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Some properties of open, discrete, generalized ring
mappings

Mihai Cristea

Abstract: We study the properties of open, discrete ring mappings satisfying generalized modular
inequalities, namely the equicontinuity, the distortion and the limit mapping of certain homeomor-
phisms from these classes. Such mappings generalize the known class of quasiregular mappings and
their extensions known as mappings of finite distortion. We apply our results to open discrete ring
mappings f : D ⊂ Rn → Df ⊂ Rn satisfying condition (N) and having local ACLq inverses, and
we focus especially on the case n − 1 < q < n. We show that such mappings cannot have essential
singularities and also that Zoric’s theorem can hold in this case and in some conditions even if n = 2.
This is in contrast even with the known case of quasiregular mappings.
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1 Introduction.

In this paper we continue the research of the properties of mappings satisfying generalized
modular inequalities from [7-14] and [31-44].

Given a domain D ⊂ Rn, we denote by A(D) the set of all path families from D and if
Γ ∈ A(D), we set F ‘(Γ) = {ρ : Rn → [0,∞] Borel maps |

´
γ

ρds ≥ 1 for every γ ∈ Γ locally

rectificable}. If D ⊂ Rn is open, M : A(D) → [0,∞] is a modulus if:
1) M(ϕ) = 0.
2) M(Γ1) ≤M(Γ2) if Γ1 > Γ2, Γ1,Γ2 ∈ A(D).

3) M(
∞∪
i=1

Γi) ≤
∞∑
i=1

M(Γi) if Γ1, ...,Γi, ... ∈ A(D).

Here, if Γ1,Γ2 ∈ A(D), we say that Γ1 > Γ2 if every path γ1 ∈ Γ1 has a subpath in Γ2.
We define for p > 1 and ω : D → [0,∞] measurable and finite a.e. the p-modulus of weight

ω

Mp
ω(Γ) = inf

ρ∈F (Γ)

ˆ

Rn

ω(x)ρ(x)pdx for Γ ∈ A(D).

For ω = 1 we have the classical p modulus

Mp(Γ) = inf
ρ∈F (Γ)

ˆ

Rn

ρ(x)pdx for Γ ∈ A(D).

A map f : D ⊂ Rn → Rn is of finite distortion if f ∈ C(D,Rn)∩W 1,1
loc (D,Rn), Jf ∈ L1

loc(D)
and there exists K : D → [0,∞] measurable and finite a.e. such that |f ‘(x)|n ≤ K(x)Jf (x)

1



a.e. and if f ∈ W 1,n
loc (D,Rn), we say that f is of finite dilatation. If K ∈ L∞(D), we obtain

the known class of quasiregular mappings, and we recommend the reader the books [29, 30,
45, 46] for basic facts concerning quasiregular mappings. The important modular inequality
of Poleckii says that if f is K-quasiregular, then Mn(f(Γ)) ≤ KMn(Γ) for every Γ ∈ A(D),
and this is the key for proving most of the geometric properties of this class of mappings. If
f : D → G is a homeomorphism between two domains from Rn, we say that f is K-quasiregular
if Mn(Γ)

K
≤ Mn(f(Γ)) ≤ KMn(Γ) for every Γ ∈ A(D). This is equivalent to the fact that f is

ACLn, a.e. differentiable and |f ‘(x)|n
K

≤ |Jf (x)| ≤ Kl(f ‘(x))n a.e. and it results that if f is
quasiconformal, then f and f−1 are ACLn and satisfy condition (N).

General classes of such mappings were intensively studied using the modulus method in the
last 20 years. Important steps in this direction were done by Ryazanov and his students in
[15-16], [21], [23-25], [31-44], by Koskela and his students in [18-20], [27-28] and by the author
in [3-6]. They extended most of the geometric properties of the known class of quasiregular
mappings to this class of mappings. Several conditions were imposed on the dilatation K of
the function f , like K ∈ BMO(D), or such that there exists an Orlicz function A such that
exp(A ◦K) ∈ L1

loc(D), or such that f has locally ACLn inverses. For all of them the modular
inequality ”Mn(f(Γ)) ≤Mn

Kn−1(Γ)” holds for every Γ ∈ A(D) and this is the main instrument
in studying these functions.

In some recent papers [7-14] we studied classes of continuous, open discrete mappings f :
D → Rn for which a modular inequality of type ”Mq(f(Γ)) ≤ γ(Mp

ω(Γ))” holds for every
Γ ∈ A(D), where p > 1, q > n−1, ω : D → [0,∞] is measurable and finite a.e. and γ : [0,∞) →
[0,∞) is increasing with lim

t→0
γ(t) = 0. We gave Liouville, Montel, Picard type theorems,

equicontinuity and boundary extension results and estimates of the modulus of continuity for
such mappings. We extended in this way some of the geometric properties of quasiregular
mappings and of their generalizations mentioned before from [3-6], [15-16], [18-21], [23-25],
[27-29] and [31-44].

Let now D ⊂ Rn be open and M : A(D) → [0,∞] be a modulus of the form

M(Γ) = inf
ρ∈F (Γ)

T (ρ), where T : B(D) → [0,∞] is an operator (α)

Throughout this paper we shall work with a modulus of this type. We shall have in mind
especially the modulus M = Mp

ω, for which the operator T : B(D) → [0,∞] is given by
T (ρ) =

´
D

ω(x)ρ(x)pdx for every ρ ∈ B(D), but we can consider more general operators T , like

T (ρ) =
´
D

ω(x)Φ(ρ(x))dx for every ρ ∈ B(D), where Φ : [0,∞) → [0,∞) is a homeomorphism,

or like T (ρ) =
´
D

ω(x)ρ(x)Φ(x)dx for every ρ ∈ B(D), where Φ : D → [1,∞] is Borel measurable

(see also Theorem 1 in [9] for some more general cases).
If D ⊂ Rn is open, E,F ⊂ D, we set ∆(E,F,D) = {γ : [0, 1] → D path |γ(0) ∈ E, γ(1) ∈ F

and γ((0, 1)) ⊂ D}. We say that ∞ ∈ D if there exists r > 0 such that {B(0, r) ⊂ D.
A domain A ⊂ Rn is a ring if {A has exactly two components Q0 and Q1 and we denote this

thing by A = R(Q0, Q1). Then ∂A has exactly two components B0 = Q0 ∩A and B1 = Q1 ∩A
and we associate to the ring A the path family ΓA = ∆(B0, B1, A).

If x ∈ Rn and 0 < a < b, we set
Γx,a,b = ∆(B(x, a), S(x, b), B(x, b) \B(x, a)) if x ∈ Rn.
Γ∞,a,b = ∆(B(0, a), S(0, b), B(0, b) \B(0, a)) if x = ∞.
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Lx,a,b = {ρ : Rn → [0,∞]| there exists η : (a, b) → [0,∞] a Borel map such that
b́

a

η(t)dt ≥ 1,

ρ(z) = η(|z − x|) if z ∈ B(x, b) \B(x, a), ρ(z) = 0 otherwise}.

L∞,a,b = {ρ : Rn → [0,∞] there exists η : (a, b) → [0,∞] a Borel map such that
b́

a

η(t)dt ≥

1, ρ(z) = η(|z|) if z ∈ B(0, b) \B(0, a), ρ(z) = 0 otherwise}.
If M is a modulus as in (α), we set

∆M(Γx,a,b) = inf
ρ∈Lx,a,b

T (ρ).

Since Lx,a,b ⊂ F (Γx,a,b), we see that ∆M(Γx,a,b) ≥ M(Γx,a,b). If M = Mp
ω, we set ∆M = ∆p

ω

and if M = Mp, we set ∆M = ∆p. We say that M(x) = 0 if M(Γx) = 0, where Γx = {γ
path |x ∈ Imγ}. We say that ∆M(x) = 0 if there exists c > 0 such that B(x, c) ⊂ D and
lim
a→0

∆M(Γx,a,b) = 0 for every 0 < a < b < c if x ̸= ∞ and we say that ∆M(∞) = 0 if there exists

c > 0 such that {B(0, c) ⊂ D and lim
a→∞

∆M(Γ∞,b,a) = 0 for every 0 < c < b < a. If ∆M(x) = 0,

then M(x) = 0 and we say that ∆M(x) > 0 if ∆M(x) ̸= 0.
If n ≥ 2, q > 1, γ : [0,∞) → [0,∞) is increasing with lim

t→0
γ(t) = 0, x ∈ ∂D is an isolated

point of ∂D and f : D → Rn is a map, we say that f satisfies a ring (q,M, γ) condition in x if
Mq(f(Γx,a,b)) ≤ γ(∆M(Γx,a,b)) for every 0 < a < b such that B(x, b) ⊂ D if x ̸= ∞
Mq(f(Γ∞,a,b)) = γ(∆M(Γ∞,a,b)) for every 0 < a < b such that {B(0, a) ⊂ D if x = ∞.
We say that f satisfies a generalized ring (q,M, γ) condition in x ifMq(f(ΓA)) ≤ γ(M(ΓA))

for every ring A such that x /∈ A and A is compact in D ∩ Rn.
We say that f : D ⊂ Rn → Rn satisfies a ring (q,M, γ) condition if f satisfies a ring

(q,M, γ) condition in every point x ∈ D, and we say that f satisfies a generalized ring (q,M, γ)
condition if f satisfies a generalized ring (q,M, γ) condition in every point x ∈ D.

If x = (x1, ..., xn) ∈ Rn, we set |x| = (
n∑
i=1

x2i )
1
2 and if A ∈ L(Rn,Rn), we set |A| = sup

|x|=1

|A(x)|,

l(A) = inf
|x|=1

|A(x)|. We denote by µn the Lebesgue measure in Rn and if p > 1, we denote by

mp the p-Hansdorff measure in Rn.
If D ⊂ Rn is open and f : D → Rn is a map, we say that f satisfies condition (N)

if µn(f(A)) = 0 whenever A ⊂ D is such that µn(A) = 0. We also denote for x ∈ D by

L(x, f) = lim sup
h→0

|f(x+h)−f(x)|
|h| and we set Bf = {x ∈ D|f is not a local homeomorphism at x}.

If D ⊂ Rn is open, we say that φ : B(D) → [0,∞] is a set function if φ(A) < ∞ for every

compact A ⊂ D and φ(
∞∪
i=1

Ai) =
∞∑
i=1

φ(Ai), if A1, ..., Ai, ... are disjoint Borel sets in D. We say

φ has a derivative φ‘(x) in a point x ∈ D if there exists φ‘(x) = lim
r→0

φ(B(x,r))
µn(B(x,r))

. A set function

φ has a.e. a derivative φ‘(x) and the function φ‘ is Borel measurable.
If D,G are domains in Rn and f : D → G is a homeomorphism, we set µf : B(D) → [0,∞]

by µf (A) = µn(f(A)) for every A ∈ B(D). Then µf is a set function and if h : B(Rn) → [0,∞]
is Borel measurable and f satisfies condition (N), then

´
A

h(f(x))µ‘
f (x)dx =

´
f(A)

h(y)dy for

every A ∈ B(D) (see [45], page 81-83).
Let now q > 1, D ⊂ Rn open, E ⊂ D closed in D such that µn(E) = 0 and f : D \E → Rn

a local homeomorphism. We can define a.e. the function KI,q(f) : D → [0,∞] by KI,q(f)(x) =
L(f(x), gx)µ

‘
f (x). Here gx is a local inverse of f around x such that gx(f(x)) = x. Then KI,q(f)
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is a Borel map and if x ∈ D \ E is such that f is differentiable in x and Jf (x) ̸= 0, then

KI,q(f)(x) =
|Jf (x)|
l(f ‘(x))q

.

The following Theorem is proved in Theorem 1 in [12].
Theorem A. Let n ≥ 2, 1 < q < p, D ⊂ Rn a domain, f : D → Rn continuous and

satisfying condition (N) such that m1(Bf ) = 0 and having ACLq inverses on f(D \Bf ). Then

Mq(f(Γ)) ≤M q
KI,q(f)

(Γ) for every Γ ∈ A(D) andMq(f(Γ)) ≤ (
´
D

KI,q(f)(x)
p/(p−q)dx)

p−q
p Mp(Γ)

q/p

for every Γ ∈ A(D).
Using this result, we can easily produce mappings which are not quasiregular and satisfying

generalized modular inequalities used in this paper.
Indeed, let D = (0, 1)n, n−1

n
< q

n
< α < 1, f : (0, 1)2 → (0, 1

α
)2 given by f(x, y) = (x

α

α
, y

α

α
)

for x, y ∈ (0, 1) and let F : D → (0, 1)n−2 × (0, 1
α
)2 given by

F (x1, ..., xn) = (x1, ..., xn−2, f(xn−1, xn)) for x = (x1, ..., xn) ∈ D.
We see that F is a homeomorphism, l(f ‘(xn−1, xn)) = min{xα−1

n−1, x
α−1
n } if xn−1, xn ∈ (0, 1)

and l(F ‘(x)) = min{1, l(f ‘(xn−1, xn))} = 1, Jf (x) = xα−1
n−1x

α−1
n if x ∈ D.

We find that KI,n(F )(x) = xα−1
n−1x

α−1
n → ∞ if x → 0, hence F is not quasiconformal.

Also, KI,q(F )(x) = xα−1
n−1x

α−1
n for x ∈ D and let C = (

´
D

KI,q(F )(x)
n/(n−q)dx)

n−q
n . Then C =

(
1́

0

dx1...
1́

0

dxn−2

1́

0

x
n(α−1)
n−q

n−1 dxn−1

1́

0

x
n(α−1)
n−q

n dxn)
n−q
n <∞.

Using Theorem A, we see that Mq(f(Γ)) ≤ CMn(Γ)
q/n for every Γ ∈ A(D), hence F is a

generalized ring (q,Mn, γ) homeomorphism, where γ(t) = Ctq/n for t > 0.
Another interesting example of an open, discrete map F : B(0, 1) → Rn such that BF ̸= ϕ

and KI,q(F )(x) = m for every x ∈ B(0, 1), n− 1 < q < n and for which the modular inequality
”Mq(f(Γ)) ≤ mMq(Γ)” holds for every Γ ∈ A(B(0, 1)) is given in [15].

One of the main result of this paper shows that in the case n − 1 < q < n, continuous,
open discrete ring (q,M, γ) mappings in an isolated point x ∈ ∂D cannot have an essential
singularity in x if ∆M(x) = 0. This is in contrast with the case q = n and even with the known
case of analytic mapping.

Theorem 1. Let n ≥ 2, n − 1 < q < n, D ⊂ Rn a domain, x ∈ ∂D an isolated point of
∂D, let f : D → Rn be continuous, open, discrete and suppose that f satisfies a ring (q,M, γ)
condition in x and ∆M(x) = 0. Then there exists lim

z→x
f(z) = l ∈ Rn.

Corollary 1. Let n ≥ 2, n − 1 < q < p ≤ n, D ⊂ Rn a domain, x ∈ ∂D an isolated
point of ∂D, let f : D → Rn be continuous, open discrete, satisfying condition (N) such that
m1(Bf ) = 0 and having local ACLq inverses on f(D \ Bf ). Suppose that one of the following
conditions hold:

1) ∆q
KI,q(f)

(x) = 0.

2)
´
D

KI,q(f)(x)
p/(p−q)dx <∞ and p = n if x = ∞.

Then there exists lim
z→x

f(z) = l ∈ Rn.

The known of Zoric says that if f : Rn → Rn is quasiregular and a local homeomorphism
and n ≥ 3, then f is a homeomorphism, but the result is false in the case n = 2, as exp : C → C
shows. We also see that ∆n(∞) = 0.

In the case n− 1 < q < n we cannot have such a phenomenon in the case of ring (q,M, γ)
local homeomorphisms f : Rn → Rn such that ∆M(∞) = 0, because such mappings do not
exist, as we can see from the following theorem:
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Theorem 2. Let n ≥ 2, n − 1 < q < n. Then there exists no continuous, open, discrete
ring (q,M, γ) mapping f : Rn → Rn at ∞ such that ∆M(∞) = 0.

Corollary 2. Let n ≥ 2, n − 1 < q < n. Then there exists no continuous, open discrete
mapping f : Rn → Rn satisfying condition (N), such that m1(Bf ) = 0, having local ACLq

inverses on f(D \Bf ) and such that either ∆q
KI,q(f)

(∞) = 0, or
´
Rn

KI,q(f)(x)
n/(n−q)dx <∞.

On the other side, if we permit the mapping f : Rn → Rn to take the value ∞, Zoric’s
theorem is valid even in the case n = 2 for ring (q,M, γ) local homeomorphisms such that
∆M(∞) = 0 and n− 1 < q < n.

Theorem 3. Let n ≥ 2, n − 1 < q < n and f : Rn → Rn be a ring (q,M, γ) local
homeomorphism at ∞ such that ∆M(∞) = 0. Then f extends to a homeomorphism F : Rn →
Rn such that F (∞) ∈ Rn.

Corollary 3. Let n ≥ 2, n− 1 < q < n, f : Rn → Rn be a local homeomorphism satisfying
condition (N) and having local ACLq inverses and suppose that either ∆q

KI,q(f)
(∞) = 0, or´

Rn

KI,q(f)(x)
n/(n−q)dx < ∞. Then f extends to a homeomorphism F : Rn → Rn such that

F (∞) ∈ Rn and if x ∈ Rn is such that f(x) = ∞, then ∆q
KI,q(f)

(x) > 0.

We see for instance that if f : Rn → Rn is given by f(x) = x for x ∈ Rn, then, if
n− 1 < q < n, we have that KI,q(f)(x) = 1 for every x ∈ Rn and ∆q

KI,q(f)
(∞) = ∞. We shall

also show that if f : Rn → Rn is given by f(x) = x
|x|2 if x ̸= 0, f(0) = ∞, f(∞) = 0, then

∆q
KI,q(f)

(0) = ∞ and ∆q
KI,q(f)

(∞) = 0.

If x is a boundary point of a domain in D ̸= Rn, we have:
Theorem 4. Let n ≥ 3, n − 1 < q < n, D ⊂ Rn a domain, x ∈ ∂D an isolated point of

∂D, and let f : D → Rn be a ring (q,M, γ) local homeomorphism in x such that ∆M(x) = 0.
Then there exists F : D ∪ {x} → Rn a local homeomorphism around x such that F |D = f and
F (∞) ∈ Rn.

Corollary 4. Let n ≥ 3, n− 1 < q < p ≤ n, D ⊂ Rn a domain, x ∈ ∂D an isolated point
of ∂D, let f : D → Rn be a local homeomorphism satisfying condition (N) and having local
ACLq inverses and suppose that one of the following conditions hold:

1) ∆q
KI,q(f)

(x) = 0.

2) (
´
D

KI,q(f)(x)
p/(p−q)dx)

p−q
p = K <∞ and p = n if x = ∞.

Then there exists F : D ∪ {x} → Rn a local homeomorphism around x such that F |D = f
and F (∞) ∈ Rn.

Using the ideas from Lemma 2.1 in [15] and [16], we prove an equicontinuity result for a
familyW of continuous, open discrete ring (q,M, γ) mappings f : D ⊂ Rn → Rn, n−1 < q < n,
extending the result proved in [15] and [16], for M =M q

ω and γ(t) = t for t > 0. We show that
we don’t need to impose to each mapping f ∈ W to avoid a set of positive q capacity, and this
in contrast with the case q = n and even with the known case of a family W of K-quasiregular
mappings.

Theorem 5. Let n ≥ 2, n− 1 < q < n, D ⊂ Rn a domain, x ∈ ∂D an isolated point of ∂D
and let W be a family of continuous, open, discrete ring (q,M, γ) mappings f : D → Rn in x
such that ∆M(x) = 0. Then each function f ∈ W can be extended by continuity to a function
fx : D∪{x} → Rn and the family Wx = (fx)f∈W is equicontinuous at x, and we take on D and
on Rn the chordal metric.

Corollary 5. Let n ≥ 2, n−1 < q < p ≤ n, D ⊂ Rn a domain, x ∈ ∂D an isolated point of
∂D and let W be a family of continuous, open discrete mappings f : D → Df ⊂ Rn satisfying

5



condition (N) and having ACLq inverses on f(D \ Bf ) and such that m1(Bf ) = 0. Suppose
that one of the following conditions hold:

1) ∆q
KI,q(f)

(x) = 0 for every f ∈ W and there exists ω : D → [0,∞] measurable and finite

a.e. such that KI,q(f) ≤ ω for every f ∈ W .

2) There exists 0 < C < ∞ such that (
´
D

KI,q(f)(x)
p/(p−q)dx)

p−q
p < C for every f ∈ W and

p = n if x = ∞.
Then each function f ∈ W can be extended by continuity to a function fx : D ∪ {x} → Rn

and the family Wx = (fx)f∈W is equicontinuous at x, and we take on D and on Rn the chordal
metric.

A large number of results are devoted to find estimates of the modulus of continuity of
certain classes of mappings of finite distortion (see for instance [1], [18] or [22]). We give here
some estimates of the modulus of continuity of some continuous, open discrete ring (q,M, γ)
mappings, n − 1 < q < n, extending in Theorem 6 some results from [15] and [16] given for
M =M q

ω and γ(t) = t for t > 0.
Theorem 6. Let n ≥ 2, n − 1 < q < n, p > 1, D ⊂ Rn a domain, x ∈ D, d = d(x, ∂D),

ω : D → [0,∞] measurable and finite a.e., γ : [0,∞) → [0,∞) increasing with lim
t→0

γ(t) = 0, let

f : D → Rn be continuous, open, discrete satisfying a ring (q,Mp
ω, γ) condition in x such that

f(D) ⊂ B(0, r) and suppose that one of the following conditions is satisfied:
a) There exists M > 0 and 0 ≤ α < p− 1 such that

´
B(x,δ)

ω(z)dz ≤ Mδp(ln(de
δ
))α for every

0 < δ < d.
b) ω ∈ Ln/(n−p)(D).
Then, if condition 1) holds, it results that

|f(y)− f(x)| ≤ (
(Vn)

1−n+q

C1

)
1
q r

n(1−n+q)
q (γ(Mep

∞∑
k=1

1

kp−α
/

/(ln ln(
de

|y − x|
))p)

n−1
q for every 0 < |y − x| < d (1)

and if ρ > 0 is small enough, then

|f(y)− f(x)| ≤ (γ(Mep
∞∑
k=1

1

kp−α
/(ln ln(

de

|y − x|
))p)

n−1
q if 0 < |y − x| < ρ (2)

If condition b) holds, then

|f(y)− f(x)| ≤ (
(Vn)

1−n+q

C1

)
1
q r

n(1−n+q)
q (γ((ωn−1)

p/n(∥ωn/(n−p)∥B(x,d))
n−p
n

(ln(
d

|y − x|
))

p(1−n)
n )

n−1
q for every 0 < |y − x| < d (3)

and for ρ > 0 small enough, we have

|f(y)− f(x)| ≤ (γ((ωn−1)
p/n(∥ωn/(n−p)∥B(x,d))

n
n−p (ln(

ρ

|y − x|
))

p(1−n)
n )

n−1
q if 0 < |y− x| < ρ (4)

Corollary 6. Let n ≥ 2, n − 1 < q < n, D ⊂ Rn a domain, x ∈ D, d = d(x, ∂D), let
f : D → Rn be continuous, open discrete, satisfying condition (N) such that m1(Bf ) = 0 and
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having local ACLq inverses on f(D \ Bf ) and f(D) ⊂ B(0, r) and suppose that one of the
following conditions is satisfied:

a) There exists M > 0 and 0 ≤ α < q − 1 such that
´

B(x,δ)

KI,q(f)(z)dz ≤ Mδq(ln(de
δ
))α for

every 0 < δ < d.
b) KI,q(f) ∈ Ln/(n−q)(D).
Then, if condition a) holds, it results that

|f(y)− f(x)| ≤ (
(Vn)

1−n+q

C1

)
1
q r

n(1−n+q)
q (Meq

∞∑
k=1

1

kq−α
/

/(ln ln(
de

|y − x|
))q)

n−1
q for every 0 < |y − x| < d (1)

and if ρ > 0 is small enough, then

|f(y)− f(x)| ≤ 1/ ln ln(
ρe

|y − x|
))n−1 if 0 < |y − x| < ρ (2)

If condition b) holds, then

|f(y)− f(x)| ≤ (
(Vn)

1−n+q

C1

)
1
q r

n(1−n+q)
q ((ωn−1)

q/n(∥ωn/(n−q)∥B(x,d))
n−q
n

(ln(
d

|y − x|
))

q(1−n)
n )

n−1
q for every 0 < |y − x| < d (3)

and if ρ > 0 is small enough, then

|f(y)− f(x)| ≤ 1/(ln(
ρ

|y − x|
))

(n−1)2

n if 0 < |y − x| < ρ (4)

We also estimate the behaviour at infinite of some open, discrete ring (q,M, γ) mappings,
n− 1 < q < n.

Theorem 7. Let n ≥ 2, n − 1 < q < n, p > 1, λ > 0, D ⊂ Rn a domain such that
{B(0, λ) ⊂ D, let ω : D → [0,∞] be measurable and finite a.e., γ : [0,∞) → [0,∞) increasing
with lim

t→0
γ(t) = 0, let f : D → Rn be continuous, open discrete, satisfying a ring (q,Mp

ω, γ)

condition at ∞ and f(D) ⊂ B(0, r) and suppose that one of the following conditions hold:
a) There exists M > 0 and 0 ≤ α < p − 1 such that

´
B(0,δ)\B(0,λ)

ω(z)dz ≤ Mδp(ln δ)α for

every δ > λ.
b)
´

{B(0,λ)

ω(z)n/(n−p)dz <∞.

Then, if condition a) holds and C = Mep2α((lnλ)α
∞∑
k=1

1
kp

+
∞∑
k=1

1
kp−α ), it results that there

exists l ∈ Rn such that

|f(y)− l| ≤ (
(Vn)

1−n+q

C1

)
1
q r

n(1−n+q)
q (γ(C/(ln ln(

|y|e
λ

))p)
n−1
q if |y| > λ (1)

and if ρ is great enough, then

|f(y)− l| ≤ γ(C/ ln ln(
|y|e
ρ

))p)
n−1
q if |y| > ρ (2)
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If condition b) holds, there exists l ∈ Rn such that

|f(y)− l| ≤ (
(Vn)

1−n+q

C1

)
1
q r

n(1−n+q)
q (γ((ωn−1)

p/n

(∥ωn/(n−p)∥{B(0,λ))
n−p
n (ln(

|y|
λ
))

p(1−n)
n )

n−1
q if |y| > λ (3)

and if ρ is great enough, then

|f(y)− l) ≤ (γ((ωn−1)
p/n(∥ωn/(n−p)∥{B(0,λ))

n−p
n (ln(

|y|
λ
))

p(1−n)
n )

n−1
q if |y| > ρ (4)

Corollary 7. Let n ≥ 2, n− 1 < q < n, λ > 0, D ⊂ Rn a domain such that {B(0, λ) ⊂ D,
let f : D → Rn be continuous, open discrete, satisfying condition (N) such that m1(Bf ) = 0,
having local ACLq inverses on f(D\Bf ) and f(D) ⊂ B(0, r) and suppose that one the following
conditions is satisfied:

a) There exists M > 0 and 0 ≤ α < q − 1 such that
´

B(0,δ)\B(0,λ)

KI,q(f)(x)dx ≤ Mδq(ln δ)α

for every δ > λ.
b)

´
{B(0,λ)

KI,q(f)(x)
n/(n−q)dx <∞.

Then, if condition a) holds and C = Meq2α((lnλ)α
∞∑
k=1

1
kq

+
∞∑
k=1

1
kq−α ), it results that there

exists l ∈ Rn such that

|f(y)− l| ≤ (
(Vn)

1−n+q

C1

)
1
q r

n(1−n+q)
q (C/(ln ln(

|y|e
λ

))q)
n−1
q if |y| > λ (1)

and if ρ is great enough, then

|f(y)− l| ≤ 1/(ln ln(
|y|e
ρ

))n−1 if |y| > ρ (2)

If condition b) holds, there exists l ∈ Rn such that

|f(y)− l| ≤ (
(Vn)

1−n+q

C1

)
1
q r

n(1−n+q)
q ((ωn−1)

q/n(∥KI,q(f)
n/(n−q)∥{B(0,λ))

n−q
n

(ln(
|y|
λ
))

q(1−n)
n )

n−1
q if |y| > λ (3)

and if ρ is great enough, then

|f(y)− l| ≤ 1/(ln(
|y|
ρ
))

(n−1)2

n if |y| > ρ (4)

If the function f is a ring homeomorphism, we have some better estimates and in this case
we don’t need the boundedness of f in the calculus of the modulus of continuity of f .

We also don’t need in the preceding theorems the boundedness of f for the estimates of the
modulus of continuity of f if 0 < |y − x| < ρ is small enough.

Theorem 8. Let n ≥ 2, n − 1 < q < n, p > 1, D ⊂ Rn a domain, x ∈ D, d = d(x, ∂D),
ω : D → [0,∞] be measurable and finite a.e., γ : [0,∞) → [0,∞) increasing with lim

t→0
γ(t) = 0,
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let f : D → Df ⊂ Rn be a ring (q,Mp
ω, γ) homeomorphism in x and suppose that one of the

following conditions hold:
a) There exists M > 0 and 0 ≤ α < p− 1 such that

´
B(x,δ)

ω(z)dz ≤ Mδp(ln(de
δ
))α for every

0 < δ < d.
b)
´
D

ω(z)n/(n−p)dz <∞.

Then, if condition a) holds, it results that

|f(y)− f(x)| ≤ (
1

C0

γ(Mep
∞∑
k=1

1

kp−α
/(ln ln(

de

|y − x|
))p)

1
n−q if 0 < |y − x| < d (1)

If condition b) holds, it results that

|f(y)− f(x)| ≤ (
1

C0

γ((ωn−1)
p/n(∥ωn/(n−p)∥B(x,d))

n−p
n /

/(ln(
d

|y − x|
))

p(1−n)
n )

1
n−q if 0 < |y − x| < d (2)

Corollary 8. Let n ≥ 2, n − 1 < q < n, D ⊂ Rn a domain, x ∈ D, d = d(x, ∂D) and let
f : D → Df ⊂ Rn be a homeomorphism satisfying condition (N) such that its inverse is ACLq

and suppose that one of the following conditions hold:
a) There exists M > 0 and 0 ≤ α < q − 1 such that

´
B(x,δ)

KI,q(f)(z)dz ≤ Mδq(ln(de
δ
))α for

every 0 < δ < d.
b)
´
D

KI,q(f)(z)
n/(n−q)dz <∞.

Then, if condition a) holds, it results that

|f(y)− f(x)| ≤ (
Meq

C0

∞∑
k=1

1

kq−α
/(ln ln(

de

|y − x|
))q)

1
n−q if 0 < |y − x| < d (1)

If condition b) holds, it results that

|f(y)− f(x)| ≤ (
(ωn−1)

q/n

C0

(∥KI,q(f)
n/(n−q)∥B(x,d))

n−q
n /(ln(

d

|y − x|
))

q(n−1)
n )

1
n−q

for every 0 < |y − x| < d.
We also have some better estimates of the behaviour at infinite of ring (q,Mp

ω, γ) home-
omorphisms at ∞, n − 1 < q < n and also in this case we don’t need the boundedness of
f .

Theorem 9. Let n ≥ 2, n − 1 < q < n, p > 1, λ > 0, D ⊂ Rn a domain such that
{B(0, λ) ⊂ D, let ω : D → [0,∞] be measurable and finite a.e, γ : [0,∞) → [0,∞) increasing
with lim

t→0
γ(t) = 0, let f : D → Df ⊂ Rn be a ring (q,Mp

ω, γ) homeomorphism at ∞ and suppose

that one of the following conditions hold:
a) There exists M > 0 and 0 ≤ α < p − 1 such that

´
B(0,δ)\B(0,λ)

ω(z)dz ≤ Mδp(ln δ)α for

every δ > λ.
b)

´
{B(0,λ)

ω(z)n/(n−p)dz <∞.
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Then, if condition a) holds and C = Mep2α((lnλ)α
∞∑
k=1

1
kp

+
∞∑
k=1

1
kp−α ), there exists l ∈ Rn

such that

|f(y)− l| ≤ (
1

C0

γ(C/(ln ln(
|y|e
λ

))p)
1

n−q if |y| > λ (1)

If condition b) holds, there exists l ∈ Rn such that

|f(y)− l| ≤ (
1

C0

γ((ωn−1)
p/n(∥ωn/(n−p)∥{B(0,λ))

n−p
n (ln(

|y|
λ
))

p(1−n)
n )

1
n−q if |y| > λ (2)

Corollary 9. Let n ≥ 2, n− 1 < q < n, λ > 0, D ⊂ Rn a domain such that {B(0, λ) ⊂ D
and let f : D → Df ⊂ Rn be a homeomorphism satisfying condition (N) such that its inverse
is ACLq and suppose that one of the following conditions hold:

a) There exists M > 0 and 0 ≤ α < q − 1 such that
´

B(0,δ)\B(0,λ)

ω(x)dx ≤ Mδq(ln δ)α for

every δ > λ.
b)

´
{B(0,λ)

KI,q(f)(x)
n/(n−q)dx <∞.

Then, if condition a) holds and C = Meq2α((lnλ)α
∞∑
k=1

1
kq

+
∞∑
k=1

1
kq−α ), there exists l ∈ Rn

such that

|f(y)− l| ≤ (
1

C0

(C/(ln ln(
|y|e
λ

))q)
1

n−q if |y| > λ (1)

If condition b) holds, there exists l ∈ Rn such that

|f(y)− l| ≤ (
(ωn−1)

q/n

C0

(∥KI,q(f)
n/(n−q)∥{B(0,λ))

n−q
n (ln(

|y|
λ
))

q(1−n)
n )

1
n−q if |y| > λ (2)

A known theorem from the theory of quasiconformal mappings says that if fj : D → Dj ⊂
Rn is a sequence ofK-quasiconformal mappings such that fj → f , then either the limit mapping
is a K-quasiconformal homeomorphism, or Card Imf ≤ 2, and the convergence may be not
uniform on the compact subsets of D. Also, if fj → f uniformly on the compact subsets of D,
then either f is a K-quasiconformal homeomorphism, or f is constant on D (see Theorem 21.1,
page 69 in [45] or Corollary 37.3, page 125 in [45]). A version of the last result for generalized
ring (n,Mp

ω, γ) homeomorphisms is proved in Theorem 21.9, page 73 in [25] and Corollary 37.3,
page 125 in [25], in Theorem 9 in [8] and in Theorem 4.1 in [32].

Another main result of this paper shows that in the case n− 1 < q < n, we have a stronger
result. We prove that if fj : D → Dj ⊂ Rn is a sequence of generalized ring (q,Mp

ω, γ)
homeomorphisms such that fj → f , n − 1 < q < n, then either f is constant on D, or f is
a generalized ring (q,Mp

ω, γ) homeomorphism and the convergence is uniform on the compact
subsets of D.

Theorem 10. Let n ≥ 2, n − 1 < q < n, p > 1, D ⊂ Rn a domain, ω ∈ L1
loc(D)

such that ∆p
ω(x) = 0 for every x ∈ D, γ : [0,∞) → [0,∞) increasing with lim

t→0
γ(t) = 0, let

fj : D → Dj ⊂ Rn be generalized ring (q,Mp
ω, γ) homeomorphisms for every j ∈ N and suppose

that fj → f . Then fj → f uniformly on the compact subsets of D and either f is constant
on D, or there exists a domain G ⊂ Rn such that f : D → G is a generalized ring (q,Mp

ω, γ)
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homeomorphism. In the last case, if K ⊂ G is compact, there exists j0 ∈ N such that K ⊂ Dj

for every j ≥ j0 and f−1
j |K → f−1|K uniformly on K.

Corollary 10. Let n ≥ 2, n − 1 < q < n, D ⊂ Rn a domain, ω ∈ L1
loc(D) and let

fj : D → Dj ⊂ Rn be homeomorphisms satisfying condition (N) and having ACLq inverses for
every j ∈ N such that fj → f . Suppose that one of the following conditions hold:

1) ∆q
ω(x) = 0 for every x ∈ D and KI,q(fj) ≤ ω for every j ∈ N.

2) There exists q < p ≤ n and K > 0 such that (
´
D

KI,q(fj)(x)
p/(p−q)dx)

p−q
q ≤ K < ∞ for

every j ∈ N and ∞ /∈ D if p < n.
Then fj → f uniformly on the compact subsets of D and either f is constant on D, or

there exists a domain G ⊂ Rn such that f : D → G is a generalized ring homeomorphism and
if F ⊂ G is compact in G, f−1

j |F → f−1|F uniformly on F .
We shall also give analogues of some known results from the theory of quasiconformal map-

pings concerning the limit function of a sequence of K-quasiconformal mappings, which are
valid for sequences of generalized ring (q,Mp

ω, γ) homeomorphisms whose inverses are general-
ized ring (r,M t

η, λ) homeomorphisms, q, r ∈ (n− 1, n].

2 Preliminaries.

If a, b ∈ Rn, we denote by q(a, b) the chordal distance between a and b and q(a, b) =

|a − b|(1 + |a|2)− 1
2 (1 + |b|2)− 1

2 if a, b ∈ Rn, q(a,∞) = (1 + |a|2)− 1
2 if a ∈ Rn. If A ⊂ Rn,

we set q(A) the chordal diameter of A and if A ⊂ Rn we set d(A) the diameter of A in
the euclidian metric. We denote by Bq(x, r) the ball of center x and radius r in the chordal
metric and by Sq(x, r) the sphere of center x and radius r in the chordal metric. We set
B(x, r) = {z ∈ Rn||z − x| < r}, S(x, r) = {z ∈ Rn||z − x| = r} if x ∈ Rn and r > 0.

Given 0 < r ≤ 1 and q > 1, we set ψn,q(r) the set of all rings A = R(Q0, Q1) such that
q(Q0) ≥ r, q(Q1) ≥ r and Q1 is unbounded and we set λn,q(r) = inf

A∈ψn,q(r)
Mq(ΓA).

We see from Theorem 10.2 in [2] that if q > n− 1, then λn,q(r) > 0 for every 0 < r ≤ 1, the
function λn,q : (0, 1] → (0,∞) is increasing and lim

r→0
λn,q(r) = 0.

If 0 ≤ t ≤ 1, let ϕn,q(r, t) be the set of all rings A = R(Q0, Q1) such that q(Q0) ≥ r,
q(Q1) ≥ r, q(Q0, Q1) ≤ t and Q1 is unbounded. We set λn,q(r, t) = inf

A∈ϕn,q(r,t)
Mq(ΓA). We see

from Theorem 10.2 in [2] that if q > n − 1, the function λn,q is increasing in r and decreasing
in t, λn,q(r, t) ≥ λn,q(r) for every 0 < r ≤ 1 and 0 ≤ t ≤ 1 and that lim

t→0
λn,q(r, t) = ∞ for

every fixed 0 < r ≤ 1. Also, if A = R(Q0, Q1), a, c ∈ Q0, d,∞ ∈ Q1, we see from Theorem
9 in [2] that there exists a constant C0 depending only on n and q such that C0|a − c|n−q ≤
λn,q(

|d−c|
|a−c )(|a− c|)n−q ≤Mq(ΓA). Throughout this paper we shall denote by C0 this constant.

Let E1, ..., Ej, ... be a sequence of sets in Rn. The Kernel Kerj→∞Ej of this sequence of sets
is the set {x ∈ Rn| there exists Ux ∈ V(x) and jx ∈ N such that Ux ⊂ Ej for every j ≥ jx}.

If D ⊂ Rn is open and f : D → Rn is a map, we say that f is ACL if f is continuous and
for every cube Q ⊂⊂ D with the sides parallel to coordinate axes and for every face S of Q it
results that f |P−1

S (y) ∩ Q : P−1
s (y) ∩ Q → Rn is absolutely continuous for a.e. y ∈ S, where

PS : Rn → S is the projection on S. An ACL map has a.e. first partial derivatives and if q > 1,
we say that f is ACLq if f is ACL and the first partial derivatives are locally in Lq.

If q > 1, we denote by W 1,q
loc (D,Rn) the Sobolev space of all functions f : D → Rn which are
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locally in Lq together with the first order distributional derivatives. We see from Proposition
1.2, page 6 in [30] that if f ∈ C(D,Rn), then f is ACLq if and only if f ∈ W 1,q

loc (D,Rn).
If D ⊂ Rn is open, b ∈ ∂D, and f : D → Rn is a map, we set C(f, b) = {z ∈ Rn| there

exists bp ∈ D such that bp → b and f(bp) → z}.
If D ⊂ Rn is open and f : D → Rn is a map, we say that f is open if f carries open sets into

open sets, we say that f is discrete if f−1(y) is empty or discrete for every y ∈ Rn and we say
that f is light if for every x ∈ D and every U ∈ V(x), U ⊂ D, there exists Q ∈ V(x) such that
Q ⊂ U and f(x) /∈ f(∂Q). We say that f lifts the paths if for every path p : [0, 1] → f(D) and
every x ∈ D such that f(x) = p(0), there exists q : [0, 1] → D a path such that q(0) = x and
f ◦ q = p. We say that q : [0, a) → D is a maximal lifting of p from x if 0 < a ≤ 1, q is a path,
q(0) = x, f ◦ q = p|[0, a) and q is maximal with this property. If f : D → Rn is continuous,
open discrete, p : [0, 1] → Rn is a path and x ∈ D is such that f(x) = p(0), then there exists a
maximal lifting of p from x.

We denote by Vn the volume of the unit ball from Rn and by ωn−1 the area of the unit
sphere from Rn.

If γ : [a, b] → Rn is rectifiable, we set sγ(t) = l(γ|[a, t]) for t ∈ [a, b] and we define the
reparametrization γ0 : [0, l(γ)] → Rn of γ by setting γ(t) = γ0(sγ(t)) for t ∈ [a, b].

If D ⊂ Rn is open, f : D → Rn is a map, we set
ffl
A

f(x)dx =
´
A

f(x)dx/µn(A) for A ⊂ D

measurable and if x ∈ D and B(x, ϵ) ⊂ D, we set fϵ =
ffl

B(x,ϵ)

f(z)dz. We say that f is of finite

mean oscillation in x if lim sup
ϵ→0

ffl
B(x,ϵ)

|f(z)− fϵ|dz <∞, and we write f ∈ FMO(x).

If D,G are domains in Rn, q > 1, f : D → G is a homeomorphism and g is its inverse
which satisfies condition (N), we can define a.e. the q outer dilatation of f in x, K0,q(f)(x) =

L(x, f)qµ‘
g(f(x)), and if f is differentiable in x and Jf (x) ̸= 0, then K0,q(f)(x) =

|f ‘(x)|q
|Jf (x)|

.

We say that E = (A,C) is a condenser if C ⊂ A ⊂ Rn, C is compact and A is open. If
p > 1, we define capp(E) = inf

´
Rn

|∇u(x)|pdx, the p capacity of E, where the infimum is taken

over all u ∈ C∞
0 (A) such that u ≥ 1 on C. We also define ΓE = ∆(C, ∂A,A) and we see from

Proposition II.10.2, page 54 in [30] that Mp(ΓE) = capp(E).
We shall use the following capacity inequalities (see [17] and Proposition 6 in [26]):

capp(E) ≥ (C1
d(C)p

µn(A)1−n+p
)

1
n−1 for p > n− 1 (I)

capp(E) ≥ C2µn(C)
n−p
n for 1 < p < n (II)

Here C1 and C2 are constants depending only on n and p. Throughout this paper we denote
by C1 and C2 the constants from the formulae (I) and (II).

The following is a result similar to Theorem A. We give its proof for the sake of completeness.
Theorem B. Let n ≥ 2, 1 < q < p, let D,G be domains in Rn, f : D → G be

an ACLq homeomorphism, let g be its inverse and suppose that g satisfies condition (N).
Then K0,q(f) ◦ g ∈ L1

loc(G) and Mq(Γ) ≤ M q
K0,q(f)◦g(f(Γ)) for every Γ ∈ A(D), and if C =

(
´
G

K0,q(f)(g(y))
p/(p−q)dy)

p−q
p , it results that Mq(Γ) ≤ CMp(f(Γ))

q/p for every Γ ∈ A(D).

Proof. Since f is an ACLq homeomorphism, we can find a constant C(n, q) depending
only on n and q such that L(x, f) ≤ C(n, q)|f ‘(x)| a.e in D. Let Q ⊂⊂ D be open. Then

12



´
Q

K0,q(f)(g(y))dy =
´
Q

L(g(y), f)qµ‘
g(y)dy ≤

´
g(Q)

L(x, f)qdx ≤ C(n, q)q
´

g(Q)

|f ‘(x)|qdx < ∞,

hence K0,q(f) ◦ g ∈ L1
loc(G).

Let Γ ∈ A(D), Γ0 = {γ ∈ Γ|γ is locally rectifiable and f ◦ γ◦ is absolutely continuous}, let
η ∈ F (f(Γ0)) and let ρ : Rn → [0,∞] be defined by ρ(x) = η(f(x))L(x, f) if x ∈ D, ρ(x) = 0
otherwise. We see from Theorem 5.7, page 15 in [45] that ρ ∈ F (Γ0) and using Fuglede’s
theorem (see Theorem 28.2, page 95 in [45]), we have:

Mq(Γ) =Mq(Γ0) ≤
ˆ

D

ρ(x)qdx =

ˆ

D

η(f(x))qL(x, f)qdx =

=

ˆ

G

η(f(g(y)))qL(g(y), f)qµ‘
g(y)dy =

ˆ

G

η(y)qK0,q(f)(g(y))dy.

Since η ∈ F (f(Γ0)) was arbitrarily chosen, we see that

Mq(Γ) ≤M q
K0,q(f)◦g(f(Γ0)) ≤M q

K0,q(f)◦g(f(Γ)).

Also, using Hölder’s inequality, we see that

Mq(Γ) =

ˆ

G

η(y)qK0,q(f)(g(y))dy ≤ C(

ˆ

G

η(y)pdy)q/p

and since η ∈ F (f(Γ0)) was arbitrarily chosen, we find that

Mq(Γ) ≤ CMp(f(Γ0))
q/p ≤ CMp(f(Γ))

q/p.

Remark 1. If in Theorem A g is a.e. differentiable on G and Jg(y) ̸= 0 a.e. in G, then f
satisfies condition (N). Also, if in Theorem B f is a.e. differentiable on D and Jf (x) ̸= 0 a.e.
in D, then g satisfies condition (N).

We denote Cx,a,b = {z ∈ Rn|a < |z − x| < b} for x ∈ Rn and 0 < a < b.
Let n > q > 1, D ⊂ Rn be open, ω : D → [0,∞] be measurable and finite a.e., x ∈ D and

0 < a < b.
We find some estimates for ∆q

ω(Γx,a,b).

Let η : (a, b) → [0,∞] be a Borel map and let Ia,b =
b́

a

η(t)dt. Then, if 0 < Ia,b < ∞,

∆q
ω(Γx,a,b) ≤

´
Cx,a,b

ω(z)η(|z − x|)qdz/(Ia,b)q.

Letting η(t) = 1
t
for t ∈ (a, b) and using Hölder’s inequality, we have

∆q
ω(Γx,a,b) ≤

ˆ

Cx,a,b

ω(z)

|z − x|q
dz/(

bˆ

a

dt

t
)q ≤ (

ˆ

Cx,a,b

dz

|z − x|n
)q/n(

ˆ

Cx,a,b

ω(z)n/(n−q)dz)
n−q
n /(ln(

b

a
))q ≤

≤ (∥ωn/(n−q)∥Cx,a,b
)
n−q
n (ωn−1

bˆ

a

dt

t
)q/n/(ln(

b

a
))q ≤ (ωn−1)

q/n(∥ωn/(n−q)∥Cx,a,b
)
n−q
n (ln(

b

a
))

q(1−n)
n .
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It results that

∆q
ω(Γx,a,b) ≤ (ωn−1)

q/n(∥ωn/(n−q)∥Cx,a,b
)
n−q
n (ln(

b

a
))

q(1−n)
n (III)

It results that if x ∈ Rn, B(x, b) ⊂ D and
´

B(x,b)

ω(z)n/(n−q)dz < ∞, then ∆q
ω(x) = 0, and if

{B(0, b) ⊂ D and
´

{B(0,b)

ω(z)n/(n−q)dz <∞, then ∆q
ω(∞) = 0.

Let now ωx(t) =
ffl

S(x,t)

ω(z)dS(x,t) for x ∈ D such that B(x, b) ⊂ D and a < t < b. Taken

η0 : (a, b) → [0,∞] defined by η0(t) = (1/t
n−1
q−1 ωx(t)

1
q−1 ) for a < t < b and Ia,b =

b́

a

η0(t)dt, we

see from Remark 3 in [12] that

∆q
ω(Γx,a,b) =

ωn−1

(Ia,b)q−1
(IV )

It results that if x ∈ Rn, B(x, b) ⊂ D,
b́

a

η0(t)dt < ∞ for 0 < a < b and
b́

0

η0(t)dt = ∞, then

∆q
ω(x) = 0, and if {B(0, a) ⊂ D,

b́

a

η0(t)dt < ∞ for 0 < a < b and
∞́

a

η0(t)dt = ∞, then also

∆q
ω(∞) = 0.
We also see from Corollary 6.3, Ch. 6 in [25] that if n− 1 < q < n and f ∈ FMO(x), then

∆q
ω(x) = 0.
In Proposition 3 in [12] is proved the following:
Lemma A. Let n ≥ 2, 0 ≤ α < q − 1, M > 0, D ⊂ Rn a domain, x ∈ D, b > 0 such

that B(x, b) ⊂ D, let ω : D → [0,∞] be measurable and finite a.e. such that
´

B(x,δ)

ω(z)dz ≤

Mδq(ln( be
δ
))α for every 0 < δ < b and let C = Meq

∞∑
k=1

1
kq−α . Then ∆q

ω(Γx,a,b) ≤ C/(ln ln( be
a
))q

for every 0 < a < b.
Using the proof from Lemma A, we obtain a similar result for x = ∞.
Lemma B. Let n ≥ 2, 0 ≤ α < q − 1, M > 0, D ⊂ Rn a domain such that there exists

a > 0 such that {B(0, a) ⊂ D, let ω : D → [0,∞] be measurable and finite a.e. such that´
Co,a,b

ω(z)dz ≤ Mδq(ln δ)α for every 0 < a < b and let C = Meq2α((ln a)α
∞∑
k=1

1
kq

+
∞∑
k=1

1
kq−α ).

Then

∆q
ω(Γ∞,a,b) ≤ C/(ln ln(

be

a
))q for every 0 < a < b. (V )

Proof. Let 0 < a < b and let Ak = B(0, aek+1) \ B(0, aek) for k ∈ N. Then 1
|x| ≤ e−k

a

and 1

ln(
|x|e
a

)
≤ 1

k+1
for every x ∈ Ak and every k ∈ N. Let ρ : Rn → [0,∞] be defined by

ρ(x) = 1
ln ln( be

a
)

1

|x| ln( |x|e
a

)
if x ∈ C0,a,b, ρ(x) = 0 otherwise. We see from Theorem 5.7, page 15 in

[45] that ρ ∈ L∞,a,b and let k0 ∈ N be such that k + 1 < ln a for k < k0 and ln a ≤ k + 1 for
k ≥ k0. We have

∆q
ω(Γ∞,a,b) ≤

ˆ

Rn

ω(z)ρ(z)qdz ≤
ˆ

Rn

ω(x)
dx

|x|q(ln( |x|e
a
))q

1

(ln ln( be
a
))q

≤
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≤ 1

(ln ln( be
a
))q

∞∑
k=0

ˆ

Ak

ω(x)dx

|x|q(ln( |x|e
a
))q

≤ 1

(ln ln( be
a
))q

∞∑
n=0

1

(aek)q(k + 1)q

ˆ

Ak

ω(z)dz ≤

≤ M

(ln ln( be
a
))q

∞∑
k=0

(aek+1)q(ln(aek+1))α

(aek)q(k + 1)q
=

Meq

(ln ln( be
a
))q

∞∑
k=0

(ln a+ k + 1)α

(k + 1)q
=

=
Meq

(ln ln( be
a
))q

(

k0∑
k=0

(ln a+ k + 1)α

(k + 1)q
+

∞∑
k=k0+1

(ln a+ k + 1)

(k + 1)q
)α ≤ C/(ln ln(

be

a
))q.

3 Open, discrete ring mappings. Proof of the results.

Proof of Theorem 1. Suppose that x ∈ Rn and let b > 0 be such that B(x, b) ⊂ D and
let δ = min{b, C2}. Let 0 < a < b be such that γ(∆M(Γx,a,b)) ≤ δ

2
and let 0 < ϵ < a. We can

find 0 < c < ϵ such that γ(∆M(Γx,c,ϵ)) <
δ
2
. Let E = (B(x, b) \B(x, c), B(x, a) \B(x, ϵ)). Then

f(E) is a capacitor (f(B(x, b) \ B(x, c)), f(B(x, a) \ B(x, ϵ))) and let Γ∗ be the family of all
maximal liftings of some paths from Γf(E) starting from some points of B(x, a) \B(x, ϵ). Then
Γf(E) > f(Γ∗) and since f is open, we see that Γ∗ ⊂ ΓE. Let Γ1 = Γx,a,b, Γ2 = Γx,c,ϵ. Then
ΓE > Γ1 ∪Γ2 and f(Γ

∗) ⊂ f(ΓE). Also f(ΓE) > f(Γ1 ∪Γ2) = f(Γ1)∪ f(Γ2). Using (II), we see
that

C2µn(f(B(x, a) \B(x, ϵ))
n

n−q ≤ capq(f(E)) =Mq(Γf(E)) ≤Mq(f(Γ
∗)) ≤

≤Mq(f(ΓE)) ≤Mq(f(Γ1) ∪ f(Γ2)) ≤Mq(f(Γ1)) +Mq(f(Γ2)) ≤

≤ γ(∆M(Γ1)) + γ(∆M(Γ2)) ≤
δ

2
+
δ

2
= δ.

We see that µn(f(B(x, a) \ B(x, ϵ)) ≤ ( δ
C2
)
n−q
n < 1 for every 0 < ϵ < a and letting ϵ → 0, we

find that
µn(f(B(x, a) \ {x})) < 1 (1)

Let ρ > 0 be fixed and let 0 < β < a be such that γ(∆M(Γx,β,a)) <
ρ
2
. Let 0 < δ < α < β be such

that γ(∆M(Γx,δ,α)) <
ρ
2
and let Γ1 = Γx,β,a, Γ2 = Γx,δ,α. Let E = (B(x, a) \ B(x, δ), B(x, β) \

B(x, α)). Then f(E) is a capacitor (f(B(x, a) \ B(x, δ)), f(B(x.β) \ B(x, α)), ΓE > Γ1 ∪ Γ2,
Mq(Γf(E) ≤Mq(f(ΓE)) and using (I), we have:

(C1d(f(B(x, β) \B(x, α)))q)
1

n−1 ≤ (C1
d(f(B(x, β) \B(x, α)))q

µn(f(B(x, a) \B(x, δ)))1−n+q
)

1
n−1 ≤ capq(f(E)) =

=Mq(Γf(E) ≤Mq(f(ΓE)) ≤Mq(f(Γ1) ∪ f(Γ2)) ≤ γ(∆M(Γ1)) + γ(∆M(Γ2)) ≤
ρ

2
+
ρ

2
= ρ.

Letting α→ 0, we find that

d(f(B(x, β) \ {x}))q ≤ qn−1

C1

for some 0 < β < a < b (2)

It results from (2) that C(f, x) is compact in Rn and that there exists lim
z→x

f(z) = l ∈ Rn.

We use the same arguments if x = ∞.
Proof of Corollary 1. Suppose that condition 1) holds. We see from Theorem A that

Mq(f(Γ)) ≤ M q
KI,q(f)

(Γ) for every Γ ∈ A(D) and we apply Theorem 1 with M = M q
KI,q(f)

and

15



γ(t) = t for t > 0. Suppose now that condition 2) holds and let C = (
´
D

KI,q(f)(x)
p/(p−q)dx)

p−q
p .

We see from Theorem A that Mq(f(Γ)) ≤ CMp(Γ)
q/p for every Γ ∈ A(D) and we also see that

Mp(x) = 0 if 0 < p ≤ n and x ∈ Rn and Mn(∞) = 0. We apply Theorem 1 with M =Mp and
γ(t) = Ctq/p for t > 0.

Proof of Theorem 2. Suppose that there exists f : Rn → Rn continuous, open and
discrete such that f is a ring (q,M, γ) mapping at ∞ and ∆M(∞) = 0. Using Theorem 1, we
can find a function F : Rn → Rn such that F |Rn = f . Since F is open and discrete on Rn,
we see that F is a light map and we can easily see that taken on Rn the chordal metric, F is
also an open map on Rn. Then F (Rn) is open and compact in Rn, hence F (Rn) = Rn and we
reached a contradiction.

Proof of Corollary 2. Suppose that there exists f : Rn → Rn continuous, open, discrete,
satisfying condition (N) such that m1(Bf ) = 0, having local ACLq inverses on f(D \ Bf )
and either ∆q

KI,q(f)
(∞) = 0, or

´
Rn

KI,q(f)(x)
n/(n−q)dx < ∞. Using Theorem A, we see that

Mq(f(Γ)) ≤ M q
KI,q(f)

(Γ) for every Γ ∈ A(D) and we also see from (III) that ∆q
KI,q(f)

(∞) = 0.

We apply now Theorem 2.
Proof of Theorem 3. Using Theorem 1, we can find F : Rn → Rn continuous such that

F |Rn = f and l = F (∞) ∈ Rn. Let g : Rn → Rn be a homeomorphism such that g(l) = ∞
and g(x) ∈ Rn if x ∈ Rn \ {l}. Let P = f−1(l). Then P is a discrete set in Rn and let
h : Rn \ P → Rn, h = g ◦ f . We see that Rn \ P is pathwise connected, Rn is simply connected
and h lifts the paths, hence h is a homeomorphism and we can easily see that P = ϕ and
lim
x→∞

h(x) = ∞. We can find now a homeomorphism H : Rn → Rn such that H|Rn = h and

H(∞) = ∞. We see that g ◦ F = H and taking F = g−1 ◦ H, we see that F : Rn → Rn is a
homeomorphism and F |Rn = f .

Proof of Corollary 3. We see from Theorem A that Mq(f(Γ)) ≤ M q
KI,q(f)

(Γ) for every

Γ ∈ A(D) and we also see that ∆q
KI,q(f)

(∞) = 0. We apply now Theorem A.

Example 1. Let n − 1 < q < n and f : Rn → Rn, f(x) = x
|x|2 if x ̸= 0, f(0) = ∞,

f(∞) = 0. Then f is a homeomorphism and using Example 16.2, page 49 in [45], we see that
l(f ‘(x)) = |f ‘(x)| = 1

|x|2 , Jf (x) = |x|−2n if x ̸= 0. Then KI,q(f)(x) = |x|−2(n−q) if x ̸= 0 and

using Lemma A, we see that Mq(f(Γ)) ≤M q
KI,q(f)

(Γ) for every Γ ∈ A(Rn \ {0}).
Let Q = (0, π)n−2 × (0, 2π) and let θ : Q × (0,∞) → Rn be the polar coordinates in Rn

and let ω : Rn \ {0} → [0,∞], ω(x) = KI,q(f)(x) for x ̸= 0. Then ωx(t) =
ffl

S(x,t)

ω(z)dS(x,t) =

1
ωn−1tn−1

´
Q

ω(θ(t, y))|Jθ(t, y)|dy = 1
ωn−1tn−1

´
Q

tn−1dt
|θ(t,y)|2(n−q) = t−2(n−q) for t > 0 and x ∈ Rn.

Let η0 : (0,∞) → (0,∞), ηo(t) = 1/(t
n−1
q−1 ωx(t)

1
q−1 ) for t > 0. Then η0(t) = t

n+1−2q
q−1 for t > 0.

Let 0 < a < b and Ia,b =
b́

a

η0(t)dt = q−1
n−q (b

n−q
q−1 − a

n−q
q−1 ) and using (IV), we find that

∆q
ω(Γx,a,b) = ωn−1

(Ia,b)q−1 . This implies that lim inf
a→0

∆q
ω(Γ0,a,b) = ωn−1(

n−q
q−1

)q−1bq−n > 0, hence

∆q
ω(0) > 0. We see that ∆q

ω(∞) = 0.
Let now f : Rn → Rn, f(x) = x for x ∈ Rn. Then KI,q(f)(x) = 1 for every x ∈ Rn

and Mq(f(Γ)) = Mq(Γ) for every Γ ∈ A(Rn). Let ω : Rn → [0,∞], ω(x) = KI,q(f)(x)
for x ∈ Rn and ωx(t) =

ffl
S(x,t)

ω(z)dS(x,t) for t > 0 and x ∈ Rn. Let η0 : (0,∞) → (0,∞),

η0(t) = 1/(t
n−1
q−1ωx(t)

1
q−1 ) for t > 0. Then η0(t) = t

1−n
q−1 for t > 0. Let 0 < a < b and

16



Ia,b =
b́

a

η0(t)dt =
q−1
n−q (a

q−n
q−1 − b

q−n
q−1 ). Then ∆q

ω(∞) = (n−q
q−1

)q−1an−q > 0 and ∆q
ω(0) = ∞.

Both homeomorphisms are conformal, hence ∆n
KI,n(f)

(x) = 0 for every x ∈ Rn.

Proof of Theorem 4. We see from Theorem 1 that there exists F : D ∪ {x} → Rn

continuous such that F |D = f and we can easily see that F is open and light and F (x) ∈ Rn.
We suppose first that x ̸= ∞ and we can also suppose that F (D) ⊂ Rn. Let r > 0 be

such that B(x, r) ⊂ D and F (x) /∈ F (S(x, r)) and let ρ = d(F (x), F (S(x, r))) > 0. Let
0 < ϵ < ρ and let U be the component of F−1(B(F (x), ϵ)) containing x. Then U ⊂ B(x, r),
F (U) = B(F (x), ϵ), F (∂U) = S(F (x), ϵ) and let E = F−1(F (x)) ∩ U . Then E is at most
countable, since F is a local homeomorphism on U \ {x} and let h = F |U \ E : U \ E →
B(F (x), ϵ)\{F (x)}. Then h is a local homeomorphism which lifts the paths, U \E is connected
and B(F (x), ϵ) \ {F (x)} is simply connected and this implies that h is a homeomorphism. We
can easily see that F is injective on U and that F is a local homeomorphism. If x = ∞ we
apply a similar argument.

Proof of Corollary 4. If condition 1) holds, we see from Theorem A that Mq(f(Γ)) ≤
M q

KI,q(f)
(Γ) for every Γ ∈ A(D) and that ∆q

KI,q(f)
(∞) = 0. If condition 2) holds, then

Mq(f(Γ)) ≤ KMp(Γ)
q/p for every Γ ∈ A(D) and Mp(x) = 0 if 1 < p ≤ n and x ∈ Rn,

Mn(∞) = 0. We apply now Theorem 4.
Proof of Theorem 5. Suppose that x ̸= ∞ and let b > 0 be such that B(x, b) ⊂ D. We

can prove relation (1) from Theorem 1 independently of the function f ∈ W , hence we can find
0 < a < b such that µn(f(B(x, a))) < 1 for every f ∈ W .

Let ϵ > 0 and 0 < δ < a be such that γ(∆M(Γx,δ,a)) < (ϵqC1)
1

n−1 . Let E = (B(x, a), B(x, δ))
and let f ∈ W . Then f(E) is a capacitor (f(B(x, a)), f(B(x, δ))) and let Γ∗ be the family of
all maximal liftings of some paths from Γf(E) starting from some points of f(B(x, δ)). Since f
is open, we have that Γf(E) > f(Γ∗) and Γ∗ ⊂ ΓE. We have

(C1d(f(B(x, δ)))q)
1

n−1 ≤ (
C1d(f(B(x, δ)))q

µn(f(B(x, a)))1−n+q
)

1
n−1 ≤ capq(f(E)) =Mq(Γf(E)) ≤

≤Mq(f(Γ
∗)) ≤Mq(f(ΓE)) ≤ γ(∆M(Γx,δ,a)) ≤ (ϵqC1)

1
n−1

for every f ∈ W . It results that d(f(B(x, δ))) < ϵ for every f ∈ W .
We proved that the family W is equicontinuous at x. The proof is similar if x = ∞.
Proof of Corollary 5. Suppose that condition 1) holds and let f ∈ W . Using Theorem A,

we see that Mq(f(Γ)) ≤ M q
KI,q(f)

(Γ) ≤ M q
ω(Γ) for every Γ ∈ A(D), hence f is a ring (q,M q

ω, γ)

mapping, with γ(t) = t for t > 0.
Suppose now that condition 2) holds and let f ∈ W . Using again Theorem A, we see

that Mq(f(Γ)) ≤ CMp(Γ)
q/p for every Γ ∈ A(D), hence f is a ring (q,Mp, γ) mapping, with

γ(t) = Ctq/p for t > 0. We apply now Theorem 5.
Proof of Theorem 6. Let 0 < |y− x| < d and let E = (B(x, d), B(x, |y− x|). Then f(E)

is a capacitor and we have

(
C1d(f(B(x, |y − x|)))q

(Vnrn)1−n+q
)

1
n−1 ≤ (

C1d(f(B(x, |y − x|)))q

µn(f(B(x, d)))1−n+q
)

1
n−1 ≤ capq(f(E)) =

=Mq(Γf(E)) ≤Mq(f(ΓE)) ≤ γ(∆p
ω(Γx,|y−x|,d)).
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If condition a) holds, we see from Lemma A that ∆p
ω(Γx,|y−x|,d) ≤Mep

∞∑
k=1

1
kp−α/(ln ln(

de
|y−x|))

p

and relation (1) is proved. If condition b) holds, we see from relation (III) that ∆p
ω(Γx,|y−x|,d) ≤

(ωn−1)
p/n(∥ωn/(n−p)∥B(x,d))

n−p
n (ln( d

|y−x|))
p(1−n)

n and (3) is proved.

We see from the proof of Theorem 1 that if 0 < ρ < d is small enough, then µn(f(B(x, ρ)))
is arbitrarily small and replacing in the preceding argument d by ρ, we can prove relations (2)
and (4).

Proof of Corollary 6. We see from Theorem A that Mq(f(Γ)) ≤ M q
KI,q(f)

(Γ) for every

Γ ∈ A(D) and we apply Theorem 6 with ω = KI,q(f), p = q and γ(t) = t for t > 0.
Proof of Theorem 7. We see from Lemma B or from relation (III) that ∆p

ω(∞) = 0 and
using Theorem 1, we see that in both cases there exists lim

z→x
f(z) = l ∈ Rn.

Let 0 < λ < α < β and k > 1 and let E = ({B(0, λ) \ {B(0, kβ), {B(0, α) \ {B(0, β)). Then
E is a capacitor, f(E) is a capacitor and if Γ1 = Γ∞,λ,α, Γ2 = Γ∞,β,kβ, we see as before that
ΓE > Γ1 ∪ Γ2, Mq(f(ΓE)) ≥Mq(Γf(E)), f(ΓE) > f(Γ1 ∪ Γ2) = f(Γ1) ∪ f(Γ2). We have

(
C1d(f({B(0, α) \ {B(0, β)))q

(Vnrn)1−n+q
)

1
n−1 ≤ (

C1d(f({B(0, α) \ {B(0, β)))q

µn(f({B(0, λ) \ {B(0, kβ)))1−n+q
)

1
n−1 ≤

≤ capq(f(E)) =Mq(Γf(E)) ≤Mq(f(ΓE)) ≤Mq(f(Γ1 ∪ Γ2)) ≤

≤Mq(f(Γ1)) +Mq(f(Γ2)) ≤ γ(∆p
ω(Γ∞,λ,α)) + γ(∆p

ω(Γ∞,β,kβ)).

Letting k → ∞ and using the fact that ∆p
ω(∞) = 0, it results that lim

k→∞
∆p
ω(Γ∞,β,kβ) = 0 and

we find that

d(f({B(0, α) \ {B(0, β))) ≤ (
(Vn)

1−n+q

C1

)
1
q r

n(1−n+q)
q γ(∆p

ω(Γ∞,λ,α))
n−1
q .

Letting now β → ∞, we find that

d(f({B(0, α))) ≤ (
(Vn)

1−n+q

C1

)
1
q r

n(1−n+q)
q γ(∆p

ω(Γ∞,λ,α))
n−1
q .

Let now y ∈ {B(0, λ) and take α = |y|. Then f(y) ∈ f({B(0, α)), f({B(0, α))∪ {l} is compact
in Rn and l ∈ Int(f({B(0, α)) ∪ {l}), hence |f(y)− l| ≤ d(f({B(0, α))). We have

|f(y)− l| ≤ (
(Vn)

1−n+q

C1

)
1
q r

n(1−n+q)
q γ(∆p

ω(Γ∞,λ,|y|))
n−1
q .

Using Lemma B and relation (III), we prove relations (1) and (3). We can prove as in
Theorem 1 that if ρ is great enough, then µn(f({B(0, ρ))) is small enough and replacing in the
preceding arguments λ by ρ, we prove relations (2) and (4).

Proof of Corollary 7. We see from Theorem A that Mq(f(Γ)) ≤ M q
KI,q(f)

(Γ) for every

Γ ∈ A(D) and we apply Theorem 7 with ω = KI,q(f), p = q, γ(t) = t for t > 0.
Proof of Theorem 8. Let y ∈ B(x, d), A = R(B(x, |y − x|), {B(x, d)). Then f(A) is a

ring R(Q0, Q1), where Q0 = f(B(x, |y − x|) is compact and Q1 = {f(B(x, d)) is unbounded
and let b ∈ Q1. Using Theorem 9 in [2], we have:

C0|f(y)− f(x)|n−q ≤ |f(y)− f(x)|n−qλn,q(
|b− f(x)|

|f(y)− f(x)|
) ≤Mq(f(ΓA)) ≤ γ(∆p

ω(Γx,|y−x|,d)),
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and it results that

|f(y)− f(x)| ≤ (
1

C0

γ(∆p
ω(Γx,|y−x|,d)))

1
n−q .

Using relations (III) and (V), the theorem is proved.
Proof of Corollary 8. We see from Theorem A that Mq(f(Γ)) ≤ M q

KI,q(f)
(Γ) for every

Γ ∈ A(D) and we apply Theorem 8 with ω = KI,q(f), p = q and γ(t) = t for t > 0.
Remark 2. We can give an alternate proof of Corollary 8 in the case when condition b) is

satisfied. Let y ∈ B(x, d), A = R(B(x, |y − x|, {B(x, d))) and let b ∈ {f(B(x, d)). We see from

Lemma A that Mq(f(Γ)) ≤ (∥KI,q(f)
n/(n−q)∥B(x,d))

n−q
n Mn(Γ)

q/n for every Γ ∈ A(D), hence

C0|f(y)− f(x)|n−q ≤ |f(y)− f(x)|n−qλn,q(
|b− f(x)|

|f(y)− f(x)|
) ≤Mq(f(ΓA)) ≤

≤ (∥KI,q(f)
n/(n−q)∥B(x,d))

n−q
n Mn(Γx,|y−x|,d)

q/n =

= (∥KI,q(f)
n/(n−q)∥B(x,d))

n−q
n (ωn−1 ln(

d

|y − x|
)1−n)q/n

and we obtain the same result as in Corollary 8.
Proof of Theorem 9. We see from Lemma B or from relation (III) that ∆p

ω(∞) = 0 and
using Theorem 1, we find that there exists lim

x→∞
f(x) = l ∈ Rn.

Let 0 < λ < α and let A = R(B(0, λ), {B(0, α)). Then f(A) is a ring R(Q0, Q1), where
Q0 = f({B(0, α))∪{l} is compact in Rn and Q1 = {f({B(0, λ)) is unbounded. Let y ∈ {B(0, λ)
and let α = |y|. Then, f(y), l ∈ Q0 and if b ∈ Q1, we see that

C0|f(y)− l|n−q ≤ |f(y)− l|n−qλn,q(
|b− l|

|f(y)− l
) ≤Mq(f(ΓA)) ≤ γ(∆p

ω(Γ∞,λ,|y|)).

We apply now Lemma B and relation (III) and the theorem is proved.
Proof of Corollary 9. We see from Lemma A that Mq(f(Γ)) ≤ M q

KI,q(f)
(Γ) for every

Γ ∈ A(D) and we apply Theorem 9 with ω = KI,q(f), p = q and γ(t) = t for t > 0.

4 The limit mapping of generalized ring (q,M, γ) home-

omorphisms.

Lemma 1. Let D,Dj be domains in Rn, fj : D → Dj be homeomorphisms such that
fj → f uniformly on the compact subsets of D and f is a light map. Then f(D) ⊂ Kerj→∞Dj.

Proof: Let y ∈ f(D) and x ∈ D be such that y = f(x) and let δ > 0 be such that
Bq(x, δ) ⊂ D and y /∈ f(Sq(x, δ)). Let U = Bq(x, δ) and r = q(y, f(∂U)) > 0. Let j0 ∈ N be
such that fj(z) ∈ Bq(f(x),

r
2
) for every z ∈ U and every j ≥ j0. Then Bq(y,

r
2
) ∩ fj(∂U) = ϕ

for every j ≥ j0 and Bq(y,
r
2
) = (Bq(y,

r
2
) ∩ fj(U)) ∪ (Bq(y,

r
2
) ∩ fj({U)) for j ≥ j0. We see

that Bq(y,
r
2
) is connected, the sets Bq(y,

r
2
) ∩ fj(U) and Bq(y,

r
2
) ∩ fj({U) are open sets and

Bq(y,
r
2
) ∩ fj(U) ̸= ϕ for j ≥ j0. This implies that Bq(y,

r
2
) ⊂ fj(U) ⊂ Dj for every j ≥ j0 and

it results that y ∈ Kerj→∞Dj.
Proof of Theorem 10. We see from Theorem 5 that the family W = (fj)j∈N is equicon-

tinuous on D and using Theorem 20.3 in [45], we see that fj → f uniformly on the compact
subsets of D. Let Q = D \ {∞} and take x ∈ Q. Since the family W is equicontinuous at
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x, we can find r > 0 and j0 ∈ N such that q(f(B(x, r)) < 1
4
and q(fj(z), f(z)) <

1
4
for every

z ∈ B(x, r) and every j ≥ j0, and we can take j0 = 1. Let U = B(x, r).
We show that either f is constant on U , or f is injective on U . If this thing is false, we can

pick distinct points a1, a2, a3 ∈ U such that f(a1) ̸= f(a2) = f(a3). We can join a1 and a2 by
an arc J in U and let I be another arc joining a3 with a point a4 ∈ ∂U such that I ∩ J = ϕ.
Let A = R(J, {(U \ I)). Then fj(A) is a ring R(C0j, C1j), C0j = fj(J) is compact, fj(U) is
compact in Rn and C1j = {(fj(U \ I)) ⊃ {fj(U) is unbounded, since q({fj(U)) = 1 for j ∈ N.
Let rj = q(fj(a1), fj(a2)) and tj = q(fj(a2), fj(a3)) for j ∈ N and let δ = q(f(a1), f(a2)) > 0.
Since rj → δ, we can suppose that rj >

δ
2
for every j ∈ N. We see that q(C0j) ≥ rj, q(C1j) ≥ 1,

q(C0j, C1j) ≤ tj for every j ∈ N and tj → 0. Let h = d(J, {(U \ I)) > 0 and let ρ = 1
h
XU . Then

ρ ∈ F (ΓA) and λn,q(
δ
2
, tj) ≤ λn,q(rj, tj) ≤ Mq(fj(ΓA)) ≤ γ(Mp

ω(ΓA)) ≤ γ(
´
Rn

ω(z)
hp

XU(z)dz) ≤

γ( 1
hp

´
U

ω(z)dz) <∞.

On the other side, we see from Theorem 2 in [2] that λn,q(
δ
2
, tj) → ∞ and we reached a

contradiction. We proved that for every x ∈ Q there exists Ux ∈ V(x), Ux ⊂ Q such that either
f is injective on Ux, or f is constant on Ux.

Suppose that there exists z1, z2 ∈ Q, z1 ̸= z2 such that f(z1) = f(z2) and let ϵ > 0 be such
that z2 /∈ B(z1, ϵ). Since S(z1, ϵ) separates the points z1 and z2 and fj is a homeomorphism, we
see that also fj(S(z1, ϵ)) separates the points fj(z1) and fj(z2) for every j ∈ N. Let xjϵ ∈ S(z1, ϵ)
be such that

q(fj(xjϵ), fj(z1)) ≤ q(fj(z1), fj(z2)) for every j ∈ N (1)

Passing to a subsequence, we may assume that there exists xϵ ∈ S(z1, ϵ) such that xjϵ → xϵ.
Using the equicontinuity of the familyW in xϵ, we see that q(fj(xjϵ), f(xϵ)) ≤ q(fj(xjϵ), fj(xϵ))+
q(fj(xϵ), f(xϵ)) → 0, hence fj(xjϵ) → f(xϵ). Letting j → ∞ in (1), we find that f(xϵ) = f(z1).

We proved that if z2 /∈ B(z1, ϵ), then f is not injective on B(z1, ϵ).
Let Q1 = {x ∈ Q| there exists U ∈ V(x) such that U ⊂ Q and f is injective on U} and let

Q2 = {x ∈ Q| there exists U ∈ V(x) such that U ⊂ Q and f is constant on U}. Then Q1 and
Q2 are open and disjoint, Q = Q1 ∪Q2, Q is connected and since z1 /∈ Q1, we see that z1 ∈ Q2

and hence Q2 ̸= ϕ. It results that Q = Q2, hence f is constant on Q and since f is continuous
on D, we see that f is constant on D.

Suppose that f is not constant on D. We proved that in this case f is injective on Q and
using Lemma 1, we see that f(Q) ⊂ Kerj→∞fj(Q). Let A = R(Q0, Q1) be a ring such that A is
compact in Q and let B0 = Q0∩A, B1 = Q1∩A. Since A is compact and f(Q) ⊂ Kerj→∞fj(Q),
we can find j0 ∈ N such that f(A) ⊂ fj(A) for every j ≥ j0. Using Lemma 6 in [6], we see that
Mq(fj(B0), fj(B1), f(A)) ≤ Mq(fj(B0), fj(B1), fj(A)) = Mq(fj(ΓA)) ≤ γ(Mp

ω(ΓA)) for every
j ≥ j0 and letting j → ∞, we find that Mq(f(ΓA)) ≤ γ(Mp

ω(ΓA)), i.e. f is a generalized ring
(q,Mp

ω, γ) homeomorphism on Q and hence f is a generalized ring (q,Mp
ω, γ) homeomorphism

on D.
We proved that if f is not constant onD, there exists G ⊂ Rn a domain such that f : D → G

is a generalized ring (q,Mp
ω, γ) homeomorphism on D.

Suppose that f : D → G is a generalized (q,Mp
ω, γ) homeomorphism and let K ⊂ G be

compact in G. Let U ⊂⊂ D be a domain such that K ⊂ f(U). Let Gj = fj(U), hj = fj|U :
U → fj(U) for j ∈ N. Then f(U) ⊂ Kerj→∞fj(U) and if y ∈ K, we can find j(y) ∈ N and
Uy ∈ V(y) such that Uy ⊂ Gj for j ≥ j(y). Since K ⊂

∪
y∈K

Uy and K is compact, we can find
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y1, ..., ym ∈ K such that K ⊂
m∪
i=1

Uyi and taking j0 = max{j(y1), ..., j(ym)}, we see that K ⊂ Gj

for every j ≥ j0. It results that gj = h−1
j : Gj → U is well defined for every j ≥ j0 and let

g : f(U) → U , g = (f |U)−1. We show that gj → g uniformly on K.
Suppose that this thing if false. Taking if necessarily a subsequence, we can find ϵ > 0

and y, yj ∈ K such that |gj(yj) − g(yj)| > ϵ for every j ∈ N and yj → y. Let xj = g(yj) and
zj = gj(yj) for j ∈ N. Taking if necessarily a subsequence, we can suppose that there exists
x, z ∈ U such that xj → x, zj → z. Due to equicontinuity of the family W in z, we see that
fj(zj) → f(z) and we also see that fj(zj) = yj = f(xj) → f(x) and we obtain that f(x) = f(z).
On the other side, |xj − zj| ≥ ϵ for every j ∈ N and letting j → ∞, we have that |x − z| ≥ ϵ,
hence x ̸= z and f(x) = f(z). We reached a contradiction, since we supposed that f is injective
on D.

We proved that gj → g uniformly on K.
Proof of Corollary 10. If condition 1) holds, we see from Theorem A that Mq(fj(Γ)) ≤

M q
KI,q(fj)

(Γ) ≤ M q
ω(Γ) for every Γ ∈ A(D) and every j ∈ N. We apply now Theorem 10

and we see that if f : D → G is a homeomorphism, then f is a generalized ring (q,M q
ω, γ)

homeomorphism, where γ(t) = t for t > 0.
If condition 2) holds, we see from Theorem A that Mq(fj(Γ)) ≤ KMp(Γ)

q/p for every
Γ ∈ A(D) and every j ∈ N and we see from Theorem 19 in [2] that Mp(x) = 0 if x ∈ Rn and
Mn(∞) = 0. We apply Theorem 10 and we find that if f : D → G is a homeomorphism, then
it is a generalized ring (q,Mp, γ) homeomorphism, where γ(t) = Ktq/p for t > 0.

We continue the researches concerning the properties of the limit mapping of a sequence of
generalized ring (q,M, γ) homeomorphisms, n− 1 < q ≤ n, and we also study the case q = n.

We give first an equicontinuity result concerning families of ring (q,M, γ) homeomorphisms
f : D ⊂ Rn → Df ⊂ Rn, q > n−1 extending a known result from the theory of quasiconformal
mappings (see Theorem 19.2, page 65 in [45]). The following result was given in Theorem 16 in
[9] for families W of ring (q,M, γ) homeomorphisms, q > n− 1, establishing the equicontinuity
of such a family in points x ̸= ∞. We give here an alternate proof, valid also for the point
x = ∞.

Proposition 1. Let q > n− 1, D ⊂ Rn a domain, x ∈ D, W be a family of ring (q,M, γ)
homeomorphisms f : D → Df ⊂ Rn in x and suppose that there exists r > 0 such that each
f ∈ W omits some points af , bf /∈Imf with q(af , bf ) ≥ r. Then the family W is equicontinuous
at x and we take on D and on Rn the chordal metric.

Proof: Suppose that x ̸= ∞, let b > 0 be such that B(x, b) ⊂ D and let 0 < ϵ <
r. Let 0 < aϵ < b be such that γ(∆M(Γx,aϵ,b)) < λn,q(ϵ) and let f ∈ W . Then f(Γx,aϵ,b)
is a ring A = R(C0f , C1f ). We see that if f(x) ̸= ∞, then C0f = f(B(x, aϵ)) is bounded
and C1f = {f(B(x, b)) is unbounded, and if f(x) = ∞, then C0f is unbounded and C1f

is bounded. Also, af , bf ∈ C1f , hence r ≤ q(af , bf ) ≤ q(C1f ). Let y ∈ B(x, aϵ) and let
t = min{r, q(f(x), f(y))}. Then q(C0f ) ≥ q(f(x), f(y)) and q(C0f ) ≥ t, q(C1f ) ≥ t, hence
λn,q(t) ≤Mq(ΓA) =Mq(f(Γx,aϵ,b)) ≤ γ(∆M(Γx,aϵ,b)) < λn,q(ϵ).

Since the function λn,q is increasing and ϵ < r, we see that q(f(x), f(y)) ≤ ϵ for every
y ∈ B(x, aϵ) and every f ∈ W . It results that the family W is equicontinuous at x. The proof
is similar if x = ∞.

Theorem 11. Let n ≥ 2, p > 1, D ⊂ Rn a domain, ω ∈ L1
loc(D) such that ∆p

ω(x) = 0
for every x ∈ D, γ : [0,∞) → [0,∞) increasing with lim

t→0
γ(t) = 0 and let fj : D → Dj ⊂

Rn be generalized ring (n,Mp
ω, γ) homeomorphisms such that fj → f . Then there are three
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possibilities:
1) f : D → G is a generalized ring (n,Mp

ω, γ) homeomorphism onto a domain G ⊂
Ker j → ∞Dj, fj → f uniformly on the compact subsets of D and if K ⊂ G is compact,
there exists j0 ∈ N such that K ⊂ Dj for every j ≥ j0 and f−1

j |K → f−1|K uniformly on K.
2) Imf = {b1, b2}, b1 ̸= b2 and there exists a1 ∈ D such that f(a1) = b1 and f(x) = b2 for

every x ∈ D \ {a1} and the convergence is not uniform on the compact subsets of D.
3) f is constant. The convergence may be uniform on the compact subsets of D or not.
Proof: If Imf = {b1, b2} with b1 ̸= b2 and f(a1) = b1, f(a2) = b2, we can suppose that there

exists r > 0 such that q(fj(a1), fj(a2)) > r > 0 for every j ∈ N and using Proposition 1, we see
that the family W = (fj)j∈N is equicontinuous on D \ {a1, a2} and since f is continuous on D,
we see that either f(x) = b1 for every x ∈ D \ {a1, a2}, or f(x) = b2 for every x ∈ D \ {a1, a2}.

Suppose now that there exist three different points bi = f(ai), i = 1, 2, 3. We can suppose
that there exists r > 0 such that q(fj(ai), fj(ak)) > r for j ∈ N, i, k = 1, 2, 3, i ̸= k. Using
Proposition 1, we see that the family W = (fj)j∈N is equicontinuous on each sets D \ {a1, a2},
D \ {a2, a3}, D \ {a1, a3} and this implies that the family W is equicontinuous on D. Using
Theorem 20.3 in [45], we see that fj → f uniformly on the compact subsets of D.

If there exists j0 ∈ N such that ∞ /∈Imfj for every j ≥ j0, we take Q = D \ {∞}. If this
thing is not true, taking if necessarily a subsequence, we may suppose that there exists xj ∈ D
such that fj(xj) = ∞ for every j ∈ N and we may also suppose that there exists x0 ∈ D such
that xj → x0. We take in this case Q = D \ {x0,∞}.

Take x ∈ Q. Since f is continuous in x, we take r > 0 small enough such that d(x0, x) > 2r
and q(f(B(x, r)) < 1

4
. Since xj → x0, we can also suppose that xj ∈ B(x0, r) for j ∈ N and

since fj → f uniformly on B(x, r), there exists j0 ∈ N such that q(fj(z), f(z)) <
1
4
for every

z ∈ B(x, r) and every j ≥ j0. We take U = B(x, r) and we see that xj /∈ U , fj(U) ⊂ Bq(f(x),
1
2
)

and hence q({fj(U)) ≥ 1 for every j ≥ j0. We can take j0 = 1. Since every fj(U) is compact
in Rn, we use the argument from Theorem 10 to see that either f is constant on U , or f is
injective on U . We can prove as in Theorem 10 that either f is constant on Q (and hence
on D), or there exists G ⊂ Kerj→∞Dj such that f : D → G is a generalized ring (n,Mp

ω, γ)
homeomorphism. Also, in the last case, if K ⊂ G is compact, there exists j0 ∈ N such that
K ⊂ Dj for every j ≥ j0 and f−1

j |K → f−1|K uniformly on K.

Theorem 12. Let n ≥ 2, q, r ∈ (n − 1, n], p, t > 1, D,Dj be domains in Rn for j ∈ N,
let ω ∈ L1

loc(D) such that ∆p
ω(x) = 0 for every x ∈ D, A = Kerj→∞Dj, η ∈ L1

loc(A) such that
∆t
η(y) = 0 for every y ∈ A, γ, λ : [0,∞) → [0,∞) increasing with lim

s→0
γ(s) = 0, lim

s→0
λ(s) = 0,

let fj : D → Dj be generalized ring (q,Mp
ω, γ) homeomorphisms such that gj = f−1

j |A : A →
f−1
j (A) is a generalized ring (r,M t

η, λ) homeomorphism for every j ∈ N and fj → f . Suppose
that if r = n, then Card∂D ≥ 2 and if q = n, then either fj → f uniformly on the compact
subsets of D, or there exists r0 > 0 and aj, bj /∈ Dj such that q(aj, bj) ≥ r0 for every j ∈ N.
Then either f(x) = c for every x ∈ D and c ∈ {(A∪Kerj→∞{Dj), or there exists a component
G of A such that f : D → G is a generalized ring (q,Mp

ω, γ) homeomorphism, f−1 : G→ D is a
generalized ring (r,M t

η, λ) homeomorphism and f−1
j → f−1 uniformly on the compact subsets

of G.
Proof: If q = n and there exists r0 > 0 and aj, bj /∈ Dj such that q(aj, bj) ≥ r0 for every

j ∈ N, we see from Proposition 1 that the family W = (fj)j∈N is equicontinuous on D and
since fj → f , we see from Theorem 20.3, page 68 in [45] that fj → f uniformly on the compact
subsets of D. If n − q < q < n, we see from Theorem 5 that the family W is equicontinuous.
We proved in all cases that fj → f uniformly on the compact subsets of D.
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We also see from Theorem 10 and Theorem 11 that either f(x) = c for every x ∈ D, or there
exists a domain G ⊂ A such that f : D → G is a generalized ring (q,Mp

ω, γ) homeomorphism
and f−1

j → f−1 uniformly on the compact subsets of G. Suppose that f : D → G is a
homeomorphism and let Q be the component of A containing G. If there exists a point b ∈
∂G∩Q, let V ∈ V(b) be such that there exists j0 ∈ N such that V ⊂ Dj∩Q for every j ≥ j0. Let
hj = f−1

j |V : V → f−1
j (V ) ⊂ Dj for j ≥ j0. Using Theorem 5 or Proposition 1, we see that the

family (hj)j≥j0 is equicontinuous on V and using Ascoli’s theorem, we can suppose that there
exists h : V → Rn such that hj → h uniformly on the compact subsets of V . Using Theorem
10 or Theorem 11, we see that either h is constant on V , or h is injective on V . The first case
cannot hold, since we also see from Theorem 10 or Theorem 11 that h|V ∩G = f−1|V ∩G. It
results that h : V → h(V ) is a homeomorphism.

We see from Lemma 1 that h(V ) ⊂ Kerj→∞hj(V ) ⊂ D, hence h(b) ∈ D. Let now bj ∈ G∩V
be such that bj → b. Then h(bj) → h(b) and bj = f(h(bj)) → f(h(b)) and this implies that
b = f(h(b)) ∈ f(D) = G. We reached a contradiction, since we chose b ∈ ∂G∩Q. It results that
G = Q and we see from Theorem 10 and Theorem 11 that f−1 is a generalized ring (r,M t

η, λ)
homeomorphism.

Suppose now that f(x) = c for every x ∈ D. It is clear that c ∈ {(Kerj→∞{Dj) and
suppose that c ∈ A. Let j0 ∈ N and let V ∈ V(c) be such that V ⊂ Dj for j ≥ j0 and
let hj = f−1

j |V : V → f−1
j (V ) ⊂ D for j ≥ j0. Let x ∈ D. Then fj(x) → c and using

the equicontinuity of the family (hj)j≥j0 at the point c, we see that q(x, hj(c)) = q(hj(fj(x)),
hj(c) → 0. We obtain that hj(c) → x for every x ∈ D and hence hj(c) = x for every x ∈ D.
We reached a contradiction, and we proved that c ∈ {A.

We immediately obtain:
Theorem 13. Let n ≥ 2, q, r ∈ (n − 1, n], p, t > 1, D,G be domains in Rn, ω ∈ L1

loc(D)
such that ∆p

ω(x) = 0 for every x ∈ D, η ∈ L1
loc(G) such that ∆t

η(y) = 0 for every y ∈ G, let
γ, λ : [0,∞) → [0,∞) increasing such that lim

s→0
γ(s) = 0, lim

s→0
λ(s) = 0 and suppose that if r = n,

then Card∂D ≥ 2 and if q = n, then Card∂G ≥ 2. Let fj : D → G be generalized ring (q,Mp
ω, γ)

homeomorphisms such that their inverses are generalized ring (r,M t
η, λ) homeomorphisms such

that fj → f . Then either f(x) = c for every x ∈ D and c ∈ ∂D, or f : D → G is a
generalized ring (q,Mp

ω, γ) homeomorphism and f−1 : G → D is a generalized ring (r,M t
η, λ)

homeomorphism and f−1
j → f−1 uniformly on the compact subsets of D.

Corollary 12. Let n ≥ 2, q, r ∈ (n − 1, n], D,Dj be domains in Rn for j ∈ N, A =
Kerj→∞Dj, ω ∈ L1

loc(D), η ∈ L1
loc(A), let fj : D → Dj be ACL

r homeomorphisms satisfying
condition (N) such that their inverses are ACLq and satisfy condition (N) for every j ∈ N and
fj → f . Suppose that if r = n, then Card∂D ≥ 2 and if q = n, then either fj → f uniformly
on the compact subsets of D, or there exists r0 > 0 and aj, bj /∈ Dj such that q(aj, bj) ≥ r0 for
every j ∈ N. Suppose that one of the following conditions holds:

1) KI,q(fj) ≤ ω for every j ∈ N and ∆q
ω(x) = 0 for every x ∈ D.

2) There exists q < p ≤ n and K > 0 such that (
´
D

KI,q(fj)(x)
p/(p−q)dx)

p−q
p < K for every

j ∈ N and if p < n, then ∞ /∈ D.
Let gj : A → f−1

j (A) be the inverse of fj|f−1
j (A) : f−1

j (A) → A for j ∈ N. Suppose that
also one of the following conditions holds:

3) K0,r(fj) ◦ gj ≤ η for every j ∈ N and ∆r
η(y) = 0 for every y ∈ A.

4) There exists r < m ≤ n and T > 0 such that (
´
Dj

K0,r(fj)(gj(y))
m/(m−r)dy)

m−r
m < T for

every j ∈ N and if m < n, then ∞ /∈ A.
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Then either f(x) = c for every x ∈ D and c ∈ {(A ∪ Kerj→∞{Dj), or there exists a
component G of A such that f : D → G is a generalized ring homeomorphism and its inverse
is a generalized ring homeomorphism.

Proof: If condition 1) holds, we see from Theorem A that Mq(fj(Γ)) ≤ M q
KI,q(fj)

(Γ) ≤
M q

ω(Γ) for every Γ ∈ A(D) and every j ∈ N and if condition 2) holds, then Mq(fj(Γ)) ≤
KMp(Γ)

q/p for every Γ ∈ A(D) and every j ∈ N.
If condition 3) holds, we see from Theorem B thatMr(Γ) ≤M r

K0,r(fj)◦gj(fj(Γ)) ≤M r
η (fj(Γ))

for every Γ ∈ A(D) and every j ∈ N, hence Mr(gj(Γ)) ≤ M r
η (Γ) for every Γ ∈ A(A) and every

j ∈ N. If condition 4) holds, we see from Theorem B that Mr(Γ) ≤ TMm(fj(Γ))
r/m for every

Γ ∈ A(D) and every j ∈ N, hence Mr(gj(Γ)) ≤ TMm(Γ)
r/m for every Γ ∈ A(A) and every

j ∈ N.
We see from Theorem 12 that either f(x) = c for every x ∈ D and c ∈ {(A∪Kerj→∞{Dj),

or there exists a component G of A such that f : D → G is a homeomorphism. If condition 1)
holds, then f is a generalized ring (q,M q

ω, γ) homeomorphism, where γ(t) = t for t > 0 and if
condition 2) holds, then f is a generalized ring (q,Mp, γ) homeomorphism, where γ(t) = Ktq/p

for t > 0. Also, if condition 3) holds, then f−1 is a generalized ring (r,M r
η , γ) homeomorphism,

where γ(t) = t for t > 0, and if condition 4) holds, then f−1 is a generalized ring (r,Mm, γ)
homeomorphism, where γ(t) = Ttr/m for t > 0.

We immediately obtain:
Corollary 13. Let n ≥ 2, q, r ∈ (n − 1, n], D,G domains in Rn such that Card∂G ≥ 2

if q = n, Card∂D ≥ 2 if r = n, let ω ∈ L1
loc(D), η ∈ L1

loc(G), let fj : D → G be ACLr

homeomorphisms satisfying condition (N) and their inverses gj : G→ D are ACLq and satisfy
condition (N) for every j ∈ N and fj → f . Suppose that one of the following conditions holds:

1) KI,q(fj) ≤ ω for every j ∈ N and ∆q
ω(x) = 0 for every x ∈ D.

2) There exists q < p ≤ n and K > 0 such that (
´
D

KI,q(fj)(x)
p/(p−q)dx)

p−q
p < K for every

j ∈ N and if p < n, then ∞ /∈ D.
Suppose that also one of the following conditions holds:
3) K0,r(fj) ◦ gj ≤ η for every j ∈ N and ∆r

η(y) = 0 for every y ∈ G.

4) There exists r < m ≤ n and T > 0 such that (
´
G

K0,r(fj)(gj(y))
m/(m−r)dy)

m−r
m < T for

every j ∈ N and if m < n, then ∞ /∈ G.
Then either f(x) = c for every x ∈ D and c ∈ ∂G, or f : D → G is a generalized ring

homeomorphism and its inverse is also a generalized ring homeomorphism.
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45) J. Väisälä, Lectures on n - dimensional quasiconformal mappings, Lecture Notes in Math.,
229, Springer Verlag, Berlin, (1971).

46) M. Vuorinen, Conformal geometry and quasiregular mappings, Lecture Notes in Math., 1319,
Springer Verlag, Berlin, (1988).

University of Bucharest
Faculty of Mathematics and Computer Sciences,

Str. Academiei 14, R-010014,
Bucharest, Romania,

Email: mcristea@fmi.unibuc.ro

26


