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1 Introduction.

Given a domain D ⊂ Rn, we denote by A(D) the set of all path families from D and for
Γ ∈ A(D), we put F (Γ) = {ρ : Rn → [0,∞] Borel maps |

´
γ

ρds ≥ 1 for every γ ∈ Γ locally

rectifiable}. We set for p ≥ 1, Γ ∈ A(D) and ω : D → Rn measurable and finite a.e. the p
modulus of weight ω, Mp

ω(Γ) = inf
ρ∈F (Γ)

´
Rn
ω(x)ρ(x)pdx and for ω = 1 we obtain the classical p

modulus Mp(Γ) = inf
ρ∈F (Γ)

´
Rn
ρ(x)pdx.

A known class of continuous, open, discrete mappings f : D ⊂ Rn → Rn is the class
of K-quasiregular mappings, which are ACLn, K ≥ 1 and |f ‘(x)|n ≤ KJf (x) a.e. For such
mappings the important modular inequality of Poleckii says thatMn(f(Γ)) ≤ KMn(Γ) for every
Γ ∈ A(D). This modular inequality is the key for proving most of the geometric properties of
this class of mappings. We recommend the reader the books [33], [34], [50], [57] for basic facts
of this theory.

A map f : D ⊂ Rn → Rn is of finite distortion if f ∈ W 1,1
loc (D,Rn)∩C(D,Rn), Jf ∈ L1

loc(D)
and there exists K : D → [0,∞] measurable and finite a.e. such that |f ‘(x)|n ≤ K(x)Jf (x) a.e.
If in addition f ∈ W 1,n

loc (D,Rn), we say that f is of finite dilatation. General classes of such
mappings were intensively studied using the modulus method in the last 20 years in [4-7], [14],
[17-19], [24-27], [30-32], [35-44], [46-49] and several conditions were imposed to the dilatation
K or to the map f , like K ∈ BMO(D), or such that exp(A ◦ K) ∈ L1

loc(D) for some Orlicz
map A, or such that f has locally ACLn inverses. All of them are open, discrete functions f ,
and the modular inequality ”Mn(f(Γ)) ≤Mn

Kn−1(Γ)” holds for every Γ ∈ A(D), and this is the
main instrument used in studying this functions.

In some recent paper [8-12], we studied classes of continuous, open, discrete mappings f :
D → Rn satisfying modular inequalities of type ”Mq(f(Γ)) ≤ γ(Mp

ω(Γ)) for every Γ ∈ A(D)”,
where q > n − 1, p > 1, ω ∈ L1

loc(D) and γ : [0,∞) → [0,∞) is increasing with lim
t→0

γ(t) = 0.

We extended partially basic theorems from the theory of quasiregular mappings and from
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the classes of open, discrete mappings considered in [4-7], [14], [17-19], [24-27], [30-32], [35-
44], [46-49] and in some cases we showed that our results were stronger even in the class of
quasiregular mappings. We gave Liouville, Montel, Picard type theorems, equicontinuity and
eliminability results and we gave estimates of the modulus of continuity. The basic tool for
proving this results was the modular inequality ”Mq(f(Γ)) ≤ γ(Mp

ω(Γ))” together with the fact
that Mp

ω(x) = 0 in some points x ∈ D. Using the modulus method, we developed an unified
theory which contains all the classes of mappings of finite distortion mentioned before.

On the other hand, if f : D → Rn is K-quasiregular and N(f,D) < ∞, the inverse
modular inequality ”Mn(Γ) ≤ KN(f,D)Mn(f(Γ))” holds for every Γ ∈ A(D). It is a natural
question if a function f : D ⊂ Rn → Rn satisfying a modular inequality of type ”Mq(Γ) ≤
γ(Mp

ω(f(Γ)))” has interesting geometric properties. We show that the answer is positive, using
entirely the modulus method. Our methods can be applied to ACLq mappings, q > n − 1,
having variable Jacobian sign, which are not open or mappings with finite distortion, and have
no monotone components, as we can see from Example 1. We show that even for such mappings
some results from classical complex analysis still hold and we remark that until now most of
the generalizations of complex functions were open functions, or functions having monotone
components.

A classical theorem of Fatou states that a bounded analytic function f : B(0, 1) → C has
a.e. radial limits. It is not known whether a bounded quasiregular mapping f : B(0, 1) → Rn

has at least one radial limit. K. Rajala showed in [32] that if f : B(0, 1) → Rn is a locally
injective quasiregular mapping, then f has at least one radial limit. In [25] it is proved that if
f : B(0, 1) → B(0, 1) is a locally injective quasiregular mapping and there exists C > 0 and
0 < a < n−1 such that N(f,B(0, r)) ≤ C(1−r)−a for 0 < r < 1, then the Hausdorff dimension
of E(f) is less or equal to a, where E(f) = {y ∈ S(0, 1)|f has no radial limit in y}. The same
result is obtained for bounded quasiregular mappings f ∈ B(0, 1) → Rn, as we can see from
[20]. Miklyukov proved in [28] that if f : B(0, 1) → Rn is a bounded quasiregular map and´
B(0,1)

|f ‘(x)|ndx <∞, then f has a.e. nontangential limits. In Theorem 5.15 in [23] it is proved

that if f : B(0, 1) → Rn is quasiregular and there exists c1 > 0 and 0 < β < n − 1 such that´
Rn
N(y, f, B(0, r))dy ≤ c1

(1−r)β for every 0 < r < 1, then f has a.e. radial limits. We extend this

result in Theorem 5, showing:
Theorem 5. Let n ≥ 2, 1 < q < p, let f : B(0, 1) → Rn be ACLq such that there exists

K : B(0, 1) → [0,∞] measurable and finite a.e. such that L(x, f)p ≤ K(x)|Jf (x)| a.e. and
suppose that there exists c1, c2, α, β > 0 such that´

Rn
N(y, f, B(0, r))dy ≤ c1

(1−r)β for every 0 < r < 1 (1)
´

B(0,r)

K(x)q/(p−q)dx ≤ c2
(1−r)α for every 0 < r < 1 (2)

α(p−q)
p

+ βq
p
< q − 1 (3)

Then f has a.e. radial limits.
If we take p = n, α = 0 and K(x) ≤ K for every x ∈ B(0, 1), then condition 3) is

”0 < β < n(q−1)
q

” and taking q as close to n, this condition may be ”0 < β < n − 1” and this

shows that our result improves Theorem 5.15 from [23] given for quasiregular mappings. We
can also take the function f to be locally quasiregular or with finite dilatation and satisfying
condition 1), 2), 3) from Thereom 5 and we still have a Fatou type result in this class of
functions, and our proof is based entirely on the modulus method. A similar result also based
on the modulus method is Theorem 1 in [21] which says that if f ∈ W 1,p(B(0, 1)) is monotone
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and n− 1 < p ≤ n, then f has nontangential limits at every point y ∈ S(0, 1) with the possible
exception of a set of zero p-capacity. When p > q > n − 1 and the mapping f has monotone
components, a related result to Theorem 5 was obtained by T. Äkkinen in [1].

We also give a Fatou type result for ACLq mappings f : D → Rn such that there exists
0 < α < q − 1 such that

´
B(0,1)

|f ‘(x)|q(1− |x|)αdx <∞, in connection with Theorem 2‘ in [29],

given for polyharmonic functions. We show:
Theorem 4. Let n ≥ 2, q > 1, f : B(0, 1) → Rn be ACLq such that µn(Bf ) = 0, there

exists 0 < α < q − 1 such that
´

B(0,1)

|f ‘(x)|q(1 − |x|)αdx < ∞ and suppose that one of the

following conditions hold:
a) f has locally inverses on f(D \Bf ) which satisfies condition (N).
b) f satisfies condition (N), there exists p > 0 and K : D → [0,∞] measurable and finite

a.e. such that L(x, f)p ≤ K(x)|Jf (x)| a.e. and either Jf ∈ L1
loc(D) and q > n− 1, or f is a.e.

differentiable.
Then f has a.e. radial limits.
A Fatou type theorem is given in Theorem 2 for mappings satisfying generalized inverse

modular inequalities. A local version of it is given in Theorem 1 from which immediately
results Theorem 3,4 and 5.

Theorem 2. Let n ≥ 2, p, q > 1, ω ∈ L1(B(0, 1)), γ : [0,∞) → [0,∞) increasing such that
there exists λ, M > 0 such that γ(t) ≤ Mtλ for t ≥ 0 and let f : B(0, 1) → Rn be continuous
such that Mq(Γ) ≤ γ(Mp

ω(f(Γ))) for every Γ ∈ A(B(0, 1)). Then f has a.e. radial limits.
We shall give in Lemma 2 and 3 enough consistent conditions in order that some ACLq

mappings to satisfy generalized inverse modular inequalities.
In Theorem 5.17 in [23] Martio and Rickman generalized a theorem of F. and M. Riesz

given for bounded analytic functions. They showed that if f : B(0, 1) → Rn is quasiregular,
c ∈ Rn, E = {y ∈ S(0, 1)| lim

t→1
f(ty) = c} and there exists c1 > 0, 0 < β < n − 1 such that´

B(0,r)

N(y, f, B(0, r))dy ≤ c1
(1−r)β for every 0 < r < 1, then it results that µn−1(E) = 0. We

extend this result in Theorem 9, showing that:
Theorem 9. Let n ≥ 2, 1 < q < p, f : B(0, 1) → Rn be ACLq such that there exists

K : B(0, 1) → Rn measurable and finite a.e. such that L(x, f)p ≤ K(x)|Jf (x)| a.e., let c ∈ Rn

such that mn−2(f
−1(c)) = 0, let fy : [0, 1) → Rn be defined by fy(t) = f(ty) for t ∈ [0, 1) and

y ∈ S(0, 1) and let E = {y ∈ S(0, 1)|c is a limit point of fy : [0, 1) → Rn}. Suppose that there
exists c1, c2, α, β > 0 such that´

Rn
N(y, f, B(0, r))dy ≤ c1

(1−r)β for every 0 < r < 1 (1)
´

B(0,r)

K(x)q/(p−q)dx ≤ c2
(1−r)α for every 0 < r < 1 (2)

α(p−q)
p

+ βq
p
< q − 1 (3)

Then µn−1(E) = 0.
Another extension of the theorem of F. and M. Riesz is given for ACLq mappings for which

we impose a boundedness condition of the modulus of the derivative.
Theorem 8. Let n ≥ 2, q > 1, f : B(0, 1) → Rn be ACLq such that µn(Bf ) = 0,

there exists 0 < α < q − 1 such that
´

B(0,1)

|f ‘(x)|q(1 − |x|)α < ∞, let c ∈ Rn such that

mn−2(f
−1(c)) = 0, let fy : [0, 1) → Rn be defined by fy(t) = f(ty) for t ∈ [0, 1) and y ∈ S(0, 1)

and let E = {y ∈ S(0, 1)|c is a limit point of fy : [0, 1) → Rn}. Suppose that one of the
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following conditions hold:
a) f has locally inverses on f(D \Bf ) which satisfies condition (N).
b) f satisfies condition (N), there exists p > 0 and K : D → [0,∞] measurable and finite

a.e. such that L(x, f)p ≤ K(x)|Jf (x)| a.e. and either Jf ∈ L1
loc(D) and q > n − 1 or f is a.e.

differentiable.
Then µn−1(E) = 0.
We also give in Theorem 7 a version of the theorem of F. and M. Riesz for mappings satisfying

inverse modular inequalities. A local version of it is Theorem 5 from which immediately results
Theorem 8 and 9.

Theorem 7. Let n ≥ 2, p, q > 1, ω ∈ L1(Rn), γ : [0,∞) → [0,∞) be increasing
such that there exists λ,M > 0 such that γ(t) ≤ Mtλ for t ≥ 0, let f : B(0, 1) → Rn be
continuous such that Mq(Γ) ≤ γ(Mp

ω(f(Γ))) for every Γ ∈ A(B(0, 1)), let c ∈ Rn such that
mn−2(f

−1(c)) = 0, let fy : [0, 1) → Rn be defined by fy(t) = f(ty) for t ∈ [0, 1) and y ∈ S(0, 1)
and let E = {y ∈ S(0, 1)|c is a limit point of fy : [0, 1) → Rn}. Then µn−1(E) = 0.

Theorem 5 and 9 in the case p = q = n correspond to the results in 5.15 and 5.17 in [23].
Vuorinen extended in Theorem 14.7 in [57] a result of Beurling, showing that if f : B(0, 1) → Rn

is quasiconformal and E = {y ∈ S(0, 1)|f has no asymptotic value at y}, then it results that
capn(F ) = 0 for every compact F ⊂ E. The following theorem generalizes Vuorinen’s result.

Theorem 10. Let n ≥ 2, n− 1 < q ≤ n, p ≥ 2, ω : D → [0,∞] measurable and finite a.e.
γ : [0,∞) → [0,∞) be strictly increasing with lim

t→0
γ(t) = 0, let f : B(0, 1) → Rn be continuous

such that Mq(Γ) ≤ γ(Mp
ω(f(Γ))) for every Γ ∈ A(B(0, 1)) and let E = {y ∈ S(0, 1)|f has no

asymptotic value at y}. Then capq(F ) = 0 for every compact F ⊂ E.
We also give versions of Beurling’s theorem for ACLq mappings, extending partially The-

orem 1 in [21] given for monotone functions. Theorem 11 and 12 results immediately from
Theorem 10.

Theorem 11. Let n ≥ 2, n − 1 < q ≤ n, f : B(0, 1) → Rn be ACLq such that´
B(0,1)

|f ‘(x)|qdx < ∞ and µn(Bf ) = 0 and let E = {y ∈ S(0, 1)|f has no asymptotic val-

ues at y}. Suppose that f satisfies conditions a) and b) from Theorem 4. Then capq(F ) = 0
for every compact F ⊂ E.

Theorem 12. Let n ≥ 2, n − 1 < q < p, q ≤ n, let f : B(0, 1) → Rn be ACLq and
suppose that there exists K ∈ Lq/(p−q)(B(0, 1)) such that L(x, f)p ≤ K(x)|Jf (x)| a.e. Then,
if E = {y ∈ S(0, 1)|f has no asymptotic value at y}, it results that capq(F ) = 0 for every
compact F ⊂ E.

Vuorinen generalized in Theorem 4.2 in [51] a known result from the theory of quasiconformal
mappings in the class of closed quasiregular mappings, showing that if D,G are domains in
Rn and f : D → G is a closed quasiregular mapping and D is quasiconformally flat at a point
b ∈ ∂D, then C(f, b) contains at most one point at which G is finitely connected. We extend
partially Vuorinen’s result in Theorems 13 and Corollary 2.

Theorem 13. Let n ≥ 2, D, G be domains in Rn, let b ∈ ∂D such that D is quasiconfor-
mally flat at b, let f : D → G be ACLn, open, discrete and closed such that µn(Bf ) = 0 and´
D

|f ‘(x)|ndx <∞ and suppose that one of the following conditions hold:

a) f has locally inverses on f(D \Bf ) which satisfies condition (N).
b) f satisfies condition (N), there exists p > 0 and K : D → [0,∞] measurable and finite

a.e. such that L(x, f)p ≤ K(x)|Jf (x)| a.e. and either Jf ∈ L1
loc(D) and q > n − 1 or f is a.e.

differentiable.
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Then C(f, b) contains at most one point at which G is finitely connected.
Corollary 2. Let n ≥ 2, D, G be domains in Rn, G finitely connected at the boundary,

let b ∈ ∂D be such that D is quasiconformally flat at b and let f : D → G be ACLn, open,
discrete and closed such that µn(Bf ) = 0 and

´
D

|f ‘(x)|ndx < ∞ and suppose that one of the

following conditions hold:
a) Jf (x) ̸= 0 a.e.
b) µn(f(Bf )) = 0 and there exists p > 0 and K : D → [0,∞] measurable and finite a.e.

such that L(x, f)p ≤ K(x)|Jf (x)| a.e.
Then there exists F : D ∪ {b} → Rn continuous such that F |D = f and we take on Rn the

chordal metric.
If in the preceeding theorem f : D → G is a homeomorphism, we have:
Corollary 3. Let n ≥ 2, D, G be domains in Rn, G finitely connected at the boundary, b ∈

∂D such that D is quasiconformally flat at b and let f : D → G be an ACLn homeomorphism
such that

´
D

|f ‘(x)|ndx <∞ and suppose that one of the following conditions hold:

a) Jf (x) ̸= 0 a.e.
b) there exists p > 0 and K : D → [0,∞] measurable and finite a.e. such that L(x, f)p ≤

K(x)|Jf (x)| a.e.
Then there exists F : D ∪ {b} → Rn continuous such that F |D = f , and we take on Rn the

chordal metric.
Corollary 3 is proved by Iwaniecz and Onninen in Theorem 1.3 in [16] without using condi-

tions a) and b), but with some supplementary requirements on the domains D and G and their
proof does not use the modulus method.

We prove the following Lindelöf type theorem for mappings satisfying inverse generalized
modular inequalities:

Theorem 14. Let n ≥ 2, n−1 < q ≤ n, p > 1, λ > 0, 0 < ψ < φ ≤ π
2
, a = 1

2
sin(φ−ψ), let

D ⊂ Rn be a domain, x ∈ ∂D, d a half line ending in x such that there exists ρ > 0 such that
Cx,d,φ ∩ B(x, ρ) ⊂ D, let C = Cx,d,φ, C1 = Cx,d,ψ and E ⊂ C1 such that capq,adens(C,E, x) =
δ > 0. Let f : D → Rn be continuous having monotone components, let Kr > 0 and wr :
D∩B(x, r) → [0,∞] be measurable for 0 < r < ρ such thatMq(Γ) ≤ Kr(M

p
ωr(f(Γ)))

λ for every
Γ ∈ A(D∩B(x, r)) and every 0 < r < ρ and suppose that lim

r→∞
Kr(

´
f(B(x,r)∩D)

ωr(z)dz)
λ/rn−q = 0

and that lim
z→x
z∈E

f(z) = c. Then lim
z→x
z∈C1

f(z) = c.

Using this result, we can give the following partial extensions to Theorem 16.8 in [57]:
Corollary 4. Let n ≥ 2, n − 1 < q ≤ n, 0 < ψ < φ ≤ π

2
, a = 1

2
sin(φ − ψ), let

D ⊂ Rn be domain, x ∈ ∂D, d a half line ending in x such that there exists ρ > 0 such that
Cx,dφ ∩B(x, ρ) ⊂ D, let C = Cx,d,φ, C1 = Cx,d,ψ, E ⊂ C1 such that capq,adens(C,E, x) > 0, let
f : D → Rn be ACLq on D having monotone components such that µn(Bf ) = 0 and such that
lim
r→0

´
B(x,r)∩D

|f ‘(z)|qdz/rn−q = 0.

Suppose that one the following conditions hold:
a) f has locally inverses on f(D \Bf ) which satisfies condition (N).
b) f satisfies condition (N) and there exists p ≥ 0, K : D → [0,∞] measurable and finite a.e.

such that L(z, f)p ≤ K(z)|Jf (z)| a.e. and either f is a.e. differentiable or Jf ∈ L1(D∩B(x, ρ)).
Then, if lim

z→x
z∈E

f(z) = c, it results that lim
z→x
z∈C1

f(z) = c.

Corollary 5. Let n ≥ 2, n − 1 < q < p, q ≤ n, 0 < φ < ψ ≤ π
2
, a = 1

2
sin(φ − ψ), let
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D ⊂ Rn be a domain, x ∈ ∂D, d a half line ending in x such that there exists ρ > 0 such that
Cx,d,φ ∩ B(x, ρ) ⊂ D, let C = Cx,d,φ, C1 = Cx,d,ψ, E ⊂ C1 such that capq,adens(C,E, x) > 0.
Suppose that f : D → Rn is ACLq on D, satisfies condition (N) and has monotone components,
let K : D → [0,∞] measurable and finite a.e. such that K ∈ Lq/(p−q)(D∩B(x, ρ)) be such that
L(z, f)p ≤ K(z). |Jf (z)| a.e. and suppose that

lim
r→0

(

ˆ

B(x,r)∩D

K(z)q/(p−q)dz)
p−q
q (

ˆ

D∩B(x,r)

Jf (z)dz)
q/p/rn−q = 0.

Then, if lim
z→x
z∈E

f(z) = c, it results that lim
z→x
z∈C1

f(z) = c.

The following theorem is a Lindelöf type theorem without assuming that the components
of the function f : D ⊂ Rn → Rn are monotone:

Theorem 15. Let n ≥ 2, 0 < φ ≤ π
2
, D ⊂ Rn a domain, x ∈ ∂D, d a half line ending in x,

0 < ρ < 1 such that Cx,d,φ ∩ B(x, ρ) ⊂ D, let C = Cx,d,φ, let f : D → Rn be ACLn on D such
that µn(Bf ) = 0 and

´
B(x,ρ)∩D

|f ‘(z)ndz < ∞ and let γ : [0, 1] → C be a nonconstant path such

that γ(0) = x and there exists lim
t→0

f(γ(t)) = c. Suppose that one of the following conditions is

satisfied:
a) f has locally inverses on f(D \Bf ) which satisfies condition (N).
b) f satisfies condition (N) and there exists p > 0 and K : D → [0,∞] measurable

and finite a.e. such that L(z, f)p ≤ K(z)|Jf (z)| a.e. and either f is a.e. differentiable, or
Jf ∈ L1(D ∩B(x, ρ)).

Then, if S = {y ∈ S(x, 1)|[x, y] ∩ C ∩ S(x, ρ) ̸= ϕ}, it results that lim
t→1

f(γy(t)) = c for a.e.

y ∈ S, where γy : [0, 1] → Rn is given by γy(t) = tx+ (1− t)y for t ∈ [0, 1] and y ∈ S. If f has
also monotone components and 0 < ψ < φ, then lim

z→x
z∈Cx,d,ψ

f(z) = c.

The following two theorems are in connection with Theorem 15.10 in [57]:
Theorem 16. Let n ≥ 2, 0 < ψ < φ ≤ π

2
, a = 1

2
sin(φ − ψ), c ∈ Rn, D ⊂ Rn a domain,

x ∈ ∂D, d a half line ending in x such that there exists ρ > 0 such that Cx,d,φ ∩ B(x, ρ) ⊂ D,
let C = Cx,d,φ, C1 = Cx,d,ψ, let f : D → Rn be ACLn on D having monotone components such
that µn(Bf ) = 0 and

´
B(x,ρ)∩D

|f ‘(z)|ndz < ∞. Let Eϵ = f−1(B(c, ϵ)) ∩ B(x, ρ) ∩ C1 for ϵ > 0

be such that lim sup
ϵ→0

´
Eϵ

|f ‘(z)|ndz/ϵn = M < ∞, let δϵ = capn,adens(C,Eϵ, x) for ϵ > 0 and

suppose that one of the following condition shold:
a) f has locally inverses on f(D \Bf ) which satisfies condition (N).
b) f satisfies condition (N) and there exists p > 0 and K : D → [0,∞] measurable

and finite a.e such that L(z, f)p ≤ K(z)|Jf (z)| a.e. and either f is a.e. differentiable, or
f ∈ L1(D ∩B(x, ρ)).

Then, if lim
ϵ→0

δϵ(ln ln(
1
ϵ
))n = ∞, it results that lim

z→x
z∈Cx,d,η

f(z) = c for every ψ < η < φ.

Theorem 17. Let n ≥ 2, 0 < ψ < φ ≤ π
2
, a = 1

2
sin(φ − ψ), c ∈ Rn, D ⊂ Rn a domain

x ∈ ∂D, d a half line ending in x such that there exists ρ > 0 such that Cx,d,φ ∩ B(x, ρ) ⊂ D,
let C = Cx,d,φ, C1 = Cx,d,ψ, let f : D → Rn be K-quasiregular such that Jf ∈ L1(D ∩
B(x, ρ)) and N(f,D ∩ B(x, ρ)) < ∞. Let Eϵ = f−1(B(c, ϵ)) ∩ B(x, ρ) ∩ C1 for ϵ > 0, let
δϵ = capn,adeus(C,E, x) for ϵ > 0 and suppose that lim

ϵ→0
δϵ(ln ln(

1
ϵ
))n = ∞. Then it results that

lim
z→x

z∈Cx,d,η
f(z) = c for every ψ < η < φ.
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2 Preliminaries.

We say that a function f : D ⊂ Rn → Rn is ACL if f is continuous and for every cube
Q ⊂⊂ D with the sides parallel to coordinate axes and for every face S of Q it results that
f |P−1

S (y) ∩ Q : P−1
S (y) ∩ Q → Rn is absolutely continuous for a.e. y ∈ S, where PS : Rn → S

is the projection on S. An ACL map has a.e. first partial derivatives and if p > 1, we say
that f is ACLp if f is ACL and the first partial derivatives are locally in Lp. If p > 1, we
denote by W 1,p

loc (D,Rn) the Sobolev space of all functions f : D → Rn which are locally in Lp

together with their first order distributional derivatives. We see from Proposition 1.2, page 6
in [34] that if f ∈ C(D,Rn), then f is ACLp if and only if f ∈ W 1,p

loc (D,Rn). If x ∈ Rn, we set

|x| = (
n∑
i=1

x2i )
1
2 . We set B(x, r) = {y ∈ Rn||y − x| < r} and S(x, r) = {y ∈ Rn||y − x| = r}

for x ∈ Rn and r > 0. We denote by µn the Lebesgue measure in Rn, by µn−1 the spherical
measure on S(0, 1), and if p > 0, we denote by mp the p-Hausdorff measure in Rn.

If D ⊂ Rn is open, E,F ⊂ D, we set ∆(E,F,D) = {γ : [a, b] → D paths |γ(a) ∈
E, γ(b) ∈ F and γ((a, b)) ⊂ D} and if b ∈ ∂D, we say that D is quasiconformally flat at b if
Mn(∆(E,F )) = ∞ for every connected sets E,F ⊂ D such that b ∈ E ∩ F . We say that D is
finitely connected at the point b ∈ ∂D if for every V ∈ V(b) there exists U ∈ V(b) such that
U ⊂ V and U ∩D has a finite number of components. If γ : [a, b] → Rn is rectifiable, we set
sγ(t) = l(γ|[a, t]) for t ∈ [a, b] and we define the reparametrisation γ0 : [0, l(γ)] → Rn of γ by
setting γ(t) = γ0(sγ(t)) for every t ∈ [a, b]. We say that x ∈ Rn is a limit point of the path
γ : [a, b) → Rn if there exists a < tp < b, tp → b such that γ(tp) → x. If x ∈ Rn, 0 < a < b, we
set Γx,a,b = ∆(B(x, a), S(x, b), B(x, b) \B(x, a)).

We say that E = (A,C) is a condenser if C ⊂ A ⊂ Rn, C is compact and A is open,
and if p > 1,we define capp(E) = inf

´
Rn

|∇u(x)|pdx, the p capacity of E, where the infimum

is taken over all u ∈ C∞
0 (A) such that u ≥ 1 on C. We set ΓE = ∆(C, ∂A,A) and we see

from Proposition II.10.2, page 54 in [34] that if p > 1, then capp(E) =Mp(ΓE). We say that a
compact set C ⊂ Rn is of zero p capacity, p > 1, if capp(E) = 0 for every condenser E = (A,C)
with A open and bounded, and the definion does not depend on the open, bounded set A such
that C ⊂ A. If C ⊂ Rn is compact, we write capp(C) > 0 if C is not of zero p-capacity.

Let D ⊂ Rn be open and φ : B(D) → [0,∞]. We say that φ is a set function on D if

φ(A) <∞ for every compact A ⊂ D and φ(
∞∪
i=1

Ai) =
∞∑
i=1

φ(Ai) if A1, ..., Ai, ... are disjoint Borel

sets. We say that φ is absolutely continuous if for every ϵ > 0 there exists δϵ > 0 such that
φ(A) < ϵ for every A ∈ B(D) such that µn(A) < δϵ, and if φ assumes only finite values, then
φ is absolutely continuous if and only if φ(A) = 0 whenever µn(A) = 0. We say that φ has a

derivative φ‘(x) in x if φ‘(x) = lim
r→0

φ(B(x,r))
µn(B(x,r))

. A set function φ has a.e. a finite derivative φ‘

which is a Borel function and if φ is absolutely continuous, then φ(A) =
´
A

φ‘(x)dx for every

A ∈ B(D) (see [50], page 81-83).
Let D ⊂ Rn a domain and f : D → Rn a map. We denote by Bf = {x ∈ D|f is not

a local homeomorphism at x} and if x ∈ D, we set L(x, f) = lim sup
h→0

|f(x+h)−f(x)|
|h| . We say

that f satisfies condition (N) if µn(f(A)) = 0 for every A ⊂ D such that µn(A) = 0. We
say that f is open if f carries open sets into open sets, we say that f is closed if f carries
closed sets into closed sets and we say that f is discrete if f−1(y) is empty or discrete in D for
every y ∈ Rn. If A ⊂ D, we set N(y, f, A) = Card (f−1(y) ∩ A) for every y ∈ Rn and we set
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N(f,A) = sup
y∈Rn

N(y, f, A). If b ∈ ∂D, we set C(f, b) = {z ∈ Rn| there exists bp ∈ D, bp → b such

that f(bp) → z}. If f : D → Rn is continuous, x ∈ D and f is discrete at x, we set i(f, x) the
topological index of f in x, and if f is differentiable in x and Jf (x) ̸= 0, then i(f, x) = sgnJf (x)
(see [13] for some basic facts concerning the topological degree).

If f : B(0, 1) → Rn is a map and y ∈ S(0, 1), we say that f has a radial limit at x if
there exists lim

t→1
f(ty) ∈ Rn, and we say that f has an asymptotic value at y if there exists

γ : [0, 1) → B(0, 1) a path such that lim
t→1

γ(t) = y and there exists lim
t→1

f(γ(t)) ∈ Rn.

Let a, b, c ∈ Rn. We set a(b−a.c−a) the angle between b−a and c−a if this angle is less then
π. If x ∈ Rn, 0 < φ ≤ π

2
, d is a half line ending in x, we set Cx,d,φ = {z ∈ Rn|a(z−x,w−x) < φ,

where w ∈ d}, the cone of center x, direction d and angle φ. Let q > 1, 0 < a ≤ 1, 0 < φ ≤ π
2
,

x ∈ Rn, d a half line ending in x, C = Cx,d,φ and let E ⊂ C. We set the (q, a)-lower capacity
density of E in C at the point x by capq,adeus(C,E, x) = lim inf

r→0
Mq(∆(B(x, r) ∩ E, S(x, (1 +

a)r) ∩ C,B(x, (1 + a)r) ∩ C)/rn−q and if q = n and a = 1 we have the definition of the lower
capacity density of E in x given by M. Vuorinen in Definition 14.9 in [57]. We set the lower

radial density of E in x by rad deus(E, x) = lim inf
r→0

m1{r≥0|S(x,r)∩E ̸=ϕ}
r

and this is Definition

14.10 in [57].
Let D ⊂ Rn be open and f : D → R be continuous. We say that f is monotone if

max
x∈Ḡ

f(x) = max
x∈∂G

f(x) and min
x∈Ḡ

f(x) = min
x∈∂G

f(x) whenever G is a domain such that Ḡ ⊂ D.

Let D ⊂ Rn be open and f : D → Rn be ACLq, q > 1 such that Jf (x) ̸= 0 a.e. We can

defined a.e. the function K0,q(f) : D → [0,∞] by K0,q(f)(x) =
|f ‘(x)|q
|Jf (x)|

.

We shall use Theorem 4 in [2] which says that if x ∈ Rn, 0 < a < b, D = B(x, b) \ B(x, a),
n − 1 < q ≤ n, E,F ⊂ D are such that S(x, t) ∩ E ̸= ϕ, S(x, t) ∩ F ̸= ϕ for every a < t < b,
then Mq(∆(E,F,D)) ≥ C(n, q)(bn−q − an−q) if n − 1 < q < n, Mn(∆(E,F,D)) ≥ C(n) ln b

a
,

where C(n, q) is a constant depending only on n and q and C(n) is a constant depending only
on n, and C(n, q) > 0, C(n) > 0.

3 Some conditions in order that an ACLq function to

satisfy a generalized inverse modular inequality.

Lemma 1. Let n ≥ 2, U, V ⊂ Rn be open sets, U bounded, A ⊂ U , B ⊂ V such that
µn(V \ B) = 0, let f : U → V be continuous such that f |A : A → B is a homeomorphism
and let g : V → Rn, g(y) = f−1(y) if y ∈ B, g(y) = 0 if y ∈ V \ B. Then g is measurable
and let µg : B(V ) → [0,∞] given by µg(F ) = µn(g(F ∩ B)) for F ∈ B(V ). Then µg is a
set function, µ‘

g exists a.e. and is a Borel function and if µg is absolutely continuous, then´
g(V )

h(z)dz =
´
V

h(g(x))µ‘
g(x)dx for every Borel function h : Rn → [0,∞].

Proof. Using Lebesgue’s theorem, we see that
´
V

µ‘
g(y)dy = µg(V ) = µn(g(V )) and we

apply then a standard argument.
Lemma 2. Let n ≥ 2, q > 1, D ⊂ Rn a domain, f : D → Rn be ACLq such that µn(Bf ) = 0

and
´
D

|f ‘(x)|qdx <∞ and suppose that one of the following conditions are satisfied:

a) f has locally inverses on f(D \Bf ) which satisfies condition (N).
b) f satisfies condition (N), there exists p > 0 and K : D → [0,∞] measurable and finite

8



a.e. such that L(x, f)p ≤ K(x)|Jf (x)| a.e. and either Jf ∈ L1
loc(D) and q > n− 1, or f is a.e.

differentiable.
Then there exists ω ∈ L1(Rn) such that Mq(Γ) ≤ C(n)2M q

ω(f(Γ)) for every Γ ∈ A(D).
Proof. Let ω : Rn → [0,∞] be given by ω(y) =

∑
x∈f−1(y)∩(D\Bf )

µ‘
gx(y)L(gx(y), f)

q for a.e.

y ∈ f(D \Bf ), ω(y) = 0 otherwise, where gx is a local inverse of f around the point x such that

gx(f(x)) = x. Let Dk be open, bounded, Dk ⊂ Dk+1, k ∈ N be such that D \Bf =
∞∪
k=1

Dk. Let

k ∈ N be fixed and let ωk : Rn → [0,∞] be defined by ωk(y) =
∑

x∈f−1(y)∩Dk
µ‘
gx(y)L(gx(y), f)

q

for a.e. y ∈ f(Dk), ωk(y) = 0 otherwise, where gx is a local inverse of f around the point
x such that gx(f(x)) = x. Let x ∈ Dk and y = f(x). Then f−1(y) ∩ Dk is a finite set
{a1, ..., am} ⊂ D \ Bf and since f is a local homeomorphism around each point a1, ..., am, we
find V ∈ V(y) and Ui ∈ V(ai) disjoint such that U i ⊂ Dk+1, f |Ui : Ui → V is a homeomorphism

for i = 1, ...,m and f−1(V ) ∩Dk ⊂
m∪
i=1

Ui. Let gi : V → Ui be the inverse of f |Ui : Ui → V for

i = 1, ...,m. We see that (ωk|V )(y) =
m∑
i=1

µ‘
gi
(y)L(gi(y), f)

q for a.e. y ∈ V , hence ωk is a Borel

function for every k ∈ N and since ωk ↗ ω a.e., we see that ω is a Borel function.
Using Besicovitch’s covering theorem, we can find a constant C(n) depending only on n and

balls Vi, i ∈ N such that every point from f(Dk) belongs to at most C(n) balls Vi, f(Dk) =
∞∪
i=1

Vi

and for every i ∈ N there exists open, bounded and disjoint sets Uij such that U ij ⊂ Dk+1,

f |Uij : Uij → Vi is a homeomorphism for j = 1, ..., j(i) and f−1(Vi) ∩ Dk ⊂
j(i)∪
j=1

Uij. It also

results that every point from Dk belongs to at most C(n) sets Uij, i ∈ N, j = 1, ..., j(i). We
shall denote from now on by C(n) the constant from the theorem of Besicovitch.

Let gij : Vi → Uij be the inverse of f |Uij : Uij → Vi for i ∈ N, j = 1, ..., j(i) and let
µgij : B(Vi) → [0,∞] be the set functions defined by µgij(F ) = µn(gij(F )) for F ∈ B(Vi), i ∈ N,
j = 1, ..., j(i). Since f is ACL, the first partial derivatives of f exists a.e. and in such a point
x we set f ‘(x) to be the linear map given by the matrix

(
∂fi
∂xj

(x))i,j=1,...,n.

Let us show that L(x, f) ≤ Q(n, q)|f ‘(x)| a.e. in D, where Q(n, q) is a constant depending
only on n and q and Q(n, q) = 1 if q > n. (1)

Suppose first that f is differentiable in x. We can easy see that L(x, f) = |f ‘(x)| and
suppose now that q > n. Since f is ACLq, we see from Thereom 5.21, page 129 in [13] that f
is a.e. differentiable and we can take the constant Q(n, q) = 1 if q > n.

Suppose now that n − 1 < q ≤ n. We see from relation (4.3) in [21] that there exists a
constant C(n, q) depending only on n and q such that if u ∈ W 1,q(D) is monotone, x ∈ D and
B(x, 2r) ⊂ D, to have that

(
osc(u,B(x, r))

r
)q ≤ C(n, q)

 

B(x,2r)

|∇u|q(y)dy (2)

Let x ∈ D \ Bf such that the first partial derivatives of f in x exist and lim
r→0

ffl
B(x,r)

|f ‘(y)|qdy =

|f ‘(x)|q. Since x ∈ D \ Bf , we can find rx > 0 such that B(x, rx) ⊂ D and f |B(x, rx) :
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B(x, rx) → f(B(x, rx)) is a homeomorphism, hence the components f1, ..., fn of f are monotone
functions on B(x, rx). Using (2), we have

|fi(y)− fi(x)

|y − x|
|q ≤ (

osc(fi, B(x, r))

r
)q ≤ C(n, q)

 

B(x,2r)

|∇fi|(y)qdy =

= C(n, q)

 

B(x,2r)

(
n∑
j=1

∂fi
∂xj

(y)2)
q
2dy = C(n, q)

 

B(x,2r)

|f ‘(y)T (ei)|qdy ≤

≤ C(n, q)

 

B(x,2r)

|f ‘(y)T |qdy = C(n, q)

 

B(x,2r)

|f ‘(y)|qdy

for i = 1, ..., n, y ∈ S(x, r) and 0 < 2r < rx.

Then |f(y)−f(x)|2
|y−x|2 =

n∑
i=1

|fi(y)−fi(x)|2
|y−x|2 ≤ nC(n, q)

2
q (

ffl
B(x,2r)

|f ‘(y)|qdy)
2
q for y ∈ S(x, r) and 0 <

2r < rx and for 0 < 2r < rx fixed, we see that L(x, f) ≤
√
nC(n, q)

1
q (

ffl
B(x,2r)

|f ‘(y)|qdy)
1
q . Letting

now r → 0, we find that L(x, f) ≤ Q(n, q)|f ‘(x)|, where Q(n, q) =
√
nC(n, q)

1
q if n− 1 < q ≤ n

and (1) is proved.
Using Theorem 24.5 in [50], we see that

ˆ

f(Dk)

ωk(y)dy ≤ C(n)
∞∑
i=1

ˆ

Vi

ωk(y)dy = C(n)
∞∑
i=1

ˆ

Vi

j(i)∑
j=1

µ‘
gij
(y)L(gij(y), f)

qdy ≤

≤ C(n)
∞∑
i=1

j(i)∑
j=1

ˆ

Uij

L(x, f)qdx ≤ C(n)2
ˆ

Dk

L(x, f)qdx ≤

≤ Q(n, q)qC(n)2
ˆ

Dk

|f ‘(x)|qdx = C(n)2n
q
2C(n, q)

ˆ

Dk

|f ‘(x)|qdx <∞

for every k ∈ N, hence
ˆ

f(Dk)

ωk(y)dy ≤ C(n)2n
q
2C(n, q)

ˆ

Dk

|f ‘(x)|qdx for k ∈ N (3)

Let Γ ∈ A(D), let ∆ = {γ ∈ Γ|γ is rectifiable and f ◦ γ0 is absolutely continuous} and let
η ∈ F (f(Γ)). Let ρ : Rn → [0,∞] be defined by ρ(x) = η(f(x))L(x, f) if x ∈ D, ρ(x) = 0
otherwise. We see from Theorem 5.3, page 12 in [50] that ρ ∈ F (∆) and using Fuglede’s
theorem (see Theorem 28.2, page 95 in [50]), we see that Mq(Γ) =Mq(∆).

Suppose first that condition a) holds. Since every function gij satisfies condition (N), we
see that every set function µgij is absolutely continuous for i ∈ N, j = 1, ..., j(i). Using Lemma
1, we have:

ˆ

Dk

ρ(x)qdx =

ˆ

Dk

η(f(x))qL(x, f)qdx ≤ C(n)
∞∑
i=1

j(i)∑
j=1

ˆ

Uij

η(f(x))qL(x, f)qdx =
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= C(n)
∞∑
i=1

j(i)∑
j=1

ˆ

Vi

η(f(gij(y)))
qL(gij(y), f)

qµ‘
gij
(y)dy =

= C(n)
∞∑
i=1

ˆ

Vi

η(y)q
j(i)∑
j=1

L(gij(y), f)
qµ‘

gij
(y)dy =

= C(n)
∞∑
i=1

ˆ

Vi

η(y)qωk(y)dy ≤ C(n)2
ˆ

Rn

η(y)qωkdy ≤ C(n)2
ˆ

Rn

η(y)qω(y)dy.

Suppose now that condition b) holds and that q > n − 1 and Jf ∈ L1
loc(D). We see from

Theorem 5.21, page 129 in [13] that f has a.e. a weak differential and let Ef = {x ∈ D|f
has not a weak differential in x}. Since f satisfies condition (N), we see that µn(f(Ef )) = 0
and let Zf = {x ∈ D \ Ef |Jf (x) = 0}. Using Theorem 5.6, page 110 in [13], we find that
µn(f(Zf )) = 0. Let hij : Vi → Rn be defined by hij(y) = gij(y) for y ∈ Vi \ f(Ef ∪ Zf ),
hij(y) = 0 for y ∈ Vi ∩ f(Ef ∪ Zf ), i ∈ N, j = 1, ..., j(i) and let µhij : B(Vi) → [0,∞] be given
by µhij(F ) = µn(hij(F ∩ (Vi \ f(Ef ∪ Zf )))) for F ∈ B(Vi), i ∈ N, j = 1, ..., j(i). Let i ∈ N
and j ∈ {1, ..., j(i)} be fixed and let B ⊂ Vi \ f(Ef ∪ Zf ) be a Borel set such that µn(B) = 0
and A = hij(B). Since f satisfies condition (N) and f ∈ W 1,1

loc (D,Rn), we can use the change
of variable formulae (3) from [15] to see that

´
A

Jf (x)dx = µn(f(A)) = µn(B) = 0, and since

Jf (x) ̸= 0 for every x ∈ A, we see that µn(A) = 0. We showed that µhij(B) = µn(hij(B)) =
µn(A) = 0 for every B ∈ B(Vi \ f(Ef ∪ Zf )) with µn(B) = 0, and this shows that all the set
functions µhij are absolutely continuous for i ∈ N and j = 1, ..., j(i). Also, µ‘

hij
exists a.e. in

Vi, µ
‘
hij
(y) ≤ µ‘

gij
(y) a.e. in Vi for i ∈ N, j = 1, ..., j(i) and L(x, f) = 0 a.e. in Zf . We have

ˆ

Dk

ρ(x)qdx =

ˆ

Dk

η(f(x))qL(x, f)qdx ≤ C(n)
∞∑
i=1

j(i)∑
j=1

ˆ

Uij

η(f(x))qL(x, f)qdx =

= C(n)
∞∑
i=1

j(i)∑
j=1

ˆ

Uij\(Ef∪Zf )

η(f(x))qL(x, f)qdx = (using Lemma1) =

C(n)
∞∑
i=1

j(i)∑
j=1

ˆ

Vi

η(f(hij(y)))
qL(hij(y), f)

qµ‘
hij
(y)dy ≤

≤ C(n)
∞∑
i=1

ˆ

Vi

η(y)q
j(i)∑
j=1

L(gij(y), f)
qµ‘

gij
(y)dy =

= C(n)
∞∑
i=1

ˆ

Vi

η(y)qωk(y)dy ≤ C(n)2
ˆ

Rn

η(y)qωk(y)dy ≤ C(n)2
ˆ

Rn

η(y)qω(y)dy.

If condition b) holds and f is a.e. differentiable, we replace the sets Ef and Zf by Ef =
{x ∈ D|f is not differentiable in x} and Zf = {x ∈ D\Ef |Jf (x) = 0}. Then µn(f(Ef )) = 0 and
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using Sard’s lemma from [3], we see that µn(f(Zf )) = 0, and we use now that same argument
as in the second step of the proof. In all this cases we proved thatˆ

Dk

ρ(x)qdx ≤ C(n)2
ˆ

Rn

η(y)qω(y)dy for every k ∈ N (4)

Letting k → ∞ in (4), we see that

Mq(Γ) =Mq(∆) ≤
ˆ

Rn

ρ(x)qdx ≤ C(n)2
ˆ

Rn

η(y)qω(y)dy (5)

Letting k → ∞ in (3), we see that
´
Rn
ω(y)dy ≤ C(n)2n

q
2C(n, q)

´
D

|f ‘(x)|qdx < ∞, and since

η ∈ F (f(Γ)) was arbitrarily chosen, we see from (5) that

Mq(Γ) ≤ C(n)2M q
ω(f(Γ))

for every Γ ∈ A(D).
Corollary 1. Let n ≥ 2, D ⊂ Rn a domain, f : D → Rn be ACLn such that

´
D

|f ‘(x)|ndx <

∞ and µn(Bf ) = 0 and suppose that one of the following conditions hold:
a) Jf (x) ̸= 0 a.e. in D.
b) µn(f(Bf )) = 0 and there exists p > 0 and K : D → [0,∞] measurable and finite a.e.

such that L(x, f)p ≤ K(x)|Jf (x)| a.e.
Then there exists ω ∈ L1(Rn) such that Mn(Γ) ≤ C(n)2Mn

ω (f(Γ)) for every Γ ∈ A(D).
Proof. Suppose first that condition a) holds. Let U ⊂ D \ Bf be a domain such that

f |U : U → f(U) is a homeomorphism. Then i(f, x) is constant on U and if f is differentiable
in x and Jf (x) ̸= 0, then i(f, x) = sgnJf (x) and this implies that either Jf (x) > 0 a.e. in U ,
or Jf (x) < 0 a.e. in U . Let g = f−1 : f(U) → U . We see now from Theorem 5.32, page 142 in
[13] that g satisfies condition (N) and we apply Lemma 2.

Suppose that condition b) holds. We see from [33], page 190 that f satisfies condition (N)
and is a.e. differentiable on D \ Bf and since µn(f(Bf )) = 0, we see that f satisfies condition
(N) and is a.e. differentiable on D. We apply now Lemma 2.

Lemma 3. Let n ≥ 2, 1 < q < p, D ⊂ Rn be open, let f : D → Rn be ACLq such that
there exists K ∈ Lq/(p−q)(D) such that L(x, f)p ≤ K(x)|Jf (x)| a.e. and let ω : Rn → [0,∞] be
defined by ω(y) = N(y, f,D) if y ∈ f(D), ω(y) = 0 otherwise. Then ω is measurable and if

ω is finite a.e. and C = (
´
D

K(x)q/(p−q)dx)
p−q
p it results that Mq(Γ) ≤ CMp

ω(f(Γ))
q/p for every

Γ ∈ A(D). Also, if f satisfies condition (N) and Jf ∈ L1(D), then
´
Rn
ω(y)dy <∞.

Proof. Let Γ ∈ A(D), let ∆ = {γ ∈ Γ|γ is rectifiable and f ◦ γ0 is absolutely continuous}
and let η ∈ F (f(Γ)). Let ρ : Rn → [0,∞] be defined by ρ(x) = η(f(x))L(x, f) if x ∈ D,
ρ(x) = 0 otherwise. Then ρ ∈ F (∆) and using Fuglede’s theorem, the change of variable
formuale (3) from [15] and Hölder’s inequality, we have:

Mq(Γ) =Mq(∆) ≤
ˆ

Rn

ρ(x)qdx =

ˆ

D

η(f(x))qL(x, f)qdx ≤

≤
ˆ

D

η(f(x))qK(x)q/p|Jf (x)|q/pdx ≤ C(

ˆ

D

η(f(x))p|Jf (x)|dx)q/p ≤

12



≤ C(

ˆ

Rn

N(y, f,D)η(y)pdy)q/p = C(

ˆ

Rn

ω(y)η(y)pdy)q/p.

Since η ∈ F (f(Γ)) was arbitrarily chosen, we find that Mq(Γ) ≤ CMp
ω(f(Γ))

q/p for every
Γ ∈ A(D). If f satisfies condition (N) and Jf ∈ L1(D), then

´
Rn
ω(y)dy =

´
D

Jf (x)dx <∞.

Example 1. Let α > 0, f : R2 → R2, f(x, y) = (xα cos y, xα sin y) if x ≥ 0, y ∈ R,
f(x, y) = f(−x, y) if x < 0 and y ∈ R. Then f is continuous on R2 and f differentiable in

every point (x, y) with x ̸= 0. We have f ‘(x, y) = xα−1

(
α cos y α sin y
−x sin y x cos y

)
if x > 0 and

y ∈ R and Jf (x, y) = αx2α−1 if x > 0, y ∈ R, Jf (x, y) = −α(−x)2α−1 if x < 0, y ∈ R, hence
Jf (x, y) = αsgnx|x|2α−1 if x ̸= 0, y ∈ R. Also, |f ‘(x, y)|2 ≤ x2(α−1)(x2 + α2) if x ̸= 0, y ∈ R,
hence |f ‘(x, y)| ≤

√
2 if x ̸= 0, |x| < 1 and 0 < α ≤ 1.

Let now D ⊂ Rn−2 be a domain, k ∈ N, G = D × (−1, 1)× (−2kπ, 2kπ). Let F : G → Rn

be defined by F (x1, ..., xn) = (
√
2x1, ...,

√
2xn−2, f(xn−1, xn)) if x = (x1, ..., xn) ∈ G and let d =

{x ∈ G|xn−1 = 0}. Then F ∈ C(G,Rn), F ∈ C∞(G \ d,Rn) and JF (x) = 2
n−2
2 Jf (xn−1, xn) =

α2
n−2
2 sgnxn−1|xn−1|2α−1 if x ∈ G \ d.
Let now x ∈ G \ d, 0 < α ≤ 1 and a ∈ Rn such that |a| = 1. Then |F ‘(x)(a)|2 =

|(
√
2a1, ...,

√
2an−2, f

‘(xn−1, xn)(an−1, an))|2 ≤ 2(a21 + ... + a2n−2 + |f ‘(xn−1, xn)|2(a2n−1 + a2n) ≤
2(a21 + ...+ a2n) = 2 and we see that |F ‘(x)| =

√
2 and that F ∈ ACLq(G).

Suppose now that n ≥ 2, q > n − 1, 0 < α < n
2q

≤ 1. We see that BF = d, that

N(f,G \ d) = 2k, that K0,n(F )(x) = |F ‘(x)|n
|JF (x)|

= 2
α|xn−1|2α−1 if x ∈ G \ d, that JF (x) > 0 if

x ∈ G \ d and xn−1 > 0 and JF (x) < 0 if x ∈ G \ d and xn−1 < 0. It results that F is not open
and is not of finite distortion. We have:´

G

K0,n(F )(x)
q

n−q dx = µn−2(D)4kπ
1́

−1

( 2
α
)

q
n−q |xn−1|

(1−2α)q
n−q dxn−1 = µn−2(D)8kπ2

q
n−q (n−q)

α
q

n−q (n−2αq)
< ∞.

Let C = (
´
G

K0,n(F )(x)
q

n−q dx)
n−q
n and let ω : Rn → [0,∞] be defined by ω(y) = N(y, F,G) if

y ∈ Rn. We see from Lemma 3 that Mq(Γ) ≤ C(Mn
ω (f(Γ))

q/n for every Γ ∈ A(G) and we find
that Mq(Γ) ≤ C(2k)q/nMn(f(Γ))

q/n for every Γ ∈ A(G).
We see that a mapping F : G → Rn having alternate Jacobian sign which is not open or

with finite distortion, and has no monotone components satisfy a modular inequality similar to
those used in this paper. We can take G = B(0, 1).

4 Some relations between (q, a)-lower capacity density

and the lower radial density.

Lemma 4. Let q > n − 1, C = C0, e1,
π
2
= {x ∈ Rn|x1 > 0} and let E ⊂ C be a Fσ set such

that rad dens (E, 0) = δ > 0. Then there exists a constant K(n, q, δ) depending only on n, q
and δ such that capq,1dens(C,E, 0) ≥ K(n, q, δ) > 0.

Proof. We set Ar = {t ∈ [0, r)|S(0, t) ∩ E ̸= ϕ} for r > 0. Let 0 < ϵ < δ be such that
m1(Ar) ≥ (δ − ϵ

2
)r for 0 < r < δ. Let 0 < r < δ be fixed and let Kr ⊂ E be compact such

that if Br = {t ∈ Ar|S(0, t) ∩ Kr ̸= ϕ} to have that m1(Br) ≥ (δ − ϵ)r. Let Fr = {z ∈ Rn|
there exists t ∈ Br such that z = te1} and let Pr = {z ∈ Rn| there exists y ∈ Kr such that
z = −y}. The sets Fr and Kr are compact sets and we see from Theorem 7.5 in [45] that
capq(B(0, 2r), Kr ∪ Pr) ≥ capq(B(0, 2r), Fr). Using Ziemer’s result from [58] and Lemma 5.22
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in [57], we have:

Mq(∆(E ∩ B̄(0, r)), S(0, 2r)∩C,B(0, 2r)∩C) ≥Mq(Kr ∩ B̄(0, r), S(0, 2r)∩C,B(0, 2r)∩C) ≥

≥ 1

2
Mq(∆((Kr ∪ Pr) ∩ B̄(0, r), S(0, 2r), B(0, 2r)) =

1

2
capq(B(0, 2r), Kr ∪ Pr) ≥

≥ 1

2
capq(B(0, 2r), Fr) =

1

2
Mq(∆(Fr, S(0, 2r), B(0, 2r)) ≥ 1

2
Mq)(∆(Fr, S(0, 2r)∩ (B(2e1, r, 2r)\

\B̄(2e1r, r)), B(0, 2r)) ∩ (B(2e1r, 2r) \ B̄(2e1r, r)).

Let Qt be the spherical cap S(2e1r, t) ∩ B(0, 2r) for r < t < 2r and let Cr = {s ∈
(0, 2r)| there exists t ∈ Br such that s = 2r − t}. Let ρ ∈ F (∆(Fr, S(0, 2r) ∩ (B(2e1r, 2r) \
B̄(2e1r, r)), B(0, 2r)∩(B(2e1r, 2r)\B̄(2e1r, r))) be such that ρ = 0 on {((B(2e1r, 2r)\B(2e1r, r))).
Then ρ|Qt ∈ F (∆(Fr ∩Qt, S(0, 2r) ∩Qt, Qt) for t ∈ Cr.

Suppose that q ̸= n. Using Theorem 3 in [2], we find a constant Q(n, q) depending only on

n and q such that
´

S(2e1r,t)

ρ(z)qdS(2e1r,t) ≥
Q(n,q)
tq−n+1 for every t ∈ Cr. We have

ˆ

B(2e1r,2r)\B̄(2e1r,r)

ρ(z)qdz =

2rˆ

r

(

ˆ

S(2e1r,t)

ρ(z)qdS(2e1r,t))dt ≥

≥
ˆ

Cr

(

ˆ

S(2e1r,t)

ρ(z)qdS(2e1r,t))dt ≥ Q(n, q)

ˆ

Cr

dt

tq−n+1
≥ m1(Cr)Q(n, q)

(2r)q−n+1
=

=
m1(Br)Q(n, q)

(2r)q−n+1
≥ (δ − ϵ)rQ(n, q)

2q−n+1rq−n+1
=

(δ − ϵ)Q(n, q)

2q−n+1
rn−q.

Letting ϵ → 0, we find that Mq(∆(E ∩ B̄(0, r), S(0, 2r) ∩ C,B(0, 2r) ∩ C) ≥ K(n, q, δ)rn−q

for 0 < r < ρ, where K(n, q, δ) = δQ(n,q)
2q−n+1 . It results that capq,1dens(C,E, 0) ≥ K(n, q, δ) > 0.

If q = n, we apply the proof from Lemma 14.11 in [57].
Lemma 5. Let n ≥ 2, q > n − 1, x ∈ Rn, 0 < ψ < ρ ≤ π

2
, d a half line ending in x, let

C = Cx,d,φ, let γ : [0, 1] → Cx,d,ψ be a non-constant path such that lim
t→0

γ(t) = x, let E = Imγ

and a = 1
2
sin(φ − ψ). Then there exists a constant Q(n, q, a) depending only on n, q and a

such that capq,adens(C,E, x) ≥ Q(n, q, a) > 0.
Proof: Suppose that E ∩ S(x, r) ̸= ϕ for 0 < r < 2ρ. Let 0 < r < ρ and let tr > 0 be

such that γ(tr) ∈ S(x, r) and γ([0, tr)) ⊂ B(x, r), Let y = γ(tr) and let w be a point on the
line determined by the points x and y such that |w − y| = ar and w ̸∈ [x, y]. We see that
B(w, 2ar) ⊂ C and that S(w, t) ∩ E ̸= ϕ, S(w, t) ∩ S(x, (1 + a)r) ̸= ϕ for ar < t < 2ar.

Suppose that q ̸= n. Using Theorem 4 in [2], we see that Mq(∆(B̄(x, r)∩E, S(x, (1+a)r)∩
C,B(x, (1+a)r)∩C) ≥Mq(∆(E∩B̄(x, r)∩(B(w, 2ar)\B̄(w, ar)), S(x, (1+a)r)∩(B(w, 2ar)\
B̄(w, ar)), B(x, (1+a)r)∩B(w, 2ar)\ B̄(w, ar))) =Mq(∆(E∩ (B(w, 2ar)\ B̄(w, ar)), S(x, (1+
a)r)∩ (B(w, 2ar) \ B̄(w, r)), B(w, 2ar) \ B̄(w, ar)) ≥ C(n, q)((2ar)n−q− (ar)n−q) = C(n, q)an−q

(2n−q − 1)rn−q for 0 < r < ρ. We take now Q(n, q, a) = C(n, q)an−q(2n−q − 1) and we see that
capq,adens(C,E, x) ≥ Q(n, q, a) > 0.

If q = n, we apply a similar argument.
Remark 1. Using the proof of Proposition 18 in [2], we see that if n − 1 < q < n, then

Mq(∆(B̄(x, r)∩C, S(x, (1+ a)r)∩C,B(x, (1+ a)r)∩C) = C(a, n)/(r
q−n
q−1 − ((1+ a)r)

1−n
q−1 )q−1 =
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K(n, q, a)rn−q, where C(a, n) is a constant depending only on n and a and K(n, q, a) =

C(a, n)/(1− (1 + a)
q−n
q−1 )q−1. It results that capq,adens(C,C, x) ≥ K(n, q, a) if q ̸= n.

Also, capn,adens(C,C, x) ≥ C(a, n)/(ln(1 + a)n−1, where C(a, n) is a constant depending
only on n and a.

Remark 2. Let C = {x ∈ Rn|x1 > 0}, E =
∞∪
k=0

(S(0, 1
2k
) ∩ C) ∪ {0}. We can easy see that

rad deus(E, 0) = 0 and capq,adeus(C,E, 0) > 0 for every q > n− 1 and every 0 < a ≤ 1.

5 Proofs of the results.

Theorem 1. Let n ≥ 2, p, q > 1, a, b, λ > 0, 0 < δ < 1, m > pλ+b
q−1

, f : B(0, 1) → Rn be

continuous, let rk = 1 − δkm, Qk = B(0, rk+1), ωk : B(f(Qk)) → [0,∞] Borel functions finite
a.e. for k ∈ N, let αk = (

´
f(Qk)

ωk(z)dz)
1/p and Mk > 0 such that Mk ≤ a/δkb for every k ∈ N

and suppose that Mq(Γ) ≤ Mk(M
p
ωk
(f(Γ)))λ for every Γ ∈ A(Qk) and every k ∈ N and that

∞∑
k=0

αkδ
k <∞. Then f has a.e. radial limits.

Proof. We define for y ∈ S(0, 1) and k ∈ N the path γy,k : [rk, rk+1] → Rn given by
γy,k(t) = ty for t ∈ [rk, rk+1] and let k0 ∈ N be such that rk >

1
2
for k ≥ k0. Let Ak = {y ∈

S(0, 1)|d(Im(f ◦ γy,k) ≥ αkδ
k} and Γk = {γy,k|y ∈ Ak} for k ∈ N and let ηk = 1

αkδk
Xf(Qk) for

k ∈ N. Then ηk ∈ F (f(Γk)) for k ∈ N and we see that Mp
ωk
(f(Γk)) ≤

´
Rn
ωk(z)ηk(z)

pdz = δ−kp

for k ∈ N. Let ρk ∈ F (Γk) and let us fix k ≥ k0. Since rk ≥ 1
2
for k ≥ k0, we see that

rk+1´
rk

t
1−n
q−1 dt ≤ 2

n−1
q−1 (rk+1 − rk) and using Hölder’s inequality we find that

1 ≤
ˆ

γy,k

ρkds =

rk+1ˆ

rk

ρk(ty)dy ≤ (

rk+1ˆ

rk

ρk(ty)
qtn−1dt)

1
q (

rk+1ˆ

rk

t
1−n
q−1 dt)

q−1
q .

Then

1 ≤ 2n−1(rk+1 − rk)
q−1

rk+1ˆ

rk

ρk(ty)
qtn−1dt for every y ∈ Ak, k ≥ k0 (1)

Let D = (0, π)n−2 × (0, 2π) ⊂ Rn−1 and let θ : (0,∞) × D → Rn be the polar coordinates in
Rn and let g : S(0, 1) → [0,∞] be a Borel map. Then

´
D

g(θ(1, x))|Jθ(1, x)|dx =
´

S(0,1)

g(y)dS(0,1)

and let us take gk : S(0, 1) → [0,∞] given by gk(y) =
rk+1´
rk

ρk(ty)
qtn−1dt for y ∈ S(0, 1) and

k ≥ k0. Then ˆ

Ak

gk(y)dS(0,1) ≤
ˆ

S(0,1)

gk(y)dS(0,1) =

ˆ

D

gk(θ(1, x))|Jθ(1, x)|dx =

=

ˆ

D

(

rk+1ˆ

rk

ρk(tθ(1, x))
qtn−1dt)|Jθ(1, x)|dx =

ˆ

D

rk+1ˆ

rk

ρk(θ(t, x))
q|Jθ(t, x)|dtdx ≤
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≤
ˆ

Rn

ρk(z)
qdz

and integrating (1) over y ∈ Ak, we find that

µn−1(Ak) ≤ 2n−1(rk+1 − rk)
q−1

ˆ

Ak

gk(z)dS(0,1) ≤ 2n−1δkm(q−1)

ˆ

Rn

ρk(z)
qdz.

Since ρk ∈ F (Γk) was arbitrarily chosen, we find that

µn−1(Ak) ≤ 2n−1δkm(q−1)Mq(Γk) ≤ 2n−1Mkδ
km(q−1)(Mp

ωk
(f(Γk)))

λ ≤ 2n−1aδk(m(q−1)−b−pλ)

for k ≥ k0. Let t = δm(q−1)−b−pλ. We proved that

µn−1(Ak) ≤ 2n−1atk for k ≥ k0 (2)

Let l ≥ k0. Then µn−1(
∞∪
k=l

Ak) ≤
∞∑
k=l

µn−1(Ak) ≤ 2n−1a
∞∑
k=l

tk = 2n−1atl

1−t → 0 if l → ∞. Let

A = {y ∈ S(0, 1)| there exists lim
t→1

f(ty) ∈ Rn}. Since
∞∑
k=l

αkδ
k < ∞, we see that if l ≥ k0 and

y ∈ {(
∞∪
k=l

Ak), it results that y ∈ A, and this implies that {A ⊂
∞∪
k=l

Ak for every l ≥ k0. Then

µn−1({A) ≤ µn−1(
∞∪
k=l

Ak) ≤ 2n−1atl

1−t → 0 if l → ∞, hence µn−1({A) = 0.

The proof of Theorem 2 results immediately from Theorem 1.
Theorem 3. Let n ≥ 2, q > n − 1, f : B(0, 1) → Rn be ACLq such that µn(Bf ) = 0, let

0 < δ < 1, m > q
q−1

, rk = 1 − δkm, Qk = B(0, rk+1), βk = (
´
Qk

|f ‘(z)|qdz)
1
q for k ∈ N be such

that
∞∑
k=0

βkδ
k <∞ and suppose that one of the following conditions hold:

a) f has locally inverses on f(D \Bf ) which satisfies condition (N).
b) f satisfies condition (N), there exists p > 0 and K : D → [0,∞] measurable and finite

a.e. such that L(x, f)p ≤ K(x)|Jf (x)| a.e. and either Jf ∈ L1
loc(D) and q > n− 1, or f is a.e.

differentiable.
Then f has a.e. radial limits.
Proof. We see from Lemma 2 that there exists Borel functions ωk : Rn → [0,∞] finite

a.e. such that Mq(Γ) ≤M q
ωk
(f(Γ)) for every Γ ∈ A(Qk) and every k ∈ N and we also see from

the proof of Lemma 2 that
´

f(Qk)

ωk(z)dz ≤ n
q
2C(n)2C(n, q)

´
Qk

|f ‘(z)|qdz for every k ∈ N. Let

αk = (
´

f(Qk)

ωk(z)dz)
1
q for k ∈ N. We see that

∞∑
k=0

αkδ
k <∞ and we apply now Theorem 1, with

p = q, λ = 1, b = 0, a = 1.
Proof of Theorem 4. Let λ > 1 be such that α = q−1

λ
and let q

q−1
< m < λq

q−1
. Let

rk = 1 − δkm, Qk = B(0, rk+1) and αk = (
´
Qk

|f ‘(z)|qdz)
1
q for k ∈ N. Then α < q

m
and

let M > 0 be such that
´

B(0,1)

|f ‘(z)|q(1 − |z|)αdz < M < ∞. Then δ(k+1)mα
´
Qk

|f ‘(z)|qdz ≤
´
Qk

|f ‘(z)|q(1 − |z|)αdz ≤ M for every k ∈ N, hence (
´
Qk

|f ‘(z)|qdz)
1
q ≤ ( M

δmα
)
1
q 1

δ
kmα
q

for every
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k ∈ N. We see that
∞∑
k=0

αkδ
k ≤ ( M

δmα
)
1
q

∞∑
k=0

δkc < ∞, where c = 1 − mα
q
> 0. We apply now

Theorem 3.
Proof of Theorem 5. Since α(p−q)

p
+ βq

p
< q − 1, we see that q

(q−1)(1−α(p−q)
p(q−1)

)
< p

β
and

we choose m ∈ ( q
q−1

1

(1−α(p−q)
p(q−1)

)
, p
β
). Let 0 < δ < 1, rk = 1 − δkm, Qk = B(0, rk+1), Mk =

(
´
Qk

K(x)q/(p−q)dx)
p−q
p for k ∈ N and let ωk : Rn → [0,∞], ωk(y) = N(y, f,Qk) for y ∈ N, k ∈ N.

Let αk = (
´

f(Qk)

ωk(y)dy)
1
p for k ∈ N. We see from Lemma 3 that Mq(Γ) ≤Mk(M

p
ωk
(f(Γ)))

q
p for

every Γ ∈ A(Qk) and every k ∈ N and using the hypothesis, we see thatMk ≤ ( c2
δmα

)
p−q
p δ

−km(p−q)α
p

for every k ∈ N. We also see that
∞∑
k=0

αkδ
k ≤ (c1)

1
p

δ
mβ
p

∞∑
k=0

δk(1−
mβ
p

) < ∞, since 0 < mβ
p
< 1. We

take λ = q
p
, b = m(p−q)α

p
, a = c

p−q
p

2 /δ
m(p−q)α

p in Theorem 1 and since pλ+b
q−1

= q
q−1

+ m(p−q)α
p(q−1)

< m,
we can apply Theorem 1 to see that f has a.e. radial limits.

Theorem 6. Let n ≥ 2, p, q > 1, let f : B(0, 1) → Rn be continuous, let c ∈ Rn be such that
mn−2(f

−1(c)) = 0, let γy : [0, 1) → Rn be defined by γy(t) = ty for t ∈ [0, 1) and y ∈ S(0, 1), let
E = {y ∈ S(0, 1)|c is a limit point of f ◦ γy : [0, 1) → Rn} and let ωr : B(f(B(0, r))) → [0,∞]
be measurable and finite a.e. for 0 < r < 1. Suppose that

1) there exists c1 > 0 and β > 0 such that
´

f(B(0,r))

ωr(z)dz ≤ c1
(1−r)β for 0 < r < 1.

2) there exists λ, γ, c2 > 0, Qr > 0 such that Qr ≤ c2
(1−r)γ for 0 < r < 1 and Mq(Γ) ≤

Qr(M
p
ωr(f(Γ)))

λ for every Γ ∈ A(B(0, r)) and every 0 < r < 1.
3) γ + λβ < q − 1.
Then µn−1(E) = 0.
Proof. Suppose that µn−1(E) > 0, let m = q − 1 − γ − βλ > 0 and 1

2
≤ a < 1. Let

A = {z ∈ B(0, a) \ B(0, a
2
)| there exists y ∈ S(0, 1) such that Im(γy|[a2 , a]) ∩ f−1(c) ̸= ϕ}.

Then, since mn−2(f
−1(c)) = 0, we see that mn−1(A) = 0. Let B = {y ∈ S(0, 1)| there exists

z ∈ A and t ∈ [0, 1] such that z = ty}. Then also mn−1(B) = 0 and since B is compact, we can
find ρ0 > 0 small enough such that if B0 = {y ∈ S(0, 1)|Im(γy|[a2 , a]) ∩ f

−1(B(c, ρ0)) ̸= ϕ}, to
have that µn−1(B0) <

µn−1(E)
4

. Let E−1 = E \ B0. Then 3
4
µn−1(E) < µn−1(E−1). Let r0 = a,

let α = (
2n−1cλ1 c2
µn−1(E)

)
1
pλ and we chose δ > 0 small enough such that if d = (3δm)

1
pλ , to have that

dα
1−d < ρ0 and a < 1 − δ2. Let rk = 1 − δk+1 for k ≥ 1 and let b = ρ0 − dα

1−d > 0. Let
γy,k = γy|[rk, rk+1] for k ≥ 0 and y ∈ S(0, 1). We chose ρ0 > ρ1 >, ..., > ρk > ρk+1 >, ..., such
that ρk−ρk+1 = αdk+1 for k ≥ 0. Then ρ0−ρk = dα(1+d+, ...,+dk−1) for k ≥ 1, hence ρk → b
and ρk >

b
2
for k ≥ 0.

Let E0 = {y ∈ E \ B0|Imf ◦ γy,0 ∩ B(c, ρ1) ̸= ϕ} and let Ek = {y ∈ E−1 \
k−1∪
i=0

Ei|Imf ◦

γy,k ∩ B(c, ρk+1) ̸= ϕ} for k ≥ 1. There exists i0 ∈ N such that Ei0 ̸= ϕ. Indeed, otherwise
Imf ◦ γy,l ∩ B(c, ρl+1) = ϕ for every y ∈ E−1 and every l ≥ 0, hence f(γ(ty)) ̸∈ B(c, b

2
)) for

every t ≥ r0 and y ∈ E−1. We reached a contradiction, since y ∈ E−1 and c is a limit point of
f ◦ γy : [0, 1) → Rn. If i0 = 0, then f ◦ γy(r0) ̸∈ B(c, ρ0). If io > 0 and y ∈ Ei0 , since El = ϕ
for every l ∈ {0, 1, ..., i0 − 1}, we see that Imf ◦ γy,l ∩ B(c, ρl+1) = ϕ for l ∈ {0, 1, ..., i0 − 1}.
Taking l = i0 − 1, we see that f ◦ γy(ri0) ̸∈ B(c, ρi0).

Suppose that we have i0 < i1 <, ..., < ik such that Eil ̸= ϕ for l = 1, ..., k. Let y ∈ Eik . Then
y ̸∈ Eik−1

, hence Imf ◦ γy,ik−1
∩B(c, ρik−1+1) = ϕ. If ik = ik−1 + 1, then f ◦ γy(rik) ̸∈ B(c, ρik).
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If not, since El = ϕ for l ∈ {ik−1 + 1, ..., ik − 1}, we see that Imf ◦ γy,l ∩ B(c, ρl+1) = ϕ for
l ∈ {ik−1 + 1, ..., ik − 1} and taking l = ik − 1, we find that Imf ◦ γy(rik) ̸∈ B(c, ρik).

We proved that if Ek ̸= ϕ and y ∈ Ek, then f ◦ γy(rk) ̸∈ B(c, ρk) and since also Imf ◦
γy,k ∩ B(c, ρk+1) ̸= ϕ, we see that for such k ∈ N, f ◦ γy,k meets B(c, ρk+1) and {B(c, ρk). Let
Γk = {γy,k|y ∈ Ek} for k ≥ 0.

Let k ∈ N be such that Ek ̸= ϕ. Then ηk =
1

ρk−ρk+1
Xf(B(0,rk+1)) ∈ F (f(Γk)), and we see from

Theorem 1 that µn−1(Ek) ≤ 2n−1(rk+1 − rk)
q−1Mq(Γk). We have

µn−1(Ek) ≤ 2n−1(rk+1 − rk)
q−1Mq(Γk) ≤ 2n−1δ(k+1)(q−1)Qrk+1

(Mp
ωrk+1

(f(Γk)))
λ ≤

≤ 2n−1c2δ
(k+1)(q−1−γ)(

ˆ

Rn

ωrk+1
(z)ηk(z)

pdz)λ =
2n−1c2δ

(k+1)(q−1−γ)

(ρk − ρk+1)pλ
(

ˆ

f(B(0,rk+1))

ωrk+1
(z)dz)λ =

= 2n−1cλ1c2δ
(k+1)mµn−1(E)

2n−1cλ1c2

1

(3δm)(k+1)
=
µn−1(E)

3k+1

for k ≥ 0.

Since µn−1(
∞∪
k=0

Ek) ≤ µn−1(E)
∞∑
k=0

1
3k+1 = µn−1(E)

2
< µn−1(E−1), we can find a point y ∈

E−1 \
∞∑
k=0

Ek. Then Imf ◦ γy,k ∩ B(c, ρk+1) = ϕ for k ≥ 0, hence Imf ◦ γy,k ∩ B(c, b
2
) = ϕ for

every k ≥ 0 and this implies that f(γ(ty)) ̸∈ B(c, b
2
) for t ≥ r0. We reached a contradiction,

since y ∈ E and c is a limit point of f ◦γy : [0, 1) → Rn. We therefore proved that µn−1(E) = 0.
The proof of Theorem 7 results immediately from Theorem 6.
Proof of Theorem 8. LetM =

´
B(0,1)

|f ‘(z)|q(1−|z|)αdz. We see from Lemma 2 that there

exists Borel functions ωr : Rn → [0,∞] such that Mq(Γ) ≤M q
ωr(f(Γ)) for every Γ ∈ A(B(0, r))

and every 0 < r < 1 and we also see that
´

f(B(0,r))

ωr(z)dz ≤ n
q
2C(n)2C(n, q)

´
B(0,r)

|f ‘(z)|qdz

for every 0 < r < 1. We see that (1 − r)α
´

B(0,r)

|f ‘(z)|qdz ≤
´

B(0,r)

|f ‘(z)|q(1 − |z|)αdz ≤ M for

0 < r < 1 and we find that
´

f(B(0,r))

ωr(z)dz ≤ Mn
q
2C(n)2C(n,q)
(1−r)α for every 0 < r < 1. We apply

now Theorem 6 with p = q, γ = 0, λ = 1.
Proof of Theorem 9. Let ωr : B(f(B(0, r))) → [0,∞] be given by ωr(y) = N(y, f, B(0, r))

for y ∈ Rn and 0 < r < 1 and let Qr = (
´

B(0,r)

K(x)q/(p−q)dx)
p−q
p for 0 < r < 1. We see from

Lemma 3 that Mq(Γ) ≤ Qr(M
p
ωr(f(Γ))

q/p for every Γ ∈ A(B(0, r)) and every 0 < r < 1 and

using the hypothesis, we see that Qr ≤ (c2)
p−q
p

(1−r)
α(p−q)

p

and
´

f(B(0,r))

ωr(z)dz ≤ c1
(1−r)β for 0 < r < 1.

We take λ = q
p
, γ = α(p−q)

p
and we see that γ + βλ = α(p−q)

p
+ β q

p
< q − 1 and we apply now

Theorem 6 and we see that µn−1(E) = 0.
Remark 2. The condition ”mn−2(f

−1(c)) = 0” from the preceding theorems holds if f−1(c)
is discrete.

Remark 3. Suppose that we take in Theorem 5 or 9 p = 2q. Then, condition 2) is ”there
exists c2 > 0 and α > 0 such that

´
B(0,r)

K(x)dx ≤ c2
(1−r)α for every 0 < r < 1” and condition

3) is ”α + β < 2(q − 1)”. Also, if we take p = n, q = n − 1, then condition 2) is ”there exists
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c2 > 0 and α > 0 such that
´

B(0,r)

K(x)n−1dx ≤ c2
(1−r)α for every 0 < r < 1” and condition 3) is

”α + (n− 1)β < n(n− 2)”.
Proof of Theorem 10. We can replace B(0, 1) with B( en

2
, 1
2
). Let E = {y ∈ S( en

2
, 1
2
)|f has

no asymptotic value at y} and suppose that there exists F ⊂ E compact such that capq(F ) >
0. Let K = B( en

2
, 1
4
) and let Γ0 = ∆(K,F,B( en

2
, 2)). We show that Mq(Γ0) > 0. Let

Γ1 = ∆(F, S( en
2
, 2), B( en

2
, 2)), Γ2 = ∆(K,S( en

2
, 2), B( en

2
, 2)) and let δi = Mq(Γi) for i = 1, 2.

Since capq(F ) > 0, we see that δ1 = capq(B( en
2
, 2), F ) > 0 and we see from Proposition 18

in [2] that also δ2 > 0. Let ρ ∈ F (Γ0). If 3ρ ∈ F (Γ1) or 3ρ ∈ F (Γ2), then
´
Rn
ρ(x)qdx ≥

1
3q
min{δ1, δ2}. In the remaining case, there exists γi ∈ Γi such that

´
γi

ρds < 1
3
for i = 1, 2. Let

Γ3 = ∆(Imγ1, Imγ2, B( en
2
, 2) \ B( en

2
, 1
2
)). Then 3ρ ∈ F (Γ3) and using Caraman’s result from

Theorem 4 in [1], we see that δ3 =Mq(Γ3) > 0. We proved thatMq(Γ0) ≥ 1
3q
min{δ1, δ2, δ3} > 0.

Let Γ = ∆(K,F,B( en
2
, 1
2
)). We want to show that Mq(Γ) > 0, We see from Theorem 19

in [2] that the q modulus of all paths passing through some points in Rn is zero, hence we
can take r > 0 small enough such that if Γ4 = ∆(K,F \ B(en, r), B(en, 2) \ B(en, r)), to have
that Mq(Γ4) > 0. Let Γ5 = ∆(K,F \ B(en, r), B( en

2
, 1
2
) \ B(en, r)). Let us show first that

Mq(Γ5) > 0. Let f : Rn → Rn be the inversion given by f(x) = en + x−en
|x−en|2 if x ̸= en,

f(en) = ∞, f(∞) = en. Then f is a homeomorphism, f = f−1, f(S( en
2
, 1
2
)) = Rn−1, and if

H = {x ∈ Rn|xn < 0}, we see that f(B( en
2
, 1
2
)) ⊂ H. Let D = {x ∈ Rn|r < |x− en| < 2} and

let G = {y ∈ Rn|1
2
< |y − en| < 1

r
}. Then f(D) = G and |f ‘(x)| = |x− en|−2 if x ̸= en.

Let η ∈ F (f(Γ4)) and let ρ : Rn → [0,∞], ρ(x) = η(f(x))L(x, f) if x ∈ D, ρ(x) = 0 if
x ̸∈ D. Then ρ ∈ F (Γ4) and

Mq(Γ4) ≤
ˆ

D

ρ(x)qdx =

ˆ

D

η(f(x))qL(x, f)qdx =

ˆ

D

η(f(x))q|f ‘(x)|n 1

|f ‘(x)|n−q
dx ≤

≤ 22(n−q)
ˆ

D

η(f(x))q|Jf (x)|dx = 22(n−q)
ˆ

G

η(y)qdy ≤ 22(n−q)
ˆ

Rn

η(y)qdy.

Since η ∈ F (f(Γ4)) was arbitrarily chosen, we proved that Mq(Γ4) ≤ 22(n−q)Mq(f(Γ4)).
In the same way we see that Mq(f(Γ5)) ≤ r−2(n−q)Mq(Γ5). Let Γ‘ = ∆(f(K), f(F \

B(en, r)),Rn). Then f(Γ4) ⊂ Γ‘ and we can take r > 0 small enough such that Mq(f(Γ5)) ≥
1
2
Mq(f(K), f(F \B(en, r)), H). Using Lemma 5.22 in [57], we have:

Mq(Γ5) ≥ r2(n−q)Mq(f(Γ5)) =
r

2

2(n−q)
Mq(f(K), f(F \B(en, r)), H) ≥

≥ r2(n−q)

4
Mq(Γ

‘) ≥ r2(n−q)

4
Mq(f(Γ4)) ≥

1

4
(
r

2
)2(n−q)Mq(Γ4) > 0.

We proved that Mq(Γ5) > 0 and since Γ5 ⊂ Γ, it results that Mq(Γ) > 0. If q = n, we can
prove that Mn(Γ) > 0 by the method from Lemma 14.7 in [57].

Let ρ0 : Rn → [0,∞], ρ0(x) = 0 for every x ∈ Rn. Then ρ0 ∈ F (ϕ) and since ω < ∞ a.e.,
we see that 0 ≤M q

ω(ϕ) ≤
´
Rn
ω(x)ρ0(x)

qdx = 0, hence M q
ω(ϕ) = 0.

Let Γr = {γ ∈ Γ|γ is rectifiable} and let Γ‘
r = {β ∈ f(Γr)|β is rectifiable}. We see

from Lemma 3 in [7] that Mp
ω(Γ

‘
r) = Mp

ω(f(Γr)) and we see that 0 < Mq(Γ) = Mq(Γr) ≤
γ(Mp

ω(f(Γr))) = γ(Mp
ω(Γ

‘
r)).
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It results that Γ‘
r ̸= ϕ, hence there exists γ ∈ Γr such that f ◦ γ is rectifiable and this

contradicts the choice of F . We therefore proved that capq(F ) = 0.
Proof of Theorem 11. We see from Lemma 2 that there exists ω ∈ L1(Rn) such that

Mq(Γ) ≤M q
ω(f(Γ)) for every Γ ∈ A(B(0, 1)) and we apply Theorem 10.

Proof of Theorem 12. Let C = (
´

B(0,1)

K(x)q/(p−q)dx)
p−q
p . We see from Lemma 3 that

Mq(Γ) ≤ CMp(f(Γ))
q/p for every Γ ∈ A(B(0, 1)) and we apply Theorem 10.

Proof of Theorem 13. Suppose that G is finitely connected at two distinct points b1, b2 ∈
C(f, b). Let V1 ∈ V(b1), V2 ∈ V(b2) be such that V1, V2 are compact, disjoint sets and let xj → b,
yj → b be such that f(xj) → b1, f(yj) → b2. Taking if necessarily a subsequence, we can find
a component F1 of V1 ∩ G such that f(xj) ∈ F1 for j ∈ N. Using Lemma 3.2 and Lemma 3.6
from [51], we see that f−1(F1) has a finite number of components which are mapped by f onto
F1, and taking if necessarily a subsequence, we can find a component E1 of f−1(F1) such that
f(E1) = F1 and xj ∈ E1 for every j ∈ N. In the same way we can find a component F2 of
V2 ∩G and a component E2 of f−1(F2) such that f(E2) = F2 and yj ∈ E2 for every j ∈ N.

Using Lemma 2, we can find ω ∈ L1(Rn) such that Mn(Γ) ≤ C(n)2Mn
ω (f(Γ)) for every

Γ ∈ A(D). Let Γ0 = ∆(E1, E2, D). Since b ∈ E1 ∩ E2 and D is quasiconformally flat at b, we
see that Mn(Γ0) = ∞. Let h = d(V 1, V 2) > 0 and let ρ = 1

h
. Then ρ ∈ F (f(Γ0)) and we find

that ∞ = Mn(Γ0) ≤ C(n)2Mn
ω (f(Γ0)) ≤ C(n)2

´
Rn
ρ(x)nω(x)dx = C(n)2

hn

´
Rn
ω(x)dx < ∞ and we

reached a contradiction. It results that C(f, b) contains at most one point at which G is finitely
connected.

Proof of Corollary 2. We see from Corollary 1 that there exists ω ∈ L1(Rn) such that
Mn(Γ) ≤ C(n)2Mn

ω (f(Γ)) for every Γ ∈ A(D) and we apply the same arguments as in Theorem
13.

Proposition 1. Let n− 1 < q ≤ n, p > 1, λ > 0, ρ > 0, 0 < ψ < ρ ≤ π
2
, a = 1

2
sin(φ− ψ),

let D ⊂ Rn be a domain, d a half line ending in x such that Cx,d,φ ∩ B(x, ρ) ⊂ D, let Kr > 0
and wr : D ∩ B(x, r) → [0,∞] be measurable for 0 < r < ρ, let f : D → Rn be continuous
having monotone components such that Mq(Γ) ≤ KrM

p
wr(f(Γ))

λ for every Γ ∈ A(D ∩B(x, r))
and every 0 < r < ρ and suppose that lim

r→0
Kr(

´
f(D∩B(x,r))

wr(z)dz)
λ/rn−q = 0. Let ϵ > 0

and bk ∈ Cx,d,ψ, bk → 0. Then there exists kϵ ∈ N such that |f(y) − f(bk) ≤ ϵ for every
y ∈ B(bk, a|bk − x|) and every k ≥ kϵ.

Proof: Let us fix i ∈ {1, ..., n} and let rk = |bk − x| for k ∈ N. We can suppose that
B(bk, 2ark) ⊂ Cx,d,φ ∩ B(b, ρ) ⊂ D for every k ∈ N and let us fix k ∈ N. Let y ∈ B(bk, ark)
and let αk = ω(1+2a)rk and Ck = K(1+2a)rk . Suppose first that fi(y) > fi(bk) and let A = {z ∈
B(bk, 2ark)|fi(z) ≤ fi(bk)} and B = {z ∈ B(bk, 2ark)|fi(z) > fi(y)}. Since fi is monotone, we
see that S(bk, t)∩A ̸= ϕ, S(bk, t)∩B ̸= ϕ for |y−bk| < t < 2ark. Let Γk ≡ ∆(A,B,B(bk, 2ark)\
B̄(bk, |y − bk|)) and let ρk = 1

fi(y)−fi(bk)
χf(B(bk,2ark)). Then ρk ∈ F (f(Γk)) and B(bk, 2ark) ⊂

B(x, (1 + 2a)rk).
Suppose first that q ̸= n. Using Theorem 4 in [2], we have:

C(n, q)((2ark)
n−q − (ark)

n−q) ≤ C(n, q)((2ark)
n−q − |y − bk|n−q) ≤Mq(Γk) ≤

≤ CkM
p
αk
(f(Γk))

λ ≤ Ck(

ˆ

Rn

αk(z)ρk(z)
pdz)λ =
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Ck
|fi(y)− fi(bk)|pλ

(

ˆ

f(B(bk,2ark))

αk(z)dz)
λ ≤

≤ Ck
|fi(y)− fi(bk)|pλ

(

ˆ

f(B(x,(1+2a)rk))

αk(z)dz)
λ.

It results that |fi(y)− fi(bk)|pλ ≤
(1+2a)n−qCk(

´
f(B(x,(1+2a)rk)

αk(z)dz)
λ

C(n,q)an−q(2n−q−1)((1+2a)rk)n−q
.

This inequality is valid for i = 1, ..., n and also if fi(bk) > fi(y), hence we can find kϵ ∈ N
such that |f(y)− f(bk)| ≤ ϵ for every y ∈ B(bk, ark) and every k ≥ kϵ.

Suppose now that q = n. Then

C(n) ln 2 ≤ C(n) ln(
2ark

|y − bk|
) ≤Mn(Γk) ≤ CkM

p
αk
(f(Γ))λ ≤

≤ Ck
|fi(y)− fi(bk)|pλ

(

ˆ

f(B(bk,2ark))

αk(z)dz)
λ ≤

≤ Ck
|fi(y)− fi(bk)|pλ

(

ˆ

f(B(x,(1+2a)rk))

αk(z)dz)
λ

and we see that

|fi(y)− fi(bk)|pλ ≤
Ck

C(n) ln 2
(

ˆ

f(B(x,(1+2a)rk))

αk(z)dz)

for i = 1, ..., n.
We see that also in this case we can find kϵ ∈ N such that |f(y) − f(bk)| ≤ ϵ for every

y ∈ B(bk, ark) and every k ≥ kϵ.
Proof of Theorem 14. Suppose that q ̸= n. Suppose that there exists ϵ > 0 and bk ∈ C1,

bk → 0 such that |f(bk) − c| ≥ 3ϵ for every k ∈ N and let rk = |bk − x| for k ∈ N. Using
Proposition 1, we can suppose that |f(y) − c| > 2ϵ for every k ∈ R and every y ∈ B(bk, ark)
and we can suppose that |f(y)− c| ≤ ϵ for every y ∈ B(x, rk) ∩ E and every k ∈ N.

Let us fix k ∈ N. Let Bk = B(bk,
a
2
rk) and Γ1k = ∆(Bk, S(x, (1+a)rk)∩C,B(x, (1+a)rk)∩

C))). Using Proposition 18 in [2], we see that there exists a constant C1(n, q, φ, ψ) depending
only on n, q, φ and ψ such that Mq(Γ1k) ≥ C1r

n−q
k . Let Γ2k = ∆(B̄(x, rk)∩E, S(x, (1 + a)rk)∩

C,B(x, (1 + a)rk) ∩ C). We can suppose that Mq(Γ2k) ≥ δrn−qk . Let Γk = ∆(Bk, B̄(x, rk) ∩
E,B(x, (1 + a)rk) ∩ C) and let ρk ∈ F (Γk). If 3ρk ̸∈ F (Γ1k), 3ρk ̸∈ F (Γ2k), we can find
αk ∈ Γ1k, βk ∈ Γ2k locally rectifiable such that

´
αk

ρkds < 1
3
and

´
βk

ρkds < 1
3
. Let Γ3k =

∆(Imαk, Imβk, (B(x, (1+a)rk)\ B̄(x, (1+ 1
a
)rk)∩C)). Then 3ρk ∈ F (Γ3k) and using Theorem

4 in [2], we see that C(n, q)rn−qk ((1 + a)n−q − (1 + a
2
)n−q ≤ Mq(Γ3k) ≤ 3q

´
Rn
ρk(z)

pdz. We find

that ˆ

Rn

ρk(z)
pdz ≥ 1

3q
min{Mq(Γ1k),Mq(Γ2k),Mq(Γ3k)}

and since ρk ∈ F (Γk) was arbitrarily chosen, we find that there exists C2(n, q, φ, ψ, δ), a
constant depending only on n, q, φ, ψ and δ such that Mq(Γk) ≥ C2(n, q, φ, ψ, δ)r

n−q
k . Let
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ηk = 1
ϵ
χf(B(x,(1+a)rk)∩D). Then ηk ∈ F (f(Γk)) and let αk = ω(1+a)rk and Qk = K(1+a)rk . It

results that

C2r
n−q
k ≤Mq(Γk) ≤ QkM

p
αk
(f(Γk))

λ ≤ Qk(

ˆ

Rn

αk(z)ηk(z)
pdz)λ ≤

≤ Qk

ϵpλ
(

ˆ

f(B(x,(1+a)rk)∩D)

αk(z)dz)
λ.

We find that 0 < C2ϵpλ

(1+a)n−q
≤ Qk(

´
f(B(x,(1+a)rk)∩D)

αk(z)dz)
λ/((1+ a)rk)

n−q → 0 if k → ∞ and

we reached a contradiction.
We proved that lim

z→x
z∈C1

f(z) = c. The proof in the case q = n is done in a similar manner.

Proof of Corollary 4. We see from Lemma 2 that there exists ϵ > 0 and ω : D ∩
B(x, ϵ) → [0,∞] measurable and finite a.e. and constants Q(n) and C(n) depending only on
n such that Mq(Γ) ≤ C(n)M q

ω(f(Γ)) for every Γ ∈ A(D ∩ B(x, ϵ)) and
´

f(B(x,r)∩D)

ω(z)dz ≤

Q(n)(
´

D∩B(x,r)

|f ‘(z)qdz) for 0 < r < ϵ. We apply now Theorem 1.

Remark 4. If D = B(0, 1) ⊂ Rn and f ∈ W 1,q(B(0, 1)), n − 1 < q < n, we see from
Lemma 3.2 in [21] that for every ϵ > 0 there exists U ⊂ Rn open with B1,q(U) < ϵ and such
that lim

r→0
(

´
D∩B(x,r)

|∇f(z)|qdz/rn−q = 0 for every x ̸∈ U ∩ S(0, 1). Here, we denote by B1,q(U)

the Bessel capacity of U .
Proof of Corollary 5. Let ωr : Rn → [0,∞] be given by ωr(y) = N(y, f,D ∩ B(x, r)) if

y ∈ f(D ∩ B(x, r)), ωr(y) = 0 otherwise for 0 < r < ρ and let Qr = (
´

B(x,r)∩D
K(z)q/(p−q)dz)

p−q
p

for 0 < r < ρ. We can suppose that Jf ∈ L1(D ∩ B(x, ρ)) and using relation (3) from [15],
we see that ωr ∈ L1(Rn) and we see from Lemma 3 that Mq(Γ) ≤ QrM

p
ωr(f(Γ))

q/p for every
Γ ∈ A(D ∩ B(x, r)) and every 0 < r < ρ. We also see that Qr(

´
f(D∩B(x,r))

ωr(z)dz)
q/p/rn−q =

Qr(
´

D∩B(x,r)

Jf (z)dz)
q/p/rn−q → 0 if r → 0. We apply now Theorem 1.

We have the following consequences:
Corollary 6. Let n ≥ 2, n−1 < q ≤ n, 0 < ψ < φ ≤ π

2
, a = 1

2
sin(φ−ψ), D ⊂ Rn a domain,

x ∈ ∂D, d a half line ending in x such that there exists ρ > 0 such that Cx,d,φ ∩ B(x, ρ) ⊂
D, let C = Cx,d,φ, C1, Cx,d,ψ and let E ⊂ C1 be such that capq,adens(C,E, x) > 0. Let
f : D → Rn be ACLn on D be such that there exists K : D → [0,∞] measurable and

finite a.e. such that |f ‘(z)|n ≤ K(z)Jf (z) a.e., K ∈ Lq/(n−q)(D ∩ B(x, ρ)) ∩ L
q/(n−q)
loc (D) and

that lim
r→0

(
´

B(x,r)∩D
K(z)q/(n−q)dz)(n−q)/n(

´
B(x,r)∩D

Jf (z)dz)
q/n/rn−q = 0. Then, if lim

z→x
z∈E

f(z) = c, it

results that lim
z→x
z∈C1

f(z) = c.

Proof: We see from [22] that f is open, discrete and hence has monotone components and
we also see from [22] that f satisfies condition (N). We apply now Corollary 5.

Corollary 7. Let n ≥ 2, n − 1 < q ≤ n, 0 < ψ < φ ≤ π
2
, a = 1

2
sin(φ − ψ), D ⊂ Rn

a domain, x ∈ ∂D, d a half line ending in x such that there exists ρ > 0 such that Cx,d,φ ∩
B(x, ρ) ⊂ D, let C = Cx,d,φ, C1 = Cx,d,ψ and let E ⊂ C1 be such that capq,adens(C,E, x) > 0.
Let f : D → Rn be ACLn on D and K : D → [0,∞] measurable and finite a.e. such
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that |f ‘(z)|n ≤ K(z)Jf (z) a.e., K ∈ Lq/(n−q)(D ∩ B(x, ρ)) ∩ L
q/(n−q)
loc (D) and suppose that

lim
r→0

(
´

B(x,r)∩D
K(z)q/(n−q)dz)

n−q
n (

´
Rn
N(y, f,D ∩ B(x, r))dy)q/n/rn−q = 0. Then, if lim

z→x
z∈E

f(z) = c, it

results that lim
z→x
z∈C1

f(z) = c.

Remark 5. The set E from Theorem 1, 2, 3 and Corollary 4, 5, 6, 7 may be a nonconstant
path γ : [0, 1] → Cx,d,ψ such that γ(0) = x. If C = Cx,d,π

2
is a half plane. the set E may be

such that rad dens(E, x) > 0, and this thing is proved in Lemma 4 and Lemma 5.
Proof of Theorem 15. Let ϵ > 0 and let rϵ > 0 ne such that f(γ(t)) ∈ B(c, ϵ

3
) for

t ∈ (0, rϵ). Let Dϵ = f−1({B̄(c, ϵ)) ∩ B(x, ρ) ∩ C and let Aϵ = {t ∈ (0, rϵ)|S(x, t) ∩ Dϵ ̸= ϕ}.
Then Aϵ is an open subset of (0, rϵ), hence Aϵ =

∞∪
k=0

(αk,ϵ, βk,ϵ), where (αkϵ, βkϵ)∩(αjϵ, βjϵ) = ϕ for

k ̸= j, k, j ∈ N and let Ck,ϵ = (B(x, βkϵ)\ B̄(x, αkϵ))∩C for k ∈ N. Let ∆kϵ = ∆(Dϵ, Imα,Ck,ϵ)
and let ηk = 3

2ϵ
χf(Ck,ϵ) for k ∈ N. Then ηk ∈ F (f(∆kϵ)) for k ∈ N. Using Lemma 4, we

can find constants C1(n), C(n) and Q(n) depending only on n and ω ∈ L1(Rn) such that

C1(n) ln
βk,ϵ
αk,ϵ

≤ Mn(∆kϵ) ≤ C(n)Mn
ω (f(∆kϵ)) ≤ C(n)

´
Rn
ω(z)ηk(z)

ndz = 3nC(n)
2nϵn

´
f(Ck,ϵ)

ω(z)dz ≤

3nC(n)Q(n)
2nϵn

´
Ck,ϵ

|f ‘(z)|ndz for every k ∈ N. It results that ln βk,ϵ
αk,ϵ

→ 0 and let kϵ ∈ N be such that

ln
βk,ϵ
αk,ϵ

< 1 for k ≥ kϵ.

Let C(f, x, y) = {z ∈ Rn| there exists tp → 1 such that f(γy(tp)) → z} for y ∈ S. Let
Bϵ = {y ∈ S|C(f, x, y)∩ {B(c, 3ϵ) ̸= ϕ}. Suppose that µn−1(Bϵ > 0. We can chose kϵ ∈ N such

that C(n)Q(n)
(2ϵ)n

´
B(x,rkϵ)∩D

|f ‘(z)|ndz < µn−1(Bϵ)
2

.

Let tk,ϵ = 1 − αk.ϵ
|y−x| , sk,ϵ = 1 − βk,ϵ

|y−x| and let γy,k,ϵ = γy|[sk,ϵ, tk,ϵ] for y ∈ Bϵ, k ≥ kϵ and let

Bk,e = {y ∈ S|Imγy,k,ϵ∩f−1({B(c, 3ϵ)) ̸= ϕ} for k ≥ kϵ, k ∈ Iϵ. We see that if y ∈ Bk,ϵ and k ∈
Iϵ, then f ◦γy,k,ϵ meets both {B(c, 3ϵ) and B̄(c, ϵ), hence d(f ◦γy,k,ϵ) ≥ 2ϵ for y ∈ Bk,ϵ and k ∈ Iϵ.
Let us fix k ∈ Iϵ and let Γk,ϵ = {γy,k,ϵ|y ∈ Bk,ϵ}. Then ρk = 1

2ϵ
χf(Ck,ϵ) ∈ F (f(Γk,ϵ)) and we have

µn−1(Bk,ϵ)

(ln(
βk,ϵ
αk,ϵ

))n−1
≤ Mn(Γk,ϵ) ≤ C(n)Mn

ω (f(Γk,ϵ))) ≤ C(n)
´
Rn
ω(z)ρk(z)

ndz ≤ C(n)
(2ϵ)n

´
f(Ck,ϵ)

ω(z)dz ≤

C(n)Q(n)
(2ϵ)n

´
Ck,ϵ

|f ‘(z)|ndz.

We find that ∑
k∈Iϵ

µn−1(Bk,ϵ) ≤
∑
k∈Iϵ

C(n)Q(n)

(2ϵ)n
(ln(

βk,ϵ
αk,ϵ

))n−1

ˆ

Ck,ϵ

|f ‘(z)|ndz ≤

≤
∑
k∈Iϵ

C(n)Q(n)

(2ϵ)n

ˆ

Ck,ϵ

|f ‘(z)|ndz ≤ C(n)Q(n)

(2ϵ)n

ˆ

B(x,rkϵ )∩D

|f ‘(z)|ndz ≤ µn−1(Bϵ)

2
.

Since Bϵ ⊂
∪
k∈Iϵ

Bk,ϵ, we obtain that µn−1(Bϵ ≤ µn−1(
∪
k∈Iϵ

Bk,ϵ) ≤
∑
k∈Iϵ

µn−1(Bk,ϵ) ≤ µn−1(Bϵ)
2

and we reached a contradiction.
It results that µn−1(Bϵ) = 0 for every ϵ > 0. Let B =

∪
ϵ>0

Bϵ. Then µn−1(B) = 0 and if

y ∈ S \ B, then Card C(f, x, y) = 1 and hence lim
t→1

f(γy(t)) = c for every y ∈ S \ B. If f has

monotone components and 0 < ψ < φ, we see from Theorem 14 that lim
z→x

z∈Cx,d,ψ
f(z) = c.
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We also have:
Corollary 8. Let n ≥ 2, 0 < ψ < φ ≤ π

2
, D ⊂ Rn a domain, x ∈ ∂D, d a half line ending

in x such tat there exists ρ > 0 such that Cx,d,φ ∩ B(x, ρ) ⊂ D, let C = Cx,d,φ, C1 = Cx,d,ψ,
let γ : [0, 1] → C be a nonconstant path such that γ(0) = x, let f be ACLn on D such that
µn(Bf ) = 0 and there exists p > n − 1 and K ∈ Lploc(D) such that |f ‘(z)|n ≤ K(z)Jf (z) a.e.
Suppose that

´
D∩B(x,ρ)

|f ‘(z)|ndz < ∞ and lim
t→0

f(γ(t)) = c and either µn(f(Bf )) = 0, or f has

locally inverses on f(D \Bf ) which satisfies condition (N). Then lim
z→x
z∈C1

f(z) = c.

Proof: Since f is a local homeomorphism which is ACLn on D \ Bf , we see from Lemma
6.7, page 190 in [33] that f is a.e. differentiable and satisfies condition (N) on D \ Bf . It
results that if µn(f(Bf )) = 0, then f is a.e. differentiable and satisfies condition (N) on D.
Using Theorem 15, we can find a nonconstant path γ : [0, 1] → C1 such that γ(0) = x and
lim
t→0

f(γ(t)) = c. We see from [22] that f is open, discrete and hence has monotone components.

We apply now Corollary 4 and Lemma 5.
Proof of Theorem 16. We see from Lemma 2 that there exists ω ∈ L1(Rn) such that

ω = 0 on {B(x, ρ) ∩ C1 and constants C(n), Q(n) depending only on n such that Mn(Γ) ≤
C(n)Mn

ω (f(Γ)) for every Γ ∈ A(B(x, ρ) ∩ C1) and
´

f(A)

ω(z)dz ≤ Q(n)
´
A

|f ‘(z)|ndz for every

measurable A ⊂ B(x, ρ) ∩ C1.
Suppose that there exists α > 0 and bk ∈ C1, bk → 0 such that |f(bk) − c| ≥ 2α for

every k ∈ N and let 0 < ϵ < α. Let rϵ > 0 be such that Mn(∆(B(x, r) ∩ Eϵ, S(x, (1 + a)r) ∩
C,B(x, (1 + a)r) ∩ C) ≥ δϵ for 0 < r ≤ rϵ, let kϵ ∈ N be such that |f(y)− f(bk)| ≤ ϵ for every
y ∈ B(bk, a|bk − x|) and every k ≥ kϵ and suppose that |bkϵ − x| ≤ rϵ. Let rkϵ = |bkϵ − x|,
Γ1ϵ = ∆(B(x, rkϵ)∩Eϵ, S(x, (1+a)rkϵ)∩C,B(x, (1+a)rkϵ)∩C), Γ2ϵ = ∆(B(bkϵ ,

a
2
rkϵ), S(x, (1+

a)rkϵ)∩C,B(x, (1+ a)rkϵ ∩C) and let Γϵ = ∆(B(x, rkϵ)∩Eϵ, B(bkϵ ,
a
2
rkϵ), B(x, (1+ a)rkϵ)∩C).

Let ρϵ ∈ F (Γϵ). If 3ρϵ ̸∈ F (Γ1ϵ), 3ρϵ ̸∈ F (Γ2ϵ), we can find αϵ ∈ Γ1ϵ, βϵ ∈ Γ2ϵ locally rectifi-
able such that

´
αϵ

ρϵds <
1
3
,
´
βϵ

ρϵds <
1
3
. Let Γ3ϵ = ∆(Imαϵ, Imβϵ, (B(x, (1 + a)rkϵ) \ B̄(x, (1 +

a
2
)rkϵ)) ∩ C). Then Mn(Γ1ϵ) ≥ δϵ and there exists constants C1(n, φ, ψ), C2(n, φ, ψ) depend-

ing only on n, φ and ψ such that Mn(Γ2ϵ) ≥ C1(n, φ, ψ) and Mn(Γ3ϵ) ≥ C2(n, φ, ψ) ln(
1+a
1+a

2
).

We see that 3ρϵ ∈ F (Γ3ϵ), hence
´
Rn
ρϵ(z)

ndz ≥ 1
3n

min{Mn(Γ1ϵ),Mn(Γ2ϵ),Mn(Γ3ϵ)} and since

ρϵ ∈ F (Γϵ) was arbitrarily chosen, we see that Mn(Γϵ) ≥ δϵ
3n

for ϵ > 0 small enough. We see
that f(Γϵ) > Γc,ϵ,α and that

´
B(c,r)

ω(z)dz =
´

f(Er)

ω(z)dz ≤ Q(n)
´
Er

|f ‘(z)|ndz for 0 < r ≤ rϵ,

hence
´

B(c,r)

ω(z)dz/rn ≤MQ(n) for 0 < r ≤ rϵ. Using Theorem 2 in [5], we find that

δϵ ≤ 3nMn(Γϵ) ≤ 3nC(n)Mn
ω (f(Γϵ)) ≤ 3nC(n)Mn

ω (Γc,ϵ,α) ≤
3nMC(n)enQ(n)

∞∑
k=1

1
kn

(ln ln(αe
ϵ
))n

.

It results that δϵ(ln ln(
αe
ϵ
))n ≤ 3nC(n)Q(n)Men

∞∑
k=1

1
kn
<∞, and we reached a contradiction,

since lim
ϵ→0

δϵ(ln ln(
αe
ϵ
))n = ∞.

It results that lim
z→x
z∈C1

f(z) = c. We apply now Theorem 15, Lemma 5 and Corollary 4 to see

that lim
z→x

z∈Cx,d,η
f(z) = c for every ψ < η < φ.
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Proof of Theorem 17. Let Vn be the volume of the unit ball in Rn. We see that´
Eϵ

|f ‘(z)|ndz ≤ K
´
Eϵ

Jf (z)dz ≤ K
´

f(Eϵ)

N(y, f,D∩B(x, ρ))dy ≤ KVnN(f,D∩B(x, ρ))ϵn for ev-

ery ϵ > 0 and we see that lim
ϵ→0

´
Eϵ

|f ‘(z)|ndz/ϵn <∞. Also,
´

D∩B(x,ρ)

|f ‘(z)|ndz ≤ K
´

D∩B(x,ρ)

Jf (z)dz <

∞. We apply Theorem 16 to see that lim
z→x

z∈Cx,d,η
f(z) = c for every ψ < η < φ.

Remark 6. If the function f from Theorem 17 is bounded on B(x, ρ)∩D, then the condition
”

´
B(x,ρ)∩D

Jf (z)dz < ∞” is satisfied. Indeed,
´

B(x,ρ)∩D
Jf (z)dz ≤

´
f(B(x,ρ)∩D)

N(y, f, B(x, ρ) ∩

D))dy ≤ µn(f(D ∩B(x, ρ))N(f,D ∩B(x, ρ)) <∞.
A recent research concerning the properties of the mappings satisfying generalized inverse

modular inequalities may be found in [ 49].
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