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Abstract

In this paper, we introduce and investigate the latticial counterpart of the module-
theoretical concept of preradical. Applications are given to Grothendieck categories and
module categories equipped with hereditary torsion theories.
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Introduction

In this paper we introduce and investigate the latticial counterpart of the module-theoretical

concept of preradical.

Section 0 lists some notation, definitions, and results about general lattices, especially from

[4] and [18], and linear modular lattices introduced and investigated in [5]. We also relate our

concept of a linear morphism of lattices with that of a qframe morphism introduced in [19].

In Section 1 we define the concept of a lattice preradical and prove the latticial counterpart

of the property of a preradical on modules to commute with arbitrary internal direct sums.

Section 2 is devoted to lattice preradicals in full subcategories of the category LM of all

linear modular lattices.

In Section 3 we introduce and investigate the latticial counterparts of the well-known

preradicals Tr (U ,M) and Rej (U ,M) of an arbitrary class U of right R-modules in a right

R-module M .

Section 4 discusses various forms of the socle and radical of complete modular lattices

satisfying additional conditions.
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2 Toma Albu and Mihai Iosif

The last two sections give applications to Grothendieck categories and module categories

equipped with a hereditary torsion theory; they are obtained at once by specializing the results

of the previous sections to the lattice L(X) of all subobjects of an object X of a Grothendieck

category G and to the lattice Satτ (MR) of all τ -saturated submodules of a module MR with

respect to a hereditary torsion theory τ on Mod-R.

0 Preliminaries

All lattices considered in this paper are assumed to have a least element denoted by 0 and a

greatest element denoted by 1, in other words they are bounded. By L we shall denote the

class of all (bounded) lattices. Throughout this paper, L will always denote such a lattice

and Lo its opposite or dual lattice. By M we shall denote the class of all modular lattices

(with 0 and 1). We shall use N to denote the set {1, 2, . . .} of all positive integers.

For a lattice L and elements a 6 b in L we write

b/a := [a, b] = { x ∈ L | a 6 x 6 b }.

An initial interval (respectively, a quotient interval) of b/a is any interval c/a (respectively,

b/c) for some c ∈ b/a.

A lattice L is said to be simple (respectively, zero) if it has exactly two elements (respec-

tively, one element); so, L is simple (respectively, zero) if L = {0, 1} and 0 6= 1 (respectively,

L = {0}).
An element a ∈ L is said to be an atom if a 6= 0 and a/0 = {0, a}, i.e., a/0 is a simple

lattice. We denote by A(L) the set, possibly empty, of all atoms of L. The socle Soc(L) of a

complete lattice L is the join of all atoms of L, i.e., Soc (L) :=
∨
A(L). A coatom of L is an

element b ∈ L which is a maximal element of L \ {1}. We denote by M(L) the set, possibly

empty, of all coatoms of L, so M(L) = A(Lo).

As in [12], a lattice L is said to be atomic (respectively, strongly atomic) if for every

0 6= x ∈ L there exists an atom a ∈ L such that a 6 x (respectively, for every x < y in L the

interval y/x contains an atom). As in [15], a lattice L is said to be semi-atomic (respectively,

semi-Artinian) if 1 is a join of atoms of L (respectively, if for every 1 6= x ∈ L, the lattice

1/x has at least an atom). An upper continuous modular lattice L is strongly atomic if and

only if it is semi-Artinian (see, e.g., [15, Proposition 1.9.3]).

An element c ∈ L is a complement (in L) if there exists an element a ∈ L such that

a ∧ c = 0 and a ∨ c = 1; we say in this case that c is a complement of a (in L). The lattice

L is said to be complemented if every element of L has a complement in L.

An element b ∈ L is a pseudo-complement in L if there exists an element a ∈ L such

that a ∧ b = 0 and b is maximal with this property; we say in this case that b is a pseudo-

complement of a.
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For a lattice L and a, b, c ∈ L, the notation a = b
·
∨ c will mean that a = b ∨ c and

b ∧ c = 0, and we say that a is a direct join of b and c. Also, for a non-empty subset S of

L, we use the direct join notation a =
·∨
b∈S b or a =

·∨
S if S is an independent subset of L

and a =
∨
b∈S b. Recall that a non-empty subset S of L is called independent if 0 /∈ S, and for

every x ∈ S, n ∈ N, and subset T = {t1, . . . , tn} of S with x /∈ T , one has x∧(t1∨· · ·∨tn) = 0.

Clearly a subset S of L is independent if and only if every finite subset of S is independent.

An element c of a lattice L is called compact in L if whenever c 6
∨
x∈A x for a subset

A of L, there is a finite subset F of A such that c 6
∨
x∈F x. The lattice L is said to be

compact if 1 is a compact element in L, and compactly generated if it is complete and every

element of L is a join of compact elements.

An element e ∈ L is said to be essential (in L) if e ∧ x 6= 0 for every x 6= 0 in L. One

denotes by E(L) the set of all essential elements of L. An element s ∈ L is called small or

superfluous (in L) provided s ∈ E(Lo). Thus, a small element s of L is characterized by the

fact that 1 6= s ∨ a for any element a ∈ L with a 6= 1. We shall denote by S(L) the set of

small elements of L , so that S(L) = E(Lo). The radical Rad(L) of a complete lattice L is

the join of all small elements of L, i.e., Rad (L) :=
∨
S(L).

Notice that a different concept of radical, much closer to its module-theoretical correspon-

dent, has been considered in [15]: for a complete lattice L the radical rL of L is the meet

of all coatoms of L, i.e., rL =
∧
m∈M(L)m, putting rL = 1 if L has no coatoms. In order to

avoid any confusion, we shall denote this rL by Jac (L), and call it the Jacobson radical of

L. We shall discuss in Section 4 the connections between Jac (L) and Rad (L); in particular

we shall see that they coincide if L is a compactly generated modular lattice.

For all other undefined notation and terminology on lattices, the reader is referred to [4],

[12], and [18].

Throughout this paper R will denote an associative ring with non-zero identity element,

and Mod-R the category of all unital right R-modules. The notation MR will be used to

designate a unital right R-module M , and N 6 M will mean that N is a submodule of M .

The lattice of all submodules of a module MR will be denoted by L(MR).

We present now after [5] the concept of a linear morphism of lattices that evokes the

property of a linear mapping ϕ : M −→ N between modules MR and NR to have a kernel

Ker (ϕ) and to verify the Fundamental Theorem of Isomorphism: M/Ker (ϕ) ' Im (ϕ).

Definition 0.1. Let f : L −→ L′ be a mapping between the lattice L with least element 0

and last element 1 and the lattice L′ with least element 0′ and last element 1′.

The mapping f is called a linear morphism if there exist k ∈ L, called a kernel of f , and

a′ ∈ L′ such that the following two conditions are satisfied.

(1) f(x) = f(x ∨ k), ∀x ∈ L.

(2) f induces an isomorphism of lattices f̄ : 1/k
∼−→ a′/0′, f̄(x) = f(x), ∀x ∈ 1/k. �
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Examples 0.2. (1) Let ϕ : MR −→ M ′R be a morphism of modules, and consider the

mapping f : L(MR) −→ L(M ′R) defined by f(N) = ϕ(N) for every N 6 M. Then f is a

linear morphism with kernel Ker (ϕ).

(2) For any lattice L and any a 6 b in L, the mapping p : b/0 −→ b/a, p(x) := x∨ a, is a

surjective linear morphism with kernel a, as it can be easily seen. This linear morphism is the

latticial counterpart of the canonical surjective mapping from any module MR to the factor

module M/N , where N is any submodule of M .

(3) For any lattice L and any a, b in L, such that a ∧ b = 0, the mapping

q : (a ∨ b)/0 −→ a/0, q(x) := (x ∨ b) ∧ a,

is a surjective linear morphism with kernel b.

Indeed, q is obtained by composing the linear morphism

(a ∨ b)/0 −→ (a ∨ b)/b, x 7→ x ∨ b,

considered in (2) with the lattice isomorphism (and thus linear morphism)

(a ∨ b)/b ∼−→ a/0, x 7→ x ∧ a.

This is the latticial counterpart of the canonical projection M ⊕M ′ −→ M for two modules

MR and M ′R. �

We list below from [5] some of the basic properties of linear morphisms we need in the

sequel.

Proposition 0.3. ([5, Proposition 1.3]). The following assertions hold for a linear morphism

f : L −→ L′ with a kernel k.

(1) For x, y ∈ L, f(x) = f(y) ⇐⇒ x ∨ k = y ∨ k.

(2) f(k) = 0′ and k is the greatest element of L having this property, where 0′ is the least

element of L′; so, the kernel of a linear morphism is uniquely determined.

(3) If a ∈ L is such that f(a) = 0′, then f induces a linear morphism

h : 1/a −→ L′, h(x) = f(x), ∀x ∈ 1/a.

(4) f(x ∨ y) = f(x) ∨ f(y), ∀x, y ∈ L. �

Corollary 0.4. ([5, Corollary 1.4]). Any linear morphism is an increasing mapping. �

Proposition 0.5. ([5, Proposition 2.2]). The following statements hold.
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(1) The class M of all (bounded ) modular lattices becomes a category, denoted by LM,

if for any L, L′ ∈ M one takes as morphisms from L to L′ all the linear morphisms

from L to L′.

(2) The isomorphisms in the category LM are exactly the isomorphisms in the full category

M of the category L of all (bounded ) lattices.

(3) The monomorphisms in the category LM are exactly the injective linear morphisms.

(4) The epimorphisms in the category LM are exactly the surjective linear morphisms.

(5) The subobjects of L ∈ LM can be taken as the intervals a/0 for any a ∈ L. �

We end this section with new properties of linear morphisms of arbitrary modular lattices

not mentioned in [5], that allow us to relate them to qframe morphisms introduced in [19].

Lemma 0.6. The following assertions hold for a linear morphism f : L −→ L′.

(1) f commutes with arbitrary joins, i.e., f (
∨
i∈I xi) =

∨
i∈I f(xi) for any family (xi)i∈I

of elements of L, provided both joins exist.

(2) f preserves intervals, i.e., for any u 6 v in L, one has f(v/u) = f(v)/f(u).

Proof. By definition, there exist k ∈ L, the kernel of f , and a′ ∈ L′ such that f induces a

lattice isomorphism f̄ : 1/k
∼−→ a′/0′.

(1) The proof follows the same idea of [5, Proposition 1.3 (4)]. We have

f
(∨
i∈I

xi
)

= f
((∨

i∈I
xi
)
∨ k
)

= f
(∨
i∈I

(xi ∨ k)
)

= f̄
(∨
i∈I

(xi ∨ k)
)
.

Being a lattice isomorphism, f̄ commutes with arbitrary joins, so

f̄
(∨
i∈I

(xi ∨ k)
)

=
∨
i∈I

f̄(xi ∨ k) =
∨
i∈I

f(xi ∨ k) =
∨
i∈I

f(xi).

(2) Let ϕ : L −→ 1/k be the mapping defined by ϕ(x) = x ∨ k, ∀x ∈ L. We have

f = f̄ ◦ ϕ ◦ ι, where ι : a′/0′ ↪→ L′ is the canonical inclusion mapping. First, we show that

for every u 6 v in L we have

ϕ(v/u) = ϕ(v)/ϕ(u).

To see this, notice that ϕ is an increasing mapping, so ϕ(v/u) ⊆ ϕ(v)/ϕ(u). For the other

inclusion, let y ∈ ϕ(v)/ϕ(u) = (v∨k)/(u∨k). Then u 6 (u∨k)∧v 6 y∧v 6 (v∨k)∧v = v, so

y∧v ∈ v/u. Now, since k 6 y, using modularity we obtain ϕ(y∧v) = (y∧v)∨k = y∧(v∨k) = y.

which proves that ϕ preserves intervals.

Now we can show that f preserves intervals. Since f̄ is a lattice isomorphism, it follows

that

f(v)/f(u) = f̄(ϕ(v))/f̄(ϕ(u)) = f̄(ϕ(v)/ϕ(u)).
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Using the fact that ϕ preserves intervals, we deduce that

f̄(ϕ(v)/ϕ(u)) = f̄(ϕ(v/u)) = f(v/u),

as desired.

Remark 0.7. According to the terminology of [19], a quasi-frame, or shortly, a qframe is

nothing else than an upper continuous modular lattice, and a qframe morphism is by defini-

tion any mapping between two qframes that preserves intervals and commutes with arbitrary

joins; further, a qframe morphism f : L −→ L′ is said to be algebraic if the restriction

h : 1/K(f) −→ L′ of f to the interval 1/K(f) of L is injective, where K(f) :=
∨
f(x)=0′ x.

If f : L −→ L′ is any linear morphism between two qframes then, by Proposition 0.3(2), K(f)

coincides with its kernel k we defined in [5]. �

Proposition 0.8. The following assertions are equivalent for a a mapping f : L −→ L′

between the upper continuous modular lattices L and L′.

(1) f is a linear morphism.

(2) f is an algebraic qframe morphism.

Proof. (1) =⇒ (2): This is exactly Lemma 0.6.

(2) =⇒ (1): Assume that f is an algebraic qframe morphism. Set

K := {x ∈ L | f(x) = 0′ } and c :=
∨
x∈K x.

Then

f(c) = f
( ∨
x∈K

x
)

=
∨
x∈K

f(x) = 0′

because f commutes with arbitrary joins. Now, since f preserves interval, we have

f(1/c) = f(1)/f(c) = a′/0′,

where a′ := f(1). Because the qframe morphism f is algebraic, it induces a lattice isomor-

phism

f̄ : 1/c
∼−→ a′/0′, f̄(x) = f(x), ∀x ∈ 1/k.

Finally, notice that f(x ∨ c) = f(x) ∨ f(c) = f(x) ∨ 0′ = f(x), ∀x ∈ L. Consequently, f is a

linear morphism with kernel c.

Example 0.9. Consider the four-element lattice L = { 0, a, b, 1} with 0 < a, b < 1 and a, b

incomparable. Also consider L′ = {0′, 1′} with 0′ < 1′. Clearly, L and L′ are both modular

upper continuous lattices. Let f : L −→ L′ be the map defined by

f(0) = 0′ and f(a) = f(b) = f(1) = 1′.
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Then f is a qframe morphism with K(f) = {0}. However, f is not a linear morphism (and

so, it is not an algebraic qframe morphism). Indeed, if f would be a linear morphism, then

its kernel as a linear morphism would be k = 0, so L = 1/k ' f(L) = L′, which is a

contradiction. �

1 Lattice preradicals and direct joins

In this section we define the concept of a preradical on linear modular lattices and prove that

any such preradical commutes with arbitrary direct joins.

Definition 1.1. A lattice preradical is any functor r : LM −→ LM satisfying the following

two conditions:

(1) r(L) 6 L for any L ∈ LM.

(2) For any morphism f : L −→ L′ in LM, r(f) : r(L) −→ r(L′) is the restriction and

corestriction of f to r(L) and r(L′), respectively.

In other words, a lattice preradical is nothing else than a subfunctor of the identity functor

1LM of the category LM. �

Let r : LM −→ LM be a lattice preradical. For any L ∈ LM and a ∈ L, the subobject

r(a/0) of L in LM is necessarily an initial interval of a/0. We denote

r(a/0) := ar/0.

If a 6 b in L, the inclusion mapping ι : a/0 ↪→ b/0 is clearly a linear morphism. Applying

now r we obtain r(ι) : ar/0 −→ br/0 as a restriction of ι, and so ar 6 br.

Definition 1.2. Let r : LM −→ LM be a lattice preradical. We say that r is a radical if,

with notation above, r(1/1r) = 1r/1r for all L = 1/0 ∈ LM.

Further, r is said to be an idempotent (respectively, left exact or hereditary) preradical if

for all L ∈ LM, r(r(L)) = r(L) (respectively, ar = a ∧ 1r for every a ∈ L). �

Proposition 1.3. For any lattice L ∈ LM and any finite independent family (ai)16i6n of

L, with n ∈ N, one has ( ·∨
16i6n

ai
)r

=

·∨
16i6n

ari .

Proof. We proceed by induction on n. Clearly, it suffices to consider only the case n = 2. For

simplicity, set a := a1, b := a2, and c := a1 ∨ a2. We have ar 6 cr and br 6 cr, so

ar ∨ br 6 cr.
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To prove the opposite inequality, consider the linear morphism

q : c/0 −→ a/0, q(x) = (x ∨ b) ∧ a

(see Example 0.2(3)). Applying r, we obtain r(q) : cr/0 −→ ar/0, thus

r(q)(cr) = (cr ∨ b) ∧ a 6 ar.

In a similar way, we have (cr ∨ a) ∧ b 6 br, so

((cr ∨ b) ∧ a) ∨ ((cr ∨ a) ∧ b) 6 ar ∨ br.

Now, using modularity and the facts that (cr ∨ a) ∧ b 6 b 6 cr ∨ b and cr 6 c = a ∨ b, we

deduce that

((cr∨b)∧a)∨((cr∨a)∧b) = (cr∨b)∧(a∨((cr∨a)∧b)) = (cr∨b)∧((a∨b)∧(cr∨a)) = (cr∨a)∧(cr∨b),

and, consequently

cr 6 ((cr ∨ b) ∧ a) ∨ ((cr ∨ a) ∧ b).

It follows that

cr 6 ar ∨ br,

which ends the proof.

Proposition 1.4. For any upper continuous lattice L ∈ LM and any independent family

(ai)i∈I of L one has ( ·∨
i∈I

ai
)r

=
·∨
i∈I

ari .

Proof. If we set c :=
∨
i∈I ai, then ari 6 c

r for each i ∈ I, so∨
i∈I

ari 6 cr.

To prove the opposite inequality, consider F ⊆ I, F finite. Since( ∨
i∈F

ai
)
∧
( ∨
i∈I\F

ai
)

= 0,

the canonical mapping

q : c/0 −→
( ∨
i∈F

ai
)
/0, q(x) =

(
x ∨

( ∨
i∈I\F

ai
))
∧
( ∨
i∈F

ai
)
,

is a linear morphism by Example 0.2(3).

Applying r, we obtain the linear mapping

r(q) : cr/0 −→
( ∨
i∈F

ai
)r
/0.
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By Proposition 1.3, we have ( ·∨
i∈F

ai
)r

=
·∨

i∈F
ari ,

thus

r(q)(cr) =
(
cr ∨

( ∨
i∈I\F

ai
))
∧
( ∨
i∈F

ai
)
6
∨
i∈F

ari ,

and, consequently

cr ∧
( ∨
i∈F

ai
)
6
∨
i∈F

ari .

Denote by Pf (I) the upward directed set of all finite subsets of I. Using the upper continuity

of L, we obtain

cr = cr ∧ c = cr ∧
( ∨
F∈Pf (I)

( ∨
i∈F

ai
))

=
∨

F∈Pf (I)

(
cr ∧

( ∨
i∈F

ai
))
6

∨
F∈Pf (I)

( ∨
i∈F

ari
)

=
∨
i∈I

ari ,

and we are done.

2 Preradicals in full subcategories of LM.

In this section we discuss preradicals in full subcategories of the category LM of all linear

modular lattices. First, we recall some definitions from [9] and [10].

Definitions 2.1. Let ∅ 6= X ⊆ L. We say that:

(1) X is an abstract class if it is closed under lattice isomorphisms, i.e., if L, K ∈ L,
K ' L, and L ∈ X , then K ∈ X .

(2) X is hereditary (respectively, cohereditary) if it is an abstract class and for any L ∈ L
and any a 6 b 6 c in L such that c/a ∈ X , it follows that b/a ∈ X (respectively,

c/b ∈ X ).

(3) X is closed under joins if it is an abstract class and for any complete lattice L, any

a ∈ L, and any family of elements (ai)i∈I , I arbitrary set, with a 6 ai in L and

ai/a ∈ X , ∀ i ∈ I, it follows that
(∨

i∈I ai
)
/a ∈ X .

(4) X is closed under meets if it is an abstract class and for any complete lattice L, any

a ∈ L, and any family of elements (ai)i∈I , I arbitrary set, with a > ai in L and

a/ai ∈ X , ∀ i ∈ I, it follows that a/
(∧

i∈I ai
)
∈ X . �

For any non-empty subclass C of M we shall denote by LC the full subcategory of LM
having C as the class of its objects.
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Lemma 2.2. Let C be an abstract subclass of M such that the monomorphisms in the

category LC are injective linear morphisms. Then, for every L ∈ C, every subobject of L in

the category LC is represented by an initial interval a/0 of L = 1/0 for some a ∈ L.

Proof. Let (S, α) be a subobject of L in LC, i.e., S
α
� L is a monomorphism in LC, so an

injective linear morphism by hypothesis. Thus, the kernel of α is 0. By definition of a linear

morphism, there exists a ∈ L such that α induces a lattice isomorphism α : S
∼−→ a/0. Since

S ∈ C, it follows that a/0 ∈ C because C is an abstract class. By Proposition 0.5(2), α is an

isomorphism in the category LM, so it is also an isomorphism in its full subcategory LC.
Let a/0

ι
↪→ L be the inclusion mapping. Clearly, ι is an injective linear morphism, so it

is a monomorphism in LC. Hence (a/0, ι) is a subobject of L in LC. We have α = ι ◦ α,
and, because α is an isomorphism, we deduce that the subobjects (S, α) and (a/0, ι) of L

are equivalent in LC, therefore (a/0, ι) represents (S, α).

Proposition 2.3. The following assertions are equivalent for an abstract subclass C of M.

(1) C is hereditary.

(2) For any L ∈ C, the subobjects of L in the category LC can be taken as the initial

intervals a/0 of L = 1/0, a ∈ L.
In this case, the monomorphisms in the category LC are precisely the injective linear

morphisms.

Proof. (1) =⇒ (2): First, observe that any injective linear morphism in LC is clearly a

monomorphism in LC. Let L ∈ C and a ∈ L. Then a/0 ∈ C , because C is hereditary. The

inclusion mapping a/0
ι
↪→ L is an injective linear morphism, so it is a monomorphism in LC.

Thus (a/0, ι) is a subobject of L in LC.
Now, we are going to show that every subobject of L is represented by some a/0. By

Lemma 2.2, it suffices to prove that the monomorphisms in LC are injective linear morphisms.

For that, we simply notice that the argument in the proof of [5, Proposition 2.2 (3)] works in

this context. For the reader’s convenience, we include it below.

Let f : L −→ L′ be a monomorphism in the category LC. Because f is a linear morphism,

there exists a kernel k ∈ L of f. Since C is a hereditary class, it follows that K = k/0

is a member of C. Consider the linear morphisms κ : K −→ L, κ(x) = x, ∀x ∈ K, and

o : K −→ L, o(x) = 0, ∀x ∈ K. We have f ◦ κ = f ◦ o , and, since f is a monomorphism, we

deduce that κ = o. Thus k = κ(k) = o(k) = 0, and, consequently, f is injective.

(2) =⇒ (1): For every a ∈ L, a/0 is an object of LC, so is a member of C.

Proposition 2.3 provides the correct setting to define a lattice preradical r on a full sub-

category LC of LM in such a manner that the image r(L) of a lattice L in LC to be an

initial interval of L.

Definition 2.4. For any hereditary class C of M, a lattice preradical on C is a subfunctor

r : LC −→ LC of the identity functor 1LC . �
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In a dual manner, we obtain the following results.

Lemma 2.5. Let C be an abstract subclass of M such that the epimorphisms in the category

LC are surjective linear morphisms. Then, for every L ∈ C, every quotient object of L in the

category LC is represented by a quotient interval 1/a of L = 1/0 for some a ∈ L. �

Proposition 2.6. The following assertions are equivalent for an abstract subclass C of M.

(1) C is cohereditary.

(2) For any L ∈ C, the quotient objects of L in the category LC can be taken as the

quotient intervals 1/a of L = 1/0, a ∈ L.
In this case, the epimorphisms in the category LC are precisely the surjective linear mor-

phisms. �

3 Trace and Reject

In this section we introduce and investigate the latticial counterparts of the well-known pre-

radicals Tr (U ,M) and Rej (U ,M) of an arbitrary class U of right R-modules in a right

R-module M (see [11]). As particular cases we deduce that the socle and radical define two

lattice preradicals on the full subcategory LMc of LM consisting of all complete modular

lattices.

Definition 3.1. Let L be a complete lattice, and let ∅ 6= X ⊆ L be an abstract class of

lattices. We define the trace of X in L and the reject of X in L by

Tr (X , L) :=
∨
{x ∈ L |x/0 ∈ X } and Rej (X , L) :=

∧
{x ∈ L | 1/x ∈ X }. �

Remarks 3.2. (1) If the abstract class X contains a zero lattice, hence all zero lattices, in

particular, if X is a hereditary or cohereditary class, then the sets {x ∈ L |x/0 ∈ X } and

{x ∈ L | 1/x ∈ X } are both non-empty for any lattice L.

(2) For a class ∅ 6= X ⊆ L closed under joins, we have

Tr (X , L)/0 ∈ X ,

and so, L ∈ X ⇐⇒ Tr (X , L) = 1. If additionally X contains a zero lattice, then the trace

of X in L is the greatest element b ∈ L such that b/0 ∈ X .

(3) Dually, for a class ∅ 6= X ⊆ L closed under meets, we have

1/Rej (X , L) ∈ X ,

and so, L ∈ X ⇐⇒ Rej (X , L) = 0. If additionally X contains a zero lattice, then the reject

of X in L is the least element b ∈ L such that 1/b ∈ X . �
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For two lattices L and L′ we shall denote by 0 (respectively, 1) the least (respectively,

greatest) element of L, and by 0′ (respectively, 1′) the least (respectively, greatest) element

of L′.

Lemma 3.3. Let X be an abstract class of lattices, let L, L′ be two complete lattices, and

let f : L
∼−→ L′ be a lattice isomorphism. Then

f(Tr (X , L)) = Tr (X , L′) and f(Rej (X , L)) = Rej (X , L′).

Proof. Since X is an abstract class, f induces a bijection between the sets {x ∈ L |x/0 ∈ X }
and {x′ ∈ L′ |x′/0′ ∈ X }. Being a lattice isomorphism, f commutes with arbitrary joins, so

f(Tr (X , L)) = f
(∨
{x ∈ L |x/0 ∈ X }

)
=
∨
{ f(x) ∈ L |x/0 ∈ X }

=
∨
{x′ ∈ L′ |x′/0′ ∈ X } = Tr (X , L′).

Similarly, f induces a bijection between the sets {x ∈ L | 1/x ∈ X } and {x′ ∈ L′ | 1′/x′ ∈ X },
and we obtain the second equality.

Proposition 3.4. Let X be a cohereditary class of lattices, and let L, L′ be complete modular

lattices. Then, for any linear morphism f : L −→ L′ in LM we have

f(Tr (X , L)) 6 Tr (X , L′).

Proof. If k is the kernel of f , then there exists a′ ∈ L′ such that f induces a lattice

isomorphism f̄ : 1/k
∼−→ a′/0′, f̄(x) = f(x), ∀x ∈ 1/k.

Let x ∈ L be such that x/0 ∈ X . Since X is cohereditary, it follows that x/(x ∧ k) ∈ X .
By modularity, we have (x ∨ k)/k ' x/(x ∧ k), and since X is an abstract class, we have

(x ∨ k)/k ∈ X .
Set t := Tr (X , L). We have

t ∨ k =
( ∨
x∈L, x/0∈X

x
)
∨ k =

∨
x∈L, x/0∈X

(x ∨ k) 6
∨

y∈1/k, y/k∈X

y = Tr (X , 1/k).

Using Proposition 0.3 and Corollary 0.4, we deduce that

f(t) = f(t ∨ k) 6 f(Tr (X , 1/k)) = f̄(Tr (X , 1/k)).

Since f̄ is a lattice isomorphism, by Lemma 3.3 we have

f̄(Tr (X , 1/k)) = Tr (X , a′/0′) =
∨

x′∈a′/0′, x′/0′∈X

x′ 6
∨

x′∈L′, x′/0′∈X

x′ = Tr (X , L′).

Hence f(t) 6 Tr (X , L′), and we are done.

Corollary 3.5. Let X be a cohereditary class of lattices and let LMc be the full subcategory

of LM consisting of all complete modular lattices. Then, the assignment L 7→ Tr (X , L)/0

defines a preradical on LMc. Moreover, it is an idempotent preradical.
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Proof. The first part follows from Proposition 3.4. For the second part, we have

{ a ∈ L | a/0 ∈ X } = { a ∈ L | a/0 ∈ X , a 6 Tr (X , L) } = { a ∈ Tr (X , L)/0 | a/0 ∈ X },

so Tr (X , L) = Tr (X , Tr (X , L)/0).

Example 3.6. Denote by S the class of all lattices having at most two elements, i.e., of all

zero and simple lattices. Clearly, S is a cohereditary class. For a complete lattice L, we have

Tr (X , L) = Soc (L). In particular, Corollary 3.5 implies at once the following result of [6]: the

assignment σ : LMc −→ LMc , σ(L) = Soc (L)/0, defines an idempotent preradical on LMc.

Moreover, if we consider the restriction (and corestriction) σ′ of σ to the full subcategory

LMu of LM consisting on all upper continuous modular lattices, then σ′ is a left exact

preradical. To see this, let L ∈ LMu and y ∈ L. Since Soc (y/0) 6 y and Soc (y/0) 6 Soc (L),

it follows that Soc (y/0) 6 y ∧ Soc (L). Now, Soc (L)/0 is an upper continuous modular semi-

atomic lattice, so (y ∧ Soc (L))/0 is also semi-atomic, by [15, Theorem 1.8.2 and Corollary

1.8.4]. Hence y ∧ Soc (L) 6 Soc (y/0), and consequently, y ∧ Soc (L) = Soc (y/0). �

Lemma 3.7. Let X be a hereditary class of lattices, let L be a complete modular lattice, and

let a ∈ L. Then

Rej (X , a/0) 6 Rej (X , L) 6 Rej (X , 1/a).

Proof. For the first inequality, let x ∈ L with 1/x ∈ X . Since X is a hereditary class, it

follows that (a ∨ x)/x ∈ X . By modularity, we have (a ∨ x)/x ' a/(a ∧ x), and because X is

an abstract class, we deduce that a/(a ∧ x) ∈ X . Thus, by definition, a ∧ x > Rej (X , a/0) ,

and so, x > Rej (X , a/0) . Consequently, Rej (X , L) =
∧
{x ∈ L | 1/x ∈ X } > Rej (X , a/0).

The second inequality follows from {x ∈ L | 1/x ∈ X } ⊇ {x ∈ 1/a | 1/x ∈ X }.

Proposition 3.8. Let X be a hereditary class of lattices, and let L, L′ be complete modular

lattices. Then, for any linear morphism f : L −→ L′ in LM we have

f(Rej (X , L)) 6 Rej (X , L′).

Proof. If k is the kernel of f , then there exists a′ ∈ L′ such that f induces a lattice

isomorphism f̄ : 1/k ' a′/0′. By Lemma 3.7, we have Rej (X , L) 6 Rej (X , 1/k). Since

k 6 Rej (X , 1/k), we deduce that

Rej (X , L) ∨ k 6 Rej (X , 1/k).

Thus

f(Rej (X , L)) = f(Rej (X , L) ∨ k) 6 f(Rej (X , 1/k)) = f̄(Rej (X , 1/k)).

By Lemma 3.3, we have

f̄(Rej (X , 1/k)) = Rej (X , a′/0′),
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and using again Lemma 3.7, we obtain

Rej (X , a′/0′)) 6 Rej (X , L′).

Hence f(Rej (X , L)) 6 Rej (X , L′).

Corollary 3.9. For any hereditary class X of lattices, the assignment L 7→ Rej (X , L)/0

defines a preradical on the full subcategory LMc of LM consisting of all complete modular

lattices. Moreover, it is a radical.

Proof. The first part follows from Proposition 3.8. For the second part, we have

{ a ∈ L | 1/a ∈ X } = { a ∈ L | 1/a ∈ X , a > Rej (X , L) } = { a ∈ 1/Rej (X , L) | 1/a ∈ X },

so Rej (X , L) = Rej (X , 1/Rej (X , L)).

Example 3.10. Denote by S the class of all lattices having at most two elements, i.e., of all

zero and simple lattices. Clearly, S is a hereditary class. For a complete lattice L, we have

Rej (X , L) = Jac (L). Thus, Corollary 3.9 implies that % : LMc −→ LMc , %(L) = Jac (L)/0,

is a radical on LMc. �

4 The socle and radical of lattices with additional conditions

In this section we discuss other expressions of the socle and radical of a complete modular

lattice satisfying additional conditions.

Recall that for any complete lattice L, we have denoted

M(L) := A(Lo) and Jac (L) :=
∧
M(L).

Proposition 4.1. ([6, Proposition 3.1]). For any compactly generated modular lattice L we

have

Soc (L) =
∧
E(L) and Rad (L) = Jac (L). �

In the sequel we shall present other cases when one or both equalities in Proposition 4.1

hold.

For a lattice L we clearly have the following implications:

semi-atomic =⇒ semi-Artinian =⇒ atomic

The implications above are strict. Indeed, the sublattice L = {0}∪[1, 2 ] of the usually ordered

lattice R of all real numbers is an upper continuous modular lattice which is atomic but not

semi-Artinian, and the chain { 0, 1, 2 } is semi-Artinian but not semi-atomic.
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The well-known property of a non-zero finitely generated module M to possess a proper

maximal submodule that include a given proper submodule, known as Krull’s Lemma, is taken

below as a definition for the following condition a lattice L may have:

(KL) ∀x ∈ L \ {1}, ∃m ∈M(L) with x 6 m, i.e., M(1/x) 6= ∅,

where (KL) is an acronym for “Krull’s Lemma”.

Remarks 4.2. (1) A lattice L satisfies (KL) ⇐⇒ its opposite lattice Lo is atomic.

(2) (Krull’s Lemma) Any complete compact lattice L satisfies the condition (KL) (see,

e.g., Lemma [4, Lemma 2.1.13] or [15, Lemma 1.8.5]).

(3) Any Noetherian lattice L satisfies the condition (KL) because each non-empty subset

(1/x) \ { 1} has a maximal element. This also follows from (2) since a Noetherian (bounded)

lattice is necessarily complete and compact (see, e.g., [4, Proposition 2.1.14, Corollary 2.1.15]).

(4) If L is a semi-atomic upper continuous modular lattice then L satisfies the condition

(KL). Indeed, let x < 1 in L. Since L is semi-atomic, there exists a ∈ A(L) such that a 66 x,

and then a ∧ x = 0 because a is an atom. Using Zorn’s Lemma, there exists a pseudo-

complement m of a such that m > x. Then, by [18, Chapter III, Proposition 6.4], we have

m ∨ a ∈ E(L). On the other hand, by Theorem [15, Theorem 1.8.2], L is a complemented

lattice, so E(L) = {1}, and then m ∨ a = 1. By modularity, we have

1/m = (m ∨ a)/m ' a/(m ∧ a) = a/0,

so 1/m is simple, and consequently, m ∈M(L) with x 6 m, as desired. �

Proposition 4.3. The following statements hold for a lattice L.

(1) If a ∈ A(L) and e ∈ E(L), then a 6 e.

(2) If L is complete, then Soc (L) 6
∧
E(L).

(3) If L is complete and atomic, then Soc (L) ∈ E(L), and so, Soc (L) =
∧
E(L).

Proof. (1) If a ∈ A(L) and e ∈ E(L), then a ∧ e 6= 0, and since a is an atom, it follows that

a 6 e.

(2) follows from (1).

(3) Because L is atomic, for every 0 6= x ∈ L there exists a ∈ A(L) such that a 6 x, and

so 0 < a 6 x ∧ Soc (L).

By duality, we obtain the following result. The first part of (3) is exactly the latticial

counterpart of the well-known Nakayama’s Lemma.

Proposition 4.4. The following statements hold for a lattice L.

(1) If s ∈ S(L) and m ∈M(L), then s 6 m.
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(2) If L is complete, then Rad (L) 6 Jac (L).

(3) If L is complete and satisfies (KL), then Jac (L) ∈ S(L), so Rad (L) = Jac (L). �

Proof. (1) and (2) are clear. To prove (3), set j := Jac (L), and let x ∈ L with x ∨ j = 1.

Assume that x 6= 1. Then, by (KL), there exists m ∈ M(L) such that x 6 m, and then

1 = x ∨ j 6 x ∨ m = m, which is a contradiction. So, x = 1, i.e., j ∈ S(L), and then

j 6 Rad (L). Thus Rad (L) = Jac (L) by (2).

5 Applications to Grothendieck categories

In this section we apply the lattice-theoretical results established in the previous section to

Grothendieck categories.

Throughout this section G will denote a Grothendieck category, i.e., an Abelian category

with exact direct limits and with a generator. For any object X of G, L(X) will denote the

lattice of all subobjects of X. It is well-known that L(X) is an upper continuous modular

lattice (see, e.g., [18, Chapter 4, Proposition 5.3, and Chapter 5, Section 1]. For any object

X of G, and for any subset X ⊆ L(X) we denote∨
X :=

∑
A∈X

A and
∧
X :=

⋂
A∈X

A.

Recall that an object X ∈ G is said to be finitely generated if the lattice L(X) is compact.

The category G is called locally finitely generated if it has a family of finitely generated genera-

tors, or equivalently if the lattices L(X) are compactly generated for all objects X of G (see

Stenström [18, p. 122]). As in [3], we say that an object X ∈ G is locally finitely generated if

the lattice L(X) of all its subobjects is compactly generated. For all undefined notation and

terminology on Abelian categories the reader is referred to [18].

We say that Y is a small subobject of an object X of G if Y is a small element of the

lattice L(X). More generally, if P is any property on lattices, we say that an object X ∈ G
is/has P if the lattice L(X) is/has P. Similarly, a subobject Y of an object X ∈ G is/has

P if the element Y of the lattice L(X) is/has P. Thus, we obtain the concepts of an atom,

coatom, socle, radical, Jacobson radical, etc.

Lemma 5.1. For any Abelian category A and any morphism f : X −→ Y in A, the canonical

mapping

ϕ : L(X) −→ L(Y ), ϕ(A) := f(A), ∀A 6 X,

is a linear morphism.
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Proof. Let K := Ker (f) and I := Im (f). First, observe that ϕ(A + K) = ϕ(A), ∀A 6 X.

Since A is an Abelian category, the morphism f induces an isomorphism f : X/K
∼−→ I. This

produces a lattice isomorphism

ψ : L(X/K)
∼−→ L(I), ψ(U) := f(U), ∀U 6 X/K.

On the other hand, the lattice L(X/K) is canonically isomorphic to the interval [K,X] of the

lattice L(X), the lattice L(I) is isomorphic to the interval [0, I] of L(Y ), and the composed

isomorphism [K,X] −→ [0, I] is given by Z 7→ f(Z). This shows that

ϕ : L(X) −→ L(Y ), ϕ(A) := f(A), ∀A 6 X,

is a linear morphism, as desired.

For any object X of G we set

A(X) := A(L(X)), S(X) := S(L(X)), E(X) := E(L(X)), M(X) := M(L(X)),

Soc (X) := Soc (L(X)), Rad (X) := Rad (L(X)), Jac (X) := Jac (L(X)).

According to the definition above of objects of G that are/have a certain property P, we call the

elements of A(X) (respectively, S(X), E(X), M(X)) atoms (respectively, small subobjects,

essential subobjects, coatoms) of X, and Soc (X) (respectively, Rad (X), Jac (X)) are known

as the socle (respectively, radical, Jacobson radical) of X. In the sequel we shall use the well-

established term of a simple (respectively, proper maximal) subobject of an object X instead

of that of an atom (respectively, coatom) of X. Also, as mentioned above, for the term of a

compact object we shall use that of a finitely generated object.

In view of Lemma 5.1, all the notions and results of the previous sections have categorical

versions obtained by specializing them from an arbitrary modular lattice L to the upper

continuous modular lattice L(X) of any object X of a Grothendieck category G. No further

proofs are required. We shall present below only a few results, and leave the others to the

reader.

Proposition 5.2. For any morphism f : X −→ Y in a Grothendieck category G, one has

f(Soc (X)) 6 Soc (Y ), f(Rad (X)) 6 Rad (Y ), and f(Jac (X)) 6 Jac (Y ). �

Proposition 5.3. The following statements are true for an object X of a Grothendieck cat-

egory G.

(1) Jac (X/Jac (X)) = 0.

(2) Soc (Soc (X)) = Soc (X).

(3) Soc (Y ) = Y ∩ Soc (X) for any subobject Y of X. �



18 Toma Albu and Mihai Iosif

The next result is hard to be proved without invoking its latticial counterpart, where the

condition that the considered lattice is compactly generated is essential. We do not have any

counter-example showing its failure for arbitrary objects of a Grothendieck category.

Proposition 5.4. For any locally finitely generated object X of a Grothendieck category G
we have

Rad (X) = Jac (X) and Soc (X) =
⋂

E∈E(X)

E.

In particular, the equalities above hold for any object X of a locally finitely generated Grothen-

dieck category G. �

Following our definition above of objects of G that are/have a property P, we say that an

object X ∈ G is atomic (respectively, satisfies (KL)) if the lattice L(X) is atomic (respectively,

satisfies (KL)).

Proposition 5.5. If X ∈ G is atomic, then Soc (X) =
⋂
E∈E(X)E. �

Proposition 5.6. If X ∈ G satisfies (KL) then Rad (X) = Jac (X). �

Corollary 5.7. If X ∈ G is a finitely generated object, in particular a Noetherian object, then

Rad (X) = Jac (X). �

6 Applications to module categories equipped with a heredi-
tary torsion theory

In this section, we present relative versions with respect to a hereditary torsion theory on

Mod-R of some results related to preradicals on modules. Their proofs are immediate appli-

cations of the lattice-theoretical results obtained in the previous sections.

Throughout this section R denotes a ring with non-zero identity, Mod-R the category of

all unital right R-modules, τ = (T ,F) a fixed hereditary torsion theory on Mod-R, and τ(M)

the τ -torsion submodule of a right R-module M . We shall use the notation MR to emphasize

that M is a right R-module. For any MR we shall denote

Satτ (M) := { N | N 6M and M/N ∈ F },

and for any N 6M we shall denote by N the τ -saturation of N (in M) defined by N/N =

τ(M/N). The submodule N is called τ -saturated if N = N . Note that

Satτ (M) = {N |N 6M, N = N },
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so Satτ (M) is the set of all τ -saturated submodules of M , which explains the notation. It is

known that for any MR, Satτ (M) is an upper continuous modular lattice with respect to the

inclusion ⊆ and the operations
∨

and
∧

defined as follows:∨
i∈I

Ni :=
∑
i∈I

Ni and
∧
i∈I

Ni :=
⋂
i∈I

Ni,

having least element τ(M) and greatest element M (see [18, Chapter 9, Proposition 4.1]).

For all undefined notation and terminology on torsion theories the reader is referred to [8]

and [18].

If P is any property on lattices, we say that a module MR is/has τ -P if the lattice

Satτ (M) is/has P. Thus, we obtain the concepts of a τ -Noetherian module, τ -compact mod-

ule, τ -compactly generated module, etc. We say that a submodule N of MR is/has τ -P if its

τ -saturation N , which is an element of Satτ (M), is/has P. Thus, we obtain the concepts of a

τ -essential submodule of a module, τ -small submodule of a module, τ -independent set/family

of submodules of a module, etc. Since N = N , it follows that N is/has τ -P if and only if

N is/has τ -P.

Recall that in Torsion Theory a module UR is said to be τ -simple if U 6∈ T and Satτ (U) =

{τ(U), U}, and τ -cocritical if it τ -simple and U ∈ F . Thus, UR is τ -simple if and only if

Sat τ (UR) is a simple lattice, so this concept agrees with that of a τ -P module defined above.

We denote by Max τ (M) the set, possibly empty, of all maximal elements of the poset

Sat τ (M) \ {M}, by Aτ (M) the set of all τ -simple submodules of M , by Cτ (M) the set of

all τ -cocritical submodules of M , by Sτ (M) the set of all τ -small submodules of M , and by

Eτ (M) the set of all τ -essential submodules of M .

Lemma 6.1. ([4, Lemmas 3.4.2 and 3.4.4]). The following statements hold for a module MR

and submodules P ⊆ N of MR.

(1) The mapping

α : Satτ (N/P ) −→ Satτ (N/P ), X/P 7→ X/P,

is a lattice isomorphism.

(2) Satτ (N) ' Satτ (N).

(3) If N ∈ T , then Sat τ (M) ' Sat τ (M/N), in particular Sat τ (M) ' Sat τ (M/τ(M)).

(4) If M/N ∈ T , then Satτ (M) ' Satτ (N).

(5) If N, P ∈ Satτ (M), then the assignment X 7→ X/P defines a lattice isomorphism from

the interval [P,N ] of the lattice Satτ (M) onto the lattice Satτ (N/P ). �

Proposition 6.2. The following assertions hold for a module MR and N 6M .

(1) N ∈ Max τ (M).
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(2) N is a maximal element of the set {P 6M |M/P 6∈ T }.

(3) M/N is a τ -cocritical module.

Proof. The equivalence (1) ⇐⇒ (2) follow from the same arguments as in the proof of [1,

Proposition 0.2] for MR = RR, or of [16, Proposition 1.2], where the assumption that the

module MR is finitely generated is not necessary.

(1) ⇐⇒ (3): If N ∈ Max τ (M), then, by Lemma 6.1(5) the lattice Sat τ (M/N) is iso-

morphic to the interval [N,M ], so Sat τ (M/N) = {N,M}. Since M/N ∈ F , we deduce that

M/N is a τ -cocritical module.

(3) =⇒ (1): If M/N is a τ -cocritical module, then, N ∈ Sat τ (M), and, again by Lemma

6.1(5), we have [N,M ] = {N,M} and N 6= M , i.e., N ∈ Max τ (M), as desired.

Lemma 6.3. The following assertions hold for a module MR and N 6M .

(1) N ∈ Eτ (M) ⇐⇒ ( ∀P 6M, P ∩N ∈ T =⇒ P ∈ T ).

(2) N ∈ Sτ (M) ⇐⇒ ( ∀P 6M, M/(P +N) ∈ T =⇒M/P ∈ T ).

Proof. (1) See [3, Proposition 5.3(1)].

(2) Assume that N is τ -small, i.e., N is a small element of Sat τ (M), and let P 6M with

M/(P +N) ∈ T . Then M = P +N = P ∨N , so P = M , i.e., M/P ∈ T , as desired.

Conversely, if N has the stated property, let X ∈ Sat τ (M) with N ∨ X = M , i.e.,

N +X = M . By [3, Lemma 5.1(1)], we have N +X = M , i.e., M/(N + X) ∈ T . Then

M/X ∈ T by hypothesis, in other words X = X = M . This shows that N is a small element

of Sat τ (M), i.e., N is τ -small.

We define now the relative version of Soc (M), Rad (M), and Jac (M) as

Soc τ (M) :=
∑

A∈Aτ (M)

A,

Rad τ (M) :=
∑

N∈Sτ (M)

N,

Jac τ (M) :=
⋂

P∈Max τ (M)

P,

and call them the τ -socle, τ -radical, and τ -Jacobson radical of M , respectively. Notice that

Soc τ (M), Rad τ (M), and Jac τ (M) are all elements of Sat τ (M). The result following the next

lemma shows that they agree with the concepts of τ -P modules defined above.

Lemma 6.4. Let (Ni)i∈I be a family of submodules of a module MR. Then∑
i∈I

Ni =
∑
i∈I

Ni.
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Proof. Clearly,
∑

i∈I Ni ⊆
∑

i∈I Ni, so
∑

i∈I Ni ⊆
∑

i∈I Ni. For the opposite inclusion, we

have ∑
i∈I

Ni ⊆
∑
i∈I

Ni =
∑
i∈I

Ni,

and we are done.

Proposition 6.5. The following statements hold for a module MR.

(1) Soc τ (M) = Soc (Sat τ (M)) =
∑

C∈Cτ (M)

C.

(2) Rad τ (M) = Rad (Sat τ (M)).

(3) Jac τ (M) = Jac (Sat τ (M)).

Proof. (1) First, observe that for any N 6 P 6 M the τ -saturation P/N of P/N in M/N

is exactly P/N , and

N ∈ Aτ (M) ⇐⇒ N ∈ Aτ (M) ⇐⇒ N ∈ Cτ (M) ⇐⇒ N ∈ A(Sat τ (M)).

By definition and Lemma 6.4 we have

Soc τ (M) :=
∑

A∈Aτ (M)

A =
∑

A∈Aτ (M)

A =
∑

C∈Cτ (M)

C =

=
∑

B∈A(Sat τ (M))

B =
∨

B∈A(Sat τ (M))

B = Soc (Sat τ (M)).

(2) The proof is similar to that of (1).

(3) By definitions, we have

Jac τ (M) :=
⋂

P∈Max τ (M)

P =
⋂

P∈M(Sat τ (M))

P = Jac (Sat τ (M)).

Notice that, to the best of our knowledge, the τ -Jacobson radical Jac τ (M) of a module

MR has been considered for the first time in the literature in [13], but only for MR = RR,

and then used in [14] to prove in a pretty complicated manner the Relative Hopkins-Levitzki

Theorem, also called the Miller-Teply Theorem. The reader is referred to [2] for more de-

tails about various aspects of the Classical Hopkins-Levitzki Theorem, including the Relative

Hopkins-Levitzki Theorem, the Categorical Hopkins-Levitzki Theorem, the Latticial Hopkins-

Levitzki Theorem, as well as the connections between them. Other properties of Jac τ (M) are

given in [16] and [17].
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Proposition 6.6. For any morphism f : MR −→ NR of right R-modules, the canonical

mapping of lattices

fτ : Satτ (M) −→ Satτ (N), fτ (A) = f(A),

is a linear morphism.

Proof. If we set K := Ker (f) and I := Im (f), then the Fundamental Theorem of Isomor-

phism in Mod-R gives an isomorphism M/K ' I of R-modules, which induces a lattice

isomorphism

Sat τ (M/K) ' Sat τ (I).

By Lemma 6.1, we obtain the following sequence of canonical lattice isomorphisms

Sat τ (M/K) ' Sat τ (M/K ) ' Sat τ (M/K ) ' [K,M ] ' Sat τ (I) ' [ 0, I ],

where the interval [ 0, I ] is considered in the lattice Sat τ (N). It is easily checked that their

composition is exactly the isomorphism

Sat τ (M/K)
∼−→ [ 0, I ], X/K 7→ f(X),

and we are done.

Of course, all the results of the previous sections have relative versions obtained by spe-

cializing them from an arbitrary modular lattice L for the upper continuous modular lattice

Satτ (M) of any module MR. No further proofs are required. We shall present below only a

few results, and leave the others to the reader.

Proposition 6.7. For any morphism f : MR −→ NR of right modules one has

f(Soc τ (M)) 6 Soc τ (N), f(Rad τ (M)) 6 Rad τ (N), and f(Jac τ (M)) 6 Jac τ (N). �

As in Proposition 5.4, the next result is hard to be proved without invoking its latticial

counterpart, where the condition that the considered lattice is compactly generated is essential.

Proposition 6.8. The following statements hold for a τ -compactly generated module MR.

(1) Soc τ (M) =
⋂

X∈E(Sat τ (M))

X =
⋂

N∈Eτ (M)

N .

(2) Rad τ (M) = Jac τ (M) =
⋂

P∈Max τ (M)

P . �

Lemma 6.9. ([18, Proposition 1.1, Chap. XXIII]). The following assertions are equivalent

for a module MR.

(1) M is τ -compact.
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(2) The filter F (M) := {N 6 M |M/N ∈ T } has a basis consisting of finitely generated

submodules, i.e., ∀N 6M with M/N ∈ T , ∃N ′ 6 N such that N ′ is finitely generated

and M/N ′ ∈ T . �

Proposition 6.10. Let MR be a module such that the filter F (M) has a basis consisting of

finitely generated submodules. Then M satisfies the relative condition below

(KLτ ) ∀N ∈ Sat τ (M) \ {M},∃P ∈ Max τ (M) with N 6 P .

Proof. Use Lemma 6.9 and apply Remarks 4.2(2) for the lattice L = Sat τ (M).

Corollary 6.11. Any τ -Noetherian module MR satisfies the condition (KLτ ).

Proof. By [7, Corollaire 1.6], for any τ -Noetherian module M , the filter F (M) has a basis

consisting of finitely generated submodules, so the result follows from Proposition 6.10.

Corollary 6.12. For any module MR such that the filter F (M) has a basis consisting of

finitely generated submodules, in particular, for any τ -Noetherian module M , we have

Rad τ (M) = Jac τ (M).

Proof. The result follows from Proposition 6.10 by specializing Proposition 4.4(3) for the lattice

Sat τ (M).

References

[1] T. ALBU, Sur la dimension de Gabriel des modules, Algebra-Berichte, Bericht Nr. 21,

1974, Seminar F. Kasch, B. Pareigis, Mathematisches Institut der Universität München,

Verlag Uni-Druck München, 26 pages.

[2] T. ALBU, A seventy year jubilee: The Hopkins-Levitzki Theorem, in “Ring and Module

Theory”, Trends in Mathematics, edited by T. Albu, G. F. Birkenmeier, A. Erdoğan, and
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