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1 Introduction.

Given a domain D C R", we denote by A(D) the set of all path families from D and for
I' € A(D), we put F(T') = {p : R" — [0,00] Borel maps | [ pds > 1 for every v € T locally
v

rectifiable}. We set for p > 1, I' € A(D) and w : D — R” measurable and finite a.e. the p
modulus of weight w, ME(T") = i;l{r) [ w(z)p(x)Pdx and for w = 1 we obtain the classical p
pE Rn

modulus M, (I') = inf z)Pdz.
p( ) pEF(F)an P( )

A known class of continuous, open, discrete mappings f : D C R® — R" is the class
of K-quasiregular mappings, which are ACL", K > 1 and |f (x)|* < KJ;(x) a.e. For such
mappings the important modular inequality of Poleckii says that M, (f(I")) < KM, (T) for every
I' € A(D). This modular inequality is the key for proving most of the geometric properties of
this class of mappings. We recommend the reader the books [33], [34], [50], [57] for basic facts
of this theory.

A map f: D C R — R is of finite distortion if f € W2 (D,R")NC(D,R"), J; € L}, (D)
and there exists K : D — [0, oo] measurable and finite a.e. such that |f (z)|" < K(z)J;(z) a.e.
If in addition f € VVllo’cn(D,R”), we say that f is of finite dilatation. General classes of such
mappings were intensively studied using the modulus method in the last 20 years in [4-7], [14],
[17-19], [24-27], [30-32], [35-44], [46-49] and several conditions were imposed to the dilatation
K or to the map f, like K € BMO(D), or such that exp(A o K) € L}, (D) for some Orlicz
map A, or such that f has locally ACL™ inverses. All of them are open, discrete functions f,
and the modular inequality " M, (f(I")) < M},_.(I")” holds for every I' € A(D), and this is the
main instrument used in studying this functions.

In some recent paper [8-12], we studied classes of continuous, open, discrete mappings f :
D — R™ satisfying modular inequalities of type "M, (f(I")) < v(ME(T")) for every I' € A(D)”,
where ¢ >n—1,p > 1, w € L} (D) and 7 : [0,00) — [0,00) is increasing with 2151_13017(15) = 0.

We extended partially basic theorems from the theory of quasiregular mappings and from
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the classes of open, discrete mappings considered in [4-7], [14], [17-19], [24-27], [30-32], [35-
44], [46-49] and in some cases we showed that our results were stronger even in the class of
quasiregular mappings. We gave Liouville, Montel, Picard type theorems, equicontinuity and
eliminability results and we gave estimates of the modulus of continuity. The basic tool for
proving this results was the modular inequality " M, (f(I")) < v(ME(L'))” together with the fact
that MP(x) = 0 in some points € D. Using the modulus method, we developed an unified
theory which contains all the classes of mappings of finite distortion mentioned before.

On the other hand, if f : D — R™ is K-quasiregular and N(f, D) < oo, the inverse
modular inequality ” M, (I') < KN(f, D)M,(f(I'))” holds for every I' € A(D). It is a natural
question if a function f : D C R® — R" satisfying a modular inequality of type "M, (') <
v(MP(f(I')))” has interesting geometric properties. We show that the answer is positive, using
entirely the modulus method. Our methods can be applied to ACL? mappings, ¢ > n — 1,
having variable Jacobian sign, which are not open or mappings with finite distortion, and have
no monotone components, as we can see from Example 1. We show that even for such mappings
some results from classical complex analysis still hold and we remark that until now most of
the generalizations of complex functions were open functions, or functions having monotone
components.

A classical theorem of Fatou states that a bounded analytic function f : B(0,1) — C has
a.e. radial limits. It is not known whether a bounded quasiregular mapping f : B(0,1) — R"
has at least one radial limit. K. Rajala showed in [32] that if f : B(0,1) — R" is a locally
injective quasiregular mapping, then f has at least one radial limit. In [25] it is proved that if
f:B(0,1) — B(0,1) is a locally injective quasiregular mapping and there exists C' > 0 and
0 < a <n—1suchthat N(f, B(0,7)) < C(1—r)~*for 0 < r < 1, then the Hausdorff dimension
of E(f) is less or equal to a, where E(f) = {y € S(0,1)|f has no radial limit in y}. The same
result is obtained for bounded quasiregular mappings f € B(0,1) — R", as we can see from
[20]. Miklyukov proved in [28] that if f : B(0,1) — R" is a bounded quasiregular map and

[ |f (z)|"dz < oo, then f has a.e. nontangential limits. In Theorem 5.15 in [23] it is proved
B(0,1)
that if f: B(0,1) - R” is quasiregular and there exists ¢; > 0 and 0 < § < n — 1 such that

[ N(y, f,B(0,r))dy < < o7 for every 0 <r <1, then f has a.e. radial limits. We extend this
R
result in Theorem 5, Showmg:

Theorem 5. Let n > 2, 1 < g <p,let f: B(0,1) - R" be ACL? such that there exists
K : B(0,1) — [0, 00] measurable and finite a.e. such that L(z, f)? < K(z)|J(x)| a.e. and
suppose that there exists ¢y, cg, a, /> 0 such that

f Ny, f,B(0,r))dy < 7% for every 0 <r <1 (1)
f K(z Q/pqd:v< - forevery 0 <r <1 (2)

B(0,r)

ale=d) 4 59 < g1 (3)

Then f has a.e. radial limits.

If we take p = n, a = 0 and K(z) < K for every x € B(0,1), then condition 3) is
"< B < q U and taking g as close to n, this condition may be "0 < § < n — 1”7 and this
shows that our result improves Theorem 5.15 from [23] given for quasiregular mappings. We
can also take the function f to be locally quasiregular or with finite dilatation and satisfying
condition 1), 2), 3) from Thereom 5 and we still have a Fatou type result in this class of
functions, and our proof is based entirely on the modulus method. A similar result also based
on the modulus method is Theorem 1 in [21] which says that if f € W?(B(0,1)) is monotone



and n — 1 < p < n, then f has nontangential limits at every point y € S(0,1) with the possible
exception of a set of zero p-capacity. When p > ¢ > n — 1 and the mapping f has monotone
components, a related result to Theorem 5 was obtained by T. Akkinen in [1].
We also give a Fatou type result for ACL? mappings f : D — R” such that there exists
0<a<q—1suchthat [ |f(2)]%(1— |z|)*dz < oo, in connection with Theorem 2" in [29),
B(0,1
given for polyharmonic fuilct)ions. We show:
Theorem 4. Let n > 2, ¢ > 1, f : B(0,

1
exists 0 < o < ¢ — 1 such that [ |f (x)]|%(
B(0,1)

) = R™ be ACLY such that pu,(Bf) = 0, there
1 — |z])*dz < oo and suppose that one of the

following conditions hold:

a) f has locally inverses on f(D \ By) which satisfies condition (V).

b) f satisfies condition (N), there exists p > 0 and K : D — [0, 00| measurable and finite
a.e. such that L(z, )P < K(x)|Js(x)| a.e. and either J; € L}, (D) and ¢ >n —1, or f is a.e.
differentiable.

Then f has a.e. radial limits.

A Fatou type theorem is given in Theorem 2 for mappings satisfying generalized inverse
modular inequalities. A local version of it is given in Theorem 1 from which immediately
results Theorem 3,4 and 5.

Theorem 2. Let n > 2, p, ¢ > 1, w e L'(B(0,1)), v:[0,00) — [0, 00) increasing such that
there exists \, M > 0 such that ~(¢) < Mt for t > 0 and let f: B(0,1) — R" be continuous
such that M, (I') < ~y(ME(f(I"))) for every I' € A(B(0,1)). Then f has a.e. radial limits.

We shall give in Lemma 2 and 3 enough consistent conditions in order that some AC'L?
mappings to satisfy generalized inverse modular inequalities.

In Theorem 5.17 in [23] Martio and Rickman generalized a theorem of F. and M. Riesz
given for bounded analytic functions. They showed that if f : B(0,1) — R"™ is quasiregular,
ceR" E={ye S0, 1)|limf(ty) = ¢} and there exists ¢; > 0, 0 < f < n — 1 such that

[ N(y, f,B(0,r))dy < % for every 0 < r < 1, then it results that u,_1(E) = 0. We
B(0,r
eicte)nd this result in Theorem 9, showing that:

Theorem 9. Let n > 2, 1 < g <p, f: B(0,1) - R™ be ACLY such that there exists

K : B(0,1) — R" measurable and finite a.e. such that L(z, f)? < K(x)|J¢(x)| a.e., let c € R"
such that m,_o(f~'(c)) =0, let f, : [0,1) — R™ be defined by f,(¢) = f(ty) for t € [0,1) and
y € 5(0,1) and let £ = {y € S(0,1)|c is a limit point of f, : [0,1) — R"}. Suppose that there
exists ¢q, ¢o, a, > 0 such that

fN v, f, B(O r))dy < s for every 0 <r <1 (1)
f K(x q/pqu< S forevery 0 <r <1 (2)
B(0,r)

demd) B g1 (3)

Then pn—1(E) = 0.

Another extension of the theorem of F. and M. Riesz is given for AC'L? mappings for which
we impose a boundedness condition of the modulus of the derivative.

Theorem 8. Let n > 2, ¢ > 1, f : B(0,1) — R" be ACL? such that p,(Bf) = 0,

there exists 0 < o < ¢ — 1 such that [ |f(2)|9(1 — |2])* < oo, let ¢ € R™ such that
B(0,1)

mn—2(f71(c)) =0, let f,:[0,1) = R™ be defined by f,(t) = f(ty) for t € [0,1) and y € S(0,1)

and let £ = {y € S(0,1)|c is a limit point of f, : [0,1) — R"}. Suppose that one of the



following conditions hold:

a) f has locally inverses on f(D \ By) which satisfies condition (V).

b) f satisfies condition (N), there exists p > 0 and K : D — [0, 00| measurable and finite
a.e. such that L(z, f)P < K(z)|J¢(z)| a.e. and either J; € L}, (D) and ¢ >n —1 or [ is a.e.
differentiable.

Then p,—1(E) = 0.

We also give in Theorem 7 a version of the theorem of F. and M. Riesz for mappings satisfying
inverse modular inequalities. A local version of it is Theorem 5 from which immediately results
Theorem 8 and 9.

Theorem 7. Let n > 2, p, ¢ > 1, w € L'Y(R"), v : [0,00) — [0,00) be increasing
such that there exists A\, M > 0 such that y(t) < Mt* for t > 0, let f : B(0,1) — R" be
continuous such that M, (I") < y(MPE(f(I"))) for every I' € A(B(0,1)), let ¢ € R™ such that
Mu—a(f~(c)) =0, let f, : [0,1) — R™ be defined by f,(t) = f(ty) for t € [0,1) and y € S(0,1)
and let E = {y € S(0,1)|c is a limit point of f, : [0,1) — R"}. Then u,_1(£) = 0.

Theorem 5 and 9 in the case p = ¢ = n correspond to the results in 5.15 and 5.17 in [23].
Vuorinen extended in Theorem 14.7 in [57] a result of Beurling, showing that if f : B(0,1) — R
is quasiconformal and E = {y € S(0,1)|f has no asymptotic value at y}, then it results that
cap,(F) = 0 for every compact F' C E. The following theorem generalizes Vuorinen’s result.

Theorem 10. Let n >2 n—1<q¢<n,p>2 w:D — [0,00] measurable and finite a.e.
v :[0,00) = [0,00) be strictly increasing with %g% v(t) =0, let f: B(0,1) — R" be continuous

such that M,(I') < v(ME(f(I"))) for every I' € A(B(0,1)) and let E = {y € S(0,1)|f has no
asymptotic value at y}. Then cap,(F') = 0 for every compact ' C E.

We also give versions of Beurling’s theorem for AC' LY mappings, extending partially The-
orem 1 in [21] given for monotone functions. Theorem 11 and 12 results immediately from
Theorem 10.

Theorem 11. Letn > 2, n—1 < ¢ < n, f : B(0,1) — R" be ACL? such that

[ 1f(@)|%dz < oo and p,(By) = 0 and let E = {y € S(0,1)|f has no asymptotic val-
B(0,1)
ues at y}. Suppose that f satisfies conditions a) and b) from Theorem 4. Then cap,(F) = 0
for every compact F' C E.

Theorem 12. Letn > 2, n—1<qg<p, ¢ <mn,let f: B(0,1) - R" be ACL? and
suppose that there exists K € L9/®~9(B(0,1)) such that L(x, f)* < K(z)|J¢(z)| a.e. Then,
if £ = {y € S(0,1)|f has no asymptotic value at y}, it results that cap,(F') = 0 for every
compact F' C E.

Vuorinen generalized in Theorem 4.2 in [51] a known result from the theory of quasiconformal
mappings in the class of closed quasiregular mappings, showing that if D, G are domains in
R™ and f: D — (G is a closed quasiregular mapping and D is quasiconformally flat at a point
b € 9D, then C(f,b) contains at most one point at which G is finitely connected. We extend
partially Vuorinen’s result in Theorems 13 and Corollary 2.

Theorem 13. Let n > 2, D, G be domains in R”, let b € 0D such that D is quasiconfor-
mally flat at b, let f: D — G be ACL", open, discrete and closed such that p,(By) = 0 and
[ |f (x)|"dz < co and suppose that one of the following conditions hold:

D

a) f has locally inverses on f(D \ By) which satisfies condition (V).

b) f satisfies condition (), there exists p > 0 and K : D — [0, co] measurable and finite
a.e. such that L(x, f)P < K(z)|J¢(z)| a.e. and either J; € L}, (D) and ¢ >n —1 or f is a.e.
differentiable.



Then C(f,b) contains at most one point at which G is finitely connected.

Corollary 2. Let n > 2, D, G be domains in R"”, G finitely connected at the boundary,
let b € 0D be such that D is quasiconformally flat at b and let f : D — G be ACL", open,
discrete and closed such that p,(By) = 0 and [ |f'(x)|"dz < oo and suppose that one of the

D

following conditions hold:

a) Ji(z) # 0 ae.

b) pn(f(By)) = 0 and there exists p > 0 and K : D — [0, 00] measurable and finite a.e.
such that L(z, f)? < K(x)|Js(z)| a.e.

Then there exists F': D U {b} — R" continuous such that F|D = f and we take on R" the
chordal metric.

If in the preceeding theorem f: D — G is a homeomorphism, we have:

Corollary 3. Let n > 2, D, GG be domains in R”, GG finitely connected at the boundary, b €
0D such that D is quasiconformally flat at b and let f : D — G be an AC'L™ homeomorphism

such that [ |f (z)["dz < oo and suppose that one of the following conditions hold:
D

a) Je(z) # 0 ae.

b) there exists p > 0 and K : D — [0, c0] measurable and finite a.e. such that L(z, f)P <
K(z)|J¢(x)] ae. o

Then there exists F': DU {b} — R™ continuous such that F|D = f, and we take on R™ the
chordal metric.

Corollary 3 is proved by Iwaniecz and Onninen in Theorem 1.3 in [16] without using condi-
tions a) and b), but with some supplementary requirements on the domains D and G and their
proof does not use the modulus method.

We prove the following Lindelof type theorem for mappings satisfying inverse generalized
modular inequalities:

Theorem 14. Let n >2,n—1<¢<n,p>1,A>0,0<¢ <9 < Z a=3sin(p—1), let
D C R" be a domain, z € 0D, d a half line ending in = such that there exists p > 0 such that
Cirap N B(x,p) C D, let C =Chyyp, C1 = Cpay and E C Cy such that cap,dens(C, E,x) =
0 > 0. Let f: D — R" be continuous having monotone components, let K, > 0 and w, :
DN B(z,r) — [0,00] be measurable for 0 < r < p such that M,(T") < K, (M2 (f(T)))* for every
I'e A(DNB(x,r)) and every 0 < r < p and suppose that li_)m K.( [ w(2)d))r1=0

e f(B(z,r)ND)
and that lim f(z) = c¢. Then lim f(2) =c.
z€FE zeCq

Using this result, we can give the following partial extensions to Theorem 16.8 in [57]:

Corollary 4. Letn > 2, n—-1<q¢<n, 0< ¢ < ¢ < 3, a= %sin(@—@b), let
D C R" be domain, = € 0D, d a half line ending in = such that there exists p > 0 such that
CrapNB(x,p) C D, let C = Cyay, C1 = Cyay, £ C Cy such that cap, dens(C, E,x) > 0, let
f:D — R"be ACL? on D having monotone components such that p,,(Bf) = 0 and such that
lim [ |f(2)|9dz/r""1 =0.

T%OB(x,r)ﬁD

Suppose that one the following conditions hold:

a) f has locally inverses on f(D \ By) which satisfies condition (V).

b) f satisfies condition (N) and there exists p > 0, K : D — [0, 0o] measurable and finite a.e.
such that L(z, f)? < K(2)|J;(z)| a.e. and either f is a.e. differentiable or J; € L'(DNB(z, p)).

Then, if lim f(z) = ¢, it results that lim f(z) = c.

Lk el
Corollary 5. Let n > 2, n—1<¢g<p,¢<n, 0<¢ <ty <Z a=isin(p—1), let



D C R" be a domain, z € 0D, d a half line ending in = such that there exists p > 0 such that
Cirap N B(z,p) C D, let C = Chyy, Ct = Cpay, E C C) such that cap, dens(C, E,z) > 0.
Suppose that f: D — R"is ACL? on D, satisfies condition (/V) and has monotone components,
let K : D — [0, c0] measurable and finite a.e. such that K € L%®~9(DN B(x, p)) be such that
L(z, f)P < K(z). |Jf(2)| a.e. and suppose that

lim ( / K(z ‘I/(p qdz) a ( / Jf(z)dz)Q/p/r”_q:(].

r~>0
(z,m)ND DNB(z,r)

Then, if lim f(z) = ¢, it results that lim f(z) =
z€FE zeCq
The following theorem is a Lindelof type theorem without assuming that the components

of the function f: D C R® — R" are monotone:

Theorem 15. Let n > 2,0 < ¢ < 7, D C R" a domain, x € 9D, d a half line ending in z,
0 < p < 1such that Cpq, N B(z,p) C D, let C =Cy gy, let f: D — R" be ACL™ on D such
that p1,(Bf) =0and [ |f(2)"dz < oo and let 7 : [0,1] — C be a nonconstant path such

B(z,p)ND
that 7(0) = x and there exists lgré f(y(t)) = c. Suppose that one of the following conditions is
satisfied:

a) f has locally inverses on f(D \ By) which satisfies condition (V).

b) f satisfies condition (N) and there exists p > 0 and K : D — [0, 00| measurable
and finite a.e. such that L(z, f)? < K(z)|Jf(z)| a.e. and either f is a.e. differentiable, or
Jy € LY (DN B(z,p)).

Then, if S = {y € S(x,1)|[z,y) N C N S(x,p) # ¢}, it results that 11_{1(11 f(vy(t)) = c for a.e.
y € S, where v, : [0,1] — R" is given by ~,(t) =tx + (1 —t)y for t € [0,1] and y € S. If f has
also monotone components and 0 <1 < ¢, then lim f (z) =

2€C; 4.4

The following two theorems are in connection with Theorem 15.10 in [57]:

Theorem 16. Let n > 2,0 < ¢ < ¢ < I, a = 1sin(p — ¢), ¢ € R", D C R" a domain,
x € 0D, d a half line ending in x such that there exists p > 0 such that C, 4, N B(z,p) C D,
let C=Cra4, Ci = Cray,let f: D — R"be ACL" on D having monotone components such
that pu,(By) =0and [ |f(2)|"dz < co. Let E. = f~*(B(c,€)) N Bz, p) N Cy for € > 0

B(z,p)ND
be such that limsup [ |f(2)|"dz/e" = M < oo, let &, = cap, dens(C, E,, x) for € > 0 and
e—0 F,

suppose that one of the following condition shold:

a) f has locally inverses on f(D \ By) which satisfies condition (V).

b) f satisfies condition (N) and there exists p > 0 and K : D — [0,00] measurable
and finite a.e such that L(z, f)? < K(2)|Js(z)| a.e. and either f is a.e. differentiable, or
f € LY(Dn B(x,p)).

Then, if ll_I)I(l] de(InIn(2))™ = oo, it results that lim f(z) = c for every ¢ <n < ¢.

2€C; 4.

Theorem 17. Let n > 2, 0 <y < ¢ < 7, a = —Sin(@—w), ceR" D CR"a domain
x € 0D, d a half line ending in x such that there exists p > 0 such that C, 4, N B(z,p) C D,
let C = Crayp, C1 = Cray, let f 1 D — R™ be K-quasiregular such that J; € L'(D N
B(x,p)) and N(f,D N B(z,p)) < co. Let E. = f~Y(Bl(c,€)) N B(z,p) N Cy for € > 0, let
de = capy qodeus(C, E, x) for € > 0 and suppose that 11_1% dc(InIn($))" = oo. Then it results that

lim f(z) = c for every ¥ < n < .

ZEC%(Z,U



2 Preliminaries.

We say that a function f : D € R" — R" is ACL if f is continuous and for every cube
() CC D with the sides parallel to coordinate axes and for every face S of @) it results that
fIPS (y) N Q : Py'(y) N Q — R™ is absolutely continuous for a.e. y € S, where Pg : R* — S
is the projection on S. An AC'L map has a.e. first partial derivatives and if p > 1, we say
that f is ACLP if f is ACL and the first partial derivatives are locally in LP. If p > 1, we
denote by VVl1 ?(D,R™) the Sobolev space of all functions f : D — R™ which are locally in L?
together with their first order distributional derivatives. We see from Proposition 1.2, page 6
in [34] that if f € C(D,R"), then f is ACLP if and only if f € W'P(D,R"). If 2 € R", we set

loc

2| = (22 22)2. We set B(z,r) = {y € R"||y —z| < r} and S(z,r) = {y € R"||ly — x| = 7}

7

for x Gl ]lé" and 7 > 0. We denote by u, the Lebesgue measure in R"”, by pu,_; the spherical
measure on S(0,1), and if p > 0, we denote by m,, the p-Hausdorff measure in R".

If D C R is open, E,F C D, we set A(E,F,D) = {v : [a,b] — D paths |y(a) €
E,v(b) € F and v((a,b)) C D} and if b € 0D, we say that D is quasiconformally flat at b if
M,(A(E, F)) = oo for every connected sets E, F C D such that b € EN F. We say that D is
finitely connected at the point b € 0D if for every V' € V(b) there exists U € V(b) such that
U C V and U N D has a finite number of components. If v : [a,b] — R™ is rectifiable, we set
s (t) = l(7|[a,t]) for t € [a,b] and we define the reparametrisation 7° : [0,1(v)] — R™ of v by
setting v(t) = 7°(s,(t)) for every t € [a,b]. We say that z € R” is a limit point of the path
v : [a,b) — R™ if there exists a < t, < b, t, — b such that y(¢,) - z. fz € R", 0 <a < b, we
set [yap = A(B(2,a),S(z,b), B(z,b) \ B(x,a)).

We say that £ = (A,C) is a condenser if C' C A C R", C is compact and A is open,
and if p > 1,we define cap,(E) = inf f |Vu(x)|Pdx, the p capacity of E, where the infimum

is taken over all u € C§°(A) such that u>1on C. Weset I'p = A(C,04, A) and we see
from Proposition 11.10.2, page 54 in [34] that if p > 1, then cap,(E) = M,(I'g). We say that a
compact set C' C R" is of zero p capacity, p > 1, if capp(E) = 0 for every condenser E = (A, C)
with A open and bounded, and the definion does not depend on the open, bounded set A such
that C C A. If C C R" is compact, we write cap,(C) > 0 if C is not of zero p-capacity.

Let D C R™ be open and ¢ : B(D) — [O oo]. We say that ¢ is a set function on D if

¢(A) < oo for every compact A C D and (U A;) = Z o(A;) if Ay, ..., A;, ... are disjoint Borel

sets. We say that ¢ is absolutely contlnuous 1f for every € > 0 there exists 6. > 0 such that
©(A) < € for every A € B(D) such that u,(A) < J, and if ¢ assumes only finite values, then
¢ is absolutely continuous if and only if ¢(A) = 0 whenever u,(A) = 0. We say that ¢ has a

derivative ¢ (z) in z if ¢ (x) = lim % A set function ¢ has a.e. a finite derivative ¢
r—0 ~m
which is a Borel function and if ¢ is absolutely continuous, then (A f ¢ (x)dzx for every

A € B(D) (see [50], page 81-83).
Let D C R" a domain and f : D — R” a map. We denote by By = {z € D|f is not

a local homeomorphism at xz} and if z € D, we set L(x, f) = limsup w We say
h—0

that f satisfies condition (V) if p,(f(A)) = 0 for every A C D such that u,(A) = 0. We
say that f is open if f carries open sets into open sets, we say that f is closed if f carries
closed sets into closed sets and we say that f is discrete if f~!(y) is empty or discrete in D for
every y € R". If A C D, we set N(y, f,A) = Card (f~*(y) N A) for every y € R™ and we set



N(f,A) = sup N(y, f, A). If b € OD, we set C(f,b) = {z € R"| there exists b, € D,b, — bsuch

yeR?
that f(b,) — z}. If f: D — R" is continuous, z € D and f is discrete at =, we set i(f, z) the
topological index of f in z, and if f is differentiable in x and J¢(x) # 0, then i(f, z) = sgnJy(x)
(see [13] for some basic facts concerning the topological degree).
If f:B(0,1) - R"is a map and y € S(0,1), we say that f has a radial limit at z if
there exists 1&1&1 f(ty) € R™, and we say that f has an asymptotic value at y if there exists

v :10,1) — B(0, 1) a path such that 111111 v(t) = y and there exists 111111 f(y(t)) € R™.
— —

Let a,b,c € R". We set a(b—a.c—a) the angle between b—a and c—a if this angle is less then
7. lfz € R", 0 < ¢ < %, dis ahalf line ending in z, we set Cy 4 = {2 € R"|a(z—2,w—2) < ¢,
where w € d}, the cone of center z, direction d and angle ¢. Let ¢ >1,0<a<1,0< ¢ < 7,
z € R", d a half line ending in z, C = C 4, and let E C C. We set the (g, a)-lower capacity

density of E in C' at the point = by cap,deus(C, E, x) = lim iglf M, (A(B(xz,r) N E,S(x, (1 +
r—
a)r)NC,B(z, (1 +a)r)NC)/r" % and if ¢ = n and a = 1 we have the definition of the lower
capacity density of F in z given by M. Vuorinen in Definition 14.9 in [57]. We set the lower
radial density of F in = by rad deus(F,x) = lim iglf ml{rzo"g(f”)mE#} and this is Definition
r—

14.10 in [57].

Let D C R" be open and f : D — R be continuous. We say that f is monotone if
max f(z) = max f(z) and min f(z) = min f(z) whenever G is a domain such that G C D.
zeG x€0G zeq@ z€0G

Let D C R™ be open and f : D — R™ be ACL?, ¢ > 1 such that Js(z) # 0 a.e. We can

defined a.e. the function Ko ,(f) : D — [0, 00] by Ko,(f)(x) = ‘{]szy‘l

We shall use Theorem 4 in [2] which says that if + € R", 0 < a < b, D = B(x,b) \ B(z,a),
n—1<gq<mn, E,F C D are such that S(z,t) N E # ¢, S(x,t) N F # ¢ for every a < t < b,
then M (A(E,F,D)) > C(n,q)(b"% —a™ ) if n — 1 < ¢ < n, M(A(E,F,D)) > C(n)In2,
where C'(n, q) is a constant depending only on n and ¢ and C'(n) is a constant depending only
on n, and C(n,q) > 0, C(n) > 0.

3 Some conditions in order that an ACL? function to
satisfy a generalized inverse modular inequality.

Lemma 1. Let n > 2, U,V C R" be open sets, U bounded, A C U, B C V such that
pn(V\ B) =0, let f: U — V be continuous such that f|A : A — B is a homeomorphism
and let g : V — R", g(y) = f~(y) ify € B, g(y) = 0if y € V' \ B. Then g is measurable
and let p, : B(V) — [0,00] given by py(F) = pn(g(F N B)) for F € B(V). Then pu, is a
set function, u; exists a.e. and is a Borel function and if 4 is absolutely continuous, then

[ h(z)dz = [ h(g(x))p,(x)dz for every Borel function h : R™ — [0, oc].
V) v

Proof. Using Lebesgue’s theorem, we see that [ p,(y)dy = pg(V) = pn(g(V)) and we
1%

apply then a standard argument.

Lemma 2. Letn > 2,¢ > 1, D C R*adomain, f : D — R" be ACL? such that p1,,(Bf) =0
and [ |f (z)|?%dz < oo and suppose that one of the following conditions are satisfied:

D

a) f has locally inverses on f(D \ By) which satisfies condition (V).
b) f satisfies condition (N), there exists p > 0 and K : D — [0, 0o] measurable and finite



a.e. such that L(z, f)? < K(x)|J;(z)| a.e. and either J; € L}, (D) and ¢ > n — 1, or f is a.e.
differentiable.
Then there exists w € L'(R™) such that M,(T') < C(n)?M%(f(T)) for every I € A(D).

Proof. Let w : R" — [0, 00] be given by w(y) > 1y, (Y) L(9z(y), f) for a.e.
z€f~H(y)N(D\By)
y € f(D\ By), w(y) = 0 otherwise, where g, is a local inverse of f around the point = such that

g-(f(z)) = x. Let Dy, be open, bounded, Dy C Dj11, k € N be such that D\ By = |J Dy. Let
k=1
k € N be fixed and let wy : R" — [0, 00] be defined by wy(y) = > by, (1) L(g2(y), f)

zef~1(y)NDy
for a.e. y € f(Dy), wi(y) = 0 otherwise, where g, is a local inverse of f around the point
x such that g,(f(x)) = z. Let x € Dy and y = f(x). Then f~!(y) N Dy is a finite set
{ai,...;an} C D\ By and since f is a local homeomorphism around each point ay, ..., @, we
find V' € V(y) and U; € V(a;) disjoint such that U; C Dy.1, f|U; : U; — V is a homeomorphism
fori=1,...,mand f~* (V)N D, C JU;. Let g; : V — U; be the inverse of f|U; : U; — V for
=1

i=1,..,m. We see that (wp|V)(y) = > p,, (y)L(gi(y), f)? for a.e. y € V, hence wy, is a Borel
i=1

function for every k € N and since wy ' w a.e., we see that w is a Borel function.
Using Besicovitch’s covering theorem, we can find a constant C'(n) depending only on n and

balls V;, i € N such that every point from f(Dy) belongs to at most C'(n) balls V;, f(Dx) = U Vi
i=1

and for every i € N there exists open, bounded and disjoint sets U;; such that U;; C Dy,
_ J(3)
f|Ui; : Uyj — V; is a homeomorphism for j = 1,...,5(i) and f~'(V;) N Dy € U Uj;. Tt also
j=1
results that every point from Dy belongs to at most C(n) sets U;;, i € N, j =1,...,5(7). We
shall denote from now on by C'(n) the constant from the theorem of Besicovitch.

Let g;; : Vi = Uj; be the inverse of f|U;; : Uj; — V; for i € N, j = 1,...,7(¢) and let
thg,; = B(Vi) = [0, 00] be the set functions defined by s, (F) = pn(gi5(F)) for F € B(V;), i € N,
j=1,..,74(i). Since f is ACL, the first partial derivatives of f exists a.e. and in such a point
x we set f (z) to be the linear map given by the matrix

0fi
(&cj (7))ij=1,..n-

Let us show that L(z, f) < Q(n,q)|f (x)| a.e. in D, where Q(n, q) is a constant depending
only on n and ¢ and Q(n,q) =1 if ¢ > n. (1)

Suppose first that f is differentiable in x. We can easy see that L(z, f) = |f (z)| and
suppose now that ¢ > n. Since f is ACL?, we see from Thereom 5.21, page 129 in [13] that f
is a.e. differentiable and we can take the constant Q(n,q) = 1 if ¢ > n.

Suppose now that n — 1 < ¢ < n. We see from relation (4.3) in [21] that there exists a
constant C'(n, q) depending only on n and ¢ such that if u € W19(D) is monotone, z € D and
B(z,2r) C D, to have that

(osc(u, f(:ﬁ, r))

)7 < C(n, ) f 1Vl (y)dy 2)
B(x,2r)

Let x € D\ By such that the first partial derivatives of f in z exist and lin(1) £ 1f (y)|dy =
r B(z,r)
|f'(x)]?. Since x € D\ By, we can find r, > 0 such that B(z,7,) C D and f|B(x,r,) :
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B(z,r;) — f(B(x,r,)) is a homeomorphism, hence the components fi, ..., f,, of f are monotone
functions on B(z,r,). Using (2), we have

fily) = fi($)|q < (OSC(fi,B(xyr))

ly — | r

)7 < Cn.q) f V£l dy =

B(z,2r)

=C(n,q) ][ > gij (v)*)2dy = C(n, q) ][ |f ()" (es)|dy <

Baar) =1 B(z,2r)
<Clua) f IF @) Pdy=Clna)  1f Wl'dy
B(z,2r) B(z,2r)

fori=1,. nyES(:Br)and0<2r<rx.
Then @)= f(z)[? Z i) —fi(=)|? < nC(n,q)

2
q
ly—z|? ly— x|2

( f Ifly )!qdy) for y € S(x,r) and 0 <

B(z,2r)

2r < r, and for 0 < 2r < r, fixed, we see that L(x, f) < /nC(n, q)%( f |f‘(y)|‘1dy)§. Letting
B(z,2r)

now r — 0, we find that L(x, f) < Q(n,q)|f (z)], where Q(n, q) = \/ﬁC’(n,q)% ifn—1<q¢<n
and (1) is proved.
Using Theorem 24.5 in [50], we see that

/ y)dy < C(n 2/

f(Dk) lZIVZ 7=l
ZZ/ (z, f)idz < C(n /foqu<
=1 j= 1 Dy,

< Q(n, q)"C(n)’ / 1 ()| = C(n)n3C(n, q) / 1 (@0)]1dr < oo

for every k € N, hence

/ wr(y)dy < C(n)n3C(n, q) / F @) forkeN  (3)

f(Dx)

Let T' € A(D), let A = {v € T'|y is rectifiable and f o ~? is absolutely continuous} and let
n € F(f(I'). Let p: R" — [0,00] be defined by p(x) = n(f(x))L(z, f) if x € D, p(z) =0
otherwise. We see from Theorem 5.3, page 12 in [50] that p € F(A) and using Fuglede’s
theorem (see Theorem 28.2, page 95 in [50]), we see that M,(I') = M,(A).

Suppose first that condition a) holds. Since every function g;; satisfies condition (N), we
see that every set function s, is absolutely continuous for ¢ € N, j = 1,...,5(¢). Using Lemma
1, we have:

/p(:v)qu:/ (f())L(z, f)dz < C(n i]Zj/ NIL(x, f)idz =

10



=3 [0S Lo w). iy, () =

=1

=c) Y [nwratiy < c@? [ty < ) [ty
Vi

=1y B B

Suppose now that condition b) holds and that ¢ > n — 1 and J; € L;,.(D). We see from
Theorem 5.21, page 129 in [13] that f has a.e. a weak differential and let Ey = {x € D|f
has not a Weak differential in x}. Since f satisfies condition (N), we see that p,(f(Ef)) =0
and let Z; = {& € D\ Ey|Js(x) = 0}. Using Theorem 5.6, page 110 in [13], we find that
pn(f(Zg)) = 0. Let hy; = Vi — R™ be defined by hy;(y) = g¢i;(y) for y € Vi \ f(E; U Zy),
hij(y) =0fory € Vin f(EfUZy), i €N, j=1,...,5(i) and let py,, : B(V;) — [0, 00] be given
by iy (F) = in(his(F' 0 (Vi \ F(Ey U Zp) for F € BVi), i € N, j = 1,...,j(i). Let i € N
and j € {1,...,5(7)} be fixed and let B C V; \ f(E;U Zf) be a Borel set such that p,(B) =0
and A = hy;(B). Since f satisfies condition (N) and f € W,2!(D,R"), we can use the change

loc

of variable formulae (3) from [15] to see that fJf Ydz = p,(f(A)) = un(B) = 0, and since

Je(x) # 0 for every = € A, we see that un(A) = 0. We showed that pp,(B) = pn(hij(B)) =
pn(A) = 0 for every B € B(Vi \ f(EfU Zy)) with p,(B) = 0, and this shows that all the set
functions pup,,, are absolutely continuous for i € N and j = 1,...,j(i). Also, ,u‘hij exists a.e. in

Vi b, () < by, (y) ace. in Vj fori €N, j=1,...,j(i) and L(x, f) = 0 a.e. in Z;. We have

oo]l)

[ ot = [nsyrn, prae < cm 303 / Yo =
Z n(f(x)!L(z, f)!dx = (using Lemmal) =
=\ Euzy)

C Y2 [ n b)) s 0). 1w, )iy <
i=1 j=17,
0 3(3)
<C S [0S Lol £)m, 1)y =
=)y [ nlwentidy < Co* [ o) ento)dy < C? [ )iy
i=1§, Rn Rn

If condition b) holds and f is a.e. differentiable, we replace the sets Ey and Z; by Ey =
{z € D|f is not differentiable in x} and Zy = {z € D\ Ef|J;(z) = 0}. Then p,(f(Ef)) = 0 and
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using Sard’s lemma from [3], we see that 1, (f(Zy)) = 0, and we use now that same argument
as in the second step of the proof. In all this cases we proved that

[ playias < c? [ nto)yto)dy sor cvery ke N (1)

Dy R

Letting k — oo in (4), we see that

M,(T) = My(A) < / p(e)idz < C(n)’ / n(y) " (y)dy (5)

Rn R"l
Letting & — oo in (3), we see that [ w(y)dy < C(n)*n2C(n,q) [|f (z)|%dz < oo, and since
R™ D
n € F(f(I')) was arbitrarily chosen, we see from (5) that
M,(T) < C(n)*M(f(I))

for every I' € A(D).
Corollary 1. Let n > 2, D C R" a domain, f : D — R" be ACL" such that [ |f (z)["dz <
D

oo and p,(Bf) = 0 and suppose that one of the following conditions hold:

a) Ji(z) # 0 a.e. in D.

b) pn(f(By)) = 0 and there exists p > 0 and K : D — [0, 00] measurable and finite a.e.
such that L(x, f)? < K(z)|J(x)] a.e.

Then there exists w € L'(R") such that M,(T') < C(n)>M"(f(T)) for every ' € A(D).

Proof. Suppose first that condition a) holds. Let U C D \ By be a domain such that
fIU : U — f(U) is a homeomorphism. Then i(f, x) is constant on U and if f is differentiable
in z and J¢(z) # 0, then i(f,z) = sgnJs(x) and this implies that either J¢(x) > 0 a.e. in U,
or Jy(z) <0ae inU. Let g= f~': f(U) = U. We see now from Theorem 5.32, page 142 in
[13] that ¢ satisfies condition (V) and we apply Lemma 2.

Suppose that condition b) holds. We see from [33], page 190 that f satisfies condition (V)
and is a.e. differentiable on D \ By and since p,(f(By)) = 0, we see that f satisfies condition
(N) and is a.e. differentiable on D. We apply now Lemma 2.

Lemma 3. Let n > 2,1 < g <p, D CR"” be open, let f: D — R"” be ACL? such that
there exists K € L¥/®~9(D) such that L(z, f)P < K(x)|J¢(z)| a.e. and let w : R™ — [0, 00] be
defined by w(y) = N(y, f, D) if y € f(D), w(y) = 0 otherwise. Then w is measurable and if

p—

w is finite a.e. and C' = ([ K (2)9/®Ddx)"7" it results that M, (') < CME(f(I))%? for every
D

I' € A(D). Also, if f satisfies condition (N) and J; € LY(D), then [ w(y)dy < co.
Rn
Proof. Let T' € A(D), let A = { € I'|y is rectifiable and f o~ is absolutely continuous}
and let n € F(f(I')). Let p : R — [0,00] be defined by p(z) = n(f(z))L(x, f) if x € D,
p(x) = 0 otherwise. Then p € F(A) and using Fuglede’s theorem, the change of variable
formuale (3) from [15] and Holder’s inequality, we have:

M(I) = My(A) < / plz)idz = / 0(f(2)' Lz, f)idi <
< / n(f ()T ()P Ty ()P < C( / n(f ()P ()| da) /7 <
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< / Ny, £, Dyn(y)Pdy)? = O / w(y)n(y)Pdy) .

Rn

Since n € F(f(I')) was arbitrarily chosen, we find that M, (I" ) CMPE(f(I))%? for every
I' € A(D). If f satisfies condition (N) and J; € L'(D), then [ w(y)dy = f Jr(z)dr < .
Rn
Example 1. Let a > 0, f : R? — R2, f(x,y) = (2%cosy,z® s1ny) if x>0,y € R,
f(z,y) = f(—x,y) if z < 0 and y € R. Then f is continuous on R? and f differentiable in
x® 1( acosy asimy ) if z > 0 and
—xsiny xcosy
y € Rand Jy(z,y) = az®*tifx >0,y € R, Jp(z,y) = —a(—x)** 1if 2 < 0, y € R, hence
Ji(z,y) = asgnz|z/** Lif x £ 0, y € R. Also, |f (z,y)]? < 2@ V(@ +a?) ifx £ 0,y € R,
hence |f'(z,y)| < V2ifx #0, |z <land 0 < a < 1.

Let now D C R"2 be a domain, k € N, G = D x (—=1,1) x (=2kn,2km). Let F : G — R"
be defined by F(z1,...,2,) = (V221, ..., V220, f(0n_1,7,)) if © = (21,...,2,) € G and let d =
{z € Glzy_1 = 0}. Then F € C(G,R"), F € C®(G\ d,R") and Jp(z) = 2"% Jp(2n_1,2,) =
a2"% sgnn_1| e |2V if x € G\ d.

Let now z € G\d, 0 < a < 1 and a € R" such that |a| = 1. Then |F'(z)(a)|*> =
(V201 .., V202, [ (01, 20) (an-1,a0)) > < 203 + ... + a2 + | [ (@1, 20)[P(02_, + a2) <
2(a? + ... +a?) = 2 and we see that |F'(z)| = v/2 and that F' € ACLY(G).

Suppose now that n > 2, ¢ >n—1, 0 < a < 2"—q < 1. We see that Br = d, that

N(f,G\ d) = 2k, that Ko,(F)(x) = 8L = 2 if 2 € G\ d, that Jp(z) > 0 if
r€G\dand z,_; >0 and Jp(x) <0if x € G\ d and x,_1 < 0. It results that F' is not open

and is not of finite distortion. We have‘

every point (z,y) with z # 0. We have f'(z,y) =

q (1=2a)q n—q (p—
fKO,TL(F>(x)de = Iun_2<D)4k=ﬂ' f( )n q|xn 1| 1"2q daj’n_l — #n72(Dt)Z8k7r2 (n—q) < 0.
G

1 anr=1(n—2aq)

Let C = ([ Ko,n(F)(x)n%qu)% and let w : R™ — [0, 00] be defined by w(y) = N(y, F,G) if
e

y € R". We see from Lemma 3 that M,(I') < C(M"(f(T))%™ for every I' € A(G) and we find
that M, ([') < C(2k)Y™ M, (f(T))¥/" for every I' € A(G).

We see that a mapping F' : G — R" having alternate Jacobian sign which is not open or
with finite distortion, and has no monotone components satisfy a modular inequality similar to
those used in this paper. We can take G = B(0, 1).

4 Some relations between (¢, a)-lower capacity density
and the lower radial density.

Lemma 4. Let ¢ >n — 1, C = Cp, e1,5 = {z € R"[z; > 0} and let E C C be a F, set such
that rad dens (E,0) = § > 0. Then there exists a constant K (n,q,d) depending only on n, ¢
and 0 such that cap,dens(C, E,0) > K(n,q,0) > 0.

Proof. We set A, = {t € [0,7)]S(0,¢t) N E # ¢} for r > 0. Let 0 < € < § be such that
my(A,) > (6 — §)r for 0 < r < 4. Let 0 < r < 0 be fixed and let K, C E be compact such
that if B, = {t € A,|S(0,t) N K, # ¢} to have that m(B,) > (§ —e)r. Let F, = {z € R"|
there exists ¢ € B, such that z = te;} and let P, = {z € R"| there exists y € K, such that
z = —y}. The sets F, and K, are compact sets and we see from Theorem 7.5 in [45] that
cap,(B(0,2r), K, U P.) > cap,(B(0,2r), F,). Using Ziemer’s result from [58] and Lemma 5.22
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in [57], we have:

M (A(ENB(0,7)),S(0,2r)NC, B(0,2r)NC) > M,(K,NB(0,7),5(0,2r)NC, B(0,2r)NC) >

> %MQ(A((KT U P,) 0 B0, ), S(0,2r), B(0,2r)) — %capq(B(O, o), Ky U P) >

—_

2§capq(B(O,2r),Fr):%Mq(A(Fr,S(O,2r),B(O,2r)) S M) (A(F,, S(0,2r) N (B(2e1, 7, 2r)\

DO | —

\B(2e17,7)), B(0,2r)) N (B(2eyr,2r) \ B(2e1r,7)).

Let @; be the spherical cap S(2eyr,t) N B(0,2r) for r < t < 2r and let C, = {s €
(0,2r)| there exists ¢ € B, such that s = 2r —t}. Let p € F(A(F,,S(0,2r) N (B(2eyr,2r) \
B(2ey7,7)), B(0, 2r)N(B(2e17, 2r)\ B(2e;17,7))) be such that p = 0 on C((B(2e17, 2r)\ B(2e;7,7))).
Then p|Q; € F(A(F, N Qy, S(0,2r) N Qy, Q) for t € C,.

Suppose that ¢ # n. Using Theorem 3 in [2] we find a constant Q(n,q) depending only on
n and ¢ such that [ p(2)%ds@e,rt) > Qna) g every t € C,. We have

= ta— Fq—n+1
S(2eqm,t)

2r

/ p(2)dz = /( / p(2)1ds(2erp))dt >

B(2e17,2r)\B(2e17,r) T S(2e1mt)
dt _ mi(C)Q(n,q)
2/( / p(Z)qu(Qelr,t))dtZQ(nvq)/tq_n+1 2 1(2r)q—n+1 -
Cr S(2eim,t) Cr
_mu(B)Rnqg) (0 —e)rQ(n,q) _ (0 —)Q(n,q)

(QT)qfnJrl 9g—n+1pg—n+1 2g—n+1

Letting € — 0, we find that M,(A(E N B(0,7),5(0,2r) N C, B(0,2r)NC) > K(n,q,8)r" 9
for 0 < r < p, where K(n,q,d) = ‘;?,(Zfl) It results that cap, dens(C, E,0) > K(n,q,d) > 0.

If ¢ = n, we apply the proof from Lemma 14.11 in [57].

Lemma 5. Let n > 2, ¢g>n—1, 2 € R", 0 <¢ < p < 7, da half line ending in z, let
C = Cyap, let v:[0,1] = Cy 44 be a non-constant path such that %i_{%’y(t) =z, let E = Imy

and a = %sin(gp — ). Then there exists a constant Q(n,q,a) depending only on n,q and a
such that cap,.dens(C, E,x) > Q(n,q,a) > 0.

Proof: Suppose that £ N S(x,r) # ¢ for 0 < r < 2p. Let 0 < r < p and let ¢, > 0 be
such that v(¢,) € S(z,r) and v([0,t,)) C B(x,r), Let y = 7(¢,) and let w be a point on the
line determined by the points = and y such that |w — y| = ar and w ¢ [z,y]. We see that
B(w,2ar) C C and that S(w,t) N E # ¢, S(w,t) N S(z, (1 +a)r) # ¢ for ar <t < 2ar.

Suppose that ¢ # n. Using Theorem 4 in [2], we see that M, (A(B(x,r)NE,S(z, (1+a)r)N
C,B(z, (1+a)r)NC) > My (A(ENB(z,7)N(B(w, 2ar)\ B(w, ar)), S(z, (1+a)r)N(B(w, 2ar)\
B(w,ar)), B(z,(14+a)r)N B(w,2ar)\ B(w,ar))) = M,(A(EN(B(w,2ar)\ B(w,ar)), S(z, (1+
a)r)N(B(w,2ar)\ B(w,r)), B(w,2ar)\ B(w,ar)) > C(n,q)((2ar)"~?— (ar)"~%) = C(n, q)a" 4
(2"7 — 1)r" % for 0 < r < p. We take now Q(n,q,a) = C(n,q)a""%(2""7 — 1) and we see that
capg.dens(C, E,x) > Q(n,q,a) > 0.

If ¢ = n, we apply a similar argument.

Remark 1. Using the proof of Proposition 18 in [2], we see that if n — 1 < ¢ < n, then

M, (A(B(z,r)NC,S(z,(1+a)r)NC, B(x, (1+a)r)NC) = C(a, n)/(r% —((1 +a)7’)31%11)‘1_1 =
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K(n,q,a)r" % where C(a,n) is a constant depending only on n and a and K(n,q,a) =
C(a,n)/(1 — (1+a)1)7L It results that cap, odens(C,C,z) > K(n,q,a) if ¢ # n.

Also, cap, .dens(C,C,z) > C(a,n)/(In(1 + a)"~!, where C'(a,n) is a constant depending
only on n and a.

Remark 2. Let C = {z € R"|z; > 0}, £ = U (S(0, %) N C) U {0}. We can easy see that

) 2k

rad deus(F,0) = 0 and cap, deus(C, E,0) > 0 for every ¢ >n — 1 and every 0 < a < 1.

5 Proofs of the results.

Theorem 1. Let n > 2, p,g > 1, a,b,A >0, 0< 6 < 1, m > Z%Jrlb, f:B(0,1) = R" be
q

continuous, let 7, = 1 — 5’“" Qk = B(0,7k4+1), wi : B(f(Qr)) — [0, 00] Borel functions finite
ae. for k € N, let ap = ([ wi(2)dz)'/P and Mk > 0 such that M, < a/6* for every k € N
F(Qr)

and suppose that My(T') < M(ME (f(T)))* for every T' € A(Qy) and every k € N and that

S a6 < oo. Then f has a.e. radial limits.
k=0

Proof. We define for y € S(0,1) and & € N the path v, @ [r%, 7%4+1] — R™ given by
Yy(t) =ty for t € [rg, 11] and let ko € N be such that r, >  for k > ko. Let 4, = {y €

S, D)|d(Im(f o yyx) > apd®} and Ty, = {y4ly € Ag} for k € N and let n, = —Lx X (g, for

a6k

k € N. Then n, € F(f(T')) for k € N and we see that Mp (f(T'y)) < an wi(2)me(2)Pdz = 67+

for kK € N. Let pp € F(T'x) and let us fix k > ko. Since rp > l for £ > kg, we see that

Tk+1
i tetdt < 201 (rp41 — ) and using Holder’s inequality we find that

Tk

et et g
1< / prds = / pr(ty)dy < (/ pk(ty)qt”‘ldt)é(/ tetdt)' T
Yy, k Tk T -
Then
o~
1<2" gy — )7t / pr(ty) it 1dt for everyy € Ay, k > ko (1)

Tk

Let D = (0,7)" 2 x (0,27r) € R"! and let 6 : (0,00) x D — R" be the polar coordinates in

R™ and let ¢ : S(0,1) — [0, 00] be a Borel map. Then [ g(0(1,2))|Jp(1,z)|dz = [ g(y)dso)
D S(0,1)
Tk+1
and let us take g : S(0,1) — [0,00] given by gr(y) = [ pi(ty)%"dt for y € S(0,1) and

Tk

k > kg. Then
/gk(y)dS(o,n < / gk(y)ds(o,l) z/gk(ﬁ(l,:v))!Je(l,x)ld:cz
A S(0,1) D
Tk+1 Tk+1
:/(/ pk(tﬁ(l,a:))qt"ldt)\Jg(l,x)]dx:/ / ok (0t )7 Jo(t, 2)|dtder <
D 7 D 1
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< /pk(z)qdz

Rn

and integrating (1) over y € Ay, we find that

fin-1(Ag) < 277 (rppy — ) ?? /gk(z)dS(O,l) < gnlghmia=1) /pk(Z)"dZ-

Ay, R™
Since pi € F(I'y) was arbitrarily chosen, we find that
,un—l(Ak) S 2n—15km(q—1)Mq(Fk) S 2n—1Mk5km(q—1)(M£k(f(l—\k))>)\ S 2n—1a5k(m(q—l)—b—p)\)
for k > ky. Let t = 6™(@~1D)=0=PA We proved that

tn—1(Ag) < 2" Lotk for k > ke (2)

Let [ > ko. Then t,—1(U Ar) < 3 ptn1(Ay) <27 la 3 th = 229 5 0if | — oo, Let
k=l k=l k=l

A ={y € 5(0,1)| there exists 111111 f(ty) € R™}. Since > apd® < oo, we see that if [ > ko and
- k=l

y € C( Ap), it results that y € A, and this implies that CA C |J Ay for every [ > ky. Then
k=1 k=1

pin-1(CA) < pin_ 1(U Ap) < 2= 1“tl — 0if | — oo, hence j,,_1(CA) = 0.

The proof of Theorem 2 results immediately from Theorem 1.
Theorem 3. Let n > 2, ¢g>n—1, f: B(0,1) — ]R" be AC'L? such that pn(By) =0, let

0<d<1, m>—rk:1—6km,Qk:B(O,m+1 f]f ]qdz a for k € N be such

1°?

that > Br6% < oo and suppose that one of the following conditions hold:
k=0
a) f has locally inverses on f(D \ By) which satisfies condition (V).

b) f satisfies condition (N), there exists p > 0 and K : D — [0, 0o] measurable and finite
a.e. such that L(z, f)? < K(x)|J;(z)| a.e. and either J; € L}, (D) and ¢ > n — 1, or f is a.e.
differentiable.

Then f has a.e. radial limits.

Proof. We see from Lemma 2 that there exists Borel functions wy : R" — [0, o0] finite
a.e. such that M,(I') < MJ (f(T')) for every I' € A(Qy) and every k € N and we also see from

the proof of Lemma 2 that [ wi(2)dz < n3C(n)*C(n,q) f |f'(2)|%dz for every k € N. Let

f(Qk)
( [ wil(z v for k € N. We see that Z a;6% < 0o and we apply now Theorem 1, with
f(Qk k=0
p=qg, A=1,b=0,a=1.
Proof of Theorem 4. Let A > 1 be such that a = <! and let <m < 2L Let

T 1 q
e = 1 —=30" Qr = B(0,7%41) and oy = f |f(2)]9dz)a for k € N Then a < £ and

let M > 0 be such that [ |f(2)]%(1 — |z|)adz < M < oco. Then g*+me [ £ (2)|9dz <
B(0,1) Qk

f |f(2)|%(1 = |z])*dz < M for every k € N, hence ([ |f (2 \qdz) < (5%)% o for every
Qk 6 4
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k € N. We see that > apd® < (5,%)% S 6% < oo, where ¢ = 1 — =% > 0. We apply now

k=0 k=0
Theorem 3.
: alp—q) | B
Proof of Theorem 5. Since % + 21 < g — 1, we see that m < £ and

we choose m € (qftllw,ﬁ). Let 0 <0 < 1,7, =1—06" Qp = B(0,r441), My =

([ K(x)e/®- qdac) 7 for k € N and let wy, : R™ — [0, 00], wi(y) = N(y, f, Q) fory € N, k € N.

Let o, = f wi(y for k € N. We see from Lemma 3 that M, (') < Mk(ijk(f(F)))% for

F(Qk)
p—q _—km(p—q)a
every I' € A(Qy) and every k € N and usmg the hypothe31s we see that M, < (5%) N

for every k € N. We also see that Z ot < % Z SR < 00, since 0 < mTﬂ < 1. We
= d P k=0
take A = 4, p = me=a 02” Jo v <p % in Theorem 1 and since %ﬁb =L + mp—ga -y
P p T q q p(g—1)
we can apply Theorem 1 to see that f has a.e. radial limits.

Theorem 6. Let n > 2, p,q > 1,1et f: B(0,1) — R™ be continuous, let ¢ € R™ be such that
mn—o(f71(c)) =0, let v, : [O 1) — R” be defined by ~,(t) =ty for t € [0,1) and y € S(0, 1), let
E={y e 5(0, 1)]c is a limit point of f o, :[0,1) = R"} and let w, : B(f(B(0,7))) — [0, ]
be measurable and finite a.e. for 0 < r < 1. Suppose that

1) there exists ¢; > 0 and § > 0 such that [ w,(2)dz < < o for 0 <r < 1.

F(B(O,r))

2) there exists A,v,co > 0, @, > 0 such that Q, < )
Q- (ME (f(I)))* for every T' € A(B(0,r)) and every 0 < r < 1.

) v+ AF<qg—1.

Then p,—1(E) = 0.

Proof. Suppose that p, 1(E) > 0, let m = ¢—1—~—pX > 0 and % < a < 1. Let
A = {z € B(0,a) \ B(0,%)] there exists y € S(0,1) such that Im(v,|[%,a]) N f~'(c) # ¢}.
Then, since m,,_»(f~!(c)) = 0, we see that m,,_1(A) = 0. Let B = {y € S(0,1)| there exists
z € Aandt € 0,1] such that z = ty}. Then also m,,_;(B) = 0 and since B is compact, we can
find pp > 0 small enough such that if By = {y € S(0, 1)|Im(fyy|[ al) N f~Y(B(e, po)) # ¢}, to

have that p,_1(By) < “”‘I(E) Let E_y = E\ By. Then 24, 1(E) < pin-1(E_1). Let ro = a,

let a = (zn 16?5;):0* and we chose 6 > 0 small enough such that if d = (367”)PA to have that

f‘i—ad < poand a < 1 —06% Let r, = 1 — 6! for £ > 1andletb:p0—1dfad > 0. Let
Yoo = VyllTks Tht1] for & > 0 and y € S(0,1). We chose pg > p1 >,....;> pr. > Pr41 >, ..., such
that pp — pry1 = ad® for k > 0. Then py — pp, = da(1+d+, ..., +d*71) for k > 1, hence p, — b

andpk>§for/~c2().
_ k—1
Let By = {y € E\ BolImf or,o0NBle,p1) # ¢} and let £y, = {y € E_; \ U Eillnf o
i=0

Yyk N B(c, pry1) # ¢} for k > 1. There exists 49 € N such that E;, # ¢. Indeed, otherwise
Imf o, NB(e,py1) = ¢ for every y € E_; and every [ > 0, hence f(v(ty)) & B( ¢, 2)) for
every t > rg and y € E_;. We reached a contradiction, since y € E_; and c is a limit point of
for :[0,1) = R™ If io =0, then f o~,(ro) € B(c,po). If i, > 0 and y € E;, since £, = ¢
for every I € {0,1,...,ip — 1}, we see that Imf o~y,; N B(c,pip1) = ¢ for 1 € {0,1,....45 — 1}.
Taking [ = iy — 1, we see that f o, (ry,) € B(c, pi,)-

Suppose that we have iy < i1 <, ..., < iy such that E;, # ¢ forl =1,....k. Lety € E;,. Then
y & E;_,, hence Imfor,,  NB(cpi +1)=¢. If iy, =i,_1 + 1, then for,(r;,) & Blc, pi,)-

for0<r<1andM(F)
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If not, since E; = ¢ for | € {ip—1 + 1,. — 1}, we see that Imf o~,; N B(c, pii1) = ¢ for
l € {ir—1+1,...,ip — 1} and taking [ = zk 1 we find that Imf o, (r;,) & Blc, pi,)-

We proved that if By # ¢ and y € Ey, then foy(ry) & B(c pr) and since also Imf o
Yyk N B(e, pri1) # ¢, we see that for such k € N, f oy, meets B(c, pr11) and CB(c, pi). Let
Uy = {wxly € Ex} for k> 0.

Let k € N be such that Ej # ¢. Then ny = 5— —Xf(B(0,r..1)) € F(f(I'y)), and we see from

Theorem 1 that g, 1(Ey) < 2" (rgy1 — 7)7 My (T'y). We have

/Lnfl(Ek) < 2nil(?“kﬂ - Tk) "M, (Fk) < 2" Lytkria= 1)QT19+1( M, (f(rk)))/\

Wrg41
o L 2n71025(k+1)(q717'y)
< 9 leyg kDo / W V()0 d2)" = = = Wrpa (2)d2) =
R F(B(Ork41))
_ 2nflci\025(k+1)m Hn— 1(E> 1 o Mn—l(E)

9on— 10102 (35m) (k+1) —  3k+1
for kK > 0.
Since o 1(U Er) < pai(B) Y gt = L2 < i, ((E_y), we can find a point y €
k=0 k=0

E 1\ Y Ep. Then Imf o, N B(c, prr1) = ¢ for k > 0, hence Imf o, N B(c, g) = ¢ for
k=0
every k > 0 and this implies that f(y(ty)) & B(c, %) for t > ry. We reached a contradiction,
since y € E and c is a limit point of fo~, : [0,1) — R™. We therefore proved that p,_1(E) = 0.
The proof of Theorem 7 results immediately from Theorem 6.

Proof of Theorem 8. Let M = [ |f(2)]9(1—|z])*dz. We see from Lemma 2 that there
B(0,1)
exists Borel functions w, : R™ — [0, oo such that M,(I") < Mg (f(I')) for every I € A(B(0,7))

and every 0 < 7 < 1 and we also see that [ w,(2)dz < n%C’(n)QC’(n,q) [ 1f(2)]%d=

f(B(O,r)) B(0,r)
for every 0 < r < 1. We see that (1 —n)* [ [f(2)]%dz < [ |f(2)|%(1 - |z])*dz < M for
B(0,r) B(0,r)

0 <7 < 1and we find that [ w.(2)dz < %2)”‘1) for every 0 < r < 1. We apply
f(B(O,r))
now Theorem 6 with p=¢q, v=0, A = 1.
Proof of Theorem 9. Let w, : B(f(B(0,r))) — [0, o0] be given by w,(y) = N(y, f, B(0,7))

fory e R"and 0 <r < landlet Q, = ( [ K(z)®=9dz)5" for 0 < r < 1. We see from

B(0,r)
Lemma 3 that M,(I') < Q,(ME (f(I'))¥? for every I' € A(B(0,7)) and every 0 < r < 1 and
using the hypothesis, we see that @, < % and [ w(2)dz < Ty 7 for 0 <r < 1.
(I=r) P (B(O 7"))
We take A = £, = a(p—q and we see that v + S\ = p 9) + 8% < ¢—1 and we apply now

Theorem 6 and we see that pn—1(E) = 0.

Remark 2. The condition "m,,_s(f~!(c)) = 0” from the preceding theorems holds if f~*(c)
is discrete.

Remark 3. Suppose that we take in Theorem 5 or 9 p = 2¢. Then, condition 2) is ”there

exists co > 0 and o > 0 such that f K(x)dx < (1fj)a for every 0 < r < 1”7 and condition
B(0,r)
3)is "a+ f < 2(q—1)". Also, if we take p =n, ¢ =n — 1, then condition 2) is ”there exists
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¢z > 0and a > 0 such that [ K(z)""'dz < %5 for every 0 <r < 17 and condition 3) is
B(0,r)
"a+(n—1)8 <n(n—2)".
Proof of Theorem 10. We can replace B(0,1) with B(%, 3). Let E = {y € S(%, ;)| has
no asymptotic value at y} and suppose that there exists F' C E compact such that cap,(F) >
0. Let K = B(%,1) and let Iy = A(K, F,B(%,2)). We show that M,(Ty) > 0. Let

271
[y = AF,S(%,2), B(%,2)), I'y = A(K,S5(%,2), B(%,2)) and let 6; = M,(I';) for i = 1,2.
Since capq(F) > 0, we see that & = capy(B(%,2),F) > 0 and we see from Proposition 18
n [2] that also do > 0. Let p € F(I'y). If 3p € F(I'1) or 3p € F(I'2), then [ p(x)%dx >
R”
3 min{d;, 45} In the remaining case, there exists y; € I'; such that [ pds < 5 for i = 1,2. Let
Vi
T3 = A(Imyy, Imye, B(%,2) \ B(%,1)). Then 3p € F(T'5) and using Caraman s result from

Theorem 4 in [1], we see that d3 = M,(I's) > 0. We proved that M,(I'g) > 5 Lmin{dy, da, 05} > 0.

Let I' = A(K, F,B(%,3)). We want to show that M,(T") > 0, We see from Theorem 19

in [2] that the ¢ modulus of all paths passing through some points in R” is zero, hence we
can take r > 0 small enough such that if I'y = A(K, F'\ B(ey,r), B(en,2) \ B(en, 1)), to have
that M,(T'y) > 0. Let I's = A(K,F \ Blen,r), B(2,%) \ B(en,r)). Let us show first that

—°2 T Y 272
M,(T'5) > 0. Let f : R* — R” be the inversion given by f(z) = e, + T if x # e,

f(e,) = o0, f(o0) = e,. Then f is a homeomorphism, f = f=1 f(S(2,1)) = R”_l, and if

H = {z € R"|z,, < 0}, we see that f(B(%,3)) C H. Let D = {x € R”\ﬁ <2]91; —e,| < 2} and
let G ={y eR"5 <|y—en| <21} Then f(D)=G and |f (z)| = |z —e,| 2 if © # e,.

Let n € F(f(I'y)) and let p : R* — [0,00], p(x) = n(f(z))L(z, f) if z € D, p(z) = 0 if
x ¢ D. Then p € F(I'y) and

M,(y) < / pla)id / V@)L e = [ 9@ @ e <
< 220 [op(f(a)!| g (2)|de = 22079 [ p(y)tdy < 22070 [ p(y)idy.
e / /

Since n € F(f(T'y)) was arbitrarily chosen, we proved that M,(T'y) < 22=9M,(f(Ty)).

In the same way we see that M,(f(T5)) < r 290 (T5). Let I = A( (K), f(F\
B(en, 7)), R™). Then f(I';) C I and we can take r > 0 small enough such that M,(f(Ts)) >
M,(f(K), f(F\ B(es,r)), H). Using Lemma 5.22 in [57], we have:

1
2

r2(n—q)

M,(I's) = r*"= DM, (f(Ts)) = 5 Mf(K), f(F\ Blen,r)), H) 2

7,.2(77,7(]) . TQ(nfq) ]_ r 2(n7q)
> DM () 2 T M(£(T0) 2 (520 M (T) > 0,

We proved that M,(I's) > 0 and since I's; C I, it results that M,(I') > 0. If ¢ = n, we can
prove that M, (I") > 0 by the method from Lemma 14.7 in [57].

Let po : R™ — [0, oo] po(x ) = 0 for every x € R". Then py € F(¢) and since w < oo a.e.,
we see that 0 < MI(¢ f r)%dz = 0, hence Mi(¢) = 0.

Let I, = {y € F|7 is rectlﬁable} and let T, = {38 € f(I,)|3 is rectifiable}. We see
from Lemma 3 in [7] that ME(T,) = MP(f(T,)) and we see that 0 < M, (T) = M,(T,) <

Y(ME(f(T'1))) = y(ME(L,)).
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It results that I', # ¢, hence there exists v € T, such that f o is rectifiable and this
contradicts the choice of F. We therefore proved that cap,(F') = 0.

Proof of Theorem 11. We see from Lemma 2 that there exists w € L'(R") such that
M,(I') < M2(f(I')) for every I' € A(B(0,1)) and we apply Theorem 10.

Proof of Theorem 12. Let C = ( [ K (z)?®=9dz)"5" . We see from Lemma 3 that
B(0,1)

M,(T) < CM,(f(T))¥? for every I' € A(B(0,1)) and we apply Theorem 10.

Proof of Theorem 13. Suppose that G is finitely connected at two distinct points by, by €
C(f,b). Let V4 € V(by), Va € V(by) be such that V4, V, are compact, disjoint sets and let x; — b,
y; — b be such that f(x;) — by, f(y;) — ba. Taking if necessarily a subsequence, we can find
a component Iy of V4 NG such that f(z;) € Fy for j € N. Using Lemma 3.2 and Lemma 3.6
from [51], we see that f~(F}) has a finite number of components which are mapped by f onto
Fy, and taking if necessarily a subsequence, we can find a component E; of f~!(F}) such that
f(Ey) = Fy and z; € B for every j € N. In the same way we can find a component F of
Vo NG and a component Fy of f~1(Fy) such that f(Fsy) = Fy and y; € Es for every j € N.

Using Lemma 2, we can find w € L'(R") such that M,(T') < C(n)>M"(f(T)) for every
[ € A(D). Let Ty = A(Ey, Ey, D). Since b € E; N Ey and D is quasiconformally flat at b, we
see that M,(I'g) = co. Let h = d(V1,V5) > 0 and let p = 4. Then p € F(f(T'y)) and we find
that co = M, (Ty) < C(n)*M2(f(Ty)) < C(n)? [ p(z)"w(x)dx = % [ w(x)dr < oo and we

R® R®
reached a contradiction. It results that C(f,b) contains at most one point at which G is finitely
connected.

Proof of Corollary 2. We see from Corollary 1 that there exists w € L*(R") such that
M,(T) < C(n)>?M"(f(I")) for every I' € A(D) and we apply the same arguments as in Theorem
13.

Proposition 1. Let n —1<g<n,p>1,A>0,p>0,0< ¢ <p< %,a:%sin(go—w),
let D C R™ be a domain, d a half line ending in = such that C, 4, N B(z,p) C D, let K, >0
and w, : DN B(z,r) — [0,00] be measurable for 0 < r < p, let f : D — R™ be continuous
having monotone components such that My(T') < K, M? (f(I'))* for every T' € A(D N B(z,r))
and every 0 < r < p and suppose that lim K,.( [ w,(2)dz)*/r"% = 0. Let ¢ > 0

(e F(DNB(z,r))
and by, € Cypay,br — 0. Then there exists k. € N such that |f(y) — f(bx) < € for every
y € B(bg,alb, — z|) and every k > k.

Proof: Let us fix i € {1,...,n} and let r, = |by — x| for & € N. We can suppose that
B(by,2ary,) C Cy 4, N B(b,p) C D for every k € N and let us fix k € N. Let y € B(by, ary)
and let ap = wt2ayr, and Cp = K424y, Suppose first that fi(y) > fi(br) and let A = {z €
B(bg, 2ary)|fi(2) < fi(br)} and B = {z € B(by, 2ary)|fi(z) > fi(y)}. Since f; is monotone, we
see that S(b,t)NA # ¢, S(bk, t)NB # ¢ for |[y—bg| < t < 2arg. Let I'y = A(A, B, B(bg, 2ary) \
B(bg, |y — bg|)) and let p, = mxf(B(bmaw))- Then p, € F(f(I'x)) and B(by,2ary) C
B(z, (1 + 2a)ry).

Suppose first that ¢ # n. Using Theorem 4 in [2], we have:

C(n, q)((2ar)""" = (ark)"™") < C(n, q)((2ark)"™ =y — bp["™7) < My(T'y) <

< CpMZ (fF(T)* < Ck(/ ag(2)pr(2)Pdz) =

RTL
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Cy
| fily) — fi(br) [P

( / ak(z)dz))‘ <

f(B(bg,2ar))

Ck :
= fiy) — fi(bk”p/\( / ag(z)dz)".

f(B(z,(1+2a)rk))

(1+2@)"_qck(( ( (f : )Oék(z)ﬂlz)A
f(B(z,(142a)r
It results that | fi(y) — fi(n)|” < —me=a@ D=
This inequality is valid for ¢ = 1,...,n and also if f;(bx) > fi(y), hence we can find k. € N
such that |f(y) — f(b)| < € for every y € B(by, ary) and every k > k..

Suppose now that ¢ = n. Then

C(n)In2 < C(n) 1n(|y2f—”gk|) < M, (Ty) < CuMZ (F(D) <

Ch :
= \fi(y)—fi(bk)ym( / ax(2)dz2)" <

F(B(by,2ary))

([ e

f(B(z,(1+2a)rk))

< Ci
~ | fily) = filbr) P

and we see that o
)= F0P < ot [ aaae)
f(B(z,(1+2a)r))
fori=1,...n

We see that also in this case we can find k. € N such that |f(y) — f(br)| < € for every
y € B(by,ary) and every k > k..

Proof of Theorem 14. Suppose that ¢ # n. Suppose that there exists € > 0 and b, € C1,
br — 0 such that |f(bg) — ¢| > 3e for every k € N and let 1, = |by, — 2| for k € N. Using
Proposition 1, we can suppose that |f(y) — ¢| > 2¢ for every k € R and every y € B(b, ary)
and we can suppose that |f(y) — ¢| < € for every y € B(z,r;) N E and every k € N.

Let us fix k € N. Let By = B(by, §71) and I'yy, = A(By, S(z, (1+a)re) NC, B(z, (1+a)ry) N
('))). Using Proposition 18 in [2], we see that there exists a constant C(n, q, ¢, ) depending
only on n, q, ¢ and ¢ such that M,(T'y;) > Cyry 9. Let Toy = A(B(z,7) N E, S(x, (14+a)rg) N
C,B(z,(1 4 a)ry) N C). We can suppose that M,(Ig) > or) % Let I'y = (Bk, (x,7%) N
E,B(z,(1 +a)r,) N C) and let p, € F(Ty). If 3p, & F(T'11), 3pr & F(Ia), we can find

1

ar € Ty, Br € Ty locally rectifiable such that fpkds < 3 and f,okds < % Let I's, =

ag Bk

A(Imay, ImfBy, (B(x, (1+a)ry) \ B(z, (14 1)r,) NC)). Then 3p;, € F(I'y;) and using Theorem
4 in [2], we see that C(n,q)ry (1 +a)" 7 — (14 2)"9 < My(T'si,) < 37 [ pr(2)Pdz. We find

Rn
that

/pk(z)pdz > % min{Mq(Flk), Mq(F2k)a Mq(r3k)}

and since pp € F(I'y) was arbitrarily chosen, we find that there exists Cy(n,q, p,?,0), a
constant depending only on n,q, ¢, and ¢ such that M (I'y) > Ca(n,q,p,¢,0)r, % Let
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e = TXf(B(x,(+ayrnp)- Then ng € F(f(Ty)) and let o = wiyayr, and Qp = K(tay,. It
results that

Cory* < My(Tw) < QuME, (f(Tw))* < Qk(/ o (2)me(2)Pdz) <

RTL
Qk
< GT)\( o (2)dz2).
f(B(z,(14a)r,)ND)

We find that 0 < (1335)?_4 < Qx( i ar(2)d2)M (1 +a)ry)" 7 — 0if k — oo and
f(B(z,(14a)ri)ND)

we reached a contradiction.

We proved that lim f (z) = ¢. The proof in the case ¢ = n is done in a similar manner.

2€Cy

Proof of Corollary 4. We see from Lemma 2 that there exists ¢ > 0 and w : DN
B(z,€) — [0, 00| measurable and finite a.e. and constants @(n) and C(n) depending only on
n such that M (I') < C(n)MI(f(I")) for every I' € A(D N B(x,¢€)) and [ w(z)dz <

f(B(z,r)ND)
Qn)( [ |f(2)dz) for 0 < r < e. We apply now Theorem 1.
DnB(z,r)

Remark 4. If D = B(0,1) C R” and f € W'(B(0,1)), n — 1 < ¢ < n, we see from
Lemma 3.2 in [21] that for every € > 0 there exists U C R™ open with B; ,(U) < € and such
that lirré( [ IVf(2)]%dz/r""7 = 0 for every = ¢ U N S(0,1). Here, we denote by By 4(U)

= DNB(z,r)
the Bessel capacity of U.
Proof of Corollary 5. Let w, : R — [0, 00] be given by w,(y) = N(y, f, D N B(z,r)) if

q

y € f(DN B(z,7)), w-(y) =0 otherwise for 0 <7 < pandlet Q. = ( [ K(2)7P9dz) >
B(x,r)ND
for 0 < r < p. We can suppose that J; € L*(D N B(z, p)) and using relation (3) from [15],
we see that w, € L'(R") and we see from Lemma 3 that M,(T') < Q, M2 (f(I'))¥? for every
I € A(DN B(z,r)) and every 0 < 7 < p. We also see that Q,( [ w,(2)dz)¥?/r"~1 =
Ff(DNB(z,r))

Q.( [ Ji(2)dz)¥?/r""9 — 0 if r — 0. We apply now Theorem 1.

DnB(z,r)

We have the following consequences:

Corollary 6. Letn > 2, n—1<q¢<n,0<¢y <p <7, a= %sin(gp—z/}), D C R"™ a domain,
x € 0D, d a half line ending in x such that there exists p > 0 such that C, 4, N B(z,p) C
D, let C = Cy44, C1,Cray and let E C Cy be such that cap,.dens(C,E,x) > 0. Let
f: D — R® be ACL" on D be such that there exists K : D — [0,00] measurable and

finite a.e. such that |f'(2)|" < K(2)Js(z) ae., K € LY®=9(D N B(z,p)) N L?({C(R_Q)(D) and
that lim( [ K(2)Y0=0dz)m=0/n( [ Ji(2)d2)?"/r"=7 = 0. Then, if lim f(z) = ¢, it
r—=0 B(z,r)ND B(x,r)ND é?ﬁ
results that lim f(z) = c.
sech

Proof: We see from [22] that f is open, discrete and hence has monotone components and
we also see from [22] that f satisfies condition (N). We apply now Corollary 5.

Corollary 7. Letn > 2, n—-1<q¢g<n, 0<¢y <9< 7, a= %sin(gp—zﬁ), D CR"”
a domain, x € dD, d a half line ending in = such that there exists p > 0 such that C, 4, N
B(z,p) C D, let C = Cy a4y, C1 = Cyay and let £ C C) be such that cap, .dens(C, E, z) > 0.
Let f : D — R" be ACL" on D and K : D — [0,00] measurable and finite a.e. such
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that |f ()" < K(2)Js(2) ae., K € LY®™9(D N B(z,p)) N n Ly Q)(D) and suppose that

loc
lim( [ K(2)Y™9d2)5" ([ N(y, f, DN B(x,7))dy)?"/r"=7 = 0. Then, if lim f(z) = ¢, it
"0 B nD Rn ek
results that ;1%% f(z) =
zeCq
Remark 5. The set E from Theorem 1, 2, 3 and Corollary 4, 5, 6, 7 may be a nonconstant
path v : [0,1] = Cy 4y such that v(0) = z. If €' = C, 4= is a half plane. the set £/ may be
such that rad dens(E, z) > 0, and this thing is proved in Lemma 4 and Lemma 5.
Proof of Theorem 15. Let ¢ > 0 and let r. > 0 ne such that f(y(t)) € B(c, ) for
€ (0,r). Let D. = f~YCB(c,e)) N B(z,p) N C and let A, = {t € (0,7)|S(x,t) N D, # ¢}.
Then A, is an open subset of (0, 7.), hence A, = |J (e, Br.e), where (e, Bre )N (e, Bje) = ¢ for
k=0
k+#j, k,j€Nandlet Cy, = (B(x, )\ B(z,ar))NC for k € N. Let Age = A(D,, Ima, Cy ()
and let n, = %Xf(ck,e) for k € N. Then n, € F(f(Ag)) for k£ € N. Using Lemma 4, we
can find constants Ci(n), C(n) and Q(n) depending only on n and w € L'(R") such that
awm%ywmmwscwMW@MMJMUM@mym—%%’fwwws
R™ f(Ck,e)
30 f |f (2)|"dz for every k € N. It results that In % — 0 and let k. € N be such that

2"5”

In %<1f0rk2ke.

Let O(f,r,y) = {z € R?| there exists t, — 1 such that f(v,(t,)) — 2} for y € S. Let
B. = {y € S|C(f,z,y) NCB(c, 3¢) # ¢}. Suppose that p,,_1(B. > 0. We can chose k. € N such
that SR [ | f(2)|dz < et

B(z,rke)ND

Let tge =1 — ‘y’“ﬂ, Ske=1— |5f’;| and let v, ke = Vyl[Ske, the) for y € Be, k > ke and let
By.. = {y € S|Imy, 1N f 1 CB(c,3¢)) # ¢} for k > k., k € I.. We see that if y € By, and k €
I., then fo, . meets both CB(c, 3¢) and B(c, ¢), hence d(foyyke) > 2¢efory € By and k € ..
Let us fix k € I, and let T'y c = {Vy x|y € Bi.}. Then p = %Xf(ck,e) € F(f(I'x.e)) and we have

St B < M (D) < C)ME(F(Tke))) < C(n) [ w(z)pe(2)"dz <G8 [ w(2)dz <

(In(Gpe))m=? R" F(Che)
S f |f(2)|"dz.
We ﬁnd that
C )

S fa(Br) < 3 (gff (o / )Mz <

kel kel

C(n)Q(n) o C(n)Q(n) o pn—1(Be)

g; o C/ @)z < =55 X /)mD f()"dz < ===

Since B C |J By, we obtain that p,—1(Be < ptn—1( U Bre) < D ttn-1(Bre) < “"+(B€)
kel kel kel
and we reached a contradiction.

It results that p,—1(B;) = 0 for every € > 0. Let B = |J B.. Then p,_1(B) = 0 and if
e>0

y € S\ B, then Card C(f,z,y) = 1 and hence lin%f(vy(t)) = c for every y € S\ B. If f has

monotone components and 0 < ¢ < ¢, we see from Theorem 14 that lim f (2) =
ZECz’dyw
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We also have:

Corollary 8. Let n > 2,0 <9 < p <7, D CR" a domain, x € D, d a half line ending
in = such tat there exists p > 0 such that C, 4, N B(z,p) C D, let C = Cp a4, C1 = Cpap,
let v : [0,1] — C be a nonconstant path such that v(0) = z, let f be ACL™ on D such that
tin(By) = 0 and there exists p > n — 1 and K € L (D) such that |f (2)]" < K(2)J;(z) a.e

Suppose that [ |f'(2)|"dz < oo and lim f(y(t)) = ¢ and either u,(f(By)) =0, or f has
DNB(z,p) =0

locally inverses on f(D \ By) which satisfies condition (). Then lim f(z) =

zeCq
Proof: Since f is a local homeomorphism which is ACL" on D \ By, we see from Lemma

6.7, page 190 in [33] that f is a.e. differentiable and satisfies condition (N) on D \ By. It
results that if p,(f(Bf)) = 0, then f is a.e. differentiable and satisfies condition (V) on D.
Using Theorem 15, we can find a nonconstant path v : [0,1] — C) such that v(0) = x and
li_r)% f(v(t)) = c. We see from [22] that f is open, discrete and hence has monotone components.

We apply now Corollary 4 and Lemma 5.

Proof of Theorem 16. We see from Lemma 2 that there exists w € L'(R") such that
w = 0 on CB(z,p) N C; and constants C(n),Q(n) depending only on n such that M, (') <
C(n)M2(f(T)) for every I' € A(B(z,p) N Cy) and [ w(z)dz < Q(n f]f )|"dz for every

f(A)
measurable A C B(x, p) N C4.

Suppose that there exists a > 0 and b, € Cy, by — 0 such that |f(by) — ¢| > 2« for
every k € N and let 0 < ¢ < a. Let 7. > 0 be such that M,(A(B(z,r) N E., S(z, (1 +a)r)N
C,B(z,(14+a)r)NC) > for 0 <r <r let k. € N be such that |f(y) — f(bx)| < € for every
y € B(bg,alby — z|) and every k > k. and suppose that |by, — x| < r.. Let rp, = |bg, — |,
[ = A(B(x, 1, ) N Ee, S(z, (14a)ry, ) NC, B(z, (14a)ry, ) NC), Iye = A(B(bg,, §7k.), S(, (1+
a)ry,) NC, B(z, (14 a)ry, NC) and let I'c = A(B(z, i) N Ee, B(bx,, 57x.), Bz, (1 +a)ry, )N C).

Let p. € F(Ty). If 3pE g F(T'y,), 3p6 ¢ F(I's), we can find a, € F1e, Be € Ty locally rectifi-
able such that fpeds < 3, fpeds < 3. Let e = A(Ima, ImBe, (B(z, (1 + a)ry,) \ Bz, (1 +

re)) NC). Then M, (Fk) > 0. and there exists constants C(n,¢,), Ca(n, ¢, 1) depend-

ing only on n,¢ and ¢ such that M, (T's) > C’l( ,0,0) and M, (I's) > Cg(n,ga,@b) ln(llig).
2

We see that 3p. € F(Ts.), hence [ pe(2)"dz > s min{M, (1), M,(Ts), M,(T'3.)} and since
Rn

pe € F(I.) was arbitrarily chosen, we see that M, (I'.) > 2= for ¢ > 0 small enough. We see

that f(Tc) > [een and that [ w(z)dz = [ w(z)dz < Q(n f |f (2)|"dz for 0 < r < 7,

B(er) f(Er)
hence [ w(z)dz/r" < MQ(n) for 0 < r < r.. Using Theorem 2 in [5], we find that
B(c,r)
3"MC(n)e"Q(n )21;%
5€< nM'rL FE S " Mn FE S " Mn Fcﬁa S h=
< ML) € FCMEE) £ FCOMM o) € s
It results that d.(InIn(2¢))" < 3"C(n)Q(n)Me™ Y 7 < oo, and we reached a contradiction,
k=1
since lirné (Inln(2€))" = oo.
It results that hrn f(2) = ¢. We apply now Theorem 15, Lemma 5 and Corollary 4 to see
2601
that lim f(z) = c for every ¥ < n < .

ZECLdm
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Proof of Theorem 17. Let V,, be the volume of the unit ball in R”. We see that
f()|dz <K [ Ji(z)dz< K [ N(y,f,DNB(x,p))dy < KV,N(f, DN B(z,p))e" for ev-
Es

J

E. f(E)
ery € > 0 and we see that lim [ |f'(z)["dz/€” < c0. Also, [ |f(2)|"dz< K [ J(2)dz <
—0g, DNB(z,p) DNB(z,p)
co. We apply Theorem 16 to see that lim f(z) = c for every ¥ < n < ¢.
zer,dm

Remark 6. If the function f from Theorem 17 is bounded on B(x, p)ND, then the condition
7 [ Jp(z)dz < o7 is satisfied. Indeed, [ Jy(2)dz < [ N(y, f, B(z,p) N
B(z,p)ND B(z,p)ND f(B(z,p)ND)
D))dy < pa(f(D N B(z,p))N(f, DN Bz, p)) < .

A recent research concerning the properties of the mappings satisfying generalized inverse
modular inequalities may be found in [ 49].

References

1) T. Akkinen, Radial limits of mappings of bounded and finite distortion, J. Geom. Analysis DOI
10.1007/s12220-012-9373-6.

2) P. Caraman, Relations between p-capacity and p-module (I), Rev. Roumaine Math. Pures
Appl., 39, 6(1994), 509-553.

3) M. Cristea, A generalization of Sard’s lemma. A Jacobian condition for interiority, Demonstratio
Mathematica, 21 (1988), 399-405.

4) M. Cristea, Mappings of finite distortion. Boundary extension. Revue Roumaine Math. Pures
Appl., 51, 5-6 (2006), 607-631.

5) M. Cristea, Mappings of finite distortion, Zoric’s theorem and equicontinuity results, Revue
Roumaine Math. Pures Appl, 52, 5(2007), 539-554.

6) M. Cristea, Local homeomorphisms having local AC' L™ inverses, Complex Variables and Elliptic
Equations, 53, 1(2008), 77-99.

7) M. Cristea, Open discrete mappings having local AC' L™ inverses, Complex Variables and Elliptic
Equations, 55, 1-3(2010), 61-90.

8) M. Cristea, Dilatations of homeomorphisms satisfying some modular inequalities, Rev.
Roumaine Math. Pures Appl., 56, 4(2011), 275-282.

9) M. Cristea, Mappings satisfying some modular inequalities, Rev. Roumaine Math. Pures Appl.,
57, 2(2012), 117-132.

10) M. Cristea, On generalized quasiregular mappings, Complex Variables and Elliptic Equations,
58, 12(2013), 1745-1764.

11) M. Cristea, On generalized quasiconformal mappings, Complex Variables and Elliptic Equa-
tions, DOI:10.1080,/17476933.2012.731398.

12) M. Cristea, Local homeomorphisms satisfying generalized modular inequalities, Complex Vari-
able and Elliptic Equations, DOI: 10.1080/17476933.2013.845176.

13) I. Fonseca and W. Gangbo, Degree Theory in Analysis and Applications, Oxford, (1995).

14) I. Holopainen and P. Pankka, Mappings of finite distortion: Global homeomorphism theorem,
Ann. Acad. Sci. Fenn., Math., 29(2004), 135-153.

15) S. Hencl and J. Maly, Mappings of finite distortion: Hausdorff measure of zero sets, Math.
Ann., 324, (2002), 451-464.

16) T. Iwaniecz and J. Onninen, Deformations of finite conformal energgy: boundary behaviour
and limit theorems, Trans. AMS, 363, 11, (2011), 5605-5648.

17) P. Koskela and J. Onninen, Mappings of finite distortion: Capacity and modulus inequalities,
J. Reine Angew. Math., 599(2005), 1-26.

18) P. Koskela, J. Onninen and K. Rajala, Mappings of finite distortion: Injectivity radius of local
homeomorphisms, Future Trends in Geometric Function Theory, Vol. 92, Rep. Univ. Jyvaskyld,
Dept. Mat. Stat., Univ. of Jyvdaskyla (2002), 169-174.

25



19) D. Kovtoniuk, V. Ryazanov, R. Salimov and E. Sevostyanov, On mappings in the Orlicz-
Sobolev speces, Algebra and Analysis, Vol. 25, 6(2013), 49-92 (Russian).

20) B. Li and E. Villamor, Boundary limits for bounded quasiregular mappings, J. Geom. Analysis,
19 (3) (2009), 708-718.

21) J. Manfredi and E. Villamor, Traces of monotone Sobolev functions, Journal of Geometric
Analysis, 61, (1996), 433-444.

22) J. Manfredi and E. Villamor, An extension of Reshetnyak’s theorem, Indiana Univ. Math. J.,
47 (1998), 1131-1145.

23) O. Martio and S. Rickman, Boundary behaviour of quasiregular mappings, Annales Acad. Sci.
Fenn., Ser AI, Math., 507, (1972), 1-17.

24) O, Martio, V. Ryazanov, U. Srebro and E. Yakubov, Mappings of finite length distortion, J.
D’Analyse Math., 93(2004), 215-236.

25) O. Martio and U. Srebro, Locally injective automorphic mappings in R", Math. Scand.,
85(1999), 49-70.

26) O. Martio, V. Ryazanov, U. Srebro and E. Yakubov, On Q-homeomorphisms, Ann. Acad. Sci.
Fenn., Math., 30(2005), 49-69.

27) O. Martio, V. Ryazanov, U. Srebro and E. Yakubov, Moduli in Modern Mapping Theory,
Springer Monographs in Math., Springer, New York, (2009).

28) V. Miklyukov, Boundary property of n-dimensional mappings with bounded distortion, Matem-
atickeskie Zametkii, 11, (1972), 159-164.

29) Y. Mizuta, Existence of various boundary limits of Beppo-Levi functions of higher order,
Hiroshima Math. J., 9, (1979), 717-745.

30) K. Rajala, Mappings of finite distortion: Removable singularities for locally homeomorphic
mappings, Proc. Amer. Math. Soc., 123 (2004), 3251-3258.

31) K. Rajala, Mappings of finite distortion: Removability of Cantor sets, Ann. Acad. Sci. Fenn.,
Math., 26(2004), 269-281.

32) K. Rajala, Radial limits of quasiregular local homomorphisms, Amer. J. Math., 130(1), (2008),
269-289.

33) Y. G. Reshetnyak, Space Mappings of Bounded Distortion, Translation of Mathematical Mono-
graphs., Vol. 73, AMS, Providence, RI, (1989).

34) S. Rickman, Quasiregular Mappings, Springer Verlag, Berlin, Vol. 26, (1993).

35) V. Ryazanov and E. Sevostyanov, Towards the theory of ring )-homeomorphisms, Israel J.
Math., 168(2008), 101-115.

36) V. Ryazanov and E. Sevostyanov, Equicontinuity of mappings quasiconformal in the mean,
Ann. Acad. Sci. Fenn., Math., 36(2011), 1-14.

37) V. Ryazanov and R. Salimov, Weakly flat spaces and boundaries in the mapping theory, Ukr.
Math. Visn., 4(2), (2007), 199-234, transl. in Ukr. Math. Bull., 4(2), (2007), 199-233.

38) V. Ryazanov and E. Sevostyanov, On convergence and compactness of spatial homeomor-
phisms, Revue Roumaine Math. Pures Appl., 58, 1(2013), 85-104.

39) R. Salimov, On regular homeomorphisms in the plane, Ann. Acad. Sci. Fenn., Math.,
35(2010), 285-289.

40) R. Salimov, Finitely Lipschitz space mappings, Siberian Electronic Math. Reports, 8(2011),
284-295.

41) R. Salimov, On ring Q-homeomorphisms with respect to p-modulus, Analele Univ. Bucuresti,
Matem., 2(LX), (2011), 207-213.

42) R. Salimov and E. Sevostyanov, The theory of shell-based Q-mappings in geometric function
theory, Sbornik: Math., Vol 201(6), (2010), 909-934.

43) R. Salimov and E. Sevostyanov, AC'L and differentiability of the open discrete ring mappings,
Complex Variables and Elliptic Equations, 55, 1-3, (2010), 49-59.

26



44) R. Salimov and E. Sevostyanov, The Poletskii and Véiiséla inequalities for the mappings with
(p, q) distortion, Complex Variables and Elliptic Equations, 59, 2 (2014), 217-231.

45) 1. Sarvas, Symmetrization of condensers in n space, Ann. Acad. Sci. Fenn., Ser. Al, 522
(1972), 1-44.

46) E. Sevostyanov, Theorems of Liouville, Picard and Sohotskii for ring mappings, Ukrainean
Math. Bull., 3(2008), 366-381.

47) E. Sevostyanov, Towards a theory of removable singularities for maps with unbounded char-
acteristics of quasi-conformity, Izvestya. Math., 74(1)(2010), 151-165.

48) E. Sevostyanov, The Viisila inequality for the mappings with finite distortion, Complex Vari-
ables and Elliptic Equations, 55, 1-3, (2010), 91-101.

49) E. Sevostyanov, On the openness and discreteness of mappings with unbounded characteristics
of quasiconformality, Ukr. Math. J., 63, 6(2012).

50) J. Viisald, Lectures on n - dimensional quasiconformal mappings, Lecture Notes in Math.,
229, Springer Verlag, Berlin, (1971).

51) M. Vuorinen, Exceptional sets and boundary behaviour of quasiregular mappings in n-space,
Annales Acad. Sci. Fenn., Ser A, Dissertations, 11, (1971).

52) M. Vuorinen, On the existence of angular limits of n-dimensional quasiconformal mappings,
Ark. Mat., 18(1980), 157-180.

53) M. Vuorinen, On the boundary behaviour of locally K-quasiconformal mappings in space, Ann.
Acad. Sci. Fenn., Ser AI, Math., 5(1980), 79-95.

54) M. Vuorinen, Capacity densities and augular limits of quasiregular mappings, Trans. Amer.
Math. Soc., 263, 2(1981), 343-354.

55) M. Vuorinen, Lindel6f-type theorems for quasiconformal and quasiregular mappings, Proc.
Complex Analysis Semester, Banach Center Public, Vol. 11, 353-362, Waszawa, 1983.

56) M. Vuorinen, On functions with finite or locally bounded integral, Ann. Acad. Sci. Fenn., Ser
AI, Math., 9(1984), 177-194.

57) M. Vuorinen, Conformal geometry and quasiregular mappings, Lecture Notes in Math., 1319,
Springer Verlag, Berlin, (1988).

58) W. Ziemer, Extremal length and p capacity, Michigan Math. J., 16(1970), 117-128.

University of Bucharest

Faculty of Mathematics and Computer Sciences,
Str. Academiei 14, R-010014,

Bucharest, Romania,

Email: mcristea@fmi.unibuc.ro

27



