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1 Introduction

In the classical papers [5] (resp. [3]), Matsusaka and Hoyt gived a necessary
and sufficient criterion for an abelian variety A to be a jacobian, respectively
a product of jacobians. In [10], Ran reconsiders the subject and gives a more
general and probably more natural criterion for this. His method, seems
however unsatisfactory in positive characteristic.

The aim of this paper is to reprove Ran’s criterion, using results from [1]
on the ring of numerical algebraic cycles on A. For the particular case of
the Ran-Matsusaka criterion, another proof appeared in [2]. Both proofs are
characteristic independent.

In the sequel, for an abelian variety A, we denote by Z(A) the Q-vector
space of algebraic cycles with Q-coefficients on A, and by N(A) the quotient
by numerical equivalence. It is well known, (cf. [4] or [1]) that on N(A)
there are two (Q-algebra structures gived by the usual product and by the
Pontrjagin product.

The last one, will be very useful through this paper, thanks to his geo-
metric definition and to the fact that it gives a ring structure not only on
N(A) but also on Z(A). Below, for z,y € N(A), we shall denote the usual
product by x-y and the Pontrjagin product by z x y.

Also, for two sub-varieties X; and X, in A, we denote by X;+X, and
XX, their sum and difference in the group low of A, for avoiding confusion
with the corresponding operations on cycles. Through the paper, the alge-
braic cycles will often be divisors and 1-cycles, (the last ones being formal
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sums of curves) and they always have integer coefficients. The therm curve,
is reserved for integral, and all 1-cycles will be considered effectives ones.
Finally, a prime cycle is an irreducible sub-variety of A of corresponding
co-dimension.

2 Generating curves on an abelian variety

Let A be an abelian variety of dimension n, and E be a curve on it which
contains the origin 04 of A. We consider a sequence of closed subsets in A,
defined as follows:

Ey = {04}
E; = E+E+..+FE (i terms, with 1 <i <n )
and E, 1 = A.

It is clear that this sequence is increasing, dim FE; < i and dim FE;;; <
dim E; 4+ 1 for every i. As far as E is a curve, E; is irreducible and there
is a first index j such that F; = E;;,. Also, we have F; = E; for all i > j
and dim E; = j. It follows that E; is stable for the group law on A and the
induced operation has 04 as unity. Using a result of Ramanujan ([9] cap. II,
§4), E; is an abelian sub-variety of A and E is clearly a generating curve for
it. We denote by < E > the sub-variety E;. If j = n, then < F >= A and
E is a generating curve for A.

Remark 2.1. Matsusaka proves in [6] that every abelian variety has a gen-
erating curve. Moreover, from his proof, for a projective embedding of A,
every linear section with a convenient linear subspace of appropriate dimen-
sion which contain 04 is a generating curve for A.

Using the Pontrjagin product (for cycles, not for numerical classes) it is
easy to deduce the following useful fact:

Lemma 2.2. Let E a curve in A with 04 € E, < E > the sub-variety of A
generated by £ and j = dim < E >. Then, j is the maximal number i such
that E* (= Ex Ex...x E with ¢ terms) is nonzero and < E > is the support
of the cycle E*.



Consider now a curve F C A which does not necessarily contains the
origin. It follows easily that for x € E the abelian variety generated by
E—{x} does not depend on z; it is in fact the sub-group of A generated
by E—E. This abelian variety will also be denoted by < E >. If Z =
miEy + ... + mpEy is an effective 1-cycle, we denote by < Z > the abelian
sub-variety given by < E; > + < Ey > +...4+ < E;, > and we will say that
Z is a generating 1-cycle for < Z >.

Remark 2.3. From the definition above, we see that the construction of
< Z > s independent of the numbers m;. In particular, Z and Z,.q generates
the same sub-variety and also for Z and mZ.

The next lemma will be useful in the sequel:

Lemma 2.4. a) For Y,E C A with Y sub-variety and E a curve, both
containing the origin, if Y * E =0 then £ C Y.

b) For Y1,Y, C A abelian sub-varieties and m, n non-zero integers, if mY;
and nY, are numerically equivalents, then Y, = Y.

Proof: a) We have dim'Y < dim (Y+E) < 14+dim Y and from Y x E = 0
we deduce that dim (Y+E) < 1+dimY. SoY = Y+FE and because 04 € Y
it follows £ C Y.
b) Let E; a generating curve for Y] (it exists cf. remark 2.1). Then mY; %
Ey = m(Y1 % Ey) = 0 and so nY; x By = n(Y; x E;) = 0. It follows that
Y, x Ey = 0, and from the first point F; C Y5. The last inclusion imply that
Y], =< E; >C Y;. In the same way is proved the reversed inclusion. QED

Remark 2.5. The point b) above, in the case m = n = 1 is a result of
Matsusaka in [6].

Proposition 2.6. a) For two curves Fy, Ey C A which are numerically
equivalent, we have < By >=< Ey >.

b) For a curve E and Z an 1-cycle which is numerically equivalent with E,
we have < Z >=< FE >.

c) Let D an ample divisor and Z a 1-cycle which is numerically equivalent
with D"Y. Then Z is a generating 1-cycle for A.

Proof : a) Using convenient translations we can suppose that £, and Fs
contains 04. Let 7, s be the dimensions of Y; =< FE; > for ¢ = 1,2. Using
lemma 2.2 and the fact that E;* is numerically equivalent with Ey** for all



positive integers a, we find » = s. From lemma 2.2 again, E;™ is a multiple
of both Y; and Y5, and the conclusion follows from lemma 2.4b.
b) As in a), denoting Z = my E; + ... + my E), we can suppose that E and all
E; contains 04. By lemma 2.2, for » = dim < E >, we have E*0"tD = 0.
Now, Z*" being numeric equivalent with £*", we find Z*"« F = 0. But again
from lemma 2.2 we find a non-zero term in the development of Z*". With
lemma 2.4 a), this term which is in fact a sub-variety contains E, because
all terms in Z*" are vanished by Pontrjagin product with £. On the other
hand, this term is contained in < Z > and so < £ >C< Z >.

For the reverse inclusion, we consider the development of the left side of:
Z x E*" = 0. From lemma 2.2 E*" =n < E > with n > 1 an integer. We
find mnEix < E > +... + mpnEpx < E >= 0, therefore E;x < E >= 0 for
all 7 and then from lemma 2.4a, F; C< E >,s0 < Z >C< FE >.
c) Let m a positive integer with | mD | very ample. The cycles m"~'D"~! and
m" 7 are therefore numeric equivalents and it will exists an integer curve
E in the same numeric class with m"~'D""! and so with m"~'Z. From b)
we have < F >=< m" 7 >=< Z >. But from remark 2.1 < E >= A, so
Z is a generating 1-cycle. QED

The point c¢) above, is a slight generalization of the result from remark
2.1 and will be used to deduce the Matsusaka-Hoyt criterion from the Ran’s
one.

3 Algebraic cycles constructed from generat-
ing curves

We recall a result from [1] which will be the main tool in the proof of
Ran’s theorem. Let E a generating curve of the n-dimensional abelian
variety A. We consider on A, the following cycles: W, (E) = {04} and
Wi(E) = (nii)!E*(”_i) for 0 < 7 < n — 1. From the definition of the Pon-
trjagin product, W;(E) is a cycle with irreducible support of co-dimension i
on A. In particular Wi (FE) is a divisor and there exists ap € Q such that
Wo(E) = ag - 14, where 1,4 is the fundamental cycle on A.

The result we need from [1] is the following:

Proposition 3.1. All cycles W;(E) have integer coefficients and in particular
ap € Z, being evidently positive. Also, W1(E)" =il ag™ *W;(E) for
1 <1 <n. In particular, W1(E)" > 0 and so, W1(E) is ample.

4



Remark 3.2. For E a smooth curve and A his jacobian, these divisors are
well-known.

A first application of the proposition above is the point b) in the following:

Proposition 3.3. a) Let D an effective divisor and Z a generating 1-cycle.
Then D - Z > 0.
b) If moreover D is ample, then D - Z > n = dim A.

Proof : a) We can suppose that D is a prime divisor. Let Fi, ..., E}y the
components of Z. We have D - E; > 0 for all i, because the general translate
of E; cut properly D. It is therefore sufficient to find an i such that D-FE; > 0.
Suppose there is no such i. Then cf. a result from [9], cap. 2, §6 translations
with elements of the form {x}—{y} with z,y € E; leaves D invariant. But Z
is generating 1-cycle, and therefore every element in A is of this form. So D
is invariant with respect to any tranlation and then numerically equivalent
with 0, in contradiction with his effectiveness.

b) Consider a first case where Z = F is a prime cycle (i.e. E is a curve)
and without loss of generality 04 € E. Let ¢t a variable and the polynomial
P(t) = (t- Wi(E) + D)" = nlag™ %" + nlag"?(D - E)t"' + ... + D"
Because Wi(D) is ample and D is non-degenerate, the index theorem for
abelian varieties cf. [9] asserts that all roots of P are real and negatives. So
the means inequality gives D - E > n(x(O4(D)) - ) > n.

For the general case, let 7 = mF, + ... + mpEy with all m; > 0, X; =
< E; > and D; the restriction of D to X;. The projection formula gives
D-FE;, = D,;-FE; > dim X; from the particular case above. So, D - Z =
Z m;D-E; > Z D-E; > Z dim X; > dim A = n, because Z is a generating

1 cycle. QED
The following consequence of the above proposition, will be useful in the
last part of the paper:

Corollary 3.4. Let A an abelian variety, D = > m;D; an ample effective
i=1
dwisor, and Z = Y n;E; a generating 1-cycle of A (the coefficients are
i=1
supposed non-zero). If D - Z =n = dim A then m; =n; =1 for all i, .

Proof: We haven =D -Z = Zsz Z>ZD Z>nbecauseZD

is ample and one can apply pl”OpOSlthIl 3.3 b) So m;D; - Z = D; - Z and
because the last term is non-zero by 3.3 a), we find m; = 1 for all i.
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In the same way, n=D-Z =Y n,D-E; > > D-E;=D-Y E; >n
i=1 i=1 i=1
because ) | E; remains a generator 1-cycle by remark 2.3. Son;D-E; = D-E;
i=1

and D being ample, the last term is positive. It results that n; = 1 for all j.
QED

We can now to proves the following result, which is nothing else than
Ran’s version of the Matsusaka theorem:

Theorem 3.5. Let D be an ample divisor on the abelian variety A, and E
a generating curve such that D - E = n = dim A. Then E is smooth, A is
its jacobian and D is a translation of W1 (FE).

Proof : In the proof of the point b) from proposition 3.3 we obtained
the inequality D - E > n(x(Oa(D)) - ag)s > n. If D-E = n we will have
X(Oa(D)) = ag = 1 and so D" = nl. In this case the polynomial P(t)
from the same proposition become P(t) = nlt" +n!-n-t" 1+ .. +nl It
follows that the arithmetic and geometric means of the roots coincides and
so all the roots have the form —\ for a positive value of A\. So P(t) =
n!(t + \)™ and by identification, A = 1. It follows that A\ = 1 and then
Wy (E)"1-D = Wi (E)"2-D? = nl. These relations imply that (D—W,(E))-
Wi (E)*t = (D-Wy(E))?- Wy (E)*? = 0. The Hodge index theorem asserts
that D is numeric equivalent with Wi (E), and because W;(F) is a principal
polarization (from proposition 3.1 and the equality ag = 1), one deduce that
D is a translation of Wy (E).

Consider the normalization fo : T — FE for F, and let f : J — A a
prolongation of fy, where J is a jacobian of T'. If we choose as base point
in the construction of J, one on T which sits above 04 € E, f will be a
morphism of abelian varieties, sending origin to origin. Also, f is surjectif
because F is generating for A and for g = genus of T" we have g > n.

Denote by W; = W;(T) the canonical cycles on the jacobian J. Therefore
fe(Wy_i) = Woi(E) for 1 <i < n: for ¢ = 1 this is clear because W;_; =T
and for ¢ > 1 it is a consequence of the definitions for W,_; and W,_;(E)
and also from the fact that f. commute with the Pontrjagin product. In
particular f.(W,_,) = Wy(E) = ag - 14 and so ap = 1 is the degree of the
restriction of f to Wy_,. Therefore this restriction is a birational morphism
and has an inverse: A — —— — W,_,,. This inverse, considered as a rational
map from A to J can be extended over all the A giving a morphism A — J
cf. [9]. As consequence, the restriction g of f to W,_,, will be an isomorphism

6



and W,_,, will be an abelian sub-variety of J. But W,_,, contains W,_; =T
which generates J and so W,_,, = J. In this case we have g = n and f is
bi-rational from J to A hence an isomorphism. QED

4 Proof of Ran theorem

The purpose of this section is to give a proof for the full Ran’s theorem.
Some points are as in [10] and are included only for the sake of completeness.
The modifications appears from the replacement of lemma 4 from [10] with
the result below whose proof is very simple:

Lemma 4.1. Let D a prime divisor on an abelian variety A. Then, there
exists an abelian variety B, a surjectif morphism of abelian varieties
f:A— B and an ample divisor F on B such that f~'(F) = D as schemes.

Proof : We consider the closed sub-group K of A defined by
K :={x € A| {z}+D = D} and the abelian sub-variety K, of A which is the
connected component of 04 in K. We denote by B the quotient A/K, and
f + A — B the quotient morphism. Finally denote by F the closed irreducible
sub-set f(D) with the reduced structure. We find easily dim F = dim B —1,
so F is a divisor on B and set-theoretically f~*(F) = D+Ky = D because
Ky C K. Let x € A such that {f(z)}+F = F. Applying f~! we find
{z}+D+Ky = D+Kj, and because D+Ky = D we find {z}+D = D and so
x € K. Therefore, the elements in B which leaves F' invariant by translations
are from f(K'). They are then in a finite number, because the index [K : Kj]
is finite. So F' is an ample divisor on B. Finally the equality f~'(F) = D
holds also at the schemes level, because f is smooth from its construction.
QED

The result we are interested in is the following:

Theorem (Ran) 4.2. Let A an abelian variety of dimensionn, D = > m;D;
i=1
S
an ample effectif divisor, and Z = ) n;E; a generating 1-cycle such that
j=1
D-Z =mn. Then: m; = n; =1 for alli,j, r = s and there are r smooth

curves Ty, ..., T with jacobians Ji, ..., J. with a morphism of abelian vari-
eties h : J; X ... X J. — A such that for every i, F; is a translation of



{0} x ... x {0} x T; x {0} x ... x {0} (T} on the i place) and D; is a transla-
tion of Jy X ... x Ji_1 x W; X Jiiq X ... X J., where W; is the canonical divisor
VVZ<T1) on Jz

Proof : The fact that m; = n; =1 for all 7, j is the corollary 3.4. For the
other points, the proof follow closely that from [10] with some modifications
of the arguments. We begun with three preliminary steps.

Step 1: We prove that for every j there is an unique 7 such that D;- E; #
0. We translate the curves E; such that they contain the origin, and denote
the result with the same letter. Let A; =< E; > and d; = dim A;, so that
E; is a generating curve for A;. Denote by e; the inclusion A; C A and by
the same letter D a translation of it which has proper intersection with every
Aj;. Therefore, e;*(D) := D,’ is defined as a cycle and is an ample divisor on
A;. The projection formula gives

D-E; =D/ - E,

and so ) ) .
n=D-E=Y D-E;=Y D/ -E>> di>n
j=1 j=1 j=1

(the first inequality comes from the fact that on A; one has D;' - E; > d;
according to proposition 3.3b, and the last one is due to the fact that 7 is
a generating 1-cycle). So D;' - E; = d;, and E; being a generating curve for
Aj, from theorem 3.5 one find that E; is smooth, A; is its jacobian and D,
is a translation of the canonical divisor on A;; so D, is prime as any divisor
numeric equivalent with it (it’s a principal polarization).

Let’s fix an j, and consider for any 7 a translation of D; which cuts proper
A;. Every such translation, denoted also by D;, restricted to A; is either an
effective divisor, or has empty intersection with A;, in which case D;- E; = 0.
But the sum of these restrictions is numeric equivalent with D’ and so there
cannot exists two indexes ¢ with D; - E; # 0, because in such a case D, which
is prime, would be the sum of two effective divisors. The existence of an ¢
with D; - E; # 0 comes from the fact that D is ample.

Step 2: This part consists in the proof of the following fact: for an n-
dimensional abelian variety A, a prime ample divisor D and a generating



l-cycle Z =Ty + ...+ T, with D - Z = n one has r =1 (i.e. Z is ireducible
and reduced).

The proof is due to Ran cf. lemma III.2 from [10]. Denote by A; =
< T7 >. From the first step, we know that A; is in fact the jacobian of the
smooth curve T7; in particular is principally polarized and isomorphic with
its dual. It will suffice to prove that A; = A, because in this case T} will be a
generating curve, and the fact that D is ample together with the inequalities
n<D-T, <D-Z =nimply that r = 1 as desired.

For the time being, we replace D with a translate whose restriction
D4, = Dy is well defined as divisor on A;. As in the proof of the step
1, Dy is numerically equivalent with W;(T}). Let s : A x A; — A the mor-
phism given by s(r,y) = r+y, and p, p; the projections. Consider on A x A;
the line bundle M = s*(Oa(D)) ® p1*(O4,(—D1)) and on A; x A; the line
bundle P = (S\A1><A1)*<OA1(D1)) ® Q1*(OA1<_D1)> ® QQ*<OA1<_D1))> where
q1, g2 are the projections on the factors of A; x A;. Using the fact that A;
is a jacobian (and therefore is its Picard variety whith the Poincare bundle
equal to P), we deduce the existence of a morphism f : A — A; and of a
line bundle A on A such that:

M@ p (N) = (f x Ida,)"[P]. (1)
Restricting (1) on the fiber{z} x A;, for x € A, one finds an isomorphism
¢ (t:"(0a(D))) = Lj()" (O, (D1)),

where e is the embedding A; < A. Because D; is a principal polarisation, the
point f(z) is uniquelly defined by the above property, which can be written
in divisorial terms as ({—z}+D)a, = {—f(x)}+D1, at least for z general
such that the divisor ({—2} + D)4, is well defined. From this one deduces
that points in A; are fixed by f and so f is surjective with K N A; = {04},
where K is the kernel of f.

Because K cuts A; only in 04, the sum morphism K x A; — A is injectif
and so we will have dim (K+D;) = n—dim A, +dim A; —1=n—1. Now,
for a general © € A, we have {—f(z)}+D; = ({—2}+D)|a, C {—z}+D. So,
xr — f(z) € Tran(Dy, D) := {y € A | {y}+D: C D}. But Tran(Dy, D) is
closed and so for any = € A we have {z — f(z)}+D; C D.

Then for x € K, {x}+D; C D and therefore K+D; C D. For K, the
connected component of the origin in K, we have Ko+D; C D. But Ky+D;
is a divisor and D is prime, so the previous inclusion is an equality. Now,

Ko+D = Ky+(Ko+Dy) = Ko+Dy = D.
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But D ample imply K is finite and D prime imply Ky = {04} which is
equivalent with A = A;.

Step 3: Within this step we prove that for any ¢ there is an unique j
such that D, - E; # 0. For this, we consider for all 7, an abelian variety B;,
an ample divisor F; on B; and a surjectiv morphism f; : A — B; such that
f;71(F}) = D;. Their existence follow from lemma 4.1.

We have

n:D-Z:ifi1(E)-Z=iﬂ'(fi)*22ili,
=1 i—1 i—1

where [; = dim B; and the last inequality is from proposition 3.3b. We
examine the last sum using the effective construction of the B;’s from lemma
4.1. There, B; is of the form A/K; where K; is an abelian subvariety of A.
As consequence, [; = codim K; and so

Zli = Z codim K; > codim (NK;) =n

=1 i=1

(by definition of K; and the ampleness of D, the intersection NK; is finite).
It results that

n > in (fi),Z > ili >n,
i—1 i=1

and so F; - (f;),Z = ;. But F; is a prim divisor and from step 2 there is an
unique j; with (f;),Ej, a curve. All other curves from the support of Z will
be therefore contracted. We fix now ¢ and compute D; - E; = fi_l(Fi) By =
F, - fi,E;. This last number is 0 if j # j; and non-zero for j = j; because F;
is ample. This conclude the third step.

From the first and third steps we find that ¢ — j; is a bijection and so
r = s. Also one can reorder the curves E; (such that E;, will be numbered
by E;) and so we can suppose that for all ¢, we have D, - E; # 0 & i = j.
For ending the proof, we consider all the requirements supposed above.

In first place we review the B;’s. Let T; the cycle (f;),Z. From the
third step, T; is in fact a curve, namely f;(E;). Also we have seen that
F;-T; = l; = dim B; and therefore theorem 3.5 imply that B; is the jacobian
of T;. To see this, we need only to prove that T} is a generating curve of B;
and this is implied by the fact that, as we saw, f; contracts all the curves £}
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for j # i and as far as these contains 04, the contraction will be to 0p,. So
fi(A) = fi(A;) = B; and because E; generates A;, T; generates B;. So, by
theorem 3.5, Fj is a translation of the canonical divisor on B;.

Recall, that in the first step, we supposed (using apropriate transla-
tions) that all D;’s cuts proper the sub-varieties A;’s, which means that
either e;*(D;) is an effectiv divisor on A;, or D; N A; is empty, in which
case €;*(D;) = 0. The first case can happen only for j = i, because in
this situation e;*(D;) - E; # 0 (more precisely, the projection formula gives
ej*(Dl-) . Ej =D, ej*Ej =D, Ej) So ej*(Di) 7£ 0 <:>j = ¢ and we have

D) = e;*(D) = e;"(Dy) = ¢;* ;*(F}) = (fj 0 ¢;)"(F)).

Let’s consider the morphism f;oe; : A; — B;. It sends the generating curve
E; of A; to the generating curve T} of B;, and we saw it’s surjective; so
d; > l;. But, from the first and third steps, n = > d; = > l;; this imply
j=1 =1

that f; oe; has a finite non-zero degree. On the other hand f; o e; pull-back
the principal polarization F} from B; to the principal polarization D’ on A;.
So its degree is 1 and it is an isomorphism with inverse denoted g;.

Let h: By X ... x B, — A defined by h(by,....,b,) = > ¢;(b;) and

i=1

g:A— By x..x B, defined by g(a) = (fi(a), ..., fr(a)). Then ho g is the
identity, being the identity on every A;. Also, g o h is the identity, being the
identity on every {0p, } X ... X B; X ... x {0p, }.

So h is an isomorphism, B; is the jacobian of T; and the last part of the
theorem concerning the form of the divisors D; and curves T; is obvious due
to the fact that the transformations of D; and T; were translations. QED

Finally, we formulate the following corollary which is the result of Hoyt
from [3].

Corollary 4.3. Let A an abelian variety, D an ample divisor with D" = n!
and Z a 1-cycle such that D™ is numeric equivalent with (n — 1)!Z. The
the conclusion of theorem 4.2 holds.

Proof: We have D" = (n — 1)!D - Z-, so D - Z = n. On the other hand,
from proposition 2.6¢, (n — 1)!7 is a generating 1-cycle and therefore 7 is a
generating 1-cycle. Now all is a consequence of theorem 4.2. QED
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