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1 Introduction

In the classical papers [5] (resp. [3]), Matsusaka and Hoyt gived a necessary
and sufficient criterion for an abelian variety A to be a jacobian, respectively
a product of jacobians. In [10], Ran reconsiders the subject and gives a more
general and probably more natural criterion for this. His method, seems
however unsatisfactory in positive characteristic.

The aim of this paper is to reprove Ran’s criterion, using results from [1]
on the ring of numerical algebraic cycles on A. For the particular case of
the Ran-Matsusaka criterion, another proof appeared in [2]. Both proofs are
characteristic independent.

In the sequel, for an abelian variety A, we denote by Z(A) the Q-vector
space of algebraic cycles with Q-coefficients on A, and by N(A) the quotient
by numerical equivalence. It is well known, (cf. [4] or [1]) that on N(A)
there are two Q-algebra structures gived by the usual product and by the
Pontrjagin product.

The last one, will be very useful through this paper, thanks to his geo-
metric definition and to the fact that it gives a ring structure not only on
N(A) but also on Z(A). Below, for x, y ∈ N(A), we shall denote the usual
product by x· y and the Pontrjagin product by x ? y.

Also, for two sub-varieties X1 and X2 in A, we denote by X1+̇X2 and
X1−̇X2 their sum and difference in the group low of A, for avoiding confusion
with the corresponding operations on cycles. Through the paper, the alge-
braic cycles will often be divisors and 1-cycles, (the last ones being formal
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sums of curves) and they always have integer coefficients. The therm curve,
is reserved for integral, and all 1-cycles will be considered effectives ones.
Finally, a prime cycle is an irreducible sub-variety of A of corresponding
co-dimension.

2 Generating curves on an abelian variety

Let A be an abelian variety of dimension n, and E be a curve on it which
contains the origin 0A of A. We consider a sequence of closed subsets in A,
defined as follows:

E0 = {0A}

Ei = E+̇E+̇...+̇E (i terms, with 1 ≤ i ≤ n )

and En+1 = A.

It is clear that this sequence is increasing, dim Ei ≤ i and dim Ei+1 ≤
dim Ei + 1 for every i. As far as E is a curve, Ei is irreducible and there
is a first index j such that Ej = Ej+1. Also, we have Ei = Ej for all i ≥ j
and dim Ej = j. It follows that Ej is stable for the group law on A and the
induced operation has 0A as unity. Using a result of Ramanujan ([9] cap. II,
§4), Ej is an abelian sub-variety of A and E is clearly a generating curve for
it. We denote by < E > the sub-variety Ej. If j = n, then < E >= A and
E is a generating curve for A.

Remark 2.1. Matsusaka proves in [6] that every abelian variety has a gen-
erating curve. Moreover, from his proof, for a projective embedding of A,
every linear section with a convenient linear subspace of appropriate dimen-
sion which contain 0A is a generating curve for A.

Using the Pontrjagin product (for cycles, not for numerical classes) it is
easy to deduce the following useful fact:

Lemma 2.2. Let E a curve in A with 0A ∈ E, < E > the sub-variety of A
generated by E and j = dim < E >. Then, j is the maximal number i such
that E∗i (= E ∗E ∗ ... ∗E with i terms) is nonzero and < E > is the support
of the cycle E∗j.
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Consider now a curve E ⊂ A which does not necessarily contains the
origin. It follows easily that for x ∈ E the abelian variety generated by
E−̇{x} does not depend on x; it is in fact the sub-group of A generated
by E−̇E. This abelian variety will also be denoted by < E >. If Z =
m1E1 + ... +mkEk is an effective 1-cycle, we denote by < Z > the abelian
sub-variety given by < E1 > +̇ < E2 > +̇...+̇ < Ek > and we will say that
Z is a generating 1-cycle for < Z >.

Remark 2.3. From the definition above, we see that the construction of
< Z > is independent of the numbers mi. In particular, Z and Zred generates
the same sub-variety and also for Z and mZ.

The next lemma will be useful in the sequel:

Lemma 2.4. a) For Y,E ⊂ A with Y sub-variety and E a curve, both
containing the origin, if Y ∗ E = 0 then E ⊂ Y .
b) For Y1, Y2 ⊂ A abelian sub-varieties and m, n non-zero integers, if mY1

and nY2 are numerically equivalents, then Y1 = Y2.

Proof: a) We have dim Y ≤ dim (Y +̇E) ≤ 1+dim Y and from Y ∗E = 0
we deduce that dim (Y +̇E) < 1+dim Y . So Y = Y +̇E and because 0A ∈ Y
it follows E ⊂ Y .
b) Let E1 a generating curve for Y1 (it exists cf. remark 2.1). Then mY1 ∗
E1 = m(Y1 ∗ E1) = 0 and so nY1 ∗ E1 = n(Y1 ∗ E1) = 0. It follows that
Y2 ∗ E1 = 0, and from the first point E1 ⊂ Y2. The last inclusion imply that
Y1 =< E1 >⊂ Y2. In the same way is proved the reversed inclusion. QED

Remark 2.5. The point b) above, in the case m = n = 1 is a result of
Matsusaka in [6].

Proposition 2.6. a) For two curves E1, E2 ⊂ A which are numerically
equivalent, we have < E1 >=< E2 >.
b) For a curve E and Z an 1-cycle which is numerically equivalent with E,
we have < Z >=< E >.
c) Let D an ample divisor and Z a 1-cycle which is numerically equivalent
with Dn−1. Then Z is a generating 1-cycle for A.

Proof : a) Using convenient translations we can suppose that E1 and E2

contains 0A. Let r, s be the dimensions of Yi =< Ei > for i = 1, 2. Using
lemma 2.2 and the fact that E1

∗a is numerically equivalent with E2
∗a for all
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positive integers a, we find r = s. From lemma 2.2 again, E1
∗r is a multiple

of both Y1 and Y2, and the conclusion follows from lemma 2.4b.
b) As in a), denoting Z = m1E1 + ...+mkEk we can suppose that E and all
Ei contains 0A. By lemma 2.2, for r = dim < E >, we have E∗(r+1) = 0.
Now, Z∗r being numeric equivalent with E∗r, we find Z∗r ∗E = 0. But again
from lemma 2.2 we find a non-zero term in the development of Z∗r. With
lemma 2.4 a), this term which is in fact a sub-variety contains E, because
all terms in Z∗r are vanished by Pontrjagin product with E. On the other
hand, this term is contained in < Z > and so < E >⊂< Z >.

For the reverse inclusion, we consider the development of the left side of:
Z ∗ E∗r = 0. From lemma 2.2 E∗r = n < E > with n ≥ 1 an integer. We
find m1nE1∗ < E > +... +mknEk∗ < E >= 0, therefore Ei∗ < E >= 0 for
all i and then from lemma 2.4a, Ei ⊂< E >, so < Z >⊂< E >.
c) Letm a positive integer with | mD | very ample. The cyclesmn−1Dn−1 and
mn−1Z are therefore numeric equivalents and it will exists an integer curve
E in the same numeric class with mn−1Dn−1 and so with mn−1Z. From b)
we have < E >=< mn−1Z >=< Z >. But from remark 2.1 < E >= A, so
Z is a generating 1-cycle. QED

The point c) above, is a slight generalization of the result from remark
2.1 and will be used to deduce the Matsusaka-Hoyt criterion from the Ran’s
one.

3 Algebraic cycles constructed from generat-

ing curves

We recall a result from [1] which will be the main tool in the proof of
Ran’s theorem. Let E a generating curve of the n-dimensional abelian
variety A. We consider on A, the following cycles: Wn(E) = {0A} and
Wi(E) = 1

(n−i)!
E∗(n−i) for 0 ≤ i ≤ n − 1. From the definition of the Pon-

trjagin product, Wi(E) is a cycle with irreducible support of co-dimension i
on A. In particular W1(E) is a divisor and there exists αE ∈ Q such that
W0(E) = αE · 1A, where 1A is the fundamental cycle on A.

The result we need from [1] is the following:

Proposition 3.1. All cycles Wi(E) have integer coefficients and in particular
αE ∈ Z, being evidently positive. Also, W1(E)i = i! αE

i−1Wi(E) for
1 ≤ i ≤ n. In particular, W1(E)n > 0 and so, W1(E) is ample.
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Remark 3.2. For E a smooth curve and A his jacobian, these divisors are
well-known.

A first application of the proposition above is the point b) in the following:

Proposition 3.3. a) Let D an effective divisor and Z a generating 1-cycle.
Then D · Z > 0.
b) If moreover D is ample, then D · Z ≥ n = dim A.

Proof : a) We can suppose that D is a prime divisor. Let E1, ..., Ek the
components of Z. We have D ·Ei ≥ 0 for all i, because the general translate
of Ei cut properlyD. It is therefore sufficient to find an i such that D·Ei > 0.
Suppose there is no such i. Then cf. a result from [9], cap. 2, §6 translations
with elements of the form {x}−̇{y} with x, y ∈ Ei leaves D invariant. But Z
is generating 1-cycle, and therefore every element in A is of this form. So D
is invariant with respect to any tranlation and then numerically equivalent
with 0, in contradiction with his effectiveness.

b) Consider a first case where Z = E is a prime cycle (i.e. E is a curve)
and without loss of generality 0A ∈ E. Let t a variable and the polynomial
P (t) = (t · W1(E) + D)n = n!αE

n−1tn + n!αE
n−2(D · E)tn−1 + ... + Dn.

Because W1(D) is ample and D is non-degenerate, the index theorem for
abelian varieties cf. [9] asserts that all roots of P are real and negatives. So

the means inequality gives D · E ≥ n(χ(OA(D)) · αE)
1
n ≥ n.

For the general case, let Z = m1E1 + ... +mkEk with all mi > 0, Xi =
< Ei > and Di the restriction of D to Xi. The projection formula gives
D · Ei = Di · Ei ≥ dim Xi from the particular case above. So, D · Z =∑
i

miD ·Ei ≥
∑
i

D ·Ei ≥
∑
i

dim Xi ≥ dim A = n, because Z is a generating

1-cycle. QED
The following consequence of the above proposition, will be useful in the

last part of the paper:

Corollary 3.4. Let A an abelian variety, D =
r∑

i=1

miDi an ample effective

divisor, and Z =
s∑

i=1

njEj a generating 1-cycle of A (the coefficients are

supposed non-zero). If D · Z = n = dim A then mi = nj = 1 for all i, j.

Proof : We have n = D ·Z =
r∑

i=1

miDi ·Z ≥
r∑

i=1

Di ·Z ≥ n because
r∑

i=1

Di

is ample and one can apply proposition 3.3 b). So miDi · Z = Di · Z and
because the last term is non-zero by 3.3 a), we find mi = 1 for all i.
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In the same way, n = D · Z =
s∑

i=1

njD · Ej ≥
s∑

i=1

D · Ej = D ·
s∑

i=1

Ej ≥ n

because
s∑

i=1

Ej remains a generator 1-cycle by remark 2.3. So njD·Ej = D·Ej

and D being ample, the last term is positive. It results that nj = 1 for all j.
QED

We can now to proves the following result, which is nothing else than
Ran’s version of the Matsusaka theorem:

Theorem 3.5. Let D be an ample divisor on the abelian variety A, and E
a generating curve such that D · E = n = dim A. Then E is smooth, A is
its jacobian and D is a translation of W1(E).

Proof : In the proof of the point b) from proposition 3.3 we obtained

the inequality D · E ≥ n(χ(OA(D)) · αE)
1
n ≥ n. If D · E = n we will have

χ(OA(D)) = αE = 1 and so Dn = n!. In this case the polynomial P (t)
from the same proposition become P (t) = n!tn + n! · n · tn−1 + ... + n!. It
follows that the arithmetic and geometric means of the roots coincides and
so all the roots have the form −λ for a positive value of λ. So P (t) =
n!(t + λ)n and by identification, λn = 1. It follows that λ = 1 and then
W1(E)n−1 ·D = W1(E)n−2 ·D2 = n!. These relations imply that (D−W1(E))·
W1(E)n−1 = (D−W1(E))2 ·W1(E)n−2 = 0. The Hodge index theorem asserts
that D is numeric equivalent with W1(E), and because W1(E) is a principal
polarization (from proposition 3.1 and the equality αE = 1), one deduce that
D is a translation of W1(E).

Consider the normalization f0 : T → E for E, and let f : J → A a
prolongation of f0, where J is a jacobian of T . If we choose as base point
in the construction of J , one on T which sits above 0A ∈ E, f will be a
morphism of abelian varieties, sending origin to origin. Also, f is surjectif
because E is generating for A and for g = genus of T we have g ≥ n.

Denote by Wi = Wi(T ) the canonical cycles on the jacobian J . Therefore
f∗(Wg−i) = Wn−i(E) for 1 ≤ i ≤ n: for i = 1 this is clear because Wg−1 = T
and for i > 1 it is a consequence of the definitions for Wg−i and Wg−i(E)
and also from the fact that f∗ commute with the Pontrjagin product. In
particular f∗(Wg−n) = W0(E) = αE · 1A and so αE = 1 is the degree of the
restriction of f to Wg−n. Therefore this restriction is a birational morphism
and has an inverse: A−−− → Wg−n. This inverse, considered as a rational
map from A to J can be extended over all the A giving a morphism A → J
cf. [9]. As consequence, the restriction g of f to Wg−n will be an isomorphism
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and Wg−n will be an abelian sub-variety of J . But Wg−n contains Wg−1 = T
which generates J and so Wg−n = J . In this case we have g = n and f is
bi-rational from J to A hence an isomorphism. QED

4 Proof of Ran theorem

The purpose of this section is to give a proof for the full Ran’s theorem.
Some points are as in [10] and are included only for the sake of completeness.
The modifications appears from the replacement of lemma 4 from [10] with
the result below whose proof is very simple:

Lemma 4.1. Let D a prime divisor on an abelian variety A. Then, there
exists an abelian variety B, a surjectif morphism of abelian varieties
f : A → B and an ample divisor F on B such that f−1(F ) = D as schemes.

Proof : We consider the closed sub-group K of A defined by
K := {x ∈ A | {x}+̇D = D} and the abelian sub-varietyK0 of A which is the
connected component of 0A in K. We denote by B the quotient A/K0 and
f : A → B the quotient morphism. Finally denote by F the closed irreducible
sub-set f(D) with the reduced structure. We find easily dim F = dim B−1,
so F is a divisor on B and set-theoretically f−1(F ) = D+̇K0 = D because
K0 ⊂ K. Let x ∈ A such that {f(x)}+̇F = F . Applying f−1 we find
{x}+̇D+̇K0 = D+̇K0, and because D+̇K0 = D we find {x}+̇D = D and so
x ∈ K. Therefore, the elements in B which leaves F invariant by translations
are from f(K). They are then in a finite number, because the index [K : K0]
is finite. So F is an ample divisor on B. Finally the equality f−1(F ) = D
holds also at the schemes level, because f is smooth from its construction.
QED

The result we are interested in is the following:

Theorem (Ran) 4.2. Let A an abelian variety of dimension n, D =
n∑

i=1

miDi

an ample effectif divisor, and Z =
s∑

j=1

njEj a generating 1-cycle such that

D · Z = n. Then: mi = nj = 1 for all i, j, r = s and there are r smooth
curves T1, ..., Tr with jacobians J1, ..., Jr with a morphism of abelian vari-
eties h : J1 × ... × Jr → A such that for every i, Ei is a translation of
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{0}× ...×{0}×Ti×{0}× ...×{0} (Ti on the ith place) and Di is a transla-
tion of J1× ...×Ji−1×Wi×Ji+1× ...×Jr, where Wi is the canonical divisor
Wi(TI) on Ji.

Proof : The fact that mi = nj = 1 for all i, j is the corollary 3.4. For the
other points, the proof follow closely that from [10] with some modifications
of the arguments. We begun with three preliminary steps.

Step 1: We prove that for every j there is an unique i such that Di ·Ej 6=
0. We translate the curves Ej such that they contain the origin, and denote
the result with the same letter. Let Aj =< Ej > and dj = dim Aj, so that
Ej is a generating curve for Aj. Denote by ej the inclusion Aj ⊂ A and by
the same letter D a translation of it which has proper intersection with every
Aj. Therefore, ej

∗(D) := Dj
′ is defined as a cycle and is an ample divisor on

Aj. The projection formula gives

D · Ej = Dj
′ · Ej

and so

n = D · E =
s∑

j=1

D · Ej =
s∑

j=1

Dj
′ · Ej ≥

s∑
j=1

dj ≥ n.

(the first inequality comes from the fact that on Aj one has Dj
′ · Ej ≥ dj

according to proposition 3.3b, and the last one is due to the fact that Z is
a generating 1-cycle). So Dj

′ · Ej = dj, and Ej being a generating curve for
Aj, from theorem 3.5 one find that Ej is smooth, Aj is its jacobian and Dj

′

is a translation of the canonical divisor on Aj; so Dj
′ is prime as any divisor

numeric equivalent with it (it’s a principal polarization).
Let’s fix an j, and consider for any i a translation of Di which cuts proper

Aj. Every such translation, denoted also by Di, restricted to Aj is either an
effective divisor, or has empty intersection with Aj, in which case Di ·Ej = 0.
But the sum of these restrictions is numeric equivalent with D′

j and so there
cannot exists two indexes i with Di ·Ej 6= 0, because in such a case D′

j which
is prime, would be the sum of two effective divisors. The existence of an i
with Di · Ej 6= 0 comes from the fact that D is ample.

Step 2: This part consists in the proof of the following fact: for an n-
dimensional abelian variety A, a prime ample divisor D and a generating
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1-cycle Z = T1 + ... + Tr with D · Z = n one has r = 1 (i.e. Z is ireducible
and reduced).

The proof is due to Ran cf. lemma III.2 from [10]. Denote by A1 =
< T1 >. From the first step, we know that A1 is in fact the jacobian of the
smooth curve T1; in particular is principally polarized and isomorphic with
its dual. It will suffice to prove that A1 = A, because in this case T1 will be a
generating curve, and the fact that D is ample together with the inequalities
n ≤ D · T1 ≤ D · Z = n imply that r = 1 as desired.

For the time being, we replace D with a translate whose restriction
D|A1 := D1 is well defined as divisor on A1. As in the proof of the step
1, D1 is numerically equivalent with W1(T1). Let s : A × A1 → A the mor-
phism given by s(r, y) = r+y, and p, p1 the projections. Consider on A×A1

the line bundle M = s∗(OA(D)) ⊗ p1
∗(OA1(−D1)) and on A1 × A1 the line

bundle P = (s|A1×A1)
∗(OA1(D1))⊗ q1

∗(OA1(−D1))⊗ q2
∗(OA1(−D1)), where

q1, q2 are the projections on the factors of A1 × A1. Using the fact that A1

is a jacobian (and therefore is its Picard variety whith the Poincare bundle
equal to P), we deduce the existence of a morphism f : A → A1 and of a
line bundle N on A such that:

M⊗ p∗(N ) ' (f × IdA1)
∗[P ]. (1)

Restricting (1) on the fiber{x} × A1, for x ∈ A, one finds an isomorphism

e∗(tx
∗(OA(D))) ' tf(x)

∗(OA1(D1)),

where e is the embedding A1 ↪→ A. BecauseD1 is a principal polarisation, the
point f(x) is uniquelly defined by the above property, which can be written
in divisorial terms as ({−x}+̇D)|A1 = {−f(x)}+̇D1, at least for x general
such that the divisor ({−x} +D)|A1 is well defined. From this one deduces
that points in A1 are fixed by f and so f is surjective with K ∩ A1 = {0A},
where K is the kernel of f .

Because K cuts A1 only in 0A, the sum morphism K×A1 → A is injectif
and so we will have dim (K+̇D1) = n− dim A1 + dim A1 − 1 = n− 1. Now,
for a general x ∈ A, we have {−f(x)}+̇D1 = ({−x}+̇D)|A1 ⊂ {−x}+̇D. So,
x − f(x) ∈ Tran(D1, D) := {y ∈ A | {y}+̇D1 ⊂ D}. But Tran(D1, D) is
closed and so for any x ∈ A we have {x− f(x)}+̇D1 ⊂ D.

Then for x ∈ K, {x}+̇D1 ⊂ D and therefore K+̇D1 ⊂ D. For K0 the
connected component of the origin in K, we have K0+̇D1 ⊂ D. But K0+̇D1

is a divisor and D is prime, so the previous inclusion is an equality. Now,

K0+̇D = K0+̇(K0+̇D1) = K0+̇D1 = D.
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But D ample imply K0 is finite and D prime imply K0 = {0A} which is
equivalent with A = A1.

Step 3: Within this step we prove that for any i there is an unique j
such that Di · Ej 6= 0. For this, we consider for all i, an abelian variety Bi,
an ample divisor Fi on Bi and a surjectiv morphism fi : A → Bi such that
fi

−1(Fi) = Di. Their existence follow from lemma 4.1.
We have

n = D · Z =
r∑

i=1

fi
−1(Fi) · Z =

r∑
i=1

Fi · (fi)∗Z ≥
r∑

i=1

li,

where li = dim Bi and the last inequality is from proposition 3.3b. We
examine the last sum using the effective construction of the Bi’s from lemma
4.1. There, Bi is of the form A/Ki where Ki is an abelian subvariety of A.
As consequence, li = codim Ki and so

r∑
i=1

li =
r∑

i=1

codim Ki ≥ codim (∩Ki) = n

(by definition of Ki and the ampleness of D, the intersection ∩Ki is finite).
It results that

n ≥
r∑

i=1

Fi · (fi)∗Z ≥
r∑

i=1

li ≥ n,

and so Fi · (fi)∗Z = li. But Fi is a prim divisor and from step 2 there is an
unique ji with (fi)∗Eji a curve. All other curves from the support of Z will
be therefore contracted. We fix now i and compute Di ·Ej = fi

−1(Fi) ·Ej =
Fi · fi∗Ej. This last number is 0 if j 6= ji and non-zero for j = ji because Fi

is ample. This conclude the third step.
From the first and third steps we find that i → ji is a bijection and so

r = s. Also one can reorder the curves Ej (such that Eji will be numbered
by Ei) and so we can suppose that for all i, j we have Di · Ej 6= 0 ⇔ i = j.
For ending the proof, we consider all the requirements supposed above.

In first place we review the Bi’s. Let Ti the cycle (fi)∗Z. From the
third step, Ti is in fact a curve, namely fi(Ei). Also we have seen that
Fi ·Ti = li = dim Bi and therefore theorem 3.5 imply that Bi is the jacobian
of Ti. To see this, we need only to prove that Ti is a generating curve of Bi

and this is implied by the fact that, as we saw, fi contracts all the curves Ej
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for j 6= i and as far as these contains 0A, the contraction will be to 0Bi
. So

fi(A) = fi(Ai) = Bi and because Ei generates Ai, Ti generates Bi. So, by
theorem 3.5, Fi is a translation of the canonical divisor on Bi.

Recall, that in the first step, we supposed (using apropriate transla-
tions) that all Di’s cuts proper the sub-varieties Aj’s, which means that
either ej

∗(Di) is an effectiv divisor on Aj, or Di ∩ Aj is empty, in which
case ej

∗(Di) = 0. The first case can happen only for j = i, because in
this situation ej

∗(Di) · Ej 6= 0 (more precisely, the projection formula gives
ej

∗(Di) · Ej = Di · ej∗Ej = Di · Ej). So ej
∗(Di) 6= 0 ⇔ j = i and we have

D′
j = ej

∗(D) = ej
∗(Dj) = ej

∗fj
∗(Fj) = (fj ◦ ej)∗(Fj).

Let’s consider the morphism fj ◦ ej : Aj → Bj. It sends the generating curve
Ej of Aj to the generating curve Tj of Bj, and we saw it’s surjective; so

dj ≥ lj. But, from the first and third steps, n =
r∑

j=1

dj =
r∑

j=1

lj; this imply

that fj ◦ ej has a finite non-zero degree. On the other hand fj ◦ ej pull-back
the principal polarization Fj from Bj to the principal polarization D′

j on Aj.
So its degree is 1 and it is an isomorphism with inverse denoted gj.

Let h : B1 × ...×Br → A defined by h(b1, ..., br) =
r∑

i=1

gi(bi) and

g : A → B1 × ... × Br defined by g(a) = (f1(a), ..., fr(a)). Then h ◦ g is the
identity, being the identity on every Ai. Also, g ◦ h is the identity, being the
identity on every {0B1} × ...×Bi × ...× {0Br}.

So h is an isomorphism, Bi is the jacobian of Ti and the last part of the
theorem concerning the form of the divisors Di and curves Ti is obvious due
to the fact that the transformations of Di and Ti were translations. QED

Finally, we formulate the following corollary which is the result of Hoyt
from [3].

Corollary 4.3. Let A an abelian variety, D an ample divisor with Dn = n!
and Z a 1-cycle such that Dn−1 is numeric equivalent with (n − 1)!Z. The
the conclusion of theorem 4.2 holds.

Proof: We have Dn = (n − 1)!D · Z·, so D · Z = n. On the other hand,
from proposition 2.6c, (n− 1)!Z is a generating 1-cycle and therefore Z is a
generating 1-cycle. Now all is a consequence of theorem 4.2. QED
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