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by
DAN POLISEVSKI , RENATA SCHILTZ-BUNOIU AND ALINA STANESCU

Abstract

The paper deals with the asymptotic behaviour of heat conduction
in a bounded domain having the e-periodic structure introduced in [13],
formed by two interwoven connected components separated by an interface
on which the heat flux is continuous and the temperature subjects to a
first-order jump condition. Considering that the conductivities of the two
components and the transfer coefficient of the jump condition have vari-
ous orders of magnitude with respect to e, we derive the macroscopic laws
and the effective coefficients in all regular cases by means of the two-scale
convergence technique of the periodic homogenization theory.

Key Words: Homogenization, heat conduction, first-order jump in-

terface, two-scale convergence,
2010 Mathematics Subject Classification: 35B27, 80M40, 76 M50.

1 Introduction

In this paper we study the asymptotic behaviour, when e — 0, of the temperature
governed by the heat transfer problem in the e-periodic structure introduced by
[13], which is a realistic periodic structure composed of two connected components
and having many convenient properties.

We set the reference conductor (where the conductivity is of unity order with
respect to €) in the ambient component, the only one which is reaching the
boundary of the domain. The second component contains the core material of
the structure, where the conductivity is set of ¢2?-order, with 8 € [0,1]. Let us
remark here that for 8 > 1 the temperature becomes singular with respect to €.

On the interface between the reference conductor and the core material we
set €” to be the order of the transmission coefficient in the jump condition. A
counterexample of [8] shows that the temperature cannot be asymptotically finite
for r > 1; furthermore, we restrain to r € (—1, 1].
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In order to derive the macroscopic laws and the effective coefficients in all
regular cases we apply the two-scale convergence technique of the periodic ho-
mogenization theory (see [1], [11] and [5]). In the present framework, it turns
out that there are exactly six distinct cases, given by 5 =0, € (0,1) or =1
and 7 =1 or r € (—1,1). We determine in each case the specific local-periodic
problems. The solutions of these specific problems define the effective coefficients
which allow the identification of the homogenized systems which uniquely define
the asymptotic behaviour of the temperature.

We have to mention that besides heat conduction there are many other phe-
nomena which lead to asymptotic problems similar to the one studied here; for
instance, the pressure distribution in a partially fractured porous medium, the
dispersion of a concentration of solute in a domain with highly different diffusiv-
ities or the diffusion of a dissolved chemical in a fluid flowing through a porous
medium with highly different permeabilities. Thus, in such different frameworks,
this problem has already been treated when the core material is composed of
isolated grains for 8 = 0 and » = 0 in [9] and for 8 = 0 and various values of r,
especially 7 = 1, which corresponds to the case when the transmission coefficient
balance the total measure of the interface, in [2], [12], [3], [8], [10] and [6]. For
our geometry, only the case § = 0 and r = 1 have already been studied in [7].

2 The heat conduction problem

Let © be an open connected bounded set in RY (N > 3), locally located on one
side of the boundary 91, a Lipschitz manifold composed of a finite number of
connected components.

Let Y, be a Lipschitz open connected subset of the unit cube Y = (0,1)%.
We assume that Y, = Y \ Y, has a locally Lipschitz boundary and that the
intersections of dY;, with dY are reproduced identically on the opposite faces of
the cube, denoted for every i € {1,2,..., N} by

Y ={yecdY: y=1}and 27" = {y € 9Y : y; = 0}, (2.1)
with the property that
Yynxt ccx® Vie{1,2,..,N}. (2.2)

We assume that repeating Y by periodicity, the reunion of all the Y, parts is a
connected domain in RY with a locally C? boundary; we denote it by RY and
further R{,V = RY \ RY. Obviously, the origin of the coordinate system can be
set such that there exists R > 0 with the property B(0, R) C RY.

For any e € (0,1) we denote

Z.={kecZV: ck+eY CQ}, (2.3)

I={ke€Z.:cktee,+cV CQ, Vie{l,.,N}}, (2.4)
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where e; are the unit vectors of the canonical basis in RV.
The core component of our structure is defined by

Q. = int < U ek + eYb)> (2.5)
kel
and the reference conductor by
Qeq = 0\ Qs (2.6)
The interface between the two components is denoted by
[e = 000 NONp = 00y, (2.7)

Finally, let us remark that all the boundaries are at least locally Lipschitz,
Q.. is connected and 2., can be, in particular, connected too.
We introduce the Hilbert space

o € Hl(Qw), v

H, = {'UELQ(Q) T € H'(Q), v=0o0n 89} (2.8)

eb

endowed with the scalar product

(u,v)m, :/Q VuVov 4 £ /§ng Vqu—i—e/ [u][v], (2.9)

ea €

where [u] = Yepu — Yequ and ~yeou, Yepu are the traces of w on I'. defined in
H'Y(Q.,) and H(Qyp), respectively.
From now on, let us denote I' := dY, N dY;. Obviously,

U ek +em) CT. (2.10)
kEZ.

and if v is the normal on I'(exterior to Y,) and = € (¢k + £I') for some k € Z.

then
Vi (a) = v ({g}) (2.11)

where {%} is formed by the fractional parts of the components of e 'z.
Our domain has the following well-known properties [4], [7]:

Lemma 1. There exists an extension operator P. € L (Hl(Qm);H& (Q)) such
that
P.v=vin Qg, (2.12)

|VPEU|L2(Q) S C |VU|L2(Qaa) 5 Yo € Hl(an) (213)

where C' > 0 is a constant independent of €.
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Lemma 2. For any v € H. there exists C' > 0, independent of €, such that

|U|L2(Qsa) é C |V’U|L2(Qsa) 9 (214)
61/2 |'7€a'U|L2(FE) < C <|U|L2(Qaa) +e€ |V’U|L2(Qsa)) y (215)
|U|L2(er) S C (61/2 |’>/€b’l}|L2(FE) +e€ |V’U|L2(st)) . (216)

Remark 1. Taking in account the L>—norm of the jump on T, the results of the
previous Lemma have an important consequence:

|U|L2(st) < Clvly, Vv € He. (2.17)

For any € € (0,1) we introduce the transmission factor h(z) = h(z/e) and
the symmetric conductivities af;(z) = a;j(x/e) and b5;(x) = bij(x/e), where h, a;;
and b;; belong to L2 (Y ) and have the property that there exists 6 > 0 such
that

h>9d, ae onY (2.18)

aijfifj Z (55151 and bzygzgj > 55151, VE S RN, a.e. on Y. (219)

Considering that 8 € [0,1], 7 < 1 and f € L?(Q2) are also given, we look for the
temperature u® which satisfies the heat conduction equations

0 ou’ .
o7, < a5 ) = fin Q. (2.20)
9] Ouf
_28 _ g
oz, (bUa ) = [ in O, (2.21)
with the following transmission and boundary conditions
ou® 228 ou®
aj; v =€ 7bio—v; =& he (Yepu” — Yequ®) on I, (2.22)
7Oz 70z : :

u. =0 on ON. (2.23)

The variational formulation of the problem (2.20)-(2.23) is the following:
To find u® € H. such that

e o av Qﬁ r ef,,€ _
aa(u ?U) _/Q axl axj / b’L] axl 8‘7;‘] 6 /Fs h’ [U ][U] - o f’U,

Vv € H.. (2.24)
The variational problem (2.24) it is well-posed:
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Theorem 1. For any € € (0,1) there exists a unique u® € H, solution of the
problem (2.24).

Proof: Due the fact that the form a.(-,-) is coercive and continous, the theorem
is proved by applying the Lax-Milgram Theorem. The coerciveness of the form
ac (-, -) can be easily shown using (2.18)-(2.19) and the continuity of the right-hand
side of (2.24) by applying the inequalities (2.14)-(2.16).

O

3 A priori estimates of the temperature
We begin by giving the a priori estimates of u¢, solution of (2.24), for any 8 € [0, 1]
and r € (—1,1].
Setting v = u® in (2.24) and using the coerciveness of a.(-,-) we obtain
{u®}, bounded in H, (3.1)

and we find some C > 0, independent of ¢, such that

Vellpao. <€ &IV, <€ &Pl ee, <C (32)
Using (2.14)-(2.16) we get

0| 20y S Cs |08l paga,) S O VU2, < Cs €7 VU 2q.,) < C.
(3.3)

Let us introduce the following Hilbert spaces
H;er (Ya) = {¢ € H., (Rév) : ¢ is YV-periodic} (3.4)
and
ﬁ];er (Ya) = {90 € H,. (RY): /Y =0 and ¢ is Y—periodic} . (3.5)

Hereafter, for any u € H'(Q.,), a € {a,b}, we use the notations

~ _Ju  in Q. —~c¢ | Vu in Q.
u _{ 0 inQ-Q., V“a_{ 0 inQ-0.,. (3.6)

Now, we can present the main compactness result.

Theorem 2. For every 3 € [0,1] and r € (—1,1] there exists u, € H}(Q), 1, €
L? (Q; f[ler(Ya)) and uy € L?(Q, L2,,(Y3)) such that the following convergences

p per

hold on some subsequence

ug 2 Xala, (3.7)

@a = Xa (qua + vyna('v y)) ) (3'8)
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~c 28
w, = XpUp, (3.9)

where Xqo 1 L2(QxY,) = L2(QxY), a € {a,b}, denotes the straight prolongation
with zero; sometimes it can be identified with the characteristic value of Yy,.
When 3 = 0 we find that uy, is independent of y, with u, € H*(Q)). Moreover,

there exists m, € L? (Q; H} (Yb)) such that it holds

per

e o
Vi, 22 x4 (Vauy + V(7)) - (3.10)
When 8 € (0,1) we find that wy is independent of y, with uy € L*(Q).
When 8 =1 it holds
——€ 2s
eVuy, = xpVyup. (3.11)

Proof: Using the a priori estimates obtained previously we deduce that {u}.
N
and {VuS}_ are bounded in L?*(Q.,) and {LQ(QEG)} . Obviously, the sequences
—~c N
corresponding to 4% and Vu, are bounded in L?(Q) and [LQ(Q)} . Using the
main compactness theorem of the two-scale theory we find that Jg(x,y) € L?(2x

N
Y) and 3G(z,y) € [LQ(Q X Y)} such that, on some subsequence, we have

s Ry (3.12)
and .,
Vu, 2 G. (3.13)

Therefore, for every 1(x,y) € L*(Q; Cper(Y)) we have

/Qﬂfl(x)w (x, %) dr — g(z,y)¥(x, y)dxdy. (3.14)

QxY

Moreover, if we set ¢ = 0 on € X Y}, we obtain

/ 9(x,y)(z,y)dedy = 0,
QxYy
which obviously imply
g(z,y) =0, foraa. (z,y)€QxY,. (3.15)
In conclusion, there exists u,(x,y) € L?(Q x Y) such that

J=XaUs InQXY.

N
Further, we prove that u, is independent of y. Let ¥ € |D(€; ngT(Y))]
According to (3.13) we have



Heat transfer with first-order interfacial jump in a biconnected structure 7

/ ﬂi(m)\ll (:c, f) de — G(z,y)¥(z,y)dzdy, (3.16)
Q € Qxy

and hence
5/ Vui(x)\ll (x, f) dx — 0. (3.17)
Q e

Integrating by parts, the left-hand side becomes

E/ﬂzllldx:—/
Q Q

Using the definition of @ and the convergence (3.12) it follows

ug (div, ¥)dz — E/ ug, (div, ¥)dx.
Qea

ea

- / @ (@) (div, ¥) (2,2 ) do — = | Xa(y)ua(e,y)(div, ¥) (2, y)drdy.
Q QxY

Then

N
/ Ug(x, y)divy ¥ (z,y)dzdy = 0, VU € [D (2 Cp,(Y)) }
QxY,

N
We choose ¥(z,y) = ¢(x)®(y) where ¢ € D(Q2) and ¢ € [C’O" (Y)] ; then,

per

for a.a. z € Q) we have

/ a2, ) (div, @) (y)dy = 0,

a

Because there exists v € L?(Y,) with [, vdy = 0, such that div,® = v, it follows
that u,(x,y) is constant with respect to y € Y.

N
Next, we look for the form of G(z,y). Choosing ¥ € {D(Q;Coo (Y))} in

per

(3.16) with div, ¥ = 0 and integrating by parts the left-hand side, we get
—/ u;, () (div, ) (x, f) dx — G(z,y)V(x,y)dxdy.
Q € QxY

As s 2 Xa(y)uq, we have

G(z,y)¥(z,y)dxdy = —/ e (2)(div, U)(z, y)dzdy. (3.18)

[92°9% QAxY,

For ¥(z,y) =0, Yy € Y}, we obtain

/ G(z,y)¥(z,y)dzdy = 0.
QXYh

Then G(z,y) = 0, for any z € Q and y € Y, i.e. there exists F(z,y) €
L?(Q x Y) such that
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G(z,y) = Xa(y) F(2,9). (3.19)
Thus (3.18) becomes
/ F(z,y)¥(z,y)dxdy = —/ Vg (x)U(z, y)dedy. (3.20)
QxY, QxY,

N
We choose again ¥(z,y) = ¢(z)®(y) where ¢ € D(Q) and ® € [C’;ﬁ,.(Y)}
with div® = 0 in Y,. From (3.20) we obtain

/Y {F(x,y) - Vua(:c)} O(y)dy =0, for a.a. z € Q. (3.21)

Hence, there exists 1, € L? <Q; ﬁl(Ya)) such that

F(z,y) = Vua() = (Vyna) (2, y)- (3.22)

Let us remark here that u, € H'(£). Moreover, using (3.22) and recalling (3.21)
with @ -v =0 on I, we get

N
Z(/ _na-@dyé—/ _na@dyé):&
PO >t

i=1 a

where Z;‘“ = Y *'NY,. Consequently n, € L? (Q; H} (Ya)> and

per

G(2,y) = Xa(y) (Vua + Vyﬁa(x, Y)).

For u,, it remains to prove that it vanishes on 0. As the estimations (3.3)
imply that {\Vug\ LQ(QM)} is bounded, then using the Poincaré-Friedrichs ine-
g
quality and the extension operator (2.12)-(2.13) we obtain

|Petg| i) < CIVPeug|p2q) < ClVug|poq.,) < C,

which shows that {P.u¢} is bounded in H{(€2). Hence, there exists u/, € H}(Q)
such that P.ug — ul, in Hg(Q2) and consequently xq({%})P-ug 2 Xa(y)ul,.

On the other hand, as xo({2})P.u§ = 4 and @5 2 Xa(y)uq, then, by
identifying the limits, we get u, = u/, in Q.

When 8 = 0, we find from (3.2) and (2.16) that there exists C' > 0, indepen-
dent of e, with the property that

IVl |20,y < C and e'/?|[uf]|p2r.) < C. (3.23)

_ N
It follows that {u}}_ and {VUZ} are bounded in L?(Q) and [LQ(Q)} and the
€

rest of the proof is similar to that for u,.
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When 8 € (0,1), we have to prove that w; is independent of y. Using the a
N
priori estimate (3.2), for any ¥ € [D(Q; (Ofios (Y))} it holds

per

—~ € T —~ & X
v fdzlfﬁﬁ/ U(z,=)d 0 3.24
€ QVub(a:) (a:,é_) r=c¢c "e QVub(a:) (a:,E) x — 0, (3.24)

which is identical to (3.17). Hence, the rest of the proof is similar to that for the
corresponding property of u,.

Finally, when § = 1, the estimations (3.3) imply that {Eﬂz} is bounded

€
in L?(Q) and hence we can assume that it has a two-scale limit on the same
subsequence as {517% (see the main compactness theorem of [1] or [11]). The

form of this limit, that is (3.11), can be found by using standard methods (see
Proposition 1.14 of [1]).
O

Now, for any k € {1,2,..., N}, we define ., € ﬁ;er (Y,) as the unique solution
of the local-periodic problem

0 O (Nak + Y&) .
—— a8 TR ) = Y,, 3.25
8yi (a J 8y] m ( )
9 (Na
aijwvi =0 onT. (3.26)
dy;
The effective conductivity A is given by the classical formula
— anaj .o

Aj; = (aij + air Ydy, Vi,je{l,2,..,N}. (3.27)

Y, Ok

a

Remark 2. The homogenized tensor A is symmetric and positively defined.

Remark 3. Similarly to (3.25)-(3.26), for any k € {1,2,...., N}, we consider
the local-periodic problem associated to by; in Yy; its solution is denoted by my €

HL (V}). Correspondingly, we define the effective conductivity Bi; like in (3.27).

per

Next, we introduce the functions wg and w;, which are the only solutions in
H!  (Y}) of the following problems:

per
0 Bwo
—— | bji=—] =1 inY,, 3.28
ayl ( J ayj ) m ry ( )
wy=0 onI (3.29)
and o o
w1 .
—— [|bjj=— ) =1inY,, .
" < j 8yj> inY, (3.30)
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(91111

(%] ayj

Due to the existence of the first-order jump interface I'¢, there are two effective
coeflicients describing the microscopic transfer:

—b v; + hw1 =0onl. (331)

= /F h(y)do, (3.32)

wih = /F wi (y)h(y)do. (3.33)

4 The homogenization process for =0 and r =1

Passing (2.24) to the limit, we obtain like in [7]:
Theorem 3. For any ®, € D(N), &, € C®(Q) and po € D(Q;CE,.(Ya)),

per
a € {a,b}, we have
O, 877,1> (3<I>a cpa)
aij | 52+ + +
ae{ab} /QXYa ? (‘9%‘ dy; ) \ Oz~ Oy

+h /Q (uy — ) (By — B,) = /Q Qb 00) £, (4.1)

where h is defined in (8.32).

Remark 4. Using density arguments it follows that
(0, w0, (s ) € Vi o= [HE () x HH(Q)] x [LA(@, e (Va))]

a € {a,b}, is solution of the problem:
To find ((ua,up), (Na,Mp)) € V1 satisfying

Oug 87’]a 6<I>a 8@(1 ~
/QXYQ o (axj i 6‘yj) (5%‘ * 0yi > +h/9(ub Ua) (@ — o)

- /Q ot 0B fo V(@0 B). (o) € Vi (4.2)

a€{a,b}

It easy to verify that (4.2) is a well-posed problem in the Hilbert space Vi,
endowed with the scalar product:

(s 0). O ) (@0s @), (2 ) = 32 [ VuaVaat
a€{a,b} Q

+/Q(ub—ua)(<1>b—(1>a)+ >

/ VynaVypa- (4.3)
a€{a,b} QXY
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Theorem 4. If u. is the solution of (2.24) then, the convergences (3.7), (3.8),
(3.9) and (3.10) hold on the whole sequence and the corresponding limit (u,, up) €
HE () x HY(Q) is the unique solution of the homogenized problem

Ou, 09, Oup 0P,  ~
A== Bjj— h — ) (P — B,) =
/Q ]8xj 8.%1 +/Q J(‘)xj 81‘, * /Q(Ub v )( b )

=/Q(|Ya|<1>a+|Yz|<I>b)f, V (@4, ®p) € HE(Q) x H(Q). (4.4)

Proof: Let (v4,vp) € HY(Q) x HY(Q) be the unique solution of the well-posed
problem (4.4). Recalling the local problem (3.25), we define 7, by

Ho(e,) = Haa0) 5.2 (0), @ € {a.b), (4.5)

Now, we easily verify that ((ve,vs), (e, m)) € V1 is the only solution of (4.2).
This imply that v, = u, and v, = u and the proof is completed.

O
The homogenization process can be summarized in this case by:
Theorem 5. If u® is the solution of (2.24) then
u® 2 Yt + Xpup (4.6)
where (uq,up) € HE(Q) x HY(Q) is the unique solution of
Oug 0D 8ub 8<I>b o
A —2 /Blv— h/ — Oy — D,) =
/g; I [“)xj (r“)itz + Q R 6$j 8(Ez + Q(U/b Ua)( b a)
:/ (|Ya|@q + [Yo|®p) f, V¥ (Dq, Dp) € Hy(Q) x H'(Q). (4.7)
Q

5 The homogenization process for 5 =0 and r € (—1,1)
In this case (2.17) and (3.2) imply:
Vs |20,y < C and €7/2|[uf]|2r.) < C

for some C' > 0, independent of €. A first result follows, like in the previous
section:

Theorem 6. There exists u, € H} () and n, € L? (Q; ﬁ;ET(Y},)> such that:

Vg 2\ (Vous + V(1) - (5.1)

Next, we can present a preliminary homogenization result:
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Theorem 7. There exists u € Hg () such that
Ug = up = u in L. (5.2)
Moreover, for any ® € D() and o € D(Q;C2.(Yy)), a € {a,b} we have

per

ou  Ong 0P 69%)
il =—+—=— + dxdy = ddx. 5.3
/QXYQ i (8%' - 33/;‘) <5$i 0yi V= Qf v (5:3)

Proof: First we want to prove (5.2). We multiply the variational problem (2.24)
with e!=" and we consider the following test function

x x
v() = (Pa(@) +epa (2. 2)  @4(a) + 1 (2.2)) (5.4)
where @, € D(2) and ¢, € D(;C2.(Yy)). Passing to the limit, we get

per

a€{a,b}

B (up—ug) (B — D) dz =0, VP, ®, € D(Q),
Q

which obviously yields (5.2).
Finally, we set in (2.24) the test function (5.4) with &, = &, = ®; passing it
to the limit, we obtain (5.3) by usual arguments. O

Remark 5. Using density arguments it follows that

(usmas ) € Vo = Hy(Q) x L*(Q, Hy,, (Ya)) x L*(Q, Hy,, ()

per per

is solution of the problem:
To find (u,na,m) € Va satisfying

ou  0ng 0P  OJyp,
g+ 52 = | o
/QXYQ i (affj - 51/;‘) (3% - y; ) dardy = /f o,

V((I)aSOaa(Pb) € ‘/'2 (55)

It easy to verify that (5.5) is a well-posed problem in the Hilbert space Vs,
endowed with the scalar product:

a€{a,b}

(s M0y ) 5 (25 Pas 00)) /VuV<I>+ > VyaVypa.  (5.6)
ac{a,b} 2xYa

In this case the homogenization process is summarized by:

Theorem 8. If u® is the solution of the problem (2.24) then
ut Ry (5.7)
where u € HY(Q), is the unique solution of the homogenized problem
/ (A+ B)VuVe = / fo, V& € H}(Q), (5.8)
Q Q

and A, B are the effective positive matrices defined by (3.27).
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6 The homogenization process for § € (0,1) and r =1
Recalling Theorem 2, we obtain a preliminary two-scale behavior of the limits.

Theorem 9. For any ®,, P, € D(N) and ¢, € D(Q;C2.(Ya)), we have

per

(Oua | Ona\ (0P | Opa /~ - ) B
/Qxya Qij (3xj + 3yj> (31‘i + ayi) + Qh(ub ua)(q>b (I)a) _

= / (Xa(I)a +qu)b) f7 (61)
QxY

where h is defined in (3.32).

Proof: Setting the test function (5.4) in (2.24) we have

/ u % 0P, &pa Y. . ol acpa+
a., 7 ox; \ Oz, 8y] @ Ox; Ox;

+€2;3/ bE. Ougy (8<I>b 8%) 23+1 be. Ouyy a‘Pb+
Q

o, 70z \ Ox; Q 70z Ox;
ve [ heui—u) @ teret—a) = 3 ([ smere [ feo).
Te ac{a,b} ca
(6.2)
We obtain (6.1) by passing (6.2) to the limit and using the same arguments
as in the proof of Theorem 3. O
Remark 6. Using density arguments it follows that
(tay up, Ma) € V3 := HY(Q) x L2(Q) x L*(Q, H), (V)
is solution of the problem:
To find (uq,up,n,) € V3 satisfying
Oug 877(1) (aq)a a‘ﬂa) 7
aij + + +h | (up —ue)(Po — o) =
/QXY,,, ! (3%' yj ) \ Ox; Oy, Q ( : )
= / (Xaq)a +qu)b) f> V((I)aaq)bagoa) € ‘/3 (63)
QXY

It easy to verify that (6.3) is a well-posed problem in the Hilbert space Vs,
endowed with the scalar product:

(ttas s 1) » (D By ) Vv = / Vu, Vb, + / (p — ) (D — Bo) +
Q Q

+/ VynaVyPa- (6.4)
QxY,
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Theorem 10. If u. is the solution of the problem (2.24) the convergences (3.7)-
(3.11) hold on the whole sequence and the limit (uq,up) € HE(Q) x L2(Q) is the
unique solution of the homogenized problem

Oy OB,
/ Y /hub—ua (@) — B, )—/ (|Ya|®q + [V |®) f
Q Q

o, Ox;

V(®,, By) € Hy(Q) x L*(Q). (6.5)

Consequently, the results of the homogenization process are summarized in
this case by:

Theorem 11. If u® is the solution of the problem (2.24) then

25 Y,
u® = u+ | hbbe7 (6.6)

where u € H}(Q) is the unique solution of the Dirichlet problem

/AVuV(I)z/f(I), YO € H(9). (6.7)
Q Q

7  The homogenization process for g € (0,1) and r € (—1,1)

Here it is the preliminary result specific to this case:

Theorem 12. There exists u € H}(Q) such that
Ug = up = u in §). (7.1)

Moreover, for any ® € D(Q?) and ¢, € D(Q;C2,.(Ya)), it holds

per

- Oug 0N, 0P &pa _/

Proof: We begin by proving (7.1). We use the same method as in the proof
of Theorem 7, multiplying the variational problem (2.24) with !~". Again, we
set (5.4) as test function. Using the two-scale convergences of Theorem 2 and
calculating separately each integral we get:

out Ov
1—7r -
5 /Q ajaxl ax]d x — 0,

ou® Ov
1—r_28 e
e e / bij "o 0,
st T J

/ he[uf]v] — h(ub — ug)(Pp — D),
Q
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el=r | fu—o.
Q

By substitution we obtain:
h(up —ug) (B — Bg)dz =0, VO, € D(),
Q

from which (7.1) follows.

In order to prove (7.2) we set (5.4) as test function in (2.24) with ®, = &, = ®.
Taking (7.1) into account we complete the proof as usual, all the convergences
being straightforward. O

Remark 7. By density arguments we remark that

(u,na) € Vi := HY(Q) x L2(Q, H, (Ya))

per

is solution of the problem:
To find (u,n,) € Vy satisfying

ou  Ong ) ( 0P Oy, ) /
aij | m— + + dxdy = ddx
/QxYa ! (&ﬂj 0y, Ox; Oy Y Q !

YV (®,0,) € Va. (7.3)

It easy to verify that (7.3) is a well-posed problem in the Hilbert space Vi,
endowed with the scalar product:

(s ma) (2, )y = /Q Vuve + /Q V10V a. (7.4)

XY,

In the present case the asymptotic behavior can be summarized by:

Theorem 13. If u® is the solution of the problem (2.24) then,
= (7.5)

where u € H}(Q) is the unique solution of (6.7).

8 The homogenization process for =1 and r =1

The preliminary result of this section is given by:

Theorem 14. If u® is the solution of the problem (2.24) then we have

Oug, 3na) ( 0P 8<pa> / Auy Oy
+ — + + bij Py
/QXYQ i (33%‘ dyi ) \Oz; Oy, axy,  Oyi Oy;

of hwmew-n= [ ger | e s
for any ® € D(NQ), g, € D (Q; c (Ya)) , a € {a,b}.

per
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Proof: In order to prove (8.1), for ® € D(Q2) and ¢, € D (2 C5S,.(Yy)) , with
a € {a,b}, we set v € H, in (2.24) as follows:

v(z) = ((D(x) + £¥q (x, g) , Ob (x, g)) , x e (8.2)

Now, the variational problem (2.24) becomes:

ou (00 Oy, Ouf Oy, / ouf Oy,
e - | == €. bE
/Qsa i o (3933' - y; ) - E/Qm Y3 D ox; T a., " 0x; Oz, oz,

& ou® 89017 € £ _
+5/ bz] ox; Oy, +te / he (uy —ug) (pp — @ —ep,) =

:/ f<I>+/ f¢b+€/ fa. (8.3)

The proof is completed by passing (8.3) to the hmlt. In the following we shall
present only the convergences of the term involving the integral on I'¢, all the
other being straightforward. We obviously have

I, = g/ hfug, (g — ) — 5/ hfug (pp — @) + (terms — 0). (8.4)

As T is C?, there exists ¥ € (D(Q;C} ))N such that
(

V() = (eol(y) = @()) - v(y), Vyel. (8.5)

Then denoting ¥¢(z) = ¥ (x, %) , T € €, we obtain

5/ hsug(sﬁb*@):s/ heup ¥e - 1 =

_ / VuE ()R — / 5 (a)div, (h0) + (terms — 0).
Q Q

As usual,

5/ hfug, (op — @) — 7/ divy (hup¥) = / </ hupW - 1/>
e QXY Q r

— / huy (60— ©). (8.6)
QxI

In a similar way, using (3.7)-(3.8), we get

5/ heug (pp — @) = / ugdivy (hT) + (terms — 0) —

— ugdivy (h¥) = / Ug (/ hV - 1/) z/ hug (pp — D). (8.7)
QXY Q QxT
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Finally, (8.4), (8.6) and (8.7) yield

I, — h(up — uq) (0o — @) .
QxT

Remark 8. Using density arguments it follows that

(ta, Up,Ma) € Vs 1= H&(Q) X LQ(Q;Hl (Y3)) x LQ(Qvﬁl (Ya))

per per

is solution of the problem:
To find (ug,up,na) € Vs satisfying

Oug  Ong 0P 8<pa> / Ouy, Oy
i + — + + byt 22y
/QxYa s (8:@- Oy ) (aﬂfj y; QXY ! y; Oy,

+/Q><Fh(ub_ua)((pb_@):,/(ZXyaf(I)+‘/§zXYbf<pb’
V (@, ¢p, a) € V5. 55

It easy to verify that (8.8) is a well-posed problem in the Hilbert space Vs,
endowed with the scalar product:

<(ua7ubana) ) ((I)a(Pa7<pb)>V5 = / vuavq) +/ V’U/bVLﬂb"'
Q QXY

+ / (s — ) (05 — B) + / YV, 0aV . (8.9)
QxI QxY,

The results of the homogenization process can be summarized in this case by:

Theorem 15. If u® is the solution of (2.24) then
uf 2 (\ Y, | —Hm) u+ wixpf (8.10)

where u € H}(Q) is the unique solution of the homogenized problem (6.7).

Proof: If u € H}() is the solution of the homogenized system (6.7) then it is
easy to verify that the only solution of the problem (8.8) is given by

Ua () = (| Y, | +u7171) u(z), = € Q (8.11)
u(e,y) = (| Yo | +wih) u@) + wi(@)f@), (@y) €Qx Y, (812)
mae9) = (| Yo | 400) 1o () - (@), (09) €Q% Yo (313)

and thus the proof is completed. O
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9 The homogenization process for 5 =1 and r € (—1,1)
The preliminary result of this case is the following:

Theorem 16. For any ® € D(Q) and ¢, € D(Q; C2,.(Ya)), a € {a,b} such that

per

wp(z,y) = P(x), V(x,y) € A xT (9.1)

we have:

Oug  Ong 0P 8(,%) / Ouy, Oy,
i 5=+ —+ R
/QxYa i <5$i 5yi> <8xj y; axy, Oy Oy;
:/ f<I>—|—/ fop. (9.2)
QxY, QxYy,

Ug = up on Q x I, (9.3)

Moreover,

Proof: We begin by proving (9.3). We use the same ideas as in the proof of
the Theorem 7. We multiply the variational problem (2.24) with !=" and then
we take the test function (8.2) with ® € D(Q), ¢, € D(Q;Cpe,.(Ya)) and ¢y €
D(Q;C2.(Yp)). We get

per

_ out (00 Oy, _ Ouf 0y, _ Ouf Oy,
1—7r € 2—r € 3—r €

= [ =— + + . + be. b
: /an “ Ox; (6%‘ Jy; > c /Qw %ij Ox; Ox; c /st Y Oz, Ox;

Ouf Dy,

2—r £ € [ £

bs . - h — — ¢ — a) =
+e /Eb : o By, —|—5/F (ub ua) ((pb Ep )

€

:EH/ fq>+sH/ fgab+52*7”/ fa. (9.4)
Qea Qep Qea

As in the proofs of Theorem 7, Theorem 12 and Theorem 14, when passing
to the limit with (¢ — 0) in the (9.4) we obtain

/ h(y) (up(, y) — ua(x)) (wo(x,y) — (x)) = 0,
QxT

Vd € D(Q), ¢, € D CZ . (Y3)), (9.5)

per
which obviously imply (9.3).

In order to obtain the homogenized equation (9.2) we take in (2.24) the same
test function (8.2) with the supplementary condition (9.1). The proof is com-
pleted again in a straightforward manner, the term corresponding to the integral
on I'. being of order e'*7/2. O

In the light of the previous result, we introduce the space

V= {(®,¢) € Hy(Q) x L* (% H ), (Y3), p=2onQxT}. (9.6

per
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Remark 9. Using density arguments it follows that

((tg,up),ma) € Vs :=V x L2(Q; HY,.(Y2))

per

is solution of the problem.:
To find ((uq, us),na) € Ve satisfying

Oug 8na> < 0P 8(,%) / Ouy, Oy,
ij + -+ + bij5—5— =
/ﬂxYa " <6$i 9y Oxy  Oy; axy,  Oyi dy;

- / o+ / o V(@) 00) €V x L@ L, (V). (9.7)
QxY, QXY

It easy to verify that (9.7) is a well-posed problem in the Hilbert space Vg,
endowed with the scalar product:

<((Uaaub)a77a) s (((I), Soa)7 Sab)>V6 = /VUGV<I>+/ vyubvyCPbJF Vy%vyﬂa~
Q QxY, QxY, (9 8)

The results of the homogenization process can be summarized in this case by:

Theorem 17. If u® is the solution of the problem (2.24) then,

uf 2 Y, |u + woxs f, (9.9)
where u € H}(Q) is the unique solution of (6.7).

Proof: If u € H} () is the unique solution of (6.7) then we verify that the unique
solution of (9.7) is the following:

ou
Uq = |Y0«|u? Up = |Ya‘u + w()fa Na = |Ya|nak87xk7

where 714, and wg are defined by (3.25)-(3.26) and (3.28)-(3.29). O
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