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ON DIFFERENTIAL CALCULUS ON PRE-LIE GROUPS

MIHAI NICOLAE

Abstract. We fill a gap in the literature on the Lie theoretic investigations on general
topological groups by providing the proof of the generalization of Faà di Bruno’s

formula to general topological groups. We then apply that formula for establishing

the differentiability properties of the multiplication mapping in a pre-Lie group.

1. Introduction

There is a recent interest in differential calculus on topological groups, developed after
the pattern of Lie groups; see for instance [NS13], where this calculus was used for Fréchet-
Lie supergroups. This article fills a gap in the literature devoted to that circle of ideas,
namely we give the proof of the generalization of Faà di Bruno’s formula to general
topological groups and we then study the differentiability properties of the multiplication
mapping in a pre-Lie group. Our main results are stated below, in the second part of
this introduction, after some necessary preliminaries. Then the proof of the main result
is given in Section 2.

Preliminaries. We use differential calculus on topological groups as developed in the
book [BCR81]. Unless otherwise mentioned, G is any topological group. (Evey topological
group is assumed Hausdorff in the present paper.) Denoting by C(·, ·) the spaces of
continuous maps, one defines

Λ(G) := {γ ∈ C(R, G) | (∀t, s ∈ R) γ(t+ s) = γ(t)γ(s)}.
This set is endowed with the topology of uniform convergence on compact subsets of R.
The adjoint action of the topological group G is the mapping

AdG : G× Λ(G)→ Λ(G), (g, γ) 7→ AdG(g)γ := gγ(·)g−1, (1.1)

which is continuous [HM07, Prop. 2.28] and homogeneous in the sense that AdG(g)(r·γ) =
r · (AdG(g)γ) for all r ∈ R, g ∈ G, and γ ∈ Λ(G), where one defines

(∀r, t ∈ R)(∀γ ∈ Λ(G)) (r · γ)(t) := γ(rt).

For r = −1 and γ ∈ Λ(G) we denote −γ := (−1) · γ ∈ Λ(G).
Let an arbitrary open subset V ⊆ G and Y be any real locally convex space. If

ϕ : V → Y, γ ∈ Λ(G), and g ∈ V , then we denote

(Dγϕ)(g) := lim
t→0

ϕ(gγ(t))− ϕ(g)
t

(1.2)

if the limit in the right-hand side exists. One defines C1(V,Y) as the set of all functions
ϕ ∈ C(V,Y) for which the function

Dϕ : V × Λ(G)→ Y, (Dϕ)(g; γ) := (Dγϕ)(g)
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is well defined and continuous. One also denotes Dϕ =: D1ϕ.
Now let n ≥ 2 si spatiul Cn−1(V,Y) and the mapping Dn−1 have been defined. Then

Cn(V,Y) is defined as the set of all ϕ ∈ Cn−1(V,Y) for which the function

Dnϕ : V × Λ(G)× · · · × Λ(G)→ Y,
(g; γ1, . . . , γn) 7→ (Dγn(Dγn−1 · · · (Dγ1ϕ) · · · ))(g)

is well defined and continuous.
Moreover C∞(V,Y) :=

⋂
n≥1

Cn(V,Y) and C∞0 (V,Y) is the set of all ϕ ∈ C∞(V,Y)

having compact support. If Y = C, then we write simply Cn(G) := Cn(V,C) etc., for
n = 1, 2, . . . ,∞.

It will be convenient to use the notations

Dγϕ := Dγn(Dγn−1 · · · (Dγ1ϕ) · · · ) : G→ Y

whenever γ := (γ1, . . . , γn) ∈ Λ(G)× · · · × Λ(G) and ϕ ∈ Cn(G,Y).
We use the notation

γx : R→ G, γx(t) = x−1γ(t)x.

A pre-Lie group is any topological group G satisfying the conditions:

(1) The topological space Λ(G) has the structure of a locally convex Lie algebra
over R, whose scalar multiplication, vector addition and bracket satisfy the fol-
lowing conditions for all t, s ∈ R and γ1, γ2 ∈ Λ(G):

(t · γ1)(s) = γ1(ts);
(γ1 + γ2)(t) = lim

n→∞
(γ1(t/n)γ2(t/n))n; (1.3)

[γ1, γ2](t2) = lim
n→∞

(γ1(t/n)γ2(t/n)γ1(−t/n)γ2(−t/n))n
2
,

where the convergence is assumed to be uniform on the compact subsets of R.
(2) For every nontrivial γ ∈ Λ(G) there exists a function ϕ of class C∞ on some

neighborhood of 1 ∈ G such that (Dλ
γϕ)(1) 6= 0.

Every locally compact group (in particular, every finite-dimensional Lie group) is a
pre-Lie group ([BCR81, pag. 41–41]).

We will see below that if G is a pre-Lie group, then the multiplication mapping
π : G × G → G, (x, y) 7→ xy, is smooth (cf. [BCR81, Th. 1.3.2.2 and subsect. 1.1.2]
or alternatively [BR80, Th. and Sect. 1]), where differentiability of maps between open
sets of topological groups is understood in the following sense:

Let G1, G2 be two pre-Lie groups with some open sets X1 ⊆ G1 and X2 ⊆ G2, and
f : X1 → G2 be any continuous function. We say that f is of class Ck if there exist the
maps D`f : X1 × Λ`(G1)→ Λ(G2), ` = 1, . . . , k, such that for every localy convex space
Y and every function ϕ ∈ C`(X2,Y), 0 ≤ ` ≤ k we have ϕ ◦ f ∈ C`(X1 ∩ f−1(X2),Y) and
for every γ = (γ1, . . . , γ`) ∈ Λ`(G1) the following chain rule holds,

D`(ϕ ◦ f)(x; γ) =
∑̀
k=1

∑
(A1,...,Ak)

DDA1(γ)f(x) . . . DDAj(γ)f(x)ϕ(f(x)). (1.4)

The second summation in the above formula is performed after all partitions {1, 2, . . . , `} =
A1 t . . . t Ak into nonempty subsets with minA1 > . . . > minAk. For any fixed
k ∈ {1, . . . , `}, and every j = 1, . . . , k, we have denoted Aj = {ij1, . . . , ijmj} ⊆ {1, 2, . . . , `},
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with ij1 < . . . < ijmj , and moreover

Aj(γ) := (γij1 , . . . , γijmj ) ∈ Λmj (G1) and DAj(γ)f(x) := Dmjf(x;Aj(γ)) ∈ Λ(G2).

Note that mj = |Aj | for j = 1, . . . , k, hence 1 ≤ m1, . . . ,mk ≤ ` with m1 + · · ·+mk = `.
We also note that the uniqueness of the above maps D`f follows by using the condition (2)
in the definition of a pre-Lie group along with te chain rule.

Main results. The main result of this paper is the following formula:

Theorem 1.1. Let G be any topological group and Y be any locally convex space. Define
π : G×G→ G, π(x, y) = xy. For every f ∈ Ck(G,Y), and k ≥ 1 one has

Dk(f ◦ π)((x, y); (λ11, λ12), . . . , (λk1, λk2))

=
k∑
`=0

∑
i1<···<i`
i`+1<···<ik

Dkf(xy;λi12, . . . , λi`2, λ
y
i`+11

, . . . , λyik1)

where the above sum is performed according to the condition

{i1, . . . , il} ∪ {il+1, . . . , ik} = {1, . . . , k}.
Moreover it follows that if f ∈ C∞(G,Y), then f ◦ π ∈ C∞(G×G,Y).

We mention that the formula from Theorem 1.1 is the corrected version of a formula
that was indicated without any proof on [BCR81, page 46], and is in fact the generalization
of the Faa di Bruno formula to topological groups (see [Jo02] for more details on that
formula in the classical setting on Rn).

Corollary 1.2. If the topological group G is abelian and Y is any locally convex space,
then the following assertions hold:

(1) The map π : G×G→ G, π(x, y) = xy, is a morphism of topological groups.
(2) For every f ∈ Ck(G,Y), and k ≥ 1 one has

Dk(f ◦ π)((x, y); (λ11, λ12), . . . , (λk1, λk2)) = Dkf(xy;λ11 + λ12, . . . , λk1 + λk2)

where the sums λj1 +λj2 ∈ Λ(G), for j = 1, . . . , k, are understood in the sense of
the equality (1.3).

Proof. Using Theorem 1.1, we obtain

Dk(f ◦ π)((x, y); (λ11, λ12), . . . , (λk1, λk2))

=
k∑
`=0

∑
i1<···<i`
i`+1<···<ik

Dkf(xy;λi12, . . . , λi`2, λ
y
i`+11

, . . . , λyik1)

=
k∑
`=0

∑
i1<···<i`
i`+1<···<ik

Dkf(xy;λi12, . . . , λi`2, λi`+11, . . . , λik1)

= Dkf(xy;λ11 + λ12, . . . , λk1 + λk2)

�

Corollary 1.3. If the topological group G is a pre-Lie group, then the map π : G×G→ G,
π(x, y) = xy, is of class C∞.
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Proof. We put
Dπ((x, y); (α, β)) = αy + β

and
Djπ((x, y); (α1, β1), . . . , (αj , βj)) = [. . . [αy1 , βj ], . . . , β2].

For every open set X ⊆ G, every locally convex space Y, and every function ϕ ∈ Ck(X,Y),
if j ≤ k and x, y ∈ G with xy ∈ X ⊆ G, then

Dj(ϕ ◦ π)((x, y); (α1, β1), . . . , (αj , βj))

=
j∑
`=1

∑
i1<···<i`
i`+1<···<ij

Djϕ(xy;βi1 , . . . , βil , α
y
il+1

, . . . , αyij )

=
j∑
`=1

∑
i1<···<i`
i`+1<···<ij

D
αyij . . . D

αyil+1Dβil . . . Dβi1ϕ(xy)

and we thus obtain the chain rule (1.4). This shows that the map π is of class Ck and,
since k is arbitrary, it follows that π is of class C∞. �

2. Proof of Theorem 1.1

The proof of Theorem 1.1 is based on two lemmas that will be first proved and in
whose statements we assume he setting of the theorem.

Lemma 2.1. Let f ∈ Ck(G,Y), k ≥ 1, λ1i1 , λ2i2 , . . . , λkik ∈ Λ(G), i1, . . . , ik ∈ {1, 2},m =
i1 + i2 + . . . + ik − k. The equality il = 2 has m solutions denoted a1 < . . . < am. The
equality il = 1 has (k −m) solutions denoted am+1 < . . . < ak. Then we have

∂λ1i1λ2i2 ...λkik (f ◦ π)(x, y) = Dkf(xy;λa12, . . . , λam2, λ
y
am+11

, . . . , λyak1).

Note that in the above statement, m is the number of occurrences of 2 in the set
{i1, . . . , ik}.

Proof of Lemma 2.1. The proof will be by induction on k ≥ 1. In the case k = 1 we will
prove the following two relations:

∂λ11(f ◦ π)(x, y) = Df(xy;λy11) si ∂λ12(f ◦ π)(x, y) = Df(xy;λ12).

We have

∂λ12(f ◦ π)(x, y) =
d

dt

∣∣∣
t=0

(f ◦ π)(x; yλ12(t))

=
d

dt

∣∣∣
t=0

f(xyλ12(t))

= Df(xy;λ12).
On the other hand

∂λ11(f ◦ π)(x, y) =
d

dt

∣∣∣
t=0

(f ◦ π)(xλ11(t); y)

=
d

dt

∣∣∣
t=0

f(xλ11(t)y)

=
d

dt

∣∣∣
t=0

f(xyλy11(t))

= Df(xy;λy11)
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and the case k = 1 ends.
For passing from k to k + 1, we calculate

∂λ1i1λ2i2 ...λkikλk+1,ik+1 (f ◦ π)(x, y) = ∂λk+1,ik+1 (∂λ1i1λ2i2 ...λkik (f ◦ π))(x, y).

We have two cases: ik+1 = 1 or ik+1 = 2.
• The case ik+1 = 1. In this case i1+i2+. . .+ik+ik+1−(k+1) = i1+i2+. . .+ik−k = m

therefore m remains unchanged by passing from k to k + 1. We have

∂λ1i1 ...λkikλk+1,ik+1 (f ◦ π)(x, y)

=
d

dt

∣∣∣
t=0

∂λ1i1 ...λkik (f ◦ π)(xλk+1,1(t), y)

=
d

dt

∣∣∣
t=0

Dkf(xλk+1,1(t)y;λa12, . . . , λam2, λ
y
am+11

, . . . , λyak1)

= Dk+1f(xy;λa12, . . . , λam2, λ
y
am+11

, . . . , λyak1, λ
y
k+1,1)

and the case ik+1 = 1 ends.
• The case ik+1 = 2. In this case we have

i1 + i2 + . . .+ ik + ik+1 − (k + 1) = i1 + i2 + . . .+ ik − k + 1 = m+ 1.

We have

∂λ1i1 ...λkikλk+1,ik+1 (f ◦ π)(x, y)

=
d

dt

∣∣∣
t=0

∂λ1i1 ...λkik (f ◦ π)(x; yλk+1,2(t))

=
d

dt

∣∣∣
t=0

Dkf(xyλk+1,2(t);λa12, . . . , λam2, λ
yλk+1,2(t)
am+11

, . . . , λ
yλk+1,2(t)
ak1

)

which must be equal with

Dk+1f(xy;λa12, . . . , λam2, λk+1,2, λ
y
am+11

, . . . , λyak1).

It is enough to prove the above relation for y = 1 ∈ G. For abitrary s ∈ R we define
gs : Rk → Y by

gs(t1, . . . ,tk)

:=f(yλk+1,2(s)λyλk+1,2(s)
ak1

(t1) . . . λyλk+1,2(s)
am+11

(tk−m)λam2(tk+1−m) . . . λa12(tk))

=f(λak1(t1) . . . λam+11(tk−m)yλk+1,2(s)λam2(tk+1−m) . . . λa12(tk)).

We define h : Rk+1 → Y by

h(t1, . . . , tk, tk+1)

= f(yλyak1(t1) . . . λyam+11
(tk−m)λk+1,2(tk+1−m)λam2(tk+2−m) . . . λa12(tk+1))

= f(λak1(t1) . . . λam+11(tk−m)yλk+1,2(tk+1−m)λam2(tk+2−m) . . . λa12(tk+1)).

We have h ∈ Ck+1(Rk+1,Y), gs ∈ Ck(Rk,Y), and the connection between these functions
is

gs(t1, . . . , tk) = h(t1, . . . , tk−m, s, tk−m+1, . . . , tk).

The requested relation is equivalent to

d

ds

∣∣∣
s=0

∂kgs
∂t1 . . . ∂tk

(0, 0, . . . , 0) =
∂k+1h

∂t1 . . . ∂tk∂tk+1
(0, 0, . . . , 0).
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For t := (t1, . . . , tk) we sequentially have the relations

∂gs
∂tk

(t) =
∂h

∂tk+1
(t1, . . . , tk−m, s, tk−m+1, . . . , tk)

∂mgs
∂tk−m+1 . . . ∂tk

(t) =
∂mh

∂tk−m+2 . . . ∂tk+1
(t1, . . . , tk−m, s, tk−m+1, . . . , tk)

∂m+1gs
∂tk−m . . . ∂tk

(t) =
∂m+1h

∂tk−m∂tk−m+2 . . . ∂tk+1
(t1, . . . , tk−m, s, tk−m+1, . . . , tk)

∂kgs
∂t1 . . . ∂tk

(t) =
∂kh

∂t1 . . . ∂tk−m∂tk−m+2 . . . ∂tk+1
(t1, . . . , tk−m, s, tk−m+1, . . . , tk)

∂kgs
∂t1 . . . ∂tk

(0, 0, . . . , 0) =
∂kh

∂t1 . . . ∂tk−m∂tk−m+2 . . . ∂tk+1
(0, . . . , 0, s, 0, . . . , 0).

It follows that

d

ds

∣∣∣
s=0

∂kgs
∂t1 . . . ∂tk

(0, . . . , 0) =
d

ds

∣∣∣
s=0

∂kh

∂t1 . . . ∂tk−m∂tk−m+2 . . . ∂tk+1
(0, . . . , 0, s, 0, . . . , 0)

=
∂k+1h

∂tk−m+1∂t1 . . . ∂tk−m∂tk−m+2 . . . ∂tk+1
(0, . . . , 0)

=
∂k+1h

∂t1 . . . ∂tk∂tk+1
(0, . . . , 0)

and this completes the proof by induction. �

Lemma 2.2. Let G1, G2 topological groups and X an open set from G1 × G2 and h ∈
Ck(X,Y), k ≥ 1. Then the partial derivatives of order ≤ k of h are continuous from X
to Y and we have the relation

Dkh((x, y); (λ11, λ12), . . . , (λk1, λk2)) =
∑

i1,...,ik=1,2

∂λ1i1λ2i2 ...λkikh(x, y)

for every (x, y) ∈ X.

Proof. The case k = 1. We must show that

Dh((x, y); (λ11, λ12)) = ∂λ11h(x, y) + ∂λ12h(x, y).

We have

∂λ11h(x, y) =
d

dt

∣∣∣
t=0

h(xλ11(t), y) = Dh((x, y); (λ11, 0))

therefore the function ∂λ11h : X → Y is continuous. On the other hand

∂λ12h(x, y) =
d

dt

∣∣∣
t=0

h(x, yλ11(t)) = Dh((x, y); (0, λ12))

therefore the function ∂λ12h : X → Y is continuous as well.
Moreover, (λ11, 0)(t)(0, λ12)(t) = (λ11(t), λ12(t)) = (λ11, λ12)(t). From

Dh((x, y); (λ11, λ12)) = Dh((x, y); (λ11, 0)) +Dh((x, y); (0, λ12))

we get
Dh((x, y); (λ11, λ12)) = ∂λ11h(x, y) + ∂λ12h(x, y)

and the case k = 1 ends.
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The case k = 2. We must show that

D2h((x, y); (λ11, λ12), (λ21, λ22)) =∂λ11λ21h(x, y) + ∂λ11λ22h(x, y)

+ ∂λ12λ21h(x, y) + ∂λ12λ22h(x, y).

We have
∂λ11λ21h(x, y) = ∂λ11(∂λ21h)(x, y)

=
d

dt

∣∣∣
t=0

∂λ11h(xλ21(t), y)

=
d

dt

∣∣∣
t=0

Dh(xλ21(t), y); (λ11, 0))

= D2h((x, y); (λ11, 0), (λ21, 0)).

Similarly we get
∂λ11λ22h(x, y) = D2h((x, y); (λ11, 0), (0, λ22))

∂λ12λ22h(x, y) = D2h((x, y); (0, λ12), (0, λ22))

∂λ12λ21h(x, y) = D2h((x, y); (0, λ12), (λ21, 0)).

The above relations imply that the 2nd oder partial derivatives of h are continuous.
We have

D2h((x, y);(λ11, λ12), (λ21, λ22))

=D2h((x, y); (λ11, λ12), (λ21, 0)) +D2h((x, y); (λ11, λ12), (0, λ22))

=D2h((x, y); (λ11, 0), (λ21, 0)) +D2h((x, y); (0, λ12), (λ21, 0))

+D2h((x, y); (λ11, 0), (0, λ22)) +D2h((x, y); (0, λ12), (0, λ22))

=∂λ11λ21h(x, y) + ∂λ11λ22h(x, y) + ∂λ12λ21h(x, y) + ∂λ12λ22h(x, y)

and the case k = 2 ends.
The case k ≥ 3. We have

∂λ1i1λ2i2 ...λkikh(x, y) = Dkh((x, y); γ1, . . . , γk)

where γj = (λj1, 0) if ij = 1, while γj = (0, λj2) if ij = 2. It follows by the above relations
that the partial derivatives of order k of the function h are continuous.

As in the case k = 2 we have

Dkh((x, y);(λ11, λ12), . . . , (λk−1,1, λk−1,2), (λk1, λk2))

=Dkh((x, y); (λ11, λ12), . . . , (λk−1,1, λk−1,2), (λk1, 0))

+Dkh((x, y); (λ11, λ12), . . . , (λk−1,1, λk−1,2), (0, λk2))

=Dkh((x, y); (λ11, λ12), . . . , (λk−1,1, 0), (λk1, 0))

+Dkh((x, y); (λ11, λ12), . . . , (0, λk−1,2), (λk1, 0))

+Dkh((x, y); (λ11, λ12), . . . , (λk−1,1, 0), (0, λk2))

+Dkh((x, y); (λ11, λ12), . . . , (0, λk−1,2), (0, λk2))

=
∑

i1,...,ik=1,2

∂λ1i1λ2i2 ...λkikh(x, y)

and this completes the proof. �
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Proof of Theorem 1.1. Using Lema 2.2, we obtain

Dk(f ◦ π)((x, y);(λ11, λ12), . . . , (λk1, λk2)) =
∑

i1,...,ik=1,2

∂λ1i1λ2i2 ...λkik (f ◦ π)(x, y).

B replacing the 2k partial derivatives from the right hand side by their values provided
by Lemma 2.1 we obtain the sum from the requested relation. �
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