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by
Dan Polǐsevski , Renata Schiltz-Bunoiu and Alina Stănescu

Abstract

The paper deals with the asymptotic behaviour of heat conduction
in a bounded domain having the ε-periodic structure introduced in [13],
formed by two interwoven connected components separated by an interface
on which the heat flux is continuous and the temperature subjects to a
first-order jump condition. Considering that the conductivities of the two
components and the transfer coefficient of the jump condition have vari-
ous orders of magnitude with respect to ε, we derive the macroscopic laws
and the effective coefficients in all regular cases by means of the two-scale
convergence technique of the periodic homogenization theory.

Key Words: Homogenization, heat conduction, first-order jump in-
terface, two-scale convergence,
2010 Mathematics Subject Classification: 35B27, 80M40, 76M50.

1 Introduction

In this paper we study the asymptotic behaviour, when ε→ 0, of the temperature
governed by the heat transfer problem in the ε-periodic structure introduced by
[13], which is a realistic periodic structure composed of two connected components
and having many convenient properties.

We set the reference conductor (where the conductivity is of unity order with
respect to ε) in the ambient component, the only one which is reaching the
boundary of the domain. The second component contains the core material of
the structure, where the conductivity is set of ε2β-order, with β ∈ [0, 1]. Let us
remark here that for β > 1 the temperature becomes singular with respect to ε.

On the interface between the reference conductor and the core material we
set εr to be the order of the transmission coefficient in the jump condition. A
counterexample of [8] shows that the temperature cannot be asymptotically finite
for r > 1; furthermore, we restrain to r ∈ (−1, 1].
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In order to derive the macroscopic laws and the effective coefficients in all
regular cases we apply the two-scale convergence technique of the periodic ho-
mogenization theory (see [1], [11] and [5]). In the present framework, it turns
out that there are exactly six distinct cases, given by β = 0, β ∈ (0, 1) or β = 1
and r = 1 or r ∈ (−1, 1). We determine in each case the specific local-periodic
problems. The solutions of these specific problems define the effective coefficients
which allow the identification of the homogenized systems which uniquely define
the asymptotic behaviour of the temperature.

We have to mention that besides heat conduction there are many other phe-
nomena which lead to asymptotic problems similar to the one studied here; for
instance, the pressure distribution in a partially fractured porous medium, the
dispersion of a concentration of solute in a domain with highly different diffusiv-
ities or the diffusion of a dissolved chemical in a fluid flowing through a porous
medium with highly different permeabilities. Thus, in such different frameworks,
this problem has already been treated when the core material is composed of
isolated grains for β = 0 and r = 0 in [9] and for β = 0 and various values of r,
especially r = 1, which corresponds to the case when the transmission coefficient
balance the total measure of the interface, in [2], [12], [3], [8], [10] and [6]. For
our geometry, only the case β = 0 and r = 1 have already been studied in [7].

2 The heat conduction problem

Let Ω be an open connected bounded set in RN (N ≥ 3), locally located on one
side of the boundary ∂Ω, a Lipschitz manifold composed of a finite number of
connected components.

Let Ya be a Lipschitz open connected subset of the unit cube Y = (0, 1)N .
We assume that Yb = Y \ Y a has a locally Lipschitz boundary and that the
intersections of ∂Yb with ∂Y are reproduced identically on the opposite faces of
the cube, denoted for every i ∈ {1, 2, . . . , N} by

Σ+i = {y ∈ ∂Y : yi = 1} and Σ−i = {y ∈ ∂Y : yi = 0}, (2.1)

with the property that

Y b ∩ Σ±i ⊂⊂ Σ±i, ∀i ∈ {1, 2, ..., N}. (2.2)

We assume that repeating Y by periodicity, the reunion of all the Y a parts is a
connected domain in RN with a locally C2 boundary; we denote it by RN

a and
further RN

b = RN \ RN
a . Obviously, the origin of the coordinate system can be

set such that there exists R > 0 with the property B(0, R) ⊆ RN
a .

For any ε ∈ (0, 1) we denote

Zε = {k ∈ ZN : εk + εY ⊆ Ω}, (2.3)

Iε = {k ∈ Zε : εk ± εei + εY ⊆ Ω, ∀i ∈ {1, ..., N}}, (2.4)
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where ei are the unit vectors of the canonical basis in RN .
The core component of our structure is defined by

Ωεb = int

( ⋃
k∈Iε

(εk + εY b)

)
(2.5)

and the reference conductor by

Ωεa = Ω \ Ωεb. (2.6)

The interface between the two components is denoted by

Γε = ∂Ωεa ∩ ∂Ωεb = ∂Ωεb. (2.7)

Finally, let us remark that all the boundaries are at least locally Lipschitz,
Ωεa is connected and Ωεb can be, in particular, connected too.

We introduce the Hilbert space

Hε =

{
v ∈ L2(Ω) : v

∣∣∣
Ωεa

∈ H1(Ωεa), v
∣∣∣
Ωεb

∈ H1(Ωεb), v = 0 on ∂Ω

}
(2.8)

endowed with the scalar product

(u, v)Hε =

∫
Ωεa

∇u∇v + ε2
∫
Ωεb

∇u∇v + ε

∫
Γε

[u][v], (2.9)

where [u] = γεbu − γεau and γεau, γεbu are the traces of u on Γε defined in
H1(Ωεa) and H

1(Ωεb), respectively.
From now on, let us denote Γ := ∂Ya ∩ ∂Yb. Obviously,⋃

k∈Zε

(εk + εΓ) ⊆ Γε (2.10)

and if ν is the normal on Γ(exterior to Ya) and x ∈ (εk + εΓ) for some k ∈ Zε

then

νε(x) = ν
({x

ε

})
(2.11)

where
{

x
ε

}
is formed by the fractional parts of the components of ε−1x.

Our domain has the following well-known properties [4], [7]:

Lemma 1. There exists an extension operator Pε ∈ L
(
H1(Ωεa);H

1
0 (Ω)

)
such

that
Pεv = v in Ωεa, (2.12)

|∇Pεv|L2(Ω) ≤ C |∇v|L2(Ωεa)
, ∀v ∈ H1(Ωεa) (2.13)

where C > 0 is a constant independent of ε.
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Lemma 2. For any v ∈ Hε there exists C > 0, independent of ε, such that

|v|L2(Ωεa)
≤ C |∇v|L2(Ωεa)

, (2.14)

ε1/2 |γεav|L2(Γε)
≤ C

(
|v|L2(Ωεa)

+ ε |∇v|L2(Ωεa)

)
, (2.15)

|v|L2(Ωεb)
≤ C

(
ε1/2 |γεbv|L2(Γε)

+ ε |∇v|L2(Ωεb)

)
. (2.16)

Remark 1. Taking in account the L2−norm of the jump on Γε the results of the
previous Lemma have an important consequence:

|v|L2(Ωεb)
≤ C |v|Hε

,∀v ∈ Hε. (2.17)

For any ε ∈ (0, 1) we introduce the transmission factor hε(x) = h(x/ε) and
the symmetric conductivities aεij(x) = aij(x/ε) and b

ε
ij(x) = bij(x/ε), where h, aij

and bij belong to L∞
per(Y ) and have the property that there exists δ > 0 such

that
h ≥ δ, a.e. on Y (2.18)

aijξiξj ≥ δξiξi and bijξiξj ≥ δξiξi, ∀ξ ∈ RN , a.e. on Y. (2.19)

Considering that β ∈ [0, 1], r ≤ 1 and f ∈ L2(Ω) are also given, we look for the
temperature uε which satisfies the heat conduction equations

− ∂

∂xi

(
aεij

∂uε

∂xj

)
= f in Ωεa, (2.20)

−ε2β ∂

∂xi

(
bεij
∂uε

∂xj

)
= f in Ωεb, (2.21)

with the following transmission and boundary conditions

aεij
∂uε

∂xj
νεi = ε2βbεij

∂uε

∂xj
νεi = εrhε (γεbu

ε − γεau
ε) on Γε, (2.22)

uε = 0 on ∂Ω. (2.23)

The variational formulation of the problem (2.20)-(2.23) is the following:
To find uε ∈ Hε such that

aε(u
ε, v) :=

∫
Ωεa

aεij
∂uε

∂xi

∂v

∂xj
+ ε2β

∫
Ωεb

bεij
∂uε

∂xi

∂v

∂xj
+ εr

∫
Γε

hε[uε][v] =

∫
Ω

fv,

∀v ∈ Hε. (2.24)

The variational problem (2.24) it is well-posed:
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Theorem 1. For any ε ∈ (0, 1) there exists a unique uε ∈ Hε, solution of the
problem (2.24).

Proof: Due the fact that the form aε(·, ·) is coercive and continous, the theorem
is proved by applying the Lax-Milgram Theorem. The coerciveness of the form
aε(·, ·) can be easily shown using (2.18)-(2.19) and the continuity of the right-hand
side of (2.24) by applying the inequalities (2.14)-(2.16).

3 A priori estimates of the temperature

We begin by giving the a priori estimates of uε, solution of (2.24), for any β ∈ [0, 1]
and r ∈ (−1, 1].

Setting v = uε in (2.24) and using the coerciveness of aε(·, ·) we obtain

{uε}ε bounded in Hε (3.1)

and we find some C > 0, independent of ε, such that

|∇uε|L2(Ωεa)
≤ C, εβ |∇uε|L2(Ωεb)

≤ C, εr/2 |[uε]|L2(Γε)
≤ C. (3.2)

Using (2.14)-(2.16) we get

|uε|L2(Ωεa)
≤ C, |uε|L2(Ωεb)

≤ C, |∇uε|L2(Ωεa)
≤ C, εβ |∇uε|L2(Ωεb)

≤ C.

(3.3)
Let us introduce the following Hilbert spaces

H1
per (Ya) =

{
ϕ ∈ H1

loc

(
RN

a

)
: ϕ is Y -periodic

}
(3.4)

and

H̃1
per (Ya) =

{
ϕ ∈ H1

loc

(
RN

a

)
:

∫
Ya

ϕ = 0 and ϕ is Y -periodic

}
. (3.5)

Hereafter, for any u ∈ H1(Ωεα), α ∈ {a, b}, we use the notations

ûεα =

{
u in Ωεα

0 in Ω− Ωεα
∇̂u

ε

α =

{
∇u in Ωεα

0 in Ω− Ωεα.
(3.6)

Now, we can present the main compactness result.

Theorem 2. For every β ∈ [0, 1] and r ∈ (−1, 1] there exists ua ∈ H1
0 (Ω), ηa ∈

L2
(
Ω; H̃1

per(Ya)
)

and ub ∈ L2(Ω, L2
per(Yb)) such that the following convergences

hold on some subsequence

ûεa
2s
⇀ χaua, (3.7)

∇̂u
ε

a
2s
⇀ χa (∇xua +∇yηa(·, y)) , (3.8)
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ûεb
2s
⇀ χbub, (3.9)

where χα : L2(Ω×Yα) → L2(Ω×Y ), α ∈ {a, b}, denotes the straight prolongation
with zero; sometimes it can be identified with the characteristic value of Yα.

When β = 0 we find that ub is independent of y, with ub ∈ H1(Ω). Moreover,

there exists ηb ∈ L2
(
Ω; H̃1

per(Yb)
)

such that it holds

∇̂u
ε

b
2s
⇀ χb (∇xub +∇yηb(·, y)) . (3.10)

When β ∈ (0, 1) we find that ub is independent of y, with ub ∈  L2(Ω).
When β = 1 it holds

ε∇̂u
ε

b
2s
⇀ χb∇yub. (3.11)

Proof: Using the a priori estimates obtained previously we deduce that {uεa}ε
and {∇uεa}ε are bounded in L2(Ωεa) and

[
L2(Ωεa)

]N
. Obviously, the sequences

corresponding to ûεa and ∇̂u
ε

a are bounded in L2(Ω) and
[
L2(Ω)

]N
. Using the

main compactness theorem of the two-scale theory we find that ∃g(x, y) ∈ L2(Ω×

Y ) and ∃G(x, y) ∈
[
L2(Ω× Y )

]N
such that, on some subsequence, we have

ûεa
2s
⇀ g (3.12)

and
∇̂u

ε

a
2s
⇀ G. (3.13)

Therefore, for every ψ(x, y) ∈ L2(Ω;Cper(Y )) we have∫
Ω

ûεa(x)ψ
(
x,
x

ε

)
dx −→

∫
Ω×Y

g(x, y)ψ(x, y)dxdy. (3.14)

Moreover, if we set ψ = 0 on Ω× Yb, we obtain∫
Ω×Yb

g(x, y)ψ(x, y)dxdy = 0,

which obviously imply

g(x, y) = 0, for a.a. (x, y) ∈ Ω× Yb. (3.15)

In conclusion, there exists ua(x, y) ∈ L2(Ω× Y ) such that

g = χa ua in Ω× Y.

Further, we prove that ua is independent of y. Let Ψ ∈
[
D(Ω;C∞

per(Y ))
]N

.

According to (3.13) we have
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∫
Ω

∇̂u
ε

a(x)Ψ
(
x,
x

ε

)
dx −→

∫
Ω×Y

G(x, y)Ψ(x, y)dxdy, (3.16)

and hence

ε

∫
Ω

∇̂u
ε

a(x)Ψ
(
x,
x

ε

)
dx −→ 0. (3.17)

Integrating by parts, the left-hand side becomes

ε

∫
Ω

∇̂u
ε

aΨdx = −
∫
Ωεa

uεa(divyΨ)dx− ε

∫
Ωεa

uεa(divxΨ)dx.

Using the definition of ûεa and the convergence (3.12) it follows

−
∫
Ω

ûεa(x)(divyΨ)
(
x,
x

ε

)
dx −→ −

∫
Ω×Y

χα(y)ua(x, y)(divyΨ)(x, y)dxdy.

Then∫
Ω×Ya

ua(x, y)divyΨ(x, y)dxdy = 0, ∀Ψ ∈
[
D
(
Ω;C∞

per(Y )
) ]N

.

We choose Ψ(x, y) = ϕ(x)Φ(y) where ϕ ∈ D(Ω) and Φ ∈
[
C∞

per(Y )
]N

; then,

for a.a. x ∈ Ω we have ∫
Ya

ua(x, y)(divyΦ)(y)dy = 0.

Because there exists v ∈ L2(Ya) with
∫
Ya
vdy = 0, such that divyΦ = v, it follows

that ua(x, y) is constant with respect to y ∈ Ya.

Next, we look for the form of G(x, y). Choosing Ψ ∈
[
D(Ω;C∞

per(Y ))
]N

in

(3.16) with divyΨ = 0 and integrating by parts the left-hand side, we get

−
∫
Ω

ûεa(x)(divxΨ)
(
x,
x

ε

)
dx −→

∫
Ω×Y

G(x, y)Ψ(x, y)dxdy.

As ûεa
2s
⇀ χα(y)ua, we have∫
Ω×Y

G(x, y)Ψ(x, y)dxdy = −
∫
Ω×Ya

ua(x)(divxΨ)(x, y)dxdy. (3.18)

For Ψ(x, y) = 0, ∀y ∈ Yb, we obtain∫
Ω×Yb

G(x, y)Ψ(x, y)dxdy = 0.

Then G(x, y) = 0, for any x ∈ Ω and y ∈ Yb i.e. there exists F (x, y) ∈
L2(Ω× Y ) such that
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G(x, y) = χa(y)F (x, y). (3.19)

Thus (3.18) becomes∫
Ω×Ya

F (x, y)Ψ(x, y)dxdy = −
∫
Ω×Ya

∇ua(x)Ψ(x, y)dxdy. (3.20)

We choose again Ψ(x, y) = ϕ(x)Φ(y) where ϕ ∈ D(Ω) and Φ ∈
[
C∞

per(Y )
]N

with divΦ = 0 in Ya. From (3.20) we obtain∫
Ya

[
F (x, y)−∇ua(x)

]
Φ(y)dy = 0, for a.a. x ∈ Ω. (3.21)

Hence, there exists ηa ∈ L2
(
Ω; H̃1(Ya)

)
such that

F (x, y)−∇ua(x) = (∇yηa)(x, y). (3.22)

Let us remark here that ua ∈ H1(Ω). Moreover, using (3.22) and recalling (3.21)
with Φ · ν = 0 on Γ, we get

N∑
i=1

(∫
∑+i

a

ηa · Φdy′i −
∫
∑−i

a

ηa · Φdy′i

)
= 0,

where
∑±i

a =
∑±i⋂

Y a. Consequently ηa ∈ L2
(
Ω; H̃1

per(Ya)
)
and

G(x, y) = χa(y) (∇ua +∇yηa(x, y)) .

For ua, it remains to prove that it vanishes on ∂Ω. As the estimations (3.3)

imply that
{
|∇uεa|L2(Ωεa)

}
ε
is bounded, then using the Poincaré-Friedrichs ine-

quality and the extension operator (2.12)-(2.13) we obtain

|Pεu
ε
a|H1

0 (Ω) ≤ C |∇Pεu
ε
a|L2(Ω) ≤ C |∇uεa|L2(Ωεa)

≤ C,

which shows that {Pεu
ε
a} is bounded in H1

0 (Ω). Hence, there exists u′a ∈ H1
0 (Ω)

such that Pεu
ε
a ⇀ u′a in H1

0 (Ω) and consequently χa(
{

x
ε

}
)Pεu

ε
a

2s
⇀ χa(y)u

′
a.

On the other hand, as χa(
{

x
ε

}
)Pεu

ε
a = ûεa and ûεa

2s
⇀ χa(y)ua, then, by

identifying the limits, we get ua = u′a in Ω.
When β = 0, we find from (3.2) and (2.16) that there exists C > 0, indepen-

dent of ε, with the property that

|∇uε|L2(Ωεb) ≤ C and ε1/2|[uε]|L2(Γε) ≤ C. (3.23)

It follows that {ûεb}ε and
{
∇̂u

ε

b

}
ε
are bounded in L2(Ω) and

[
L2(Ω)

]N
and the

rest of the proof is similar to that for ua.
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When β ∈ (0, 1), we have to prove that ub is independent of y. Using the a

priori estimate (3.2), for any Ψ ∈
[
D(Ω;C∞

per(Y ))
]N

it holds

ε

∫
Ω

∇̂u
ε

b(x)Ψ
(
x,
x

ε

)
dx = ε1−βεβ

∫
Ω

∇̂u
ε

b(x)Ψ
(
x,
x

ε

)
dx −→ 0, (3.24)

which is identical to (3.17). Hence, the rest of the proof is similar to that for the
corresponding property of ua.

Finally, when β = 1, the estimations (3.3) imply that
{
ε∇̂u

ε

b

}
ε
is bounded

in L2(Ω) and hence we can assume that it has a two-scale limit on the same

subsequence as
{
εûεb

}
ε
(see the main compactness theorem of [1] or [11]). The

form of this limit, that is (3.11), can be found by using standard methods (see
Proposition 1.14 of [1]).

Now, for any k ∈ {1, 2, ..., N} , we define ηak ∈ H̃1
per (Ya) as the unique solution

of the local-periodic problem

− ∂

∂yi

(
aij

∂ (ηak + yk)

∂yj

)
= 0 in Ya, (3.25)

aij
∂ (ηak + yk)

∂yj
νi = 0 on Γ. (3.26)

The effective conductivity A is given by the classical formula

Aij =

∫
Ya

( aij + aik
∂ηaj
∂yk

) dy, ∀i, j ∈ {1, 2, ..., N} . (3.27)

Remark 2. The homogenized tensor A is symmetric and positively defined.

Remark 3. Similarly to (3.25)-(3.26), for any k ∈ {1, 2, ..., N} , we consider
the local-periodic problem associated to bij in Yb; its solution is denoted by ηbk ∈
H̃1

per(Yb). Correspondingly, we define the effective conductivity Bij like in (3.27).

Next, we introduce the functions w0 and w1, which are the only solutions in
H1

per(Yb) of the following problems:

− ∂

∂yi

(
bij
∂w0

∂yj

)
= 1 in Yb, (3.28)

w0 = 0 on Γ (3.29)

and

− ∂

∂yi

(
bij
∂w1

∂yj

)
= 1 in Yb, (3.30)
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−bij
∂w1

∂yj
νi + hw1 = 0 on Γ. (3.31)

Due to the existence of the first-order jump interface Γε, there are two effective
coefficients describing the microscopic transfer:

h̃ =

∫
Γ

h(y)dσ, (3.32)

w̃1h =

∫
Γ

w1(y)h(y)dσ. (3.33)

4 The homogenization process for β = 0 and r = 1

Passing (2.24) to the limit, we obtain like in [7]:

Theorem 3. For any Φa ∈ D(Ω), Φb ∈ C∞(Ω) and ϕα ∈ D(Ω;C∞
per(Yα)),

α ∈ {a, b}, we have∑
α∈{a,b}

∫
Ω×Yα

αij

(
∂uα
∂xj

+
∂ηα
∂yj

)(
∂Φα

∂xi
+
ϕα

∂yi

)
+

+h̃

∫
Ω

(ub − ua)(Φb − Φa) =

∫
Ω×Y

(χaΦa + χbΦb) f, (4.1)

where h̃ is defined in (3.32).

Remark 4. Using density arguments it follows that

((ua, ub), (ηa, ηb)) ∈ V1 :=
[
H1

0 (Ω)×H1(Ω)
]
×
[
L2(Ω, H̃1

per(Yα))
]

α ∈ {a, b}, is solution of the problem:
To find ((ua, ub), (ηa, ηb)) ∈ V1 satisfying∑

α∈{a,b}

∫
Ω×Yα

αij

(
∂uα
∂xj

+
∂ηα
∂yj

)(
∂Φα

∂xi
+
∂ϕα

∂yi

)
+ h̃

∫
Ω

(ub − ua)(Φb − Φa) =

=

∫
Ω×Y

(χaΦa + χbΦb) f, ∀ ((Φa,Φb), (ϕa, ϕb)) ∈ V1. (4.2)

It easy to verify that (4.2) is a well-posed problem in the Hilbert space V1,
endowed with the scalar product:

〈((ua, ub), (ηa, ηb)) , ((Φa,Φb), (ϕa, ϕb))〉V1 =
∑

α∈{a,b}

∫
Ω

∇uα∇Φα+

+

∫
Ω

(ub − ua) (Φb − Φa) +
∑

α∈{a,b}

∫
Ω×Yα

∇yηα∇yϕα. (4.3)
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Theorem 4. If uε is the solution of (2.24) then, the convergences (3.7), (3.8),
(3.9) and (3.10) hold on the whole sequence and the corresponding limit (ua, ub) ∈
H1

0 (Ω)×H1(Ω) is the unique solution of the homogenized problem∫
Ω

Aij
∂ua
∂xj

∂Φa

∂xi
+

∫
Ω

Bij
∂ub
∂xj

∂Φb

∂xi
+ h̃

∫
Ω

(ub − ua)(Φb − Φa) =

=

∫
Ω

(|Ya|Φa + |Yb|Φb) f, ∀ (Φa,Φb) ∈ H1
0 (Ω)×H1(Ω). (4.4)

Proof: Let (va, vb) ∈ H1
0 (Ω) × H1(Ω) be the unique solution of the well-posed

problem (4.4). Recalling the local problem (3.25), we define ηα by

ηα(x, y) = ηαk(y)
∂vα
∂xk

(x), α ∈ {a, b}. (4.5)

Now, we easily verify that ((va, vb), (ηa, ηb)) ∈ V1 is the only solution of (4.2).
This imply that va = ua and vb = ub and the proof is completed.

The homogenization process can be summarized in this case by:

Theorem 5. If uε is the solution of (2.24) then

uε
2s
⇀ χaua + χbub (4.6)

where (ua, ub) ∈ H1
0 (Ω)×H1(Ω) is the unique solution of∫

Ω

Aij
∂ua
∂xj

∂Φa

∂xi
+

∫
Ω

Bij
∂ub
∂xj

∂Φb

∂xi
+ h̃

∫
Ω

(ub − ua)(Φb − Φa) =

=

∫
Ω

(|Ya|Φa + |Yb|Φb) f, ∀ (Φa,Φb) ∈ H1
0 (Ω)×H1(Ω). (4.7)

5 The homogenization process for β = 0 and r ∈ (−1, 1)

In this case (2.17) and (3.2) imply:

|∇uε|L2(Ωεb) ≤ C and εr/2|[uε]|L2(Γε) ≤ C

for some C > 0, independent of ε. A first result follows, like in the previous
section:

Theorem 6. There exists ub ∈ H1
0 (Ω) and ηb ∈ L2

(
Ω; H̃1

per(Yb)
)

such that:

∇̂u
ε

b
2s
⇀ χb (∇xub +∇yηb(·, y)) . (5.1)

Next, we can present a preliminary homogenization result:
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Theorem 7. There exists u ∈ H1
0 (Ω) such that

ua = ub = u in Ω. (5.2)

Moreover, for any Φ ∈ D(Ω) and ϕα ∈ D(Ω;C∞
per(Yα)), α ∈ {a, b} we have∑

α∈{a,b}

∫
Ω×Yα

αij

(
∂u

∂xj
+
∂ηα
∂yj

)(
∂Φ

∂xi
+
∂ϕα

∂yi

)
dxdy =

∫
Ω

fΦdx. (5.3)

Proof: First we want to prove (5.2). We multiply the variational problem (2.24)
with ε1−r and we consider the following test function

v(x) =
(
Φa(x) + εϕa

(
x,
x

ε

)
,Φb(x) + εϕb

(
x,
x

ε

))
, (5.4)

where Φα ∈ D(Ω) and ϕα ∈ D(Ω;C∞
per(Yα)). Passing to the limit, we get

h̃

∫
Ω

(ub − ua) (Φb − Φa) dx = 0, ∀Φa,Φb ∈ D(Ω),

which obviously yields (5.2).
Finally, we set in (2.24) the test function (5.4) with Φa = Φb = Φ; passing it

to the limit, we obtain (5.3) by usual arguments.

Remark 5. Using density arguments it follows that

(u, ηa, ηb) ∈ V2 := H1
0 (Ω)× L2(Ω, H̃1

per(Ya))× L2(Ω, H̃1
per(Yb))

is solution of the problem:
To find (u, ηa, ηb) ∈ V2 satisfying∑

α∈{a,b}

∫
Ω×Yα

αij

(
∂u

∂xj
+
∂ηα
∂yj

)(
∂Φ

∂xi
+
∂ϕα

∂yi

)
dxdy =

∫
Ω

fΦdx,

∀ (Φ, ϕa, ϕb) ∈ V2. (5.5)

It easy to verify that (5.5) is a well-posed problem in the Hilbert space V2,
endowed with the scalar product:

〈(u, ηa, ηb) , (Φ, ϕa, ϕb)〉V2 =

∫
Ω

∇u∇Φ+
∑

α∈{a,b}

∫
Ω×Yα

∇yηα∇yϕα. (5.6)

In this case the homogenization process is summarized by:

Theorem 8. If uε is the solution of the problem (2.24) then

uε
2s
⇀ u (5.7)

where u ∈ H1
0 (Ω), is the unique solution of the homogenized problem∫

Ω

(A+B)∇u∇Φ =

∫
Ω

fΦ, ∀Φ ∈ H1
0 (Ω), (5.8)

and A, B are the effective positive matrices defined by (3.27).
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6 The homogenization process for β ∈ (0, 1) and r = 1

Recalling Theorem 2, we obtain a preliminary two-scale behavior of the limits.

Theorem 9. For any Φa,Φb ∈ D(Ω) and ϕa ∈ D(Ω;C∞
per(Ya)), we have

∫
Ω×Ya

aij

(
∂ua
∂xj

+
∂ηa
∂yj

)(
∂Φa

∂xi
+
∂ϕa

∂yi

)
+

∫
Ω

h̃(ub − ua)(Φb − Φa) =

=

∫
Ω×Y

(χaΦa + χbΦb) f, (6.1)

where h̃ is defined in (3.32).

Proof: Setting the test function (5.4) in (2.24) we have∫
Ωεa

aεij
∂uεa
∂xi

(
∂Φa

∂xj
+
∂ϕa

∂yj

)
+ ε

∫
Ωεa

aεij
∂uεa
∂xi

∂ϕa

∂xj
+

+ε2β
∫
Ωεb

bεij
∂uεb
∂xi

(
∂Φb

∂xj
+
∂ϕb

∂yj

)
+ ε2β+1

∫
Ωεb

bεij
∂uεb
∂xi

∂ϕb

∂xj
+

+ε

∫
Γε

hε(u
ε
b − uεa) (Φb − Φa + ε(ϕb − ϕa)) =

∑
α∈{a,b}

(∫
Ωεα

fΦα + ε

∫
Ωεα

fϕα

)
.

(6.2)
We obtain (6.1) by passing (6.2) to the limit and using the same arguments

as in the proof of Theorem 3.

Remark 6. Using density arguments it follows that

(ua, ub, ηa) ∈ V3 := H1
0 (Ω)× L2(Ω)× L2(Ω, H̃1

per(Ya))

is solution of the problem:
To find (ua, ub, ηa) ∈ V3 satisfying∫

Ω×Ya

aij

(
∂ua
∂xj

+
∂ηa
∂yj

)(
∂Φa

∂xi
+
∂ϕa

∂yi

)
+ h̃

∫
Ω

(ub − ua)(Φb − Φa) =

=

∫
Ω×Y

(χaΦa + χbΦb) f, ∀ (Φa,Φb, ϕa) ∈ V3. (6.3)

It easy to verify that (6.3) is a well-posed problem in the Hilbert space V3,
endowed with the scalar product:

〈(ua, ub, ηa) , (Φa,Φb, ϕa)〉V3 =

∫
Ω

∇ua∇Φa +

∫
Ω

(ub − ua) (Φb − Φa)+

+

∫
Ω×Ya

∇yηa∇yϕa. (6.4)
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Theorem 10. If uε is the solution of the problem (2.24) the convergences (3.7)-
(3.11) hold on the whole sequence and the limit (ua, ub) ∈ H1

0 (Ω)× L2(Ω) is the
unique solution of the homogenized problem∫

Ω

Aij
∂ua
∂xj

∂Φa

∂xi
+

∫
Ω

h̃(ub − ua)(Φb − Φa) =

∫
Ω

(|Ya|Φa + |Yb|Φb) f,

∀(Φa,Φb) ∈ H1
0 (Ω)× L2(Ω). (6.5)

Consequently, the results of the homogenization process are summarized in
this case by:

Theorem 11. If uε is the solution of the problem (2.24) then

uε
2s
⇀ u+

|Yb|
h̃
χbf, (6.6)

where u ∈ H1
0 (Ω) is the unique solution of the Dirichlet problem∫

Ω

A∇u∇Φ =

∫
Ω

fΦ, ∀Φ ∈ H1
0 (Ω). (6.7)

7 The homogenization process for β ∈ (0, 1) and r ∈ (−1, 1)

Here it is the preliminary result specific to this case:

Theorem 12. There exists u ∈ H1
0 (Ω) such that

ua = ub = u in Ω. (7.1)

Moreover, for any Φ ∈ D(Ω) and ϕa ∈ D(Ω;C∞
per(Ya)), it holds∫

Ω×Ya

aij

(
∂ua
∂xj

+
∂ηa
∂yj

)(
∂Φ

∂xi
+
∂ϕa

∂yi

)
dxdy =

∫
Ω

fΦdx. (7.2)

Proof: We begin by proving (7.1). We use the same method as in the proof
of Theorem 7, multiplying the variational problem (2.24) with ε1−r. Again, we
set (5.4) as test function. Using the two-scale convergences of Theorem 2 and
calculating separately each integral we get:

ε1−r

∫
Ωεa

aεij
∂uε

∂xi

∂v

∂xj
dx −→ 0,

ε1−rε2β
∫
Ωεb

bεij
∂uε

∂xi

∂v

∂xj
−→ 0,

ε

∫
Γε

hε[uε][v] −→
∫
Ω

h̃(ub − ua)(Φb − Φa),
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ε1−r

∫
Ω

fv −→ 0.

By substitution we obtain:∫
Ω

h̃ (ub − ua) (Φb − Φa) dx = 0, ∀Φa,Φb ∈ D(Ω),

from which (7.1) follows.
In order to prove (7.2) we set (5.4) as test function in (2.24) with Φa = Φb = Φ.

Taking (7.1) into account we complete the proof as usual, all the convergences
being straightforward.

Remark 7. By density arguments we remark that

(u, ηa) ∈ V4 := H1
0 (Ω)× L2(Ω, H̃1

per(Ya))

is solution of the problem:
To find (u, ηa) ∈ V4 satisfying∫

Ω×Ya

aij

(
∂u

∂xj
+
∂ηa
∂yj

)(
∂Φ

∂xi
+
∂ϕa

∂yi

)
dxdy =

∫
Ω

fΦdx

∀ (Φ, ϕa) ∈ V4. (7.3)

It easy to verify that (7.3) is a well-posed problem in the Hilbert space V4,
endowed with the scalar product:

〈(u, ηa) , (Φ, ϕa)〉V4 =

∫
Ω

∇u∇Φ+

∫
Ω×Ya

∇yηa∇yϕa. (7.4)

In the present case the asymptotic behavior can be summarized by:

Theorem 13. If uε is the solution of the problem (2.24) then,

uε
2s
⇀ u, (7.5)

where u ∈ H1
0 (Ω) is the unique solution of (6.7).

8 The homogenization process for β = 1 and r = 1

The preliminary result of this section is given by:

Theorem 14. If uε is the solution of the problem (2.24) then we have∫
Ω×Ya

aij

(
∂ua
∂xi

+
∂ηa
∂yi

)(
∂Φ

∂xj
+
∂ϕa

∂yj

)
+

∫
Ω×Yb

bij
∂ub
∂yi

∂ϕb

∂yj
+

+

∫
Ω×Γ

h (ub − ua) (ϕb − Φ) =

∫
Ω×Ya

fΦ+

∫
Ω×Yb

fϕb, (8.1)

for any Φ ∈ D(Ω), ϕα ∈ D
(
Ω;C∞

per(Yα)
)
, α ∈ {a, b}.
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Proof: In order to prove (8.1), for Φ ∈ D(Ω) and ϕα ∈ D
(
Ω;C∞

per(Yα)
)
, with

α ∈ {a, b}, we set v ∈ Hε in (2.24) as follows:

v(x) =
(
Φ(x) + εϕa

(
x,
x

ε

)
, ϕb

(
x,
x

ε

))
, x ∈ Ω. (8.2)

Now, the variational problem (2.24) becomes:∫
Ωεa

aεij
∂uε

∂xi

(
∂Φ

∂xj
+
∂ϕa

∂yj

)
+ ε

∫
Ωεa

aεij
∂uε

∂xi

∂ϕa

∂xj
+ ε2

∫
Ωεb

bεij
∂uε

∂xi

∂ϕb

∂xj
+

+ε

∫
Ωεb

bεij
∂uε

∂xi

∂ϕb

∂yj
+ ε

∫
Γε

hε (uεb − uεa) (ϕb − Φ− εϕa) =

=

∫
Ωεa

fΦ+

∫
Ωεb

fϕb + ε

∫
Ωεa

fϕa. (8.3)

The proof is completed by passing (8.3) to the limit. In the following we shall
present only the convergences of the term involving the integral on Γε, all the
other being straightforward. We obviously have

Iε = ε

∫
Γε

hεuεb (ϕb − Φ)− ε

∫
Γε

hεuεa (ϕb − Φ) + (terms → 0). (8.4)

As Γ is C2, there exists Ψ ∈
(
D(Ω;C1

per(Y ))
)N

such that

Ψ(·, y) = (ϕb(·, y)− Φ(·)) · ν(y), ∀ y ∈ Γ. (8.5)

Then denoting Ψε(x) = Ψ
(
x, xε

)
, x ∈ Ω, we obtain

ε

∫
Γε

hεuεb (ϕb − Φ) = ε

∫
Γε

hεuεbΨ
ε · νε =

= −
∫
Ω

ε∇̂uεb(x)hΨ−
∫
Ω

ûεb(x)divy (hΨ) + (terms → 0).

As usual,

ε

∫
Γε

hεuεb (ϕb − Φ) → −
∫
Ω×Yb

divy (hubΨ) =

∫
Ω

(∫
Γ

hubΨ · ν
)

=

∫
Ω×Γ

hub (ϕb − Φ) . (8.6)

In a similar way, using (3.7)-(3.8), we get

ε

∫
Γε

hεuεa (ϕb − Φ) =

∫
Ω

ûεadivy (hΨ) + (terms → 0) −→

−→
∫
Ω×Ya

uadivy (hΨ) =

∫
Ω

ua

(∫
Γ

hΨ · ν
)

=

∫
Ω×Γ

hua (ϕb − Φ) . (8.7)
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Finally, (8.4), (8.6) and (8.7) yield

Iε −→
∫
Ω×Γ

h (ub − ua) (ϕb − Φ) .

Remark 8. Using density arguments it follows that

(ua, ub, ηa) ∈ V5 := H1
0 (Ω)× L2(Ω;H1

per(Yb))× L2(Ω, H̃1
per(Ya))

is solution of the problem:
To find (ua, ub, ηa) ∈ V5 satisfying∫

Ω×Ya

aij

(
∂ua
∂xi

+
∂ηa
∂yi

)(
∂Φ

∂xj
+
∂ϕa

∂yj

)
+

∫
Ω×Yb

bij
∂ub
∂yi

∂ϕb

∂yj
+

+

∫
Ω×Γ

h (ub − ua) (ϕb − Φ) =

∫
Ω×Ya

fΦ+

∫
Ω×Yb

fϕb,

∀ (Φ, ϕb, ϕa) ∈ V5. (8.8)

It easy to verify that (8.8) is a well-posed problem in the Hilbert space V5,
endowed with the scalar product:

〈(ua, ub, ηa) , (Φ, ϕa, ϕb)〉V5 =

∫
Ω

∇ua∇Φ+

∫
Ω×Yb

∇ub∇ϕb+

+

∫
Ω×Γ

(ub − ua) (ϕb − Φ) +

∫
Ω×Ya

∇yϕa∇yηa. (8.9)

The results of the homogenization process can be summarized in this case by:

Theorem 15. If uε is the solution of (2.24) then

uε
2s
⇀
(
| Ya | +w̃1h

)
u+ w1χbf (8.10)

where u ∈ H1
0 (Ω) is the unique solution of the homogenized problem (6.7).

Proof: If u ∈ H1
0 (Ω) is the solution of the homogenized system (6.7) then it is

easy to verify that the only solution of the problem (8.8) is given by

ua(x) =
(
| Ya | +w̃1h

)
u(x), x ∈ Ω (8.11)

ub(x, y) =
(
| Ya | +w̃1h

)
u(x) + w1(y)f(x), (x, y) ∈ Ω× Yb, (8.12)

ηa(x, y) =
(
| Ya | +w̃1h

)
ηak

(y)
∂u

∂xk
(x), (x, y) ∈ Ω× Ya, (8.13)

and thus the proof is completed.
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9 The homogenization process for β = 1 and r ∈ (−1, 1)

The preliminary result of this case is the following:

Theorem 16. For any Φ ∈ D(Ω) and ϕα ∈ D(Ω;C∞
per(Yα)), α ∈ {a, b} such that

ϕb(x, y) = Φ(x), ∀(x, y) ∈ Ω× Γ (9.1)

we have: ∫
Ω×Ya

aij

(
∂ua
∂xi

+
∂ηa
∂yi

)(
∂Φ

∂xj
+
∂ϕa

∂yj

)
+

∫
Ω×Yb

bij
∂ub
∂yi

∂ϕb

∂yj
=

=

∫
Ω×Ya

fΦ+

∫
Ω×Yb

fϕb. (9.2)

Moreover,
ua = ub on Ω× Γ. (9.3)

Proof: We begin by proving (9.3). We use the same ideas as in the proof of
the Theorem 7. We multiply the variational problem (2.24) with ε1−r and then
we take the test function (8.2) with Φ ∈ D(Ω), ϕa ∈ D(Ω;C∞

per(Ya)) and ϕb ∈
D(Ω;C∞

per(Yb)). We get

ε1−r

∫
Ωεa

aεij
∂uε

∂xi

(
∂Φ

∂xj
+
∂ϕa

∂yj

)
+ ε2−r

∫
Ωεa

aεij
∂uε

∂xi

∂ϕa

∂xj
+ ε3−r

∫
Ωεb

bεij
∂uε

∂xi

∂ϕb

∂xj
+

+ε2−r

∫
Ωεb

bεij
∂uε

∂xi

∂ϕb

∂yj
+ ε

∫
Γε

hε (uεb − uεa) (ϕb − Φ− εϕa) =

= ε1−r

∫
Ωεa

fΦ+ ε1−r

∫
Ωεb

fϕb + ε2−r

∫
Ωεa

fϕa. (9.4)

As in the proofs of Theorem 7, Theorem 12 and Theorem 14, when passing
to the limit with (ε→ 0) in the (9.4) we obtain∫

Ω×Γ

h(y) (ub(x, y)− ua(x)) (ϕb(x, y)− Φ(x)) = 0,

∀Φ ∈ D(Ω), ϕb ∈ D(Ω;C∞
per(Yb)), (9.5)

which obviously imply (9.3).
In order to obtain the homogenized equation (9.2) we take in (2.24) the same

test function (8.2) with the supplementary condition (9.1). The proof is com-
pleted again in a straightforward manner, the term corresponding to the integral
on Γε being of order ε1+r/2.

In the light of the previous result, we introduce the space

V :=
{
(Φ, ϕ) ∈ H1

0 (Ω)× L2(Ω;H1
per(Yb)), ϕ = Φ on Ω× Γ

}
. (9.6)



Heat transfer with first-order interfacial jump in a biconnected structure 19

Remark 9. Using density arguments it follows that

((ua, ub), ηa) ∈ V6 := V × L2(Ω; H̃1
per(Ya))

is solution of the problem:
To find ((ua, ub), ηa) ∈ V6 satisfying∫

Ω×Ya

aij

(
∂ua
∂xi

+
∂ηa
∂yi

)(
∂Φ

∂xj
+
∂ϕa

∂yj

)
+

∫
Ω×Yb

bij
∂ub
∂yi

∂ϕb

∂yj
=

=

∫
Ω×Ya

fΦ+

∫
Ω×Yb

fϕb, ∀ ((Φ, ϕb), ϕa) ∈ V × L2(Ω; H̃1
per(Ya)). (9.7)

It easy to verify that (9.7) is a well-posed problem in the Hilbert space V6,
endowed with the scalar product:

〈((ua, ub), ηa) , ((Φ, ϕa), ϕb)〉V6 =

∫
Ω

∇ua∇Φ+

∫
Ω×Yb

∇yub∇yϕb+

∫
Ω×Ya

∇yϕa∇yηa.

(9.8)

The results of the homogenization process can be summarized in this case by:

Theorem 17. If uε is the solution of the problem (2.24) then,

uε
2s
⇀ |Ya|u+ w0χbf, (9.9)

where u ∈ H1
0 (Ω) is the unique solution of (6.7).

Proof: If u ∈ H1
0 (Ω) is the unique solution of (6.7) then we verify that the unique

solution of (9.7) is the following:

ua = |Ya|u, ub = |Ya|u+ w0f, ηa = |Ya|ηak
∂u

∂xk
,

where ηak and w0 are defined by (3.25)-(3.26) and (3.28)-(3.29).
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