ordered abelian groups.

Lemma 4.10. Let L : G −→ Λ be a Lyndon length function.

(1) The following assertions are equivalent.

(i) ν(G) is a pre-Λ-tree on which G acts transitively by Λ-isometries.

(ii) The length function L is regular, i.e., for any two elements g, h ∈ G, there exists
u ∈ G such that (u, u−1g)L = (u, u−1h)L = 0 and L(u) = (g, h)L.

(2) The following assertions are equivalent.

(i) ν is onto, i.e., the action of G on the Λ-tree T(L) is transitive.

(ii) The length function L is strongly regular, i.e., for all g ∈ G, λ ∈ [0, L(g)], there
exists h ∈ G such that L(h) = λ, and L(h−1g) = L(g)− λ.

Proof. By Corollary 4.7, the Lyndon length function L makes ν(G) = (G/K, d) a Λ-
metric space satisfying (S1)1 and (S2)1, whereK = L−1(0),1 = 1·K, and d(gK, hK) =

L(g−1h) for g, h ∈ G. According to Lemma 2.6 (4, 5), the map

ιgK,hK : [[[gK, hK]]] −→ [0, d(gK, hK) = L(g−1h)]

is a Λ-isometry for all g, h ∈ G, and the set

Mg,h,u := [[[gK, hK]]] ∩ [[[hK, uK]]] ∩ [[[uK, gK]]]
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has at most one element for all g, h, u ∈ G. Consequently, ν(G) is a pre-Λ-tree (cf.
Definition 2.4 (1)) if and only if the set Mg,h,u is nonempty for all g, h, u ∈ G. Since G
acts transitively by Λ-isometries on ν(G), the condition above is equivalent with the fact
that the set Mg,h,1 is nonempty for all g, h ∈ G, i.e., the Lyndon length function L is
regular. The assertion (1) of the corollary is thus proved.

On the other hand, since G acts transitively by Λ-isometries on ν(G), it follows by
Proposition 2.8 that ν(G) is a Λ-tree (equivalently, ν is onto, by Theorem 4.8) if and
only if the map ι1,gK : [[[1, gK]]] −→ [0, d(1, gK) = L(g)] is onto for all g ∈ G, i.e., the
Lyndon length function L is strongly regular. Thus the assertion (2) of the corollary is
also proved.

In particular, if the map ν : G −→ T(L) is injective, i.e., L−1(0) = {1}, we obtain the
following classes of arboreal groups having underlying structures of median groups.

Definition 4.11. Let G be a group, and L : G −→ Λ be a map with values in an abelian
l-group Λ. Assume that L−1(0) = {1}, and let d : G × G −→ Λ be the map defined by
d(g, h) := L(g−1h); thus, d(1, g) = L(g) for all g ∈ G, and d(ug, uh) = d(g, h) for all
u, g, h ∈ G.

(1) (G,L, d) is called a pre-Λ-tree-group if the following equivalent conditions are satis-
fied.

(i) L : G −→ Λ is a regular Lyndon length function.

(ii) (G, d) is a pre-Λ-tree.

(2) (G,L, d) is called a Λ-tree-group if the following equivalent conditions are satisfied.

(i) L : G −→ Λ is a strongly regular Lyndon length function.

(ii) (G, d) is a Λ-tree.

The arboreal groups defined above form categories which are equivalent with cate-
gories of free and transitive actions on pointed pre-Λ-trees and pointed Λ-trees respec-
tively.

We end this section with a lemma which will be used in the next section to prove the
main result of the paper.

Lemma 4.12. Let (G,m) be a median group. We denote by ∩ the meet-semilattice op-
eration defined by g ∩ h := m(g, h, 1), and by ⊂ the associated partial order. Let
L : G −→ Λ+ be a map, and define d : G × G −→ Λ+ by d(g, h) := L(g−1h);
thus, L(g) = d(1, g) for all g ∈ G, and d(ug, uh) = d(g, h) for all u, g, h ∈ G. Then the
following assertions hold.
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(1) (G, d) is a median Λ-metric space with the induced median operation m if and
only if the following condition is satisfied.

(i) For all g, h ∈ G, h ⊂ g ⇐⇒ L(g) = L(h) + L(g−1h).
(2) The necessary and sufficient condition for (G,L, d) to be a pre-Λ-tree-group with

the induced median operation m is that (i) and the following condition are satisfied.
(ii) For all g, u, v ∈ G, u ⊂ g, v ⊂ g =⇒ L(u−1v) = |L(u)− L(v)|.
(3) The necessary and sufficient condition for (G,L, d) to be a Λ-tree-group with the

induced median operation m is that (i) and the following condition are satisfied.
(iii) For all g ∈ G, λ ∈ [0, L(g)], there exists uniquely h ∈ G such that L(h) = λ and

L(h−1g) = L(g)− λ.

Proof. (1) Assuming that (G, d) is a median Λ-metric space with the induced median
operation m and partial order ⊂, it follows that

h ⊂ g ⇐⇒ h ∈ [[[1, g]]]⇐⇒ d(1, g) = d(1, h) + d(g, h)⇐⇒ L(g) = L(h) + L(g−1h)

for all g, h ∈ G, therefore (i) is satisfied.
Conversely, assuming that (i) is satisfied, it follows that L−1(0) = {1} and L(g) =

L(g−1) since 1 ⊂ g for all g ∈ G, and g ⊂ 1 =⇒ g = 1. Next, using the assumption
L(G) ⊆ Λ+ and applying the implication =⇒ from (i) to the relations g∩h ⊂ g, g∩h ⊂ h

and g−1(g ∩ h) ⊂ g−1h, we deduce that (g, h)L = L(g ∩ h) ∈ Λ+ for all g, h ∈ G, so
(L2) and (L3) are satisfied. Consequently, (G, d) is a median Λ-metric space with the
induced median operation m. Note that the inequality (L2)’ is not necessarily satisfied,
so L is not necessarily a Lyndon length function: take G = Z/4, 0̂ ⊂ 1̂, 3̂ ⊂ 2̂, and
L : G −→ Z with L(0̂) = 0, L(1̂) = L(3̂) = 1, L(2̂) = 2; (i) is satisfied, but (L2)’ fails
since (1̂, 2̂)L = (2̂, 3̂)L = 1 > 0 = (1̂, 3̂)L.

(2), (3) For any g ∈ G, consider the map ι1,g : [[[1, g]]] −→ [0, d(1, g) = L(g)]. Then
(ii) means that ι1,g is a Λ-isometry, while (iii) means that ι1,g is bijective. Consequently,
in the both assertions an implication is obvious. Conversely, it suffices to show that (L2)’
is satisfied, so L is a Lyndon length function and L−1(0) = {1}. Indeed, in this case, (i)

implies that L is regular, while (iii) implies that L is strongly regular as desired.
To check (L2)’, let g, h, u ∈ G. Since L(G) ⊆ Λ+ and g ∩ h ∩ u ⊂ g ∩ h, it follows

by (i) that (g, h)L = L(g ∩ h) ≥ L(g ∩ h ∩ u), so it remains to note that the identity

L(g ∩ h ∩ u) = L(g ∩ u) ∧ L(h ∩ u) (4.1)

holds since g ∩ u, h∩ u ⊂ u and the map ι1,u; [[[1, u]]] −→ [0, L(u)] is a Λ-isometry by (ii),
while (i) and (iii) =⇒ (ii). Note that (i) =⇒ (ii) provided the median operation m is
locally linear.
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5 Embedding free actions on Λ-trees into Λ-tree-groups

In this section we use the embedding theorem for free actions on median sets [12, The-
orem 1, Theorem 3.1.] to prove an analogous result for free actions on Λ-trees, where Λ

is an arbitrary abelian l-group. In particular, we recover [17, Theorem 5.4] for a totally
ordered abelian group Λ.

Let H be a group acting freely on a nonempty set X . Let B = {bi | i ∈ I} ⊆ X be a
set of representatives for the H-orbits. The bijection H×I −→ X, (h, i) 7→ hbi identifies
up to isomorphism the H-set X to the cartesian product H × I with the canonical free
action of the group H , H × (H × I) −→ H × I, (h1, (h2, i)) 7→ (h1h2, i).

We assume that I∩H = {1}, and we shall take b1 = (1, 1) as basepoint inX ∼= H×I .
Setting I ′ := I \{1}, we denote by F the free group with free base I ′, and by Ĥ := H ∗F
the free product of the groups H and F . The group H is canonically identified with a
subgroup of Ĥ , while the injective map ι : X −→ Ĥ, hbi 7→ hi, identifies the H-set
X ∼= H × I with the disjoint union H

⊔
(
⊔
i∈I′ Hi) ⊆ Ĥ on which H acts freely by left

multiplication. In particular, the base point b1 of X is identified with the neutral element
1 ∈ H ⊆ Ĥ . As shown in [12, 2.2.], Ĥ is endowed with a simplicial tree structure induced
by the length function l : Ĥ −→ N associated to the set of generators J = J−1 :=

(H \ {1}) t I ′±1. With respect to the partial order u ≤ v ⇐⇒ l(v) = l(u) + l(u−1v), Ĥ
is an order-tree with the least element 1; write v = u • (u−1v) provided u ≤ v. Denote
by ∧ and Y the corresponding meet-semilattice and median operations. X is a retractible
convex subset of the locally linear median set (Ĥ, Y ), with the canonical H-equivariant
retract ϕ : Ĥ −→ X defined by ϕ(w) := the greatest element x ∈ X for which x ≤ w,
i.e., w = x • (x−1w).

For a fixed abelian l-group Λ, let us denote by TΛ(X) the set consisting of those maps
d : X × X −→ Λ for which (X, d) is a Λ-tree and d(hx, hy) = d(x, y) for all h ∈ H ,
x, y ∈ X . On the other hand, we denote by PTΛ(Ĥ, ϕ) the set consisting of those maps
d̂ : Ĥ × Ĥ −→ Λ for which (Ĥ, d̂) is a pre-Λ-tree-group and the map u 7→ ϕ(u) is a
folding of the underlying median set of (Ĥ, d̂). We have to show that the restriction map
res : PTΛ(Ĥ, ϕ) −→ TΛ(X), d̂ 7→ d̂|X×X is bijective.

We assume that TΛ(X) 6= ∅ since otherwise we have nothing to prove. Let d ∈ TΛ(X).
We denote by m : X3 −→ X the induced median operation. Recall that for x, y, z ∈ X ,
m(x, y, z) is the unique element of the set [[[x, y]]] ∩ [[[y, z]]] ∩ [[[z, x]]], where

[[[x, y]]] := {t ∈ X | d(x, t) + d(t, y) = d(x, y)}

for x, y ∈ X . Let ∩ be the meet-semilattice operation defined by x ∩ y = m(x, y, 1)

for x, y ∈ X , with the induced partial order (with the least element 1) denoted by ⊂.
Define the map L : X −→ Λ+ by L(x) = d(1, x), the prolongation of the Lyndon length
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function H −→ Λ+, h 7→ L(h) = d(1, h), and note that for all h ∈ H, x, y ∈ X ,

d(hx, hy) = d(x, y) = L(x) + L(y)− 2L(x ∩ y). (5.1)

Note also that, according to Remark 3.20 (4), for any h ∈ H − {1}, either h is of infinite
order or h2 = 1. In the first case, h is hyperbolic, equivalently, by Proposition 3.11, with
the conditionL(h2) 6≤ L(h), i.e., (L(h2)−L(h))+ > 0. In the latter case, h is an inversion,
equivalently, by Proposition 3.19, with the condition L(h) /∈ 2Λ, in particular, Λ 6= 2Λ.
Consequently, since Ĥ = H ∗ F and F is free, the elements of finite order of Ĥ − {1}
are conjugate with the elements of order 2 of H (if these ones exist).

Proposition 5.1. Let d ∈ TΛ(X) with the induced median operation m : X3 −→ X and
the function L : X −→ Λ+, x 7→ d(1, x). Then there exists uniquely d̂ ∈ PTΛ(Ĥ, ϕ) such
that d̂|X×X = d.

Proof. By [12, Theorem 3.1], the median operation m : X3 −→ X extends uniquely to
a median group operation m̂ : Ĥ3 −→ Ĥ such that the map ϕ is a folding identifying
X = ϕ(Ĥ) with a retractible convex subset of the median set (Ĥ, m̂). Recall that

m̂(u, v, w) = tm(ϕ(t−1u), ϕ(t−1v), ϕ(t−1w)) (5.2)

for u, v, w ∈ Ĥ , where t := Y (u, v, w). It follows that

u ∩ v := m̂(u, v, 1) = am(ϕ(a−1), ϕ(b), ϕ(c)) (5.3)

for u, v ∈ Ĥ , where a := u∧ v, b := a−1u, c := a−1v, i.e., u = a • b, v = a • c, b∧ c = 1.
Consequently,

u ⊂ v ⇐⇒ u = u ∩ v ⇐⇒ b = ϕ(b) ∈ [[[ϕ(a−1), ϕ(c)]]] ⊆ X, (5.4)

and u ∩ v = ϕ(u ∩ v) = ϕ(u) ∩ ϕ(v) ∈ X provided u ∧ v ∈ H .
We have to show that there exists uniquely a distance map d̂ : Ĥ×Ĥ −→ Λ extending

d : X × X −→ Λ such that (Ĥ, d̂) is a pre-Λ-tree-group whose induced median group
operation is m̂.

Equivalently, according to Lemma 4.12, we have to show that there exists uniquely a
map L̂ : Ĥ −→ Λ+ such that L̂|X = L, with the following properties.

(1) For all u, v ∈ Ĥ, u ⊂ v ⇐⇒ L̂(v) = L̂(u) + L̂(v−1u).

(2) For all u, u′, v ∈ Ĥ , u, u′ ⊂ v =⇒ L̂(u−1u′) = |L̂(u)− L̂(u′)|.

In particular, L̂ is a Lyndon length function, L̂(u ∩ v) = (u, v)bL for u, v ∈ Ĥ , and the
distance map d̂ : Ĥ × Ĥ −→ Λ is given by d̂(u, v) = L̂(u−1v).
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Assuming that L̂ : Ĥ −→ Λ+ extends L : X −→ Λ+ and satisfies (1) and (2), it
follows that L̂ is unique with these properties, being defined by induction on the combi-
natorial length l(u) for u ∈ Ĥ as follows: L̂(u) = 0 if l(u) = 0, i.e., u = 1, while for
l(u) ≥ 1, say u = x • u′ with l(x) = 1,

L̂(u) = L̂(x) + L̂(u′)− 2L(x−1 ∩ u′), (5.5)

where

L̂(x) =

{
L(x) if x ∈ (H − {1}) t I ′,
L(x−1) if x ∈ I ′−1.

(5.6)

Indeed, 2L̂(x−1∩u′) = 2(x−1, u′)bL = L̂(x−1) + L̂(u′)− L̂(xu′) = L̂(x) + L̂(u′)− L̂(u),
while L̂(x−1∩u′) = L(x−1∩u′) since L̂|X = L and x−1∧u′ = 1 (by assumption) implies
x−1 ∩ u′ = ϕ(x−1 ∩ u′) = ϕ(x−1) ∩ ϕ(u′) ∈ X . Moreover, the last equality implies that

L̂(u) =


L̂(u′)− L(ϕ(u′)) + L(ϕ(u)) if x ∈ H \ {1},
L̂(u′) + L(x) = L̂(u′) + L(ϕ(u)) if x ∈ I ′,
L̂(u′)− L(ϕ(u′)) + d(x−1, ϕ(u′)) if x ∈ I ′−1.

(5.7)

Thus, it remains only to show that the map L̂ defined inductively as above extends the
map L : X −→ Λ+ and satisfies (1) and (2).

The equality L̂|X = L is immediate, while, by induction on l(u), it follows that L̂(u) ≥
L(ϕ(u)) ≥ 0 for all u ∈ Ĥ . Note also that L̂−1(0) = {1}. Indeed, let u ∈ Ĥ \ {1}. As
L̂(u) ≥ L(ϕ(u)) ≥ 0, we may assume that ϕ(u) = 1, whence u = i−1 • u′ for some
i ∈ I ′, u′ ∈ Ĥ . We deduce that L̂(u) = L̂(u′)−L(ϕ(u′)) + d(i, ϕ(u′)) ≥ d(i, ϕ(u′)) > 0

since u = i−1 • u′ implies ϕ(u′) 6= i.
Before doing the verification of the conditions (1) and (2), let us show by induction

that L̂ satisfies (L1), i.e., L̂(u) = L̂(u−1) for all u ∈ Ĥ , and

L̂(uv) = L̂(u) + L̂(v)− 2L(u−1 ∩ v) provided u−1 ∧ v = 1. (5.8)

To check (L1), we have to consider the case l(u) ≥ 2, say u = x•u′•y with l(x) = l(y) =

1. By the induction hypothesis, L̂(x • u′) = L̂(u′−1 • x−1) and L̂(u′ • y) = L̂(y−1 • u′−1).
Consequently,

L̂(u) = L̂(x) + L̂(y) + L̂(u′)− 2L(y ∩ u′−1)− 2L(x−1 ∩ (u′ • y)),

L̂(u−1) = L̂(y) + L̂(x) + L̂(u′)− 2L(x−1 ∩ u′)− 2L(y ∩ (u′−1 • x−1)),

while the identity

L(y ∩ u′−1) + L(x−1 ∩ (u′ • y)) = L(x−1 ∩ u′) + L(y ∩ (u′−1 • x−1))

follows by (5.1) and [12, Remark 2.2]
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To check (5.8), we may assume that u 6= 1, v 6= 1, say u = u′ • x, v = y • v′

with l(x) = l(y) = 1. By assumption u−1 ∧ v = 1, therefore xy 6= 1. Consequently,
u′−1 ∧ xv = 1, and either xv = x • v or xv = (xy) • v′ with x, y ∈ H \ {1}, v′ ∈ Ĥ . As
l(u′) < l(u), it follows by the induction hypothesis applied to the pair (u′, xv) that

L̂(uv) = L̂(u′) + L̂(xv)− 2L(u′−1 ∩ (xv)),

whence the desired identity (5.8) by straightforward computation using (5.1) and [12,
Remark 2.2].

Now, let us verify (1). First assume that u ⊂ v, i.e., u = a • b, v = a • c, b∧ c = 1, and
b ∈ [[[ϕ(a−1), ϕ(c)]]] ⊆ X . According to (5.8), applied to the pairs (a, b), (a, c) and (c−1, b),
together with (L1) and (5.1), we obtain

L̂(v)− L̂(u)− L̂(v−1u) = d(ϕ(a−1), ϕ(c))− d(ϕ(a−1), b)− d(b, ϕ(c)) = 0

as desired. Conversely, assume that L̂(v) = L̂(u) + L̂(v−1u). Setting u = a • b, v = a • c
with b ∧ c = 1, it follows by (5.8), (L1) and (5.1) that

0 ≤ L̂(b)− L(ϕ(b)) = d(ϕ(a−1), ϕ(c))− d(ϕ(a−1), ϕ(b))− d(ϕ(b), ϕ(c)) ≤ 0,

therefore b = ϕ(b) ∈ [[[ϕ(a−1), ϕ(c)]]], i.e., u ⊂ v as required.
Thus, according to Lemma 4.12, we have shown that (Ĥ, d̂) is a median Λ-metric

group, where d̂(u, v) := L̂(u−1v) for u, v ∈ Ĥ .
Finally, it remains to check (2). Let u, u′, v ∈ Ĥ be such that u ⊂ v, u′ ⊂ v. If u and

u′ are comparable we have nothing to prove by (1), so we may assume that u 6⊂ u′ and
u′ 6⊂ u. According to [12, Corollary 3.3], there exists w ≤ v such that

wϕ(w−1) ⊂ u, u′ ⊂ wϕ(w−1v) ⊂ v,

whence w−1u,w−1u′ ∈ [[[ϕ(w−1), ϕ(w−1v)]]] ⊆ X . It follows by (1) that

L̂(u) = L̂(wϕ(w−1)) + d̂(wϕ(w−1), u) = L̂(wϕ(w−1)) + d(ϕ(w−1), w−1u),

and, similarly, L̂(u′) = L̂(wϕ(w−1)) + d(ϕ(w−1), w−1u′). Consequently,

|L̂(u)−L̂(u′)| = |d(ϕ(w−1), w−1u)−d(ϕ(w−1), w−1u′)| = d(w−1u,w−1u′) = L̂(u−1u′)

as desired, since w−1u and w−1u′ belong to the cell [[[ϕ(w−1), ϕ(w−1v)]]] of the Λ-tree
(X, d). According to Lemma 4.12, (Ĥ, L̂, d̂) is a pre-Λ-tree group with the induced me-
dian operation m̂, and the statement is proved.

Using [12, Corrolary 3.3], we obtain an explicit version of the inductive definition
(5.5)-(5.7) as folows.
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Corollary 5.2. Let d ∈ TΛ(X) with the induced median operation m : X3 −→ X and
the function L : X −→ Λ+, x 7→ d(1, x). Let d̂ ∈ PTΛ(Ĥ, ϕ) be the unique extension of
d. Then, for any v ∈ Ĥ − {1},

L̂(v) := d̂(1, v) =
∑
w∈Cv

d(ϕ(w−1), ϕ(w−1v)), (5.9)

where the finite set Cv consists of those w ≤ v satisfying

ϕ(w−1) ∈ I, and ϕ(w−1) = 1 =⇒ ϕ(w−1v) 6= 1.

Proof. Set Cv = {wi | i = 1, n}, n ≥ 1, with wi < wi+1, and let ζi := wiϕ(w−1
i ) for

i = 1, n, ζn+1 := v. It follows that ζ1 = 1, ζi ≤ wi ≤ ζi+1 = wi • ϕ(w−1
i v) for i = 1, n,

whence the totally ordered finite set ([1, v],≤) is the union of n adjacent proper closed
intervals [ζi, ζi+1], i = 1, n, called in [12, Section 3], the combinatorial configuration
associated to the element v ∈ Ĥ − {1}. According to [12, Corollary 3.3], the cell [[[1, v]]]

of the median group (Ĥ, m̂) is a deformation of the combinatorial configuration above
induced by the median operation m on X , being the union of the adjacent cells

[[[ζi, ζi+1]]] = wi[[[ϕ(w−1
i ), ϕ(w−1

i v)]]] ⊆ wiX, i = 1, n ,

with ζi ( ζi+1 for i = 1, n, ζ1 = 1, and ζn+1 = v, in particular, w−1
n v = ϕ(w−1

n v) ∈ X .
Consequently, we obtain

L̂(v) = d̂(1, v) =
n∑
i=1

d̂(ζi, ζi+1) =
n∑
i=1

d(ϕ(w−1
i ), ϕ(w−1

i v)) ,

as desired.

With notation above, let us denote by TΛ(Ĥ, ϕ) the subset of PTΛ(Ĥ, ϕ) consisting of
the maps d̂ : Ĥ × Ĥ −→ Λ for which (Ĥ, d̂) is a Λ-tree group and the map u 7→ ϕ(u)

is a folding of the underlying median set of (Ĥ, d̂). Though, in general, TΛ(Ĥ, ϕ) 6=
PTΛ(Ĥ, ϕ), assuming that Λ is totally ordered we obtain

Corollary 5.3. Assume that the abelian group Λ is totally ordered. Then TΛ(Ĥ, ϕ) =

PTΛ(Ĥ, ϕ), and the restriction map TΛ(Ĥ, ϕ) −→ TΛ(X), d̂ 7→ d̂|X×X is bijective.

Proof. Let d̂ ∈ PTΛ(Ĥ, ϕ) with d = d̂|X×X , L̂(v) = d̂(1, v) for v ∈ Ĥ . We have only
to show that for all v ∈ Ĥ, λ ∈ [0, L̂(v)], there exists (uniquely) u ∈ [[[1, v]]] such that
L̂(u) = λ. Since Λ is totally ordered by assumption, it follows by Corollary 5.2 that there
exists uniquely w ∈ Cv such that L̂(wϕ(w−1)) ≤ λ ≤ L̂(wϕ(w−1v)), and hence

λ− L̂(wϕ(w−1)) ∈ [0, d(ϕ(w−1), ϕ(w−1v))].
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As (X, d) is a Λ-tree, the map

ιϕ(w−1),ϕ(w−1v) : [[[ϕ(w−1), ϕ(w−1v)]]] −→ [0, d(ϕ(w−1), ϕ(w−1v))]

is bijective, therefore there exists uniquely x ∈ [[[ϕ(w−1), ϕ(w−1v)]]] such that

d(ϕ(w−1), x) = λ− L̂(wϕ(w−1)).

Consequently, wx ∈ w[[[ϕ(w−1), ϕ(w−1v)]]] ⊆ [[[1, v]]], so wϕ(w−1) ⊂ wx ⊂ v and

L̂(wx) = L̂(wϕ(w−1)) + d̂(wϕ(w−1), wx) = L̂(wϕ(w−1)) + d(ϕ(w−1), x) = λ

as desired.

Thus, we have provided a different proof of [17, Theorem 5.4], where Λ is a totally
ordered abelian group. To extend this result to arbitrary abelian l-groups Λ, it remains to
iterate the construction furnished by Proposition 5.1 as follows.

5.1 Proof of the main result

Let X = (X, d : X2 −→ Λ+) be a Λ-tree, and m : X3 −→ X be the induced median
operation. Assuming that the group H acts freely by Λ-isometries on X, we identify H
with a subset of X via the H-equivariant embedding H −→ X, h 7→ hb1, where b1

is a fixed base point of X . Extend the Lyndon length function L : H −→ Λ+, h 7→
d(b1, hb1) to the map L : X −→ Λ+, x 7→ d(b1, x). Let Ĥ = H ∗F and theH-equivariant
embedding ι : X −→ Ĥ with its H-equivariant retract ϕ : Ĥ −→ X be as defined at the
beggining of Section 5.

According to Proposition 5.1, the map L : X −→ Λ+ extends uniquely to a regular
Lyndon length function L̂ : Ĥ −→ Λ+ such that (Ĥ, d̂ : Ĥ2 −→ Λ+), with d̂(u, v) =

L̂(u−1v), is a pre-Λ-tree group with induced median operation m̂ : Ĥ3 −→ Ĥ , while the
map ϕ is a folding, identifying (X,m) with a retractible convex subset of (Ĥ, m̂).

Let X1 = (X1, d1 : X2
1 −→ Λ+) := T(L̂) be the Λ-tree closure of the pre-Λ-tree

(Ĥ, d̂). We may assume thatX1 6= Ĥ , so Λ is not totally ordered. Thus, (Ĥ, d̂) is identified
with a Λ-metric subspace of X1, the Λ-tree X1 is spanned by Ĥ , and X1 is the convex
closure of Ĥ into the underlying median set of X1. The action by left multiplication of the
group Ĥ on itself is naturally extended to a faithful action by Λ-isometries on the Λ-tree
X1 according to the rule (u · f)(v) = f(u−1v) for u, v ∈ Ĥ, (f : Ĥ −→ Λ+) ∈ X1 (see
Theorem 2.10, Corollary 2.12 and Theorem 4.8). Moreover we obtain

Lemma 5.4. The action of Ĥ on the Λ-tree X1 is free. For any u ∈ Ĥ − {1}, the induced
automorphism Φu on X1 is hyperbolic if and only if u is of infinite order, while Φu is an
inversion if and only if u is conjugate to some element h ∈ H of order 2.
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Proof. Let 1 6= u ∈ Ĥ = H ∗ F . Then we distinguish the following two cases.
Case 1: u is of infinite order. First, let us show that u = w • v • w−1, where w =

u ∧ u−1, v = w−1uw, and v ∧ v−1 = 1. We have u = w • u′ with u′ = w−1u 6= 1 since
otherwise u = w ≤ u−1, and hence u = u−1 as l(u) = l(u−1); thus, u2 = 1, contrary to
our assumption. Further we obtain w ≤ u−1 = u′−1 • w−1, whence either w < u′−1 or
u′−1 < w. The latter case cannot occur since assuming that w = u′−1 • w′ with w′ 6= 1,
we get u = u′−1 • w′ • u′ and u−1 = u′−1 • w′−1 • u′, therefore w′ = w′−1, and hence
u2 = 1, again a contradiction. Consequently, we have u′−1 = w • v−1 with v 6= 1, whence
u = w • v • w−1 with v ∧ v−1 = 1 as desired.

Since we get the equality of hyperbolic lengths L(Φu) = L(Φv) by Corollary 3.9 (4),
it suffices to show that L(Φv) > 0 to conclude that the automorphism Φu is hyperbolic.
According to Proposition 3.11, (1) =⇒ (6), we have to check that L̂(v2) 6≤ L̂(v), i. e.,
E+ > 0, where E := L̂(v2) − L̂(v). As v ∧ v−1 = 1 by assumption, we have v ∩ v−1 =

ϕ(v ∩ v−1) = ϕ(v) ∩ ϕ(v−1) ∈ X , and hence

L̂(v2) = 2(L̂(v)− L(v ∩ v−1)) = 2(L̂(v)− L(ϕ(v) ∩ ϕ(v−1)),

by (5.8). Consequently, E = L̂(v) − 2L(ϕ(v) ∩ ϕ(v−1)). As E = L̂(v) > 0 provided
either ϕ(v) = 1 or ϕ(v−1) = 1, we may assume that ϕ(v) 6= 1 and ϕ(v−1) 6= 1, whence
ϕ(v) 6= ϕ(v−1) since ϕ(v) ∧ ϕ(v−1) ≤ v ∧ v−1 = 1.

Assuming that v = ϕ(v) ∈ X , it follows that v ∈ H−{1} since otherwise ϕ(v−1) = 1.
As v = ϕ(v) 6= ϕ(v−1) = v−1, i. e., v2 6= 1, and H acts freely on the Λ-tree X by
assumption, it follows that v acts as a hyperbolic automorphism on X, and hence E+ > 0

as desired.
It remains to consider the case ϕ(v) < v, whence ϕ(v−1) < v−1. Setting v = ϕ(v) • s

and v−1 = ϕ(v−1) • t−1 with s 6= 1, t 6= 1, we get v = t • ϕ(v−1)−1, therefore either
t < ϕ(v) or ϕ(v) ≤ t. Assuming that t < ϕ(v) it follows that t ∈ H−{1} and ϕ(v) = t•i
with i ∈ I ′. Consequently, ϕ(v−1) = s−1 • i−1 /∈ X , which is a contradiction. Thus,
setting t = ϕ(v) • w−1, we get v = ϕ(v) • w−1 • ϕ(v−1)−1. Since ϕ(v) ⊂ v, we have
L̂(v) = L(ϕ(v)) + L̂(ϕ(v−1)w). On the other hand, ϕ(v−1) ≤ ϕ(v−1)w ≤ v−1 implies
ϕ(v−1) = ϕ(ϕ(v−1)w) ⊂ ϕ(v−1)w, therefore L̂(ϕ(v−1)w) = L(ϕ(v−1)) + L̂(w). Since
2L(ϕ(v) ∩ ϕ(v−1)) = L(ϕ(v)) + L(ϕ(v−1))− d(ϕ(v), ϕ(v−1)) and ϕ(v) 6= ϕ(v−1), we
deduce that E+ = E = L̂(w) + d(ϕ(v), ϕ(v−1)) ≥ d(ϕ(v), ϕ(v−1)) > 0 as desired.

Case 2: u has finite order, and hence u = s • h • s−1 with s ∈ Ĥ and h ∈ H − {1}
of order 2, so L(h) /∈ 2Λ since h acts as an inversion on the Λ-tree X. According to
Proposition 3.19, (3) =⇒ (1), we have to show that L̂(u) /∈ 2Λ to conclude that Φu

is an inversion. As s−1 ∧ (hs−1) = h−1 ∧ s−1 = 1, it follows by (5.8) and (L1) that
L̂(u) = L(h) + 2(L̂(s)− L(s−1 ∩ (hs−1))− L(h−1 ∩ s−1)) ≡ L(h) mod 2Λ, and hence
L̂(u) /∈ 2Λ as desired.
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[8] Ş.A. Basarab, Median groupoids of groups and universal coverings, I, Rev.
Roumaine Math. Pures Appl. 50 (2005), 1, 1-18.
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