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Abstract

In this paper we introduce and investigate the latticial counterparts of the conditions
(Ci), i = 1, 2, 3, 11, 12, for modules. In particular, we study the lattices satisfying the
condition (C1), we call CC lattices (for Closed are Complements), i.e., the lattices such that
any closed element is a complement, that are the latticial counterparts of CS modules (for
Closed are Summands). Applications of these results are given to Grothendieck categories
and module categories equipped with a torsion theory.

2010 Mathematics Subject Classification: 06C05, 06C99, 06B35, 16D80, 16S90, 18E15.

Key words and phrases: Modular lattice, upper continuous lattice, complement, pseudo-
complement, closed element, pseudo-complemented lattice, (Ci) condition, CS module, CC
lattice, Grothendieck category, torsion theory.

Introduction

In this paper we shall illustrate a general strategy which consists on putting a module-

theoretical definition/result in a latticial frame, in order to translate that definition/result

to Grothendieck categories and to module categories equipped with a torsion theory. Thus,

we provide latticial counterparts of known results about modules satisfying the conditions
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(Ci), i = 1, 2, 3, 11, 12. Our proofs are not always simple adaptations of the corresponding

ones in the module case because not all the involved module-theoretical tools work in a latti-

cial frame.

In Section 0 we list some definitions and results about lattices, especially from [4] and

[12]. In Section 1 we define the conditions (Ci), i = 1, 2, 3, 11, 12, for lattices, and prove

some of their basic properties. Section 2 is devoted to the investigation of inheritance prop-

erties of condition (C11) under direct joins and complement intervals. The last two sections

present some applications to Grothendieck categories and module categories equipped with a

hereditary torsion theory.

0 Preliminaries

All lattices considered in this paper are assumed to have a least element denoted by 0 and a

last element denoted by 1. Throughout this paper, (L,6,∧,∨, 0, 1), or more simply, just L,

will always denote such a lattice. If the lattices L and L′ are isomorphic, we denote this by

L ' L′. We shall denote by M the class of all modular lattices with 0 and 1. We shall use

N to denote the set {1, 2, . . .} of all positive integers.

For a lattice L and elements a 6 b in L we write

b/a := [a, b] = { x ∈ L | a 6 x 6 b }.

A subfactor of L is any interval b/a of L with a 6 b.

An element c ∈ L is a complement in L if there exists an element a ∈ L such that a∧c = 0

and a ∨ c = 1; we say in this case that c is a complement of a in L. One denotes by D(L)

the set of all complements of L. By a complement interval of L we mean any interval d/0 of

L with d ∈ D(L). The lattice L is called indecomposable if L 6= {0} and D(L) = {0, 1}. The

lattice L is said to be complemented if every element of L has a complement in L.

For a lattice L and a, b, c ∈ L, the notation a = b
·
∨ c will mean that a = b ∨ c and

b∧ c = 0, and we say that a is a direct join of b and c. Also, for a non-empty subset S of L,

we use the direct join notation a =
·∨
b∈S b if S is an independent subset of L and a =

∨
b∈S b.

Recall that a non-empty subset S of L is called independent if 0 /∈ S, and for every x ∈ S,

positive integer n, and subset T = {t1, . . . , tn} of S with x /∈ T , x ∧ (t1 ∨ · · · ∨ tn) = 0.

Clearly a subset S of L is independent if and only if every finite subset of S is independent.

Alternatively, we say that a finite family (xi)i∈I of elements of a lattice L is independent if

xi 6= 0 and xi ∧ (
∨
j∈I\{i} xj) = 0 for every i ∈ I, and in that case, necessarily xp 6= xq for

each p 6= q in I. Thus, the definitions of independence, using subsets or families of elements

of L, are essentially the same.
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An element b ∈ L is a pseudo-complement in L if there exists an element a ∈ L such

that a ∧ b = 0 and b is maximal with this property; we say in this case that b is a pseudo-

complement of a, and P (a) will denote the set, possibly empty, of all pseudo-complements of

a in L. One denotes also by P (L) the set of all pseudo-complement elements of L.

As in [4], L is called pseudo-complemented if every element of L has a pseudo-complement,

and strongly pseudo-complemented if for all a, b ∈ L with a ∧ b = 0, there exists a pseudo-

complement p of a in L such that b 6 p. Every upper continuous modular lattice L is

strongly pseudo-complemented. Notice that the term of a pseudo-complemented lattice has in

[12] the following stronger meaning: for every a 6 b in L and for every x ∈ b/a, there exists

a pseudo-complement of x in b/a.

An element e ∈ L is essential in L if e ∧ x 6= 0 for every x 6= 0 in L. One denotes by

E(L) the set of all essential elements of L. The lattice L is called uniform if L 6= {0} and

x ∧ y 6= 0 for every non-zero elements x, y ∈ L. An element u of L is called uniform if

the interval u/0 of L is a uniform lattice. As in [4], L is called E-complemented (“E” for

essential) if for each a ∈ L there exists b ∈ L such that a ∧ b = 0 and a ∨ b ∈ E(L).

An element c ∈ L is said to be closed if c 6∈ E(a/0) for all a ∈ L with c < a. One denotes

by C(L) the set of all closed elements of L. As in [4], the lattice L is called essentially closed

if for all a ∈ L, the set Sa = { e ∈ L | a ∈ E(e/0) } has a maximal element, or equivalently,

for any a ∈ L there exists c ∈ C(L) with a ∈ E(c/0).

An element c ∈ L is compact in L if whenever c 6
∨
x∈A x for a subset A of L, there is

a finite subset F of A such that c 6
∨
x∈F x. The lattice L is said to be compact if 1 is a

compact element in L, and compactly generated if it is complete and every element of L is a

join of compact elements.

For all other undefined notation and terminology on lattices, the reader is referred to [4],

[5], [6], and/or [12].

Throughout this paper R will denote an associative ring with non-zero identity element,

and Mod-R the category of all unital right R-modules. The notation MR will be used to

designate a unital right R-module M , and N 6 M will mean that N is a submodule of M .

The lattice of all submodules of a module MR will be denoted by L(MR).

1 Conditions (Ci), i = 1, 2, 3, 11, 12, in lattices

The purpose of this section is to define the conditions (Ci), i = 1, 2, 3, 11, 12, in lattices,

and to establish their basic properties. These are the latticial counterparts of the well-known

corresponding conditions on modules (see [8], [10], [11]).

Recall that for a lattice L we use throughout this paper the following notation:

P (L) = the set of all pseudo-complement elements of L (P for “Pseudo”),
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E(L) = the set of all essential elements of L (E for “Essential”),

C(L) = the set of all closed elements of L (C for “Closed”),

D(L) = the set of all complement elements of L (D for “Direct summand”).

Also, recall that for any a ∈ L, we have denoted by P (a) the set, possibly empty, of all

pseudo-complements of a in L, so P (L) =
⋃
a∈L P (a).

Definitions 1.1. For a lattice L one may consider the following conditions:

(C1) For every x ∈ L there exists d ∈ D(L) such that x ∈ E(d/0).

(C2) For every x ∈ L such that x/0 ' d/0 for some d ∈ D(L), one has x ∈ D(L).

(C3) For every d1, d2 ∈ D(L) with d1 ∧ d2 = 0, one has d1 ∨ d2 ∈ D(L).

(C11) For every x ∈ L there exists a pseudo-complement p of x with p ∈ D(L),

in other words, D(L) ∩ P (x) 6= ∅.

(C12) For every x ∈ L there exist d ∈ D(L), e ∈ E(d/0), and a lattice isomorphism

x/0 ' e/0. �

Definitions 1.2. A lattice L is called CC or extending if it satisfies (C1), continuous if it

satisfies (C1) and (C2), and quasi-continuous if it satisfies (C1) and (C3). �

First, we list below four results from [4] that will be used in our study of conditions (Ci),

i = 1, 2, 3, 11, 12.

Lemma 1.3. ([4, Lemma 1.2.6]). Let L ∈ M, and let a, b, c ∈ L be such that a ∧ b = 0 and

(a ∨ b) ∧ c = 0. Then (a ∨ c) ∧ b = 0. �

Lemma 1.4. ([4, Lemma 1.2.7]). Let L ∈M, and let a, b, c ∈ L be such that a ∧ b = 0 and

c ∈ E(b/0). Then a ∨ c ∈ E((a ∨ b)/0).

Lemma 1.5. ([4, Proposition 1.2.16 and Corollary 1.2.17]). For any L ∈ M, P (L) ⊆ C(L),

and P (L) = C(L) if additionally L is E-complemented. �

Lemma 1.6. ([4, Theorem 1.2.24]). A modular lattice L is strongly pseudo-complemented if

and only if L is E-complemented and essentially closed. �

Proposition 1.7. The following assertions hold for a lattice L ∈M.

(1) D(L) ⊆ P (L) ⊆ C(L).

(2) D(L) ∩ (a/0) ⊆ D(a/0) for every a ∈ L.

(3) D(L) ∩ (d/0) = D(d/0) for every d ∈ D(L).

Proof. (1) Let d ∈ D(L). Then there exists c ∈ L with c ∨ d = 1 and c ∧ d = 1. If c′ ∈ L
is such that c 6 c′ and d ∧ c′ = 0, then, by modularity, we have c′ = 1 ∧ c′ = (c ∨ d) ∧ c′ =

c ∨ (d ∧ c′) = c ∨ 0 = c, which proves that d ∈ P (L), and so D(L) ⊆ P (L).
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The other inclusion P (L) ⊆ C(L) follows from Lemma 1.5.

(2) Let d ∈ D(L)∩ (a/0), and let c ∈ L be a complement of d in L. Then 1 = c∨ d and

c∧ d = 0. It follows that (c∧ a)∧ d = 0 and (c∧ a)∨ d = (c∨ d)∧ a = 1∧ a = a, which shows

that c ∧ a is a complement of d in a/0, i.e., d ∈ D(a/0).

(3) Let d′ ∈ D(d/0). Then there exists d′′ ∈ L such that d′ ∧ d′′ = 0 and d′ ∨ d′′ = d.

Also, a ∨ d = 1 and a ∧ d = 0 for some a ∈ L. Thus d′ ∨ (d′′ ∨ a) = 1. Now, observe that

a ∧ (d′ ∨ d′′) = a ∧ d = 0, so we can apply Lemma 1.3 to obtain d′ ∧ (d′′ ∨ a) = 0. This

shows that d′′ ∨ a is a complement of d′ in L, i.e., d′ ∈ D(L). Since d′ 6 d, we deduce that

d′ ∈ D(L) ∩ (d/0). So D(d/0) ⊆ D(L) ∩ (d/0). The other inclusion follows from (2).

The next two results provide characterizations of conditions (C11) and (C12).

Proposition 1.8. The following statements hold for a lattice L ∈M.

(1) L satisfies (C11) ⇐⇒ ∀ x ∈ L, ∃ d ∈ D(L) with d ∧ x = 0 and d ∨ x ∈ E(L).

(2) L is uniform =⇒ L satisfies (C11).

(3) If L is indecomposable, then L satisfies (C11) ⇐⇒ L is uniform.

Proof. (1) Assume that L satisfies (C11). Then, it is well-known (see, e.g., [12, Chapter 3,

Proposition 6.4]) that for every p ∈ P (x) one has p ∨ x ∈ E(L).

Conversely, assume that L has the stated properties, and let x ∈ L and d ∈ D(L) with

d ∧ x = 0 and d ∨ x ∈ E(L). We claim that d is a pseudo-complement of x in L. Suppose

not. Then, there exists q ∈ L with d < q and x ∧ q = 0. But d ∈ C(L) by Proposition

1.7(1), so d /∈ E(q/0). Then, there exists 0 6= y 6 q such that d∧ y = 0. Next, (d∨ y)∧ x = 0

gives that (d ∨ x) ∧ y = 0 by Lemma 1.3, and hence y = 0 because d ∨ x ∈ E(L), which is a

contradiction. Thus d is a pseudo-complement of x in L, as desired.

(2) Let x ∈ L. If x = 0, then 1 ∈ D(L), 1 ∧ x = 0, and 1 ∨ x = 1 ∈ E(L). If x 6= 0, then

0 ∈ D(L), 0∧ x = 0, and 0∨ x = x ∈ E(L) because L is uniform. So, by (1), L satisfies (C11).

(3) If L is uniform then it satisfies (C11) by (2). Now assume that L satisfies (C11), and

let 0 6= x ∈ L. By (1), there exists d ∈ D(L) = {0, 1} with d ∧ x = 0 and d ∨ x ∈ E(L), so

necessarily d = 0, and then x ∈ E(1/0) = E(L). Hence L is uniform.

Proposition 1.9. An essentially closed modular lattice L satisfies (C12) if and only if for

every c ∈ C(L) there exist d ∈ D(L), e ∈ E(d/0), and a lattice isomorphism c/0 ' e/0.

Proof. If L satisfies (C12), then by definition, it clearly has the stated properties. Conversely,

assume that L has the stated properties, and let x ∈ L. Then, there exists c ∈ C(L) such that
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x ∈ E(c/0) because L is essentially closed. By assumption, there exist d ∈ D(L), e ∈ E(d/0),

and a lattice isomorphism α : c/0 −→ e/0. Then, y := α(x) ∈ E(e/0), so y ∈ E(d/0), and

by restriction of α to x/0 we obtain a lattice isomorphism x/0 ' y/0, which proves that L

satisfies (C12).

The next result presents the connections between the conditions (Ci), i = 1, 2, 3, 11, 12,

and characterizes essentially closed CC lattices in terms of closeness; in particular, it explains

the term of CC, acronym for C losed elements are C omplements.

Proposition 1.10. The following statements hold for a lattice L ∈M.

(1) L is uniform =⇒ L is quasi-continuous =⇒ L is CC.

(2) If L is indecomposable, then L is CC ⇐⇒ L is uniform.

(3) If additionally L is essentially closed, then

L is CC ⇐⇒ C(L) ⊆ D(L)⇐⇒ C(L) = D(L).

(4) If additionally L is strongly pseudo-complemented, then

L is CC ⇐⇒ C(L) ⊆ D(L)⇐⇒ C(L) = D(L)⇐⇒ P (L) ⊆ D(L)⇐⇒ P (L) = D(L).

(5) L satisfies (C2) =⇒ L satisfies (C3).

(6) L satisfies (C1) =⇒ L satisfies (C11).

(7) L satisfies (C11) =⇒ L satisfies (C12).

Proof. (1) Assume that L is uniform. Then D(L) = {0, 1}. Let x ∈ L. If x = 0 then 0 ∈ D(L)

and 0 ∈ E(0/0). If x 6= 0 then 1 ∈ D(L) and x ∈ E(1/0) = E(L). So L satisfies (C1). Let

d1, d2 ∈ D(L) = {0, 1}. Then d1 ∨ d2 = 0 or 1, and so d1 ∨ d2 ∈ D(L). Thus L satisfies (C3).

(2) By (1), if L is uniform then it is CC. Now assume that L is CC and let 0 6= x ∈ L.

By hypothesis, x ∈ E(d/0) for some d ∈ D(L) = {0, 1}, so necessarily d = 1, and then

x ∈ E(1/0) = E(L). Hence L is uniform.

(3) Assume that L is CC, and let x ∈ C(L). Then, there exists d ∈ D(L) such that

x ∈ E(d/0), and hence x = d ∈ D(L) because L is essentially closed. So C(L) ⊆ D(L).

Observe that, by Proposition 1.7(1), C(L) ⊆ D(L)⇐⇒ C(L) = D(L).

Finally assume that C(L) ⊆ D(L), and let x ∈ L. There exists c ∈ C(L) such that

x ∈ E(c/0). By assumption, c ∈ D(L). It follows that L is CC.

(4) follows at once from (3) and Lemmas 1.5 and 1.6.
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(5) Assume that L satisfies (C2), and let k, l ∈ D(L) with k ∧ l = 0. Then 1 = k ∨ k′

and k ∧ k′ = 0 for some k′ ∈ L.

Consider the element u := (k ∨ l) ∧ k′. By modularity, we have

k ∨ l = (k ∨ l) ∧ (k ∨ k′) = ((k ∨ l) ∧ k′) ∨ k = u ∨ k.

Notice that u 6 k′ and u ∧ k = 0, so

l/0 = l/(k ∧ l) ' (k ∨ l)/k = (u ∨ k)/k ' u/(u ∧ k) = u/0.

By (C2), u ∈ D(L). Let m be a complement of u in L. Using again modularity we have

(u ∨ k) ∧ k′ = u ∨ (k ∧ k′) = u ∨ 0 = u,

and consequently

(u ∨ k) ∧ (k′ ∧m) = 0.

Also, by modularity, we obtain

u ∨ (k′ ∧m) = (u ∨m) ∧ k′ = 1 ∧ k′ = k′,

and so

(u ∨ k) ∨ (k′ ∧m) = k ∨ k′ = 1.

Thus k ∨ l = u ∨ k ∈ D(L), as desired.

(6) Assume that L satisfies (C1), and let x ∈ L. Then, there exists d ∈ D(L) such that

x ∈ E(d/0). So, d ∧ d′ = 0 and d ∨ d′ = 1 for some d′ ∈ L. Now d ∧ d′ = 0 implies that

x ∨ d′ ∈ E((d ∨ d′)/0) = E(1/0) = E(L) by Lemma 1.4. Since x ∧ d′ = 0, by Proposition

1.8(1), we deduce that L satisfies (C11).

(7) Assume that L satisfies (C11), and let x ∈ L. Then, there exists p ∈ P (x)∩D(L), so

x ∧ p = 0 and x ∨ p ∈ E(L). Also, there exists p′ ∈ L such that p ∧ p′ = 0 and p ∨ p′ = 1 .

Let e := (x ∨ p) ∧ p′. Since x ∨ p ∈ E(L), it follows that e ∈ E(p′/0) by well-known

properties of essential elements. We have 1/p = (p ∨ p′)/p and p′/0 = p′/(p ∧ p′). By

modularity, the map ϕ : 1/p −→ p′/0, u 7→ u∧p′, is a lattice isomorphism. Since ϕ(x∨p) = e,

we deduce that

(x ∨ p)/p ' e/0.

Using modularity again we have

x/0 = x/(x ∧ p) ' (x ∨ p)/p,

hence

x/0 ' e/0 for e ∈ E(p′/0) and p′ ∈ D(L).

Thus, L satisfies (C12).
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Lemma 1.11. ([4, Corollary 1.2.14]). Let L ∈ M be an E-complemented lattice, and let

c 6 d in L be such that c ∈ C(d/0) and d ∈ C(L). Then c ∈ C(L). �

Lemma 1.12. Let L ∈ M be an E-complemented lattice, and let c 6 d in L be such that

c ∈ C(d/0) and d ∈ D(L). Then c ∈ C(L).

Proof. The result follows immediately from Lemma 1.11 because D(L) ⊆ C(L).

Lemma 1.13. Let L ∈M, d ∈ D(L), and k ∈ D(d/0). Then k ∈ D(L).

Proof. There exist k′ ∈ d/0 and d′ ∈ L such that k ∨ k′ = d, k ∧ k′ = 0, d ∨ d′ = 1, and

d∧ d′ = 0. Then k ∨ (k′ ∨ d′) = 1 and k ∧ (k′ ∨ d′) = 0 by Lemma 1.3, and so, k ∈ D(L).

Lemma 1.14. ([4, Lemma 1.2.20]). If L is a strongly pseudo-complemented lattice, then so

is also its sublattice a/0 for any element a ∈ L. �

Proposition 1.15. Let L ∈ M be a strongly pseudo-complemented lattice (in particular, an

upper continuous lattice), and let d ∈ D(L). If L satisfies (Ci), i = 1, 2, 3, then d/0 also

satisfies (Ci), i = 1, 2, 3, in other words, the conditions (Ci), i = 1, 2, 3, are inherited by

complement intervals.

Proof. First assume that L satisfies (C1), and let c ∈ C(d/0). Since d ∈ D(L), it fol-

lows that c ∈ C(L) by Lemma 1.12. But C(L) = D(L) by Proposition 1.10(3), therefore

c ∈ D(L) ∩ (d/0) = D(d/0) by Proposition 1.7(3). Thus C(d/0) ⊆ D(d/0). Now, observe

that d/0 is strongly pseudo-complemented by Lemma 1.14, so we can apply again Proposition

1.10(3) to deduce that d/0 satisfies (C1).

Now assume that L satisfies (C2). Let x ∈ d/0, k ∈ D(d/0), and let f : x/0 −→ k/0 be a

lattice isomorphism. Then k ∈ D(L) by Lemma 1.13, and so x ∈ D(L) because L satisfies

(C2). So, x ∈ D(L) ∩ (d/0) = D(d/0) by Proposition 1.7(3), i.e., d/0 satisfies (C2).

Finally, suppose that L satisfies (C3), and let d1, d2 ∈ D(d/0) with d1 ∧ d2 = 0. Then

d1 ∨ d2 ∈ D(L) ∩ (d/0) = D(d/0) again by Proposition 1.7(3), and we are done.

Lemma 1.16. Let L be a strongly pseudo-complemented lattice, let a ∈ L, let p ∈ P (a) and

let q ∈ P (p) with a 6 q. Then p ∈ P (q), so, p and q are pseudo-complements of each other.

Proof. Let b ∈ L be such that p 6 b and b ∧ q = 0. Then also b ∧ a = 0, so b = p by

the definition of p. Hence p is maximal with respect to p ∧ q = 0, and so, p is a pseudo-

complement of q.

Lemma 1.17. ([4, Corollary 2.2.2]). Let S and T be non-empty finite subsets of a lattice

L ∈ M. Then S ∪ T is an independent subset of L if and only if S and T are both

independent subsets of L and
(∨

S
)
∧
(∨

T
)

= 0. �
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Proposition 1.18. The following statements are equivalent for a strongly pseudo-comple-

mented lattice L.

(1) L is quasi-continuous.

(2) 1 = p1
·
∨ p2 for every p1, p2 ∈ P (L) which are pseudo-complements of each other.

(3) For every x1, x2 ∈ L with x1 ∧ x2 = 0, there exist d1, d2 ∈ L with 1 = d1
·
∨ d2 and

x1 6 d1, x2 6 d2.

Proof. First note that, by Proposition 1.10(4), L is CC ⇐⇒ P (L) ⊆ D(L).

(1) =⇒ (2) Assume that L is quasi-continuous, and let p1, p2 ∈ P (L) which are pseudo-

complements of each other. By condition (C1), p1, p2 ∈ D(L). Now, condition (C3) yields

that p1 ∨ p2 ∈ D(L). But p1 ∨ p2 ∈ E(L), and so 1 = p1
·
∨ p2.

(2) =⇒(1) We prove first that L is CC. By the remark that starts the proof, it suffices

to show that P (L) ⊆ D(L). To do this, let p ∈ P (L). Then, there exists a ∈ L such that

p ∈ P (a). Since L is strongly pseudo-complemented, there exists a q > a such that q ∈ P (p).

By Lemma 1.16, p and q are pseudo-complements of each other, and by our hypothesis, we

have p
·
∨ q = 1, and so p ∈ D(L), as desired.

Now, we show that L satisfies (C3). Let d1, d2 ∈ D(L) be such that d1∧d2 = 0 and prove

that d1∨d2 ∈ D(L). Let p1 ∈ P (d2) with d1 6 p1, and p2 ∈ P (p1) with d2 6 p2. By Lemma

1.16, p1 and p2 are pseudo-complements of each other, so, by assumption, 1 = p1
·
∨ p2.

Therefore, p1, p2 ∈ D(L), so by Proposition 1.7(3), we have di ∈ D(L) ∩ (pi/0) = D(pi/0)

for i = 1, 2. Let ei ∈ D(pi/0), be such that pi = di
·
∨ ei for i = 1, 2. Now apply Lemma 1.17

for S = {d1, e1} and T = {d2, e2} to deduce that

(d1∨d2)
·
∨ (e1∨e2) = 1,

so d1∨d2 ∈ D(L), as desired.

(2) =⇒(3) Let x1, x2 ∈ L with x1 ∧ x2 = 0, and pick d1 ∈ P (x2) with x1 6 d1 and

d2 ∈ P (d1) with x2 6 d2. By Lemma 1.16, d1 and d2 are pseudo-complements of each other,

so 1 = d1
·
∨ d2 by assumption, and we are done.

(3) =⇒(2) Let p1, p2 ∈ P (L) which are pseudo-complements of each other, i.e., p2 ∈ P (p1)

and p1 ∈ P (p2). Then p1∧ p2 = 0, so, by assumption, there exist d1, d2 ∈ L with 1 = d1
·
∨ d2

and p1 6 d1, p2 6 d2. Then p1 ∧ d2 6 d1 ∧ d2 = 0 and p2 ∧ d1 6 d1 ∧ d2 = 0, so necessarily

pi = di because pi ∈ P (L), i = 1, 2. Thus 1 = p1
·
∨ p2, as desired.

We end this section by stating a latticial counterpart involving CC lattices of the following

renown result of Module Theory that provides sufficient conditions for a finitely generated

(respectively, cyclic) module to be a finite direct sum of uniform submodules.
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The Osofsky-Smith Theorem [9]. A finitely generated (respectively, cyclic) right R-

module such that all of its finitely generated (respectively, cyclic) subfactors are CS modules is

a finite direct sum of uniform submodules. �

Recall that a module M is said to be CS (or extending) if every submodule of M is

essential in a direct summand of M , or, equivalently, if any complement submodule of M

is a direct summand of M . The name CS is an acronym for C omplements submodules are

direct Summands. Recall that in Module Theory one says that a submodule N of M is a

complement if there exists a submodule L of M such that N ∩L = 0 and N is maximal in the

set of all submodules P of M such that P ∩L = 0, i.e., the element N of the lattice L(M) of

all submodules of M is a pseudo-complement element in this lattice. Consequently, a module

M is CS if and only if the lattice L(M) is CC.

Though the Osofsky-Smith Theorem is a module-theoretical result, our contention is that

it is a result of a strong latticial nature. The following latticial version of this theorem was

established in [1], and applications of it to Grothendieck categories and module categories

equipped with a torsion theory were given in [2].

Theorem 1.19. (The Latticial Osofsky-Smith Theorem [1]). Let L be a compact,

compactly generated, modular lattice. Assume that all compact subfactors of L are CC. Then

1 is a finite direct join of uniform elements of L. �

2 Inheritance of condition (C11) under direct joins and com-
plement intervals

The condition (C1) is, in general, not inherited by direct joins, as this is well-known for modules

(see, e.g., [7]), in contrast with the condition (C11) by the theorem that will follow. But first,

we need some preparatory results.

Lemma 2.1. Let n ∈ N, n > 2. A set {a1, . . . , an} of non-zero elements of a lattice L ∈M
is independent if and only if ak+1 ∧ (a1 ∨ · · · ∨ ak) = 0 for all k, 1 6 k 6 n− 1.

Proof. See, e.g., [4, Lemma 2.2.1].

Lemma 2.2. Let L ∈M, and let a1, a2 ∈ L be such that a1∧a2 = 0. Suppose that for every

i ∈ {1, 2}, d′i is a complement of di in ai/0. Then d′1 ∨ d′2 is a complement of d1 ∨ d2 in

(a1 ∨ a2)/0.

Proof. We have d1∧d′1 = 0 and (d1∨d′1)∧d2 = 0 since (d1∨d′1)∧d2 = a1∧d2 6 a1∧a2 = 0,

and also (d2 ∨ d′2) ∧ a1 = a2 ∧ a1 = 0. By Lemma 1.3, it follows that (d2 ∨ a1) ∧ d′2 = 0, so

(d1 ∨ d′1 ∨ d2) ∧ d′2 = 0 .
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By Lemmas 1.17 and 2.1, we deduce that the family {d1, d′1, d2, d′2} is independent, hence

(d1 ∨ d2) ∧ (d′1 ∨ d′2) = 0 .

To end the proof, observe that (d1 ∨ d2) ∨ (d′1 ∨ d′2) = a1 ∨ a2 .

Lemma 2.3. ([4, Corollary 1.2.8]). Let L ∈ M, and let ai, bi ∈ L be such that ai ∈ E(bi/0)

(i = 1, 2) and a1 ∧ a2 = 0. Then a1 ∨ a2 ∈ E((b1 ∨ b2)/0). �

Lemma 2.4. Let L ∈ M, and let x, a1, a2 ∈ L be such that a1 ∧ a2 = 0 and x 6 a1 ∨ a2.

Suppose that there exist an element d1 ∈ D(a1/0) such that

(x ∧ a1) ∧ d1 = 0, (x ∧ a1) ∨ d1 ∈ E(a1/0),

and an element d2 ∈ D(a2/0) such that

((x ∨ d1) ∧ a2) ∧ d2 = 0, ((x ∨ d1) ∧ a2) ∨ d2 ∈ E(a2/0) .

Then

d1 ∨ d2 ∈ D((a1 ∨ a2)/0), x ∧ (d1 ∨ d2) = 0 and x ∨ (d1 ∨ d2) ∈ E((a1 ∨ a2)/0).

Proof. If we set d := d1 ∨ d2, then d ∈ D((a1 ∨ a2)/0) by Lemma 2.2. Since x ∧ d1 6 a1 and

(x ∧ d1) ∧ a1 = 0, it follows that x ∧ d1 = 0. By modularity, we have

(x ∨ d1) ∧ a1 = (x ∧ a1) ∨ d1 ∈ E(a1/0).

Similarly, (x ∨ d1) ∧ d2 = 0 and

(x ∨ d) ∧ a2 = ((x ∨ d1) ∨ d2) ∧ a2 = ((x ∨ d1) ∧ a2) ∨ d2 ∈ E(a2/0).

Since x∧d1 = 0 and (x∨d1)∧d2 = 0, by Lemma 1.3, we have x∧d = x∧(d1∨d2) = 0. To

conclude, we show that x∨d ∈ E((a1∨a2)/0). Indeed, since (x∨d1)∧a1 ∈ E(a1/0), it follows

that (x ∨ d) ∧ a1 ∈ E(a1/0). We also have (x ∨ d) ∧ a2 ∈ E(a2/0). Using now Lemma 2.3, we

deduce that ((x∨d)∧a1)∨((x∨d)∧a2) ∈ E((a1∨a2)/0). But ((x∨d)∧a1)∨((x∨d)∧a2) 6 x∨d,
thus x ∨ d ∈ E((a1 ∨ a2)/0), and we are done.

Now, we are in a position to prove the main result of this section. First, we prove it for

any finite independent family of elements of an arbitrary modular lattice L. Then, we prove

it also for infinite independent families of elements of L, where the additional condition that

L is upper continuous is required in order to use Zorn’s Lemma.

Proposition 2.5. Let L ∈M, and let (ai)16i6n be a finite independent family of elements of

L such that 1 =
·∨
16i6n ai and ai/0 satisfies (C11) for all 1 6 i 6 n. Then L satisfies (C11) .

Proof. We proceed by induction on n. The result is clear for n = 1. Now, let 1 < i < n and

suppose that the result is true for i and prove it for i+ 1.

For every 1 6 i 6 n set bi :=
∨

16j6i ai. We have bi+1 = bi
·
∨ ai+1. Now, bi/0 satisfies

the condition (C11) by the inductive hypothesis, and ai+1/0 satisfies the condition (C11) by

hypothesis. So, it is sufficient to prove the result only for n = 2. By Proposition 1.8(1) and

Lemma 2.4, (a1 ∨ a2)/0 satisfies (C11), and we are done.
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Theorem 2.6. Let L be an upper continuous modular lattice, and let (ai)i∈I be an indepen-

dent family of elements of L such that 1 =
·∨
i∈I ai and ai/0 satisfies (C11) for all i ∈ I.

Then L satisfies (C11).

Proof. Let x ∈ L be a fixed element. For each ∅ 6= J ⊆ I, set aJ :=
∨
i∈J ai. Consider the

set H, depending on x, of all triplets (J, d, d′) such that

∅ 6= J ⊆ I, d, d′ ∈ L, d ∧ d′ = 0, d ∨ d′ = aJ , (x ∧ aJ) ∧ d = 0, (x ∧ aJ) ∨ d ∈ E(aJ/0) ,

which becomes a partially ordered set by the componentwise order � defined by

(J1, d1, d
′
1) � (J2, d2, d

′
2) ⇐⇒ J1 ⊆ J2, d1 6 d2, and d′1 6 d

′
2 .

Since ai/0 satisfies (C11), for every i ∈ I there exist d, d′ ∈ ai/0 such that ({i}, d, d′) ∈ H.
Thus H 6= ∅.

We are now going to show that H is an inductive set, so that, we can apply Zorn’s Lemma

to find a maximal element of it. To do this, consider a chain C in H, and set

J := { J ⊆ I | ∃ dJ , d′J ∈ D(aJ/0) with (J, dJ , d
′
J) ∈ C }.

Since C is a chain in H, it follows that J is a chain of subsets of I.

Now, notice that, for (J, dJ , d
′
J) ∈ C and (K, dK , d

′
K) ∈ C such that J ⊆ K we have

dJ 6 dK and d′J 6 d
′
K . Indeed, because C is a chain, we have (J, dJ , d

′
J) � (K, dK , d

′
K) or

(K, dK , d
′
K) � (J, dJ , d

′
J), so J ⊆ K, dJ 6 dK , d

′
J 6 d′K or K ⊆ J, dK 6 dJ , d

′
K 6 d′J . In

the second case, it follows that J = K, and then, observe that dK ∧ d′J 6 dJ ∧ d′J = 0 and

aJ = aK = dK ∨ d′K 6 dK ∨ d′J 6 dJ ∨ d′J = aJ = aK , so d′J is a complement of dK in aK/0.

Because d′K is also a complement of dK in the modular lattice aK/0 and d′K 6 d′J , then

necessarily d′K = d′J . Similarly, in this case, we have dK = dJ .

Notice also that the sets A = { aJ | J ∈ J } , D = { dJ | J ∈ J }, and D′ = { d′J | J ∈ J }
are chains in L. Set

J :=
⋃
J∈J J , d :=

∨
D =

∨
J∈J dJ , and d′ :=

∨
D′ =

∨
J∈J d′J .

Next, we prove that (J, d, d′) is an upper bound for C in H. For this, it is sufficient to

show that (J, d, d′ ) ∈ H. We have

d ∨ d′ =
∨
J∈J (dJ ∨ d′J) =

∨
J∈J aJ =

∨
J∈J

(∨
i∈J ai

)
=
∨
i∈J ai = aJ =

∨
A.

Using upper continuity, we have

d ∧ d′ =
( ∨
J∈J

dJ
)
∧
( ∨
K∈J

d′K
)

=
∨
J∈J

(
dJ ∧

( ∨
K∈J

d′K
))

=
∨
J∈J

( ∨
K∈J

(dJ ∧ d′K)
)
.

For J, K ∈ J , we have either J ⊆ K or K ⊆ J. In the first case, we have dJ 6 dK , so

dJ ∧ d′K 6 dK ∧ d′K = 0. In the second case, we have d′K 6 d′J , so dJ ∧ d′K 6 dJ ∧ d′J = 0.



The conditions (Ci) in modular lattices, and applications 13

Therefore, in both cases we obtain dJ ∧ d′K = 0. So d∧ d′ = 0, and hence d′ is a complement

of d in aJ/0.

Now, again by upper continuity, we have

(x ∧ aJ) ∧ d = x ∧ d = x ∧
(∨

D
)

=
∨
J∈J (x ∧ dJ) =

∨
J∈J ((x ∧ aJ) ∧ dJ) = 0 .

Next, we claim that (x ∧ aJ) ∨ d ∈ E(aJ/0) . To do this, let y ∈ aJ/0 be such that

((x ∧ aJ) ∨ d ) ∧ y = 0 . Using several times modularity and upper continuity, we have

0 = ((x ∧ aJ) ∨ d ) ∧ y = ((x ∨ d ) ∧ aJ) ∧ y =
(
x ∨

(∨
D
))
∧ (aJ ∧ y)

=
( ∨
J∈J

(x ∨ dJ)
)
∧ (aJ ∧ y) =

∨
J∈J

(
(x ∨ dJ) ∧ (aJ ∧ y)) .

Thus, for each J ∈ J , we have (x∨dJ)∧ (aJ ∧y) = 0. But aJ 6 aJ , so (x∨dJ)∧ (aJ ∧y) = 0

and consequently, by modularity, we obtain

((x ∧ aJ) ∨ dJ) ∧ (aJ ∧ y) = ((x ∨ dJ) ∧ aJ) ∧ (aJ ∧ y) = (x ∨ dJ) ∧ (aJ ∧ y) = 0.

By the definition of the set H, we have (x ∧ aJ) ∨ dJ ∈ E(aJ/0), hence aJ ∧ y = 0 for each

J ∈ J . Using again the upper continuity, it follows that

0 =
∨
J∈J

(aJ ∧ y) =
( ∨
J∈J

aJ
)
∧ y = aJ ∧ y = y,

which proves our claim.

For now, we have proved that (J, d, d′ ) ∈ H. As we stated before, it follows that C has

an upper bound in H, and consequently, H is an inductive set. Using Zorn’s Lemma, there

exists an (H, dH , d
′
H) that is maximal in H with respect to � .

To end the proof of this theorem, it suffices to show that H equals I. Suppose not. Pick

i ∈ I \H. Since ai/0 satisfies (C11), there exist di, d
′
i ∈ ai/0 such that d′i is the complement

of di in ai/0 and, moreover ((x∨dH)∧ai)∧di = 0 and ((x∨dH)∧ai)∨di ∈ E(ai/0). Consider

the set G := H∪{i}. Set dG := dH∨di and d′G := d′H∨d′i . By Lemma 2.2, d′G is a complement

of dG in aG/0 = (aH ∨ ai)/0 . We have (x∧ aH)∧ dH = 0, (x∧ aH)∨ dH ∈ E(aH/0) because

(H, dH , d
′
H) ∈ H. Using now Lemma 2.4 with aH instead of a1, ai instead of a2, dH instead

of d1, and di instead of d2 in its statement, we deduce that

(x ∧ aG) ∧ dG = (x ∧ (aH ∨ ai)) ∧ (dH ∨ di) = 0

and

(x ∧ aG) ∨ dG = (x ∧ (aH ∨ ai)) ∨ (dH ∨ di) ∈ E((aH ∨ ai)/0) = E(aG/0).

Hence (G, dG, d
′
G ) ∈ H. But i ∈ G \H, so G % H. Therefore (G, dG, d

′
G ) is strictly greater

than the maximal element (H, dH , d
′
H ) of H, which is a contradiction. It follows that H = I,

so, (I, dI , d
′
I ) ∈ H. Having in mind that aI = 1, we obtain for the given element x ∈ L, we
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started the proof with, an element dI ∈ D(L) such that x∧ dI = 0 and x∨ dI ∈ E(L), so by

Proposition 1.8(1) we conclude that L satisfies the condition (C11).

Remark 2.7. Theorem 2.6 is the latticial counterpart of [10, Theorem 2.5] showing that

any direct sum
⊕

i∈IMi of right R-modules Mi, all satisfying condition (C11), also satisfies

(C11). Notice that its original proof in [10] is incomplete, because, without involving Zorn’s

Lemma, it does not work at all for an infinite family (Mi)i∈I of modules. �

Corollary 2.8. Let L be an upper continuous modular lattice, and let (ai)i∈I be an indepen-

dent family of elements of L such that ai/0 satisfies (C1) for all i ∈ I. Then (
∨
i∈I ai)/0

satisfies (C11).

Proof. By Proposition 1.10(6), any lattice satisfying (C1) also satisfies (C11), so, the result

follows at once from Theorem 2.6.

Corollary 2.9. Let L be an upper continuous modular lattice, and let (ai)i∈I be an indepen-

dent family of uniform elements of L. Then (
∨
i∈I ai)/0 satisfies (C11).

Proof. For every i ∈ I, ai/0 is a uniform lattice, so it satisfies (C11) by Proposition 1.8(2).

Apply now Theorem 2.6.

In contrast to conditions (Ci), i = 1, 2, 3, the condition (C11) is not inherited by comple-

ment intervals, as this follows in module case from [11, Example 4]. Next, we obtain some

positive results in this trend.

Proposition 2.10. Let L be a lattice which satisfies (C11) and (C3). Then any complement

interval of L satisfies (C11).

Proof. Let d ∈ D(L). We have to show that d/0 satisfies (C11). There exists d′ ∈ L such that

d∧ d′ = 0 and d∨ d′ = 1. Let k ∈ d/0. By (C11) for L, according to Proposition 1.8(1), there

exists an l ∈ D(L) such that (k ∨ d′)∧ l = 0 and (k ∨ d′)∨ l ∈ E(L). It follows that d′ ∧ l = 0.

Since d′ and l are both complements in L, using (C3) we deduce that p = d′ ∨ l ∈ D(L).

Since k 6 d and d∧d′ = 0, it follows that k∧d′ = 0. We also have (k∨d′)∧l = 0. By Lemma

1.3, we obtain that k∧p = k∧ (d′∨ l) = 0. Notice that k∨p = k∨ (d′∨ l) = (k∨d′)∨ l ∈ E(L).

We have d/0 = d/(d ∧ d′) and 1/d′ = (d ∨ d′)/d′. By modularity, the map

ϕ : 1/d′ −→ d/0, ϕ(u) = u ∧ d,

is a lattice isomorphism. We have

k ∧ ϕ(p) = (k ∧ p) ∧ d = 0.
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Moreover, using modularity, we also have k ∨ ϕ(p) = k ∨ (d ∧ p) = d ∧ (k ∨ p) and since

k ∨ p ∈ E(L) we deduce that

k ∨ ϕ(p) ∈ E(d/0)

by well-known properties of essential elements.

To conclude the proof, we show that ϕ(p) ∈ D(d/0). Indeed, since p ∈ D(L), it follows

that p has a complement p′ in L. But d′ 6 p, and, by modularity we deduce that d′ ∨ p′ is

a complement of p in 1/d′. Thus p ∈ D(1/d′), and, because ϕ : 1/d′ −→ d/0 is a lattice

isomorphism, we deduce that ϕ(p) ∈ D(d/0), as desired.

Proposition 2.11. The following statements are equivalent for a lattice L and a direct join

decomposition 1 = m1
·
∨ m2 in L.

(1) m1/0 satisfies (C11).

(2) ∀x ∈ m1/0, ∃ d ∈ D(L) such that m2 < d, d ∧ x = 0, and d ∨ x ∈ E(L).

Proof. (1) =⇒ (2) Assume that m1/0 satisfies (C11), and let x ∈ m1/0. By Proposition

1.8(1), there exists l ∈ D(m1/0) such that x ∧ l = 0 and x ∨ l ∈ E(m1/0). Then

(x ∨ l) ∧m2 6 m1 ∧m2 = 0,

so (l ∨m2) ∧ x = 0 by Lemma 1.3. If d := l ∨m2, then d ∧ x = 0 and

d ∨ x = (l ∨m2) ∨ x = (x ∨ l) ∨m2 ∈ E((m1 ∨m2)/0) = E(1/0) = E(L)

by Lemma 2.3. Now, by Lemma 1.13, we deduce that d ∈ D(L) because l ∈ D(m1/0) and

m1 ∈ D(L).

(2) =⇒ (1) Let y ∈ m1/0. By assumption, there exists k ∈ D(L) such that m2 < k,

k ∧ y = 0, and k ∨ y ∈ E(L). Now, by modularity, we have

k = k ∧ 1 = k ∧ (m1 ∨m2) = (k ∧m1) ∨m2,

so that k∧m1 ∈ D(k/0) ⊆ D(L), and hence k∧m1 ∈ D(L)∩ (m1/0) = D(m1/0) by Lemma

1.7(3). Moreover, y ∧ (k ∧ m1) = 0 and y ∨ (k ∧ m1) = m1 ∧ (y ∨ k) ∈ E(m1/0). So, by

Proposition 1.8(1), m1/0 satisfies (C11).

Proposition 2.12. Let L ∈ M be a lattice satisfying (C11) and having a direct join decom-

position 1 = m1
·
∨ m2. Suppose that k ∨m2 ∈ D(L) for every k ∈ D(L) with k ∧m2 = 0.

Then m1/0 satisfies (C11).

Proof. Let x ∈ m1/0. By Proposition 1.8(1), there exists k ∈ D(L) such that (x∨m2)∧k = 0

and x ∨m2 ∨ k ∈ E(L). Moreover, by hypothesis, k ∨m2 ∈ D(L).

Now, observe that x ∧m2 6 m1 ∧m2 = 0, so, by Lemma 1.3, we have (k ∨m2) ∧ x = 0.

By Proposition 1.8(1), it follows that m1/0 satisfies (C11), as desired.
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3 Applications to Grothendieck categories

In this section we apply the lattice-theoretical results established in the previous sections to

Grothendieck categories.

Throughout this section G will denote Grothendieck category, i.e.,an Abelian category with

exact direct limits and with a generator, and for any object X of G, L(X) will denote the

lattice of all subobjects of X. It is well-known that L(X) is an upper continuous modular

lattice (see, e.g., [12, Chapter 4, Proposition 5.3, and Chapter 5, Section 1].

For all undefined notation and terminology on Abelian categories the reader is referred to

[3] and [12].

Recall that an object X of G is said to be Noetherian (respectively, Artinian) if the lattice

L(X) is Noetherian (respectively, Artinian). More generally, if P is any property on lattices,

we say that an object X ∈ G is/has P if the lattice L(X) is/has P. Similarly, a subobject Y

of an object X ∈ G is/has P if the element Y of the lattice L(X) is/has P. Thus, we obtain

the concepts of an uniform object, compact object, (Ci), i = 1, 2, 3, 11, 12, condition for an

object, CC object, quasi-continuous object, continuous object, pseudo-complement subobject

of an object, essential subobject of an object, closed subobject of an object, complement

subobject of an object, etc. For a complement (respectively, compact) subobject of an object

X ∈ G one uses the well-established term of a direct summand (respectively, finitely generated

subobject) of X, and for this reason, instead of saying that X is a CC object we shall say that

X is a CS object (acronym for C losed subobjects are direct Summands).

Of course, all the notions and results of Sections 1 and 2 have categorical versions obtained

by specializing them from an arbitrary modular lattice L to the upper continuous modular

lattice L(X) of any object X of a Grothendieck category G. No further proofs are required.

We shall present below only two results, and leave the others to the reader.

Proposition 3.1. An object X of a Grothendieck category G is quasi-continuous if and only

if for any subobjects X1 and X2 of X with X1 ∩X2 = 0, there exist subobjects D1 and D2

of X with X = D1 ⊕D2 and X1 ⊆ D1, X2 ⊆ D2. �

Theorem 3.2. Any direct sum of objects satisfying the condition (C11) of a Grothendieck

category G also satisfies the condition (C11). �

4 Applications to module categories equipped with a heredi-
tary torsion theory

In this section, we present relative versions with respect to a hereditary torsion theory on

Mod-R of some module-theoretical results related to conditions (Ci). Their proofs are imme-

diate applications of the lattice-theoretical results obtained in Sections 1 and 2.
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Throughout this section R denotes a ring with non-zero identity, Mod-R the category of

all unital right R-modules, τ = (T ,F) a fixed hereditary torsion theory on Mod-R, and τ(M)

the τ -torsion submodule of a right R-module M . We shall use the notation MR to emphasize

that M is a right R-module. For any MR we shall denote

Satτ (M) := { N | N 6M and M/N ∈ F },

and for any N 6M we shall denote the τ -saturation of N (in M) by

N :=
⋂
{C |N 6 C 6M, M/C ∈ F }.

The submodule N is called τ -saturated if N = N . Note that N/N = τ(M/N) and

Satτ (M) = {N |N 6M, N = N },

so Satτ (M) is the set of all τ -saturated submodules of M , which explains the notation. It is

known that Satτ (M) is an upper continuous modular lattice for any MR (see [12, Chapter 9,

Proposition 4.1]).

For all undefined notation and terminology on torsion theories the reader is referred to [3]

and [12].

A module MR is said to be τ -CC if the lattice Satτ (M) is CC. More generally if P is

any property on lattices, we say that a module MR is/has τ -P if the lattice Satτ (M) is/has

P. Since the lattices Satτ (M) and Satτ (M/τ(M)) are canonically isomorphic, we deduce that

MR is τ -P if and only if M/τ(M) is τ -P. Thus, we obtain the concepts of a τ -Artinian

module, τ -Noetherian module, τ -uniform module, τ -compact module, τ -compactly generated

module, condition τ -(Ci) , τ -quasi-continuous module, τ -continuous module, etc. We say that

a submodule N of MR is/has τ -P if its τ -saturation N , which is an element of Satτ (M),

is/has P. Thus, we obtain the concepts of a τ -pseudo-complement submodule of a module, τ -

complement submodule of a module, τ -essential submodule of a module, τ -closed submodule

of a module, τ -independent set/family of submodules of a module, etc. Since N = N , it

follows that N is/has τ -P if and only if N is/has τ -P. In the sequel we shall use the

well-established term of a τ -direct summand of a module instead of that of a τ -complement

submodule of a module and of a τ -CS module instead of that of a τ -CC module.

We present now intrinsic characterizations, that is, without explicitly referring to the lattice

Satτ (M), of the relative module-theoretical concepts involved in the conditions (Ci).

Proposition 4.1. ([2, Proposition 5.3]). The following assertions hold for a module MR and

a submodule N 6M .

(1) N is τ -essential in M ⇐⇒ ( ∀P 6M, P ∩N ∈ T =⇒ P ∈ T ).

(2) M is τ -uniform ⇐⇒ ( ∀P, K 6M, P ∩K ∈ T =⇒ P ∈ T or K ∈ T ).
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(3) N is a τ -pseudo-complement in M ⇐⇒ ∃P 6 M such that N ∩ P ∈ T and N is

maximal among the submodules of M having this property; in this case N ∈ Satτ (M)

and N ∩ P = τ(M).

(4) N is τ -closed in M ⇐⇒ for any P 6 M such that N ⊆ P and N is a τ -essential

submodule of P one has P/N ∈ T . If additionally N ∈ Satτ (M), then N is τ -closed

in M ⇐⇒ N has no proper τ -essential extension in M .

(5) N is a τ -direct summand in M ⇐⇒ ∃P 6M such that M/(N +P ) ∈ T & N ∩P ∈ T .

(6) M is τ -complemented⇐⇒ ∀N 6M, ∃P 6M such that M/(N+P ) ∈ T & N∩P ∈ T .

(7) A family (Ni)16i6n of submodules of M is τ -independent ⇐⇒ Ni 6∈ T , ∀ i, 1 6 i 6 n,

and Nk+1 ∩
∑

16j6kNj ⊆ τ(M), ∀ k, 1 6 k 6 n− 1. �

All the notions and results presented in Sections 1 and 2 for an arbitrary modular lattice L

can now be easily specialized for the particular case when L = Satτ (MR) using the description

from Proposition 4.1 of the relative concepts that intervene in their statements. We present

below only three results, and leave the others to the reader.

Proposition 4.2. A module MR satisfies the condition τ -(C11) if and only if for every

N 6M there exist D 6M and K 6M such that M/(D+K) ∈ T , D∩K ∈ T , N ∩D ∈ T ,

and (N +D) ∩X 6∈ T for every X 6M with X 6∈ T . �

Theorem 4.3. Let (Ni)i∈I be a τ -independent family of submodules of a module MR such

that all Ni satisfy the condition τ -(C11). Then
∑

i∈I Ni satisfies the condition τ -(C11). �

Proposition 4.4. If MR is a module satisfying the condition τ -(Ci), i = 1, 2, 3, then any τ -

direct summand of M also satisfies the condition τ -(Ci). In particular, any τ -direct summand

of a τ -CS module is also τ -CS. �
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Council of Turkey (TÜBITAK) for financial support that made possible these two visits and

Hacettepe University for hospitality.



The conditions (Ci) in modular lattices, and applications 19

References

[1] T. ALBU, The Osofsky-Smith Theorem for modular lattices, and applications (I), Comm.

Algebra 39 (2011), 4488-4506.

[2] T. ALBU, The Osofsky-Smith Theorem for modular lattices, and applications (II), Comm.

Algebra 42 (2014), 2663-2683.
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